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Preface

An origami is a compact Riemann surface X, which is tiled by finitely many Eu-
clidean unit squares. An example is given in Figure 0.1. Away from the vertices, the
tiling provides a particular atlas for X: Locally, its transition maps are translations
z 7→ z + c, c ∈ C. More generally, any finite collection of polygons in the Euclidean
plane, whose sides can be paired by translations, gives rise to a compact Riemann
surface with such a translation structure ω. The pair (X,ω) is called a translation
surface.

If we apply the linear action of A ∈ SL2(R) to the collection of polygons, we still
can pair the sides accordingly, but the translation structure and even the complex
structure of the deformed Riemann surface will usually differ from the original one.
However, it may happen that there is a way to cut and reglue the polygons to obtain
the original collection. In this case, we can find a homeomorphism f : X→X, which
is affine w. r. t. to the translation structure and whose matrix part is A. The affine
homeomorphisms of X assemble to a group Aff(X,ω); the Veech group Γ(X,ω) is
the discrete subgroup of SL2(R) of matrix parts of affine homeomorphism.

The generic translation surface will admit (almost) no affine homeomorphisms. A
translation surface that has many is called Veech surface. The most basic examples
of Veech surfaces are origamis: Their Veech groups are always commensurable with
SL2(Z).

If a translation surface (X,ω) of genus g has a big Veech group, the isomorphism
classes of Riemann surfaces obtained as affine deformations of (X,ω) trace out an
algebraic curve in the moduli space Mg of compact Riemann surfaces of genus g.
Such curves are called Teichmüller curves, since they are totally geodesic for the
Teichmüller metric on Mg. A Teichmüller curve coming from a Veech surface (X,ω)
is uniformized by H /Γ(X,ω), and the Riemann surfaces parametrized by its points
can be assembled to a family of curves φ : X→C = H /Γ after passing to a suitable
finite-index subgroup Γ of Γ(X,ω).

In this thesis, we study the action

ρ : Aff(X,ω)→Aut(H1(X,Z)), f 7→ (f−1)∗

for Veech surfaces (X,ω), with particular emphasis on the ones coming from origamis.
The restriction of ρ to Γ = π1(C) is the monodromy action of the family φ. This
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Figure 0.1: An origami. The number at a side indicates which square is adjacent.

group action is equally described by the local system R1φ∗(Z) on C. As an additional
datum, this local system carries a polarized variation of Hodge structures (pVHS)
φ∗ωX/C ⊂ R1φ∗(Z)⊗ZOC. It was proved by M. Möller [Möl06] that the pVHS on
a Teichmüller curve is characterized by a particular splitting into sub-pVHS. In the
case of an origami, the pVHS splits over Q into L⊕M, where L is a sub-VHS of
rank 2, corresponding to the Fuchsian representation Γ→ SL2(R). Our interest lies
in the description of the remaining part M.

We exhibit two basic concepts leading to sub-pVHS of M:

Theorem 9.3 If p : X→Y is a covering map to another Veech surface Y , compatible
with the translation structures, then up to adjusting Γ, the pVHS R1φ∗(Z) has a sub-
pVHS of rank 2g(Y ) induced by p.

Theorem 9.6 Let Aut(X,ω) be the subgroup of biholomorphic affine homeomor-
phisms. Up to passing to a finite-index subgroup of Γ, every Aut(X,ω)-isotypic
component of H1(X,R) furnishes a sub-pVHS of R1φ∗(R).

We apply the second concept to the origami S̃t3 of degree 108 found by F. Herrlich
[Her06]. Using a formula of C. Chevalley and A. Weil, we determine the decompo-
sition of H1(S̃t3,C) into isotypic components in Proposition 9.11.

As to the first concept, we compute the splitting of the pVHS for a number of
origamis in Section 9.4. We first carry out the computations for the toy model
origami L2,2, and then proceed to the discussion of the origami M shown in Figure
0.1, which is a cover of two origamis in the SL2(Z)-orbit of L2,2. We show that the
pVHS of M decomposes completely into irreducible rank 2-summands. For a 3-fold
cover N3 of M, we obtain a decomposition into irreducible rank 2-summands and
some unitary summands.

Our examples stem from the first member of an infinite family Nn of origamis de-
scribed in Section 3.2. This family is special in that its members admit no non-trivial
translations, i. e. affine biholomorphisms with derivative I, but have the maximum
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possible number of affine homeomorphisms, i. e. their Veech group is SL2(Z). The-
orem 3.3 summarizes the properties of the origamis Nn.

The monodromy action also figures in an interesting dynamical system, the Kontse-
vich-Zorich cocycle [Zor96], which is a cocycle over the Teichmüller flow on C. The
Lyapunov exponents associated with this cocycle describe the mean growth rate of
cohomology vectors along a generic geodesic in C. The Lyapunov spectrum, i. e. the
collection of the Lyapunov exponents, is given as

1 = λ1 > λ2 ≥ · · · ≥ λg ≥ 0 ≥ −λg ≥ · · · ≥ −λ2 > −λ1 = −1.

It is in general not known, which numbers λ2, . . . , λg can occur. However the sum

1 + λ2 + · · ·+ λg

is given by an algebraic quantity: As shown by several authors [Kon97], [For02], it is
the quotient of degrees of certain line bundles. A variation on this theme is obtained
when we are able to find a sub-pVHS L1,0 ⊂ L = L⊗COC of rank 2 [BM10b]. In
this case, one finds a single non-negative Lyapunov exponent of the spectrum

λL = deg(L1,0)ext

2g(C)− 2 + |C \ C |
. (0.1)

Following an idea of M. Möller, we show in Section 9.3 that it is possible to com-
pute the numerator of the fraction in (0.1) with the help of the period map if one
knows explicitly the action of Γ on the associated 2-dimensional subspace of the first
cohomology of X.

Theorem 9.18 Suppose U ⊂ H1(X,Z) is a Γ-invariant subspace of rank 2 whose
associated local system carries a sub-pVHS of R1φ∗(Z). If Γ acts on U by a finite-
index subgroup ρ(Γ) of SL2(Z), then the associated non-negative Lyapunov exponent
is given by

λU = deg(p) vol(H /ρ(Γ))
vol(H /Γ) ,

where p : H /Γ→H /ρ(Γ) is the period mapping associated with the sub-pVHS.

We carry out the computation of the Lyapunov exponents for our examples and
are able to completely determine their Lyapunov spectrum (see Corollary 9.26 and
Corollary 9.28).

Finally, we find a sub-pVHS of the pVHS of the origami M, for which we show in
Proposition 9.34 that it does not occur in genus 2. To this end, we introduce the
notion of period data in Section 9.5.
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Structure of the thesis

This thesis is structured as follows:

In Chapter 2 we give an overview of the basic concepts. We discuss translation
surfaces, Teichmüller curves, moduli spaces, and origamis. This theory is widely
known, and we will only give some proofs, either for clarification or because we do
not know a reference.

In Chapter 3 we first present Herrlich’s construction of characteristic origamis and
then deduce from his result the existence of an infinite family of origamis with many
affine symmetries but no non-trivial translations. We close this section by pointing
out a funny construction by M. Schmoll, leading also to origamis with Veech group
SL2(Z).

Chapter 4 subsumes basic facts about the cohomology of a compact Riemann surface
(or more generally, a Kähler manifold).

In Chapter 5 we discuss the notion of a family of curves. In particular, we include
a condition on how to choose the finite unramified cover H /Γ→H /Γ(X,ω) of a
Teichmüller curve in order that there exist a family of curves over H /Γ.

Chapter 6 recounts the threefold description of monodromy actions, local systems
and vector bundles with a flat connection given by P. Deligne, enriched by some
specializations to the case of Teichmüller curves.

In Chapter 7 we present the abstract notion of a Hodge structure and of a varia-
tion of Hodge structures. We construct the period mapping and explain how Hodge
structures and abelian varieties are related. Moreover, we recall M. Möller’s char-
acterization of the pVHS on a Teichmüller curve.

Chapter 8 is a summary of the aspects in dynamical systems that we need: We
discuss Oseledet’s Theorem on the existence of Lyapunov exponents and then define
the multiplicative cocycle that we are interested in, the Kontsevich-Zorich cocycle.

Chapter 9 contains the results stated above.

There are numerous people without whom this thesis would never have been fin-
ished. First and foremost, I would like to thank my advisor JProf. Dr. Gabriela
Weitze-Schmithüsen for her permanent encouragement and her support in innu-
merous occasions, in particular during the last couple of stressful days before the
deadline. She did everything to give me the most possible amount of time, while at
the same time she was proofreading the manuscript very carfully. Many thanks go
equally to the two Korreferenten Prof. Dr. Frank Herrlich and Prof. Dr. Martin
Möller. The first one has a famous always open door (which is now competed by
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Gabi’s); I am grateful to him for proofreading and many helpful discussions and
his continuous support during the last years. The second one helped me find the
way through variations of Hodge structures and period mappings in various very
helpful email conversations. Special thanks go to Prof. Alex Eskin for giving me
the opportunity of staying at the University of Chicago for six months.

Many thanks go also to Myriam Finster, who was always ready to help me out
when I had some programming or mathematical issues and to Florian Nisbach who
proofread parts of my thesis and who always lends me his ear when I have a question
for him. Stefan Kühnlein was always willing to be bothered with my problems. I
thank him especially for sharing his knowledge on representation theory. Moreover,
my thanks go to all other past and present members of the famous “Kaffeerunde”:
to Karsten Kremer, whose thesis proves to be incredibly useful; to Oliver Bauer,
whose thesis was a good starting point to explore monodromy representations of
origamis, to Ute Hoffmann for her help with all organizational problems, and to all
others for the very cordial and pleasant working atmosphere.

My stay in Chicago was made possible with financial support from the Karls-
ruhe House of Young Scientists; I thank them heartly for having given me this
opportunity. Part of this research was done, while I was employed in the re-
search project “Mit Origamis zu Teichmüllerkurven im Modulraum”, led by JProf.
Dr. Gabriela Weitze-Schmithüsen and commissioned by the Landesstiftung Baden-
Württemberg.

Finally, and most importantly, I am indebted to my parents Waltraud and Wolfgang
Kappes and to Andrea Schumm for their continuous support and love.
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1 Notations and Conventions

Before we start, let us fix some notations that we use.

By a ring, we shall always understand a commutative ring with unity.

The Fundamental Group. Let X be a topological space and let x ∈ X. The
fundamental group π1(X, x) of X based in x is the group of homotopy classes of
continuous paths α : [0, 1]→X starting and ending in x. To be precise, if we are
given a, b ∈ π1(X, x), represented by α and β, then ab shall be the path obtained by
first running along β and then running along α. We will disobey to this convention
only in Chapter 9, where we use in some places the opposite group πop1 (X, x).

Riemann Surfaces and Algebraic Curves. A Riemann surface is a connected,
1-dimensional complex manifold. If considered as 2-dimensional real manifold, then
it shall always be equipped with its natural orientation coming from the complex
structure. Recall that there is an equivalence of categories between non-singular,
projective algebraic curves over C and compact Riemann surfaces. Therefore, the
term compact Riemann surface and algebraic curve (meaning non-singular, projec-
tive algebraic curve over C) will be used synonymously.

Sheaves. If X is a topological space and if M is a set, then MX shall denote the
constant sheaf associated to M . We will often drop the subscript if the context is
clear.

In the following let K = R or C. For a smooth manifold X, let C∞X,K denote the sheaf
of smooth functions on X with values in K. By a differentiable real (respectively
complex) vector bundle over a smooth manifold X, we shall understand a locally
free C∞X,R-module (resp. C∞X,C) V of finite type, i. e. every point has a neighborhood
U , where V|U ∼=(C∞U,R)n (respectively V|U ∼=(C∞U,C)n) for some fixed n, called the rank
of V.

In the same way, if X is a complex space and if OX is the sheaf of holomorphic
functions on X, then we define a holomorphic vector bundle to be a locally free
OX-module of finite type.
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1 Notations and Conventions

The fiber of a vector bundle V over X above the point x ∈ X is the (real or complex)
vector space

Vx := V(x)⊗C∞(x)
C∞(x) /m(x),

where V(x) is the stalk of V at x, C∞(x) is the stalk of C∞X,K at x, and m(x) ⊂ C∞(x) is
the maximal ideal of functions vanishing at x.

Replacing C∞X,K by OX in the above definition, we obtain the definition of a fiber of
a holomorphic vector bundle on a complex space.

Contrary to this notation, in general, the stalk of a sheaf F on a topological space
X in the point x ∈ X is denoted by Fx.

2



2 Teichmüller Curves

2.1 Teichmüller Spaces and Moduli Spaces of Curves

We recall some generalities on the Teichmüller space and the moduli space of curves.
They can be found e. g. in [Hub06], [Mas09], [EE69], [HM98], to list only some
references.

Let S be a compact, smooth, oriented, connected 2-dimensional manifold of genus
g ≥ 0 with a set Σ of n ≥ 0 marked points. We always assume that 3g− 3 + n > 0.
Let J(S) be the set of complex structures on S. J(S) can be described as the set
of endomorphisms J : TS→TS of the tangent bundle TS with J2 = − id, such
that the orientation induced by J coincides with the one given on S. J(S) itself is
endowed with a topology and a complex structure (see [EE69]).

The group Diffeo+(S,Σ) is the group of orientation-preserving diffeomorphisms f :
S→S, such that f|Σ = idΣ. It acts on J(S); the normal subgroup Diffeo0(S,Σ) of
diffeomorphisms homotopic to the identity (through homotopies fixing Σ) acts freely.
The quotient of J(S) by the action of Diffeo0(S,Σ) is the Teichmüller space T(S,Σ).
Let us fix a complex structure j0, and let us also denote the corresponding compact
Riemann surface (S, j0) by S. Then T(S,Σ) can be identified with equivalence classes
of pairs (X,m), where X is a compact Riemann surface of genus g, and m : S→X
is an orientation-preserving diffeomorphism, called marking. Here, (Y, n) ∼ (X,m)
if there exists φ ∈ Diffeo0(S,Σ) and h : X→Y a biholomorphic map such that

S
m

- X

S

φ
?

n
- Y

h
?

commutes. Note that Teichmüller space has a base point (S, id). If we do not
care about the base point, we will simply write Tg,n in place of T(S,Σ). Also,
T(S) = T(S, ∅) and Tg = Tg,0.

An alternative and more involved way to describe the Teichmüller space T(S,Σ) is
the use of quasiconformal homeomorphisms as markings. The definition is parallel
to the one given above. It allows to represent T(S,Σ) as the quotient of the space

3



2 Teichmüller Curves

M (S) of Beltrami forms on S by the normal subgroup QC0(S,Σ) of the group of
quasiconformal homeomorphisms QC(S,Σ), consisting of the elements homotopic to
the identity. The quotient map

M (S)→M (S)/QC0(S,Σ) = T(S,Σ)

induces a complex structure on the Teichmüller space, which makes it a complex
manifold of dimension 3g− 3 +n. Also, by Teichmüller’s Theorem T(S,Σ) is home-
omorphic to a ball in R6g−6+2n.

Using the marking by quasiconformal homeomorphisms, we define the Teichmüller
metric between x = (X,m) and y = (Y, n) by

dT(x, y) = 1
2 inf
f 'n◦m−1

{
logK(f) | f : X→Y quasi-conformal

}
,

where K(f) is the quasiconformal dilatation, i. e.

K(f) = 1 + ‖µ‖∞
1− ‖µ‖∞

with µ =
∂f
∂z
∂f
∂z

.

(These are distributional derivatives.) dT turns T(S,Σ) into a complete metric
space.

On T(S,Σ), we still have the left action1 of the mapping class group

Γ(S,Σ) = Γg,n = Diffeo+(S,Σ)/Diffeo0(S,Σ)∼= QC(S,Σ)/QC0(S,Σ).

Explicitly, for f ∈ Γ(S,Σ) and x = (X,m) ∈ T(S,Σ),

f · x = (X,m ◦ f−1).

Γ(S,Σ) acts properly discontinuously by isometries for the Teichmüller metric. The
quotient is the moduli space of compact Riemann surfaces

Mg,n = T(S,Σ)/Γ(S,Σ).

Mg,n is a complex orbifold of dimension 3g−3+n. The Teichmüller metric descends
to Mg,n.

Looking at it from the point of view of algebraic geometry, Mg,n can also be viewed
as a moduli stack. We will usually care about the coarse moduli space and denote
this one by Mg,n; it is a quasi-projective variety over C. If a fine moduli space is

1It is more naturally a right action. But since we want to consider Γg,n as a fundamental group,
we prefer to consider the left action. In remembrance of this fact, we use the right-quotient
notation instead.
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2.2 Translation Surfaces

needed, we will replace Mg,n with a finite cover M[`]
g,n given by a level-structure (see

Chapter 5). There is a good compactification Mg,n of Mg,n due to P. Deligne and
D. Mumford by adding stable curves [DM69]. Recall that a stable curve C over C is
a connected algebraic curve, which has only ordinary double points as singularities,
and every component of the normalization of C has negative Euler characteristic.

The cotangent space to a point x = (X,m) in Teichmüller space T(S) can be
naturally identified with the C-vector space Q(X) = (Ω1

X)⊗ 2(X) of holomorphic
quadratic differentials. Since every holomorphic quadratic differential on X be-
comes the square of a holomorphic 1-form ω on a suitable double cover of X, it is
convenient to consider instead the bundle Ω T(S), whose fiber over x = (X,m) is
Ω1
X(X) \ {0}. Its points are in a natural way (marked) translation surfaces, and we

will turn towards them in the next section.

2.2 Translation Surfaces

LetX be an oriented, connected 2-dimensional manifold, carrying a translation atlas
A = {(Ui, ϕi)}i, i. e. the transition maps ϕi ◦ϕ−1

j are locally translations of R2. The
datum (X,A) is called a translation surface. The case we will mostly care about, is
when X can be embedded in a compact surface X with X \X finite. Such surfaces
arise from the following construction.

Let ω be a nonzero holomorphic 1-form on a compact Riemann surface X. We
can define a translation atlas on X \ Z(ω), where Z(ω) is the set of zeros of ω, by
using local primitives of ω as charts. The translation surface thus constructed will
be denoted (X,ω). (Note that we secretly also remember the underlying compact
surface X.)

We always identify C with R2 by sending {1, i} to the standard basis. With this
choice, a translation altas {(Ui, ϕi)}i on a surface leads in a natural way to a complex
structure, since the multiplication by i on a chart leads to a well-defined complex
structure on the tangent bundle. If we started from a compact Riemann surface
X with non-zero holomorphic 1-form ω, then the complex structure induced by the
translation structure is the original one.

On X \ Z(ω), one defines a flat Riemannian metric with trivial linear holonomy
by pulling back the Euclidean metric via the coordinate charts. Geodesics for this
metric are straight line segments; geodesics that connect two singularities are called
saddle connections. The group of relative periods Per(ω) is the subgroup of R2

spanned by the vectors
∫
γ ω corresponding to saddle connections and loops γ. Al-

ternatively, Per(ω) is the image of H1(X,Z(ω),Z), the homology relative to Z(ω),

5



2 Teichmüller Curves

under integration over ω. A point P ∈ Z(ω) leads to a singularity of the transla-
tion structure, respectively of the metric: It is a conical point with a cone angle of
2π(d + 1), where d is the multiplicity of the zero. By the Riemann-Roch theorem,
ω has precisely 2g − 2 zeros counted with multiplicities. The volume form of the
Riemannian metric is given by i

2ω ∧ ω.

By a translation covering, we shall understand a non-constant holomorphic map
f : (X,ω)→(Y, ν) between translation surfaces, such that f ∗ν = ω.

The Moduli Space of Abelian Differentials

There is a natural stratification of Ω Tg by the multiplicities of the zeros of the 1-
form ω: Let κ = (κ1, . . . , κ`(κ)) be a partition of 2g − 2. Then we denote by ΩTg(κ)
the stratum of triples (X, f, ω), where ω has `(κ) zeros Z(ω) = {p1, . . . , p`(κ)} with
pi having multiplicity κi. We emphasize that there is no ordering on the set of
zeros. An expression kl indicates that there are l different zeros, all with the same
multiplicity k.

Let g ≥ 2 and let κ be a partition of 2g− 2. The stratum ΩTg(κ) is locally modeled
on a cohomology space: Charts are provided by the periods of the 1-form. We briefly
sketch the construction.To make this work, we have to refine the marking of points
in Ω Tg. Let S be as in Section 2.1, and let Σ ⊂ S be a finite set of `(κ) points.
Consider the following finite cover ΩT(S)(κ)′ of ΩT(S)(κ): Let it consist of triples
(X,m, ω), where m : S→X maps Σ to Z(ω). Say that two triples are equivalent
if they only differ by an element of QC0(S, [Σ]). This is the subgroup of elements
in QC0(S), fixing Σ as a set. Choose a symplectic basis {ai, bi}gi=1 of H1(S,Z), and
extend it to a basis of H1(S,Σ,Z) by `(κ)− 1 homotopy classes {ci}`(κ)−1

i=1 of paths
γi, where γi connects pi to pi+1.

Let x = (X,m, ω) ∈ ΩT(S)(κ)′. Integration of ω along the images of the symplectic
basis yields a well-defined vector Φ(x) ∈ C2g+`(κ)−1. Veech [Vee90] showed that this
produces a local homeomorphism from ΩT(S)(κ)′ to C2g+`(κ)−1, whose coordinate
changes are complex affine maps; they come from the change of the symplectic
basis. Since they have determinant 1, we can locally pull back the Lebesgue measure
on C2g+`(κ)−1, normalized such that the quotient torus C2g+`(κ)−1 /Z[i]2g+`(κ)−1 has
volume 1, and obtain a measure ν on the stratum.

If we factor out the action of the mapping class group on Ω Tg, we arrive at the
moduli space Ω Mg of isomorphism classes of pairs (X a compact Riemann surface,
ω a non-zero holomorphic 1-form). The stratification carries over; the strata are
denoted analogously by ΩMg(κ).
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2.3 Teichmüller Curves

Each stratum of Ω Mg decomposes into at most 3 connected components, who
are distinguished by the properties “hyperelliptic”, “non-hyperelliptic”, “even” and
“odd”. We refer to [KZ03], and we will freely make use of the notation introduced
therein to specify connected components of strata.

We have a canonical GL+
2 (R)-action on Ω Tg, which preserves the stratification.

For A ∈ SL2(R) and x = (X,m, ω) a point in Ω Tg, let A · (X,m, ω) denote the
translation surface, obtained by postcomposing each chart ϕ : U→C with the real
affine map

z = x+ iy 7→ (1, i)A(x, y)T .
The local dz’s on the new coordinate charts glue together, and produce a holomor-
phic 1-form, denoted by A · ω. Hence, this defines a point A · x in Ω Tg. This
action commutes with the action of Γg, thus it descends to an action on Ω Mg.
Most of the time, we will consider the action of SL2(R) or of the diagonal sub-
group {gt = diag(et, e−t)}. The latter is called Teichmüller geodesic flow. Note also
that the identity X→X gives an (orientation-preserving) homeomorphism between
(X,m, ω) and A · (X,m, ω), which we will denote by ϕA.

Assigning to (X,ω) ∈ Ω Mg its total area

Area(X,ω) = i
2

∫
X
ω ∧ ω

defines a function Ω Mg→R>0. Its level sets are preserved by the SL2(R)-action. It
is sometimes convenient (see Section 8.2) to look only at a fixed level set; therefore,
introduce the subspaces Ω1 Tg and Ω1 Mg, where the 1-form has total area normalized
to 1.

2.3 Teichmüller Curves

We summarize how a compact Riemann surface with a non-zero holomorphic quad-
ratic differential q gives rise to a complex geodesic H→Mg in moduli space, and
under which condition the image is an algebraic curve – called a Teichmüller curve.
We confine ourselves to the case q = ω⊗ 2, a square of a non-zero holomorphic 1-form
ω. Good references are e. g. [McM03], [Vee89], [HS06].

Affine Homeomorphisms

Given translation surfaces (X,ω), (Y, ν), we say that a homeomorphism f : X→Y
is affine, if in local coordinates of the translation structures, f is given by

z 7→ A · z + t

7



2 Teichmüller Curves

for some A ∈ GL2(R) and t ∈ R2. If f is affine, then its matrix part A is globally the
same. If f is orientation preserving, then det(A) > 0. The affine group Aff(X,ω)
is the group of all affine, orientation preserving homeomorphisms of X. Since X
has finite volume, the matrix part of f ∈ Aff(X,ω) is in SL2(R). “Affine” can also
be characterized in the following way: A homeomorphism f : X→Y is affine, if
and only if it maps zeros to zeros, is smooth outside the zeros, and the pullback
of the subspace span{Re ν, Im ν} ⊂ H1(Y,R) by f is equal to span{Reω, Imω} ⊂
H1(X,R).

Assigning to f ∈ Aff(X,ω) its matrix part defines a group homomorphism

D : Aff(X,ω)→ SL2(R).

The image of D is called the Veech group of (X,ω), and is denoted by Γ(X,ω). Its
kernel is the group of translations Trans(X,ω), i. e. maps that are automorphisms
for the translation structure. Finally, we call Aut(X,ω) = D−1({±I}) the group of
affine biholomorphisms of (X,ω). Note that D(Aut(X,ω)) is central in Γ(X,ω).

Veech [Vee89] showed that Γ(X,ω) is always a discrete subgroup of SL2(R), i. e. a
Fuchsian group. In general however, the quotient Γ(X,ω)\H has infinite volume. A
translation surface (X,ω) is called Veech surface, if Γ(X,ω) is a lattice. Note also
that Γ(X,ω) is necessarily non-uniform [Vee89], i. e. Γ(X,ω)\H is never compact.

A translation cover p : (X,ω)→(Y, ν) between Veech surfaces is called Veech cover ,
if the affine group of (Y \B, ν) has finite index in Aff(Y, ν), where B is the branch
locus of p.

Teichmüller Disks

A Teichmüller embedding is a holomorphic embedding ̃ : H→Tg, isometric w. r. t.
the Poincaré metric on H and the Teichmüller metric on Tg. A translation surface
(X,ω) gives rise to a Teichmüller embedding in the following way: Send A ∈ SL2(R)
to A · (X, id) = (A ·X,ϕA) ∈ T(X), where A ·X is the underlying complex structure
of the translation structure of A · (X,ω) and ϕA is as in Section 2.2. This map
factors via SO(2)\ SL2(R) and yields a Teichmüller embedding

̃ : H→T(X),

where SO(2)\ SL2(R) is identified with H by SO(2)A 7→ −A−1(i). The image ̃(H) =
∆ = ∆(X,ω⊗ 2) is called a Teichmüller disk. It is a complex geodesic in T(X), which
corresponds to the base point X and the cotangent vector ω⊗ 2. The affine group
acts from the left on ∆ as a subgroup of the mapping class group; in fact, it is the
stabilizer of ∆ in Γg [EG97, Lemma 5.2, Theorem 1]. It also acts from the left on
SO(2)\ SL2(R) by (B, SO(2)A) 7→ SO(2)AB−1, and ̃ is equivariant with respect to
the two actions. Note that the action on H is not by Möbius transformations.
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2.4 Origamis

Remark 2.1 ([McM03], [HS06])
Let B ∈ SL2(R). If H is identified with SO(2)\ SL2(R) as above, then the left action
of B on SO(2)\ SL2(R) by SO(2)A 7→ SO(2)AB−1 corresponds to the left action of
RBR on H by Möbius transformations, where R : C→C, z 7→ −z.

The action of Aff(X,ω) on ∆ need not be effective. The pointwise stabilizer Stab0(∆)
is isomorphic to Aut(X,ω) = D−1({±I}); this is the group of biholomorphisms of
X that propagate to the entire Teichmüller disk ∆(X,ω2).

Passing to the quotient by Aff(X,ω), respectively by Γg, on both sides of ̃ : H→Tg,
we get a holomorphic isometric immersion j : H /Aff(X,ω) = H /Γ(X,ω)→Mg. In
the general case, the image of j in Mg will be something wild; however,

Proposition 2.2 ([McM03, Corollary 3.3])
The map j : H /Γ(X,ω)→Mg covers an algebraic curve C in the moduli space, if
and only if Γ(X,ω) is a lattice in SL2(R). In this case, j is generically injective and
H /Γ(X,ω) is the normalization of C. j is then called a Teichmüller curve.

The whole discussion can be lifted to the “tangent bundles” Ω T(X), respectively
Ω Mg. Then we are considering the SL2(R)-orbit of (X, id, ω), respectively (X,ω).
In this case,

Proposition 2.3 ([SW04, Proposition 8])
The SL2(R)-orbit of (X,ω) is closed in Ω Mg, if and only if (X,ω) is a Veech surface.

2.4 Origamis

In this section, we formalize the definition of an origami, and list (and prove) some
general facts about origamis. I have first met them through [Sch05a], and I should
also like to mention [Kre10] as a good reference for the combinatorial aspects.

Definition 2.4 Let E = C /(Z⊕iZ) be the square torus. An origami O is a com-
pact Riemann surface, together with a non-constant holomorphic map π : O→E
which is ramified at most over ∞ := 0 ∈ E.

The C-vector space Ω1
E(E) is 1-dimensional. So a non-zero holomorphic 1-form on

E is unique up to multiplication by C×. If not stated otherwise, we will assume
that it has been chosen as the 1-form ωE induced by dz on C via the universal
covering C→E, so that integration E→C, x 7→

∫ x
∞ ωE mod Per(ωE) produces the

isomorphism from the uniformization.
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2 Teichmüller Curves

Remark 2.5 Let π : O→E be an origami. The monodromy of π induces a de-
scription of O as the result of gluing of finitely many unit squares. Therefore,
some authors prefer the name “square-tiled surface”. However, be aware that this
term is also used for pillowcase covers (see Remark 2.19 below), which are, though
closely related to origamis, not the same. The name “origami” was invented by
P. Lochak [Loc05], who studied them in the context of the action of Gal(Q/Q) in
Grothendieck-Teichmüller theory.

Remark 2.6 An origami defines a Veech surface by pulling back the non-zero holo-
morphic 1-form ωE on E. This is a general phenomenon: If (Y, ν) is a Veech surface
and p : X→Y is a holomorphic covering map, then (X, p∗ν) is again a Veech sur-
face, provided that the Veech group of (Y \B, ν) is a lattice. Here, B is the branch
locus of p. Indeed, by [GJ00, Theorem 4.9], the Veech groups Γ(X, p∗ν) and Γ(Y, ν)
are commensurate. Veech surfaces arising in this way are called geometrically im-
primitive, and else geometrically primitive.

Note that there is also the stronger notion of algebraic primitivity of a Veech surface:
A genus g Veech surface (X,ω) is algebraically primitive, if its trace field

K(X,ω) = Q(
{
Tr(γ) | γ ∈ Γ(X,ω)

}
)

has degree g over Q. (Note that K(X,ω) is always a number field of degree ≤ g by
[McM03, Theorem 5.1]). An algebraically primitive Veech surface is geometrically
primitive, but the converse is false in general [McM06].

In the following, we will consider an origami O as being endowed with the translation
structure from Remark 2.6. We write Aff(O) for the affine group, Γ(O) for the
Veech group, Aut(O) for the group of affine biholomorphisms and Trans(O) for
the group of translations of O. By virtue of Proposition 2.2, an origami O of
genus g also defines a Teichmüller curve, called origami curve, which we denote by
j(O) : C(O) = H /Γ(O)→Mg.

Remark 2.7 Let π : O→E be an origami. The Teichmüller curve comprises all
points in Mg, which can be reached by an affine shear A ·O with A ∈ SL2(R). This
can also be seen as varying the translation structure on E by A, and then pulling
back A · ω on A · E via ϕA ◦ π; the surface thus constructed is isomorphic as a
translation surface to A · O. Thus, the family of curves {A · O}A∈SL2(R) arises by
variation of the elliptic curve on the base, i. e. by variation of the τ -invariant.

Definition 2.8 A Veech surface (X,ω) is called arithmetic, if it admits a translation
cover π : X→T of a torus, ramified over at most one point.

10



2.4 Origamis

By the preceding remark, a Veech surface is arithmetic, if and only if it is (isomorphic
to) a point in the SL2(R)-orbit of an origami (up to scaling of the holomorphic 1-
form). A characterization of arithmetic Veech surfaces is given in [GJ00, Theorem
5.5].

Remark 2.9 a) A translation surface (X,ω) is an origami, i. e. admits a translation
covering p : X→E, ramified over one point, if and only if the lattice of relative
periods Per(ω) is a subgroup of Z⊕iZ (see [Kre10, Proposition 1.8] for a proof
of this fact). An origami is called primitive (not to be confused with the above
mentioned notion of primitivity), if Per(ω) = Z⊕iZ.

b) An origami is primitive, if and only if it does not come from subdividing the
squares of another origami, i. e. if and only if there is no translation covering
π′ : O→E ′ to a torus E ′, ramified over at most one point, such that π factors
over π′ as π = f ◦ π′ with a translation cover f : E ′→E, such that deg(f) > 1.

c) If π : O→E is a primitive origami of genus g ≥ 2, then Aff(O∗) = Aff(O),
where Aff(O∗) is the subgroup of Aff(O) fixing the fiber π−1(∞) as a set.

Proof: b) Assume that there exists a π′ : O→E ′, such that π = f ◦π′. Necessarily,
π′ is, if at all, ramified over a point p ∈ f−1(∞). We have a commutative diagram

E ′
f

- E

C /Per(f ∗ωE)
?

- C /Per(ωE)
?

where the vertical arrows are the isomorphisms
∫ ·
p f
∗ωE, respectively

∫ ·
∞ ωE given

by integration, which is well-defined modulo the period lattices Per(f ∗ωE) and
Per(ωE), and the bottom horizontal arrow is the projection induced by the inclusion
of Per(f ∗ωE) in Per(ωE). The diagram commutes, for

∫ f(x)

f(p)
ωE ≡

∫ x

p
f ∗ωE mod Per(ωE).

Let γ be a closed loop or a saddle connection in O. Since π′ is ramified at most over
one point, π′ ◦ γ is a closed loop on E ′. Now,∫

γ
ω =

∫
γ
π′∗(f ∗ωE) =

∫
π′◦γ

f ∗ωE ∈ Per(f ∗ωE) ( Per(ωE),

since f has at least degree 2.

Conversely, assume that O is not primitive. From part a), we know Per(ω) 6Z⊕iZ;
by assumption, this inclusion is strict. Consider the torus E ′ = C /Per(ω), and the
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2 Teichmüller Curves

map π′ : O→E ′, induced by integration x 7→
∫ x
q ω, where q ∈ π−1(∞) shall be a

conical point, if there are any (or arbitrary if not). π′ is holomorphic and ramified
at most over 0, since every conical point of O maps to 0. The composition of π′
with the projection C /Per(ω)→C /(Z⊕iZ) and the uniformization isomorphism
C /(Z⊕iZ)∼=E produces a factorization of π.

c) We have to show that π(f(p)) = π(p) for any point p in π−1(∞) and any f ∈
Aff(O). Since g ≥ 2, there is at least one conical point q ∈ O. (Otherwise, O
would admit a complete Riemannian metric of constant curvature 0, contradicting
g ≥ 2.) Any f ∈ Aff(O) maps q to a conical point f(q). Therefore it acts on the
saddle connections, and also on the vectors in C associated with saddle connections.
Explicitly, this action is given by the rule

f · (
∫
γ
ω) =

∫
f◦γ

ω =
∫
γ
f ∗ω = A · (

∫
γ
ω) ,

where A = D(f) acts as affine transformation of R2 = C. So A preserves Per(ω) =
Z⊕iZ, i. e. A ∈ SL2(Z). Take a path γ1 joining p to q, and a path γ2 joining q to
f(q) (e. g. a saddle connection). Then the integrals

∫
γi
ω are in Z⊕iZ, and so is∫

f◦γ1
ω. Therefore

∫ f(p)

p
ω≡

∫
f◦γ−1

1

ω +
∫
γ2
ω +

∫
γ1
ω≡ 0 mod Z⊕iZ .

This shows that x 7→
∫ x
p ω maps f(p) to 0 =∞. �

Combinatorics

The starting point for the combinatorial discussion of origamis is the identification
of the fundamental group of the once-punctured torus with F2. Let again E =
C /(Z⊕iZ), and let ∞ := 0 ∈ E. We set E∗ = E \ {∞}. Moreover, we choose
a base point e ∈ E∗. (w. l. o. g. no coordinate of e is integral.) As generators of
π1(E∗, e), we choose x, the (homotopy class of the) horizontal loop based at e and
y, the (homotopy class of the) vertical loop based at e, and fix the isomorphism
π1(E∗, e)→F ({x, y}) = F2 induced by this choice.

Proposition 2.10 An origami π : O→E of degree d is equally well given by

• a conjugacy class of a subgroup H = H(O) 6F2 of index d,
• two permutations σx, σy ∈ Sd, which generate a transitive subgroup (up to the
action of Inn(Sd))
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Proof: We sketch how to pass from one description to another. A complete dis-
cussion can be found in [Kre10, Sect. 1.1].

To obtain a conjugacy class of a subgroup in F2, do the following. Let O∗ =
O \π−1(∞). Choose a base point x ∈ π−1(e). Then π1(O∗, x) injects into π1(E∗, e),
because π : O∗→E∗ is a topological covering map. If we choose another base point
x′, then the image changes by conjugation H 7→ wHw−1, where w is the image of
a path connecting x to x′ in O∗. Conversely, any conjugacy class of a subgroup
determines a covering, unique up to fiber-preserving homeomorphism (see [Hat02,
Theorem 1.38]).

To obtain two permutations from π : O→E, consider the monodromy action of
π1(E∗, e) on the fiber π−1(e). This defines a group homomorphism σ : π1(E∗, e)→Sd,
unique up to renumbering. Set σx = σ(x) and σy = σ(y). Together they generate
a transitive subgroup of Sd, since O is connected. Conversely, given σx, σy ∈ Sd,
which together act transitively, take d unit squares and glue the right side of square
i to the left side of square σx(i) and the upper side of square i to the lower side of
square σy(i). This defines an origami of degree d.

To obtain a conjugacy class of a subgroup of F2 from two permutations σx, σy,
generating a transitive subgroup, consider the group homomorphism

ρ : F2→Sd , x 7→ σx, y 7→ σy.

Since ρ(F2) is transitive, Stabρ(F2)(1) is a subgroup of index d in ρ(F2), and H =
ρ−1(Stabρ(F2)(1)) has index d in F2. Choosing m ∈ {1, . . . , d} instead of 1 replaces
H by a conjugate.

To obtain two permutations from a conjugacy class of a subgroup H 6F2 of index
d, consider the action of F2 on the left cosets {a1 ·H, a2 ·H, . . . , ad ·H} of H in F2 by
left multiplication. This defines two permutations σx, σy ∈ Sym(F2/H)∼=Sd, which
clearly generate a transitive subgroup. �

Remark 2.11 Let π : O→E be an origami of degree d, and let O∗ = O \π−1(∞).
Then O∗ is homotopy equivalent to a 4-valent graph G(O) with d vertices.

Proof: O is a surface tiled by squares. Let G(O) be the dual graph of the tiling.
This is clearly a deformation retract of O∗. �

Proposition 2.10 allows for a description of the Veech group as a stabilizer in the
automorphism group of the free group F2 = F ({x, y}). This was first observed by G.
Weitze-Schmithüsen [Sch05a], [Sch04]. Recall that Out(F2) = Aut(F2)/ Inn(F2) is
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isomorphic to GL2(Z): Consider the homomorphism β : Aut(F2)→GL2(Z) induced
by the abelianization map F2→Z2; β is given by

f 7→ A =
(
a b
c d

)
=
(

#x(f(x)) #x(f(y))
#y(f(x)) #y(f(y))

)
,

where #x(w) is the number of letters x minus the number of letters x−1 in a word
w ∈ F2, and #y is analogously defined. Then one can show that Ker(β) = Inn(F2).
The subgroup Aut+(F2) is now defined as the preimage of SL2(Z) under β.

Theorem 2.12 ([Sch04, Proposition 2.1])
Let O be a primitive origami, and let H = H(O) be a representative of the conjugacy
class of subgroups of F2 associated with O. Define the stabilizer subgroup of H by

StabAut+(F2)(H) =
{
f ∈ Aut+(F2) | f(H) = H

}
.

Then
Γ(O) = β(StabAut+(F2)(H)).

In particular, this implies that Γ(O) has finite index in SL2(Z): For StabAut+(F2)(H)
has finite index in Aut+(F2) by virtue of being a stabilizer of the action of Aut+(F2)
on the finite set of index d-subgroups of F2.

We can also retrieve the group of translations in this description. Let π : O→E be
an origami, and let us continue to use the notations from Proposition 2.10. Fix a
base point x ∈ π−1(e), so that we have a subgroupH = H(O) ≤ π1(E∗, e) associated
with O. We also fix a universal covering u : X̃→O∗ (with base point x̃ lying over
x), and endow X̃ with the translation structure obtained from ω̃ = (π ◦u)∗ωE. Now
consider the fundamental groups as Galois groups acting on X̃, i. e.H = Gal(X̃/O∗)
and F2 = Gal(X̃/E∗); both groups lie in Aff(X̃, ω̃) (which, in the case of a primitive
origami, is isomorphic to Aut+(F2) by [Sch04, Lemma 2.8]).

Proposition 2.13 Let π : O→E be an origami of genus g ≥ 2, and H = H(O)
as above. Then Trans(O)∼=N(H)/H, where N(H) is the normalizer of H in F2 =
π1(E∗, e).

Proof: First note that Trans(O) = Trans(O∗), where the latter is the subgroup
of translations preserving π−1(∞). This follows from the fact that translations act
trivially on the vectors associated with saddle connections and the proof of Remark
2.9. With the notations introduced above, let

Affu(X̃, ω̃) =
{
f ∈ Aff(X̃, ω̃) | f descends to f ∈ Aff(O∗) via u

}
,

and let Transu(X̃, ω̃) = Affu(X̃, ω̃) ∩Gal(X̃/E∗).
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Every element f in Trans(O∗) lifts to some f ∈ Transu(X̃, ω̃), which provides a
surjective homomorphism

Transu(X̃, ω̃)→Trans(O∗) , f 7→ f

whose kernel is precisely H = Gal(X̃/O∗). So the claim follows if we show that
the subgroup Transu(X̃, ω̃) of Gal(X̃/E∗) = F2 is equal to N(H). For let g ∈
Transu(X̃, ω̃), and let h ∈ H. Then h descends to h = idO∗ . This implies ghg−1 =
idO∗ , so ghg−1 ∈ H. Conversely, for an element g ∈ N(H) define g : O∗→O∗
by H · x 7→ H · g(x). Since for every h ∈ H, there exists h′ ∈ H such that
g(h(x)) = h′(g(x)) for every x ∈ X̃, this is well-defined. Thus g ∈ Transu(X̃, ω̃). �

Definition 2.14 An origami π : O→E is called normal (or Galois), if π is a normal
covering map.

By standard covering space theory, an origami O is normal, if and only if H(O) is a
normal subgroup of F2 = π1(E∗, e). Moreover, if O is an origami of genus ≥ 2 and
degree d, then this is equivalent to |Trans(O)| = d. A discussion of normal origamis
can be found in [Kre10].

Finally, we remark that we can also describe the ramification of π : O→E combi-
natorially.

Remark 2.15 Let π : O→E be an origami of degree d, let σx and σy be the
permutations associated with O by Proposition 2.10. The monodromy of the path
yxy−1x−1 on E describes the ramification behavior above ∞: There is a bĳection
between the equivalence classes of lower left corners of the squares of O and the
orbits of k = σyσxσ

−1
y σ−1

x , given by assigning to the lower left corner of the square
i the orbit of i. Each orbit corresponds thus to a cycle in the cycle decomposition
of k. The ramification index of π at p ∈ π−1(∞) is equal to the cycle length of
the cycle associated with p. Recall that we determine the stratum of O from the
multiplicities of the zeros of π∗ωE. A point p ∈ π−1(∞) of ramification index e leads
to a zero of order e− 1.

Cusps

Recall that a holomorphic quadratic differential q on a compact Riemann surface
X is called Strebel, if the horizontal geodesic flow for the flat Riemannian metric
induced by q is completely periodic. More generally, θ ∈ [0, 2π) is called a Strebel
direction for q, if e−i2θq is Strebel.

If we specialize to a Veech surface (X,ω), then the Veech alternative (see e. g. [Vor96,
Theorem 3.4]) asserts that the 1-form ω (or rather ω⊗ 2) is Strebel in direction θ,
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if and only if there exists a parabolic element A ∈ Γ(X,ω) with θ as an eigen-
direction, i. e. Av = v for any vector v in direction θ. The conjugacy classes of
maximal parabolic subgroups in Γ(X,ω) are in turn in bĳection with the cusps of
H /Γ(X,ω) (or if you prefer, with the cusps of RΓ(X,ω)R\H, see Remark 2.1).
Here, Γ(X,ω) denotes the image of Γ(X,ω) in PSL2(R).

There is a stable curve corresponding to each of the cusps:

Proposition 2.16 Let (X,ω) be a Veech surface, and let C = H /Γ(X,ω) be the
associated Teichmüller curve. Let C be the completion of C to a compact Riemann
surface. Then

a) the map j : C→Mg extends to a map  : C→Mg

b) the points in Im()∩ ∂Mg are given by stable curves, obtained by contracting the
waist curves of all cylinders in the cylinder decomposition associated with Strebel
directions of ω.

This was shown by Masur [Mas75] for the case of Teichmüller disks; an adaption
to Teichmüller curves can be found in [HS06, Sect. 4]. There is a more precise
formulation in the case of origamis. In the following, T = ( 1 1

0 1 ) ∈ SL2(Z).

Corollary 2.17 Let π : O→E be a primitive origami, and let ω = π∗ωE. Then

a) the T -orbits of the action of SL2(Z) on PSL2(Z)/Γ(O) by left multiplication are
in bĳection with the cusps of C(O) = H /Γ(O).

b) the cusp corresponding to the T -orbit of AΓ(O) ∈ PSL2(Z)/Γ(O) is mapped to
the (isomorphism class of the) stable curve in Mg, obtained by contracting the
waist curves of the horizontal cylinders of A ·O.

Proof: a) Let c be a cusp of C(O). By the above, c can be interpreted as a
conjugacy class of a maximal parabolic subgroup of Γ(O). Pick a representative
subgroup, and let P be a generator of it. Then P is conjugate in PSL2(Z) to ±T k,
i. e. P = ±A−1T kA with A ∈ SL2(Z) and k ∈ Z. We assign to c the T -orbit of
AΓ(O). This is well-defined: If P ′ is a generator of another subgroup in the same
conjugacy class as 〈P 〉, then P ′ = ±B−1P εB for some B ∈ Γ(O) and ε ∈ {±1};
thus, P ′ = ±(AB)−1T ε kAB, and ABΓ(O) = AΓ(O). Now, we construct an inverse:
let

AΓ(O), TAΓ(O), . . . , T k−1AΓ(O)
be the T -orbit of AΓ(O) in PSL2(Z)/Γ(O) (with k ∈ N). Then P = ±A−1T kA ∈
Γ(O) is a parabolic element. Moreover, ±A−1T jA 6∈ Γ(O) for j < k, so P generates
a maximal parabolic subgroup in Γ(O).

b) Let P = ±A−1T kA be a generator of a maximal parabolic subgroup, obtained
from 〈T 〉AΓ(O) via the bĳection in a). By the above, the 1-form ω is Strebel in
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Figure 2.1: A pillowcase. Sides with the same letters are glued.

direction θ = θ(v), where v is an eigenvector of P . Shearing by A sends the direction
v to Av, which is an eigenvector for T k. Hence, the 1-form A · ω on A ·O is Strebel
for the horizontal direction, and we conclude with Proposition 2.16. �

Origamis and Pillowcase Covers

Let us close this part by pointing out the connection between origamis and the also
very popular pillowcase covers (see [Wri11], [FMZ10], [EKZ10a]). A pillowcase is
the sphere P1 with four marked points z1, . . . , z4, endowed with the holomorphic
quadratic differential

q0 = (dz)⊗ 2

(z − z1)(z − z2)(z − z3)(z − z4)
.

The associated half-translation surface2 is depicted in Figure 2.1. A pillowcase cover
is a cover X→P1, ramified at most over z1, . . . , z4. Basic examples are cyclic covers.
They arise from the desingularization of

yN = (z − z1)a1(z − z2)a2(z − z3)a3(z − z4)a4

under the condition that

N > 1 , gcd(N, a1, . . . , a4) = 1 , 0 < ai ≤ N ,
4∑
i=1

ai≡ 0 mod N.

The resulting surface is denoted MN(a1, . . . , a4). The most basic example is N = 2
and ai = 1 for i = 1, . . . , 4, in which case we obtain a cover π2 : E2→P1 from a torus
with 4 marked points e1, . . . , e4, which are 2-torision points (for any choice of x ∈
{e1, . . . , e4} as base point of the elliptic curve). Postcomposition with [2] : E2→E2,
the multiplication by [2] on (E, x) gives a translation cover of a torus, which maps
e1, . . . , e4 to the single point x.

2i. e. the transition maps of charts are locally z 7→ ±z + c, c ∈ C
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2 Teichmüller Curves

If π : X→P1 is a pillowcase cover, and q = π∗q0 is not the square of a global
holomorphic 1-form, then there is a canonical double cover k : X̂→X such that
k∗q = ω̂⊗ 2 for some non-zero holomorphic 1-form ω̂ on X̂. We have (see also
[Wri11])

Remark 2.18 The differential q is not a square of a holomorphic 1-form on X, if
and only if π∗(z − z1)(z − z2)(z − z3)(z − z4) is not a square in the function field
M(X) of X.

Proof: If q = ω⊗ω for some holomorphic 1-form ω on X, then in a chart (U,ϕ)
of X, we have

q = F−1(dπ)⊗ 2 = F−1
(
∂π

∂ϕ

)2
(dϕ)⊗ 2,

where F = (π − z1) · · · (π − z4). Also, we can write q = ω⊗ω = g2(dϕ)⊗ 2 with
g ∈ OX(U). Setting

Gϕ = g−1 ∂π

∂ϕ
,

we have locally F = G2
ϕ, and the Gϕ (for different charts) glue together to a holo-

morphic function on X. Therefore the image of (z − z1) · · · (z − z4) in M(X) is a
square. Conversely, if F = G2 is a square, then ω = dπ

G
defines a holomorphic 1-form

on X, whose square is q. For consider ordP (ω) for P ∈ X. If P is not a point lying
over one of the points z1, . . . , z4, then π and G are locally invertible, so ordP (ω) = 0;
otherwise,

2 ordP (G) = ordP (F ) = eP (π) = k ≥ 1,

so ordP (G) = k′ ≥ 1, with 2k′ = k. Also, locally around P , dπ = dzk = kzk−1dz, so

ordP (ω) = ordP (dπ)− ordP (G) = 2k′ − 1− k′ = k′ − 1 ≥ 0. �

Remark 2.19 a) If π : O→E is an origami, then postcomposing with the quotient
E→P1 by the involution [−1] (for the elliptic curve (E,∞)) produces a pillowcase
cover.

b) If π : X→P1 is a pillowcase cover, and q is a square of a holomorphic 1-form ω,
then π factors over π2, i. e. π = π′ ◦ π2 for a covering map π′ : X→E2, ramified
over e1, . . . , e4. After postcomposition with [2], we see that X is an arithmetic
Veech surface.
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3 Characteristic Origamis

3.1 Characteristic Origamis

Definition 3.1 Let O be an origami.

a) O is called characteristic if the subgroup H(O) 6 π1(E∗, e)∼=F2 associated with
it is a characteristic subgroup.

b) O is called modular if its Veech group is the full modular group SL2(Z).

From Theorem 2.12, it follows that primitive characteristic origamis are always
modular. However, the subgroup of a modular origami need not be stabilized by all
inner automorphisms in Aut+(F2), hence it need not be characteristic. We will see
that there exist modular origamis that admit no non-trivial translations.

Clearly, every origami O is covered by a characteristic origami; it suffices to take the
origami associated with ⋂ϕ∈Aut+(F2) ϕ(H(O)). F. Herrlich’s way to construct char-
acteristic origamis [Her06, Proposition 2.1] yields a nicer presentation. We sketch
the idea: Let G be a finite group, which can be generated by two elements and let
Epi(F2, G)/Aut(G) denote the finite set of epimorphisms F2→G modulo the right
action of Aut(G). If h1, . . . , hr is a system of representatives of Epi(F2, G)/Aut(G),
then Ker(h) 6F2 is a characteristic subgroup, where h = ∏r

i=1 hi : F2→Gr.

Trivial examples of characteristic origamis come from certain isogenies E ′→E be-
tween elliptic curves: Arrange N2 squares in one big square and pair opposite hor-
izontal and vertical sides. The resulting origami is characteristic, for the subgroup
associated with it is the pullback of the lattice (Z /(N))2 by the abelianization map
F2→Z2, and (Z /(N))2 is a characteristic subgroup of Z2.

3.2 An Infinite Series of Modular Origamis

Let n ∈ N. Consider the “stairs” origami Stn [Sch06]. For even n, it is given by

σx = (1 2)(3 4) · · · (n− 1 n), σy = (1)(2 3)(4 5) · · · (n− 2 n− 1)(n).
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3 Characteristic Origamis

and for odd n by

σx = (1 2)(3 4) · · · (n− 2 n− 1)(n), σy = (1)(2 3)(4 5) · · · (n− 1 n),

We now restrict to odd n. In this case, using the above mentioned idea, Herrlich
[Her06] found a characteristic origami S̃tn, which covers Stn. We will construct a
quotient origami, i. e. an intermediate cover S̃tn→Nn→E with particular proper-
ties.

S̃tn corresponds to the subgroup H(S̃tn) of F2 given in the following way. Let Dn

be the dihedral group of order 2n. Dn has the presentation

〈σ, τ | τn, σ2, στστ〉,

and we write elements in the form τ iσε for 0 ≤ i ≤ n− 1, ε ∈ {0, 1}.

Proposition 3.2 ([Her06, Proposition 4.5])
Let n ∈ N be odd, Dn as above and let h : F2 = F ({x, y})→D3

n be the homomor-
phism given by

h(x) = (σ, τ, σ), h(y) = (τ, σ, τσ).

Then Ker(h) = H(S̃tn) is a characteristic subgroup of F2, defining an origami S̃tn,
and H(S̃tn) 6H(Stn). Moreover, the Galois group of S̃tn is given by the image of
h

Gal(S̃tn /E) = Kn =
{
(δ1, δ2, δ3) ∈ D3

n | e(δ1) + e(δ2) + e(δ3) = 0
}

where e : Dn→Z /2Z is given by e(τ iσε) = ε. It is a primitive origami of degree
4n3 in the stratum ΩMg((n− 1)4n2), where g = 2n2(n− 1) + 1.

Theorem 3.3 Using the notations of Proposition 3.2, we set

Ln = 〈(σ, σ, 1), (1, σ, σ)〉∼=Z /(2)× Z /(2).

Then the origami Nn associated with the subgroup h−1(Ln) 6F2 has the following
properties:

• It is a primitive origami given as a gluing of n3 squares. If the squares are
labeled by (i, j, k) ∈ (Z /(n))3, then the right neighbor of (i, j, k) is given by

fh(i, j, k) = (−i, j + 1,−k),

and the top neighbor of (i, j, k) is given by

fv(i, j, k) = (i+ 1,−j, 1− k).

• Its genus is g = 1
2n

2(n− 1) + 1 and Nn lives in the stratum ΩMg((n− 1)n2).
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Figure 3.1: The origami N3

• Its Veech group Γ(Nn) = SL2(Z) and its only non-trivial affine biholomorphism
is an involution s of derivative −I, given as a permutation of the squares
{(i, j, k) ∈ (Z /(n))3} by

(i, j, k) 7→ s(i, j, k) = (−i,−j, k).

s has n2 + 3n fixed points; the genus of Nn/〈s〉 is 1
4(n(n+ 1)(n− 3)) + 1.

Proof: The short exact sequence

1 - Ker(e× e× e) ⊂ - D3
n

e×e×e- (Z /(2))3 - 1

splits and induces a presentation of Kn as a semidirect product of Ker(e × e × e)
with Ln. A section S : (Z /(2))3→D3

n is given by (ε1, ε2, ε3) 7→ (σε1 , σε2 , σε3), and
Ln = S(〈(1, 1, 0), (0, 1, 1)〉). Therefore the left cosets of Ln in Kn can be represented
by (τ i, τ j, τ k), where (i, j, k) ∈ (Z /(n))3. They are in bĳection with the left cosets of
h−1(Ln) 6F2. Therefore by Proposition 2.10, Nn is given as the gluing of n3 squares.
The monodromy of Nn is given by the action of x and y on the left cosets of h−1(Ln)
which is the same as the action of h(x), h(y) on the left cosets of Ln. Let the squares
be labeled with the elements of (Z /(n))3, and identify (i, j, k) ∈ (Z /(n))3 with the
coset represented by (τ i, τ j, τ k). Since

h(x)(τ i, τ j, τ k)Ln = (στ i, ττ j, στ k)(σ, 1, σ)Ln = (τ−i, τ j+1, τ−k),
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3 Characteristic Origamis

and
h(y)(τ i, τ j, τ k)Ln = (ττ i, στ j, τστ k)(1, σ, σ)Ln = (τ i+1, τ−j, τ 1−k),

the gluings are given as stated above. To compute the genus, we need to know the
number of vertices of the squares after identification. They correspond to orbits of
the commutator

[h(y), h(x)] = h(y)h(x)h(y−1)h(x−1) = (τ 2, τ−2, τ 2) =: c

Let m ∈ Z. Since cm · (τ i, τ j, τ k)Ln = (τ 2m+i, τ−2m+j, τ 2m+k)Ln, we see that cm
stabilizes (τ i, τ j, τ k)Ln if and only if

2m+ i≡ i mod n , −2m+ j≡ j mod n , 2m+ k≡ k mod n.

Therefore, since n is odd, m≡ 0 mod n. So each 〈c〉-orbit has length n, and there are
n2 orbits; in particular, each vertex of a square is a conical point. The multiplicity
of the zero of the holomorphic 1-form at each of the conical points is equal to n− 1,
so Nn is in the stratum ΩMg((n− 1)n2). The formula for the genus g follows from
2g − 2 = (n− 1)n2.

By Proposition 2.13, the group of translations of Nn is isomorphic to

NF2(h−1(Ln))/h−1(Ln) ,

where NG(·) denotes the normalizer in the group G. Since Ker(h) is normal in F2,

NF2(h−1(Ln))/Ker(h)∼=NF2/Ker(h)(h−1(Ln)/Ker(h)) = NKn(Ln).

So we must show NKn(Ln) = Ln. Let g ∈ NKn(Ln) be an element in the normalizer,
g = (τ i1σε1 , τ i2σε2 , τ i3σε3). We compute

g(1, σ, σ)g−1 = (1, τ i2στ−i2 , τ i3στ−i3)
= (1, τ 2i2σ, τ 2i3σ).

This being in Ln requires i2≡ i3≡ 0 mod n, since n is odd. In the same way, we see
that i1≡ 0 mod n by inspecting g(σ, σ, 1)g−1. This proves that Nn has no non-trivial
translations.

By Lemma 3.4 below and Theorem 2.12, it suffices to show that any automorphism
in Aut(F2/Ker(h)) = Aut(Kn) leaves the conjugacy class of Ln invariant. But Ln
is the 2-Sylow subgroup of Kn. Therefore, the claim follows from the general fact,
that in a finite group G, every p-Sylow subgroup is conjugate to every other p-
Sylow subgroup, and any element of Aut(G) maps a p-Sylow subgroup to a p-Sylow
subgroup.
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We showed above that Nn has no non-trivial translations. Since {id} = Trans(Nn)
is an index 2-subgroup of Aut(Nn), and since Γ(Nn) = SL2(Z), there is precisely
one non-trivial affine biholomorphism s, and it is an involution of derivative −I. A
quick computation shows that the map

(i, j, k) 7→ s(i, j, k) = (−i,−j, k)

is a permutation of the square that inverts the edges of the graph G(Nn). In fact,
we need to check that

fh ◦ s = s ◦ f−1
h and fv ◦ s = s ◦ f−1

v .

Therefore it defines an affine biholomorphism of Nn, which takes the square (i, j, k),
rotates it by π, and maps it to s(i, j, k).

We determine the fixed points of s; since s rotates each square by π, they can only
be vertices or centers of squares and centers of sides of squares. First, consider the
vertices. The lower left vertex of a square corresponds to a 〈c〉-orbit. s maps the
lower left vertex of a square to the upper right vertex of another square. The upper
right vertex is the 〈c〉-orbit of fv ◦ fh(i, j, k) = (1 − i,−1 − j, 1 + k). Therefore s
fixes a vertex, if we can find m ∈ Z, such that

(i, j, k) +m(2,−2, 2) = fv ◦ fh(s(i, j, k)) = (1 + i,−1 + j, 1 + k).

This is equivalent to m(2,−2, 2) = (1,−1, 1), which has a solution, since n is odd.
Since this holds for any (i, j, k) ∈ (Z /(n))3, each of the n2 vertices is fixed. The
remaining fixed points are considerably easier: A center is fixed, if and only if
s(i, j, k) = (i, j, k), which leads to i = j = 0 and k ∈ Z /(n) arbitrary. A center of
a lower side of a square is fixed, if and only if s interchanges (i, j, k) and fv(i, j, k),
which means s(i, j, k) = f−1

v (i, j, k), so i = k = 2−1 and j ∈ Z /(n) arbitrary. Simi-
larly, a center of a left side of a square is fixed if and only if s(i, j, k) = f−1

h (i, j, k),
so j = 2−1, k = 0 and i ∈ Z /(n) is arbitrary. In total, we obtain n2 + 3n fixed
points. Plugging this into the Hurwitz formula yields

2g(Nn)− 2 = n2(n− 1) = 2(2g(Nn /〈s〉)− 2) + n2 + 3n,

which is equivalent to g(Nn /〈s〉) = 1
4(n(n+ 1)(n− 3)) + 1. �

The following lemma completes the proof of Theorem 3.3. We use the notation [·]
for the conjugacy class (of a subgroup) in F2; moreover, xg := gxg−1 for x, g ∈ F2.

Lemma 3.4 Let Φ ∈ Out+(F2), f a lift of Φ to Aut+(F2) and H 6K 6F2 sub-
groups, such that f(H) = H. Assume further that H is normal in F2. Then
Φ([K]) = [K] if and only if π(f)(K/H) is conjugate to K/H in F2/H, where

π : StabF2(H)→Aut(F2/H) , f 7→ (xH 7→ f(x)H).
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Proof: If Φ([K]) = [K], then there exists g ∈ F2 such that f(K) = Kg. Then
π(f)(K/H) = f(K)/H = Kg/H = (K/H)gH , proving the “only if”-part. Con-
versely, let π(f)(K/H) = (K/H)gH for some g ∈ F2. We show that f(K) = Kg.
Let x ∈ f(K). Then

xH ∈ f(K)/H = π(f)(K/H) = (K/H)gH = Kg/H,

so there exists k ∈ K, h ∈ H, such that x = kgh = (khg−1)g ∈ Kg. If in turn we
start with x ∈ Kg, then

xH ∈ Kg/H = (K/H)gH = π(f)(K/H) = f(K)/H,

so there exists y ∈ K, h ∈ H with x = f(y)h = f(yf−1(h)), which implies x ∈ f(K),
since yf−1(h) ∈ K. �

3.3 Schmoll’s Modular Fibers

There is another source of modular origamis, coming from Schmoll’s modular fibers.
We shortly describe how they arise. Consider the set Fd of tuples ((X,ω), π, z1, z2),
where

• π : (X,ω)→(E, dz) is a translation cover of the square torus E = C /(Z⊕iZ)
of degree d,
• π is ramified at 2 points z1 6= z2 ∈ X with multiplicity 2, and π(z1) = 0,
• π is primitive, i. e. Per(ω) = Z⊕iZ.

The image of Fd in ΩM2,2(1, 1) can be endowed with a translation structure via the
map

Φd : Fd→E , ((X,ω), z1, z2) 7→
∫ z2

z1
ω mod Per(ω).

Schmoll [Sch05b] gave a formula for the number of zeros of Φ∗d(dz) (each one is
of order 2), and he showed that Γ(Fd,Φ∗d(dz)) = SL2(Z). The monodromy of Fd
can in theory be derived from [EMS03], but to give a closed formula is, in the
author’s opinion, very hard. Therefore, we do not know if Fd possesses any non-
trivial translations, except for the case d = 3, where there are none. Also, it would
be interesting to classify the orbits of the SL2(Z)-action on Fd, for this would yield a
classification of the Teichmüller curves in ΩM2(1, 1), which are generated by origamis
(completing the classification of genus 2). Note that these curves are Hurwitz spaces
and have also been described from an algebro-geometric point of view by Kani
[Kan03], [Kan06].
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4 Homology and Cohomology

We summarize some results for the homology and cohomology of a compact manifold
that we will use in the subsequent chapters. A general reference for this part is
[Hat02] and [Voi02].

4.1 Singular Homology and Cohomology

For a topological space X, let Hsing
k (X,Z) denote the k-th singular homology group.

For the k-th singular cohomology group with coefficients in the abelian group G, we
write Hk

sing(X,G).

Remark 4.1
a) By the universal coefficient theorem, we have

H1
sing(X,G)∼= HomZ(Hsing

1 (X,Z), G),

and the same also holds for k ≥ 1 if for example Hsing
k−1(X,Z) is free (see [Hat02,

Thm 3.2]).
b) Recall that for a path-connected space X, the group Hsing

1 (X,Z) is isomorphic
to the abelianization of the fundamental group π1(X).

On the homology of a surface, we dispose of a symplectic pairing. Before intro-
ducing it, let us recall some generalities on symplectic vector spaces. Let V be
a 2g-dimensional vector space over a field K, not of characteristic 2, or a finitely
generated, free Z-module of rank 2g. Let ω be a symplectic form on V , i. e. a non-
degenerate bilinear, alternating pairing with values in the coefficient ring. Then ω
induces an identification of V with its dual V ∗ by

Φ : V →V ∗ , a 7→ ω(·, a).

We obtain a symplectic form ω∗ on V ∗ by setting

ω∗(λ, µ) = ω(Φ−1(λ),Φ−1(µ)),

sometimes called Poisson bracket. A linear map f : V →W such that

ωW (f(a), f(b)) = ωV (a, b)
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is called symplectic map. Note that symplectic maps are necessarily injective. The
symplectic form induces an involutive map on subspaces. For U 6V a subspace (or
sub-module), let

U⊥ =
{
v ∈ V | ω(u, v) = 0 for all u ∈ U

}
.

Example 4.2 Let X be a closed surface of genus g ≥ 1. Then
Hsing

0 (X,Z)∼=Z , Hsing
1 (X,Z)∼=Z2g , Hsing

2 (X,Z)∼=Z .
Recall that we have a symplectic pairing on Hsing

1 (X,Z), the algebraic intersection
number i, which assigns to a pair a, b ∈ Hsing

1 (X,Z), represented by closed curves α
and β, the number of positive intersections of α and β minus the number of negative
intersections. Here, we assume that we have chosen a fundamental class [X] ∈
Hsing

2 (X,Z), thus an orientation on X, and that α and β intersect transversally.

By dualizing, we obtain a symplectic pairing i∗ on cohomology. One can show that
this pairing coincides with the cup product pairing on cohomology

Q : H1
sing(X,Z)×H1

sing(X,Z)→Z , (ϕ, ψ) 7→ (ϕ ∪ ψ)([X]).
Poincaré duality tells us that Q is non-degenerate, while i is non-degenerate by
surface surgery arguments, namely representing the closed surface X as being glued
from a regular 4g-gon.

In particular, let f : X→Y be a (ramified) covering map of surfaces. It induces
f∗ : Hsing

1 (X,Z)→Hsing
1 (Y,Z) and f ∗ : H1

sing(Y,Z)→H1
sing(X,Z). The image of f∗

is of finite index in Hsing
1 (Y,Z). Moreover, f ∗ is a symplectic map for the symplectic

forms i∗X and deg(f)i∗Y , i. e.
i∗X(f ∗λ, f ∗µ) = deg(f) · i∗Y (λ, µ)

for all λ, µ ∈ H1
sing(Y,Z).

On a topological space X, we also dispose of the sheaf cohomology. We denote
by Hk(X,F) the cohomology groups with values in the sheaf F (see [Voi02, Chap.
4]).
Proposition 4.3 ([Voi02, Thm 4.47])
On a locally contractible topological space X we have a canonical isomorphism

Hk
sing(X,R)∼=Hk(X,RX) = Hk(X,R)

for any commutative Ring R.

Remark 4.4 One more remark concerning the change of coefficients (see [Voi02, p.
157]). If X is a compact manifold and if R is a field of characteristic 0, then there
is a canonical isomorphism

H1(X,Z)⊗ZR∼=H1(X,R).

26



4.2 De Rham Cohomology

4.2 De Rham Cohomology

In case X is a differentiable (i. e. C∞) manifold, there is another description of
Hk(X,R), respectively Hk(X,C) in terms of classes of differential forms.

Let K = R or C and let A = AX denote the sheaf of C∞-differential forms on X
with values in K, i. e. the sheaf of C∞-sections of the real or complexified cotangent
bundle. Let Ak = ∧k A (k ∈ N0) denote the corresponding k-forms, and let d be
the differential. The cochain complex

0 - A0 d- A1 d- . . .
d- An→ 0

(where n = dimX) is a resolution of the constant sheaf K, hence the associated
cochain complex that we obtain by taking global sections computes the sheaf coho-
mology of K. This is the de Rham Theorem.

Proposition 4.5 ([Voi02, Thm. 4.1])
For a differentiable manifold X

Hk
dR(X) := Ker(d : Ak(X)→Ak+1(X))/ Im(d : Ak−1(X)→Ak(X))

∼=Hk(X,K).

Remark 4.6 ([Voi02, Thm. 5.29])
In particular, if X is a compact, oriented, connected n-dimensional differentiable
manifold, then the pairing given by cup product and Poincaré duality

Hk(X,K)×Hn−k(X,K)→K

can be rewritten using the above identification of Hk(X,K) with Hk
dR(X) as

(α, β) 7→
∫
X
α ∧ β,

where we choose representatives α and β of classes inHk
dR(X), respectivelyHn−k

dR (X).
Note that in the case n = 2, k = 1 we obtain the pairing from Example 4.2.

4.3 Hodge Decomposition

We describe the Hodge decomposition of the cohomology groups Hk(X,C) of a
compact Kähler manifold. This is a realization of the abstract concept of polarised
Hodge structures, which we will encouter later. In this section, let again K = R or
C.
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Harmonic Forms

If X is a compact, oriented, connected n-dimensional Riemannian manifold, we
obtain an even better description of Hk(X,K). With the help of the Riemannian
metric g on X, one defines the Laplacian

∆ : Ak(X)→Ak(X).

The subspace Ker(∆) ⊂ Ak(X) is the space Hk = Hk
K of harmonic k-forms (with

values in K).
Proposition 4.7 ([Voi02, Thm. 5.2])
The linear map

Hk
K→Hk(X,K) , ω 7→ [ω] ,

sending ω to its de Rham cohomology class, is an isomorphism.

Kähler Manifolds

Recall that a Kähler manifold is a complex manifoldX, whose tangent bundle carries
a (positive definite) hermitian metric h = g− iω, i. e. g is a Riemannian metric, and
ω is a closed real 2-form of type (1, 1) – the Kähler form.

Example 4.8 Let X be a Riemann surface. Then X is a 2-dimensional real mani-
fold, so every 2-form is closed. Therefore X is a Kähler manifold with any choice of
a hermitian metric on X.

In the following, let X be a compact Kähler manifold. The complex structure on
the tangent bundle of X induces a decomposition A = A1,0⊕A0,1, which in turn
allows us to decompose Ak into

Ak =
⊕
p+q=k

Ap,q .

From the Kähler identities, one can deduce that this decomposition also descends
to the harmonic k-forms, so that

Hk
C =

⊕
p+q=k

Hp,q .

Remark 4.9 ([Voi02, Cor. 6.10, Prop. 6.11])
a) Via the identification in Proposition 4.7, we obtain a decomposition of Hk(X,C),

the Hodge decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q.
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4.4 Riemann Surfaces

b) This decomposition is independent of the choice of a particular Kähler metric on
X.

c) We have Hp,q = Hq,p, where complex conjugation acts on the second factor of

Hk(X,R)⊗RC∼=Hk(X,C)

in the usual way.

Let Ω1
X denote the sheaf of holomorphic 1-forms on X, and Ωp

X the sheaf of holo-
morphic p-forms, i. e. the p-th exterior power of Ω1

X .

Proposition 4.10 ([Voi02, Remark 8.29])
Let X be a compact Kähler manifold. We have an isomorphism of complex vector
spaces

Hp,q∼=Hq(X,Ωp
X),

which does not depend on the chosen Kähler metric.

In particular, H1,0∼= Ω1
X(X).

4.4 Riemann Surfaces

Let X be a compact Riemann surface. To bring us in the above setup, choose a
Kähler metric on X. Note however that the choice does not matter as everything
can also be formulated without recourse to the metric (see [For81, Chap. 19]).

In this case, we see from Remarks 4.9 and 4.10, that

H1(X,C)∼= Ω1
X(X)⊕ Ω1

X(X).

Proposition 4.11 ([For81, Thm. 19.4])
The map

Ω1
X(X)→H1

R , ω 7→ Re (ω)

is an isomorphism of real vector spaces (as is the map, which sends a holomorphic
1-form to its imaginary part).

Recall from Remark 4.6 that we dispose of a non-degenerate, alternating pairing on
H1(X,C) given by

(α, β) 7→ Q(α, β) =
∫
X
α ∧ β.
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4 Homology and Cohomology

We can modify this pairing to obtain a positive definite hermitian form on H1(X,C).
Consider the Hodge ∗-operator. In this simple setup, it is the C-linear auto-
morphism

∗ : A1(X)→A1(X) , ω = ω1,0 + ω0,1 7→ i(ω1,0 − ω0,1),

where we decompose ω into ω1,0 ∈ A1,0(X) and ω0,1 ∈ A0,1(X). It descends to
harmonic 1-forms, thus also to H1(X,C) by Proposition 4.7.

Remark 4.12 Set

H : H1(X,C)×H1(X,C)→C , (α, β) 7→
∫
X
α ∧ ∗β.

Then H is a positive definite hermitian form, for which the Hodge decomposition is
orthogonal. Its restriction to H1,0 is given by

(α, β) 7→ i
∫
X
α ∧ β.

Via the identification in Proposition 4.11, we obtain a norm on H1(X,R), the Hodge
norm, by setting

‖α̃‖ =
√
H(α, α) ,

where α is the preimage of α̃ ∈ H1(X,R) under the map Re .
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5 Families of Curves

Following A. Grothendieck [Gro62a], we set up the notion of a family of curves. We
will work in the analytic category (i. e. the category of complex spaces), so if we
speak of algebraic objects, such as stable curves, we secretly apply the functor from
schemes over C to complex spaces to them.

Definition 5.1 Let X, B be complex spaces, and let φ : X→B be a morphism.

a) φ is called family of curves of genus g, if φ is a proper, flat morphism with smooth
fibers, which are compact Riemann surfaces of genus g.

b) φ is called family of stable curves of genus g, if φ is proper and flat, and its fibers
are stable curves of arithmetic genus g.

Remark 5.2 a) If the base B is smooth, i. e. a complex manifold, then a family
φ : X→B of curves of genus g is a proper submersion between complex manifolds.

b) A family φ : X→B of curves of genus g is locally topologically trivial, i. e. every
point b ∈ B has a neighborhood U ⊂ B, such that there exists a homeomorphism
h : φ−1(U)→U × Xb over U . Here Xb = φ−1(b).

c) If the base is smooth, then we can also find a C∞-trivialization in b).

Part a) follows from [Gro62b, Théorèm 3.1]. Part b) is proved in [Gro62c, Proposi-
tion 1.8]. Part c) is widely known, see e. g. [Voi02, Proposition 9.5].

The next remark collects some facts about moduli spaces. References on this topic
are e. g. [DM69], [HM98].

Remark 5.3 a) We can consider the moduli space Mg, respectively its Deligne-
Mumford compactification Mg as the stack over the category of complex spaces,
whose fiber over B is the gruppoid of families of curves of genus g, respectively
families of stable curves of genus g.

b) Mg and Mg are not representable. However, if we rigidify the moduli problem,
then we obtain finite covers that are representable by complex manifolds.

c) In particular, consider families of curves of genus g with a level-` structure, by
which we understand the choice of an isomorphism from (Z /(`))2g to the `-torsion
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5 Families of Curves

points of the Jacobian. If ` ≥ 3, then there is a fine moduli space representing
this moduli problem, namely

Tg /Γ[`]
g ,

where Γ[`]
g is the kernel of the action of the mapping class group Γg onH1(S,Z /(`)).

d) For n ∈ N, E. Looĳenga [Loo94] constructed a finite cover Mg[( n2 )] of Mg,
parametrizing curves with a Prym level structure. He showed that for n ≥ 6,
Mg[( n2 )] is smooth, i. e. a fine moduli space. Mg[( n2 )] is the normalization in Mg

of the quotient Tg /Γg,(n2 ), where Γg,(n2 ) is a certain finite index subgroup of Γg.

Remark 5.4 The usefulness of having fine moduli spaces at hand, consists in the
existence of a universal curve. Let (X,ω) be a Veech surface of genus g, and let

H /Aff(X,ω)→Mg

be the associated Teichmüller curve. By intersection of Aff(X,ω) inside Γg with
the above mentioned subgroups, we can find a subgroup Γ 6 Aff(X,ω) fulfilling the
condition

Condition (∗). Γ 6 Aff(X,ω) is a finite-index subgroup, such that j :
C = H /Γ→Mg factors over a fine moduli space. Let C be the completion
of C (i. e. the normalization of C inside Mg). The pullback of the universal
curve over a suitable cover of Mg to C is a family φ : X→C of stable
curves of genus g. Its restriction to C is a family φ : X→C of curves of
genus g.

In particular, we remark that Γ is torsion-free, thus it is the fundamental group of
C. Moreover, the local monodromy of Γ about the cusps is unipotent, and not just
quasi-unipotent (see Section 7.3).

Definition 5.5 The family φ : X→C of curves of genus g of Condition (∗) is called
family over the Teichmüller curve associated with (X,ω).

For the next proposition, we need to recall the construction of the universal curve
over Teichmüller space. We present the Bers fiber space approach. Let X be a
compact Riemann surface of negative Euler characteristic, and let M (X) be the
space of Beltrami forms on X (see e. g. [Hub06]). Fix a universal cover H→X and
let π be the group of deck transformations. There is a natural identification of M (X)
with M π(H), the space of π-invariant Beltrami forms on H. For µ ∈ M (X), let µ̂
be the extension to C by 0 of the lift of µ to H, and let f µ̂ : C→C be the solution
of the Beltrami equation for µ̂, normalized to fix 0, 1, and ∞. Consider the map

Ψ : M (X)×H→T(X)× C, (µ, z) 7→ (ΦX(µ), f µ̂(z)) ,
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where ΦX : M (X)→T(X) is the projection [Hub06, Sect. 6.4]. The group π acts
holomorphically on Im(Ψ) by the rule (ΦX(µ), z) 7→ (ΦX(µ), f µ̂ ◦ c ◦ (f µ̂)−1(z)) for
c ∈ π. The universal family over T(X) is given by Im(Ψ)/π→T(X).

Proposition 5.6 Let p : (X,ω)→(Y, ν) be a translation cover between translation
surfaces. Let B be the branch locus of p, and let Y ∗ = Y \B and X∗ = X \ p−1(B).
Suppose that Y ∗ has negative Euler characteristic. Let ̂X∗ : H→T(X, p−1(B)) and
̂Y ∗ : H→T(Y,B) be the corresponding Teichmüller disks, and let φX∗ : X̃

∗→H,
respectively φY ∗ : Ỹ

∗→H be the pullback of the universal family over Teichmüller
space. Then p induces a holomorphic map F : X̃

∗→ Ỹ
∗ over H.

Proof: Fix a universal cover H→Y ∗, which factors over p : X∗→Y ∗. Let πX 6 πY
be the deck transformation groups of H→X∗ and H→Y ∗ respectively. To ease
notation, we will use D in place of H. Also note that Beltrami forms are measurable
functions, and do not care about the nullsets B and p−1(B). The Teichmüller disk
of Y is given as the projection of the image of

D→M (Y ) , t 7→ µt = t
q

|q|
= t

ν

ν
,

where q = ν2. Similarly, the Teichmüller disk of X is the projection of the image of

D→M (X) , t 7→ t
ω

ω
= p∗

(
t
ν

ν

)
.

In particular, for any t ∈ D, pulling back the differentials tν
ν
and tω

ω
to H yields the

same Beltrami form in M (H). We now consider the restriction

Ψ : D×H→D×C, (t, z) 7→ (t, f µ̂t(z)).

It produces simultaneously the families X̃
∗ and Ỹ

∗; the first by factoring out πX ,
the latter by factoring out πY in the image of Ψ. The inclusion πX 6 πY induces
a holomorphic map F : X̃

∗→ Ỹ
∗ over D∼= H, such that the map between the fibers

over 0 is given by p : X∗→Y ∗. �
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6 Local Systems, Monodromy Representations
and Vector Bundles with a Flat Connection

We present a triptych of equivalent categories that one can define on a complex
manifold B: local systems, π1-representations and vector bundles with a flat con-
nection. Being able to pass freely from one description to another will be crucial
in the arguments of the subsequent chapters. We follow the presentation of Deligne
[Del70, Chap. 1] (without mentioning the point of view of differential equations
which is also implicit).

Throughout this chapter, let B be a complex manifold.

6.1 Local Systems

Consider a family of curves φ : X→B. The cohomology groups H1(Xb,Z) of the
fibers Xb (b ∈ B) can be glued together in a sense that is to be made precise in the
following section. They form a local system.

Definition 6.1 Let X be a locally connected topological space and let M be a
module over a ring R.

a) A local system V of stalk M on X, is a sheaf of R-modules on X, which is locally
isomorphic to the constant sheaf MX .

b) By an R-local system we shall usually understand a local system with stalk a
finitely generated R-module M .

c) The category of R-local systems is the full subcategory of the category of sheaves
of R-modules on X.

Local systems behave like vector bundles in the following sense.

Remark 6.2 We present an alternative way to view and construct local systems.
Let {Ui} be an open covering of X. On Ui ∩Uj, assume that we are given a cocycle
gij : Ui ∩ Uj→Aut(M), i. e. a locally constant map, such that on Ui ∩ Uj ∩ Uk, we
have

gjk ◦ gij = gik.
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6 Local Systems, Monodromy Representations, Flat Vector Bundles

Then we can glue together the patches Ui ×M by identifying (u, v) ∈ Ui ×M with
(u, gij(u)(v)) ∈ Uj × M if u ∈ Ui ∩ Uj, to obtain a topological space T with a
projection π : T →X. The locally constant local sections of π are the local sections
of the local system M.

There is a canonical local system associated with families of curves.

Lemma 6.3 Let φ : X→B be a family of curves of genus g, let A be a ring, and let
k ≥ 0. Let Rkφ∗ be the k-th right derived functor of the functor φ∗ from the category
of sheaves of abelian groups on X to the category of sheaves of abelian groups on B.

a) The sheaf Rkφ∗(AX) is the sheaf on B associated to the presheaf

U 7→ Hk(φ−1(U), A).

b) Rkφ∗(AX) is an A-local system.

Proof: a) see [Har04, Proposition III.8.1]

b) Let U be a contractible neighborhood of a point b ∈ B, where φ has a C∞-
trivialization h : U × Xb→φ−1(U). Then by Proposition 4.3,

Hk(φ−1(U), A)∼=Hk
sing(φ−1(U), A)∼=Hk

sing(U × Xb, A)
∼=Hk

sing(Xb, A)∼=Hk(Xb, A).

By inspecting which sections are in the sheafification of Hk(φ−1(·), A), one finds that
Rkφ∗(AX), restricted to U , is isomorphic to the constant sheaf of stalk Hk(Xb, A).�

6.2 Monodromy Representation

First, let us state that a local system on a sufficiently well-behaved space is the same
as a representation of the fundamental group.

Proposition 6.4 Let R be a ring, and let X be a path-connected, locally simply
connected topological space with base point x. Then there is an equivalence between
the category of R-local systems on X and the category of π1(X, x)-left modules, given
by the functor

V 7→ Vx .
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6.2 Monodromy Representation

Proof: We sketch the essential steps (see also [Voi03, Sect.3.1.1]). First, given
a path c : [0, 1]→X, starting at x = c(0), there is a unique way of continuing a
germ v ∈ Vx along γ to an element v′ ∈ Vc(1) (since every germ in Vx produces
a unique section V(U) for some neighborhood U of x). This continuation process
only depends on the homotopy class. Thus, it allows us to define a representation
π1(X, x)→Aut(Vx).

To construct the inverse functor, we start with a representation

ρ : π1(X, x)→Aut(V )

(with V an R-module) and consider the constant sheaf VX̃ on the universal cover
u : X̃→X. We define an R-local system V on X by taking on an open set U ⊂ X
the sections f : u−1(U)→V of VX̃ that satisfy

f(γ · x) = ρ(γ)f(x)

for all γ ∈ π1(X, x), x ∈ u−1(U). Then V is isomorphic to the constant sheaf VU
on a sufficiently small neighborhood U ⊂ X (where u−1(U) = ⋃

γ∈π1(X,x) Vγ with
disjoint open sets Vγ homeomorphic to U), so it is a local system. We leave the rest
to the reader. �

Definition 6.5 Let φ : X→B be a family of curves, let b ∈ B, and A be a ring.
The π1(B, b)-left module Vb associated with the local system V = R1φ∗(AX) is called
the monodromy representation of the family φ (with values in A).

Example 6.6 Let (X,ω) be a Veech surface, and let f ∈ Aff(X,ω). Then f∗ acts
on H1(X,Z) from the left, preserving the intersection form i. By dualizing, we
obtain the action

ρ : Aff(X,ω)→Aut(H1(X,Z)) , f 7→ (f ∗)−1

which in fact lands in Sp(H1(X,Z)) 6 Aut(H1(X,Z)), since (f−1)∗ preserves the
intersection form i∗ of Example 4.2.

Let j : C = H /Aff(X,ω)→Mg be the Teichmüller curve to (X,ω). Let Γ be
a subgroup of finite index of Aff(X,ω) satisfying Condition (∗), and consider the
finite cover C′ = H /Γ of C. As Γ acts freely on H, it is the fundamental group of C′.
Let c′ ∈ C′ be a point that is mapped to [X] ∈Mg. Then the restriction of ρ to Γ

ρ : Γ→ Sp(H1(X,Z))

is a monodromy representation (see [Bau09, Lemma 2.4.3]).

Note that if we tensor ρ by a field K of characteristic 0, we obtain a representation
ρ⊗ZK : π1(C′, c′)→ Sp(H1(X,K)) by Remark 4.4.
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6 Local Systems, Monodromy Representations, Flat Vector Bundles

By abuse of language, we will also call ρ : Aff(X,ω)→ Sp(H1(X,Z)) a monodromy
representation, even if Aff(X,ω) is only the orbifold fundamental group of the Teich-
müller curve.

Another cool fact about the representation of Aff(X,ω) above is the following.

Remark 6.7 The action ρ : Aff(X,ω)→ Sp(H1(X,Z)) is faithful (see e. g. [Bau09,
Lemma 2.3.17]).

Remark 6.8 Let O be an origami. Consider a surface A ·O 6= O in the SL2(Z)-
orbit of O (which is again an origami). Then the difference between the monodromy
representation of O and the one of A ·O is roughly a change of the base point of the
fundamental group (with the slight imprecision that we are dealing only with orbifold
fundamental groups). More precisely, let ϕA : O→A · O be the affine shear from
Section 2.2. Let ρ : Aff(O)→ Sp(H1(O,Z)) and A·ρ : Aff(A·O)→ Sp(H1(A·O,Z))
be the monodromy representations. Then the diagram

Aff(O)
ρ

- Sp(H1(O,Z))

Aff(A ·O)

f 7→ ϕAfϕ
−1
A

?

A · ρ
- Sp(H1(A ·O,Z))

ψ 7→ (ϕ−1
A )∗ψϕ∗A

?

commutes.

For later use, we recall the following notion.

Definition 6.9 Let X be a path-connected, locally simply connected topological
space, endowed with a base point x ∈ X, and let R ⊂ S be rings.

a) An S-local system V is defined over R, if there is a R-local system W ⊂ V such
that W⊗R S∼= V.

b) Similarly, if V is an S-module and ρ : π1(X, x)→Aut(V ) is a representation,
then ρ is defined over R, if there is an R-submoduleW of V and a representation
σ : π1(X, x)→Aut(W ), such that σ⊗R S∼= ρ.

6.3 Vector Bundles with a Flat Connection

In this section, let B always be a complex manifold. We complete the triptych by
explaining the relationship between C-local systems and holomorphic vector bundles
that admit a certain first order-differential operator, called a connection. We restrict
our attention to holomorphic connections, but point out that there is a C∞-analogue
(see e. g. [Voi02, Sect. 3.2.1]).
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6.3 Vector Bundles with a Flat Connection

Definition 6.10 Let V be a holomorphic vector bundle on B. Denote the holomor-
phic cotangent sheaf of B by Ω1

B. A holomorphic connection is a C-linear map

∇ : V→Ω1
B ⊗OB V,

which satisfies the Leibniz rule, i. e. for local sections f of OB and s of V, we have

∇(fs) = df ⊗ s+ f∇(s).

A morphism between vector bundles with connections f : (V,∇1)→(W,∇2) is a
morphism between vector bundles f : V→W such that

(id⊗ f) ◦ ∇1 = ∇2 ◦ f.

Remark 6.11 Let ∇ be a holomorphic connection on a vector bundle V of rank r
over a complex manifold B. Let U ⊂ B be a chart, where V can be trivialized, and
choose a trivialization α : Or

B |U→V|U . Let ei denote the i-th standard basis vector.
Then

∇(α(ei)) =
r∑
j=1

ωji⊗α(ej).

We call the matrix

Γα =


ω11 . . . ω1r
... ...
ωr1 . . . ωrr

 with ωij ∈ Ω1
B |U

the matrix of the connection with respect to the chosen trivialization α. For any
local section (f1, . . . , fr)T of Or

B |U , we have

∇α = id⊗α−1 ◦ ∇ ◦ α : (f1, . . . , fr)T 7→ (df1, . . . , dfr)T + Γα · (f1, . . . , fr)T .

If another trivialization β is chosen, the base change is described byAαβ ∈ GL(OB |U),
i. e. β = α ◦ Aαβ. Then for a local section F = (f1, . . . , fr)T of Or

B |U , we have

∇β(F ) = A−1
αβ(d(AαβF )1, . . . , d(AαβF )r)T + A−1

αβΓαAαβF
= (df1, . . . , dfr)T + (A−1

αβdAαβ + A−1
αβΓαAαβ)F.

Therefore,
Γβ = A−1

αβdAαβ + A−1
αβΓαAαβ.

Example 6.12 Let V be a C-local system on B. Then there is a canonical con-
nection associated with V on the vector bundle V = V⊗COB. Let U be an open
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6 Local Systems, Monodromy Representations, Flat Vector Bundles

set, where V can be trivialized, and let s1, . . . , sn be the basis of V(U) given by the
trivialization. For a section s = ∑

i fisi ∈ V(U), define

∇(s) =
∑
i

dfi⊗ si.

This local definition is compatible with the coordinate changes, as they are given
by locally constant matrices, hence it gives rise to a global map ∇. It follows from
the definition that ∇ is C-linear and satisfies the Leibniz rule, so ∇ is a connection
on V.

In particular, we have ∇(si) = 0 for all i = 1, . . . , n, and even Ker(∇) = V. For
locally on a coordinate neighborhood U of B, where V can be trivialized, we can
write the image ∇(s) of s ∈ V(U) as

∇(s) =
∑
i

dfi⊗ si =
∑
i,j

∂fi
∂zj

dzj ⊗ si

and the set {dzj ⊗ si}i,j is a OB(U)-basis of Ω1
B ⊗OB V(U). Therefore, ∇(s) = 0

implies ∂fi
∂zj

= 0, and the fi must be locally constant functions.

The example above hints at a relation between local systems and vector bundles
with a connection. However, the latter do not arise from local systems unless they
are flat, i. e. their curvature vanishes. To define the curvature of a vector bundle
with connection (V,∇), consider the map

∇̃ : Ω1
B × V→Ω2

B ⊗OB V

which is given on local sections by

∇̃(ω, σ) = dω⊗σ +∇(σ) ∧ ω.

Here, Ωp
B = ∧p ΩB (p ∈ N). As

∇̃(fω, σ) = d(fω)⊗σ +∇(σ) ∧ (fω)
= (df ∧ ω + fdω)⊗σ + f∇(σ) ∧ ω
= dω⊗ fσ − ω ∧ df ⊗σ − ω ∧ f∇(σ)
= dω⊗ fσ + (df ⊗σ + f∇(σ)) ∧ ω
= dω⊗ fσ +∇(fσ) ∧ ω = ∇̃(ω, fσ),

for all f ∈ OB, we obtain a map ∇(1) : Ω1
B ⊗OB V→Ω2

B ⊗OB V.

Definition 6.13 The curvature of the connection ∇ on V is defined as

R = ∇(1) ◦ ∇.

A connection is flat (or integrable), if R = 0.
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6.3 Vector Bundles with a Flat Connection

We remark that R is an OB-linear map.

Example 6.14 Returning to Example 6.12, we show that the canonical connec-
tion on V = V⊗COB is flat. For let again s = ∑

i fi⊗ si be a section in a local
trivialization. Then

R(s) = ∇(1)(
∑
i

dfi⊗ si) =
∑
i

∇(1)(dfi⊗ si)

=
∑
i

(ddfi)⊗ si +∇(si) ∧ dfi = 0.

We denote the canonical flat connection on V by∇V or just∇ if there is no ambiguity
possible.

Proposition 6.15 ([Del70, Theorem 2.17])
Let B be a complex manifold. Then the functor

V 7→ (V⊗COB,∇V)

from the category of C-local systems on B to the category of vector bundles on B
equipped with a flat connection has a quasi-inverse

(V,∇) 7→ Ker(∇).
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7 Polarized Variations of Hodge Structures

We present the general definitions and properties of polarized variations of Hodge
structures, with emphasis (and restriction) to the case of curves. As a reference for
this theory, we recommend [Voi02], [Gri70], [Del71b].

7.1 Hodge Structures

Following P.Deligne [Del71b], we define

Definition 7.1 Let VR be a finite-dimensional R-vector space. A real Hodge struc-
ture of weight k ∈ Z on VR is a decomposition of VC = VR⊗RC

VC =
⊕
p+q=k

V p,q

into complex subspaces V p,q, such that we have V q,p = V p,q, where complex conju-
gation acts on the second factor of VC.

Definition 7.2 A Hodge structure of weight k ∈ Z is a finitely generated abelian
group V , together with a real Hodge structure of weight k on V ⊗ZR. V is called
the integral lattice of the Hodge structure.

Note that giving a real Hodge structure on VR is the same as giving a decreasing
filtration

. . . ⊃ Fp(V ) ⊃ Fp+1(V ) ⊃ . . .

of VC, which satisfies
VC = Fp(V )⊕ Fk−p+1(V )

for each p ∈ Z. We have
Fp(V ) =

⊕
i≥p

V i,k−i

and
V p,q = Fp(V ) ∩ Fq(V ).

A Hodge structure will therefore be denoted either as a pair (V, {V p,q}p,q) or by its
filtration (V,F·(V )).
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Definition 7.3 Let (V, V p,q), (W,W p,q) be Hodge structures of weight k and l.
Let (r, s) ∈ Z2, such that l = k + r + s. A morphism of Hodge structures f :
(V,F·)→(W,F·) of bidegree (r, s) is a morphism f : V →W of groups, which is
compatible with the Hodge decomposition, i. e. f(V p,q) ⊂ W p+r,q+s (or equivalently
with the filtration, i. e. f(Fp(V )) ⊂ Fp+r(W )).

Definition 7.4 Let k ∈ Z.

a) A polarization of a real Hodge structure (VR, V p,q) of weight k is a bilinear form
Q : VC⊗VC→C, symmetric for even k and alternating for odd k, such that the
generalized Riemann relations are satisfied, i. e.

Q(V p,q, V p′,q′) = 0 unless p′ = q, q′ = p (7.1)
ip−qQ(u, u) > 0 for p+ q = k and u ∈ V p,q \ {0}. (7.2)

These relations can be reinterpreted in the following way. Introduce the Weil
operator C : VC→VC; for u ∈ V p,q, set C(u) = ip−qu. Then the generalized
Riemann relations are equivalent to the assertion that (u, v) 7→ Q(C(u), v) is
a positive definite hermitian form on V , for which the Hodge decomposition is
orthogonal.

b) In addition to that, a polarization of a Hodge structure (V, V p,q) of weight k is
required to take only integer values on the underlying lattice V .

c) A morphism of polarizable Hodge structures is a morphism of the underlying
(unpolarized) Hodge structures. A morphism of polarized Hodge structures is
required to respect the polarization, i. e. the one in the range is the pullback of
the one in the image.

Starting from a finite-dimensional k-vector space V instead of a finitely generated
abelian group, where k is a subfield of R, one also defines k-Hodge structures in an
analogous way. A polarization of a k-Hodge structure is required to take values in
k on V .

Example 7.5 The standard example of a Hodge structure of weight k is the one
given by the Hodge decomposition of Hk(X,Z) of a compact Kähler manifold X
(compare with Remark 4.9). If the class of the Kähler form [ω] ∈ H2(X,Z), then
we have a polarization on the sub-Hodge structure given by the Lefschetz decompo-
sition (see [Voi02, Ch. 7]). The existence of an integral Kähler class [ω] has strong
implications: The manifold X is a projective variety.
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7.1 Hodge Structures

Weight 1

Let us consider the polarized Hodge structures, which model the Hodge decom-
position of the first cohomology of a compact Riemann surface. We call a Hodge
structure pure, if V p,q = 0, when p < 0 or q < 0. As we show in the following, a
pure, polarized Hodge structure of weight 1 is nothing else, but a polarized abelian
variety.

Recall that a polarized abelian variety is a complex torus A = W/Λ together with
the first Chern class E = c1(L) ∈ H2(A,Z) of a positive definite line bundle L on
A. E can be interpreted in a canonical way as an R-bilinear, alternating form on
W that takes integral values on Λ, and in addition satisfies

E(iu, iv) = E(u, v) and E(iu′, u′) > 0

for all u, v ∈ W and u′ ∈ W \ {0}. The first equation says that the assignment
(u, v) 7→ H(u, v) = E(iu, v)+iE(u, v) defines a hermitian form onW . The inequality
asserts that H is positive definite. We can choose a symplectic basis {λi, µi}gi=1 for
Λ ⊂ W , such that E with respect to this basis has the matrix(

0 D
−D 0

)

where D = diag(d1, . . . , dg) such that di | di+1. D is called the type of the polar-
ization. A polarization of type D = Ig is called principal. A morphism of polarized
abelian varieties (A,E), (A′, E ′) is a holomorpic group homomorphism f : A→A′

such that f ∗E ′ = E.

Remark 7.6 The category of polarized abelian varieties (A = W/Λ, E) and the
category of pure, polarized Hodge structures (V, V p,q) of weight 1 are equivalent.

Given a Hodge structure with integral lattice V and polarization Q, let π : VC→V 0,1

be the projection, and let ψ : V 0,1→VR ⊂ VC be the section defined by v 7→ v+v. Let
A = V 0,1/π(V ). ThenA is a complex torus, since the map V ⊗ZR ⊂ - VC

π- V 0,1

is an R-linear isomorphism of R-vector space, and V is a lattice in V ⊗ZR. For
u, v ∈ V 0,1, define E(u, v) = −Q(ψ(u), ψ(v)). It follows from the generalized Rie-
mann relations that E is the first Chern class of a line bundle on A, thus a polar-
ization of A. Note that the hermitian form corresponding to E is just Q(C(·), ·).

Conversely, given a polarized abelian variety A = W/Λ of dimension g, consider the
Hodge decomposition of its first cohomology

H1(A,C) = H1,0 ⊕H0,1.
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7 Polarized Variations of Hodge Structures

The underlying lattice is the Z-dual of Λ, since Λ∼=H1(A,Z). The polarization of
A, i. e. the integral Kähler class E = [ω] gives a polarization of the Hodge structure

Q(α, β) =
∫
A
ωg−1 ∧ α ∧ β

(see [Voi02, Sect.7.2.2]). If we take the dual Hodge structure, then this defines a
quasi-inverse to the functor from polarized Hodge structures to polarized abelian
varieties.

The Polarized Period Domain in Weight 1

One can consider the collection of all possible Hodge structures of weight k that can
be put on a finitely generated abelian group with fixed polarization, and assemble
them into a space. This is Griffiths’ period domain [Gri68a], [Sch73, Sect. 3].

If we restrict to pure, polarized Hodge structures of weight 1, then in view of Remark
7.6, the Siegel upper-half space

Hg =
{
Z ∈ Cg×g | ZT = Z and Im (Z) > 0

}
is the classifying space. Since it is sometimes preferable to have a more abstract
description at hand, we describe the period domain from an abstract point of view,
and make the above correspondence explicit in the following. A reference for the
Siegel upper half space is [BL04, Chap. 8].

Definition 7.7 Let V be a free abelian group of rank 2g, VR = V ⊗ZR, and VC =
VR⊗RC and let Q : VC⊗VC→C be a non-degenerate, alternating form, taking
integral values on V . Let D = D(V,Q) ⊂ Grass(g, VC) be the subset of the g-
dimensional subspaces W of VC which obey to the Riemann bilinear relations

Q(W,W ) = 0 (7.3)
iQ(w,w) > 0 for all w ∈ W (7.4)

D is called period domain of pure Hodge structures of weight 1 on V , polarized by
Q.

Definition 7.8 Let V and Q be as in Definition 7.7. Let GQ be the linear algebraic
group over Z of transformations, which are orthogonal for Q. Explicitly, for a ring
R

GQ(R) =
{
g ∈ GL(V ⊗ZR) | Q(gu, gv) = Q(u, v) for all u, v ∈ V ⊗ZR

}
.

Remark 7.9 Let Ď = Ď(V,Q) be the subset of points in Grass(g, VC), which only
satisfy (7.3).
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7.1 Hodge Structures

a) GQ(C) acts transitively on Ď with closed isotropy group; in particular, Ď is a
non-singular subvariety of Grass(g, VC).

b) D is an open set (in the Hausdorff topology) of Ď.
c) GQ(R) acts transitively on D with compact isotropy group.
d) Any discrete subgroup of GQ(R) acts properly discontinuously and holomorphi-

cally on D.

Proof: a) Transitivity of the actions follows from arguments from linear algebra.
GQ is closed in GL2g, which acts on Grass(g, V ) with closed isotropy groups; this
implies all the assertions of a). b) is clear, since (7.4) is an open condition. For c)
and d) we refer to [BL04, Sect. 8.2], where the assertions are proved for Siegel’s
upper half space. �

Note that GQ = Sp if the polarization is principal.

Remark 7.10 As described in [Gri68a, Proposition 1.24], D(V,Q) is analytically
isomorphic to Hg, the classifying space for polarized abelian varieties with a fixed
symplectic basis. We sketch this isomorphism. Let {γi}2gi=1 be a symplectic basis of
V , such that Q has the matrix

AQ =
(

0 D
−D 0

)

with D = diag(d1, . . . , dg) ∈ Zg×g, and let W ∈ D. Choose a basis ω1, . . . , ωg of W .
Then

ωi =
2g∑
j=1

σijγj,

and we let
Ω = (σij)i=1,...,g,j=1,...,2g ∈ Cg×2g .

Ω is called period matrix . (ΩT |ΩT ) is the base change from {ωi, ωi}gi=1 to {γj}2gj=1.
In particular, it follows from (7.3) and (7.4) that

ΩAQΩT = 0 and iΩAQΩT is positive definite.

There is an action from the right on such period matrices Ω by GLg(C) by Ω · A =
ATΩ, induced by the base change (

A 0
0 Ā

)
.
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7 Polarized Variations of Hodge Structures

Writing Ω = (E|F ) with E,F ∈ Cg×g, we have that F and E are both regular, for

i(EDF T − FDET )

is positive definite. So Ω ·GL(W ) 3 (Z|D−1) with Z = D−1F−1E ∈ Cg×g. Sending
W to Z ∈ Hg defines the isomorphism.

There is an action on the left by GQ(R) by M · Ω = ΩMT , which is a change of
the symplectic basis. In view of the above, we can identify this action on Hg. For
simplicity assume that D = I, i. e. that Q is a principal polarization. Then the
action is given by

GQ(R)× Hg→Hg, (M,Z) 7→M(Z) = (cZ + d)−1(aZ + b)

where M = ( a bc d ).

Example 7.11 Let X be a compact topological surface of genus g ≥ 1. Let i be the
intersection form on H1(X,Z), and choose a symplectic basis {ai, bi}gi=1. Any com-
plex structure onX determines a g-dimensional subvector space Ω1

X(X) ⊂ H1(X,C),
the (1, 0)-part of the Hodge decomposition. Thus W = Ω1

X(X) determines a point
in D(H1(X,Z), i∗). The name period domain stems from choosing a basis ω1, . . . , ωg
of Ω1

X(X) and considering the matrix of periods

Ω =


∫
a1
ω1 . . .

∫
ag
ω1

∫
b1
ω1 . . .

∫
bg
ω1

... ... ... ...∫
a1
ωg . . .

∫
ag
ωg

∫
b1
ωg . . .

∫
bg
ωg

 .

7.2 Variations of Hodge Structures

Definition 7.12 Let B be a connected complex manifold, and let k ∈ Z.

a) A real variation of Hodge structures (R-VHS) of weight k on B is given by a local
system VR of stalk VR, where VR is a finite-dimensional R-vector space, together
with a decreasing filtration F· of the holomorphic vector bundle V = VR⊗ROB
by holomorphic subbundles Fp. These should satisfy the following conditions:
(i) The filtration F· satisfies Griffiths’ transversality condition with respect

to the flat connection ∇ : V→V⊗OB Ω1
B associated with VC = VR⊗RC

(compare Example 6.12), i. e.

∇(Fp(V)) ⊂ Fp−1(V)⊗OB Ω1
B.

(ii) For every b ∈ B, the fiber F·(V)b over b of the filtration induces a real Hodge
structure of weigth k on the stalk (VR)b∼= VR.
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b) A variation of Hodge structures (VHS) of weight k on B is a local system VZ
of stalk V , where V is a finitely generated, free abelian group, together with an
R-VHS of weight k on VZ⊗ZR.

c) Let L ⊂ R be a subfield. An L-VHS of weight k on B is an L-local system VL,
together with an R-VHS of weight k on VL⊗LR.

d) A morphism of VHS f : (V,F·)→(W,F·) is a morphism of the underlying local
systems, which is compatible with the filtrations (as in 7.3).

Note that for k = 1, the transversality condition is vacuous.
Definition 7.13 Let B be a connected complex manifold. A complex variation of
weight k consists of a C-local system VC and a decomposition of V = VC⊗CC∞B
into C∞-subbundles Vp,q

V =
⊕
p+q=k

Vp,q

such that the C∞-flat connection D : V→V⊗C∞B A1
B associated with VC sends

sections of Vp,q into

(Vp+1,q−1⊗A
0,1
B )⊕ (Vp,q⊗A1

B)⊕ (Vp−1,q+1⊗A
1,0
B ).

We remark that a VHS of weight k induces a complex variation of weight k on VC.
Also, pure variations of Hodge structures are defined analogously to pure Hodge
structures.

One notation that we will make use of in the following. If V is an R-local system, and
if A is an R-algebra, we denote VA the local system V⊗RA obtained by tensoring
with the constant sheaf R.
Definition 7.14 A polarization of an R-VHS (VR,F·) of weight k ∈ Z on B is a
C-bilinear, locally constant map Q : VC⊗VC→CB, which induces a polarization of
the Hodge structure of the stalk (VR)b for each b ∈ B.

For a polarization of a VHS (VZ,F·), we require in addition that Q restricted to VZ
take values only in Z.

Polarized variations of Hodge structures will be abbreviated by pVHS.

In particular, a pure pVHS of weight 1 on B will be denoted as a triple (V,V1,0, Q),
where V is the local system, V1,0 is the only relevant step of the filtration of
V = V⊗ZOB and Q is the polarization. A sub-pVHS (L,L1,0) of (V,V1,0, Q) is
a monomorphism of VHS (L,L1,0)→(V,V1,0) such that (L,L1,0) is polarized by the
bilinear form induced by Q via pullback.

One of the cornerstones of the study of pVHS is P. Deligne’s result on semisimplicity,
which we state in the following form.
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7 Polarized Variations of Hodge Structures

Proposition 7.15 ([Del87, Proposition 1.13])
Let B be a connected complex manifold inside a connected, compact complex manifold
B, such that B \ B is a complex submanifold of B. Let b ∈ B be a base point, and
let (V,F·, Q) be a polarized VHS of weight k. Then

a) The local system VC = V⊗ZC, or equivalently the action of π1(B, b) on (VC)b,
is completely reducible,

VC =
⊕
i∈I
Li⊗Wi ,

where the local systems Li are irreducible and mutually non-isomorphic, and Wi

are C-vector spaces.
b) Every Li carries a polarized complex variation of weight k, and the polarized

complex variation induced on V by the ones on Li andWi is the complex variation
of the VHS.

7.3 Variations of Hodge Structures and Families of Curves

We shortly summarize how a family of curves gives rise to a polarized VHS.

Proposition 7.16 Let B be a complex manifold, and let φ : X→B be a family of
curves of genus g. Then φ defines canonically a VHS on B in the following way:
The underlying local system is VZ = R1φ∗(ZX) and the Hodge filtrations on the
fibers Xb can be glued together to give a holomorphically varying subbundle V1,0 of
the vector bundle V = VZ⊗ZOB. Explicitly,

V1,0 = φ∗Ω1
X/B

the direct image of the sheaf of relative differentials.

The VHS is automatically polarized by the unique global section of R2φ∗(ZX) given
by the complex structure.

In this case, the holomorphic connection ∇ associated with VC = VZ⊗ZC has been
called Gauß-Manin connection by Grothendieck.

Proof: One way to proof this proposition is to use the holomorphicity of Griffiths
period map (see below). Another more algebraic approach is sketched in [Del71b]:
Since φ is proper, we have

V = R1φ∗(Z)⊗OB ∼=R1φ∗(φ−1 OB).
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7.3 Variations of Hodge Structures and Families of Curves

The relative local system φ−1 OB has a resolution by the relative holomorphic de
Rham complex

Ω·X/B = (0 - OB
d- Ω1

X/B
- 0).

This implies that R1φ∗(φ−1 OB) is isomorphic to R1φ∗(Ω·X/B), the hypercohomology
of the complex Ω·X/B. This leads to a spectral sequence

Ep,q
1 = Rqφ∗(Ωp

X/B)⇒ R1φ∗(φ−1 OB)∼= V .

Now, Deligne argues that Ep,q
1 is locally free, that the spectral sequence degenerates

at E1, and that its formation comutes with base change. It defines a filtration on V

R0φ∗(Ω1
X/B) = φ∗(Ω1

X/B) ⊂ V

and this filtration induces the Hodge filtration on each fiber by base change. �

The Period Mapping

Let B be a connected complex manifold, and let (V,V1,0, Q) be a pure, polarized VHS
of weight 1 on B. Fix a base point b ∈ B and a universal covering u : B̃→B. On B̃,
the pullbacks of the local systems V and VC are isomorphic to the constant sheaf of
stalk Vb, respectively (VC)b. The VHS pulls back to a VHS (u−1 V, u∗ V1,0, u∗Q) on
B̃, polarized by u∗Q.

Let b̃ ∈ u−1(b), and let ϕb̃ : (u−1 V)b̃→Vb be the canonical isomorphism. Let z ∈ B̃.
There is a unique way of identifying germs in (u−1 V)z with germs in (u−1 V)b̃ by
continuation (along any path c connecting z to b̃); let Φz,b̃ : (u−1 V)z→(u−1 V)b̃
be the induced isomorphism. The holomorphic bundle V1,0 on B pulls back to a
holomorphic vector bundle u∗ V1,0 on B̃ and singles out a subspace (u∗ V1,0)z ⊂
(u−1 VC)z. We let Wz be the image of (u∗ V1,0)z under ϕb̃ ◦ Φz,b̃ inside (VC)b. Since
the polarization Q is locally constant, Wz obeys to the Riemann relations with
respect to Q. We define the period mapping by

p : B̃→D(Vb, Qb) , z 7→ Wz.

Remark 7.17 Let p : B̃→D(Vb, Qb) be the period mapping associated with a pure,
polarized VHS of weight 1 on the complex connected manifold B (with fixed base
point b ∈ B). Moreover, let ρ : π1(B, b)→GQb(Z) be the monodromy representation
associated with the local system V by Proposition 6.4. Then

a) p is holomorphic.
b) p is equivariant with respect to the action of γ ∈ π1(B, b) on B̃ by deck transfor-

mations and ρ(γ) on D(Vb, Qb).
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Proof: a) was shown by Griffiths [Gri68b, Theorem 1.27]. b) Note that B̃ can be
identified with pairs (x, α), where x ∈ B and α is a homotopy class of paths from
x to b̃. γ acts on z = (x, α) by γ · z = (x, γα) from the left. Therefore p(γz) is the
subspace of (VC)b given as the image of (u∗ V1,0)z under

ϕγ·b̃ ◦ Φz,γ·b̃ = ϕγ·b̃ ◦ Φb̃,γ·b̃ ◦ Φz,b̃ .

Since
ϕγ·b̃ ◦ Φb̃,γ·b̃ ◦ ϕ−1

b̃
= ρ(γ) : Vb→Vb,

the claim follows. �

By abuse of language, we will also call the induced map

p : B→ ρ(π1(B, b))\D(Vb, Qb)

a period mapping.

Remark 7.18 Let φ : X→B be a family of curves of genus g on a connected
complex manifold B, let b ∈ B, and let p be the period mapping associated with
the polarized VHS (V,V1,0, Q) given by Proposition 7.16 and the base point b. The
induced mapping

p : B→ ρ(π1(B, b))\D(Vb, Qb)→Ag

maps each point x ∈ B to the isomorphism class of the Jacobian Jac(Xx) of the fiber
Xx.

In the following, we describe the period mapping in the case of a Teichmüller curve.
We only discuss the case of a pVHS of rank two as it will be important for later
applications. Let (X,ω) be a Veech surface of genus g, and let ∆ = ∆(X,ω⊗ 2) ⊂
Tg = T(X) be the Teichmüller disk associated with (X,ω). Recall from Section
2.3 that we can parametrize a point in ∆ by an element τ ∈ H = SO(2)\ SL2(R)
and write xτ = (Xτ ,mτ ) for a point in ∆. The pullback of the universal family
Xuniv→Tg to ∆ is a family of curves f : X→∆.

Now assume that we are given a subgroup Γ 6 Aff(X,ω) of finite index and a Γ-
invariant subspace U of H1(X,Z) of rank 2. U corresponds to a sub-local system
L of R1f∗(ZX). Suppose that L carries a sub-pVHS of the pVHS on R1f∗(ZX).
The (1, 0)-part of L is a holomorphic line bundle on ∆. Thus it can be globally
trivialized (see [For81, Theorem 30.4]). Let it be generated by a global section
ω ∈ H0(∆, f∗ΩX/∆). Choose a symplectic basis {a, b} of U∗6H1(X,Z) and modify
ω by a change of basis in H0(∆,O×) in such a way that∫

(mxτ )∗a
ωxτ ∈ H and

∫
(mτ )∗b

ωxτ = 1,
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where xτ = (Xτ ,mτ : X→Xτ ) runs over all points in ∆ and ωxτ is the element of
the fiber of L1,0 over xτ . Precomposing with H→∆, τ 7→ xτ yields a map

p : H→H, τ 7→
∫
(mτ )∗a

ωxτ

which is an explicit version of the period map associated with the pVHS L. Here Γ
acts on the left-hand side by its action on ∆ as a subgroup of Aff(X,ω) and on the
right-hand side by the monodromy representation. Explicitly, if γ ∈ Γ acts on U as
( A B
C D ) ∈ SL2(Z) w. r. t. the (dual) basis a∗, b∗ of U , then following Remark 7.10, this

action on H is given by the usual Möbius transformation action

z 7→ Az +B

Cz +D
.

Lemma 7.19 The map p constructed above is equivariant w. r. t. the action of Γ on
source and target.

Proof: We consider the projective tuple

(za : zb) =
(∫

(mτ )∗a
ωxτ :

∫
(mτ )∗b

ωxτ

)
= (p(τ) : 1).

Let γ ∈ Γ. Then γ · xτ = (Xτ ,mτ ◦ γ−1). Therefore,

(p(γ · xτ ) : 1) = (
∫
(mτ◦γ−1)∗a

ωγ·xτ :
∫
(mτ◦γ−1)∗b

ωγ·xτ ).

Note that ωγ·xτ is proportional to ωxτ , and that γ acts on U∗ as
(
D −C
−B A

)
w. r. t. to

the basis a, b. Hence,

γ−1
∗ a = Aa+Bb and γ−1

∗ b = Ca+Db,

and we obtain

(p(γ · xτ ) : 1) = (Aza +Bzb : Cza +Dzb) =
(
Aza +B

Cza +D
: 1
)
,

as zb = 1. Thus

p(γ · xτ ) = Ap(xτ ) +B

Cp(xτ ) +D
= ρ(γ)p(xτ ),

which proves the claim. �
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Deligne Extension

We describe a canonical extension of a vector bundle with flat connection over
singular points. We restrict ourselves to the case where the base is a pre-compact
Riemann surface. A discussion of the general case can be found e. g. in [Del70],
[Sch73].

For the rest of this section, let C be a pre-compact Riemann surface sitting in a
compact surface C, let i : C→C be the inclusion, and let S = C \ C be the finite set
of cusps.

Definition 7.20 Let V be a C-local system on D∗ = D \{0}, let x ∈ D∗, and let
γ denote a generator of π1(D∗, x). Then V is said to have unipotent monodromy, if
the image of γ under the representation ρ : π1(D∗, x)→GL(Vx) associated with V
is a unipotent transformation.

Note that this definition is independent of the choice of the generator γ and the base
point x.

In fact, the local systems that we are interested in are almost unipotent. P. Griffiths
[Gri70, Theorem 3.1] recounts four ways of proving the next proposition.

Proposition 7.21 Let φ : X→C be a family of curves of genus g. If s ∈ S, and
T = ρ(γ) is the monodromy transformation of a small loop about s, then T is quasi-
unipotent, i. e. there exist N , M ∈ N such that

(TN − 1)M = 0.

We define the sheaf of 1-forms with log-singularities at S to be the subsheaf Ω1
C
(S) of

i∗Ω1
C consisting of the local sections ω ∈ i∗Ω1

C(U) on U ⊂ C such that ω and dω have
a pole of order at most 1 in S ∩ U . Note that since we are in the one-dimensional
case,

Ω1
C
(S) =

{
ω ∈M

(1)
C

(C) | div(ω) +
∑
s∈S

s ≥ 0
}
∪ {0}.

Definition 7.22 Let c ∈ C and V a C-local system on C. Let ∇ be the flat, holo-
morphic connection associated with V by Proposition 6.15. We make the following
definitions.

a) V has unipotent monodromy about a cusp s ∈ S if V restricted to a punctured
neighborhood of s has unipotent monodromy.

b) V has unipotent monodromy about the cusps if a) holds for all s ∈ S.
c) ∇ is meromorphic at s ∈ S, if the coefficients of the matrix Γ of ∇ in a local

trivialization are meromorphic.
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d) ∇ is regular at s ∈ S, if ∇ is meromorphic at s and the matrix Γ in c) has at
most poles of order 1 at s, i. e. entries in the sheaf Ω1

C
(S).

Note that by virtue of Remark 6.11, the definition in point c) above is independent
of the choice of a local trivialization.

Lemma 7.23 Let V be a holomorphic vector bundle of rank r on D, let D∗ = D \{0}
and let ∇ be a flat, holomorphic connection on V|D∗, such that 0 is a regular point
of ∇. Then we can associate to ∇ an element

Res0(∇) ∈ End(V0)

in a well-defined way. Namely, let γ be a generator of π1(D∗, x) (for some fixed
x ∈ D∗), let f1, . . . , fr be a local basis of V about 0, and let Γ = (ωij)i,j=1,...,r be
the matrix of ∇ associated with this basis (where ωij are sections of Ω1

C
(S)). Then

Res0(∇) with respect to the basis {fi}ri=1 is given by the matrix

Res0(Γ) =


∫
γ ω11 . . .

∫
γ ω1r

... ...∫
γ ωr1 . . .

∫
γ ωrr

 .
Proof: Let g1, . . . , gr be another basis about 0. We have to check that the matrix
Γ′ of ∇ with respect to {gi}ri=1 gives the same endomorphism. Let A be the base
change from {fi} to {gi}. Then by Remark 6.11,

Γ′ = A−1dA+ A−1ΓA,

hence the principal part of Γ′ is conjugate by A−1 to the principal part of Γ. There-
fore A−1 Res0(Γ)A = Res0(Γ′). �

Proposition 7.24 ([Del70, Theorem 1.17])
In the situation of Lemma 7.23, the monodromy transformation T in Aut(V|D∗)
associated with γ ∈ π1(D∗, x) extends to an automorphism T̃ of V, whose stalk at 0
is given by

T̃0 = exp(−2πiRes0(Γ)).

Under some mild assumptions, we can extend a vector bundle associated with a
local system on the pre-compact Riemann surface C over the cusps of C. It suffices
to apply the following proposition locally to a neighborhood of each cusp. The
resulting extension of the vector bundle is called Deligne extension.
Proposition 7.25 ([Del70, Proposition 5.2])
Let V be a C-local system on D∗ = D \{0}, which is supposed to have unipotent
monodromy about 0. Let V = V⊗COD∗. Then there is a unique extension of V to a
vector bundle Ṽ to D such that
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7 Polarized Variations of Hodge Structures

a) the matrix Γ of the connection (with respect to any local basis of Ṽ) has at most
poles of order 1 at 0,

b) the residue Res0(Γ) is nilpotent

Kodaira-Spencer Map

We describe the Kodaira-Spencer map for a pure, polarized VHS of weight 1. Note
that this map is the Higgs field in the language of Higgs bundles; a fact, which will
not be discussed here (see [VZ04], [Möl06]).
Remark 7.26 Let V be a 2g-dimensional R-vector space, and let W ⊂ V ⊗RC
be a C-subvector space such that V ⊗RC = W ⊕W . Assume that we are given a
C-bilinear alternating form Q on V , such that Q(W,W ) = 0 and iQ(w,w) > 0 for
all w ∈ W \{0}. Then V/W →W ∗, v+W 7→ Q(·, v) is a C-linear isomorphism. We
can sheafify this statement: If V1,0 ⊂ V is the (1, 0)-part of a VHS, polarized by Q,
then

V /V1,0∼=(V1,0)∗.

Definition 7.27 Let (V,V1,0, Q) be a pure, polarized VHS of weight 1 on C with
associated connection ∇. By Proposition 7.25, we can extend V⊗OC to a vector
bundle Vext on C, thus a fortiori, V1,0 has an extension V1,0

ext.

The Kodaira-Spencer map ∇ is the OC -linear map defined as the composition

V1,0
ext

⊂ - Vext
∇- Vext⊗O

C
Ω1

C
(S) -

- Vext /V1,0
ext⊗O

C
Ω1

C
(S) - (V1,0

ext)∗⊗O
C
Ω1

C
(S).

7.4 Characterization of Teichmüller Curves by their VHS

We summarize M. Möller’s results on the VHS of a Teichmüller curve. Starting from
P. Deligne’s semisimplicity result, he deduces the following description.
Proposition 7.28 ([Möl06, Proposition 2.4])
Let (X,ω) be a Veech surface, and assume that Γ 6 Γ(X,ω) fulfills Condition (∗)
from Remark 5.4. Let L ⊂ C be a Galois closure of the trace field K(X,ω), and
r = (K(X,ω) : Q). The local system V = R1φ∗(Z) associated with the family
φ : X→C = H /Γ splits over Q as

VQ = WQ⊕MQ , with WL = L1⊕ · · · ⊕ Lr .

Each Li carries a polarized L-VHS of weight 1, and MQ carries a polarized Q-VHS
of weight 1. Their sum is the pVHS on V. Moreover, none of the (Li)C is contained
in MC.
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He also derives from this result a characterizations of the image of a Teichmüller
curve in Ag. It is contained in the locus of abelian varieties that admit a splitting
A1×A2 up to isogeny, where A1 has real multiplication with the trace field K(X,ω)
[Möl06, Theorem 2.7]. Since the trace field of an origami curve is Q, and the
first factor of the splitting comes from the covering map to the elliptic curve, this
characterizations has no implications for origami curves.

More important for our purposes are the following two characterizations of Teich-
müller curves.
Proposition 7.29 ([Möl06, Theorem 2.13])
Let Γ 6 PSL2(R) be a cofinite Fuchsian group, and let φ : X→C = H /Γ be a
family of curves of genus g. Suppose that the local system R1φ∗(RX) admits a direct
summand L of rank 2, whose monodromy representation ρ is (up to conjugation in
PSL2(R)) the Fuchsian embedding. Then C→Mg is a finite cover of a Teichmüller
curve.

Proposition 7.30 ([Möl06, Theorem 5.3])
Let Γ be a cofinite Fuchsian group and let φ : X→C = H /Γ be a family of curves of
genus g such that V = R1φ∗ZX has unipotent monodromy about the cusps. Suppose
V⊗ZC has a rank 2-subsystem L carrying a polarized VHS, whose Kodaira-Spencer
map ∇ is an isomorphism. Then C→Mg is a finite cover of a Teichmüller curve.

These two statements were partly reproved by A. Wright [Wri11, Theorem A.1,
A.3] in a more down-to-earth manner. Note that the second statements is better
formulated in terms of Higgs bundles, and that it gives an algebraic characterisation
of Teichmüller curves. Note also that the assertion that ∇ be an isomorphism
depends on the set of cusps.

Using Proposition 7.30, I. Bouw and M. Möller [BM10b] were able to find new Teich-
müller curves, whose Veech groups are essentially all ∆(n,m,∞)-triangle groups.
This family of Teichmüller curves extends Veech’s and Ward’s family [Vee89] and
substantially overlaps with a family later described explicitly by P. Hooper [Hoo09]
by giving the associated translation surfaces. They also reappear in [Wri11].
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8 Multiplicative Ergodic Theory

8.1 Oseledets’ Theorem

We recall some basic notions in ergodic theory, and in particular state the multi-
plicative ergodic theorem, first proved by Oseledets. A general reference for this
part is [Wal82].

Recall that a measure space is a triple (X,Σ,m) of a set X, a σ-algebra Σ and a
countably additive measure m. In the following, m will mostly be a finite measure,
i. e. m(X) < ∞ and usually normalized to m(X) = 1 (in which case (X,Σ,m) is
called a probability space). We will always assume that m is complete, i. e. m(A) = 0
implies B ∈ Σ for all B ⊂ A. A measurable function f : (X,Σ,m)→(X ′,Σ′,m′)
satisfies f−1(B) ∈ Σ for allB ∈ Σ′. A topological space will usually be equipped with
its Borel σ-algebra, generated by the open sets. The space of integrable measurable
functions f : X→R will be denoted L1(X,m).

A measure-preserving transformation is a measurable Z- or R-action Tt on (X,Σ,m)
such that m(Tt(A)) = m(A) for all t and all A ∈ Σ (endow Z with the counting
measure andR with the Lebesgue-measure). A measurableR-action is usually called
flow. A measure m is called ergodic w. r. t. to a measure-preserving transformation
Tt if every Tt-invariant A ∈ Σ has m(A) = 1 or m(A) = 0. Ergodicity of m is
equivalent to every Tt-invariant function being constant m-a.e.

Definition 8.1 Let (X,Σ,m) be a measure space and let V be an r-dimensional
R-vector space. Let gt be a flow on X. A cocyle for the flow gt is a measurable map

A : R×X→GL(V ) (t, x) 7→ At(x)

such that
As+t(x) = As(gt(x)) ◦ At(x)

holds for all s, t ∈ R and x ∈ X.

Theorem 8.2 (Oseledets) Let (X,Σ,m) be a measure space with finite measure,
gt a measure-preserving flow, V an r-dimensional R-vector space, endowed with a
norm ‖ · ‖ and A : R×X→GL(V ) a cocycle for gt such that

sup
−1≤u≤1

log+(‖Au(x)‖) ∈ L1(X,m).
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8 Multiplicative Ergodic Theory

Then there is a measurable subset U ⊂ X of full measure, invariant under gt such
that for every x ∈ U , there is s(x) ∈ N and real numbers

λ1(x) > λ2(x) > . . . > λs(x)(x)

and a decomposition V = ⊕s(x)
i=1 Wi,x such that for 1 ≤ i ≤ s(x) and v ∈ Wi,x \ {0}

lim
t→∞

1
t

log ‖At(x) · v‖ = λi(x).

Moreover, s and λi are (when defined) measurable and gt-invariant and the Wi,x are
measurable subbundles of U × V .

Proof: Combine [Rue79, Theorem 3.1] with [Rue79, Theroem B.3]. �

Definition 8.3 In the situation of Theorem 8.2, the numbers λi(x), i = 1, . . . , s(x)
are called the Lyapunov exponents for At and gt at x ∈ X. The number mi(x) =
dimRWi,x is called the multiplicity of λi(x).

Remark 8.4 In the situation of Theorem 8.2, if the measure m is ergodic w. r. t. to
the flow gt, then s, λi and mi are constant almost everywhere. In this case, we call
the collection (λi)dimR V

i=1 (where each λi appears mi times) the Lyapunov spectrum
of A. If mi = 1, then λi will be called simple.

8.2 The Kontsevich-Zorich Cocycle

The Kontsevich-Zorich cocycle is a cocycle over the Teichmüller flow on ΩMg. In
order to give its definition, we first need a finite measure on the base space. To this
end, recall the definition of the measure ν from Section 2.2 defined on a stratum
Ω Tg(κ)′ given by the partition κ of 2g − 2. Veech [Vee90] showed that the disinte-
gration of ν w. r. t. the unit hyperboloid Ω1 Tg(κ)′ of norm 1 surfaces descends to a
measure ν1 on the quotient Ω1Mg(κ). This measure has the following properties:

Remark 8.5 a) The total ν1-mass of any connected component in any stratum is
finite.

b) ν1 is an SL2(R)-invariant measure; it is ergodic for the actions of both SL2(R)
and the Teichmüller flow {gt} on every connected component of every stratum
of Ω1 Mg.

These assertions were independently shown by H. Masur [Mas82] and W. Veech
[Vee82], [Vee90]. We remark that A. Eskin and A. Okounkov [EO01] have computed
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8.2 The Kontsevich-Zorich Cocycle

the volumes of the strata in terms of quasi-modular forms by counting origamis in
the strata.

Having constructed this measure, one is led to consider more generally any SL2(R)-
invariant, finite measure on Ω1Mg(κ).

In our definition of the Kontsevich-Zorich cocycle, we follow Forni [For06]. In the
following remark, let the mapping class group Γ(S) act on cohomology in the usual
way, i. e. f sends a cohomology class v to (f−1)∗(v). Note also that we do not obtain
a cocycle in the true sense of our definition, but rather a flow on a (trivial) vector
bundle that is a lift of the flow on the base.

Remark 8.6 Let S be a compact Riemann surface of genus g with n marked points,
such that 3g − 3 + n > 0. Let

ĜKZ : R×Ω1 T(S)×H1(S,R)→Ω1 T(S)×H1(S,R) , (t, x, v) 7→ (gt(x), v)

be the trivial cocycle for the Teichmüller geodesic flow. Consider the orbifold vector
bundle over Ω1 Mg,n

H Mg,n = (Ω1 T(S)×H1(S,R))/Γ(S).

Then ĜKZ descends to a quotient flow

GKZ
t : H Mg,n→H Mg,n .

The vector bundle h : Ω1 T(S) × H1(S,R)→Ω1 T(S) carries a norm. In the fiber
over x = (X,m : S→X,ω) ∈ Ω1 T(S), a vector v ∈ h−1(x) has norm

‖v‖m = ‖(m−1)∗(v)‖X ,

where ‖ · ‖X is the Hodge-norm on X, scaled by 1
2 (see Remark 4.12). ‖ · ‖m is

invariant under the action of Γ(S) on Ω1T(S)×H1(S,R).

Proof: Let f be a mapping class, and let (x, v) ∈ Ω1 T(S) × H1(S,R), x =
(X,m, ω). Then gt(x) = (gt · X,ϕgt ◦ m, gt · ω) and f(x) = (X,m ◦ f−1, ω), so
f(gt(x)) = gt(f(x)). Moreover, for a vector v ∈ h−1(x),

‖(f−1)∗v‖m◦f−1 = ‖v‖m. �

Definition 8.7 GKZ
t is called the Kontsevich-Zorich cocycle for the Teichmüller

geodesic flow.

While it may appear that ĜKZ
t is trivial, this is not really the case, since the norm

is not equivariant for the Teichmüller flow. Note also that Ω1 T(S) × H1(S,R) is
a trivialization of the (pullback of the) R-local system R1φuniv∗(RXuniv) on T(S)
induced by the universal family φuniv : Xuniv→T(S) over Teichmüller space.
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8 Multiplicative Ergodic Theory

Remark 8.8 For simplicity, we will further restrict to n = 0 and g ≥ 2. Let µ be a
gt-invariant, finite, ergodic measure on Ω1 Mg. We would like to apply Theorem 8.2
to GKZ

t . However, the vector bundle Ω1 T(S)×H1(S,R) is not trivial as a normed
vector bundle; in particular, a priori the cocycle does not live on a fixed normed
vector space. On the other hand, every measurable normed vector bundle over a
compact metric space can be trivialized on a set of full measure. Unfortunately,
the base is a non-compact metric space, even after passing to the quotient by the
mapping class group. Nevertheless, things can be made to work, using the analysis
of W. Veech [Vee86] and A. Zorich (see [Zor96] and his survey [Zor06] for a nice
presentation) of the Teichmüller flow by means of zippered rectangles and Rauzy-
Veech induction.

The next remark assembles fundamental results on the Lyapunov spectrum of GKZ
t .

Remark 8.9 Let g ≥ 2, and let µ be a gt-invariant, finite, ergodic measure on
Ω1 Mg. Theorem 8.2 and Remark 8.6 allow us to speak of the Lyapunov exponents
of GKZ

t with respect to µ. The Lyapunov spectrum

λµ1 ≥ λµ2 ≥ . . . ≥ λµ2g

of GKZ
t has the following properties

a) The spectrum is symmetric with respect to 0, i. e. λµg+k = −λµg−k+1 for all k =
1, . . . , g. Therefore, we will henceforth speak of

λµ1 ≥ . . . ≥ λµg ≥ 0

as of the Lyapunov spectrum of GKZ
t w. r. t. to µ. In particular, when speak-

ing of the non-negative Lyapunov exponents, we mean precisely the exponents
contained in the Lyapunov spectrum.

b) The first exponent is always simple and equal to 1; it is therefore called trivial
Lyapunov exponent.

c) The spectrum for the measure ν1 is simple and non-degenerate, i. e.

1 = λν1
1 > λν1

2 > . . . > λν1
g > 0.

Part a) follows from the fact that the action of Γ(S) is by symplectic matrices on
H1(S,R). We assemble some references for the remaining statements. Part b) was
originally shown by W. Veech [Vee86] for the measure ν1, and has been proved by G.
Forni (e. g. [For06, Theorem 5.1]) for every ergodic probability measure on Ω1 Mg.
Part c) is the Zorich conjecture, formulated in [Zor96]. The conjecture was proved
in several steps by different authors: Simplicity of the spectrum for ν1 was proved in
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8.2 The Kontsevich-Zorich Cocycle

full generality by A. Avila and M. Viana [AV07]. Non-degenerateness (non-uniform
hyperbolicity) was shown by Forni [For02].

We reformulate the Kontsevich-Zorich cocycle in the case of a Teichmüller curve.
Let (X,ω) be a Veech surface of genus g, renormalized such that Area(X,ω) = 1,
and consider its SL2(R)-orbit M = SL2(R) · (X,ω) ⊂ Ω1 Mg. Since M is closed, we
obtain a finite measure µM on Ω1 Mg with support M , namely the measure induced
from the Haar measure λ on SL2(R). λ is SL2(R)-invariant and ergodic for gt (see
[CFS82, Chap.4, §4, Theorem 1]), and µM inherits these two properties. Consider
a Teichmüller disk ∆ associated with (X,ω), e. g. the one defined by (X, id, ω⊗ 2) in
T(X). Let U∆ = SL2(R) · (X, id, ω) ⊂ Ω1 T(X) be the “unit tangent bundle” to
∆.

Definition 8.10 In the situation above, theKontsevich-Zorich cocycle for the Teich-
müller curve associated with (X,ω) is defined as the quotient cocycle GKZ

t (X,ω) by
the action of Aff(X,ω) of the cocycle

R×U∆×H1(X,R)→U∆×H1(X,R) , (t, x, v) 7→ (gt(x), v)

on the orbifold vector bundle HM = (U∆ × H1(X,R))/Aff(X,ω) over M =
SL2(R) · (X,ω) ⊂ Ω1 Mg.

This cocycle is morally a restriction of the big cocycle on Ω1 Mg with the restriction
that we deal with orbifold vector bundles for different groups, so one has to be
careful about possible identifications.

Remark 8.11 Let (X,ω) ∈ Ω1 Mg be a Veech surface and M = SL2(R) · (X,ω).

a) Since the flow gt is ergodic on M , the Lyapunov exponents are well-defined. The
Lyapunov spectrum is the collection of the g real numbers

λµM1 = 1 > λµM2 ≥ . . . ≥ λµMg .

b) The Lyapunov spectrum of GKZ
t (X,ω) does not change, if we consider the in-

duced cocycle on a quotient (U∆ × H1(X,R))/Γ by a finite-index subgroup
Γ 6 Aff(X,ω).

c) Let Γ 6 Aff(X,ω) be a subgroup of finite index. To any symplectic Γ-invariant
subspace V ⊂ H1(X,R) of dimension 2r are associated r of the Lyapunov expo-
nents of GKZ

t (X,ω) in a)
λi(1) ≥ · · · ≥ λi(r).
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8 Multiplicative Ergodic Theory

Proof: b) follows from the fact that we deal with a quotient cocycle. For Part c),
note that by Γ-invariance of V , we obtain a subspace of a finite cover of the orbifold
vector bundle HM , where we can apply Oseledets Theorem (modulo Remark 8.8).
The resulting Lyapunov exponents will again be symmetric w. r. t. 0, because of
the symplectic structure of V , and the Lyapunov spectrum (i. e. the “non-negative”
part) will be a subset of the whole spectrum by b). �

Remark 8.12 Following [EKZ10a], we explain another informal approach to the
Lyapunov exponents of the Kontsevich-Zorich cocycle of a Teichmüller curve.

Let (X,ω) be a Veech surface. Consider a “generic” geodesic c of the flow on the
Teichmüller curve H /Aff(X,ω), i. e. one that winds “ergodically”, so in particular,
minimally around the surface, and does not run into a cusp. At every time t that
our geodesic comes close to the initial point, we can close it up artificially and obtain
a closed geodesic, i. e. an element γ of Aff(X,ω). Let A(t) = ρ(γ) be the associated
monodromy matrix. Then the limit

lim
t→∞

(A(t)TA(t))1/(2t) = Λ

exists and the Lyapunov exponents of the Kontsevich-Zorich cocycle are given as the
logarithms of eigenvalues of the matrix Λ. In particular, since A(t) is a symplectic
matrix, the Lyapunov exponents are symmetric w. r. t. 0.

8.3 The Lyapunov Spectrum of Teichmüller Curves

There is an algebraic formula for the sum of the non-negative Lyapunov exponents of
GKZ

t of a rank 2-subbundle or more generally on the determinant bundle of a higher
rank-bundle: the formula for the sum of the Lyapunov exponents. It was first
discovered by Kontsevich and Zorich [Kon97], and has been formulated in various
forms by different authors (compare also with Proposition 9.14). We present a result
due to Eskin, Kontsevich and Zorich [EKZ10b] which is adapted to origamis.

Proposition 8.13 (Sum of the Lyapunov Exponents for origamis)
Let (X,ω) be an origami of genus g in the stratum ΩM(κ). Define

c(κ) = 1
12

`(κ)∑
i=1

κi(κi + 2)
κi + 1 ,

and
c(X,ω) = (SL2(Z) : Γ(X,ω))−1 ·

∑
Y ∈SL2(Z)·(X,ω)

(∑
i∈IY

hCY,i
wCY,i

)
,
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8.3 The Lyapunov Spectrum of Teichmüller Curves

where the innermost sum runs over a decomposition of the surface Y into horizontal
cylinders {CY,i}i∈IY of height hCY,i and width wCY,i. The Lyapunov spectrum {λi}gi=1
of GKZ

t (X,ω) obeys to the sum formula
g∑
i=1

λi = c(κ) + c(X,ω).

Remark 8.14 On some strata in low genus, the sum of the Lyapunov exponents
is non-varying, i. e. constant for all Teichmüller curves in that stratum. This phe-
nomenon was first discovered with the help of computer experiments in [Kon97] and
has recently been proved by D. Chen and M. Möller [CM11].

Proposition 8.15 ([Bai07, Theorem 1.7])
For any SL2(R)-invariant ergodic measure µ on Ω1 M2, the non-trivial Lyapunov
exponent is

• equal to 1
2 if the measure is supported on ΩM2(1, 1), and is

• equal to 1
3 if the measure is supported on ΩM2(2).

This is an unpublished result by M. Kontsevich and A. Zorich; it was also proved for
the case of Teichmüller curves by I. Bouw and M. Möller [BM10a, Corollary 2.4].

There are several examples of Teichmüller curves, where one can explicitly give
the Lyapunov spectrum. In [BM10b], I. Bouw and M. Möller find algebraically
primitive Teichmüller curves, most of them unknown before, and determine the
associated Lyapunov spectrum. In [EKZ10a], we are given the Lyapunov spectra of
cyclic pillowcase covers; the same is done for abelian pillow-case covers in [Wri11].
There are very particular Teichmüller curves, one in M3, one in M4, where all of the
non-trivial Lyapunov exponents vanish. The curve in M3, also called “Eierlegende
Wollmilchsau” was first investigated by Herrlich and Schmithüsen [HS08]. M. Möller
[Möl05a] proved that both curves are the only examples of Shimura-Teichmüller
curves (with the possible exception of curves in genus 5); their Lyapunov spectrum
is examined [For02], and also in [FMZ10].

Let us mention one particular result in [EKZ10a], since it regards the Lyapunov
spectrum of the stairs origamis Stn (see Section 3.2).

Proposition 8.16 ([EKZ10a, Proposition 2])
The Lyapunov spectrum of GKZ

t (Stn) for the stairs origami Stn is

1
n
,
3
n
,
5
n
, . . . ,

n

n
, if n is odd

2
n
,
4
n
,
6
n
, . . . ,

n

n
, if n is even
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As stated above, the Lyapunov spectrum of a Teichmüller curve can partly vanish.
We give a necessary condition for this situation. M. Möller has communicated to
the author that it is not a sufficient condition.

Proposition 8.17 Let (X,ω) be a Veech surface of genus g, and let W be an r-
dimensional subspace, invariant under the action of a finite-index subgroup Γ of
Aff(X,ω).

a) If Γ acts on W by unitary matrices for the Hodge inner product H, then Γ acts
as a finite group.

b) If Γ acts on W as a finite group, then all of the Lyapunov exponents associated
with W vanish.

Proof: a) The action of Aff(X,ω) on H1(X,R) is discrete. Hence Γ acts on W by
a discrete subgroup of the unitary group. The latter being compact implies that Γ
acts by a finite group.

b) Passing to a finite cover, we can achieve that Γ acts trivially on W . This implies
the statement.

Remark 8.18 Let (X,ω) be a Veech surface, and let φ : X→C = H /Γ be the
family over the Teichmüller curve associated with (X,ω), with Γ 6 Aff(X,ω) ful-
filling Condition (∗). Let W be the maximal subspace of H1(X,Q) on which Γ
acts trivially. Then the local system W ⊂ R1φ∗(Q) associated with W is the con-
stant sheaf of fiber W . By [Del71a, Corollaire 4.1.2], W carries a sub-pVHS of
(R1φ∗(Q), φ∗Ω1

X/C, Q), and the induced Hodge structure on Wc is independent of
c ∈ C. Thus it leads to a fixed part in the family of Jacobians over the Teichmüller
curve, i. e. an inclusion A× C→ Jac(X→C) with a fixed abelian variety A (see also
[Bau09]).
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9 Splitting the Hodge Bundle over a Teichmüller
curve

From Theorem 7.15 we know that the pVHS on a compact complex manifold B
is completely reducible. There is a remarkable theorem by Deligne which states
that for a fixed base, only finitely many different monodromy representations can
occur.

Theorem 9.1 ([Del87, Théorème 0.1])
Let B be a fixed smooth, connected algebraic variety over C, let b ∈ B, and n ∈ N.
Then for k ∈ N0 variable, the monodromy representations ρ : π1(B, b)→Hk(Xb,Q)
of dimension n coming from algebraic families X→B fall into finitely many isomor-
phism classes.

Deligne actually proves that for a fixed base B and n ∈ N, the local systems of Q-
vector spaces of dimension n, which are direct summands of a local system associated
with a pVHS, fall into finitely many isomorphism classes.

However, not much is known about the representation, respectively local systems
that actually do occur – even for families of curves, and nor do we to my knowledge
know how to obtain all of them.

In this chapter, we first present two basic concepts to obtain subvector spaces of
the first cohomology that are invariant under the action of (a finite-index subgroup
of) Aff(X,ω) and therefore permit to decompose the monodromy representation
(respectively the local system). One is the use of translation coverings, the second is
the use of representation theory for the finite group Aut(X,ω). After this, we present
a method for computing the Lyapunov exponent of a rank 2-subrepresentation, based
on an outline of M. Möller.

Finally, we apply the two concepts to origamis. This part relies on computations
carried out with the help of the origami program, which was developed at our
workgroup mainly by G. Weitze-Schmithüsen, K. Kremer, M. Finster and myself.
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9.1 Coverings

Let p : (X,ω)→(Y, ν) be a Veech covering between Veech surfaces. By [GJ00,
Theorem 4.8] the elements of Aff(X,ω) that descend via p to Y form a finite-index
subgroup Aff(X,ω)p of Aff(X,ω). Let

ϕp : Aff(X,ω)p→Aff(Y, ν)

be the group homomorphism that maps f ∈ Aff(X,ω)p to f ∈ Aff(Y, ν) such that
p ◦ f = f ◦ p. The image of ϕp is the finite-index subgroup Aff(Y, ν)p of Aff(Y, ν) of
affine diffeomorphisms, that lift to (X,ω).

Proposition 9.2 Let p : (X,ω)→(Y, ν) be a Veech covering between Veech surfaces.
Let

ρ : Aff(X,ω)→ Sp(H1(X,Q)) , f 7→ (f−1)∗

be the monodromy representation of (X,ω). Then the image U of H1(Y,Q) under

p∗ : H1(Y,Q)→H1(X,Q)

is an Aff(X,ω)p-invariant symplectic subspace of H1(X,Q).

The map p∗ is equivariant for the action of Aff(X,ω)p on U and Aff(Y, ν)p on
H1(Y,Q).

Proof: Let f ∈ Aff(X,ω)p and f ∈ Aff(Y, ν) such that p ◦ f = f ◦ p. Then for
every c ∈ H1(Y,Q)

(f−1)∗(p∗(c)) = (p ◦ f−1)∗(c) = (f−1 ◦ p)∗(c) = p∗((f−1)∗(c)) ,

proving (f−1)∗(Im(p∗)) ⊂ Im(p∗). The computation also shows that p∗ is equivari-
ant. Finally, p∗ is a symplectic map (see Example 4.2). �

Theorem 9.3 Let (X,ω), (Y, ν) be Veech surfaces of genus g = g(X) and g′ =
g(Y ), and let p : (X,ω)→(Y, ν) be a Veech covering. Then

• there is a finite-index subgroup Γ 6 Γ(X,ω) ∩ Γ(Y, ν) such that Condition (∗)
is simultaneously verified for the covers

jX : C→H /Aff(X,ω)→Mg and jY : C→H /Aff(Y, ν)→Mg′

with C = H /Γ.
• if φX : X→C and φY : Y→C are the respective families of curves, there is
an inclusion Φ : R1φY ∗Z→R1φX∗Z of local systems, which is a morphism of
pVHS.
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Proof: To prove the first claim, let Γ′6 Aff(Y, ν) be a finite-index subgroup ful-
filling Condition (∗) for (Y, ν). Since it is torsion-free, it maps isomorphically onto
a finite-index subgroup Γ′′6 Γ(Y, ν). Similarly, we find a finite-index subgroup ∆′
fulfilling Condition (∗) for (X,ω) such that ∆′ maps isomorphically onto a finite-
index subgroup ∆′′ of Γ(X,ω). By [GJ00, Theorem 4.9] Γ(X,ω) and Γ(Y, ν) are
commensurate, so Γ′′ and ∆′′ are also commensurate. So take Γ = Γ′′ ∩∆′′.

For the second claim, we will use the following rigidity of pVHS [PS03, Corollary
12]: Let B be a complex manifold, embeddable in a compact complex manifold B
such that B \ B is a divisor with normal crossings. Let V, W be local systems on
B carrying each a pVHS and let b ∈ B. Then any π1(B, b)-equivariant morphism of
Hodge structures Φb : Vb→Wb extends to a morphism of pVHS Φ : V→W.

We apply this to C = H /Γ. Let c ∈ C be a point with jX(c) = [X] ∈ Mg and
jY (c) = [Y ] ∈ Mg′ . Such a point exists, since we can choose particular Teichmüller
embeddings ̃X : H→T(X) and ̃Y : H→T(Y ) inducing jX and jY that map τ =
i ∈ H to (X, idX) ∈ T(X), respectively to (Y, idY ) ∈ T(Y ). Consider the map

Φb : H1(Yc,Z)∼=H1(Y,Z)→H1(X,Z)∼=H1(Xc,Z)

induced by p∗. Since p is holomorphic, the map p∗ is a morphism of Hodge structures.
It respects the polarizations if we let the one on the source be the original one
multiplied with deg(p). Moreover, w. l. o. g. we may assume Γ 6D(Aff(X,ω)p). It
then follows from Proposition 9.2 and [Bau09, Lemma 2.4.3] that Φb is equivariant
w. r. t. the two monodromy actions of Γ. Therefore, we obtain a morphism of pVHS
Φ as desired. To see that it is an inclusion, we note that p∗ and therefore Φb is a
monomorphism in the category of π1-representations, which by Proposition 6.4 is
equivalent to the category of local systems. �

9.2 Representations

Now we describe how one can find a splitting ofH1(X,R) by means of representation
theory of finite groups. A general reference for this subject is [Ser96]. In the following
K[G] denotes the group ring of a group G with coefficients in the field K.

Let X be a compact Riemann surface. Recall that Aut(X) is a finite group acting
(from the left) on Ω1

X(X). Let G6 Aut(X) be a subgroup. We can write Ω1
X(X) as

a direct sum of C[G]-isotypic components

Ω1
X(X) =

⊕
χ

Vχ , (9.1)
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9 Splitting the Hodge Bundle over a Teichmüller curve

where χ runs through all irreducible characters of G. The G-action extends to
H1(X,C) = Ω1

X(X) ⊕ Ω1
X(X), and G preserves the splitting into holomorphic and

antiholomorphic parts. Therefore, H1(X,C) decomposes as

H1(X,C) =
⊕
χ

Vχ ⊕
⊕
χ

Vχ. (9.2)

Note that we would have to group representations together to see the decomposition
of H1(X,C) into isotypic components. Analogously, the real cohomology H1(X,R)
is a completely reducible R[G]-module, and we can write it as

H1(X,R) =
⊕
ϑ

Wϑ , (9.3)

a direct sum of R[G]-isotypic components. More generaly, such a decomposition of
H1(X,K) exsits for any field K of characteristic 0.

In both cases, g acts on a cohomology class, respectively on a differential by (g−1)∗,
which we will abbreviate by g·. Note that the action of G on the cohomology is in
fact defined over Z.

The following, probably well-known lemma describes the relation between the two
G-actions.

Lemma 9.4 In the situation above,

a) if V ⊂ Ω1
X(X) is a C[G]-submodule, then V ⊕ V is defined over R, i. e. there

exists an R[G]-submodule W ⊂ H1(X,R), such that W ⊗RC = V ⊕ V .
b) if W ⊂ H1(X,R) is an R[G]-isotypic component, then W is a sub-R-Hodge

structure of H1(X,R).

Proof: a) We let W be the R-vector space spanned by v + v with v ∈ V . Via the
inclusion H1(X,R)→H1(X,C), W is a subspace of H1(X,R), and a G-module, if
we let g ∈ G act by the rule v + v 7→ g · v + g · v. We have W ⊗RC = V ⊕ V , since
iv ∈ V and i(iv + iv) = v − v, and this implies

v = 1
2(v + v − i(iv + iv)) ∈ W ⊗RC ,

and similarly v ∈ W ⊗RC. This proves the inclusion from the right to the left. The
other one is trivial.

b) W ⊗C decomposes as a direct sum of (at most two) G-isotypic components of
H1(X,C). The sum decomposition (9.2) shows that each of these isotypic compo-
nents is the direct sum of a holomorphic and an antiholomorphic part. This proves
that W = W 1,0 ⊕W 0,1 with W 1,0 ⊂ Ω1

X(X) and W 0,1 = W 1,0. �
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Now we investigate the interplay between affine automorphisms and the affine group
of a Veech surface.

Proposition 9.5 Let (X,ω) be a Veech surface, let G6 Aut(X,ω), and let K = R

or C. The action ρ : Aff(X,ω)→ Sp(H1(X,K)), f 7→ (f−1)∗, restricted to the nor-
malizer N(G) of G in Aff(X,ω), permutes the G-isotypic components of the decom-
position (9.2), respectively (9.3), and there is a finite index subgroup Γ 6 Aff(X,ω)
such that every isotypic component is Γ-invariant.

Proof: As Aut(X,ω) is normal in Aff(X,ω), the normalizerN(G) ofG in Aff(X,ω)
has finite index in Aff(X,ω). For all g ∈ G, and f ∈ N(G), there exists g̃ ∈ G,
such that gf = fg̃. Therefore for all irreducible K[G]-submodules V of H1(X,K),
we have

(g∗)−1 ◦ (f ∗)−1(V ) = ((gf)∗)−1(V ) = ((fg̃)∗)−1(V ) = (f ∗)−1(V ),

which shows that (f−1)∗(V ) is another irreducible K[G]-module inside H1(X,K).
Hence every f ∈ N(G) induces a permutation of the isotypic components of the
representation of G. Thus there is a finite index subgroup Γ 6N(G) that leaves
every isotypic component invariant. �

Note that we can also find a finite-index subgroup Γ 6 Aff(X,ω) such that each
element γ ∈ Γ acts on each isotypic component V of the decomposition of H1(X,K)
as a K[G]-linear automorphism. Indeed, it suffices to take Γ = ⋂

g∈GC(g), where
C(g) is the centralizer of g in Aff(X,ω).

Theorem 9.6 Let (X,ω) be a Veech surface and let G6 Aut(X,ω). Suppose U ⊂
H1(X,R) is a G-isotypic component. Then there is a finite-index subgroup Γ of
Aff(X,ω) fulfilling Condition (∗) such that the pVHS R1φ∗(R) associated with the
family over the Teichmüller curve φ : X→C = H /Γ has an R-local subsystem U

induced by U , which carries a sub-R-pVHS.

Proof: W. l. o. g. we can choose Γ 6 Aff(X,ω) such that it fulfills Condition (∗)
and leaves U invariant. Let U be the associated R-local system on C = H /Γ. By
Proposition 7.15, we can find a complementary R-local system U′ such that

R1φ∗(R) = U⊕U′ .

This splitting defines a projector Ψ ∈ End(R1φ∗(R)) with image U. We again use
rigidity [PS03, Corollary 12] to show that Ψ is of bidegree (0, 0), i. e. a morphism
of VHS. We apply Lemma 9.4 b) to the fiber over a point c ∈ C corresponding to
X to deduce that Ψc is a morphism of Hodge structures. Hence by rigidity, Ψ is a
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9 Splitting the Hodge Bundle over a Teichmüller curve

morphism of VHS. Let V = R1φ∗(R)⊗ROC and let V1,0 = φ∗ΩX/C be the non-trivial
step of the filtration of the VHS. Its image

Ψ(V1,0) = V1,0 ∩(U⊗ROC) =: U1,0

is a holomorphic subbundle of U = U⊗ROC. To conclude that it defines a VHS on
U we show that the filtration U1,0 ⊂ U induces an R-Hodge structure in each fiber.
To this end, let c ∈ C be arbitrary and consider Ψc : Vc→Vc, the map induced
by Ψ in the fiber. It is a morphism of Hodge structures and induces a filtration
Im(Ψc)∩V1,0

c ⊂ Im(Ψc) which is a (sub-)Hodge structure by [Voi02, Corollary 7.24].
Now Im(Ψc)∩V1,0

c = U1,0
c , so U carries a VHS. We polarize the VHS on U by pulling

back the polarization on R1φ∗(R) via the inclusion U ⊂ R1φ∗(R). �

Theorem 9.7 Let (X,ω) be a Veech surface, and let G6 Aut(X,ω). Consider an
irreducible character χ, occuring in the decomposition (9.1) of Ω1

X(X) for G. Let
Vχ ⊂ Ω1

X(X) be its isotypic component. If

(i) χ is complex-valued, and
(ii) the R[G]-module W ⊂ H1(X,R) associated with Vχ ⊕ Vχ is an isotypic com-

ponent of the decomposition (9.3),

there is a finite index subgroup Γ 6 Aff(X,ω), which acts through unitary matrices
on Vχ ⊕ Vχ.

Proof: Let W be the R-form of Vχ⊕Vχ, which is given by Lemma 9.4. Since W is
an isotypic component, it follows from Proposition 9.5 that there exists a finite-index
subgroup Γ′6 Aff(X,ω) fixing W . Thus it also fixes W ⊗RC = Vχ ⊕ Vχ. Since Vχ
and Vχ belong to different isotypic components of the decomposition of H1(X,C),
again by Proposition 9.5 there is a finite-index subgroup Γ 6 Γ′ fixing both Vχ and
Vχ. In particular, for α, β ∈ Vχ ⊂ Ω1

X(X), and every f ∈ Γ, we have

H((f−1)∗α, (f−1)∗β) =
∫
X

(f−1)∗α ∧ ∗((f−1)∗β) = i
∫
X
f · α ∧ (f−1)∗β

= i
∫
X

(f−1)∗α ∧ (f−1)∗β = i
∫
X
α ∧ β ,

since f is symplectic. So f preserves the Hodge inner product, hence it acts on Vχ
as a subgroup of the unitary group of H, and the same holds for Vχ. �

Theorem 9.7 and Proposition 8.17 together imply
Corollary 9.8 In the situation of Theorem 9.7, the Lyapunov exponents associated
with W are zero.

Question 9.9 Will the assertion of Theorem 9.7 stay true, if we replace (i) by
the condition that the irreducible character associated with W be reducible when
tensoring with C?

72



9.2 Representations

Chevalley-Weil Formula

Let f : X→Y be a Galois covering between compact Riemann surfaces, and let G
be its Galois group. The Chevalley-Weil formula gives precise information about the
number of times that a given irreducible character of G occurs in the decomposition
of Ω1

X(X) into irreducible G-modules.

Let n = |G|, and choose a primitive n-th root of unity ζn. For d | n, let ζd = ζn/dn .

Let B ⊂ Y be the set of branch points of f . For each b ∈ B, the stabilizer
group Ga 6G of a ∈ f−1(b) is a non-trivial cyclic group; if a′ ∈ f−1(b) is another
ramification point, then Ga and Ga′ are conjugate in G. For every b ∈ B, fix the
conjugacy class Cb = [ga] of a generator ga of Ga. (Cb does not depend on the choice
of a ∈ f−1(b).) Moreover let eb = |Ga| be the ramification index at a ∈ f−1(b).

Fix an irreducible representation (ρ, V ) of G with character χ, and a point b ∈ B,
and let a ∈ f−1(b). The restriction ResGGa(V ) to Ga decomposes as a sum of 1-
dimensional characters of Ga. We use the isomorphism

ψ : Hom(Ga,C
×)→Z /(eb) , η 7→ α

where η(ga) = ζαeb . Let Nb,α be the number of times, ψ−1(α) appears in the decom-
position of ResGGa(V ). Nb,α is equal to the number of eigenvalues of ρ(ga) that are
equal to ζαeb , counted with multiplicities. Again for α ∈ Z /(eb) the number Nb,α

only depends on b and the chosen conjugacy class Cb.

One more notation: For q ∈ R, let 〈q〉 = q− [q] ∈ [0, 1) denote its fractional part.

Theorem 9.10 ([Wei35])
Let f : X→Y be a Galois covering between compact Riemann surfaces with Galois
group G, and let B, eb, Nb,α be defined as above. Let χ be an irreducible character of
G of degree dχ. Then the multiplicity of χ in the representation ρ : G→GL(Ω1

X(X)),
g 7→ (g−1)∗ is given by

νχ = dχ(g(Y )− 1) +
∑
b∈B

∑
α∈Z /(eb)

(
Nb,α

〈
−α
eb

〉)
+ σ , (9.4)

where σ = 1, if χ is the trivial representation, and σ = 0 otherwise.

Proposition 9.11 Let S̃t3 be the origami from Proposition 3.2. The Galois cover-
ing π : S̃t3→E induces a decomposition

Ω1
S̃t3

(S̃t3) = V1 ⊕ V5 ⊕ V6 ⊕ V7 ⊕ V8 ⊕ V9 ⊕ V10 ⊕ V11 ⊕ V12 ⊕ V13 ⊕ V14 ⊕ V ⊕2
15

into a direct sum of irreducible C[K3]-modules where K3 is the Galois group of π
and where we number the irreducible representations according to Table A.1.
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9 Splitting the Hodge Bundle over a Teichmüller curve

Proof: We apply the Chevalley-Weil formula to π. To begin with, a generator of
the monodromy about the only branch point ∞ ∈ E is c = (τ 2, τ−2, τ 2) ∈ [τ, τ, τ ].
We have eb = 3. For i = 1, . . . , 15, let ρi be the representation associated with the
irreducible character χi of K3. For α ∈ Z /(3), let N i

b,α = N i
α be the number of

occurencies of ζα3 as eigenvalue of ρi(c). We write it as a vector N i = (N i
0, N

i
1, N

i
2).

• For i = 1, . . . , 4, the degree of χi is 1, and the trace of ρi(c) = 1. Therefore
N i = (1, 0, 0).

• For i = 5, . . . , 10, the degree of χi is 2, and the trace of ρi(c) = −1 = ζ3 + ζ2
3 .

Therefore N i = (0, 1, 1).

• For i = 11, 12, 13, the degree of χi is 4, and the trace of ρi(c) = 1 = 1 + 1 +
ζ3 + ζ2

3 , so N i = (2, 1, 1).

• The degree of χ14 is 4, and trace of ρ14(c) = −2 − 3ζ3 = 1 + 3ζ2
3 . Hence

N14 = (1, 0, 3).

• The degree of χ15 is also 4, and the trace of ρ15(c) = 1 + 3ζ3. Hence N15 =
(1, 3, 0).

Now we can plug these values into (9.4). Noting that the first summand cancels out,
we have

νχi = 2
3N

i
1 + 1

3N
i
2 + σ.

This yields the decomposition of Ω1
S̃t3

(S̃t3)

Ω1
S̃t3

(S̃t3) = V1 ⊕ V5 ⊕ V6 ⊕ V7 ⊕ V8 ⊕ V9 ⊕ V10 ⊕ V11 ⊕ V12 ⊕ V13 ⊕ V14 ⊕ V ⊕2
15 .

Recall that by Proposition 3.2, g(S̃t3) = 37, which fits together with the sum of the
dimensions of the isotypic components of Vi, i = 1, . . . , 15. �

O. Bauer [Bau09, Satz 3.5.1] computed the dimension of the fixed part of the family
of Jacobians over the Teichmüller curve of S̃t3 (see Remark 8.18). Its dimension is
12. One can check, using e. g. Magma and the output of the origami program, that
the fixed part coincides precisely with the sum of the isotypic components of the
two complex representations χ14, χ15. Unfortunately, one cannot apply Theorem
9.7, since the isotypic component in H1(X,R) is the R-form of the sum of the
two isotypic components. It would be interesting to know if one can improve the
proposition, so as to yield some information in this case.
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9.3 Rank 2

The easiest case of a non-trivial symplectic direct summand in the local system of
a family of curves is one of rank 2.

In this section, let (X,ω) denote a fixed Veech surface of area 1. Let

ρ : Aff(X,ω)→ Sp(H1(X,Z)) , f 7→ (f−1)∗

be the representation from Example 6.6. Let Γ 6 Aff(X,ω) be a finite index-
subgroup, chosen as in Condition (∗) of Remark 5.4, so that C = H /Γ is a finite
cover of the Teichmüller curve associated with (X,ω). Let C be its completion, and
let S = C \ C be the finite set of cusps. Moreover, let φ : X→C be the family over
the Teichmüller curve.

By Proposition 7.16, the local system V = R1φ∗(ZX) carries a pVHS

V1,0 = φ∗Ω1
X/C ⊂ V = V⊗ZOC,

with polarization Q. Let us also fix this notation for the rest of the section.

Remark 9.12 Consider the subspace

U1 = span{Reω, Imω} ⊂ H1(X,R).

a) U1 is an Aff(X,ω)-invariant symplectic subspace of dimension 2.
b) The action of f ∈ Aff(X,ω) with D(f) = A is given by the matrix (A−1)T with

respect to the basis {Reω, Imω}.
c) The local system U1 associated with the action of Γ carries a sub-pVHS of

(VR,V1,0, Q).
d) The positive Lyapunov exponent associated with U1 is λ1 = 1.

Proof: a) follows from the equation Reω ∧ Imω = i
2ω ∧ ω in H1(X,C). For part

b), consider the action of f ∈ Aff(X,ω) in a local chart of ω. If D(f) = ( a bc d ), then

(f−1)∗dx = d(dx− by) = ddx− bdy

and similarly (f−1)∗dy = −cdx+ ady, which proves the claim.

c) follows from Proposition 7.28. In the case of origamis, it also follows from Theorem
9.3, applied to the origami map π : O→E.

d) We have to evaluate
lim
t→∞

1
t

log ‖v‖ϕgt
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9 Splitting the Hodge Bundle over a Teichmüller curve

for v ∈ U1. For v = Reω,

‖Reω‖ϕgt = ‖(ϕ−1
gt )∗Reω‖gt·X = e−t‖Re (gt · ω)‖gt·X .

Since ‖Re (gt ·ω)‖gt·X = i
2
∫
X gt ·ω∧gt · ω = 1, it follows that the Lyapunov exponent

associated with Reω is −1. Analogously, one shows that the Lyapunov exponent
for Imω is equal to 1. �

Definition 9.13 The representation (ρ⊗ZR)|U1 is called the trivial subrepresenta-
tion of ρ. We denote by L1 the line bundle obtained as the (1, 0)-part in the Deligne
extension of the vector bundle U1⊗ROC to C.

Proposition 9.14 ([BM10b, Theorem 8.5])
Assume that we are given a Γ-invariant subspace U ⊂ H1(X,R) of dimension 2,
whose associated local system U ⊂ VR carries a sub-pVHS of (VR,V1,0, Q). Let LU

be the (1, 0)-part in the Deligne extension of U⊗ROC to C. Then the non-negative
Lyapunov exponent λU associated with U is given by

λU = deg(LU)
deg(L1)

.

Note that this is a version of M. Kontsevich’s formula for the sum of the Lyapunov
exponents [Kon97].

The Kodaira-Spencer Map revisited

One way to compute the degree of the line bundle LU of Proposition 9.14 is to bring
oneself into the situation, where the Kodaira-Spencer map is an isomorphism.

Remark 9.15 Let again L ⊂ VR be a local system, which carries a sub-pVHS
of (V,V1,0, Q) of rank 2, and let L be the (1, 0)-part in the Deligne extension of
L⊗ROC to C. Let

∇ : L→L⊗−1⊗Ω1
C
(S)

be the Kodaira-Spencer map as introduced in 7.27.

In the situation above, if ∇ is an isomorphism, then

2 deg L = deg(Ω1
C
(S)) = 2g(C)− 2 + |S|.

Proposition 9.16 In the case when

a) φ : X→C is a finite cover of a Teichmüller curve, and L is the sub-local system
associated with U1, or
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b) φ : X→C is a quotient of the universal family of elliptic curves over H by the
action of a torsion-free, finite-index subgroup of SL2(Z), and L = R1φ∗(ZX),

the Kodaira-Spencer map ∇ is an isomorphism.

Proof: a) is shown in [Möl06, Lemma 3.1]. b) follows from a), since C is a fi-
nite cover of the Teichmüller curve associated with (E, dz) (which is identical with
T1,1 /Γ1,1). �

Proposition 9.17 Assume that we are given a subrepresentation of ρ of rank 2

ρ
|Γ
|U = ρU : Γ→ Sp(U),

i. e. U is a Γ-invariant rank-2 submodule of H1(X,Z). Assume further that the local
system U associated with U carries a sub-pVHS of (V,V1,0, Q).

If Im(ρU) 6 Sp(U)∼= SL2(Z) is of finite index, then the non-negative Lyapunov ex-
ponent of ρU satisfies

λU = deg(p) deg(LρU )
deg(L1)

,

where p : C→ Im(ρU)\H is the period map, and LρU is the (1, 0)-part in the Deligne
extension of the canonical VHS on Im(ρU)\H to Im(ρU)\H.

Before beginning the proof, we introduce some terminology. Let Γ be a torsion-free
Fuchsian group. Call a map f : Γ×H→C× a factor of automorphy if it satisfies

f(γδ, τ) = f(γ, δ · τ)f(δ, τ)

for all γ, δ ∈ Γ and τ ∈ H and if f(γ, ·) is holomorphic for every γ ∈ Γ. Here, Γ
acts by Möbius transformations on H. Under pointwise multiplication, the factors
of automorphy form a group Z1(Γ, H0(H,O×)). The subgroup B1(Γ, H0(H,O×)) of
elements of the form

(γ, τ) 7→ h(γ · τ)h(τ)−1

for holomorphic h : H→C× is called the group of boundaries, and the quotient is
denoted by H1(Γ, H0(H,O×)). It can be identified with the first cohomology group
of Γ with values in H0(H,O×). There is a functorial isomorphism between the group
H1(H /Γ,O×) of isomorphism classes of line bundles on H /Γ and H1(Γ, H0(H,O×))
(see e. g. [BL04, Appendix B]).

Proof: To begin with, let u : H→H /Γ and ũ : H→ ρU(Γ)\H be the canonical
maps. Let U1,0 ⊂ U⊗OC be the sub-pVHS on U, and let E be the universal line
bundle on the period domain H. It can be described as the sheaf of holomorphic
sections for VE→H, where

VE =
{
(τ, v) ∈ H×C2 | v ∈ C ·(τ, 1)T

}
.
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9 Splitting the Hodge Bundle over a Teichmüller curve

The period map p̃ : H→H between the universal cover of C and the period domain
was constructed to satisfy p̃∗ E∼= u∗U1,0. p is the holomorphic map induced by p̃,
and we have a commutative diagram

H
p̃

- H

H /Γ

u
?

p
- ρU(Γ)\H

ũ
?

By Remark 7.10, an element γ′ = ( A B
C D ) ∈ ρ(Γ) acts on H by its Möbius transfor-

mation action, and this action is induced by the action on VE given by
(τ ′, λ(τ ′, 1)T ) 7→ (γ′ · τ ′, λ(Cτ ′ +D)(γ′ · τ ′, 1)T ),

where λ ∈ C. Let E be the sheaf of sections of the quotient
ρU(Γ)\VE→ ρU(Γ)\H .

The line bundle LρU is the extension of E to the completion. If we can show that
p∗E∼= U1,0,

then the claim is proved. Since the isomorphism
H1(H /Γ,O×)→H1(Γ, H0(H,O×))

is functorial, we can instead prove that the group homomorphism
H1(ρ(Γ), H0(H,O×))→H1(Γ, H0(H,O×)), f 7→ f ◦ (ρ× p)

maps a factor of automorphy for E to a factor of automorphy for U1,0. By the above
discussion, a factor of automorphy corresponding to E is given by

(γ′, τ ′) 7→ fE(γ′, τ ′) = (Cτ ′ +D).
A trivialization of u∗U⊗C is given by the sheaf of locally constant sections of

(H×U→H)∼=(H×C2→H).
In this trivialization, the subbundle u∗U1,0 can be described as the sheaf of holo-
morphic sections of VU→H where

VU =
{
(τ, v) ∈ H×C2 | v ∈ C ·(p(τ), 1)T

}
.

By Lemma 7.19 and its proof, γ ∈ Γ acts on VU by
(τ, λ(p(τ), 1)) 7→ (γ · τ, λ · (Cp(τ) +D) · (p(γ · τ), 1)),

where ρ(γ) = ( A B
C D ). Therefore, a factor of automorphy for U1,0 is given by

(γ, τ) 7→ Cp(τ) +D = fE ◦ (ρ× p)(γ, τ).
This completes the proof. �
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Going-up

In our computations, it is often impracticable to choose a subgroup Γ of Aff(X,ω)
fulfilling Condition (∗), as the index tends to be very large. To remedy this problem,
we show that it suffices to carry out the computations for a finite index subgroup
∆ of Aff(X,ω), where a splitting of ρ is found.

Let ∆ be a subgroup of Aff(X,ω), and let σ : ∆→ Sp(U) = ρ
|∆
|U be a symplec-

tic subrepresentation of ρ of rank 2 such that σ(∆) is a finite index subgroup of
Sp(U)∼= SL2(Z). Assume again that the local system U associated with U carries a
sub-pVHS of (V,V1,0, Q). W. l. o. g. we may assume Γ 6 ∆. Let

p̃ : H→H

denote the period mapping associated with the pVHS on U. By Lemma 7.19, p̃
induces holomorphic maps

p : H /Γ→σ(Γ)\H and q : H /∆→σ(∆)\H .

By our assumptions

D∆ = σ(∆)\H and DΓ = σ(Γ)\H

are Riemann surfaces of finite type. Let D∆ and DΓ be their completions and
S∆ = D∆ \D∆ respectively SΓ = DΓ \DΓ the set of cusps. Then we deduce from
Proposition 9.17 that

Theorem 9.18 In the situation above, the non-negative Lyapunov exponent asso-
ciated with σ is

λU = deg(q) vol(σ(∆)\H)
vol(H /∆)

Proof: By Proposition 9.17, and with the notations used there

λU = deg(p) deg(Lσ)
deg(L1)

.

The Kodaira-Spencer map ∇σ for the VHS on σ(Γ)\H is an isomorphism by Propo-
sition 9.16 b). It follows that

2 deg(Lσ
W ) = 2g(DΓ)− 2 + |SΓ|.

By Proposition 9.16 a), we also have

2 deg(L1) = 2g(C)− 2 + |S|,
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9 Splitting the Hodge Bundle over a Teichmüller curve

where S is the set of cusps of C. By Gauß-Bonnet,

vol(σ(Γ)\H) = 2π(2g(DΓ)− 2 + |SΓ|),

and
vol(H /Γ) = 2π(2g(C)− 2 + |S|).

Therefore,
λU = deg(p) vol(σ(Γ)\H)

vol(H /Γ) .

We have a commutative diagram

H /Γ
p
- σ(Γ)\H

H /∆
?

q
- σ(∆)\H

?

where the vertical arrows are induced by the two inclusions Γ 6 ∆ and σ(Γ) 6σ(∆).
This yields

λU = deg(p)(σ(∆) : σ(Γ)) vol(σ(∆)\H)
(∆ : Γ) vol(H /∆)

= deg(q) vol(σ(∆)\H)
vol(H /∆) ,

which completes the proof. �

Properties of Period Mappings in Rank 2

In order to be able to compute the Lyapunov exponents for the examples below,
we recall some general results on Fuchsian groups and in particular finite-index
subgroups of SL2(Z).

First, let Γ 6 PSL2(R) be a Fuchsian group of finite covolume. Then there is a
bĳection between orbifold points in Γ\H and the conjugacy classes of non-trivial
maximal finite cyclic subgroups of Γ and there is a bĳection between the (finitely
many) cusps of Γ\H and the conjugacy classes of maximal parabolic subgroups of
Γ (i. e. subgroups, where all elements are parabolic) (see [Kat92]).

If we specialise to Γ 6 SL2(Z) of finite index, then we can assign to each parabolic
element A a width w(A) ∈ N, which is defined as the integer t, such that A is
conjugate to ± ( 1 ±t

0 1 ). The width w(c) of a cusp c is the width of a generator of the
stabilizer of c, which is the same as the ramification index above i∞ ∈ SL2(Z)\H.
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9.3 Rank 2

The next proposition will later be used to compute the ramification indices and the
degree of period mappings in rank 2 that are defined over the integers. To formulate
it, consider the following setup. Let Γ, ∆ be lattices in SL2(R) and let ρ : Γ→∆ be
a group homomorphism. Let p̃ : H→H be a ρ-equivariant holomorphic map, i. e.

p̃(γ · z) = ρ(γ) · p̃(z)

for all γ ∈ Γ and all z ∈ H. Let p : Γ\H→∆\H be the map induced by p̃, and let
p : Γ\H→∆\H be its extension to the completions of Γ\H, respectively ∆\H.

Proposition 9.19 In the above situation, assume in addition that Γ, ∆ 6 SL2(Z)
are two subgroups of finite index.

a) Let γ be a generator of the stabilizer of a cusp s of Γ, and assume that ρ(γ) is
parabolic. Let t be its fixed point and let δ be a generator of the stabilizer of t in
∆. Then p(Γ · s) = ∆ · t, and the ramification index of p at Γ · s is given by

eΓ·s(p) = w(ρ(γ))
w(δ) .

b) The degree of p is given by deg(p) = ∑
c∈p−1(c′) ec(p) for any cusp c′ of ∆\H.

Proof: a) The first assertion is shown in Lemma 9.20. From Lemma 9.22, it
follows that eΓ·s(p) = (〈δ〉 : 〈ρ(γ)〉). W. l. o. g. write δ = (z 7→ z + u). Then
ρ(γ) = (z 7→ z+ v) with u | v, and (〈δ〉 : 〈ρ(γ)〉) = |v/u| = w(ρ(γ))/w(δ). b) can be
found in any textbook on compact Riemann surfaces, e. g. [For81, Theorem 4.24].�

Lemma 9.20 Let A be a parabolic element in Γ such that B = ρ(A) ∈ ∆ is also
parabolic. Let s ∈ R∪{∞} denote the fixed point of A, and let t ∈ R∪{∞} denote
the fixed point of B. Then

∆ · t = p(Γ · s).

Proof: Without loss of generality, we may assume s = t = ∞. If not choose α,
β ∈ PSL2(R) such that αAα−1 and βBβ−1 fix ∞. Then β ◦ p̃ ◦ α−1 : H→H is
ρ1 : αΓα−1→ β∆β−1-equivariant. In particular, we can assume A = (z 7→ z + a)
and B = (z 7→ z + b) for a, b ∈ R \{0}. For R > 0 let

UR =
{
z ∈ H | Im (z) > R

}
.

Γ·UR respectively ∆·UR are the elements of a neighborhood basis for Γ·s respectively
∆ · t. Assume ∆ · t 6= p(Γ · s). Then we can choose disjoint open neighborhoods
of both points since ∆\H is Hausdorff. As p is open, the image of a neighborhood
basis for Γ · s is a neighborhood basis for p(Γ · s). Thus we can find R1, R2 > 0 such
that

p(Γ · UR1) ∩∆ · UR2 = ∅.
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9 Splitting the Hodge Bundle over a Teichmüller curve

On the other hand the Schwarz lemma implies that p̃ does not increase hyperbolic
distances, so for every z ∈ H

dH(z, A(z)) = dH(z, z + a) ≥ dH(f(z), B(f(z))) = dH(f(z), f(z) + b).

Since dH(z, z + a)→ 0 if and only if Im (z)→∞, it follows that for every R′ > 0
there is R′′ > 0 such that p̃(UR′) ⊆ UR′′ , and that R′′→∞, if R′→∞. Let τ ∈ UR1 .
By increasing R1 if necessary, we can achieve p̃(τ) ∈ UR2 . But then

p(Γ · τ) = ∆ · p̃(τ) ∈ p(Γ · UR1) ∩∆ · UR2

contradicting disjointness. �

Lemma 9.21 Let D∗ = D \{0} be the punctured unit disk in C, and let f : D∗→D∗,
z 7→ zk (with k ∈ N). Let u : H→D∗, z 7→ exp(2πiz) be a universal cover and let
γ : H→H, z 7→ z + 1. Then f lifts to f̃ : H→H and f̃(γ · z) = γk · f̃(z).

Proof: From u ◦ f̃ = f ◦ u, we deduce f̃ = kz + m, for some m ∈ Z. Then
f̃(γ · z) = k(z + 1) +m = f̃(z) + k = γk · f̃(z). �

Lemma 9.22 Let γ be a generator of a maximal parabolic subgroup in Γ with fixed
point s. Assume that ρ(γ) is also parabolic with fixed point t, and let δ ∈ ∆ be a
generator of the stabilizer of t. Then p(Γ · s) = ∆ · t, and

eΓ·s(p) = (〈δ〉 : 〈ρ(γ)〉).

Proof: Again, we can assume s = t = ∞, and γ : z 7→ z ± 1, δ : z 7→ z ± 1.
Let UR be defined as in the proof of Lemma 9.20. For large R, two points in UR
are identified by Γ, if and only if they are identified by an element in 〈γ〉. So the
map 〈γ〉\UR→Γ\H is injective, and the same holds for the map 〈δ〉\UR→∆\H.
There exist charts about Γ · s in Γ\H and ∆ · t in ∆\H such that p, expressed
in these charts, is of the form z 7→ zk, where k = eΓ·s(p) ∈ N is the ramification
index. Choose R large enough to assert p̃(UR) ⊂ UR. Then we have a commutative
diagram

〈γ〉\UR - D∗

〈δ〉\UR

p
?

- D∗
z 7→ zk

?

and UR, which is biholomorphic to H, is a universal cover of D∗ and p̃|UR is a lift of
z 7→ zk. Because of the uniqueness of lifts and the universal cover, we are reduced
to the situation of Lemma 9.21. γ and δ are mapped to generators of Deck(UR/D∗)
via the isomorphism of UR with H, and ρ(γ) becomes δk. Hence (〈δ〉 : 〈ρ(γ)〉) = k.�
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9.4 Examples

9.4 Examples

In this section we carry out the computation of a splitting of the monodromy action
and of the Lyapunov exponents for some examples. Our computations depend on
the fact that we are able to fully decompose the monodromy action into pieces of
rank 2.

The three examples that we discuss are origamis, which are derived from S̃t3 in the
sense that they correspond to subgroups of the Galois group. They are connected
by covering maps, coming from inclusions of the respective subgroups, as shown in
Figure 9.9.

In this section, contrary to our convention and as a courtesy to at least one of my
advisors, the composition αβ of paths in the fundamental group of an origami is the
path obtained by first running through α and then running through β.

To setup the notations, we first fix generators of SL2(Z)

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

For N ∈ N, let Γ(N) 6 SL2(Z) be the kernel of the group homomorphism

SL2(Z)→ SL2(Z /(N))

induced by reduction mod N of the entries of the matrices. Recall that

Γ(2) =
〈
A1 =

(
1 2
0 1

)
, A2 =

(
1 0
2 1

)
, −I2

〉
.

We also fix this generating set.

The Origami L2,2

L2,2, which is the same as St3, is the simplest origami, which is not of genus 1. Its
SL2(Z)-orbit is given in Figure 9.1. It has yet been served as a toy model for many
authors (see [Sch05a], [Kre10], [HL06]). The equation for its family of curves has
been given by M. Möller [Möl05b, Proposition 4.1].

Its Veech group is

ΓΘ =
〈
T 2 =

(
1 2
0 1

)
, S =

(
0 −1
1 0

)
, TSTS−1T−1 =

(
0 1
−1 2

)〉
,
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Figure 9.1: The origamis L2,2, T · L2,2, and S−1T−1 · L2,2 (from left to right).
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Figure 9.2: The graph of the origami L2,2 with π1-basis

which is an index 3-subgroup of SL2(Z) with right cosets ΓΘ,ΓΘ · T , and ΓΘ · (TS).
In particular, the origami curve of L2,2 has genus 0 and 2 cusps, one of width 2,
stabilized by T 2 and one of width 1, stabilized by TSTS−1T−1 (see [Kre10, Example
2.6]). Note that the two cusps of ΓΘ have different images in the moduli space as
can be seen from their stable graphs. As one quickly checks, there are no non-trivial
translations, so we have Aff(L2,2)∼= Γ(L2,2).

As L2,2 is in the stratum ΩM2(2), we know from Proposition 8.15 that its non-trivial
Lyapunov exponent is 1

3 . Moreover, the representation ρ : Aff(L2,2)→H1(L2,2,Q)
decomposes into two symplectic subrepresentations (ρi, Vi)i=1,2. We let (ρ1, V1) de-
note the trivial subrepresentation.

Example 9.23 We illustrate how to compute the action of Aff(L2,2) on the first
homology (respectively first cohomology) of L2,2. Let π : L2,2→E be the origami
cover, and let L2,2

∗ = L2,2 \π−1(∞). Then L2,2
∗ is homotopy equivalent to the

4-valent graph G(L2,2) (see Remark 2.11). If we choose a maximal spanning tree
of G(L2,2), then by Seifert-Van Kampen the set of non-tree edges is in bĳection
with a free generating set of π1(G(L2,2), ∗1) (where ∗1 is the center of the square
labeled by 1). Fix the set of non-tree edges {ti}4i=1 indicated in Figure 9.2. To apply
affine homeomorphisms to L2,2, it will be convenient to look at the image H(L2,2) of
π1(L2,2

∗, ∗1)∼= π1(G(L2,2), ∗1) inside π1(E∗, e) = 〈x, y〉. Here E∗ = E \ {∞}, e ∈ E
is the center of the square, and x (respectively y) is the horizontal (vertical) loop
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on E∗. We have

t1 7→ y t2 7→ x2

t3 7→ xyxy−1x−1 t4 7→ xy2x−1

Then π1(L2,2, ∗1)∼=H(L2,2) = 〈y, x2, xyxy−1x−1, xy2x−1〉. We choose lifts of the
generators of ΓΘ to Aut+(F (x, y)) that stabilize H(L2,2):

ϕT 2(x, y) = (x, x2y)
ϕS(x, y) = (x−1yx, (x−1y)x−1(x−1y)−1)

ϕTSTS−1T−1(x, y) = (xyxy−1x−1y−1x−1, xyxyx−1).

We carry out the following steps only for T 2. Applying ϕT 2 to H(L2,2) transforms
the generators of H(L2,2) into

x2y , x2 , x3yxy−1x−3 , and x3yx2yx−1.

By going back from H(L2,2) to π1(G(L2,2), ∗1), we find that T 2 acts on the generators
{ti}4i=1 by

t1 7→ t2t1 t2 7→ t2

t3 7→ t2t3t
−1
2 t4 7→ t2t

2
3t4

After projecting to H1(L2,2
∗,Z), we obtain a basis {ti}4i=1, and the action of T 2 on

H1(L2,2
∗,Z) with respect to this basis is given by

ÃT 2 =


1 0 0 0
1 1 0 1
0 0 1 2
0 0 0 1

 .

In the same way, we obtain the actions of the remaining generators

ÃS =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , ÃTSTS−1T−1 =


0 0 −1 2
0 0 0 1
1 0 0 0
1 −1 0 1

 .

We modify our basis in order to obtain a symplectic basis by using surface normal-
ization as described in [Sti80, Section 1.3]. Let

s1 = t1 , s2 = t−1
1 t−1

2 t1 , s3 = t−1
1 t3t1 , s4 = t−1

1 t4.
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9 Splitting the Hodge Bundle over a Teichmüller curve

Then {si}4i=1 is another basis of π1(G(L2,2), ∗1), and its projection to H1(L2,2
∗,Z) is

a symplectic basis for the intersection form i of Example 4.2. The matrix of i with
respect to {si}4i=1 is given by

Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

Note that {si}4i=1 is already a basis for H1(L2,2,Z), while in strata with more zeros,
we obtain a symplectic basis of the absolute homology of the closed surface, extended
by loops about the zeros. After base change, we end up with symplectic matrices

AT 2 =


1 0 0 0
−1 1 0 0
0 0 1 2
0 0 0 1

 , AS =


0 −1 1 0
0 0 0 1
−1 0 0 1
0 −1 0 0

 ,

ATSTS−1T−1 =


1 1 −1 2
0 0 0 −1
1 0 0 −1
1 1 0 0

 ,
which represent the action of Aff(L2,2) on H1(L2,2,Z). The dual action of Aff(L2,2)
on H1(L2,2,Z) with respect to the dual basis {s∗i }4i=1 is therefore given by conjugat-
ing1 the above matrices by Ω:

ΩAT 2Ω−1 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

 , ΩASΩ−1 =


0 0 1 0
1 0 0 1
−1 0 0 0
0 −1 −1 0

 ,

ΩATSTS−1T−1Ω−1 =


0 0 −1 0
−1 1 −2 −1
1 −1 0 0
0 1 1 0

 .
Note that we can read off the subspace corresponding to the trivial representation.
Consider the space in homology spanned by h and v, where h is the sum of all
horizontal cycles, and v is the sum of all vertical cycles. Then the corresponding
space in cohomology is the image of 〈h, v〉 under the isomorphism

H1(L2,2,Z)→H1(L2,2,Z) , a 7→ i(·, a).
1Note that ΩAΩ−1 = (A−1)T for symplectic matrices.
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In our example, we have h = t3 + t2 and v = t1 + t4, which after base change to
{si}4i=1 have the coordinate vectors (0,−1, 1, 0)T and (2, 0, 0, 1)T . Therefore,

V1 = span{−s∗1 − s∗4,−2s∗2 + s∗3} ⊂ H1(L2,2,Z)

is the trivial subrepresentation of ρ : Aff(L2,2)→ Sp(H1(L2,2,Z)), i. e.

V1⊗ZR = span{Reω, Imω},

where ω is differential defining the translation structure.

Remark 9.24 With respect to an appropriate basis,

w1 = s∗1 − 2s∗4 , w2 = s∗2 + s∗3

of V2 = V ⊥1 , the action of the generators of ΓΘ under the non-trivial representation
ρ2 : ΓΘ→ Sp(V2)∼= SL2(Z) is given by

ρ2(T 2) =
(

1 1
0 1

)
, ρ2(S) =

(
0 1
−1 0

)
, ρ2(TSTS−1T−1) =

(
0 −1
1 −1

)

The Origami M

Next we consider the origami M given as in Figure 9.3, or equivalently by the two
permutations

σx = (1, 4, 7)(2, 3, 5, 6, 8, 9) and σy = (1, 6, 8, 7, 3, 2)(4, 9, 5).

The SL2(Z)-orbit of M contains two more origamis T ·M and S−1T−1 ·M. They
are depicted in Figures 9.4 and 9.5. Each of these 3 origamis is a 3-fold cover of
precisely two origamis in SL2(Z) · L2,2 (see also Figure 9.9). For M, these covering
maps can be constructed from the action of σx and σy on the partitions

({1, 4, 7}, {2, 5, 8}, {3, 6, 9}) , ({1, 3, 8}, {2, 6, 7}, {4, 5, 9}).

The first partition corresponds to T · L2,2 with the squares 1, 4, 7 being sent to 1,
the squares 2, 5, 8 being sent to 2 and the squares 3, 6, 9 being sent to 3, the second
corresponds to S−1T−1 · L2,2 in an analogous way.

We collect some facts about M. From Figure 9.3, we see that it belongs to the
stratum ΩM4(23). Moreover, it is in the “odd” connected component.

Its only non-trivial automorphism is a hyperelliptic involution. It takes the square
i, rotates it by π, and maps it to the square σ(i), where

σ = (1, 7)(2, 3)(4)(5, 9)(6, 8).
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Figure 9.3: The origami M
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Figure 9.4: The origami T ·M

One can compute its Veech group using [Sch04], and one finds that Γ(M) = ΓΘ.
As before there are two cusps; for the convenience of the reader, we describe the
combinatorics of the stable curves in Im(j(M)) ∩ ∂M4. One, obtained e. g. by
contracting the waist curves of horizontal cylinders of M, is a stable curve of genus
2 consisting of one irreducible component with 2 nodes. The other one, obtained
e. g. by contracting the waist curves of horizontal cylinders in S−1T−1 ·M, consists
of two irreducible components of genus 0 intersecting in two points. One of the
components has two self-intersections, the other one has one.

In the following, we describe a splitting of the monodromy action of M. Let Γ be a
finite-index subgroup of Aff(X,ω) fulfilling Condition (∗), and let φ : X→H /Γ be
the family over the origami curve. Let (V,V1,0, Q) be the pVHS on H /Γ induced
by φ.

Theorem 9.25 The monodromy representation ρ : Aff(M)→H1(M,Z) restricted
to Γ(2) splits over Q into four symplectic subrepresentation (ρi⊗Q, Vi⊗Q)4

i=1. On
the finite cover H /Γ of the origami curve C(M), each of the associated local systems
carries a sub-pVHS whose period mappings are denoted by pi. Besides the trivial
representation (ρ1, V1) there are

• two representations (ρi, Vi), with ρi = ρ
|Γ(2)
|Vi , i = 2, 3, which are pullbacks of

the non-trivial representations of T · L2,2 and S−1T−1 · L2,2. They satisfy

Im (ρi) = Sp(Vi)∼= SL2(Z) and deg(pi) = 2,
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Figure 9.5: The origami S−1T−1 ·M
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Figure 9.6: The graph of the origami M with π1-basis

• one representation (ρ4, V4) with ρ4 = ρ|V4 that splits off over ΓΘ. It satisfies

Sp(V4)∼= SL2(Z) and deg(p4) = 1.

Proof: The computation proceeds as in Example 9.23. We indicate which choices
we have made. First, a basis {ti}10i=1 of π1(G(M)) is shown in Figure 9.6. We find
again a symplectic basis for H1(M,Z) by surface normalization. Let {ti}10

i=1 be the
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9 Splitting the Hodge Bundle over a Teichmüller curve

projection of {ti}10i=1 to H1(M,Z), and let

B = (bij)i,j=1,...,10 =



0 0 0 0 0 0 0 1 0 0
1 −1 0 −1 1 0 1 1 1 1
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 −1 −1 1 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
1 0 −1 −1 0 1 0 0 0 −1
0 0 −1 0 −1 1 0 0 −1 −1
0 0 1 0 0 −1 0 0 0 0



.

Its inverse is

B−1 =



0 0 0 −1 0 −1 −1 1 −1 0
1 −1 −1 0 1 0 0 1 −1 0
0 0 0 −1 0 −1 0 1 −1 0
0 0 0 −1 −1 −1 −1 0 −1 −1
0 0 0 −1 −1 0 0 0 −1 −1
0 0 0 −1 0 −1 0 1 −1 −1
0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0



.

We define a new basis {si}10i=1 by sj = ∑10
i=1 bijti. Note that the last two columns of B

express loops around the punctures and will be neglected when closing the surface,
i. e. when working with M: s9 is a positive loop about •, and s10 is a negative loop
about ×. The remaining set {si}8i=1 is a symplectic basis for the intersection form
i. More precisely, the matrix Ω of i with respect to {si}8i=1 has four 2× 2-blocks of
( 0 1
−1 0 ) on the diagonal and zeros elsewhere. The action of Aff(M) on H1(M,Z) in

terms of generators with respect to the basis {si}8i=1 is given by

AT 2 =



1 1 −2 1 −1 2 0 0
1 0 −1 0 −1 1 −2 0
1 1 −1 1 −1 1 0 0
0 2 −3 2 −1 3 2 −1
1 1 −3 1 −1 3 1 −1
1 1 −1 1 −1 1 1 0
1 0 −1 0 0 0 0 0
−1 0 1 −1 1 0 0 0


,
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AS =



−1 0 2 0 1 −2 0 0
−2 1 2 1 1 −2 1 1
−1 0 2 0 1 −2 0 1
2 −2 0 −2 1 0 −1 −1
2 −2 0 −2 1 0 0 0
1 −1 1 −1 1 −1 0 1
−1 0 1 1 −1 0 0 0
1 0 −1 0 0 0 0 0


,

A(TS)T (TS)−1 =



1 1 −3 0 0 2 0 0
−1 1 −1 −1 2 1 0 0
−1 1 −1 0 1 1 0 0
1 2 −4 3 −4 3 0 0
−1 2 −1 3 −3 1 0 0
−2 2 −1 2 −1 1 0 0
0 0 0 0 0 0 2 1
0 0 0 0 0 0 −1 0


.

The corresponding matrices for the action ρ : Aff(M)→ Sp(H1(M,Z)) are again
obtained by conjugation with the intersection matrix Ω:

ΩAT 2Ω−1 =



0 −1 0 1 1 1 0 2
−1 1 −1 −2 −2 −1 0 0
2 0 2 3 3 1 −1 −2
−1 1 −1 −1 −1 −1 0 0
1 −1 1 1 1 1 0 −1
−1 1 −1 −3 −3 −1 1 1
0 1 −1 −1 0 −1 0 0
0 1 0 −1 0 0 0 0


,

ΩASΩ−1 =



1 2 1 −2 −2 −1 1 −1
0 −1 0 2 2 1 0 0
−2 −2 −2 0 0 −1 −1 1
0 −1 0 2 2 1 −1 0
−1 −1 −1 −1 −1 −1 1 0
2 2 2 0 0 1 0 0
0 −1 0 1 0 0 0 0
0 −1 −1 1 0 −1 0 0


,
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ΩATSTS−1T−1Ω−1 =



1 1 −1 1 1 −2 0 0
−1 1 0 −3 −2 0 0 0
2 −1 3 4 3 4 0 0
−1 −1 0 −1 −1 1 0 0
2 2 2 1 1 1 0 0
−2 −1 −3 −1 −1 −3 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 2


.

To find the trivial representation, consider the cycles

h = t1 + t2 + t4 + t5 + t6 + t8 + t9 and v = t3 + t7 + t10.

As in the previous example, we represent them in the basis {si}8i=1,

h = −2s1 + s2 − 2s3 − 4s4 − 3s5 − 2s6 + s8

and
v = −s1 − s2 − 2s4 − s5 − s6 − s7.

and map them to H1(M,Z) (with the isomorphism induced by i) to obtain

v1
1 = s∗1 + 2s∗2 − 4s∗3 + 2s∗4 − 2s∗5 + 3s∗6 + s∗7

and
v1

2 = −s∗1 + s∗2 − 2s∗3 − s∗5 + s∗6 + s∗8.

It follows that v1
1 and v1

2 span the trivial representation V1.

Next, consider the inclusions

ϕ∗ : H1(T · L2,2,Z)→H1(M,Z)

and
$∗ : H1(S−1T−1 · L2,2,Z)→H1(M,Z)

given by the coverings ϕ : M→T · L2,2, and $ : M→S−1T−1 · L2,2. We choose
again bases of H1(T ·L22,Z) and H1(S−1T−1 ·L2,2,Z); they are indicated in Figure
9.7. The matrices of ϕ∗ and $∗ with respect to the t-bases (upstairs and downstairs)
are

Cϕ∗ =


1 −2 −1 3 1 1 1 −2 1 0
1 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 1

 ,

and

C$∗ =


0 0 1 0 −1 2 2 −1 0 0
−2 1 2 0 0 0 1 0 1 0
0 0 0 1 1 0 0 0 1 0
0 1 0 0 −1 0 0 −1 1 3

 .
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Now, we change the basis upstairs to {si}10
i=1, and obtain matrices w. r. t. the dual

bases for the maps on cohomology (of the punctured surfaces) ϕ∗ and $∗,

(Cϕ∗ ·B)T =



−4 1 2 −1
2 0 −1 0
1 −1 −2 2
3 −1 −2 0
−2 0 1 0
−1 1 1 −1
−1 0 1 −1
−1 1 1 0
0 0 0 0
0 0 0 0


and

(C$∗ ·B)T =



−1 0 0 0
0 −1 0 −1
1 0 −1 3
−1 −1 0 0
2 0 −1 0
−1 1 1 −3
−1 −1 0 1
0 −1 0 1
0 0 0 0
0 0 0 0



.

Let Vϕ∗ = Im(ϕ∗) in H1(M,Z), and let V$∗ = Im($∗) in H1(M,Z). Since both
maps figure in factorizations of the origami map π : M→E, both Vϕ∗ and V$∗ will
contain V1, so we set

V2 = (Vϕ∗) ∩ V ⊥1 ,
and analogously

V3 = (V$∗) ∩ V ⊥1 .
We refrain from presenting the calculations, and merely give bases for V2 and V3.

Let v2
1 and v2

2 have the coordinate vectors

(1,−1,−1,−1, 1, 0, 1, 0)T , and (5,−2− 2,−4, 2, 2, 1, 2)T

with respect to {s∗i }8i=1. They span the 2-dimensional symplectic subspace V2; if
a1, . . . , a4 are the vectors corresponding to the columns of (Cϕ∗ ·B)T , then v2

1 = a3−a2
and v2

2 = a2 − a1.

Let v3
1 and v3

2 have the coordinate vectors

(1,−1, 2, 1,−2,−2, 2, 1)T , and (−1, 1, 1, 0, 2,−2, 0, 1)T
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with respect to {s∗i }8i=1. They span the 2-dimensional symplectic subspace V3; if
a′1, . . . , a

′
4 are the vectors corresponding to the columns of (C$∗ · B)T , then v3

1 =
a′4 − a′1 and v3

2 = a′1 − a′2.

The spaces V2 and V3 are invariant for the action of the subgroup Γ(2) 6 ΓΘ. In
fact, one can show that only their sum is invariant under ΓΘ, for one has e. g.

ρ(S)(v2
1) = v3

2 and ρ(S)(v2
2) = −v3

1 − v3
2.

With respect to the above chosen basis of V2, the generators of Γ(2) act as

Aρ|V2 (A1) =
(

1 1
0 1

)
= T , Aρ|V2 (A2) =

(
0 −1
1 −1

)
= ST−1 , (9.5)

and −I acts as −I. We set ρ2 = ρ
|Γ(2)
|V2

. In particular we see that

Im(ρ2) = Sp(V2)∼= SL2(Z). (9.6)

Similarly, with respect to the above chosen basis of V3, the generators of Γ(2) act as

Aρ|V3 (A1) =
(

1 0
1 1

)
= ST−1S−1 , Aρ|V3 (A2) =

(
−1 1
−1 0

)
= −TS , (9.7)

and −I acts as −I. We set ρ3 = ρ
|Γ(2)
|V3

. We also see (maybe after conjugation with
S−1) that

Im(ρ3) = Sp(V3)∼= SL2(Z). (9.8)

Now let us justify why the splitting of the representation, respectively of the local
system carries over to the pVHS. By Proposition 7.15, it follows that if we find a
sub-pVHS of the pVHS (V,V1,0, Q) coming from the family over the origami curve,
then the Q-complementary sub-local system of V also carries a sub-pVHS. From
Theorem 9.3, we get sub-pVHS on the local systems associated with V1, with Vϕ
and with V$. Thus we also get sub-pVHS on V2 and V3, and on the symplectic
complement of the sum V1 + V2 + V3.

Therefore, we dispose of period mappings p2 and p3 associated with V2 and V3. The
computation of their degrees proceeds as follows. First, Γ(2) has 3 cusps, whose
associated parabolics are e. g.

A1 =
(

1 2
0 1

)
, A2 =

(
1 0
2 1

)
, A3 = −A1A

−1
2 =

(
3 −2
2 −1

)
.
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To derive the behavior of the period mapping p2 at the cusps, look at the images of
A1, A2, A3. The first two are given in (9.5), and

Aρ|V2 (A3) = −Aρ|V2 (A1)A
−1
ρ|V2 (A2) =

(
2 −1
1 0

)
= (ST−1)T−1(ST−1).

Therefore, by Proposition 9.19, p2 is an unramified 2-to-1 map above the (sole) cusp
associated with i∞. Hence, deg(p2) = 2.

Similarly,

Aρ|V3 (A3) =
(

0 1
−1 2

)
= −ST−2 = (ST−1)−1T (ST−1).

This and (9.7) together with Proposition 9.19 imply that p3 is an unramified 2-to-1
map above the cusp associated with i∞.

When we take the symplectic complement of V1 + V2 + V3, we obtain a fourth
symplectic subspace V4. Again, we do not carry out the computations, and merely
write down a basis for V4. Let v4

1, respectively v4
2 have the coordinate vectors

(−3, 0, 3, 1, 0,−1, 2, 2)T and (1,−1,−1, 1,−2, 1,−1, 1)T

w. r. t. the basis {s∗i }8i=1, and let V4 = span{v4
1, v

4
1}.

V4 is a ΓΘ-invariant subspace; the action of the generators w. r. t. the chosen basis
is given by

Aρ|V4 (T 2) =
(
−1 −1
1 0

)
= T−1S , Aρ|V4 (S) =

(
0 1
−1 0

)
= S−1 ,

Aρ|V4 (TSTS−1T−1) =
(

1 1
0 1

)
= T.

(9.9)

We set ρ4 = ρ|V4 . In particular, by (9.9)

Im(ρ4) = Sp(V4)∼= SL2(Z). (9.10)

Next, consider the period mapping p4 associated with ρ4. It follows from (9.9) and
Proposition 9.19 that p4 is an unramified 1-to-1 map above the sole cusp associated
with i∞. Therefore, p4 is an isomorphism.

Putting it all together, one can also show that

(V1⊗Q)⊕ · · · ⊕ (V4⊗Q) = H1(M,Q),

so that we have a complete decomposition over Q as claimed. �
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Figure 9.7: The graphs of the origamis T · L2,2 and S−1T−1 · L2,2 with π1-bases

From the above computations, it follows that

Corollary 9.26 The Lyapunov spectrum of M is equal to

1, 1
3 ,

1
3 ,

1
3 .

Note that this is not very surprising as the formula for the sum of the Lyapunov
exponents tells us that all 4 must add up to 2 and we get two 1

3 for free from the
covering maps.

The Origami N3

In this section we resume the discussion of N3, the first member of the family of
Theorem 3.3. First, we will change the numbering of the squares. Let

σx = (1, 22, 7, 19, 4, 25)(2, 3, 5, 6, 8, 9)(10, 13, 16)·
· (11, 12, 14, 15, 17, 18)(20, 21, 23, 24, 26, 27)

σy = (1, 18, 8, 7, 15, 2)(3, 20, 19, 24, 11, 10)(4, 12, 5)·
· (6, 26, 25, 21, 14, 13)(9, 23, 22, 27, 17, 16).

Then N3 is equally well given as the origami with the permutations σx and σy, as
can be checked by comparing Figures 3.1 and 9.8.

Recall that the genus of N3 is 10, and N3 lives in the stratum ΩM10(29). As can be
determined e. g. with the help of the origami program, its spin structure is “even”. Its
affine group is isomorphic to SL2(Z), and there is precisely one affine, biholomorphic
involution s with derivative −I. s has 18 fixed points and Es = N3 /〈s〉 has genus
1.

Let us also take a look at the cusps of the origami curve. N3 decomposes into 4
horizontal respectively vertical cylinders of width 6 and height 1 and one horizontal
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Figure 9.8: The origami N3

respectively vertical cylinder of width 3 and height 1. From the cylinder decomposi-
tion, one deduces that the unique point on C(N3)∩(M10\M10) is a stable curve with
two irreducible components of genus 2 and 4 respectively, which meet in 2 points.
The genus 2-component has one self-intersection, whereas the genus 4-component
has 2.

N3 covers all the origamis in the SL2(Z)-orbits of our examples discussed above. In
fact, the partition

(P 1
i )9
i=1 = ({1, 4, 7}, {2, 5, 8}, {3, 6, 9}, {10, 13, 16}{11, 14, 17},

{12, 15, 18}, {19, 22, 25}, {20, 23, 26}, {21, 24, 27}).

is acted upon by σx and σy and induces the covering map N3→M: Send the square
i to the square j such that j ∈ P 1

i . Analogously, one constructs the covering map
N3→T ·M from

(P 2
i )9
i=1 = ({1, 8, 15}, {2, 7, 18}, {3, 11, 19}, {4, 5, 12}{6, 14, 25},

{9, 17, 22}, {10, 20, 24}, {13, 21, 26}, {16, 23, 27}),

and the covering map N3→S−1T−1 ·M from

(P 3
i )9
i=1 = ({1, 13, 19}, {2, 14, 20}, {3, 15, 21}, {4, 16, 22}{5, 17, 23},

{6, 18, 24}, {7, 10, 25}, {8, 11, 26}, {9, 12, 27}).

The poset of intermediate covers for N3 is shown in Figure 9.9. Since N3 covers
many smaller origamis, we are bound to see pullbacks of representations from lower
genus in the monodromy representation of N3. In fact, we have
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S̃t3

N3

M T · M S−1T−1 · M

L2,2 T · L2,2 S−1T−1 · L2,2

E

Figure 9.9: The poset of intermediate covers of N3

Theorem 9.27 The representation ρ : Aff(N3)→ Sp(H1(N3,Q)) restricted to Γ(2)
splits over Q into nine symplectic subrepresentations (ρi, Ui), i = 1, . . . , 9.

Besides the trivial representation (ρ1, U1), there are

• three 2-dimensional representations (ρi, Ui), i = 2, 3, 4, which are pullbacks of
the non-trivial representations of L2,2, T · L2,2 and S−1T−1 · L2,2 respectively.
• three 2-dimensional representations (ρi, Ui), i = 5, 6, 7, which are pullbacks of
the representation ρ4 on M, T ·M and S−1T−1 ·M respectively.
• one 2-dimensional representation (ρ8, U8), which is precisely the 1-eigenspace
of s and on which Γ(2) acts by a cyclic group of order 3
• one 4-dimensional representation (ρ9, U9) such that the action of Γ(2) on U9
is by a finite group of order 24, which is isomorphic to SL2(Z /(3)).

Note that from Remark 8.18 and the above, it follows that N3 has a fixed part in
its family of Jacobians of complex dimension 3.

As a direct consequence, we obtain the Lyapunov spectrum of N3. Note that the sum
of the Lyapunov exponents equals 3 in accordance with the formula of Proposition
8.13.

Corollary 9.28 The Lyapunov spectrum of N3 is given by

1, 1
3 , . . . ,

1
3︸ ︷︷ ︸

6

, 0, . . . , 0︸ ︷︷ ︸
3

.
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The computations needed to justify Theorem 9.27 proceed as in the above examples
with the drawback that the dimensions are much higher (28 for the initial basis and
20 for the basis of the homology of the closed surface). So we refrain from presenting
them here.

9.5 Equivalence of Rank 2-Period Mappings

Following the theme of Theorem 9.1, it would be interesting to know which isomor-
phism classes of irreducible sub-pVHS can occur in the pVHS of a family coming
from a Teichmüller curve. Of course, Proposition 7.28 provides a partial answer.
There is always one sub-local system L1, defined over the trace field of the Teich-
müller curve, carrying a pVHS, whose Kodaira-Spencer map is maximal Higgs. Then
there are its Galois conjugates, and there is a remainder M, defined over Q and also
carrying a pVHS.

In the following, we set up a toy model, the set of rank 2-pVHS defined over Q, and
we define an ordering and an equivalence relation on this set. Using the computations
in Section 9.4, we give an example of a pVHS of rank 2, defined over Q, which does
not come from genus 2.

If g ∈ G, let cg : G→G, h 7→ ghg−1 denote the inner automorphism of G obtained
by conjugation with g. If H 6G and g ∈ G, then Hg is the subgroup cg(H) =
gHg−1 6G.

Definition 9.29 A period datum (in rank 2, over Q) is a triple P = (p,Γ, ρ) such
that p : H→H is a holomorphic map, Γ 6 SL2(R) is a cofinite Fuchsian group and
ρ : Γ→ SL2(Z) is a group homomorphism whose image has finite index, and p is
ρ-equivariant. We denote the induced map Γ\H→ ρ(Γ)\H by ι(p).

Remark 9.30 Assuming that in P = (p,Γ, ρ), the Fuchsian group is torsion-free, we
can define a pVHS of rank 2, defined overQ on the curve C = Γ\H. Take a base point
c ∈ C, and consider the local system associated with ρ : Γ = π1(C, c)→ Sp(2,Z) =
SL2(Z). To define a pVHS on Γ\H, take the pullback of the universal bundle over
the period domain H, pull it back via p and push it down to Γ\H.

The following definition is motivated by two observations: We would like to allow
a change of the base point of the fundamental group, and we would like to allow a
change of the symplectic basis of the local system.

Definition 9.31 Let P = (p,Γ, ρ) and Q = (q,∆, σ) be period data.

a) We say that P is equivalent to Q, short P ∼ Q, if there exist α ∈ SL2(R),
β ∈ SL2(Z) such that
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• q = β ◦ p ◦ α−1,
• Γα = ∆ and ρ(Γ)β = σ(∆),
• σ = cβ ◦ ρ ◦ cα−1 .

b) We say that Q dominates P , short Q<P , if there exist elements α ∈ SL2(R)
and β ∈ SL2(Z) such that Γα 6 ∆, ρ(Γ)β 6σ(∆) and the diagram

Γα\H
ι(β ◦ p ◦ α−1)

- ρ(Γ)β\H

∆\H
?

ι(q)
- σ(∆)\H

?
(9.11)

commutes. (The vertical arrows are induced by the inclusions.)

Lemma 9.32 Let P = (p,Γ, ρ) and Q = (q,∆, σ) be period data.

a) ∼ is an equivalence relation.
b) For every γ ∈ ρ(Γ), we have P ∼ P γ = (γ ◦ p,Γ, cγ ◦ ρ).
c) If P <Q and Q<P , then P ∼ Q.
d) < is reflexive and transitive.

Proof: a) follows directly from the definition.

b) P γ is a well-defined period datum, as for all z ∈ H and all γ̃ ∈ Γ, we have

γp(γ̃(z)) = γρ(γ̃)p(z) = (cγ ◦ ρ)(γ̃)γp(z).

Letting β = γ, and α = id in the definition of ∼, we obviously have P ∼ P γ.

c) Since Q<P , there are α ∈ SL2(R), β ∈ SL2(Z) such that

Γα ⊂ ∆ and ρ(Γ)β ⊂ σ(∆),

and such that we have a commutative diagram as above. From P <Q, we get
α′ ∈ SL2(R), β′ ∈ SL2(Z) such that

∆α′ ⊂ Γ and σ(∆)β′ ⊂ ρ(Γ),

and another commutative diagram. Since Γαα′ ⊂ ∆α′ ⊂ Γ, we see that Γ and ∆
are conjugate, for Γαα′ = Γ, as Γαα′ is a subgroup of Γ with the same volume. The
same holds for ρ(Γ) and σ(∆). Therefore, the vertical arrows in the commutative
diagram (9.11) are isomorphisms. The maps q and βpα−1 are both lifts of τ : H 7→
σ(∆)\H, where τ is the composition of H→Γα\H, followed by either way through
the diagram from the upper left to the lower right corner. Hence q and βpα−1 differ
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only by an element γ of the deck group σ(∆), i. e. γg = βpα−1. We show that
Qγ ∼ P .

Let δ ∈ Γα. Then for all z ∈ H

βpα−1(δ · z) = βp(cα−1(δ)α−1 · z)
= βρ(cα−1(δ))p(α−1 · z)
= cβ ◦ ρ ◦ cα−1(δ) βpα−1(z).

and

βpα−1(δ · z) = γq(δ · z)
= γσ(δ)q(z)
= cγ ◦ σ(δ)γq(z)
= cγ ◦ σ(δ) βpα−1(z).

Since this holds for all z ∈ H, and since p is not constant, we conclude that

cγ ◦ σ(δ) = cβ ◦ ρ ◦ cα−1(δ)

for all δ ∈ Γα. Therefore P ∼ Qγ ∼ Q.

d) is straightforward and will be omitted. �

For the following definition, recall from Proposition 7.28 that for a pVHS on coming
from a Veech surface (X,ω) in genus 2, either (K(X,ω) : Q) = 2, and we have
two Galois conjugate local systems on (a finite cover of) the Teichmüller curve, or
K(X,ω) = Q. Then (X,ω) is arithmetic by [GJ00]. If (X,ω) is arithmetic, then we
find an origami on the Teichmüller curve of (X,ω). This motivates the following

Definition 9.33 A period datum P = (p,Γ, ρ) comes from ΩM2, if it is dominated
by Q = (q,∆, σ), where ∆ = Γ(O) with O an origami in genus 2, σ is the non-
trivial sub-representation of Aff(O)→ Sp(H1(O,Z)), and q is the period mapping
associated with the sub-pVHS on the local system corresponding to σ.

Proposition 9.34 The subrepresentation ρ4 of the origami M does not come from
ΩM2.

Proof: Assume that P = (p4,ΓΘ, ρ4) comes from ΩM2, and let Q = (q,∆, σ) be a
period datum coming from an origami O of genus 2 that dominates it. From (9.11),
it follows that O is in the stratum ΩM2(2). For otherwise, the non-trivial Lyapunov
exponent of O is 1/2 by Proposition 8.15. Hence by Theorem 9.18

1
2 = deg(ι(q)) vol(σ(∆)\H)

vol(∆\H) .
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But
1
3 = deg(p4) vol(Im(ρ4)\H)

vol(ΓΘ\H) = deg(ι(q) vol(σ(∆)\H)
vol(∆\H

)

by the commutativity of (9.11). So O is in the stratum ΩM2(2). By assumption,
there is α ∈ SL2(R), and β ∈ SL2(Z) such that ΓαΘ 6 ∆ and ρ4(ΓΘ)β 6σ(∆). On the
other hand, we know from [EMS03] and [LR06] what the index of ∆ in SL2(Z) is: If
the number of squares n of O is 3, then (SL2(Z) : ∆) = 3. Otherwise, (SL2(Z) : ∆)
is given by

3
8(n− 2)n2∏

p|n
(1− 1

p2 )

if n is even, and n ≥ 4, and it is given either by

3
16(n− 1)n2∏

p|n
(1− 1

p2 )

or by
3
16(n− 3)n2∏

p|n
(1− 1

p2 )

if n is odd and n ≥ 5 – depending on the spin invariant of O. Note that there are no
origamis in ΩM2(2) with less than 3 squares. By inspecting the above formulas, one
finds that for n > 3, the index of ∆ in SL2(Z) would be ≥ 4, which is impossible,
since ΓαΘ has index 3 and is contained in ∆. It follows that ∆ = ΓαΘ, and in particular

∆ ∈ {Γ(L2,2),Γ(T · L2,2),Γ(S−1T−1 · L2,2)}.

Therefore, σ = ρ
L2,2
2 ◦ cα−1 with ρ

L2,2
2 = ρ2 from Remark 9.24. Now cα(T 2) is a

parabolic element of ΓαΘ which is mapped on the one hand to

σ(cα(T 2)) = ρ
L2,2
2 (T 2)

and on the other hand to

cβ ◦ ρ4 ◦ cα−1(cα(T 2)) = cβ ◦ ρ4(T 2).

In particular, ρL2,2
2 (T 2) is a parabolic element, conjugate to ( 1 1

0 1 ), and cβ ◦ ρ4(T 2)
is an elliptic element, conjugate to ( −1 −1

1 0 ). By assumption, the diagram (9.11)
commutes. Since Im(ρ4) and Im(ρL2,2

2 ) are both equal to SL2(Z), the vertical arrows
are isomorphisms. By Lemma 9.20, ι(q) maps the cusp corresponding to the fixed
point of cα(T 2) to a cusp. In order to obtain a contradiction to the commutativity of
(9.11), we invoke the nilpotent orbit theorem [Sch73, Theorem 4.9, Corollary 4.11]:
As cβ ◦ ρ4(T 2) has finite order, ι(β ◦ p4 ◦ α−1) maps the cusps corresponding to the
fixed point of cα(T 2) to an interior point of ρ4(ΓΘ)\H. �
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9.5 Equivalence of Rank 2-Period Mappings

One may wish to refine the notion of dominance in the following way.

Definition 9.35 Two period data (p,Γ, ρ) and (q,∆, σ) are called commensurable,
if there is a finite-index subgroup Γ′ of Γ and a finite index subgroup ∆′ of ∆ such
that

(p,Γ′, ρ|Γ′) ∼ (q,∆′, σ|∆′).

Then it is no longer clear that P = (p4,ΓΘ, ρ4) does not come from genus 2 in the
sense that it is not commensurable to any period datum in genus 2.
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A Appendix

The table on the next page is the character table of the group K3. The first row
contains a representative of each of the 15 conjugacy classes of elements in K3. The
second and third row contain the number of elements conjugate to the representative
and the order of the representative.
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4
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9
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1
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4
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1
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0
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Table A.1: Character table of K3
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