AT

Karlsruher Institut fur Technologie

Karlsruhe Reports in Informatics 2011,28
Edited by Karlsruhe Institute of Technology,

Faculty of Informatics
ISSN 2190-4782

Using Federated Identity Management in a
Business-Process-Management System —
Requirements, Architecture, and
Implementation

Jens Muller and Klemens Bohm

2011

KIT — University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Fakultat fur Informatik

Please note:

This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Using Federated Identity Management in a
Business-Process-Management System —
Requirements, Architecture, and
Implementation

Jens Miiller and Klemens Bohm

Information Systems Group,
Institute for Program Structures and Data Organization,
Faculty of Informatics,
Karlsruhe Institute of Technology

Abstract. Identity management is a key component of information-
system security. In the context of service-oriented architectures (SOA),
federated identity management (FIM) is important. Nowadays, business-
process management (BPM) is used for diverse applications to orches-
trate activities of web services and humans in SOA. Involving humans in
business processes implies a notion of identity. Nevertheless, the relation-
ship between FIM and BPM has not been systematically examined until
now. We perform such an analysis, which yields the characteristics of
FIM concepts in BPM. Based on standards for BPM, access control and
FIM, we propose an architecture of a BPM system with FIM support
and discuss design alternatives. The system implements FIM concepts
based on declarative configuration, taking the run-time context of busi-
ness processes into account. Finally, we describe our implementation of
the architecture based on the ZXID open-source library.

1 Introduction

Identity is “a property of a subject that enables it to be identifiable and to link
items of interest to the subject” [27]. Digital identity refers to attribute values
attributed to an individual which are immediately accessible by technical means.
Individuals expose different parts of their identity in different contexts. Identity
management (IdM) means managing these various partial identities.

IdM is important for information-system security, for authentication and ac-
cess control in particular. An identity-management system has to check the iden-
tifiers and attribute values that a subject claims to possess, i.e., authenticate the
identity of the subject. On this basis, a system can decide whether to grant the
subject access to some resource.

Federated identity management (FIM) is a set of technologies and processes
that let computer systems distribute identity information dynamically and dele-
gate IdM functionality to other systems [15]. A FIM allows service providers to
offload the cost of managing user attributes and login credentials to an identity

2 Jens Miiller and Klemens Bohm

provider, thereby increasing scalability. It also provides users with single-sign-on
(SSO), making it easier to use services from different providers [3].

We summarize the current status of FIM as follows: Terminology and con-
cepts have been established, and requirements on FIM have been explored. There
are implementations of FIM concepts, e.g., based on the Security Assertion
Markup Language (SAML) [25]. However, there are no established concepts for
higher-level applications of FIM, such as in policy management or in business
processes (BPs).

Business-process management (BPM) is well-suited to orchestrate the behav-
ior of loosely-coupled systems in service-oriented architectures (SOA). Common
BPs involve services as well as human users, implying a notion of identity. Autho-
rization constraints restrict who is allowed to perform activities based on this no-
tion and a relationship between activities. Separation of duty (SoD) [8] requires
different users for two or more activities. With binding of duty (BoD) [28], the
same user has to perform several activities. A BPM system (BPMS) requires au-
thentic attributes of users: First, it needs to decide whether a user may perform
a specific actitivity. Second, BPs dealing with personally-identifiable informa-
tion (PII) cannot guarantee correct results without authentic input. They also
depend on user preferences. E.g., a user might have specified which data he is
willing to disclose to applications of a specific kind. When a process can access
such preferences, it can avoid bothering the user unnecessarily. It is important
to note that BPM is a generic technology with diverse applications. Individual
process definitions will use the features of a BPMS differently, and the BPMS
has to support this.

Integrating FIM support into a BPMS facilitates what we call identity busi-
ness processes, allowing developers of BP applications to easily use the ser-
vices available in an IdM federation. The necessary configuration could be very
lightweight, and the application developer can provide it as annotations to the
process model [16]. For example, to use FIM for access control, he needs to state
the attribute values required from users to perform an activity of the process.
In return, users can use SSO to log into the user interface, and the system au-
tomatically authenticates the attributes of the user and compares them to the
required ones. Further, users have a more consistent experience when using dif-
ferent service providers: They can easily re-use existing accounts and provide
access to their PII to applications automatically. In addition, applications can
respect their personal privacy preferences automatically.

The research question now is how to design a BPMS for identity BPs. Prob-
lems that need to be solved are: How to extend the conventional architecture
of a BPMS to support FIM concepts? How can advanced BPMS functional-
ity in SOA benefit from FIM? Which configuration is needed to customize the
implementation of FIM features to different BP definitions?

All these problems are challenging. First, it is unclear how FIM fits into the
architecture of a secure BPMS: Which interfaces of the classical BPMS architec-
ture [5] are affected, i. e., have to interact with the FIM system or handle identity
information? Which components of the BPMS use such information? Second, the

Using FIM in a BPMS — Requirements, Architecture, and Implementation 3

resulting BPMS should re-use existing BPMS components, interoperate with es-
tablished FIM technologies, and allow execution of existing process definitions
with little additional configuration. Third, the implementation of FIM features
needs to take the process context into account and adjust to the requirements of
individual process definitions. One example would be a travel-booking applica-
tion involving a traveler and a clerk. After the booking is completed, the traveler
agrees to store itinerary data in his calendar. The BPMS needs to discover the
correct calendar service and call it with the correct identity. Fourth, the resulting
BPMS must maintain user privacy. To this end, it must support the respective
FIM features, like identity mapping between pseudonyms, prevent leaking of
identity information between process instances, and increase user control over
the disclosure of their PII.
Our contributions now are as follows:

— We analyze how FIM concepts can be used in BPs, and describe peculiarities
that arise when combining them with BPM concepts.

— We describe architecture extensions of a BPMS that allow for secure process
execution in SOA with FIM.

— We describe how to make BPM more user-centric by addressing individual
user preferences using FIM (e. g., personalized trust policies).

— We say how to implement the extensions using the open-source ZXID library.

This report is structured as follows: We explain fundamental concepts and
technologies in Section 2. We then analyze the requirements on our system (Sec-
tion 3), followed by the actual system design (Section 4). We then briefly explain
our implementation in Section 5. Section 6 concludes.

2 Fundamentals and Related Work

2.1 Business-process management in SOA

The WIMC reference model [5] defines an architecture for BPMS, consisting of
several interfaces. The central component is the BP execution engine (engine).
Interface 1 facilitates the deployment of process definitions. This includes the
security configuration of process definitions. Interface 2 handles interactions of
the BPMS with users via human tasks through the worklist handler. Interfaces 3
and 4 handle the interaction with applications and other BPMS. Interface 5 deals
with administration and monitoring. In SOA, process definitions commonly use
WS-BPEL [24]. Applications and other processes are provided as web services
using SOAP [29].

Next to accomplishing application functionality, a BPMS has to deal with
the challenges of a SOA concerning security and dynamism: Services used in
processes often need to be selected at run-time. When dealing with PII, users
should be able to influence which service is selected. It should be easy for appli-
cation developers to specify this. For encrypted connections, it is necessary to
acquire the public keys of the services invoked. Access control for human tasks

4 Jens Miiller and Klemens Bohm

(Modeling and transformation

Modeling Tool Security Modeling

Process definition ¢ #Security configuration
Transformation
\ Interface 1 ~-----__] Transformed Process definition
4 . v
Execution Engine . L :
BP Instance WS

g A

Interface 2 ¥ i T = P
nterace | « ” v__ v Interf

+—> PEP-HT |4+ T Rl F:/E/F; <1
BP-PDP [« -
Worklist p| Trust Service
Human Tasks Handler Pop_|[Discovery
Qnd User Involvement J Web Services j
Key: |« Modified: || New | [Existing |

Fig. 1. Architecure of a BPMS with security extensions

is based on the state of process instances (namely constraints involving several
tasks) and a policy specific to the process model. We also have found that some
security-related interactions with users are frequent, such as agreeing to terms of
service, or selecting a service provider. [16] gives a systematic overview of such
interactions, called user involvements.

To deal with these additional requirements, we have proposed architecture
extensions to the WIMC reference model [17]. Figure 1 is a simplified diagram of
this architecture. The important changes are: (1) Communication of the engine
with the worklist handler and with web services is routed through proxies, called
Policy Enforcement Point for Human Tasks (PEP-HT) and Policy Enforcement
Point for Web Services (PEP-WS), respectively. The PEP-HT persists the con-
text a human task was created in and handles access-control requests relating to
human tasks. The PEP-WS routes calls to the correct service, checks its trust-
worthiness and applies encryption and cryptographic signatures. (2) Process
definitions are instrumented so that they send web-service calls or human tasks
to the PEP-WS/PEP-HT, including appropriate context (i.e., which activity
in which process instance has caused the request). (3) The PEP-WS invokes a
service-discovery component to find available services and checks their trustwor-
thiness by sending a request to a Trust PDP. (4) The Business-Process Policy

Using FIM in a BPMS — Requirements, Architecture, and Implementation 5

Decision Point (BP-PDP) takes access-control decisions enforced by the PEP-
HT, and the Policy Information Point (PIP) stores the history needed for these
decisions.

2.2 Identity-management concepts

In this section, we introduce FIM concepts. In Section 3, we analyze their impact
on BPM in detail.

Identity governance Governance tasks in FIM comprise (a) establishing the
relationship between users and identity providers (IdP), i.e., creating accounts,
verifying user identities by some real-world mechanism and providing credentials,
and (b) establishing a federation between an IdP and a service provider (SP),
which requires creating a trust relationship and respective configuration on both
sides. In what follows, we assume that these relationships exist.

Providing identity information to SPs In FIM, an IdP (or asserting party)
asserts the correctness of identity information about a subject (user). BPs either
interact with users directly (through the worklist handler) or with web services,
which in turn can act on behalf of users. In both cases it is possible to provide
identity information to the BP: When the user wants to interact with a web-
based worklist handler, he needs to authenticate. As users access web-based
services at many different SPs, they do not want to manage access credentials for
all of them. With SSO, the user is redirected to the IdP, which authenticates him
and asserts his identity to the SP. The other case is a user authenticating to some
other application through his IdP. The application acquires tokens testifying the
authentication of the user and uses them in web-service calls to other SPs.

Types of identity information There are different kinds of identity-related
information that an IdP can provide: Identifiers are values that identify a user in
a given context. Attributes contain some statement about the user that may be
relevant for the SP (e. g., the type of driver’s license the user holds). They provide
a more fine-grained alternative to roles. The IdP asserts that this information is
authentic.

Purpose of identity information Identity information is used for various
purposes. With identifiers, one can recognize users in order to provide a stateful
service or to enforce authorization constraints. Attributes allow to personalize
the service. For example, an application can address data for shipping, offer
services available only to a certain age group, or providing information relevant
to the user’s location. Yet another purpose is authorization: Using attributes for
this purpose is known as attribute-based access control (ABAC) [30]. ABAC is a
generalization of role-based access control. It also supports attributes for objects,
actions, and the environment. It is the underlying paradigm of XACML [19].

6 Jens Miiller and Klemens Bohm

Pseudonyms Identifiers valid only in a specific context are known as pseudonyms.
They can be different for each SP, but otherwise be persistent or even change
for each login session. Interactions between SPs require a mapping between the
different pseudonyms used at each SP.

Identity-based services The functionality of an identity web service depends
on whom it provides a service for. This includes: (a) Services storing information
about the holder of an identity (user). These services are able to answer requests
for such information. (b) Services that interact with the user and return his
decision. (c¢) Services that can take a decision based on instructions from a user.
In a secure BPMS, use cases include a service that can declare the consent of
the user to terms of service based on a policy or on his choice at prior occasions.

Acting for users Services often depend on information provided by other
services. This is also true for identity web services. This means that they have to
call other identity web services on behalf of the identity that has invoked them.

2.3 Technical FIM specifications

We now briefly introduce technical specifications implementing the concepts from
the previous section. This should also be useful as a reading guide to these
specifications.

SAML The fundamental data structure in the Security Assertion Markup Lan-
guage (SAML) [26] are assertions [18], which “carry statements about a principal
that an asserting party claims to be true”. SAML defines different kinds of state-
ments. Authentication statements assert that the user has been authenticated
and contain means and time of the authentication. An attribute statement gives
an attribute type and value claimed to be true for the user. Identifiers are given
in the Subject element of the assertion, which contains a NameID element. [18]
defines different kinds of NameIDs. Core alternatives are globally unique names
like e-mail addresses and X.509 subject names, privacy-preserving persistent
identifiers, which have no correspondence to an actual identifier and are specific
to a given service provider, and transient identifiers, i. e., random and temporary
values.

[18] also defines protocols, i.e., exchanges of protocol messages, which con-
tains assertion in most cases. Examples are the Assertion Query and Request
Protocol or the Authentication Request Protocol. Note that protocols only define
messages, while bindings specify a particular transport mechanism, e.g., HTTP
POST. Profiles [20] define in more detail how to use SAML for a particular appli-
cation, providing for better interoperability between different implementations.
There are two types of profiles. One contains a set of rules describing how to
embed SAML assertions into or extract them from a framework or protocol. The
other one describes how to use SAML features in a particular context by spec-
ifying further details left open in the core specification. An important example

Using FIM in a BPMS — Requirements, Architecture, and Implementation 7

is the Web Browser SSO Profile, which implements the Authentication Request
Protocol using the HTTP Redirect, HTTP POST and HTTP Artifact bindings.
It allows to transfer identity information from an IdP to a web frontend of an
SP.

The SAML Token Profile of WS-Security [22] allows using SAML assertions
as tokens in WS-Security [23] headers of SOAP messages. The SP receiving the
message has to validate the evidence provided by the caller according to the
confirmation method specified in the assertion (e.g., that the sender holds a
specific key).

ID-WSF The Liberty Alliance has developed ID-WSF [11], a framework for
identity web services. The SOAP binding [14] provides an invocation framework
for identity services. It defines technical details like SOAP headers and sta-
tus codes. The ID-WSF Security Mechanisms specification [10] defines the use
of tokens for message authentication, including tokens that specify the invok-
ing identity. [9] specifies how to use SAML assertions as authentication tokens.
In addition, ID-WSF defines an SSO Service that allows a system to obtain
SAML assertions as security tokens. It also defines an Identity Mapping Service
that translates references to users into alternative formats or identifier names-
paces [12]. The Discovery Service specification [13] defines a data format to
describe (identity) web services and specifies a service that detects services of a
certain type available to a given identity.

XACML XACML [19] is a language for access-control policies. It includes a
reference architecture and format for decision requests and results. The SAML
2.0 Profile of XACML 2.0 [21] defines an extension of XACML authorization-
decision queries, so that SAML attributes can be transmitted to the PDP. This
allows to use identity information for authorization directly.

2.4 Related work

We are not aware of any work systematically combining BPM and FIM, except
for [4]. Tt proposes extensions for a BPEL engine to let processes access the
content of security tokens. This approach only considers web-service interactions
and requires explicit activities accessing the information. Our approach also
addresses user interactions (through human tasks). It covers the whole range of
FIM concepts and allows declarative configuration of respective mechanisms. In
fact, [4] is one possibility to give processes access to profile information contained
in tokens (seec F11 in Section 4.1).

3 Requirements Analysis

This section addresses two issues: First, we explain how some general require-
ments for FIM applications are relevant for BPM. Second, we analyze the charac-
teristics individual FIM concepts exhibit in BPM and the resulting requirements.

8 Jens Miiller and Klemens Bohm
3.1 General requirements

The laws of identity [2] are recommendations for FIM implementations, mainly
concerning interoperability, privacy, and user control. They are the result of
intensive discussions within the identity-management community. We now derive
requirements on the implementation of FIM features in a secure BPMS.

One law requires that the system “must only reveal information identifying a
user with the user’s consent”. Regarding BPM, this applies to process instances
and third-party services in particular. A BPMS should control disclosure of iden-
tifying information to them. Another law requires “unidirectional” identifiers
valid only for one SP to prevent combination of identity information provided
to different parties. In BPM, this means isolation between process instances.
Third, there should be a pluralism of operators and technologies, and “multi-
ple identity systems run by multiple identity providers” should be supported.
Our solution will use standard FIM technologies (cf. Section 2.3) and can in-
teroperate with multiple identity providers. The architecture should be based
on generic concepts and their application to BPM, to be independent of the
concrete technology. Finally, the identity system should provide “unambiguous
human-machine communication mechanisms offering protection against identity
attacks”. A BPMS helps by providing the same authentication mechanisms for
different kinds of applications. The BPMS should also allow re-using predefined
interactions for, say, giving consent, choosing service providers information is
disclosed to, etc.

3.2 Individual FIM concepts

BPM is a generic technology for different kinds of applications. Hence, a BPMS
needs to support different security concepts, including identity management,
even though not every application will use all of them. In addition, the mecha-
nisms provided by the BPMS must be configurable to fulfill the security require-
ments of different applications.

In the following, we develop requirements on the integration of different FIM
concepts into a BPMS. First, we explore the relationship of these concepts to
activities and other entities, such as users or external services, related to BP
instances. This affects how the BPMS needs to process identity information at
run time. Second, we examine how the requirements of different applications
regarding a concept can differ. We look at how a respective configuration can be
expressed based on the elements of process definitions. This allows us to decide
which mechanisms are needed in the BPMS to support FIM, and which instance-
specific data the BPMS needs consider. This forms the basis for mapping the
required functionality to an architecture and its implementation.

The list of FIM concepts considered here is based on the one introduced in
Section 2.2, but we structure the items differently, taking their importance for
BPM into account.

Using FIM in a BPMS — Requirements, Architecture, and Implementation 9

Governance of the FIM network The only governance task involving the
BPMS is the establishment of a federation between the BPMS and the IdPs to
be used. This does not affect individual processes and thus does not require any
configuration.

SSO In a BPMS, users interact with the worklist handler through a web-based
interface to perform human tasks. To authenticate to the worklist handler, they
use SSO. The handler needs to store identity information for the duration of the
respective SSO sessions. When a user tries to perform a task, the information is
used for authorization. When the user has performed a task, the identity infor-
mation is stored, remembering the relation to the activity and process instance
in question. We do not see any need, however, to configure how to perform SSO.

Incoming identity-WS calls The BPMS may also receive web-service calls
containing identity information. In this case, authorization for the message can
happen immediately. If successful, the identity information is connected to the
activity and process instance receiving the call. Again, there is no need to con-
figure the acquisition process itself.

ABAC ABAC uses attributes of users to decide whether access on some entity
should be granted. In BPM, this concerns human tasks as well as service calls
directed to process instances in the name of a user. The access-control decision
can be taken for each such process activity individually. The attributes required
depend on the application. Thus, BP definitions must specifiy the attributes
needed for each task.

History-based constraints BPs are potentially long-running, stateful, and
can involve several users performing tasks. Authorization needs to take the re-
lationship between tasks into account. A typical SoD constraint requires two
different users for the Authorize payment and Issue cheque activities. To this
end, the BPMS must remember for each BP instance who has performed the
tasks. Pseudonyms must be persistent, otherwise constraints cannot be correctly
enforced. Application developers must specify constraints for each BP definition.

Using attributes for a personalized service Business processes coordinate
web services and human activities. In particular, they compose web services
providing services for a specific user. Depending on the application, the user’s
attributes can help to customize the service to him. For example, a BP for book-
ing a rental car can exclude premium-category vehicles when the driver’s license
of the user is less than two years old. Such customizations take the connection of
identified users with process instances into account, and of course their identity
information. However, the actual mechanisms used highly depend on the individ-
ual application. The task of the BPMS solely is to provide user attributes to BP

10 Jens Miiller and Klemens Bohm

instances, which process this information according to the process definition. It
must be possible for developers of BP applications to state whose attributes are
needed. One way to accomplish this is by referring to an activity in the process,
and thus the identity which has performed this activity.

Acting on behalf of users When BPs invoke identity web services, they
do so on behalf of a user. This means that the BPMS needs to store identity
information acquired by activities to use it for outgoing calls. A characteristic
of BPs is that more than one user can be involved, and that activities triggered
by one user might not be executed immediately, but only after some condition
is fullfilled. E. g., approval by another user might be necessary. Accordingly, it is
not immediately clear on whose behalf the BPMS needs to make a call. For each
outgoing call to an identity web service in BP definitions, the source of identity
information must be specified. Again, this can be accomplished by referring to
an activity and the identity information of the user who has performed it.

3.3 Summary

We have explored the relationship between requirements on FIM applications
and FIM concepts on the one hand, and BPM on the other hand. The latter
has resulted in an assessment of the run-time context and of the configuration
needed to implement the features.

4 System Design

In this section, we derive the structure of a BPMS for identity BPs, i.e., its
components, their functionality, and the interactions between them. In Section
3.2, we have analyzed the FIM concepts and their characteristics relevant for
BPM. These are the features our system has to provide. In particular, we have
outlined how the context of BP instances influences the FIM implementation,
and where configuration is needed. In addition, the entire system should fulfill
general requirements on FIM applications, as introduced in Section 3.1, namely:
The system should disclose PII only with user consent, isolate BP instances
against correlation of identity information, provide interoperability and support
competing FIM technologies, and ensure unambiguous human-machine interac-
tion. Finally, the following design goals are important, and ease implementation
and system maintenance:

D1 Traceability: We want to assign responsibility for a security-relevant func-
tion to one component. This reduces complexity and makes it easier to guarantee
correct behavior of the system.

D2 Abstraction from technologies: We need to distinguish between a concrete
implementation and the generic FIM concepts and provide a concrete and a
generic layer with a lean interface between them. BPM-specific functionality
should only work with the generic view on FIM. This allows to use existing FIM
libraries, and to replace them when necessary.

Using FIM in a BPMS — Requirements, Architecture, and Implementation 11

D3 Standards-based architecture: The architecture of our system and its in-
teractions with the environment should be based on established standard archi-
tectures and technologies. This includes the WIMC workflow reference model [5],
the reference architecture of XACML [19], and the use cases of the SAML pro-
files [25].

D4 Declarative configuration: As mentioned in Section 3.2, the system must
be configurable to support the security requirements of different applications. In
principle, there are two alternatives: (1) The system provides implementations of
the concepts, with operations that allow an application BP to set configuration
options based on its internal state. This requires explicit, imperative-style code
in the application. (2) Definitions of application BP include declarative-style
configurations. The system adapts to the requirements of the application by
evaluating the configuration, taking the context of BP instances into account.
— We prefer (2), because this approach allows for better separation of concerns
(i.e., between the application functionality and FIM), so that a transformation
component can derive the configuration from annotations of process models.
However, when application logic is closely combined with FIM functionality, the
imperative approach is inevitable. In summary, we want to provide declarative
configuration wherever possible, and interfaces abstracting from technical details
otherwise.

4.1 Individual design decisions

When extending the architecture of a BPMS with the required functionality, it
is not always clear how to do this. This is because there are alternative solutions
that fulfill the design goals to a different degree. We now go through different
areas of functionality. We identify and describe design alternatives, discuss them,
and decide which one to pursue.

Identity information F1 Representation of identity information: Problem: We
need to decide on a format for representing identity information when storing
it or transferring it between components of the system. Such information con-
sists of SAML assertions (transmitted as security tokens attached to WS calls).
Several components exchange identity information: The worklist handler and the
PEP-WS acquire it. The PIP stores it, and the BP-PDP uses it for access-control
decisions. Options: (1) Always transfer complete blocks of identity information.
If a component needs a particular piece of it, it would extract it itself. (2) Store
the information centrally and only pass references. The storage layer provides an
API to access individual pieces of identity information. Discussion: The format of
the information is complex and depends on the technology used. This is an ad-
vantage of Option (2) regarding D2. Defining and implementing an API requires
additional effort, but this effort also makes it easier to achieve D2. Conclusion:
We will use a storage layer for identity information.

F2 SSO: Problem: Users must be able to authenticate to web interfaces of
the BPMS. In the reference architecture, the worklist handler provides the only

12 Jens Miiller and Klemens Bohm

web interface. With FIM, the technique applicable for authentication in a web
interface is single sign-on (SSO), involving interaction with an IdP. The worklist
handler must be able to relate the identity information acquired through SSO to
any further activity of the user in the session. Conclusion: In F1 we have decided to
use a storage layer for identity information. Consequently, the worklist handler
stores the information there. We can easily accomplish re-identification using
session cookies.

Access control F3 Access control in general: Problem: Activities in BP in-
stances can be triggered externally from two sources: Human tasks and incom-
ing web-service calls. Both are subject to access control. To this end, identity
information about users, the context of the activity (i. e., which activity in which
BP instance is triggered?), and the history of process instances is required. The
BPMS has to collect this information and take a decision. Conclusion: We will use
a central component for policy decisions, the BP-PDP, and store the history in
the PIP. This allows constraints involving both human tasks and incoming calls.

F4 Policy evaluation: Problem: Our access-control policies have two parts:
First, there are conditions defining when users may perform activities. Such
conditions may refer to required attribute values or to the IdP that has asserted
the information. Their evaluation is stateless. Second, there are constraints based
on the relationship between activities in a BP instance, e. g., BoD and SoD. Such
constraints restrict access rights, and their evaluation requires history informa-
tion. Options: We have to decide whether to implement a monolithic BP-PDP or
a modular one, with separate sub-components responsible for the two different
parts of the policy. Discussion: On the one hand, a monolithic PDP might allow
some optimizations. On the other hand, a modular PDP is more flexible: First,
one can change the policy language. Second, the stateless part of the policies
heavily depends on the concrete technology. Being able to plug in an existing
implementation is favorable regarding D2. Conclusion: We choose a modular im-
plementation, because we deem a flexible architecture more important. For the
stateless part, we propose using an existing PDP implementation through the
SAML profile for XACML [21].

F5 Authorization constraints and pseudonyms: Problem: A problem arises
when a user has several identities, and the BPMS does not know this. Then one
can evade SoD constraints. A similar problem exists for transient pseudonyms
only valid for a limited time. As BPs often last longer, a user might access the
system with different transient identifiers. Options: We see two alternatives to
deal with users who have more than one identity. (1) We can require users to be
authenticated by the same IdP for activities that are part of an SoD constraint.
For example, the users performing Authorize payment and Issue cheque would
have to be authenticated by the corporate IdP. In addition, the IdP must not
allow multiple identities for a person. (2) We can design a federation of IdPs
that asserts that two identities are different. For transient identifiers, we see the
following alternatives: First, we could disallow the use of transient identifiers
when that kind of constraint is involved. Second, IdPs could provide a mecha-

Using FIM in a BPMS — Requirements, Architecture, and Implementation 13

nism asserting the holders of two transient identifiers to be different. Discussion:
Requiring a specific IdP restricts the functionality. However, this will not be rel-
evant in most cases. Consider the example from above: Both users are employees
of the same corporation, so requiring that they be authenticated by the corpo-
rate IdP is reasonable. A mechanism involving multiple IdPs requires substantial
modifications of existing protocols. Allowing a comparison of transient identi-
fiers would require changes in the IdP, and we deem it incompatible with the
purpose of transient identifiers. In contrast, we do not see any problems in dis-
allowing transient identifiers when they cause problems. Conclusion: In summary,
we require a specific IdP and disallow transient identifiers when needed.

F6 Access control in the worklist handler: Problem: Users are logged into the
worklist handler for some time. They view their worklist and perform tasks.
The handler needs to get a decision from the BP-PDP whether to include a
task in the worklist, or to allow a user to perform it. A user can also claim a
task for himself without immediately finishing it. This affects the evaluation of
constraints: For instance, no other user may claim or finish another task when
BoD holds for the two tasks. We need to specify how the components interact
to perform authorization and to have the necessary history available. Conclusion:
Most of this specification is rather obvious, given the architecture from Section
2.1. The worklist handler requests authorization from the PEP-HT, which can
look up task details from the PIP and forward the request to the BP-PDP in
turn. When users claim or complete tasks, the worklist handler informs the PEP-
HT, which registers this fact in the PIP. However, authorization requests for each
task each time the user views his worklist yield poor performance. As a solution,
we propose to cache the results for some time.

Web services FT7 Incoming web-service calls: Problem: A proxy component,
the PEP-WS, receives incoming web-service calls. The tasks of the PEP-WS are
extracting identity information and making it available to other components,
performing access control, and forwarding the message to the BP engine. Some
of these points are straightforward: Identity information is handed to the storage
layer. Access control is performed by calling the BP-PDP and including the
context of the activity invoked. This poses one problem, however: Normally,
it is the BP engine that performs correlation. Correlation means determining
the context of the call, i.e., the activity and BP instance the call is directed
to. However, the BP-PDP needs this context to evaluate constraints. Further,
the PEP-WS needs it to store the identity information in the PIP. Options: We
see several approaches to this problem: (1) Re-implementing correlation in the
PEP-WS. (2) Instrumenting the process, activities receiving calls in particular:
The inserted fragment would send the ID of the BP instance and the name of
the receiving activity to the PEP-WS. With this information, the PEP-WS can
perform authorization and send the result as a reply. If authorization is denied,
the received message is discarded, and the activity is started again. (3) Closer
integration of the PEP-WS with the BP engine to perform correlation without
actually delivering the message. (4) A minimal solution supporting only calls that

14 Jens Miiller and Klemens Bohm

start new BP instances. For such calls, no correlation is necessary. However, the
PEP-WS must learn the ID of the newly created instance. This is possible using
a simpler process instrumentation. Discussion: We deem (1) impractical. It would
require re-implementing a substantial part of the functionality of the engine in
the PEP-WS. To accomplish this, the PEP-WS needs process state currently
not available to it, such as activities waiting for calls. (3) makes our extensions
contingent on a particular BP engine, contrary to our design objectives. (2) is
reasonable. (4) is fit for a large class of applications and is easiest to implement.
Conclusion: We start with (4) and leave (2) as future work.

F8 Service discovery and selection: Problem: For outgoing calls, i.e., from the
BPs to external services, the BPMS needs to know which service to call. In many
cases, it must choose this service at run time, because user preferences have to
be considered. In detail, it needs to look up available services, choose eligible
ones according to the user’s trust policy, and ask the user for the final choice.
Finally, the service selected is stored in the PIP. Options: We see two alternatives
each (1) to deal with personalized trust policies and (2) to involve the user. (1a)
The component that stores the policies (policy store, PS) and Trust PDP are
separate components. The BPMS retrieves the trust policy from the PS and
uses it to invoke the Trust PDP. (1b) The Trust PDP knows the trust policies
of users. Note that it depends on the user which Trust PDP should be used.
This means that discovery has to be performed. (2a) A separate Ul component
can be used. (2b) The worklist handler can present tasks for service selection
in the same way as application tasks, using pre-defined process fragments called
user involvements. Annotations to the process model result in the inclusion of
such fragments, cf. [16]. Discussion: (1a) discloses the trust policy to the BPMS,
(1b) does not. In addition, (1b) is more interoperable, because there currently
is no common trust-policy language in widespread use. An argument in favor
of (1a) is that the user’s Trust PDP is not necessarily able to compute a trust
ranking for all services available. Regarding (2), (2b) is more natural to express
sequences of activities embedded in the application process. Conclusion: For (1),
no alternative is clearly superior. Both depend on the availability of respective
services for users. Our current implementation is similar to (1a). To involve the
user, we choose (2b).

F9 Outgoing web-service calls: Problem: This functionality requires calling the
correct service and route the reply back to the process instance. The PEP-WS
has to use the correct protocol and to perform identity mapping, i. e., get tokens
with pseudonyms valid for the SP called. To do so, it has to decide which identity
to use. Options: Using the ID-WSF protocols and performing identity mapping
is a straightforward implementation task. Alternative ways exist to choose the
correct identity: (1) The BPMS can perform this choice based on a policy and on
the history of the process instance. The policy specifies another process activity
performed before the call. The token, part of the identity information acquired
in this activity, is used for the call. (2) The process itself can make this choice
explicitly: When the process invokes a service, it specifies the identifier of the
token to be used, known from incoming calls or human tasks completed before.

Using FIM in a BPMS — Requirements, Architecture, and Implementation 15

Discussion: (1) is more flexible, but requires process designers to use extended
interfaces when receiving calls or invoking services. With (2), the additional
configuration needed does not affect the application functionality. Moreover,
(2) fulfills D4. Conclusion: We decide to use (1). The BP-PDP evaluates the
respective policy, using history stored in the PIP, and returns a reference to
identity information, which also contains the token.

Miscellaneous F10 Dealing with targetted identities: Problem: Pseudonyms are
specific to one SP. The goal is to prevent what we call combination of identity
information about one user that is available to different SPs. As a BPMS can
execute different unrelated applications, combination should also be prevented
between BP instances. Options: We see three alternatives: (1) Let the IdP create
different pseudonyms for each process instance. (2) Do not disclose pseudony-
mous identifiers to process instances. Instead, perform functions needing them,
such as constraint evaluation, in the BPMS. (3) Perform an internal mapping,
i.e., let the BPMS provide different but persistent pseudonyms to process in-
stances. Discussion: (1) would require registering each process instance as a SP
and establish a trust relationship with the IdP. This is not feasible with current
protocols. (3) is quite similar from the perspective of processes, but an efficient
implementation is possible without changing existing protocols. (2) is preferable
according to D4. If the BPMS provides all functionality dealing with identifiers
that applications need, there is no additional benefit in having (3) as well. Conclu-
sion: We implement (2), with the option to add (3) later, should we observe that
applications use identifiers in ways we cannot easily implement in the BPMS
itself.

F11 Providing profile information to process instances: Problem: One purpose
of attributes is to transfer profile information to an application, cf. Section 2.2.
We need ways to do so automatically, but with user control over the disclosure.
Options: (1) Users often give personal data to BP instances through human tasks
they perform in the worklist handler. We can improve this manual process by
using attribute values: The worklist handler could use attribute values as default
values of form fields. A configuration determines the mapping between attributes
and form fields. (2) We can let processes query the PIP for attribute values. There
are different ways to achieve this [4]. We also need an interface that can provide
attribute values to BP instances, based on the instance ID and the activity that
has acquired the information. Discussion: One advantage of the first way is that
it is declarative and requires no changes in process definitions, only in definitons
of human tasks. In addition, the user can control information disclosure in an
intuitive way. However, the process cannot easily determine whether the infor-
mation is authentic, and it is not applicable to identity information acquired by
incoming calls. (2) is more flexible, but how to support BP developers requires
additional exploration. Allowing the user to control disclosure is more challeng-
ing with (2) as well. Conclusion: We think that both approaches are useful and
can complement each other. Our current implementations allows BP instances

16 Jens Miiller and Klemens Bohm

to query attribute values from the PIP, but does not provide for user control yet.
It is relatively easy to add (1) to our implementation of the worklist handler.

4 Modeling and transformation A

| Modeling Tool | Security Modeling |
v

| Transformation |

- i p
|
Execution :
Engine : WS
BP Instance i
_ i 4.
/f M PP e v v \\
A 4
A > PEP-
PEP-HT WS 41
- Trust
1P .| Worklist vl | P;P Service
X "] Handler BP-PDP Discovery
Human Tasks blwl

Qnd User Involvement Web Services
\ Token store j

Fig. 2. Architecture of a BPMS with FIM support

4.2 Resulting architecture

Our design decisions result in a refined version (Fig. 2) of the architecture from
Section 2.1, with the following modifications: (1) The Token Store is introduced
as a storage layer for identity information (F1). It indexes entries by a unique ID
and allows retrieving identifiers, attribute values, and the raw security tokens.
(2) Support for SSO is added to the Worklist handler (F2). This requires an
external component, the IdP. Authorization queries now refer to IDs of tokens
acquired through SSO, instead of user names directly (F6). (3) The PEP-WS
is extended to handle identity-web-service calls (incoming and outgoing), cf. F7
and F9. (4) The BP-PDP is split into a stateless and a history-aware part (F4).
(5) Service discovery is enhanced so that it can do user-specific trust evaluations,
and a Policy store is added (F8). (6) The PIP is extended with an interface that
lets processes query attribute values (F11).

Using FIM in a BPMS — Requirements, Architecture, and Implementation 17

4.3 Configuration

Our extended BPMS requires different kinds of configuration for identity BPs.
First, there are access-control policies for activities, consisting of a stateless part
and additional constraints (cf. F4, and the restrictions explained in F5). Second,
a policy determining the choice of tokens for outgoing calls is needed (F9). These
policies need to be created for each BP definition, e. g., based on annotations of
a process model. They must be deployed to the BP-PDP when the BP definition
is deployed to the BP engine.

5 Implementation

We developed the architecture presented in this paper as part of the TAS?
(Trusted Architecture for Securely Shared Services) project. Security, especially
identity management, plays a major role. [6] describes the overall architecture.

The core security architecture [7] is implemented using ZXID [1]. It supports
the main protocols and simplifies the handling of identity information. When-
ever identity information is aquired, ZXID automatically stores it and assigns a
randomly generated ID as a handle. All identity information associated with the
handle is persisted on disk. Thus, different components can access it as long as
they run on the same machine. Many ZXID functions, e. g. for calling an identity
web services or sending an authorization request to a PDP, need identity infor-
mation. These functions take a handle as a parameter, thus abstracting from the
internal structure of that information.

The SSO module of ZXID can be implemented in servlets or other tech-
nologies for serving web pages. It handles the entire protocol exchange with
the IdP. On successful completion of SSO, it creates a new session. The web-
service-provider module provides similar functionality for incoming calls. The
web-service-consumer module is the counterpart for outgoing calls. Given a ZXID
session, it performs any necessary activity, like service discovery, identity map-
ping, sending the actual call and validating the result automatically. ZXID also
contains helper functions to call XACML PDPs, automatically extracting at-
tributes from a session and including them in the request. It also parses the
XACML response, allowing to easily determine whether the request has been
granted. In summary, we use ZXID as the implementation-dependent layer and
as the Token store component. Other components are implemented either as
Java servlets or SOAP web services. We use MySQL as a storage backend.

6 Conclusions and Future Work

We have motivated and described an architecure that combines federated iden-
tity management and business-process management, based on standards in the
two domains. We have described how this architecure is embedded in the overall
architecture of a trust network. Finally, we have briefly explained our imple-
mentation of this architecture using the ZXID library and other open-source

18 Jens Miiller and Klemens Bohm

components. Hence, we offer native support for identity BPs. This allows to
easily create applications that adapt their functionality to the individual user.

Future work will address mechanisms that provide more privacy and allow
more user control over disclosure of identity information, e. g., filtering identity
information sent to third parties based on process- and user-specific settings.
Finally, the system should be extended to provide identity information to BP
instances.

Acknowledgment

This research has received funding from the Seventh Framework Programme of
the European Union (FP7/2007-2013) under grant agreement n® 216287 (TAS?
- Trusted Architecture for Securely Shared Services). The information in this
document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium
members shall have no liability for damages of any kind including without lim-
itation direct, special, indirect, or consequential damages that may result from
the use of these materials subject to any liability which is mandatory due to
applicable law.

References

1. ZXID website, http://www.zxid.org
Cameron, K.: The laws of identity. www.identityblog.com/?p=352 (2006)
3. Chadwick, D.: Federated identity management. In: Foundations of Security Anal-
ysis and Design V, pp. 96-120 (2009)
4. Gorig, H.: Context-based Access Control for BPEL (Engines). Diplomarbeit, Uni-
versitét Stuttgart (2009), (in German)
5. Hollingsworth, D.: The Workflow Reference Model. WfMC Specification TCO00-
1003, Workflow Management Coalition (1995)
6. Kelloméki (Ed.), S.: TAS3 Architecture. TAS3 Deliverable 2.1, 1st Iteration (2009)
7. Kelloméki (Ed.), S.: TAS3 Protocols, API, and Concrete Architecture. TAS3 De-
liverable 2.4, 1st Iteration (2009)
8. Kuhn, D.R., Ferraiolo, D.F.: Role-Based Access Control (RBAC): Features and
Motivations (1995), http://csrc.nist.gov/rbac/
9. Liberty Alliance Project: ID-WSF 2.0 SecMech SAML Profile (2006)
10. Liberty Alliance Project: Liberty ID-WSF Security Mechanisms Core Version 2.0
(2006)
11. Liberty Alliance Project: Liberty ID-WSF Web Services Framework Overview Ver-
sion 2.0 (2006)
12. Liberty Alliance Project: Liberty ID-WSF Authentication, Single Sign-On, and
Identity Mapping Services Specification (2007)
13. Liberty Alliance Project: Liberty ID-WSF Discovery Service Specification (2007)
14. Liberty Alliance Project: Liberty ID-WSF SOAP Binding Specification Version 2.0
(2007)
15. Maler, E., Reed, D.: The venn of identity: Options and issues in federated identity
management. IEEE Security and Privacy 6, 16-23 (2008)

o

16.

17.
18.
19.
20.
21.
22.
23.

24.
23.

26.

27.

28.

29.

30.

Using FIM in a BPMS — Requirements, Architecture, and Implementation 19

Miille, J., von Stackelberg, S., Bohm, K.: A Security Language for BPMN Process
Models. Karlsruhe Reports in Informatics 2011-9, Karlsruhe Institute of Technol-
ogy, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023041

Miiller, J., Béhm, K.: The Architecture of a Secure Business-Process-Management
System in Service-Oriented Environments. In: ECOWS 2011

OASIS: Assertions and Protocols for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0 (2005)

OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0. OA-
SIS Standard (February 2005)

OASIS: Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0
(2005)

OASIS: SAML 2.0 profile of XACML v2.0. OASIS Standard (2005)

OASIS: Web Services Security: SAML Token Profile 1.1. OASIS Standard (2006)
OASIS: Web Services Security: SOAP Message Security 1.1 (WS-Security 2004).
OASIS Standard (2006)

OASIS: Web Services Business Process Execution Language Version 2.0 (2007)
OASIS: Security Assertion Markup Language (SAML) V2.0 Technical Overview
(2008)

OASIS: Security Assertion Markup Language (SAML) V2.0 Technical Overview
(2008)

Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data min-
imization: Anonymity, unlinkability, undetectability, unobservability, and identity
management. Tech. rep. (Aug 2010), v0.34

Tan, K., Crampton, J., Gunter, C.A.: The Consistency of Task-Based Authoriza-
tion Constraints in Workflow Systems. 17th Computer Security Foundations Work-
shop, IEEE (2004)

World-Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition) (2007)

Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for Web Services
pp. 561-569 (2005)

	2011,28_Titelbl.pdf
	karlsruhe-report-in-informatics-2011-28.pdf

