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1 Introduction 

The common application of sandwich panels is enclosure of buildings. The panels are 

mounted on a substructure and they transfer transverse loads, e.g. snow and wind, to the sub-

structure. The panels are subjected to bending moments and transverse forces only. A new 

application is to use sandwich panels with flat or lightly profiled faces for frameless buildings. 

In smaller buildings – such as cooling chambers, climatic chambers and clean rooms – the 

panels are applied without any load transferring substructure (Fig. 1.1). 

 

 

 
Fig. 1.1: Buildings made of sandwich panels but without substructure 
 

In this new type of application in addition to space enclosure, the sandwich panels have to 

transfer loads and to stabilise the building. The wall panels transfer normal forces arising from 

the superimposed load from overlying roof or ceiling panels. Deliverable D3.3 – part 4 [3] deals 

with the design of axially loaded sandwich panels. 

Furthermore horizontal wind loads have to be transferred to the foundation and the building 

has to be stabilised. Because of the lack of a substructure the sandwich panels have also to 

transfer the horizontal load. For this purpose the high in-plane shear stiffness and capacity of 

sandwich panels is used. 

In the report at hand basics of the transfer of horizontal loads in frameless buildings made of 

sandwich panels are presented. It is assumed that the buildings consist of vertically spanning 
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wall panels, which are connected to the foundation. To connect panel and foundation often 

angles are fixed to the foundation. The panels are fixed to the angles, e.g. by self-drilling 

screws. The roof panels overlay on the wall panels. To connect wall and roof panels also an-

gles and mechanical fasteners (e.g. self-drilling screws, blind rivets) are used. To connect the 

longitudinal joints of the panels self-drilling screws or blind rivets can be used. A connection of 

the longitudinal joints of wall panels is not necessary, but it increases the stiffness and load-

bearing capacity. Connecting the joints of the roof panels is mandatory. Transfer of horizontal 

loads via the roof is not possible, if the joints are not connected. The design procedures pre-

sented in the report at hand cover predominantly static loadings, e.g. wind loads; fatigue load-

ing is not covered. Also the effects of openings are not taken into account. 

The design procedures presented in D3.3 – part 4 [3] are based on different investigations and 

design methods for shear loaded sandwich panels, e.g. sandwich panels used for shear dia-

phragms in conventional constructions. 

For shear loaded walls made of sandwich panels ETAG 21 [10] gives a test procedure for de-

sign by testing. The test procedure and the basics of the design are also briefly introduced in 

the report at hand. 

2 Load bearing behaviour of in-plane shear loaded sandwich panels 

In EN 14509 [4] and also in other standards no design methods for sandwich panels loaded by 

in-plane shear forces are given. But several investigations on this topic are available, e.g. [13], 

[14], [15], [16]. These investigations mainly deal with sandwich panels mounted on a substruc-

ture, e.g. shear diaphragms made of sandwich panels. 

In all of these investigations it has been shown, that sandwich panels have a very high stiff-

ness and a very high load bearing capacity, when loaded by in-plane shear forces. Both, stiff-

ness and load bearing capacity are very much higher than the corresponding values of the 

fastenings. Because of that for design purposes the shear deformation of the panels can be 

neglected. Only the flexibility of the fastenings has to be considered. Also for the load-bearing 

capacity only the fastenings are decisive. 

Thus, if a frameless structure is loaded by horizontal wind loads, the fastenings have to be 

designed for this load. Particular attention has to be paid to the connections between wall and 

roof panels. At this connections shear forces are introduced into rectangular adjacent panels. 

In conventional buildings this shear forces are introduced in the substructure as normal force. 

Also the connection between wall and foundation and the connections of longitudinal joints 

have to be considered. 

In comparison to the in-plane shear stiffness the bending stiffness of sandwich panels is very 

small. Thus for design purposes it can be assumed that transferring horizontal loads leads 
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only to forces acting in the plane of the panels. Besides in the directly loaded walls, no trans-

verse forces and bending moments arise due to horizontal wind loads. 

3 Transfer of horizontal wind loads in frameless structures 

Generally there are two possibilities for wind loads to act on a frameless building. The wind 

direction can be parallel or orthogonal to the span of the roof panels. Depending on that the 

mechanism of load transfer through the roof of the building is different. 

 

 
Fig. 3.1: Wind loads 
 

The horizontal wind load acts directly on the wall panels of a building. The wall panels are 

usually single span elements with one support at the foundation and the other support at the 

roof. So half of the horizontal wind load is introduced into the roof. The second part is directly 

transferred to the foundation. Via the roof the load is introduced into the walls and finally into 

the foundation (Fig. 3.2). Depending on the relation of direction of load and span of roof pan-

els, a circumferential shear force occurs at the connections between wall and roof. So also in 

the walls being orthogonal to the direction of load shear forces may occur. 

 

wind direction
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Fig. 3.2: Transfer of horizontal loads in frameless buildings 
 

Transferring horizontal loads is only possible if the longitudinal joints of the roof panels are 

connected. Connecting the longitudinal joints of wall panels is not is not necessarily required. 

But if they are connected, there is a wide increase of stiffness and load bearing capacity. 

4 Connections of frameless structures 

4.1 Preliminary remark 

For the transfer of horizontal loads in frameless structures the connections are decisive. In Fig. 

4.1 a summary of the connections, which have to be taken into account, is given. In the follow-

ing sections each kind of connection is briefly introduced. 
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Fig. 4.1: Connections of a frameless building 
 

The forces the fastenings have to be designed for depend on the stiffness of the connections. 

So to design a frameless structure the stiffness of the fastenings has to be known. It is only 

necessary to know the stiffness for working loads. Usually working loads are in the linear elas-

tic part of the load-extension curve of a fastening [8]. So it is sufficient to determine the stiff-

ness of the linear part of the curve. 

4.2 Connections between wall and roof 

Horizontal loads acting on the building are transferred through the roof into the wall panels. In 

Fig. 4.2 some possible variants of connections between wall and roof are presented. 

 

Connection between 
wall and foundation

Connection between 
wall panels at corner 
of the building

Longitudinal joint 
of wall panels

Connection between 
wall and roof

Longitudinal joint 
of roof panels
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Fig. 4.2: Connections between wall and roof 
 

At these connections in-plane shear forces are introduced from the roof into rectangular adja-

cent wall panels. So wall and roof panels have to be connected by steel or aluminium angles, 

which are mechanically fastened to the face sheets of the panels. For these fastenings usually 

self-drilling screws and sometimes also blind rivets are used. To get a sufficiently stiff connec-

tion with a sufficient load-bearing capacity it is recommended to connect both face sheets. 

Furthermore the angles have to be comparatively stiff, i.e. relatively thick sheets have to be 

used. 

The angels are screwed to comparatively thin face sheets. For these “thick-to-thin” fastenings 

usually different kinds of special screw fasteners, sometimes with special washers, are avail-

able, e.g. the fasteners shown in the following figure. 
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SL3/2-5-S-SV16-6,0xL [11] JT3-2-6,0xL [12] 

  

Fig. 4.3: Examples of typical fasteners for “thick-to-thin” fastenings 
 

To get an approximation of the stiffness, which can be achieved by these fastenings exem-

plary the two fasteners given in Fig. 4.3 have been tested. A detailed documentation of the 

tests can be found in Deliverable D3.2 – part 2 [1]. In the following figures the load-extension 

curves determined in the tests are given. Also the stiffness kv of the linear part of the curve is 

shown in the diagrams. 

 

 
Fig. 4.4: Load-extension relation 
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Fig. 4.5: Load-extension relation 
 

 
Fig. 4.6: Load-extension relation 
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Fig. 4.7: Load-extension relation 
 

fastener thickness of angle [mm] thickness of face sheet 
[mm] 

stiffness kv of fastening 
[kN/mm] 

JT3-2-6,0xL 2,0 0,50 14,5 

SL3/2-5-S-SV16-6,0xL 2,0 0,50 6,9 

JT3-2-6,0xL 2,0 0,75 35,0 

SL3/2-5-S-SV16-6,0xL 2,0 0,75 6,5 
Tab. 4.1 Stiffness determined in the tests 
 

Obviously stiffness and load-bearing capacity of a fastening strongly depend on the type of 

fastener. So no general values can be given and the values have to be determined by testing 

for each single case. Therefore small-scale tests on fastenings can be performed, e.g. accord-

ing to the ECCS-recommendations for connections with mechanical fasteners in steel sheeting 

and sections [8]. 

For determination of the stiffness it should be noted that the load is transferred from the roof 

panel to the angle and subsequently from the angle to the wall panel, i.e. one connection con-

sists of two fastenings, which are arranged in series. So the stiffness determined for one fas-

tening has to be divided by two to get the stiffness of a connection consisting of two fastenings 

and an angle. The angles should be relatively stiff, i.e. they should be made of comparatively 

thick sheets. Thus the angle can be considered as rigid. In the tests steel angles with thick-

ness t = 2,0 mm have been used together with panels with thickness of face sheets tF = 0,50 

mm to 0,75 mm. In all tests no deformation of the angle occurred. All deformation was caused 
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by hole elongation in the thin face sheet and by inclination of the fastener. So only the flexibil-

ity of the fastenings and not the deformation of the angle have to be taken into account. If 

there are several connections between the panels - e.g. internal as well as external face sheet 

are connected - the stiffness (and the load-bearing capacity) of these connections has to be 

added. 

 

 
Fig. 4.8: Stiffness of connection between wall and roof 
 

For the exemplary tested fasteners the stiffness of one fastening is between 6,5 kN/mm and 

35 kN/mm. So if e.g. the internal and the external face are connected by one fastener each 

(Fig. 4.8 left) the stiffness of the connection is between 6,5 kN/mm and 35 kN/mm. 

If the panels are connected as shown in Fig. 4.8 right, the stiffness of one fastening is between 

2,5 kN/mm and 5,5 kN/mm (stiffness calculated according to [2], thickness of face sheets 0,4 

mm to 0,75 mm, thickness of steel angle 1,5 mm to 3,0 mm, nominal diameter of fastener 5,5 

to 8,0). The stiffness of one connection consisting of two fasteners has the stiffness 1,25 

kN/mm to 2,75 kN/mm. 

Thus, there is a wide range of possible stiffness for the considered connections. The stiffness 

is influenced by many parameters, e.g. type of fastener and washer, thickness of the face 

sheets, configuration and distance of fastenings. Because of that determination of stiffness 

has to be done with care. Furthermore the stiffness has to be determined for each single case. 

4.3 Connection between wall and foundation 

From the wall panels forces are transferred to the foundation. In Fig. 4.9 some possible ver-

sions of this connection are shown. The wall panels can either be directly connected with the 

foundation or they are connected with an additional panel, which builds the ground floor of the 

building. In this case the connection is very similar to the connection between wall and roof. 
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Fig. 4.9: Connection of wall panel and foundation 
 

If the panel is connected to the foundation by two angles (Fig. 4.9, top), usually comparatively 

thick sheets are connected to the thin face sheets of the panel. So the same kind of fasteners 

as already introduced in the section above can be used.  

In [13] a similar kind of connection was tested. Here self-tapping screws (nominal diameter 

6,3) were used to connect L- and T-shaped steel profiles to the transverse edges of sandwich 

panels acting as shear diaphragms (in conventional constructions). The shear forces were 

introduced in the panels through these profiles and the stiffness of the fastening between sec-

tion and sandwich panel was recalculated. The panels had steel face sheets with thickness 

0,63 mm. Walls consisting of three or five panels have been tested. For these kind of fastening 

from the shear diaphragm tests a stiffness of approximately kv = 3,3 kN/mm was recalculated. 

Because the stiffness of the diaphragm depends only on the stiffness of the fastenings the 

same stiffness of the fastening is determined independently of the dimensions of the wall. 

For the kind of fastenings shown in Fig. 4.9 bottom right for usual applications the stiffness is 

between 2,5 /mm and 5,5 kN/mm [2], [17]. 

So also for these connections stiffness and load-bearing capacity have to be determined for 

each single case. 
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4.4 Connection between wall panels at corner of building 

The connections at the corners of a building are not necessary for the transfer of loads. They 

mainly contribute to the water tightness of the building. So these connections are neglected in 

the following. 

4.5 Longitudinal joints of roof panels 

Usually flat and lightly profiled panels are only connected via a key and slot system at their 

longitudinal joints (Fig. 4.10). There are not any mechanical connections of the joints, what is 

sufficient if the panels are mounted on a substructure. 

 

 
Fig. 4.10: Longitudinal joint 
 

In frameless buildings horizontal loads are transferred through the roof or ceiling to the walls. 

Because of that unlike to panels mounted on a substructure a connection of the longitudinal 

joints is mandatory for roof panels. To increase load-bearing capacity and stiffness of the 

building it is recommended to construct the connections of the joints comparatively stiff. 

To connect the longitudinal joints of flat or lightly profiled panels there are different possibili-

ties. Mechanical fasteners as self-drilling screws or blind rivets can be used. In [14] different 

kinds of connections have been tested. Different kinds of fasteners – e.g. self-drilling screws 

and blind rivets -, glued connections and combinations of glue and mechanical fasteners have 

been used. Furthermore the arrangement of the fastenings has been varied, e.g. screwing 

through one or through two faces. Load-bearing capacity and stiffness have been determined 

for each tested variant of connection and compared to each other. As result of this compari-

son, [14] recommends mechanical fasteners, which connect both face sheets, to get strong 

and stiff joints. It is possible to use one screw, which passes through the thickness of the panel 

or to use two screws one mounted from the internal and one from the external side (Fig. 4.11). 

For the investigations presented in [15] blind rivets were used to connect the external face 

sheets of panels at longitudinal joints. With this kind of fastening, very stiff connections were 

constructed. 
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Fig. 4.11: Fastenings of longitudinal joints 
 

The stiffness and the loads-bearing capacity of a fastening depend on both - on the type of 

fastener and on the geometry of the joint. The stiffness as well as the load-bearing capacity 

increase with an increasing number of sheets the fastener passes through. E.g. one blind rivet 

passes at least through two sheets. If panels with edge folded sheeting are used, one rivet can 

pass through four sheets (Fig. 4.12). If the geometry of the joint constrains an inclination of the 

fastener (e.g. panels with edge folded sheeting are used), very stiff fastenings can be 

achieved. 

 

 
Fig. 4.12: Fastenings at longitudinal joint 
 

Because there are many different possibilities of fasteners and geometries of joints, a general 

value for stiffness and load-bearing capacity cannot be given. Both values have to be deter-

mined for each single case. Therefore small-scale tests can be done. In the test the specific 

geometry of the joint and the specific fastener must be considered. 

In [14] also panels with reinforced edges have been investigated. For reinforcement cold-

formed profiles have been used. These lead to a slight increase of stiffness and load-bearing 

capacity. But panels with reinforced joints have a more expensive cost of production. As a 

further disadvantage the reinforcing profiles can act as thermal bridges. 

self-drilling screw blind rivet or self-
drilling screw
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In [14] and [15] also some connections with glue or a combination of glue and mechanical fas-

teners have been tested. But in both publications this kind of connection is not recommended. 

4.6 Longitudinal joints of wall panels 

For load transfer it is not necessary to connect the longitudinal joints of wall panels. If the pan-

els are connected, load-bearing capacity and stiffness increase. The connections can be con-

structed as given in the previous section for roof panels. 

4.7 Gluing of core materials 

In some application glued connections between the core materials of adjacent panels are 

common practise. E.g. at the connection between wall and roof the cores are often glued by a 

polyurethane foam glue. Because the face sheets are much stiffer than the core material in-

plane shear forces are transferred by the faces. So gluing the cores has no influence on load-

bearing behaviour and capacity of shear loaded sandwich panels. 

5 Design by numerical calculation 

If frameless structures are subjected to horizontal loads, walls and roof are loaded by in-plane 

shear forces. When loaded by in-plane shear forces not the panels but the fastenings are de-

cisive. So the fastenings have to be designed for the horizontal load. 

The design values of the load have to be determined using load factors γF. The load factors γF 

are given in national specifications, e.g. in EN 1990 [5] and the related national annex. For 

wind loads γF is usually 1,5. 

kFd ww ⋅= γ  (5.1) 

Using the design loads the forces of the different fastenings have to be determined. This can 

be done by numerical calculation. For some simple cases the forces of the fastenings can also 

be determined analytically. The design forces of the fastenings have to be compared to the 

load-bearing capacity. The design value of the load-bearing capacity is determined by dividing 

the characteristic value by the material factor γM. 

M

Rk
Rd

V
V

γ
=  (5.2) 

The characteristic value VRk is usually determined by testing. The characteristic values are 

usually given in European technical approvals (ETA) or in national approvals. The material 

factor γM is given by national specifications. According to EN 1993-1-3 [6] γM = 1,25, according 

to different approvals γM = 1,33 has to be used. For some kinds of fastenings there are also 

methods available to determine the resistance value by calculation, e.g. EN 1993-1-3 and [2]. 
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Because the panels can be assumed to be stiff and only the fastenings are flexible, a numeri-

cal determination of the forces, the fastenings have to be designed for, is relatively easy. In 

addition to the forces of the fastenings also the corresponding displacements can be deter-

mined by a numerical analysis. 

In a FE-analysis each panel is modelled as a rigid body. E.g. shell elements with a compara-

tively high thickness and a high elastic modulus can be used. For the examples presented in 

the report at hand shell elements with a thickness of 20 mm and an elastic modulus of 

200.000 N/mm2 have been used. 

In the FE-model the connections are represented by longitudinal springs. The stiffness of the 

springs corresponds to the stiffness of the connections. If one connection consists of several 

fastenings the stiffness has to be determined as shown above. 

In the connections of the longitudinal joints and in the connections between wall and founda-

tion forces in longitudinal as well as in transverse direction of the panel are transferred. To 

represent these connections two springs are used in the FE-model – one spring acts in longi-

tudinal the other one in transverse direction. The resulting shear force of a fastening has to be 

calculated by vectorial addition of both forces. 

 

 
Fig. 5.1: Fastenings in the FE- model 
 

Exemplarily the FE-models of a roof and a wall are presented in the following figures. In the 

figures only the panels, the supports and the load are shown. But there are also longitudinal 

springs between the panels and the supports and between adjacent panels. 
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Fig. 5.2: FE-model of a roof 
 

 
Fig. 5.3: FE-model of a wall 
 

In addition to a numerical calculation for some simple applications the forces of the connec-

tions can also be determined by analytical calculation methods. 
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6 Roof panels – load in transverse direction 

6.1 General load-bearing behaviour 

Fig. 6.1 shows the general load bearing behaviour of a roof loaded by horizontal wind loads 

acting in orthogonal direction of the span of the roof panels. The outer (directly loaded) panel 

transfers a part of the wind load to the wall panels, which support this roof panel. So in these 

wall panels in-plane shear forces occur. A second part is transferred to the adjacent roof panel 

via the longitudinal joint. The same applies for the following roof panels. So the longitudinal 

joints are subjected to tension or compression loads. 

 

 
Fig. 6.1: General load bearing behaviour of a roof 
 

shear force 
introduced in wall 
panels (stiffness kW)

compressed joint

joint subjected to 
tension (stiffness kJ)



 page 20 
 of report 
 No.: D3.3 – part 6 
 

Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) 
This report may only be reproduced in an unabridged version. A publication in extracts needs our written approval. 

 
Fig. 6.2: Transfer of horizontal loads through the roof 
 

The general load-bearing behaviour is shown by the roof given in Fig. 6.3. The roof consists of 

six panels with the length 4000 mm and the width 1000 mm. At the transverse edges the roof 

panels are connected to the wall with four connections. The stiffness of a fastening is 

5 kN/mm. A connection consists of 4 fastenings. So the stiffness of a connection is 5 kN/mm. 

There are 16 connections at each longitudinal joint. Both face sheets are connected by a fas-

tening with stiffness kv = 5 kN/mm. So the stiffness of a connection is 10 kN/mm. Between the 

longitudinal edge of the outer panel and the wall there 16 connections with stiffness 5 kN/mm. 

 

...........................

wind load

forces introduced 
in wall panels
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adjacent roof panel 
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Fig. 6.3: Roof of FE-calculation 
 

In the FE-model the connections at the joints are replaced by two longitudinal springs with 

stiffness 10 kN/mm, one spring in longitudinal and the other in transverse direction of the pan-

els. The connections between wall and roof are replaced by one spring with stiffness 5 kN/mm. 

These springs act in the plane of the connected wall panels, i.e. at the longitudinal edges in 

longitudinal direction of the roof panel and at the transverse edge in transverse direction of the 

roof panel. 

A wind suction load of 2 kN/m is assumed. To show the mechanisms of load transfer more 

clearly in the following example only the wind suction load acts on the roof, but not the wind 

pressure load at the opposite side. The FE-Model is shown in Fig. 6.4. 
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Fig. 6.4: Model of a roof with load in transverse direction 
 

The horizontal load leads to a transverse displacement of the panels as shown in Fig. 6.5. 

 

 
Fig. 6.5: Displacement of panels 
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The displacement of the panels causes forces in the connections between wall and roof and in 

the connection of the longitudinal joints. Only forces in direction of the load occur. So there are 

only forces introduced in the walls being parallel to the direction of load. 

The force introduced in a wall panel decreases with increasing distance of the panel from the 

line of load application. 

In the following figure the forces resulting in the connections are presented. At the transverse 

edge of a panel all connections are loaded by the same force. Also all connections of a longi-

tudinal joint transfer the same force. In longitudinal direction of the panels only very small and 

therefore negligible forces occur. 

 

 
Fig. 6.6: Forces of fastenings 
 

The distribution of the force to the wall and to the adjacent roof panel depends on the stiffness 

of the connections. With increasing stiffness of the connection of the joints the part of the force 

transferred to the adjacent roof panel increases. If a rigid connection of the longitudinal joints 

is assumed, all roof panels act together as one single rigid element. Thus there is a continuous 

distribution of the horizontal load to all panels of a wall. 

If we consider the extreme example – roof panels without connections at the longitudinal joints 

– the outer wall panels have to transfer the whole horizontal load, which is introduced in the 

outer roof panel. So only the outer panels of a wall are loaded by in-plane shear forces. Be-

cause of that it is important to connect the roof panels at the longitudinal joints. These connec-
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tions should be comparatively stiff. Stiff connections of the longitudinal joints have the advan-

tage of a more evenly distribution of the forces to the wall panels. 

 

 
Fig. 6.7: Transfer of loads through the roof (no connections at longitudinal joints) 
 

A wind pressure load causes compression forces in the longitudinal joints. Depending on the 

geometry of the joint compression forces can (partly) by transferred by contact. In this case the 

stiffness and the load-bearing capacity of the joint increase. If the stiffness of the joints in-

creases, the forces are more evenly distribution to the wall panels and the force introduced in 

one wall panel decreases. So it is on the safe side to neglect a transfer of forces by contact. 

6.2 Analytical determination of forces and displacements 

For simple applications the distribution of forces to the connections can also be determined by 

analytical calculation. To simplify the calculation procedure the forces acting in the connec-

tions are smeared over the width B or over the length L of the panel. So also the stiffness of 

the longitudinal springs has to be converted to a stiffness per unit length [N/mm2]. For the con-

nection between wall and roof the stiffness is 

B
knkW
⋅

=  (6.1) 

n number of connections at a transverse edge 
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load introduced 
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k stiffness of one connection 

B width of a panel 

and for the connections of a longitudinal joint 

L
knk J
⋅

=  (6.2) 

n number of connections at a longitudinal edge 

L length of panels 

 

The wind load is introduced in both outer panels of the roof. So we have a line load w1 intro-

duced in panel 1, and a line load wn introduced in panel n. Only forces, which are parallel to 

the direction of load act. 

 

 
Fig. 6.8: Model of a roof for analytical calculation 
 

For each panel i a displacement vx,i in transverse direction occurs. With the stiffness of the 

connections the following forces can be determined. 

At the connection between wall and roof: 

BkvF WixiW ⋅⋅= ,,  (6.3) 

At the longitudinal joint between panel i and i-1: 

( ) LkvvF JixixliJ ⋅⋅−= − ,1,,,  (6.4) 

At the longitudinal joint between panel i and i+1: 

( ) LkvvF JixixriJ ⋅⋅−= + ,1,,,  (6.5) 
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At the outer panels the external force has to be considered, i.e. at panel 1 

LwF l ⋅= 1,1  (6.6) 

and at panel n 

LwF nrn ⋅=,  (6.7) 

 

 
Fig. 6.9: Forces acting on the panels of a roof 
 

Equilibrium of forces for panel i results in the following equations. 

( ) ( ) 02 ,,1,,1, =+⋅⋅⋅−⋅⋅−+⋅⋅− +− iWix
r
Jixix

l
Jixix FLkvLkvvLkvv  (6.8) 

01,.,1, =+⋅+⋅+⋅ +− iixiixiixi FvCvBvA  (6.9) 

LkA l
Ji ⋅=  (6.10) 

( )BkLkLkB W
r
J

l
Ji ⋅⋅+⋅+⋅−= 2  (6.11) 

LkC r
Ji ⋅=  (6.12) 

Fi external load according to (6.6) and (6.7) 

 

For n panels we get n equations with n unknown displacements vx,i. Solving the equation sys-

tem results in the displacement vi of each panel. 

If the displacements are known the forces acting on a connection can be calculated by the 

following formulae. 

Connection between wall and roof: 

n
Bkv

V Wix ⋅⋅
= ,

 (6.13) 

n number of fastenings at a transverse edge 

 

vx,i∙kW∙B

panel i
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F1 = w1∙L
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panel n Fn = wn∙L
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Connection at longitudinal joints: 

n
Lkv

V Jix ⋅⋅∆
= ,

 (6.14) 

n number of connections at a joint 





−

−
=∆

+

−

ixix

ixix
ix vv

vv
v

,1,

,1,
,  (6.15) 

 

7 Roof panels – load in longitudinal direction 

7.1 General load-bearing behaviour 

Fig. 7.1 shows the general load-bearing behaviour of a roof subjected to horizontal wind loads 

acting in direction of the span of the roof panels. The wind load is transferred to the walls, 

which are parallel to the direction of the load. So in the longitudinal joints of the roof panels 

forces in longitudinal direction have to be transferred. If the longitudinal joints of the roof pan-

els are not connected, transfer of horizontal loads via the roof is not possible. Forces are also 

introduced in the walls, which are orthogonal to the direction of load. So there is a circumferen-

tial shear force, as known from shear diaphragms made of trapezoidal sheeting. 

 

 
Fig. 7.1: General load-bearing behaviour 
 

The general load-bearing behaviour is shown by the roof introduced in section 6. The FE-

model is given in the following figure. For wind suction and compression load 2 kN/m are as-

sumed. 

shear force introduced in 
wall panels (stiffness kW)
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Fig. 7.2: Model of a roof 
 

In contrast to common shear diaphragms consisting of trapezoidal sheeting or sandwich pan-

els mounted on a substructure, in addition to a displacement in longitudinal direction of the 

panels a rotation occurs (Fig. 7.3). 

Because of this rotation in the longitudinal joints not only forces in longitudinal but also in 

transverse direction of the panels occur. 
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Fig. 7.3: Rotation of panels 
 

For the roof given above the forces of the connections are given in the following figures. In Fig. 

7.4 the forces transferred to the walls, which are orthogonal to the direction of the load 

(circumferential shear force), are given. The forces at a transverse edge of a panel are distrib-

uted constant to the connections of this edge. 
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Fig. 7.4: Forces introduced in wall panels 
 

In Fig. 7.5 the distribution of the forces in the longitudinal joints is given. Only the force acting 

in transverse direction is given in the diagram. Obviously the force is distributed linear over the 

joint. In the centre of the joint the force is approximately zero. So the centre of rotation is lo-

cated in the centre of the panel. 
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Fig. 7.5: Forces of fastenings at longitudinal joints (transverse direction) 
 

The forces acting in longitudinal direction are uniformly distributed to the connections of a joint. 

Also all connections, which connect the longitudinal edges of the outer panels to the walls, are 

loaded by the same force. 

The forces acting in direction of the span are independent of the stiffness of the connections, 

whereas the forces, which act in transverse direction of the panels, depend on the stiffness. 

With increasing stiffness of the connections between wall and roof, the forces, which are intro-

duced in the wall at the transverse edges, increase. They decrease with increasing stiffness of 

the connections of the longitudinal joints, whereas the forces at the longitudinal joints increase. 

If for the longitudinal joints connections without flexibility are assumed - i.e. all roof panels act 

as one rigid element -, no forces are introduced in the wall panels being orthogonal to the load. 

7.2 Analytical determination of forces and displacement 

Also in this case an analytical determination of the forces of connections and the displace-

ments of the panels is possible. To simplify the calculation procedure the smeared stiffness kW 

and kJ as described above is used. 

The forces, which are introduced in the walls being parallel to the direction of load, can be de-

termined from equalisation of forces in longitudinal direction. 

Bw
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21  (7.1) 
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with 

nSW number of sandwich panels 

B width of a panel 

The wind loads acting on both ends of the roof (in general wind suction and wind compression 

load) can be added to a resulting load w. 

CS www +=  (7.2) 

wS wind suction load 

wC wind compression load 

 

The longitudinal forces, which are transferred by the connections of a joint, are determined by 

equalisation of forces in longitudinal direction for each panel. 

0=−⋅− r
i

l
i VBwV  (7.3) 

r
i

l
i VV 1−=

 
(7.4) 

 

 
Fig. 7.6: Forces acting in longitudinal direction of the panels 
 

The rotation φi of a panel leads to the following displacements at the edges. The displace-

ments are described using a local coordinate system, which has its point of origin at the centre 

of rotation, i.e. at the centre of the panel. The direction of the x-axis is the transverse direction 

of the panel; the direction of the y-axis is parallel to the span of the panel. 

Transverse displacement of transverse edge: 

2,
Lv iix ⋅= ϕ  (7.5) 

Longitudinal displacement of transverse edge: 

xv iiy ⋅= ϕ,  (7.6) 
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Transverse displacement of longitudinal edge: 

yv iix ⋅= ϕ,  (7.7) 

Longitudinal displacement of longitudinal edge: 

2,
Bv iiy ⋅= ϕ  (7.8) 

 

 
Fig. 7.7: Displacements caused by rotation φi 
 

In Fig. 7.8 the transverse forces caused by the rotation φi of a panel are given. They are de-

termined by multiplying the displacement by the stiffness of the connection. For the connec-

tions at the longitudinal joints the difference of the displacements of adjacent panels has to be 

used. 
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Fig. 7.8: Transverse forces caused by rotation φi 
 

In Fig. 7.9 the forces resulting from the smeared forces given in Fig. 7.8 are shown. In addition 

the external wind load and the longitudinal forces in the joints, which can be determined from 

equilibrium of forces, are given. 
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Fig. 7.9: Resulting forces acting on panel i 
 

With this forces the equilibrium of moments (with reference to the centre of the panel) for panel 

i is 

( ) ( ) ( ) 0
223

2
83

2
8

2

1

2

1 =⋅++⋅⋅⋅⋅−⋅⋅−⋅−⋅⋅−⋅− +−
BVVLLBkLLkLLk r

i
l

iiWii
r
Jii

l
J ϕϕϕϕϕ  (7.9) 

iiiiiii DCBA =⋅+⋅+⋅ +− 11 ϕϕϕ  (7.10) 

12

3LkA
l
J

i
⋅

−=  
(7.11) 

12212

323 LkLBkLkB
r
JW

l
J

i
⋅

+
⋅⋅

+
⋅

=  
(7.12) 

12

3LkC
r
J

i
⋅

−=  
(7.13) 

( )
2
BVVD r

i
l

ii ⋅+=
 

(7.14) 

 

So for n panels we get n equations. Solving the equation system results in the n unknown rota-

tions φi. 
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With the rotation and the stiffness of the connections the forces of the connections can be de-

termined. 

Connections at transverse edges: 

n

BLk
V

iW ⋅⋅⋅
= 2

ϕ

 

(7.15) 

n number of fasteners at the transverse edge of a panel 

 

Connections at longitudinal joints: 

Transverse direction (force of highest loaded fasteners at y = ±L/2): 

( )
n
LLkV iiJx ⋅⋅−⋅= − 21ϕϕ

 
(7.16) 

or  

( )
n
LLkV iiJx ⋅⋅−⋅= + 21ϕϕ

 
(7.17) 

L/n distance of fastenings 

Longitudinal direction: 

n
VV

rl
i

y

/

=
 

(7.18) 

Resulting force: 

22
yx VVV +=

 
(7.19) 

 

If the rotation of each panel is known, also the global displacement of the panels can be calcu-

lated. In doing so, the longitudinal displacement of each panel relative to the adjacent panel 

has to be determined. The global displacement of a panel is determined by summation of the 

single displacements over the roof, starting at one of the outer panels. The highest global dis-

placement occurs at the inner panel of a roof. In the following it is assumed that the summa-

tion starts at panel 1, which is located at the left edge of the roof. 

The displacement in longitudinal direction of a panel consists of two parts. The first part results 

directly from the longitudinal forces in the joints or for the outer panels from the force of the 

connection between longitudinal edge and wall. The second part results from the rotation of 

the panel, which causes an additional displacement in longitudinal direction. 

The forces acting in longitudinal direction of the panels result from equilibrium of forces (formu-

lae (7.1) to (7.4)). With this forces and the stiffness of the connections the first part of the dis-

placement of a panel can be calculated. The calculated displacement refers to the adjacent 

panel or for the outer panels to the wall. 
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Fig. 7.10: Displacements of panels resulting from forces acting in longitudinal direction 
 

The displacement vy,1,v of the outer panel of a roof is 

W

l

vy kL
Vv
⋅

= 1
,1,

 
(7.20) 

The displacement vy,i/i-1,v of a panel i relative to panel i-1 is 

J

l
i

viiy kL
V

v
⋅

=− ,1/,
 

(7.21) 

 

The rotation of the panel causes the displacements shown in the following figure. 

 

 
Fig. 7.11: Displacements of panels resulting from rotation 
 

Because summation of displacements starts at the left edge of the roof, we first consider the 

left edge of the panel. There the rotation causes a force in opposite direction to the force re-
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sulting from equilibrium. So there must be an additional displacement in longitudinal direction 

to keep equilibrium of forces (φi∙B/2). 

 

 
Fig. 7.12: Displacements of panels resulting from rotation 
 

So at the opposite (right) edge of the panel we get the following longitudinal displacement, 

which results from rotation. 

iiiy BBv ϕϕϕ ⋅=⋅⋅=
2

2,,
 

(7.22) 

 

The global displacement of a panel is determined by summation of the displacements vy,i,v and 

vy,i,φ over the panels, starting at panel 1. E.g. for a roof consisting of six panels the highest 

global displacement (right edge of panel 3) is calculated as follows. 

321
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(7.23) 

 

8 Walls without connections at the longitudinal joints 

To transfer horizontal wind loads for wall panels a connection of the longitudinal joints is not 

necessarily required. In this case a panel is not influenced by adjacent panels; each panel acts 

as a single element. At the upper end horizontal in-plane shear forces are introduced from the 

roof in the wall panel. The wall panel is fixed to the foundation. So the wall panel is loaded as 

a lever arm. A horizontal force and a moment have to be transferred by the connections be-

φi

φi∙B/2

φi∙B
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tween panel and foundation. The horizontal force causes a displacement vx of the panel. The 

moment leads to a rotation φ around the centre of the lower transverse edge. 

 

 
Fig. 8.1: Displacement and rotation of a wall panel 
 

This kind of loading was also investigated in [16]. At one end sandwich panels were fixed to a 

substructure with two self-tapping screws. At the other end a force in transverse direction to 

the span of the panel was introduced. The fastenings introduce a transverse force into the 

substructure. In addition a couple of longitudinal forces occurs, which counteracts the moment 

resulting from introduced force and lever arm. 
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Fig. 8.2: Forces at an in-plane shear loaded wall panel 
 

If there are more than two connections at the transverse edge, the highest longitudinal force 

occurs at the outer connection. This force is determined by the following equation. 

......
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 (8.1) 

with 

ci distance between pair of connections 

c distance between outer connections 

 

 
Fig. 8.3: Longitudinal forces at a wall panel 
 

The horizontal force is distributed constantly to the connections of the edge. So for one con-

nection we get the horizontal force 
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n
FVx =

 
(8.2) 

n number of connections at the transverse edge of a panel
 The resulting force of a connection is determined by vectorial addition 

( ) ( )22
yx VVV +=

 
(8.3) 

 

Alternatively for simplification the forces in longitudinal direction can be determined for 

smeared connections. The stiffness kv of the connections at the transverse edge is trans-

formed to the continuous stiffness kW in [kN/mm2] (see formula (6.1)). A rotation of the panel 

causes a linearly distributed force fy [kN/m] at the connections between wall and foundation. 

The moment resulting from the force fy is 

63
2

4

2

max,max,
BfBBfM yy ⋅=⋅⋅=

 
(8.4) 

with 

fy,max maximum value of fy at the corners of the panel 

The maximum value of the longitudinal force is determined by equalisation of moments. 

6

2

max,
BfLF y ⋅=⋅

 
(8.5) 

2max,
6

B
LFf y
⋅⋅

=
 

(8.6) 

 

 
 Fig. 8.4: Longitudinal forces at a wall panel (smeared fastenings) 

 

The force of a connection is determined by integrating the distributed force fy by the corre-

sponding width, i.e. by the distance of the connections. So the longitudinal force of the most 

stressed connection is 

n
B

B
LFVy ⋅
⋅⋅

= 2

6
 

(8.7) 

B/n distance of connections 

fy,max

M = fy,max∙B2/6
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The rotation of the panel is determined using the condition that at the corners of the panel the 

vertical force fy,max must occur. The vertical displacement at the corner is 

2max,
Bvy ⋅= ϕ

 
(8.8) 

The corresponding force fy,max is determined by multiplying the stiffness kW of the fastening by 

the displacement. 

WWyy kBkvf ⋅⋅=⋅=
2max,max, ϕ

 
(8.9) 

By equalisation of (8.6) and (8.10) the rotation φ is determined. 

2max,
6

2 B
LFkBf Wy
⋅⋅

=⋅⋅= ϕ
 

(8.10) 

WkB
LF

⋅
⋅⋅

= 3

12ϕ
 

(8.11) 

 

The transverse displacement of the panel consists of two parts, the displacement caused by 

the transverse force and the displacement caused by the rotation.  

The displacement caused by the transverse force depends on the stiffness of the connection 

between panel and foundation. 

W
vx kB

Fv
⋅

=,
 

(8.12) 

The rotation causes the following displacement, which occurs at the upper end of the panel. 

Lvx ⋅= ϕϕ,
 

(8.13) 

So the maximum transverse displacement of a panel is  

L
kB

Fv
W

x ⋅+
⋅

= ϕ
 

(8.14) 

 

9 Walls with additional connections at the longitudinal joints 

If the longitudinal joints of wall panels are connected, the stiffness and also the load-bearing 

capacity increase. In this case also for simple configurations an analytical determination of 

forces is not reasonable. For all panels displacement and rotation as well as the centre of rota-

tion are unknown. To determine them no set of linear equations is available. 

In the following the general load bearing behaviour is shown for the exemplary wall presented 

in Fig. 9.1. The wall consists of six panels with a length of 3000 mm. Each panel is connected 

to the foundation with for connections (stiffness 5 kN/m). There are 12 connections at each 

longitudinal joint (stiffness 10 kN/m). Each panel is loaded by a horizontal load of 1000 N. 
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Fig. 9.1: Model of a wall for numerical calculation 
 

A displacement in direction of the horizontal load and a rotation occur (Fig. 9.2). 

 

 
Fig. 9.2: Rotation of wall panels 
 

Because the panels do not act as independent single elements, the centre of rotation of a 

panel is not located in the centre of its lower transverse edge. Thus the load is not distributed 

uniformly to all panels. In the following figure the forces of the connections between panels 

and foundation are given. The forces in transverse direction (i.e. in direction of the horizontal 

load) are constant for all connections of a panel. The highest transverse forces act at the inner 
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panels of a wall. The distribution of forces acting in longitudinal direction is linear within one 

panel. The highest rotation occurs at the outer panels of a wall. For these panels also the dis-

tance of the centre of rotation to the centre of the panel has the highest value. So the highest 

forces in longitudinal direction occur at the outer panels. 

 

 
Fig. 9.3: Forces in the connections between wall and foundation 
 

All connections of a longitudinal joint are loaded by the same longitudinal force. The highest 

longitudinal force occurs in the joints between the inner panels of a wall.  
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Fig. 9.4: Longitudinal forces of connections at joints 
 

The forces acting in transverse direction are linearly distributed to the connections of a joint. 

The highest forces occur in the outer joints of a wall. 

 

 
Fig. 9.5: Transverse forces at connections of joints 
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For both extreme examples – no connections and rigid connections at longitudinal joints – 

there is a constant distribution of the horizontal load to all panels of the wall. To demonstrate 

the influence of the stiffness of the connections of the joints, in the following the forces of the 

connections at the transverse edge are presented for different stiffness. Apart from the stiff-

ness of the connections at longitudinal joints the wall introduced above was used for the calcu-

lations. In the following figure the horizontal forces acting at the connections between panel 

and foundation are shown for several stiffness’s of the connections at the longitudinal joints. 

 

 
Fig. 9.6: Forces of connections between wall and foundation in dependence of stiffness 
 

With increasing stiffness first the difference of the forces of inner and outer panels increases. 

For a further increase of the stiffness the difference decreases. For approximately rigid con-

nections the quotient of forces of inner and outer panel approaches 1. 
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Fig. 9.7: Relation between stiffness of connections and forces 
 

The forces acting in longitudinal direction of the wall panels decrease with increasing stiffness 

of the connections at the longitudinal joints. In the following figure the forces at the outer panel 

of the wall are shown for different stiffness. 
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Fig. 9.8: Relation between stiffness of connections and force  
 

Furthermore there are also cases, where the panels of a wall are not loaded by a constant 

force. If e.g. the horizontal load acts in longitudinal direction of the roof panels, only into the 

panels of the walls being parallel to the direction of load constant shear forces are introduced. 

At the walls being orthogonal to the direction of load the forces are linearly distributed with a 

change of direction of force in the centre of the wall. 

 

 
Fig. 9.9: Forces introduces from roof into wall panels 
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In the following the wall already introduced above is considered. The forces of the fastenings 

occurring for this kind of loading are presented. The forces introduced at the upper end of the 

panels are assumed to be 1760 N, 1200 N, 420 N, -420N, -1200 N, -1760 N (Fig. 9.10). 

 

 
Fig. 9.10: FE-model of a wall 
 

The load given above causes displacements as well as rotations as shown in Fig. 9.11. 

 

 
Fig. 9.11: Rotation of panels 
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In the following figure the forces in the connections between wall and foundation are shown. 

All connections of one panel are loaded by the same transverse force, whereas the longitudi-

nal force is distributed linearly within one panel. The highest transverse force as well as the 

highest longitudinal force acts at the outer panels. 

 

 
Fig. 9.12: Forces at connections between wall and foundation 
 

Fig. 9.13 shows the distribution of transverse forces for the connections of the joints. The 

highest force occurs at the joint between the inner panels. 
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Fig. 9.13: Transverse forces at connections of joints 
 

10 Design of shear loaded walls by testing 

ETAG 21 [10] deals also with the design of shear loaded walls made of sandwich panels. A 

procedure for design by testing is given in Annex D of ETAG 21. If in practice the joints of the 

panels are connected at least two panels have to be tested in a test. If there are no connec-

tions at the joints, it is sufficient to test only one panel. The panels have to be fixed to the 

foundation as in practice. During the test the deformation v has to be recorded. The deforma-

tion v is the difference between the displacement at point A and B (Fig. 10.1). 

First a vertical load Fv is applied to the tested wall. This load is maintained constant during the 

test. The horizontal load F is applied in three load cycles.  

 

-800

-700

-600

-500

-400

-300

-200

-100

0

100

0 500 1000 1500 2000 2500 3000

fo
rc

e 
of

 a 
fa

st
en

in
g [

N
]

length of joint [mm]

joint at b = 1000 mm

joint at b = 2000 mm

joint at b = 3000 mm

joint at b = 4000 mm

joint at b = 5000 mm



 page 52 
 of report 
 No.: D3.3 – part 6 
 

Versuchsanstalt für Stahl, Holz und Steine, Karlsruher Institut für Technologie (KIT) 
This report may only be reproduced in an unabridged version. A publication in extracts needs our written approval. 

 
Fig. 10.1: Test set-up according to ETAG 21 
 

• Stabilising load cycle 

The horizontal load is increase to 0,1∙Fmax,est and maintained for 120 s. After that the horizontal 

load is removed and a recovery period of 600 s follows. Fmax,est is the estimated maximum 

horizontal load. 

• Stiffness load cycle 

The horizontal load is increased to 0,4∙Fmax,est and maintained for 300 s. The load is removed 

and a recovering period of 600 s follows. 

• Strength test 

The horizontal load is increased to 0,4∙Fmax,est and maintained for 300 s. The load is increased 

until Fmax is reached. The maximum load Fmax is reached, when the panel collapses or the de-

formation v exceeds 100 mm. 

The tests are statistically evaluated according to EN 1990 [5]. 

The stiffness of the wall is calculated by the following formula. 









−
−

+
−
−

⋅=
2124

2124

0104

145,0
vv
FF

vv
FFR

 
(10.1) 

with 

estFF max,1 1,0 ⋅=  

vertical 
load Fv

horizontal 
load F measurement of 

displacement A

measurement of 
displacement B

fixing to foundation 
as in practice
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v01  displacement corresponding to F1 determined in stiffness load cycle 

estFF max,4 4,0 ⋅=  

v04  displacement corresponding to F4 determined in stiffness load cycle 

estFF max,21 1,0 ⋅=  

v21  displacement corresponding to F21 determined in strength test 

estFF max,24 4,0 ⋅=  

v24  displacement corresponding to F24 determined in strength test 

 

The design strength is calculated by dividing the characteristic strength by a factor γrs. 

Mrs γγ ⋅= 6,1
 

(10.2) 

γM material factor of Eurocode 

 

11 Summery 

The common application of sandwich panels is enclosures of buildings. A new application is to 

use sandwich panels for frameless structures, i.e. the panels are applied without any load 

transferring substructure. In this new type of application the sandwich panels have to transfer 

loads and to stabilise the building. To transfer horizontal wind loads the very high in-plane 

shear stiffness and resistance of the panel is used. Because the in-plane shear stiffness of the 

panels is very much higher than the stiffness of the fastenings, only the fastenings are decisive 

for load-bearing behaviour and capacity. So the fastenings have to be designed for the forces 

resulting from transfer of horizontal loads. 

In the report at hand basics of the transfer of horizontal loads in frameless buildings are pre-

sented. Basic principles for determination of the forces the fastenings have to be designed for 

are given. 
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