Stability of a conditional Cauchy equation implying the stability of the Jensen-Hosszú equation

Peter Volkmann

Abstract

For functions f taking values in a Banach space, the stability of the functional equation

$$
f(x+y-x y)+f(x y)=f(x+y) \quad(x, y \in \mathbb{R})
$$

will be shown. As a simple consequence we get the stability of the Jensen-Hosszú equation

$$
f(x+y-x y)+f(x y)=2 f\left(\frac{x+y}{2}\right) \quad(x, y \in \mathbb{R}),
$$

which is already known from Kominek [1]; the constant $9 / 2$ occurring there can be diminished to 2 .

In this paper E denotes a (real) Banach space. For $\xi, \eta \in E$ the notation $\xi \stackrel{\varepsilon}{\sim} \eta$ means that $\|\xi-\eta\| \leq \varepsilon$ (cf. Przebieracz [4]). In the sequel we use the following result from [5]:

Lemma. Suppose $\varepsilon, \alpha \geq 0$ and let $g: \mathbb{R} \rightarrow E$ satisfy

$$
g(x)+g(y) \stackrel{\varepsilon}{\sim} g(x+y) \quad(x+y \geq \alpha) .
$$

Then we have $g(x) \stackrel{\varepsilon}{\sim} a(x)(x \in \mathbb{R})$, where $a: \mathbb{R} \rightarrow E$ is additive.
Now our main result will be the stability of the conditional Cauchy equation

$$
f(x+y-x y)+f(x y)=f(x+y) \quad(x, y \in \mathbb{R})
$$

Theorem. Suppose $\varepsilon \geq 0$ and let $g: \mathbb{R} \rightarrow E$ satisfy

$$
\begin{equation*}
g(x+y-x y)+g(x y) \stackrel{\varepsilon}{\sim} g(x+y) \quad(x, y \in \mathbb{R}) . \tag{1}
\end{equation*}
$$

Then we have $g(x) \stackrel{\varepsilon}{\sim} a(x)(x \in \mathbb{R})$, where $a: \mathbb{R} \rightarrow E$ is additive.
Proof. It is sufficient to show that

$$
\begin{equation*}
g(u)+g(v) \stackrel{\varepsilon}{\sim} g(u+v) \quad(u+v \geq 4) \tag{2}
\end{equation*}
$$

then the case $\alpha=4$ of the Lemma can be applied. For $u+v \geq 4$ we have $u \geq 2$ or $v \geq 2$, without loss of generality let us assume

$$
u \geq 2
$$

Then

$$
\begin{equation*}
\delta:=(u+v)^{2}-4 v>0 \tag{3}
\end{equation*}
$$

holds. This is clear for $v<0$; for $v \geq 0$ we get

$$
\delta=u^{2}+2 u v+v^{2}-4 v>2 u v-4 v=2 v(u-2) \geq 0 .
$$

Now (3) implies the existence of

$$
x=\frac{u+v}{2}+\sqrt{\frac{(u+v)^{2}}{4}-v}(>0) .
$$

Then

$$
\begin{aligned}
& x^{2}-(u+v) x+v=0, \\
& x+v \frac{1}{x}-v=u .
\end{aligned}
$$

When setting $y=v / x$, hence $v=x y$, we get

$$
x+y-x y=u, x y=v, x+y=u+v
$$

thus (2) is a consequence of (1).
Corollary. Suppose $\varepsilon \geq 0$ and let $g: \mathbb{R} \rightarrow E$ satisfy

$$
\begin{equation*}
g(x+y-x y)+g(x y) \stackrel{\varepsilon}{\sim} 2 g\left(\frac{x+y}{2}\right) \quad(x, y \in \mathbb{R}) . \tag{4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
g(x) \stackrel{2 \varepsilon}{\sim} a(x)+b \quad(x \in \mathbb{R}) \tag{5}
\end{equation*}
$$

where $a: \mathbb{R} \rightarrow E$ is additive and $b \in E$.
Proof. For $h(x)=g(x)-g(0)(x \in \mathbb{R})$ we have $h(0)=\theta$ (the zero-element of E), and (4) leads to

$$
\begin{equation*}
h(x+y-x y)+h(x y) \stackrel{\varepsilon}{\sim} 2 h\left(\frac{x+y}{2}\right) \quad(x, y \in \mathbb{R}) . \tag{6}
\end{equation*}
$$

Now $y=0$ gives

$$
h(x) \stackrel{\varepsilon}{\sim} 2 h\left(\frac{x}{2}\right) \quad(x \in \mathbb{R}) .
$$

Replacing here x by $x+y$ and taking (6) into account, we get

$$
h(x+y-x y)+h(x y) \stackrel{2 \varepsilon}{\sim} h(x+y) \quad(x, y \in \mathbb{R}) .
$$

According to the Theorem we have $h(x) \stackrel{2 \varepsilon}{\sim} a(x)(x \in \mathbb{R})$, i.e., $g(x)-$ $g(0) \stackrel{2 \varepsilon}{\sim} a(x)(x \in \mathbb{R})$, hence $g(x) \stackrel{2 \varepsilon}{\sim} a(x)+b(x \in \mathbb{R})$, where $a: \mathbb{R} \rightarrow E$ is additive and $b=g(0) \in E$.

Remarks. When taking $\varepsilon=0$ in the Corollary, we get the solutions $f: \mathbb{R} \rightarrow$ E of the Jensen-Hosszú equation

$$
\begin{equation*}
f(x+y-x y)+f(x y)=2 f\left(\frac{x+y}{2}\right) \quad(x, y \in \mathbb{R}) \tag{7}
\end{equation*}
$$

they are given by $f(x)=a(x)+b(x \in \mathbb{R})$, where $a: \mathbb{R} \rightarrow E$ is additive and $b \in E$.

The solutions of (7) are already known from Kominek [1]. From [1] also the stability of (7) is known; more precisely, Kominek obtains the result of the Corollary with $\frac{9}{2} \varepsilon$ instead of 2ε in (5). In a similar way the constant 20ε occurring in the proof of Losonczi [3] for the stability of the Hosszú equation could be diminished in [5] to 4ε. The question of best constants in these stability results is not settled by this.

Finally let us mention that Kominek and Sikorska [2] prove stability of the equation in (7) for functions $f:[0,1] \rightarrow E$ and $f:] 0,1[\rightarrow E$, respectively. It would be of interest to have some concrete estimates of the constants occurring there.

References

1. Zygfryd Kominek, On a Jensen-Hosszú equation I, Ann. Math. Silesianae 23 (2009), 57-60 (2010).
2. -, Justyna Sikorska, On a Jensen-Hosszú equation II, Math. Inequalities Appl., 15 (2012), No. 1, 61-67 (2011).
3. László Losonczi, On the stability of Hosszú's functional equation, Results Math. 29, 305-310 (1996).
4. Barbara Przebieracz, Superstability of some functional equation, Ser. Math. Catovic. Debrecen., No. 31, 4 pp. (2010), http://www.math.us. edu.pl/smdk
5. Peter Volkmann, Zur Stabilität der Cauchyschen und der Hosszúschen Funktionalgleichung. Sem. LV, No. 1, 5 pp. (1998), http://www.math.us. edu.pl/smdk

Typescript: Marion Ewald.
Author's addresses:
Institut für Analysis, KIT, 76128 Karlsruhe, Germany; Instytut Matematyki, Uniwersytet Śla̧ski, Bankowa 14, 40-007 Katowice, Poland.

