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Abstract

We show convergence in the energy norm for an automatic hp-adaptive refinement strategy for finite

elements on the elliptic boundary value problem. The result is a generalization of a marking strategy,

which was proposed in one space-dimension, to problems in two- and three-dimensional spaces.
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1. Introduction

The finite element method is a widely accepted tool for the numerical solution of partial differential equa-

tions. Nowadays a posteriori error estimation is an expected and assessed feature in scientific computing.

It is used for adaptively creating approximation spaces and to assess the accuracy of numerical solutions.

The performance of the method can be improved by mesh refinement (h-refinement) or the use of higher

order ansatz spaces (p-refinement). Taking a combination of both (hp -refinement) can lead to exponen-

tially fast convergence with respect to the number of degrees of freedom [19]. For the h-FEM adaptive

mesh creation is discussed in e. g. [1, 23]. For the p- and hp -FEM several strategies have been proposed

to create problem-dependent meshes adaptively. There are a lot of different approaches to decide whether

it is favourable to increase the polynomial degree p or to decrease the mesh size h. E. g. in [9, 13] the

analyticity of the solution is estimated, in [2, 8, 12] local boundary value problems are solved and in

[6, 18] the global interpolation error is minimized.

In this paper we generalize the refinement strategy proposed in [8] to problems in two and three space-

dimensions and present numerical results of the application of this refinement strategy to some represen-

tative problems.

The paper is organized as follows: In Section 2 we state some general assumptions and introduce the

model problem. In Section 3 we develop the refinement strategy for two- and three-dimensions and prove

its convergence in two space-dimensions explicitly. Further we give numerical results of the application

of our refinement strategy to some examples of the model problem in Section 4.

2. Preliminaries

In this section we give the notations and general assumptions, which we will use throughout this paper.

Further we state the model problem, which we will consider here.
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2.1. Notations and Assumptions

For d = 1, 2, 3 let Ω ⊂ Rd be an open domain with polygonal boundary. By L2(Ω) and H1
0 (Ω) we denote

as usual the Lebesgue space of square-integrable functions in Ω respectively the Sobolev space of functions

in H1(Ω) with homogeneous Dirichlet boundary. By K we denote a triangulation of Ω.

Throughout this paper we assume that K satisfies the following regularity property [19, 22].

Definition 1 (Shape regularity). Let K ∈ K be the image of the reference cell K̂ under some affine map

FK : K̂ 7→ K. Set hK := diam (K). Then K is called γ-shape regular, if and only if there exists some
γ > 0 such that

‖∇FK‖L∞(K̂)

hK
+ hK‖(∇FK)−1 ◦ FK‖L∞(K̂) ≤ γ ∀K ∈ K.

Let K ∈ K be arbitrary. Then we set

ωK,1 := K ∪ {x ∈ L : L ∈ K, K and L have a common edge}

and for i > 1 we inductively define

ωK,i :=
⋃
K∈K

K∩ωK,i−1 6=∅

K.

For simplicity we will write ωK := ωK,1. Let p := (pK)K∈K, pK ∈ N, be the polynomial degree vector on

mesh K. Then we set

pωK
:= max

L⊂ωK

(pL),

where pL denotes the polynomial degree of the ansatz space on cell L. Let f ∈ L2(Ω) and q ∈ N be

arbitrary. Then we denote the local L2-projection of f onto the space of polynomials of degree q by fq.

For d ∈ {1, 2, 3} let Q := [0, 1]d be the reference square respectively the reference cube and

T :=

{
x ∈ Rd : 0 < x1, . . . , xd,

d∑
i=1

xi ≤ 1

}

be the reference d-simplex. Obviously we have Q = T for d = 1. Let

Sp0 (K,Ω) :=
{
u ∈ H1

0 (Ω) : u|K ◦ FK ∈ PpK
(
K̂
)
∀K ∈ K

}
be a finite dimensional approximation space of piecewise polynomials with homogeneous Dirichlet bound-

ary, where

Pp

(
K̂
)

=

{
span {xiyj : 0 ≤ i, j ≤ p}, if K̂ = Q

span {xiyj : 0 ≤ i+ j ≤ p}, if K̂ = T
.

Finally, for N ∈ N we denote the mesh after refinement step N by KN .

2.2. The Model Problem

Throughout this paper we consider the problem to find u : Ω→ R such that

−∆u = f in Ω,

u = 0 on ∂Ω
(1)
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for given f : Ω → R. Multiplying the first equation of problem (1) with φ ∈ H1
0 (Ω) and integrating by

parts yields the weak formulation∫
Ω

(∇φ)T∇u =

∫
Ω

φf ∀φ ∈ H1
0 (Ω). (2)

If f ∈ L2(Ω), then the Lax–Milgram Theorem states that there exists a unique u ∈ H1
0 (Ω) satisfying (2).

Analogously, the discrete problem reads: Find uN ∈ Sp0 (KN ,Ω) such that∫
Ω

(∇φN )T∇uN =

∫
Ω

φNf ∀φN ∈ Sp0 (KN ,Ω) (3)

for given f ∈ L2(Ω).

Remark 1 (Nonhomogeneous boundary conditions). For problems with nonhomogeneous Dirichlet bound-
ary conditions u = g on ∂Ω, where g : ∂Ω → R, we may simply assume that there exists a lifting
ug ∈ H1(Ω) satisfying ug = g on ∂Ω such that this solution u is given by u := u0 + ug, where u0 is the
solution of the homogeneous boundary value problem (1).

3. hp -Adaptive Refinement Strategy

In this section we present our refinement strategy for problems in two and three space-dimensions and

prove the convergence of this hp -adaptive algorithm for two space-dimensions explicitly.

3.1. Refinement Strategy

The refinement strategy, which we present here, was developed in [8] for one space-dimension. In this

section we present a modified formulation, which is applicable to problems in two and three space-

dimensions as well.

Let TOL > 0 be some prescribed tolerance for our computed solution. We start our algorithm with some

coarse decomposition K0 of Ω and the approximation space Sp0 (K0,Ω) ⊂ H1
0 (Ω). We solve the discrete

problem (3) on this initial discretization and check if the energy error is below the prescribed tolerance.

3.1.1. Energy error indicator

We will estimate the energy error a posteriori, that is, only knowing the discrete solution uN and data.

For two dimensions the following method was proposed in [16]:

Definition 2 (Residual error estimator). Let K ∈ KN be arbitrary, hK its diameter and pK the poly-
nomial degree on the cell. Then the residual error indicator ηK associated with element K is given by
η2
K = η2

R,K + η2
B,K , where

ηR,K :=
hK
pK
‖fpK−1 + ∆uN‖L2(K)

is the weighted residual on cell K and

η2
B,K :=

∑
f⊆∂K∩Ω

hf
2pf

∥∥∥∥[∂uN∂nf

]∥∥∥∥2

L2(f)

is the weighted boundary residual with nf denoting the outward pointing unit normal and [w] denoting
the jump of a function w over face f .
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3.2. Refinement Patterns

A local procedure to enhance the finite element space is called a refinement pattern. For the h-adaptive

FEM the common refinement pattern to choose is the equal-sized bisection in every coordinate-direction.

To reduce the error contribution of the boundary terms as well, we have to assure that no new hanging-

nodes are produced at the edges of the cell. Thus we also have to refine the neighboring cells at least

anisotropically. This is shown for a quadrilateral in Figure 1 on the left-hand side. For the p-adaptive

FEM the common choice is to increase the polynomial degree pK by one, see Figure 1 on the right-hand

side. Also in this case we have to make sure that no new constrained degrees of freedom are created.

Hence we increase the polynomial degree on the neighboring cells as well. Further we provide the choice

of increasing the polynomial degree by two in some applications. This is shown in Figure 2. Thus for the

hp -adaptive FEM we have at least two different refinement patterns, the bisection and the increment of

the polynomial degree. Of course there are much more refinement patterns, which can be applied here,

e. g. anisotropic h-refinement or the increment of the polynomial order by some arbitrary number.

Henceforth let us assume that we have n ∈ N, n ≥ 2, different refinement patterns to choose from.

Figure 1: Refinement patterns on cell K. Left: Bisection in x- and y-direction. Right: Increase polynomial degree by one.

3.2.1. Convergence indicators for refinement cases

Let j ∈ {1, . . . , n} and K ∈ KN be arbitrary. Then we denote the finite element space of functions

compactly supported in ωK with refinement pattern j applied to K by Sp0,K,j(KN , ωK). Let βK,j be the

solution of the optimization problem

βK,jηK = sup
φ∈Sp

0,K,j(KN ,ωK)

(∫
ωK

(φfpωK
− (∇φ)T∇uN )

‖∇φ‖L2(ωK)

)
. (4)

If vN,j ∈ Sp0,K,j(KN , ωK) is the solution of the problem∫
ωK

(∇φ)T∇vN,j =

∫
ωK

(φfpωK
− (∇φ)T∇uN ) ∀φ ∈ Sp0,K,j(KN , ωK),
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Figure 2: Increase polynomial degree by two.

then we can see that for all φ ∈ Sp0,K,j(KN , ωK)∫
ωK

(φfpωK
− (∇φ)T∇uN )

‖∇φ‖L2(ωK)
≤

∫
ωK

(vN,jfpωK
− (∇vN,j)T∇uN )

‖∇vN,j‖L2(ωK)
= ‖∇vN,j‖L2(ωK).

Thus vN,j is the solution of the optimization problem.

3.2.2. Marking cells for refinement

Hence, if we solve problem (4) for every refinement case, we have a guess which refinement case provides

the biggest error reduction on every cell. Unfortunately this is not enough, because simply heading for the

biggest error reduction might be inefficient. Thus we also would like to take into account the amount of

work required for the achieved reduction of the error. For this we define numbers wK,j to be the number

of degrees of freedom, which the local refinement space Sp0,K,j(KN , ωK) has after we applied refinement

pattern j to cell K. Then we can mark the cells for refinement by looking for a solution
(
AN , (jK)K∈AN

)
of the minimization problem ∑

K∈AN

wK,jK
βK,jK

= min (5)

under the constraint ∑
K∈AN

(βK,jKεK)
2 ≥ θ2

∑
K∈KN

ε2
K . (6)

Unfortunately this problem is NP-hard. Here we suggest the following strategy: First we define jK ∈ N
for every K ∈ KN by

wK,jK
βK,jK

= min
j=1,...,n

(
wK,j
βK,j

)
and then we construct a minimal possible AN fulfilling constraint (6) as proposed in [7].

3.2.3. hp -adaptive refinement algorithm

In summary, we can state our hp -adaptive refinement algorithm as follows:
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(S0) Start with coarse grid K0, N := 0.

(S1) Solve the linear system of equations to get an approximate solution uN ∈ Sp0 (KN ,Ω).

Compute a local error indicator εK on every cell K ∈ KN .

If

ε2 :=
∑

K∈KN

ε2
K > TOL :

For all cells K ∈ KN and all refinement cases j = 1, . . . , n compute the values βK,j as shown in

Section 3.2.1.

Else: STOP

(S2) To mark the cells for refinement we look for a tuple
(
AN , (jK)K∈AN

)
as proposed in Section 3.2.2.

(S3) Refine the cells contained inAN according to the refinement patterns (jK)K∈AN
and set N := N+1.

Continue with step (S1).

3.3. A Posteriori Error Estimate

An a posteriori error estimate is an upper bound of some error quantity, which only relies on information

obtained from the solution of the discrete problem. Here we consider the energy error ‖∇(u− uN )‖L2(Ω)

and prove

‖∇(u− uN )‖2L2(Ω) ≤
∑

K∈KN

ε2
K ,

where the εK are some computable quantities that are local in K.

Theorem 1 (A posteriori error estimates). Let ε > 0 and KN be a γ-shape regular mesh. Assume that
for all K1,K2 ∈ KN with K1 ∩K2 6= ∅ holds

pK1

γ
≤ pK2

≤ γpK1
. (7)

Then there exists some constant C1 > 0, independent of cell diameter hK and polynomial degree pK for
all K ∈ KN , such that

‖∇(u− uN )‖2L2(Ω) ≤ C1

∑
K∈KN

(
η2
K +

h2
K

p2
K

‖f − fpK−1‖2L2(K)

)
with ηK as in Definition 2. Further there exists some C2(ε) > 0, independent of hK and pK , such that

η2
K ≤ C2(ε)

(
p

2(1+ε)
K ‖∇(u− uN )‖2L2(ωK) +

h2
K

p1−4ε
K

‖fpK−1 − f‖2L2(ωK)

)
.

Proof. See [16], Lemmas 3.1, 3.4 and 3.5 with α = 0.

3.4. Convergence of hp -Adaptive Strategy

Now we will show the convergence of our refinement strategy in two space-dimensions. For this we have

to show that the energy error decays in every refinement step, i. e. for N ∈ N0 and some κ ∈ (0, 1) we

have

‖∇(u− uN+1)‖L2(Ω) ≤ κ‖∇(u− uN )‖L2(Ω).

Before we give the proof we first introduce an hp -efficient Scott–Zhang type interpolation operator, which

was developed in [16] and is used in our proof later on. This interpolation operator is a generalization of

the interpolation operator of [20] to the hp -context.

The following theorem states an upper bound for the interpolation error.
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Theorem 2 (Scott–Zhang type interpolation). Let K be a γ-shape regular triangulation of Ω. Assume
that assumption (7) holds for all K1,K2 ∈ K with K1 ∩ K2 6= ∅. Then there exist a linear operator
I : H1

0 (Ω)→ Sp0 (K,Ω) and a constant CI > 0, depending only on γ, such that

1. Iu|∂Ω = u|∂Ω = 0

2. For all K ∈ K holds

‖u− Iu‖L2(ωK) ≤ CI
hK
pK
‖∇u‖L2(ωK,5).

Proof. In the vertex-based formulation (and notation) of Theorem 2.2 in [16] we have the two inequalities

‖u− Iu‖L2(ωK) ≤
∑
V ∈VK

‖u− Iu‖L2(ωV,1)

and
hV
pV
‖∇u‖L2(ωV,4) ≤

hV
pV
‖∇u‖L2(ωK,5) ≤ C

hK
pK
‖∇u‖L2(ωK,5),

where C depends solely on γ. Thus the result is a direct consequence of the cited theorem.

Now we are ready to prove the convergence of our algorithm. This theorem is a generalization of Theorem

4 of [8] to two space-dimensions. The proof for the three-dimensional case follows the same arguments,

but with three-dimensional versions of Theorems 1 and 2. For an idea on their proofs see [15].

Theorem 3 (Convergence). Let N ∈ N be arbitrary and Sp0 (KN ,Ω) be the finite element space over
a γ-shape regular discretization KN of a bounded domain Ω ⊂ R2. Further we assume that inequality
(7) holds for all K1,K2 ∈ KN with K1 ∩ K2 6= ∅. Let u ∈ H1

0 (Ω) be the solution of problem (2) and
uN ∈ Sp0 (KN ,Ω) be the solution of the discrete problem (3) in iteration step N . Let θ ∈ [0,min{1, 2

√
C1}]

and ε > 1/2 such that

θ2 ≥ 8C1CcovC
2

max
K∈KN

(p2ε
K )

(8)

with C1 from Theorem 1, Ccov from (12) and C > 0 depending only on γ. Further we assume that the
data error is controlled by the discretization error, i.e. there exists some

µ ∈

0,min

1,
1√

2C2(ε)Ccov max
K∈KN

(
p

2ε+ 1
2

K

)



independent of hK , pK , K ∈ KN , where C2(ε) is from Theorem 2, such that

∑
K∈KN

h2
K

p2
K

‖f − fpK−1‖2L2(K) ≤ µ
2
∑

K∈KN

η2
K . (9)

In addition we assume that in every refinement step N ∈ N the minimization problem (5), (6) has a
solution (AN , (jK)K∈AN

). Let uN+1 ∈ Sp0 (KN+1,Ω) be the solution of the discrete problem (3) in the
following iteration step N + 1. Then there exists a constant κ ∈ (0, 1) such that

‖∇(u− uN+1)‖L2(Ω) ≤ κ‖∇(u− uN )‖L2(Ω).

Thus, if we run the hp-adaptive algorithm presented in Section 3.2.3, the energy error decreases uniformly
in every iteration step.
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Proof. Since Sp0 (KN ,Ω) ⊆ Sp0 (KN+1,Ω), we can use the Galerkin orthogonality∫
Ω

(∇(u− uN+1))T∇(uN+1 − uN ) = 0

to get
‖∇(u− uN )‖2L2(Ω) = ‖∇(u− uN+1)‖2L2(Ω) + ‖∇(uN+1 − uN )‖2L2(Ω).

Thus the proof follows, if there exists some κ ∈ (0, 1) such that

‖∇(uN+1 − uN )‖2L2(Ω) ≥ (1− κ2)‖∇(u− uN )‖2L2(Ω). (10)

Let K ∈ KN and vN+1 ∈ Sp0 (KN+1,Ω) with supp (vN+1) ⊂ ωK . Then by Galerkin orthogonality we see∫
ωK

(∇vN+1)T∇(uN+1 − uN ) =

∫
ωK

(∇vN+1)T∇(uN+1 − u+ u− uN )

=

∫
ωK

(vN+1f − (∇vN+1)T∇uN )

=

∫
ωK

(vN+1fpωK
− (∇vN+1)T∇uN ) +

∫
ωK

vN+1

(
f − fpωK

)
.

Using the definition of fpωK
we get∫

ωK

(∇vN+1)T∇(uN+1 − uN )

=

∫
ωK

(vN+1fpωK
− (∇vN+1)T∇uN ) +

∫
ωK

(vN+1 − vN )
(
f − fpωK

)
,

which implies∣∣∣∣∫
ωK

(∇vN+1)T∇(uN+1 − uN )

∣∣∣∣
≥
∣∣∣∣∫
ωK

(vN+1fpωK
− (∇vN+1)T∇uN )

∣∣∣∣− ∣∣∣∣∫
ωK

(vN+1 − vN )
(
f − fpωK

)∣∣∣∣ ,
and applying the Cauchy–Schwarz inequality yields∣∣∣∣∫

ωK

(vN+1fpωK
− (∇vN+1)T∇uN )

∣∣∣∣
≤ ‖∇vN+1‖L2(ωK)‖∇(uN+1 − uN )‖L2(ωK) + ‖vN+1 − vN‖L2(ωK)

∥∥∥f − fpωK

∥∥∥
L2(ωK)

. (11)

Choosing vN := INvN+1 with IN : H1
0 (Ω)→ Sp0 (KN ,Ω) as in Theorem 2 implies

‖vN+1 − vN‖L2(ωK) = ‖vN+1 − INvN+1‖L2(ωK) ≤ CI
hK
pK
‖∇vN+1‖L2(ωK,5).

Since supp (vN+1) ⊂ ωK ⊂ ωK,5 we have

‖vN+1 − vN‖L2(ωK) ≤ CI
hK
pK
‖∇vN+1‖L2(ωK)
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and inserting into (11) yields∣∣∣∣∫
ωK

(vN+1fpωK
− (∇vN+1)T∇uN )

∣∣∣∣
≤
(
‖∇(uN+1 − uN )‖L2(ωK) + CI

hK
pK

∥∥∥f − fpωK

∥∥∥
L2(ωK)

)
‖∇vN+1‖L2(ωK).

Dividing by ‖∇vN+1‖L2(ωK) and taking the supremum on both sides yields

sup
φ∈Sp

0,K,jK
(KN ,ωK)

(∫
ωK

(φfpωK
− (∇φ)T∇uN )

‖∇φ‖L2(ωK)

)

≤ sup
vN+1∈Sp

0 (KN+1,Ω)
supp (vN+1)⊂ωK

(∫
ωK

(vN+1fpωK
− (∇vN+1)T∇uN )

‖∇vN+1‖L2(ωK)

)

≤ ‖∇(uN+1 − uN )‖L2(ωK) + CI
hK
pK

∥∥∥f − fpωK

∥∥∥
L2(ωK)

and with (4) we have

βK,jKηK ≤ ‖∇(uN+1 − uN )‖L2(ωK) + CI
hK
pK

∥∥∥f − fpωK

∥∥∥
L2(ωK)

.

Squaring both sides and summing up over K ∈ KN yields∑
K∈AN

(βK,jKηK)
2 ≤

∑
K∈KN

(βK,jKηK)
2

≤ 2

( ∑
K∈KN

‖∇(uN+1 − uN )‖2L2(ωK) + C2
I

∑
K∈KN

h2
K

p2
K

∥∥∥f − fpωK

∥∥∥2

L2(ωK)

)

≤ 2Ccov

(
‖∇(uN+1 − uN )‖2L2(Ω) + C2

∑
K∈KN

h2
K

p2
K

‖f − fpK−1‖2L2(K)

)

(use the minimal property of fpωK
in L2(ωK)) with the covering constant

Ccov := max
K∈KN

|{L ∈ KN : L ⊂ ωK}|, (12)

where |A| denotes the cardinality of the set A, and C > 0 is a constant that depends only on γ. Finally
by assumption (9) we get

∑
K∈AN

(βK,jKηK)
2 ≤ 2Ccov

(
‖∇(uN+1 − uN )‖2L2(Ω) + C2µ2

∑
K∈KN

η2
K

)
. (13)

From Theorem 1 we know that there exists some C1 > 0 such that

‖∇(u− uN )‖2L2(Ω) ≤ C1

∑
K∈KN

(
η2
K +

h2
K

p2
K

‖f − fpK−1‖2L2(K)

)
≤ C1(1 + µ2)

∑
K∈KN

η2
K

≤ 2C1

∑
K∈KN

η2
K

9



by (9) (and µ ≤ 1). Multiplying both sides by θ2 ∈ [0, 1] yields

θ2‖∇(u− uN )‖2L2(Ω) ≤ 2C1θ
2
∑

K∈KN

η2
K

and by applying inequality (6) with εK := ηK we have

θ2‖∇(u− uN )‖2L2(Ω) ≤ 2C1

∑
K∈AN

(βK,jKηK)
2
.

Then we see

θ2‖∇(u− uN )‖2L2(Ω) ≤ 4C1Ccov

(
‖∇(uN+1 − uN )‖2L2(Ω) + C2µ2

∑
K∈KN

η2
K

)
(14)

by equation (13). From Theorem 1 we know

∑
K∈KN

η2
K ≤ C2(ε)

∑
K∈KN

(
p

2(ε+1)
K ‖∇(u− uN )‖2L2(ωK) +

h2
K

p1−4ε
K

‖f − fpK−1‖2L2(ωK)

)

≤ C2(ε)Ccov

(
max
K∈KN

(
p

2(ε+1)
K

)
‖∇(u− uN )‖2L2(Ω) + max

K∈KN

(
p4ε+1
K

) ∑
K∈KN

h2
K

p2
K

‖f − fpK−1‖2L2(K)

)

and assumption (9) yields

∑
K∈KN

η2
K ≤ C2(ε)Ccov

(
max
K∈KN

(
p

2(ε+1)
K

)
‖∇(u− uN )‖2L2(Ω) + µ2 max

K∈KN

(
p4ε+1
K

) ∑
K∈KN

η2
K

)
.

Hence for

µ <
1√

C2(ε)Ccov max
K∈KN

(
p

2ε+ 1
2

K

)
we have ∑

K∈KN

η2
K ≤

C2(ε)Ccov max
K∈KN

(
p

2(ε+1)
K

)
1− µ2C2(ε)Ccov max

K∈KN

(
p4ε+1
K

) ‖∇(u− uN )‖2L2(Ω)

and with the even more restrictive assumption

µ <
1√

2C2(ε)Ccov max
K∈KN

(
p

2ε+ 1
2

K

) (15)

we get ∑
K∈KN

η2
K ≤ 2C2(ε)Ccov max

K∈KN

(
p

2(ε+1)
K

)
‖∇(u− uN )‖2L2(Ω).

Inserting into (14) yields

θ2‖∇(u− uN )‖2L2(Ω)

≤ 4C1Ccov

(
‖∇(uN+1 − uN )‖2L2(Ω) + 2µ2C2(ε)CcovC

2 max
K∈KN

(
p

2(ε+1)
K

)
‖∇(u− uN )‖2L2(Ω)

)
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and by (15) we get

θ2‖∇(u− uN )‖2L2(Ω) ≤ 4C1Ccov

‖∇(uN+1 − uN )‖2L2(Ω) +
C2

max
K∈KN

(p2ε−1
K )

‖∇(u− uN )‖2L2(Ω)

 .

Therefore

1

4C1Ccov

θ2 − 4C1CcovC
2

max
K∈KN

(p2ε−1
K )

 ‖∇(u− uN )‖2L2(Ω) ≤ ‖∇(uN+1 − uN )‖2L2(Ω)

and by (8) we have

θ2 − 4C1CcovC
2

max
K∈KN

(p2ε−1
K )

≥ 1

2
θ2.

Since Ccov > 1 and θ < 2
√
C1, inequality (10) holds with

κ2 := 1− θ2

4C1Ccov
.

This completes the proof of the theorem.

Remark 2.

1. For θ ∈ [0,min{1, 2
√
C1}] assumption (8) can always be satisfied by choosing pK big enough for

some K ∈ KN . However, the qualitative convergence result might be a first step towards proving
optimality [5, 21].

2. The data saturation assumption (9) can only be satisfied, if the integrals on the left-hand side are
computed with negligible error. To achieve this one can use high-order quadrature rules and perform
local refinement according to the local error indicator

h2
K

p2
K

‖f − fpK−1‖2L2(K)

until (9) is satisfied or build some data error control into the whole algorithm as proposed in [14, 17].

3. If the computed values βK,jK are too small or θ is chosen too large, then the solution (AN , (jK)K∈AN
)

of the minimization problem (5), (6) might not exist for some N ∈ N. Especially this is the case if

max
K∈AN

βK,jK < θ.

Then our algorithm will continue with global refinement, but a uniform decrease of the error cannot
be guaranteed anymore.

4. If βK,jK is uniformly bounded from below, then there is a choice for θ such that convergence ac-
cording to Theorem 3 is assured. We think this can be shown following the ideas in [8], Theorem 5.
However, this property can also be assured by monitoring the known values of βK,jK thus checking
the convergence in an a posteriori way.

4. Numerical Results

We apply our refinement strategy to some representative problems of the form (1). For both, two and

three space-dimensions, we choose one example with a smooth solution and one with a singular solution

to show how the refinement strategy behaves under these very different circumstances. The computations

are performed with the finite element library deal.II [3, 4] in combination with parts of the Trilinos Project

[10, 11].
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4.1. Example 1

In the first example our algorithm is applied to a problem of the form (1) with a smooth solution.

Let Ω := (0, 1)2, g := 0 and

u(x, y) := x(1− x)y(1− y)(1− 2y) exp
(
−2.5(2x− 1)2

)
.

We start our algorithm with the triangulation K0 consisting of 64 cells of same size. As refinement patterns

we offer the usual bisection in every coordinate-direction of a cell as h-refinement and the increment of

the polynomial degree of the cell by one as p-refinement. We denote this strategy by Θ1. As initial

polynomial degree we choose p = 2 on all cells. For θ ∈ [0, 1] we choose θ := 0.35. In Figure 3 we plot the

number of degrees of freedom vs. the true energy error respectively the estimated error in log10-log10-scale

on the left-hand side and the distribution of the polynomial degree on the final grid on the right-hand

side. In Table 1 on the left-hand side the marking history is shown. There we denote the number of cells

marked for h-refinement by #h and the number of cells marked for p-refinement by #p. We observe that

no h-refinement takes place and the algorithm performs full p-refinement in every refinement step, which

is the case because the solution u is very smooth. On the final grid the polynomial degree is equally

distributed with value 8. In Figure 4 we plot θ vs. the number of degrees of freedom on the left-hand

side and θ vs. the number of refinement steps on the right-hand side. There we can see that the minimal

number of degrees of freedom we achieved is 1967, which is attained for θ = 0.1. For θ ≥ 0.35 global

refinement is performed. The number of refinement steps decays for increasing θ. In Figure 5 on the

left-hand side we plot θ vs. the computation time in seconds. The minimal computation time we achieved

is approx. 1.91 s. This supports our choice θ = 0.35. For K ∈ K0 we have βK,jK ∈ [0.27, 0.58]. Thus the

optimal value for θ lies near the minimal value of βK,jK .

Figure 3: Example 1: Strategy Θ1. Left: Number of degrees of freedom vs. error. Right: Distribution of polynomial degree.

In a second try we add the increment of the polynomial degree by two as a third refinement possibility

to the algorithm. We denote this refinement strategy by Θ2. In Figure 3 on the left-hand side we plot

the number of degrees of freedom vs. the true energy error respectively the estimated error in log10-log10-

scale. We note that this strategy produces the same final result as Θ1, but with half the number of

refinement steps. In Figure 4 we plot θ vs. the number of degrees of freedom and θ vs. the number of

refinement steps. The minimal number of degrees of freedom we achieved for this run is 2401 for θ = 0.35.

The number of refinement steps is reduced significantly with this third refinement pattern in use and the

computation time is reduced to approx. 1.26 s.
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Step #Cells max(p) #h #p
0 64 2 0 64
1 64 3 0 64
2 64 4 0 64
3 64 5 0 64
4 64 5 0 64
5 64 6 0 64
6 64 7 0 64

Step #Cells max(p) #h #p
0 64 2 0 8
1 64 3 0 24
2 64 4 0 24
3 64 5 0 24
4 64 6 0 24
5 64 7 9 24

Table 1: Left: Example 1. Marking history. Right: Example 3. Marking history.

Figure 4: Example 1. Left: θ vs. number of degrees of freedom. Right: θ vs. number of refinement steps.

4.2. Example 2

The second example shows how the algorithm performs, if the solution of model problem (1) has a corner

singularity.

Let Ω := (−1, 1)2 \ [0, 1)× (−1, 0], f := 0 and

u(r, φ) := r
2
3 sin

(
2

3
φ

)
,

where r ∈ [0, 1) and φ ∈ [0, 2π) denote the polar coordinates, and g := u. Again we use refinement

strategy Θ1. We start our computations with initial grid K0 consisting of 48 cells of the same size

and polynomial degree p = 2 on every cell. We choose θ = 0.25. In Figure 5, on the right-hand side,

we plot the number of degrees of freedom vs. the true energy error respectively the estimated error in

log10-log10-scale. The distribution of the polynomial degree on the final grid is shown in Figure 6 on the

left-hand side. We see that the algorithm performs h-refinement around the singularity located at 0 only.

The polynomial degree is raised up to 8 away from the singularity. In Table 2 the marking history is

shown. We observe that the algorithm starts with some h-refinements around the singularity and then

performs more and more p-refinements. In Figure 6 we plot θ vs. the number of degrees of freedom on the

right-hand side. There we can see that the number of degrees of freedom increases for increasing θ until

θ = 0.3. For θ ≥ 0.3 the number of degrees of freedom stays constant at its maximum value 14457, since

in this range global refinement is performed. The minimal number of degrees of freedom we achieved is

2690 for θ = 0.15. θ vs. the number of refinement steps is shown in Figure 7 on the left-hand side. We

observe that the number of refinement steps decays for increasing θ. Further we see that the number of

13



Figure 5: Left: Example 1. θ vs. computation time. Right: Strategy Θ2. Number of degrees of freedom vs. error.

degrees of freedoms and the number of refinement steps change ’discontinuously’ in the interval [0.25, 0.3].

This behaviour can also be observed in the computation time, which is required for the different values

of θ – see Figure 7 on the right-hand side. The minimal computation time is achieved for θ = 0.25 and

we see that with βK,jK ∈ [0.18, 1] for K ∈ K0 we have a good indicator for the choice of θ again.

Figure 6: Example 2. Left: Distribution of polynomial degree. Right: θ vs. number of degrees of freedom.

4.3. Example 3

Now we investigate the performance of our hp -adaptive refinement strategy in three space-dimensions.

First we consider a smooth example again. Let Ω := [0, 1]3, u(x, y, z) := sin(πx) sin(πy) sin(πz), f := 3π2u

and g := 0. We use refinement strategy Θ1 and start our computations with initial grid K0 consisting of

64 equally sized cells. As initial polynomial degree we choose p = 2 on all cells. We choose θ = 0.2. In

Figure 8 we plot the number of degrees of freedom vs. the true energy error respectively the estimated

error in log10-log10-scale on the left-hand side. We can see that the polynomial degree equals 8 on all cells

except the ones located at the corners. There the polynomial degree is raised to 7 only. In Table 1 on

the right-hand side the marking history is shown. We observe that the algorithm performs p-refinements

14



Step #Cells max(p) h p
0 48 2 3 2
1 75 3 3 0
2 102 3 3 0
3 129 3 3 0
4 156 3 3 0
5 183 3 3 0
6 210 3 3 4
7 237 3 3 10
8 264 4 3 10
9 291 4 3 11
10 318 4 3 10

Step #Cells max(p) h p
11 345 4 3 10
12 372 4 3 18
13 399 4 3 18
14 426 4 3 22
15 453 5 3 23
16 480 5 3 28
17 507 6 3 12
18 534 6 3 22
19 561 6 1 28
20 576 6 1 32
21 591 6 1 26

Table 2: Example 2. Marking history

Figure 7: Example 2. Left: θ vs. number of refinement steps. Right: θ vs. computation time.

only. In Figure 9 we plot θ vs. the number of degrees of freedom on the left-hand side. There we can

see that the number of degrees of freedom stays constant unless a jump at θ = 0.235. This is due to the

point-wise symmetry of the analytic solution. For θ ≤ 0.23 the number of degrees of freedom is 24333

and for θ ≥ 0.24 the number of degrees of freedom is 24389. The number of refinement steps has constant

value 5 for all θ ∈ [0, 1]. In Figure 7 on the right-hand side we plot θ vs. the computation time in seconds.

For K ∈ K0 we have βK,jK ∈ [0.27, 0.63]. Hence the optimal value for θ lies again near the minimal value

of βK,jK .

In a second try we use the refinement strategy Θ2. We plot the number of degrees of freedom vs. the

true error in Figure 10 on the left-hand side. The distribution of the polynomial degree is shown on the

right-hand side. We observe that also strategy Θ2 raises the polynomial degree to 8 on all cells except

the ones located at the corners. There the polynomial degree has value 6 only.

4.4. Example 4

In our last example we consider again a problem with a corner singularity. Let Ω := [−1, 1]3 \ (0, 1]3,

u(x, y, z) :=
(
x2 + y2 + z2

) 1
3 , f(x, y, z) := − 10

9 (x2 + y2 + z2)
2
3
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Figure 8: Example 3: Θ1. Left: Number of degrees of freedom vs. error. Right: Distribution of polynomial degree.

Figure 9: Example 3. Left: θ vs. number of degrees of freedom. Right: θ vs. computing time.

and g := u. Again we use refinement strategy Θ1 and start our computations with initial grid K0

consisting of 448 equally sized cells and polynomial degree p = 2 on all cells. We choose θ = 0.16.

In Figure 11 on the left-hand side we plot the number of degrees of freedom vs. the true energy error

respectively the estimated error in log10-log10-scale. In Table 3 we show the marking history. We observe

that the algorithm starts with some h-refinements around the singularity located at 0 and then performs

more and more p-refinements. In Figure 11 we plot θ vs. the number of degrees of freedom. There we

can see that the number of degrees of freedom is increasing for θ ≤ 0.21. Then the number of degrees of

freedom stays constant at 1349548. The minimal number of degrees of freedoms we achieved is 519342

for θ = 0.16. For θ ≥ 0.16 the number of refinement steps is constant as can be seen in Figure 12. Only

for θ = 0.16 the algorithm requires more refinement steps. For K ∈ K0 we have βK,jK ∈ [0.15, 1]. Also

in this example the minimal value of βK,jK is a good indicator for the choice of θ.
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Figure 10: Example 3: Θ2. Left: Number of degrees of freedom vs. error. Right: Distribution of polynomial degree.

Figure 11: Example 4: Left: Number of degrees of freedom vs. error. Right: θ vs. number of degrees of freedom.
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Nr. 08/02 Götz Alefeld, Zhengyu Wang: Error Estimation for Nonlinear Complementarity Pro-
blems via Linear Systems with Interval Data

Nr. 08/03 Ulrich Kulisch : Complete Interval Arithmetic and its Implementation on the Com-
puter

Nr. 08/04 Armin Lechleiter, Andreas Rieder: Newton Regularizations for Impedance Tomogra-
phy: Convergence by Local Injectivity

Nr. 08/05 Vu Hoang, Michael Plum, Christian Wieners: A computer-assisted proof for photonic
band gaps

Nr. 08/06 Vincent Heuveline, Peter Wittwer: Adaptive boundary conditions for exterior statio-
nary flows in three dimensions

Nr. 08/07 Jan Mayer: Parallel Algorithms for Solving Linear Systems with Sparse Triangular
Matrices

Nr. 08/08 Ulrich Kulisch : Begegnungen eines Mathematikers mit Informatik
Nr. 08/09 Tomas Dohnal, Michael Plum, Wolfgang Reichel: Localized Modes of the Linear

Periodic Schrödinger Operator with a Nonlocal Perturbation
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