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LOCAL INVERSION OF THE SONAR TRANSFORM

REGULARIZED BY THE APPROXIMATE INVERSE

ERIC TODD QUINTO, ANDREAS RIEDER, AND THOMAS SCHUSTER

Abstract. A new reconstruction method is given for the spherical mean transform with centers on
a plane in R

3 which is also called Sonar transform. Standard inversion formulas require data over all
spheres, but typically, the data are limited in the sense that the centers and radii are in a compact
set. Our reconstruction operator is local because, to reconstruct at x, one needs only spheres that
pass near x, and the operator reconstructs singularities, such as object boundaries. The microlocal
properties of the reconstruction operator, including its symbol as a pseudodifferential operator, are
given. The method is implemented using the approximate inverse, and reconstructions are given.
They are evaluated in light of the microlocal properties of the reconstruction operator.

A version of this preprint containing color figures can be downloaded under

www.math.kit.edu/ianm3/~rieder/media/local_sonar.pdf.

1. Introduction

In this article, we develop a novel local reconstruction method for the spherical Radon transform
with centers on a plane. As this transform is one model for Sonar under the Born approximation,
that is, under the assumption there are not multiple scattering events, it is also called Sonar
transform.

Let u(t;x) be the acoustic pressure field at x ∈ R
3 at time t ≥ 0. Then, u satisfies the acoustic

wave equation

(1.1) ∆xu− 1

ν2
∂2

t u = −δ(x − z)δ(t)

where ν = ν(x) is the speed of sound and z ∈ P = {x ∈ R
3
∣∣x3 = 0} is the excitation point on the

ocean surface. The inverse problem in Sonar is to recover ν from the backscattered (reflected) field
us observed at P for all times t > 0.

Cohen and Bleistein [3] made the ansatz

1

ν2(x)
=

1 + n(x)

c2

where c is a constant background velocity. Then,

(1.2)
1

4π

1

c2τ2

∫

S(y, cτ
2

)

n(x)dS(x) = −c2
∫ τ

0
(τ − t)us(t,y) dt + higher order terms in n
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where S(y, r) is the sphere centered at y ∈ R
3 and of radius r and τ is the observation period.

Under the assumption that n≪ 1 (i.e. the Born approximation), the higher order terms are set to
zero and the right-hand side of (1.2) becomes an integral from 0 to τ of the solution to the wave
equation. Thus, (1.2) reduces to recovering n(x) from integrals of n over spheres centered on the
plane P where the right had side in (1.2) is known from the measured data u(t,y).

Since we are interested in spheres with centers on the plane x3 = 0, we define our spheres in
terms of z ∈ R

2 and r > 0

(1.3) S(z, r) = {x ∈ R
3
∣∣|x − (z, 0)| = r}, Y = {(z, r)

∣∣z ∈ R
2, r > 0}.

We define the spherical Radon transform for (z, r) ∈ Y to be the spherical mean over S(z, r):

(1.4) Rf(z, r) =
1

4πr2

∫

S(z,r)
n(x)dS(x).

Our goal is to use this spherical mean data to reconstruct a picture of f showing region boundaries.
Since the null space of R is the set of odd functions [4], R is not injective for arbitrary functions on
R

3. Courant and Hilbert’s null space characterization implies R is injective for functions supported
in x3 > 0. We let

R
3
+ = {x ∈ R

3
∣∣x3 > 0}

and we will consider only functions supported in R
3
+. This is a realistic assumption for functions

in the ocean when we assume x3 > 0 points down to the ocean floor.

We define the backprojection operator R∗ for compactly supported functions g(z, r) as

(1.5) R∗g(x) =

∫

R2

g(z, |x − (z, 0)|)dz.

Note that

|x− (z, 0)| =
√

|x′ − z|2 + x2
3 where x′ = (x1, x2, x3)

′ := (x1, x2).

The operator R∗ is used in [2, 6] and it is the dual operator to R if the measure on R
3
+ is dx and

the measure on Y is 4πr2drdz. The problem is that one cannot define R∗ on the range of R even
for compactly supported functions f because Rf is not necessarily compactly supported even if
f is. Therefore we will need to include a cutoff function, see (2.2) below, in the definition of our
reconstruction operator.

Inversion algorithms for this problem exist if data are known over all spheres with center on a
plane [17, 2, 6, 13]. For the two-dimensional problem, Palamodov [18] analyzed the visible and
invisible singularities, providing seminorm strength estimates for each, and Denisjuk [5] developed
inversion algorithms. Schuster and Quinto [25] adapted the approximate inverse to distributions and
used it to develop an inversion algorithm for the two-dimensional problem. This model, integration
over spheres, also comes up in thermoacoustic and photoacoustic tomography, but in this case the
centers are constrained to lie on a sphere or other surface that encloses the region to be imaged
([1, 11, 14, 27] provide references and background).

Our reconstruction operator is local in the sense that to reconstruct at a point x, one needs only
spheres that are near x, and the operator is easily restricted to the data that are given in practice.
Typical data are limited since one can acquire data only over a compact set in Y , and the authors
know of no reconstruction method from this limited data in R

3. Our reconstruction operator will
detect singularities such as boundaries of the object rather than finding reflectivity values, and
as shown in Sect. 5, the operator can image objects clearly. Furthermore, our algorithm is easy
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to adapt to different data acquisition geometries, such as when z lies on an arbitrary C∞ surface
rather than a plane.

In Section 2 we define our reconstruction operator and give its basic properties. To understand
why and how our algorithm detects singularities we will analyze its (principal) symbol as a pseudo-
differential operator (ΨDO) (Section 3). In Section 4 we use the approximate inverse to regularize
our inversion operator. To this end we analytically compute a reconstruction kernel from a given
mollifier (Theorem 4.1). Finally, we present several fully 3D numerical experiments in Section 5
and analyze the resulting reconstructions in the light of the microlocal results we developed in
Section 3. The technical proof of Theorem 4.1 is given in the appendix.

2. Our Local Reconstruction Operator

In contrast to the planar Radon transform that integrates over planes, the spherical Radon
transform R cannot be formulated as bounded operator neither between appropriate L2-, nor
Sobolev spaces. Moreover Andersson [2] proves that R acts as a bounded mapping between suitable
chosen spaces of tempered distributions. Let

Se(R
3) := {f ∈ S(R3)

∣∣f(x′,−x3) = f(x′, x3)}
be the space of rapidly decreasing functions that are even in x3 and let

Sr(R
2 × R

3) = {f ∈ S(R5)
∣∣f(z, w) = f̌(z, ‖w‖) for a function f̌ ∈ Se(R

3)}
be the space of rapidly decreasing functions in R

5 that are radially symmetric in the last three
components. The dual spaces Se(R

3)′ and Sr(R
2 × R

3)′ of Se(R
3) and Sr(R

2 × R
3), respectively,

consist of tempered distributions. In general f ∈ Se(R
3) does not imply that Rf ∈ Sr(R

2×R
3), but

it is easy to show that Rf ∈ Sr(R
2×R

3)′. By a density argument we derive that R maps Se(R
3)′ to

Sr(R
2 × R

3)′ and Andersson [2, Th. 2.1] proved that this gives a bounded operator whose adjoint
maps Sr(R

2 × R
3) to Se(R

3),

R∗ : Sr(R
2 × R

3) → Se(R
3),

and has dense range. As a consequence we see that the composition R∗R is not meaningfully
defined in general and this is the reason for introducing a cutoff function φ in (2.2) below to obtain
φRf ∈ Sr(R

2 × R
3).

We use the following notation. Let ∆ be the full Laplacian in R
3. We let Hx3

be the Hilbert
transform in x3 (the Fourier multiplier with symbol −i sgn(ξ3) [26]), and we let ∂x3

= ∂/∂x3.

Our local algorithm starts from an exact formula of Klein [13] that is based on work of Andersson
[2] and Fawcett [6]. The formula of Klein involves a modified dual operator that includes derivatives
with respect to x of the data. He proves that the addition of the derivative allows one to compose
the dual operator with R for functions in the range of R [13]. Klein’s formula in R

3 is

(2.1) f =
1

2π
Hx3

∆1/2

∫

R2

(
∂x3

Rf(z, r)
∣∣
r=
√

|x′−z|2+x2

3

)
dz.

The integral in (2.1) is the R∗ integral but with a ∂x3
inside the integral.

Now we make (2.1) local. We replace the non-local operator ∆1/2 by ∆, and we replace the
Hilbert transform Hx3

(a pseudodifferential operator of order zero) by −1. We use −1 rather than

1 so that the symbol of our operator Λ (3.2) is positive for ξ3 > 0. The replacement of
√

∆ by
∆ increases the order of the operator from order zero (the order of the identity) to order one.
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For convenience, we replace the constant in our formula 1
2π by 1. Finally, we specify constants

0 < T ′ < T and 0 < δ < δ′ < M ′ < M and choose a C∞ cutoff in z and in r

(2.2)

φ : R
2 × (0,∞) → [0, 1], supp(φ) = [−T, T ]2 × [δ,M ],

φ(z, r) > 0 (z, r) ∈ (−T, T )2 × (δ,M),

φ(z, r) = 1 (z, r) ∈ [−T ′, T ′]2 × [δ′,M ′].

Including φ allows us to compose R∗ and R even when the data Rf is not compactly supported.
Multiplying by φ(z, r) before using ∂x3

allows us to bring the derivative ∂x3
outside the R∗ integral

to get our reconstruction operator for x ∈ R
3:

(2.3) Λf(x) := −∆∂x3
R∗
(
φ(z, r)Rf(z, r)

)
(x).

This operator is a natural generalization of the Lambda tomography operator [7] since it is of
order one as we will claim in Theorem 3.2 and it is local in the following sense. To reconstruct
Λf(x) one needs only spheres near x to calculate the derivatives and to evaluate R∗.

3. The microlocal properties of Λ and its symbol as a ΨDO

In this section, we give the microlocal properties of R. We prove Λ is an elliptic ΨDO on R
3
+ and

we give its symbol. This will show how much Λ emphasizes singularities in different directions. In
order to understand what R and Λ do to singularities, we must first understand what singularities
are and this will be framed in terms of the wavefront set.

For f ∈ L1(Rn) we define the Fourier transform of f to be

Ff(ξ) =
1

(2π)n/2

∫

Rn

f(x) exp(−iξ · x)dx

and we note that F−1f(x) = Ff(−x). Therefore, if Ff is rapidly decreasing at ∞ (decreasing faster
than any power of 1/|ξ| at ∞) then f and all its derivatives are continuous; that is f ∈ C∞(Rn).
This is the motivation for the definition of wavefront set: we can understand smoothness of f by
understanding where Ff is rapidly decreasing. We note that a cutoff function at x0 will be any
C∞ compactly supported function ϕ : R

n → [0,∞) such that ϕ(x0) 6= 0. This motivates our next
definition.

Definition 3.1. Let f be a distribution in R
n and let x0 ∈ R

n and ξ0 ∈ R
n \ 0. Then f is smooth

at x0 in direction ξ0 if for some cutoff function ϕ at x0 and some open conic neighborhood V of
ξ0, Ff is rapidly decreasing for ξ ∈ V .

If f is not smooth at x0 in direction ξ0 then we say (x0, ξ0) ∈ WF(f).

Using our next definition, we can evaluate qualitative strength of singularities.

Definition 3.2 ([19]). Let f be a distribution in R
n and let x0 ∈ R

n and ξ0 ∈ R
n \0. Then f is in

Hs at x0 in direction ξ0 if for some cutoff function ϕ at x0 and some open conic neighborhood V
of ξ0, the microlocal Sobolov seminorm

‖ϕf‖Hs,V =

√∫

V
|F(ϕf)(ξ)|2(1 + |ξ|2)sdξ

is finite.

If f is not in Hs at x0 in direction ξ0 then we say (x0, ξ0) ∈ WFs(f).
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Since Y can be viewed as an open subset of R
3, one can define WF and WFs for distributions

on Y because when one multiplies by a cutoff ϕ(z, r) that is compactly supported in Y , the R
3

definition of Fourier transform can be used. In general, the wavefront set and Sobolev wavefront
sets are defined as subsets of the cotangent bundle, T ∗(Rn) because this allows one to define the
wavefront set invariantly on manifolds.

Note that if f is smooth on R
n then WF(f) = ∅. If f is the characteristic function χΩ of a

domain Ω with C∞ boundary then WF(χΩ) is the normal bundle of the boundary

(3.1) N(bd(Ω)) = {(x, ξ)
∣∣x ∈ bd(Ω), ξ ∈ R

3 \ 0, ξ ⊥ bd(Ω) at x} = WF(χΩ).

This is also true for WFs(f) for s ≥ 1/2.

Radon transforms detect singularities perpendicular to the set being integrated over and so R
will detect singularities of f normal to the sphere being integrated over. This is made clear in
the following theorem, a more precise version was given in [16] and was proven for manifolds in
arbitrary dimensions in [21].

Theorem 3.1. Let R be the spherical Radon transform in R
3 with centers on the plane x3 = 0.

Then, R is an elliptic Fourier integral operator [12] for functions supported in R
3
+. Let f be a

locally integrable function on R
3
+ and z ∈ R

2 and r > 0. Rf is C∞ near (z, r) if and only if
WF(f) ∩N(S(z, r)) = ∅.

In [21] a precise relationship is given between WF(f) and WF(Rf) but the simple version given
here explains that R “sees” singularities only if they are normal to the sphere in question.

Example 3.1. To illustrate our theorem, we give a basic example. Let f be the characteristic
function of a domain Ω ⊂ R

3
+ with C∞ boundary. According to Theorem 3.1, a singularity of f

will be visible in Rf near (z, r) if and only if the sphere S(z, r) is tangent to bd(Ω) (so normals
to the boundary are normal to the sphere). Our reconstructions in section 5 are from a limited set
of spheres, and the only singularities that are visible in those reconstructions are the ones normal
to spheres in the data set. Palamodov referred to the wavefront directions normal to S(z, r) as
audible, and he proved elegant estimates for singularities in the audible zone (and inaudible zone)
for the circle transform in R

2 [18].

Now that we have discussed the microlocal properties of R, we consider Λ. We first prove that
Λ is a ΨDO and we give its symbol and then we discuss what the symbol means for the algorithm.

Theorem 3.2. Let Λ be the operator (2.3) with C∞ cutoff function φ (2.2). Then, Λ is a pseudo-
differential operator of order one on E ′(R3

+). Furthermore the symbol of Λ is

(3.2) σ(Λ) = 2πφ
(
(x − x3

ξ3
ξ)′,

x3

|ξ3|
|ξ|
) ξ3
|ξ3|

|ξ| .

Before we prove the theorem we make some observations about what this means for our problem.

Note that our domain is R
3
+ and so x3 is always positive. The operator Λ is not elliptic since

σ(Λ) can be zero as φ can be zero. For x ∈ R
3
+, let

(3.3) C(x) =
{
ξ ∈ R

3
∣∣ξ3 6= 0,

(
x− x3

ξ3
ξ
)′

∈ (−T, T )2, x3|ξ|/|ξ3| ∈ (δ,M)
}
.

The symbol of Λ is zero off of Cl(C(x)). Where the symbol is zero tells where the operator Λ
smooths, so Λf will not show any wavefront of f at (x, ξ) if ξ /∈ C(x) (see Remark 3.3 below).



6 ERIC TODD QUINTO, ANDREAS RIEDER, AND THOMAS SCHUSTER

Since the symbol σ(Λ) is nonzero on C(x) and homogeneous of degree one in ξ, if ξ ∈ C(x), then
Λ is elliptic of order one at (x, ξ) [19]. Therefore, if ξ ∈ C(x), then (x, ξ) ∈ WF(Λf) if and only if
(x, ξ) ∈ WF(f). Thus wavefront of f for ξ ∈ C(x) will, in some sense, be visible in Λf . Since Λ
has degree one and is elliptic on C(x), singularities of Λf will be one degree less smooth in Sobolev
scale than those of f . Of course wavefront directions near bd(C(x)) might be reconstructed more
weakly than those corresponding to where φ = 1. This discussion proves the following corollary.

Corollary 3.1. Let Λ be the operator (2.3) with C∞ cutoff function φ (2.2). Let x ∈ R
3
+ and let

ξ ∈ C(x). Then,

(3.4) (x, ξ) ∈ WFs(f) if and only if (x, ξ) ∈ WFs−1(Λf).

Finally, we should emphasize that Theorem 3.2 and Corollary 3.1 are valid because we are
considering only functions supported on one side of the plane x3 = 0. Since the null space of R is
the set of odd functions about x3 = 0, R cannot distinguish singularities above (x′, x3) from those
above (x′,−x3). However, for functions supported in R

3
+, this is not a problem.

Proof of Theorem 3.2. We will give an easy to understand explanation of the result and then we
outline the proof.

For purposes of this heuristic discussion, we assume we can compose R∗ and R and write R∗∂x3
=

∂x3
R∗ without having the cutoff φ. These assumptions are wrong in general, but this calculation

shows what result we should expect, and it will allow us to skip one step in the rigorous calculation.
By Klein’s formula, Id = 1

2πHx3
∆1/2∂x3

R∗R, and the symbol of Id is 1. Recall that σ(Hx3
) =

−i sgn(ξ3) = −iξ3/|ξ3| and H−1
x3

= −Hx3
[26]. Our operator Λ without the cutoff φ is then

−2π(−Hx3
)
√

∆Id and therefore the symbol of Λ without the φ is −2π(i) ξ3
|ξ3|

(i)|ξ| = 2π ξ3
|ξ3|

|ξ|.
To prove the theorem rigorously, we add the cutoff φ and we calculate the symbol of the

composition of the Fourier integral operators that make up Λ. This starts with the canonical
relation of R. For this proof, we will use cotangent notation. For ξ = (ξ1, ξ2, ξ3) we denote
ξdx = ξ1dx1 + ξ2dx2 + ξ3dx3 and (η1, η2)dz = η1dz1 + η2dz2. Then the canonical relation of R is
[21]1

(3.5) C = {
(
z, r,x;α

(
(x′ − z)dz + rdr− (x − (z, 0))dx

)) ∣∣x ∈ R
3
+, (z, r) ∈ Y, α 6= 0}.

Since x ∈ R
3
+ we can specify global coordinates on C where we let S2

+ = {ω ∈ S2
∣∣ω3 > 0}

(3.6) S2
+ × R

2 × (0,∞) × (R \ 0) ∋ (ω, z, r, α) 7→
(
z, r, z + rω;α

(
ω′dz + dr − ωdx)

))

after factoring. Using these coordinates it is easy to show that the projection ΠL : C → T ∗Y \0 is an
injective immersion. This is the Bolker assumption and it implies that R∗φR is a pseudodifferential
operator [10, 9]. Note that if we considered x ∈ R

3 we would need to enlarge C so that in coordinates
(3.6), we would need to include ω ∈ S2

0 = {τ ∈ S2
∣∣τ3 = 0} and ΠL is not an immersion above such

points.

1Note that in formula (4.7) of [21], rdr should be 2rdr.
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Using (3.5) one sees that the projection to T ∗
R

3
+ \ 0, ΠR : C → T ∗

R
3
+ \ 0, is also injective and

for (x, ξdx) ∈ T ∗
R

3
+ \ 0, ξ3 6= 0, we have

Π−1
R (x, ξdx) =

(
z(x, ξ), r(x, ξ),x;α(ξ)

(
ω′(ξ)dz + dr− ω(ξ)dx

))
,

z(x, ξ) =

(
x− x3

ξ3
ξ

)′

,(3.7)

r(x, ξ) =
x3

|ξ3|
|ξ|,(3.8)

α(ξ) = −ξ3|ξ||ξ3|
, ω(ξ) =

ξ3
|ξ3||ξ|

ξ ∈ S2
+.(3.9)

Since ξ must be normal to the sphere S(z, r), ξ must be parallel x− (z, 0). This explains (3.7). A
calculation using (3.7) and the fact x3 > 0 justifies (3.8). Finally, because ξ3 6= 0 and ω3(ξ) must
be positive (if we require ω ∈ S2

+), (3.7) and (3.8) are used to prove (3.9).

To calculate the symbol of Λ one follows the outline in [20]. We let Z = {(z, r,x)
∣∣ |(z, 0)−x)| = r}

be the incidence relation of all spheres and points such that the point x is on the sphere S(z, r).
We have already chosen measure dm = dx on R

3
+ and dn = 4πr2dr dz on Y . We choose measure

on Z to be dµ =
√
φ(z, r)r2 dr dz dω. As done by Guillemin [8] one uses these measures to define

measures for the Radon transform and its dual. This gives measure on S(z, r) as
dµ

dn
=

√
φ(z, r)

4π
dω

and the measure for the backprojection is dµ
dx =

√
φ(z, r)dz and so the Radon transform defined

by this theory is R′ =
√
φR and the dual transform is (R′)∗ = R∗

√
φ. Therefore, (R′)∗R′ = R∗φR,

and this justifies our choices of dx, dn, and dµ.

The next part of the calculation is to write IZ , integration over Z, as a Fourier integral distribu-
tion. To do this one chooses coordinates so that Z is locally defined by w = 0 where coordinates
on Z are (z̃, w). One then follows the mathematics on p. 337 [20] to calculate the symbol of IZ as
a Fourier integral distribution as in the calculation of (15) in that article. One calculates that it is

(3.10) σ(IZ) =
(2π)2φ(z, r)dx dz dη

(4π)r2Π∗
R(|σR3 |3/2)Π∗

L(|σY |3/2)

(
Π−1

R (x, ξdx)
)

where σR3 and σY are the canonical symplectic forms on T ∗
R

3 and T ∗Y . To calculate the pullbacks
in (3.10) one lets λ = Π−1

R (x, ξdx) as given in (3.7)-(3.9) and one chooses a basis of TλC using the
coordinates (3.6). Then, using (3.10) and this calculation of the pullbacks, we get

(3.11) σ(R∗φR)(x, ξ) =
2πiφ

(
(x − x3

ξ3
ξ)′, x3|ξ|

|ξ3|

)

|ξ3||ξ|
and composing with −∂x3

∆, which has symbol −iξ3|ξ|2 gives us the final result (3.2). Finally, one
should note that there is a Maslov symbol ([12] which is discussed in the first full paragraph in [20,
p. 338]) but it must be constant because the naively calculated symbol at the start of the proof can
be defined as a function (see also the discussion on [20, p. 338]). Note that different conventions for
the definition of symbol can result in different constants in (3.2), but our conventions are chosen
so as to agree with the naive calculations at the start of this proof. �

Remark 3.3. We will now use the symbol calculation in the proof of Theorem 3.2 to explain why Λ
is smoothing off of the set C(x) (3.3). It is clear from the definition of C(x) that the symbol σ(Λ)
is zero off of C(x), but in general this implies only that Λ smooths one degree more off of C(x)
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than on C(x). Let x ∈ R
3
+ and ξ /∈ C(x). Then ΠL

(
Π−1

R (x, ξdx)
)

= (z, r, η) for some η ∈ T ∗
(z,r)Y .

However, since ξ /∈ C(x), by (3.7)-(3.9), φ(z, r) is zero. Therefore, φRf(z, r) = 0 is C∞ and so
(z, r, η) /∈ WF(φRf). This shows that (x, ξdx) = ΠR

(
Π−1

L

(
ΠL

(
Π−1

R (x, ξdx)
)))

= ΠR(Π−1
L (z, r, η))

is not in WF(R∗ (φRf)). Here we are using the fact ΠL and ΠR are injective as well as composition
calculus for Fourier integral operators [12]: for A ⊂ T ∗

R
3
+ \ 0, C ◦ A = ΠL

(
Π−1

R (A)
)

and for

B ⊂ T ∗Y , Ct ◦B = ΠR

(
Π−1

L (B)
)
. Here we are using the following notation [12]: Ct is C but with

the T ∗
R

3 and T ∗Y coordinates reversed, and for A ⊂ T ∗
R

3,

C ◦ A = {(z, r, η) ∈ T ∗Y
∣∣∃(x, ξ) ∈ A, with (z, r,x; η, ξ) ∈ C}.

Therefore, Λ is smoothing in direction (x, ξdx).

4. The Approximate Inverse: Mollifier ep,s,k and Reconstruction Kernel ψp,s,k

For an implementation of our local reconstruction operator Λ we need to stabilize its numerical
evaluation. Several approaches are possible. We follow ideas of the approximate inverse [15] as it
provides a general and well-developed framework for the stable solution of operator equations of
the first kind, see e.g. [22, 23, 24].

Instead of computing Λf(p), p ∈ R
3
+, directly we want to recover the smoothed version

(4.1) 〈Λf, ep,s,k〉L2(R3)

where

ep,s,k(x) = Ck,s

{
(s2 − d2)k : d < s,

0 : d ≥ s,
d = |x− p|,

serves as mollifier with s, k > 0 and

Ck,s =

(∫

Bs(p)
(s2 − d2)k dV

)−1

=
Γ(k + 5/2)

π3/2 Γ(k + 1) s3+2k
.

Observe that ∫

R3

ep,s,k(x) dx = 1 and supp ep,s,k = Bs(p).

Further, the inner product (4.1) can be expressed as a convolution integral:

Λf ∗ e0,s,k(p) = 〈Λf, ep,s,k〉L2(R3).

The parameter s > 0 scales the mollifier and plays the role of a regularization parameter: the
larger s the smoother the reconstruction. In the sequel we implicitly assume s < p3 yielding
supp ep,s,k ⊂ R

3
+ for p ∈ R

3
+. Note that k is merely a design parameter.

In the following theorem we give analytically a so-called reconstruction kernel allowing the com-
putation of 〈Λf, ep,s,k〉L2(R3) from the spherical means of f .

Theorem 4.1. We have that

(4.2) 〈Λf, ep,s,k〉L2(R3) = 〈Rf,ψp,s,k〉L2(R2×[0,∞[,r2dzdr)
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with reconstruction kernel

(4.3)

ψp,s,k(z, r) = φ(z, r)
Ck,s k p3A

k−2

L

[
(2k + 1)A

[
1

Lk

(
k − 2 +

B

2rL

)
− 1

r

]

+ 2(k − 1)s2
[
1

r
− 1

L(k − 1)

(
k − 3 +

B

2rL

)]]

for r ∈ [L− s, L+ s] where

L = |(z, 0) − p|, A = s2 − (L− r)2 and B = (r + L)2 − s2.

For r 6∈ [L− s, L+ s]: ψp,s,k(z, r) = 0.

The proof of the theorem can be found in Appendix A.

5. Reconstructions

In this section we give numerical reconstructions using the approximate inverse. We will also
interpret the results in terms of the microlocal properties of R and Λ that were given in Section 3.

We want to approximate

(5.1) Λf(p) ≈ 〈Λf, ep,s,k〉L2(R3) = 〈Rf,ψp,s,k〉L2(R2×[0,∞[,r2dzdr)

from the discrete data

(5.2) g(i, j, k) = Rf(zi,j, rk), i, j = 1, . . . , Nz, k = 1, . . . , Nr,

where

(5.3) {zi,j} ⊂ [−zmax, zmax]
2 and {rk} ⊂ (0, rmax]

are Cartesian grids with uniform step sizes hz and hr, respectively. A straightforward discretization
of the triple integral on the right of (5.1) yields

Λf(p) ≈ Λ̃f(p) := h2
zhr

Nz∑

i=1

Nz∑

j=1

Nr∑

k=1

g(i, j, k)ψp,s,k(zi,j , rk)r
2
k

= h2
zhr

Nz∑

i=1

Nz∑

j=1

∑

rk∈Li,j(p)

g(i, j, k)ψp,s,k(zi,j , rk)r
2
k

with Li,j(p) = [L− s, L+ s] and L = |(zi,j , 0) − p|.
For our numerical computations presented in this section we have chosen the following cutoff

function φ (2.2). Given 0 < δ < M and T > 0 we define

φ(z, r) = α(z)β(r)

where

β(r) =





0 : r ≤ δ or r ≥M + 1,

1 : 2δ ≤ r ≤M,

p(r,M ) : M < r < M + 1,

q(r, δ) : δ < r < 2δ,
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Figure 1. Visualization of the function (5.4) to be reconstructed. The two balls
slightly intersect.

with

p(r,M ) =
u(M + 1 − r)

u(M + 1 − r) + u(r −M − 1/2)
, q(r, δ) =

u(r/δ − 1)

u(r/δ − 1) + u(2 − r/δ)
,

and

u(x) =

{
exp(−1/x) : x > 0,

0 : x ≤ 0.

Further,

α(z) = α̃(z1)α̃(z2) and α̃(x) =





1 : |x| < T,

p(|x|, T ) : T ≤ |x| ≤ T + 1,

0 : |x| > T + 1.

Thus,

φ ∈ C∞(R3), suppφ ⊂ [−T − 1, T + 1]2 × [δ,M + 1], and φ|[−T,T ]2×[2δ,M ] = 1.

We always set M := rmax − 1, δ := 0.01, and T = zmax − 1.

The function f : R
3
+ → R to be reconstructed is a superposition of three indicator functions given

by

(5.4) f = χB1(0,0,3) − χB0.5(0.25,1,4) + 0.3χx3≥6

whose Sonar transform can be calculated analytically. The rightmost indicator function models a
flat ocean floor at x3 = 6, see Figure 1 for a visualization.

In our first set of experiments we will demonstrate which singularities of f can be detected
depending on the available data. To this end we note that the wavefront set of f (compare (3.1))
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is

WF(f) = {(x, ξ)|x ∈ ∂B1(0, 0, 3), ξ = λ(x− (0, 0, 3)), λ 6= 0}
∪ {(x, ξ)|x ∈ ∂B0.25(0.25, 1, 4), ξ = λ(x − (0.25, 1, 4)), λ 6= 0}

∪ {(x, ξ)|x3 = 6, ξ1 = ξ2 = 0, ξ3 6= 0},
that is, the wavefront set consists of all pairs (x, ξ) where x is on the boundary of either one of the
two balls or of the ocean floor and ξ is normal to the boundary at this point.2

Figure 2 displays cross sections Λ̃f(0.25, ·, ·) for three different sets of limited data: zmax = 3
(top left), zmax = 6 (top right), and zmax = 12 (bottom). Further, rmax = 10 in all three settings.
All cross sections have been computed from N2

zNr = 3012 · 250 = 22 650 250 spherical means.

To understand the extent to which our results from section 3 are reflected in our reconstructions,
we inspect the set C(x) (3.3) on which Λ is elliptic of order one. The wavefront (x, ξ) ∈ WF(f)

will be visible in Λf (or Λ̃f) if ξ ∈ C(x), that is, ξ3 6= 0 and

xi − zmax

x3
<
ξi
ξ3
<
xi + zmax

x3
, i = 1, 2, and

δ

x3
<

|ξ|
|ξ3|

<
rmax

x3
.

Thus, wavefronts for which ξ has dominant horizontal components (|ξ3| is small compared to |ξ|)
will not be recovered. The visible wavefronts have dominant vertical components and the smaller
zmax and rmax are and the larger x3 is, the more dominant the vertical components have to be to
be visible.

This fact is illustrated by the reconstructions shown in Figures 2. With increasing zmax (top left,
top right, bottom) more and more singularities of f are recovered. In the bottom reconstruction
only the singularities with almost horizontal directions are missing. The ocean floor {(x, ξ)|x3 =
6, ξ1 = ξ2 = 0, ξ3 6= 0} is visible because we have

xi − zmax

6
< 0 <

xi + zmax

6
(⇔ −zmax < xi < zmax) and

0.01

6
< 1 <

10

6
.

In Figure 3 we again display Λ̃f(0.25, ·, ·) with zmax = 3, however, with clearly reduced maximal
radii: rmax = 4.5 and rmax = 5.5. The ocean floor is not recovered by either reconstruction. For
rmax = 4.5 even the bottom hemisphere of the smaller ball is missing and a strong artefact corrupts
the reconstruction.

2The two boundary spheres intersect in a small circle. At each intersection point are two “singularity directions”
corresponding to normals to the two spheres.
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Figure 2. Reconstructions Λ̃f(0.25, ·, ·), f from (5.4), where rmax = 10 and zmax =
3 (top left), zmax = 6 (top right), and zmax = 12 (bottom) with Nz = 301 and
Nr = 250, see (5.2) and (5.3). The parameters used for the reconstruction kernel are
s = 0.8 and k = 3. The dashed white lines in the bottom reconstruction indicate
the singular support of f and are not part of the reconstruction.
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The parameters used for the reconstruction kernel are s = 0.8 and k = 3. The
dashed white lines in the left reconstruction indicate the singular support of f and
are not part of the reconstruction.
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To prove that we really perform fully 3D reconstructions we display several cross sections

Λ̃f(x1,i, ·, ·) for x1,i = −1 + 0.25i, i = 0, . . . , 8, in Figure 4. Here we like to emphasize the fol-
lowing observation: the boundaries of the two balls in the different cross sections are reconstructed
with different intensity (note the different gray scales). The reason for this fact is that the 3D-
direction of the corresponding wavefront does not agree with the 2D-normal on the ball in the
displayed cross section.3 The more the wavefront direction differs from the 2D-normal in the cross
section the less pronounced is the singularity in the respective cross section.

We finish the numerics section by demonstrating how the algorithm performs with noisy data.
To this end we perturb the exact data g (5.2) according to

gε(i, j, k) = g(i, j, k) + ε ‖g‖⋆
noise(i, j, k)

‖noise‖⋆
, ε > 0,

where noise is an Nz × Nz × Nr array of uniformly distributed random numbers4 with values in
[−1, 1] and where the discrete norm

‖g‖2
⋆ := h2

zhr

Nz∑

i=1

Nz∑

j=1

Nr∑

k=1

|g(i, j, k)|2r2k

approximates the norm in L2
(
[−zmax, zmax]

2 × [0, rmax], r
2dzdr

)
. We have that

‖g − gε‖⋆

‖g‖⋆
≤ ε.

Thus, ε measures the relative noise. In all experiments below we worked with ε = 3%.

First, the smoothing or regularizing effect of the scaling parameter s is illustrated. Figure 5
contains reconstructions of a cross section (x1 = 0.25) from the same perturbed data for 4 different
scaling parameters. As s increases the noise gets reduced at the price of blurred and fuzzy contours.

Finally, in Figure 6 we present the same cross sections of Λ̃f as in Figure 4, however, reconstructed
from noisy data with scaling parameter s = 1.6.

3We have two exceptions: for x1 = 0 the 2D-normals on the large ball in the cross section agree with the
corresponding directions of the wavefronts. The same holds true for the small ball at x1 = 0.25.

4In all computations we used the same noise array.
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Appendix A. The proof of Theorem 4.1

To find ψp,s,k, we start from (4.2) and by duality, we must have

(A.1) ψp,s,k(z, r) = φ(z, r)R
(
∂x3

∆ep,s,k

)
(z, r).

So as not to deal with too many constants, we consider an unnormalized version of ep,s,k and define

ẽp,s,k = ep,s,k/Ck,s.

Now we state the pieces we need to prove the expression for ψp,s,k in Theorem 4.1, and we use (A.1).

Lemma A.1. Let k ∈ N, k ≥ 3. Then,

(A.2)
R(∂x3

∆ẽp,s,k)(z, r) =
[
4k(2k + 1)(k − 1)

[
R
(
x3ẽp,s,k−2

)
− p3R(ẽp,s,k−2)

]

+8k(k − 1)(k − 2)s2
[
p3R(ẽp,s,k−3) −R(x3ẽp,s,k−3)

]]
.

For ℓ a nonnegative integer

(A.3) Rẽp,s,ℓ(z, r) =
Aℓ+1

4(ℓ+ 1)rL
r ∈ (L− s, L+ s)

and

(A.4) R(x3ẽp,s,ℓ)(z, r) =
p3A

ℓ+1

4L2(ℓ+ 1)(ℓ+ 2)

(
ℓ+

B

2rL

)
r ∈ (L− s, L+ s) .

where L = |(z, 0) − p|, A = s2 − (L− r)2, and B = (r +L)2 − s2 and where r ∈ (L− s, L+ s) and
the functions in (A.3) and (A.4) are zero outside this interval.

The proof of (A.2) follows by a calculation and for k = 3 noting that the derivatives are distri-
butional derivatives (since ẽp,s,0 is not continuous). Using (A.3) and (A.4) for various values of ℓ
in (A.2), one proves (4.3) in Theorem 4.1.

To prove the lemma, first recall that p is the center of the mollifier ẽp,s,ℓ. We assume the sphere
we are integrating over has radius r and is centered at z = (z1, z2) on the x1x2-plane. Furthermore,
we denote the distance from z to p by

L := |(z, 0) − p|.
The condition for the integral to be nonzero is r ∈ (L − s, L + s), so assume r is in this interval.
Also, L ≥ p3 since z is on the x1x2–plane and p3 > 0.

The calculation of R(∂x3
∆ẽp,s,k) reduces to expressions involving R(ẽp,s,ℓ) and R(x3ẽp,s,ℓ) for

ℓ = k − 3, k − 2, k − 1 if one uses that ẽp,s,k is radial about p, and one uses the radial form of the

Laplacian, ∆ = ∂2

∂d2 + 2
d

∂
∂d where d = |x − p|. One uses this observation, to calculate (A.2).

We now prove (A.4) by rotating and translating the picture and then using spherical coordinates.
The proof of (A.3) uses similar arguments but is simpler. If we take a point v on S(z, r) then the
x3 coordinate of v is simply v · e3. This is the same as

x3 = v · e3 = (v − z) · e3
since z is on the x1x2-plane.

Let α ∈ (0, π/2] be the angle between the vectors
(
(p′, 0) − z

)
and

(
p− z

)
. Note that

(A.5) sinα = p3/L .
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We make a rigid motion of R
3 so that (z, 0) is mapped to the origin, p to (0, 0, L) and (p′, 0) to

the point in the x1x3-plane

(0, 0, L) + p3(cosα, 0,− sin α).

Under this transformation, e3 is mapped to the unit vector in the direction from (0, 0, L) −
x3(cosα, 0,− sinα) to (0, 0, L). That is,

(A.6) e3 7→ (− cosα, 0, sinα) .

If v ∈ S(z, r) let ṽ be the point on S(0, r) to which it is mapped under this rotation. Then the
x3-coordinate of v is

(A.7) x3 = v · e3 = (v − (z, 0)) · e3 =
(
ṽ − (0, 0, 0)

)
· (− cosα, 0, sinα)

since the dot product does not change under rigid motion and because under this rigid motion e3
gets mapped to the vector in (A.6).

We can use spherical coordinates about the x3-axis to integrate so an arbitrary point on the
sphere of radius r centered at the origin is

(θ, φ) 7→ ṽ = r(cos θ sinφ, sin θ sinφ, cos φ).

Using (A.7), we see that, in these new coordinates, x3 is

x3 = r(cos θ sinφ, sin θ sinφ, cosφ) · (− cosα, 0, sinα) = −r cosα sinφ cos θ + r cosφ sinα.

When we put this into the integral of the spherical mean, we get

(A.8) R(x3ẽp,s,ℓ)(z, r) =
1

4π

∫ Φ

φ=0

∫ 2π

θ=0
(s2 − d2)ℓ[−r cosα sinφ cos θ + r cosφ sinα] sinφdθ dφ,

where Φ is the upper limit of integration. Since Φ is the angle at the origin of the triangle with
vertices the origin and (0, 0, L), and with sides r, L s, the law of cosines shows that

(A.9)

s2 = r2 + L2 − 2rL cos Φ,

cos Φ =
L2 + r2 − s2

2rL
.

Now, we do some simple calculations. First, recall that in the integral (A.8), φ is the angle of
inclination from the x3–axis to the point being integrated, so d2 = r2 + L2 − 2rL cosφ and using
(A.9) we see

(A.10) s2 − d2 = 2rL(cos φ− cos Φ)

and integral (A.8) becomes

R(x3ẽp,s,ℓ)(z, r) =
(2rL)ℓ

4π

∫ Φ

φ=0

∫ 2π

θ=0
[−r cosα sinφ cos θ + r cosφ sinα](cos φ− cos Φ)ℓ sinφdθ dφ.

First, note that after we integrate in θ, the first term in brackets drops out, so we are left with

R(x3ẽp,s,ℓ)(z, r) =
r(2rL)ℓ

2

∫ Φ

φ=0
[cosφ sinα](cos φ− cos Φ)ℓ sinφdφ.

Now, if we make the substitution u = cosφ− cos Φ (and cosφ = u+ cos Φ) and use the expression
(A.5) for sinα, then we get (A.4).

If one goes through a calculation using the same steps but without the factor of x3, then one
gets (A.3). In both (A.3) and (A.4), it helps to simplify 1 − cos Φ and 1 + cos Φ using (A.9).
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Nr. 10/03 Christof Schütte, Tobias Jahnke : Towards Effective Dynamics in Complex Systems

by Markov Kernel Approximation
Nr. 10/04 Tobias Jahnke, Tudor Udrescu : Solving chemical master equations by adaptive wa-

velet compression
Nr. 10/05 Christian Wieners, Barbara Wohlmuth : A Primal-Dual Finite Element Approximati-

on For A Nonlocal Model in Plasticity
Nr. 10/06 Markus Bürg, Willy Dörfler: Convergence of an adaptive hp finite element strategy

in higher space-dimensions
Nr. 10/07 Eric Todd Quinto, Andreas Rieder, Thomas Schuster: Local Inversion of the Sonar

Transform Regularized by the Approximate Inverse

Eine aktuelle Liste aller IWRMM-Preprints finden Sie auf:

www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints



 

Kontakt
 
Karlsruher Institut für Technologie (KIT) 
Institut für Wissenschaftliches Rechnen 
und Mathematische Modellbildung 
 
Prof. Dr. Christian Wieners 
Geschäftsführender Direktor 
 
Campus Süd 
Engesserstr. 6 
76131 Karlsruhe 
 
E-Mail: iwrmm-sekretariat@math.uka.de 
 

www.math.kit.edu/iwrmm/ 
 
 
Herausgeber 
 
Karlsruher Institut für Technologie (KIT) 
Kaiserstraße 12  |  76131 Karlsruhe 

September 2010 

www.kit.edu 


	Seiten aus preprint nr. 10-07.pdf
	preprint-3.pdf
	Preprint, Vorlage nur Deckblatt KIT, 10-7
	Anschrift 10-07
	local_sonarBW-2
	Preprintliste
	Preprint, Vorlage Deckblatt KIT, Rückseite




