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Abstract

Stochastic reaction systems with discrete particle numbers are usually described
by a continuous-time Markov process. Realizations of this process can be gener-
ated with the stochastic simulation algorithm, but simulating highly reactive sys-
tems is computationally costly because the computational work scales with the
number of reaction events. We present a new approach which avoids this draw-
back and increases the efficiency considerably at the cost of a small approximation
error. The approach is based on the fact that the time-dependent probability dis-
tribution associated to the Markov process is explicitly known for monomolecular,
autocatalytic and certain catalytic reaction channels. More complicated reaction
systems can often be decomposed into several parts some of which can be treated
analytically. These subsystems are propagated in an alternating fashion similar to
a splitting method for ordinary differential equations. We illustrate this approach
by numerical examples and prove an error bound for the splitting error.

Keywords: Stochastic simulation algorithm, discrete stochastic reaction systems,
splitting methods, analytic solution formulas, error bounds, chemical master equa-
tion
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1 Introduction

Many complex systems in physics, chemistry, biology and other sciences arise from
the interaction of several species via a number of reaction channels. In the majority
of applications the dynamics can be correctly described by the traditional reaction-rate
equations which are based on the assumption that the behavior is continuous and deter-
ministic. This assumption, however, is not appropriate for systems with a pronounced
discrete and stochastic nature. Discreteness is crucial if the numbers of particles in
some of the species is so low that a description in terms of concentrations would be
inadequate, and randomness is important if small stochastic fluctuations in these parti-
cle numbers can cause large-scale effects. Typical examples for such systems include
gene regulatory networks and viral infections starting with a few infected individuals
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[38, 39, 48]. Under these conditions the dynamics must be considered as a continuous-
time Markov jump process on the discrete state space N

d
0 . The entries of a state denote

the particle numbers of the d species, and every reaction event corresponds to a jump
to a new state.

The classical method to generate realizations of the Markov process is the stochas-
tic simulation algorithm (SSA) introduced in [18]. In each step of this algorithm the
time of the next reaction event and the number of the reaction channel are determined
from a pair of random numbers. The disadvantage of this procedure is the fact that the
state vector has to be updated every time one of the reaction channels fires which makes
the simulation of highly reactive systems computationally costly. Many strategies to
improve the efficiency of SSA have been proposed in the literature. More efficient
reformulations of the algorithm were proposed in [10, 17]. The tau-leaping and Pois-
son Runge-Kutta methods in [2, 4, 7, 9, 19, 20, 35, 43, 44, 47] make a time-step over
several reaction events based on the assumption that the propensity functions do not
change significantly. The approaches in [6, 8, 12, 21, 26, 42] use a separation of time
scales and/or a partial equilibrium assumption. Hybrid methods which describe only a
part of the system in terms of stochastic reaction kinetics are advocated in [1, 5, 46]. A
simulation method for stochastic reaction systems with diffusion has been proposed in
[16].

In this article, we propose a novel approach to generate realizations of stochastic
reaction systems more efficiently. The idea is to split the reaction channels into two
or more subsystems which can be simulated faster because the corresponding time-
dependent probability distributions are explicitly known. Hence, these subsystems can
be propagated over a time interval of a chosen length h > 0 in one single step instead
of carrying out every single reaction event. This is done in an alternating way similar
to splitting methods for ordinary differential equations.

The paper is organized as follows. Section 2 provides a short introduction to
stochastic reaction systems and the related computational challenges. In Section 3
we summarize the main results from [33] where explicit solution formulas for certain
classes of reaction systems have been derived. These formulas are combined with a
Strang splitting to construct stochastic simulation methods in Section 4. The abstract
concept is illustrated by two numerical examples in Section 5. Section 6 is devoted
to the error analysis. We prove an error bound for the splitting error and confirm the
expected error behavior numerically by a simple model problem.

2 Stochastic Reaction Systems

Consider a biochemical reaction system with d ∈ N species S1,S2, . . . ,Sd interacting
via r reaction channels R1,R2, . . . ,Rr. For every j = 1, . . . ,d let X j(t) ∈ N0 be the
number of particles which belong to S j at time t ≥ 0. The vector X(t) =

(

X1(t), . . . ,
Xd(t)

)

∈ N
d
0 is considered as a random variable evolving according to a Markov jump

process. Whenever the k-th reaction channel Rk fires, the state vector X jumps to the
new state X + νk where νk ∈ Z

d denotes the stoichiometric vector of Rk. If X(t) =
x, then the probability that Rk will fire in the infinitesimal time interval [t, t + dt) is
αk(x)dt +O(dt2) where αk : N

d
0 −→ R is the propensity function of Rk; cf. [18]. Each
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reaction channel is uniquely determined by the associated propensity function and the
stoichiometric vector.

Realizations of the Markov jump process can be generated with the stochastic sim-
ulation algorithm (SSA); cf. [18]:

1. Let t = 0 and X = ξ where ξ ∈ N
d
0 is the initial state.

2. Compute |α(X)| =
r

∑
j=1

α j(X).

3. Draw two random numbers ρ1 and ρ2 from the uniform distribution on [0,1].

4. Compute the time increment: τ = ln(1/ρ1)/|α(X)|,

5. Determine the number of the reaction channel which fires next: find j such that

j−1

∑
k=1

αk(X) < ρ2 |α(X)| ≤
j

∑
k=1

αk(X).

6. Update the time t ← t + τ and the state X ← X + v j.

7. If t < tend go to step 2.

The SSA is easy to implement and very popular among computational biologists. The
drawback of this algorithm, however, is the fact that each reaction event must be treated
individually. This causes large computational costs when highly reactive systems with
many reaction events per realization are simulated, as the expected value of τ in step 4
is very small such that many steps are necessary to complete one single realization.

In most applications, the main object of interest is the probability distribution

p(t,x) = P(X(t) = x | X(0) = ξ )

or its moments. If a sufficiently large ensemble of realizations is available, p(t,x) can
be approximated from the corresponding histogram, i.e.

p(t,x) ≈ χN(t,x)
N

where χN(t,x) counts how many times the system was found in state x at time t if N
realizations were generated in total. On the other hand, it is well-known that p(t,x) is
the solution of the chemical master equation (CME)

∂t p(t,x) =
r

∑
k=1

(

αk(x−νk)p(t,x−νk)−αk(x)p(t,x)
)

(1)

p(0,x) = δξ (x) =

{

1 if x = ξ
0 otherwise.

Although the CME is a linear equation, approximating its solution numerically is usu-
ally a considerable challenge, because the distribution p has to be computed in each
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state x of a large and possibly high-dimensional state space. Due to the huge number
of degrees of freedom traditional methods fail, and new numerical methods for solving
the CME have to be constructed; see, e.g., [32] and references therein. The goal of
our article, however, is not to solve the CME directly, but to devise a highly efficient
procedure to generate realizations of the associated Markov process X(t). The main
ingredient is the fact that the CME can be solved analytically for certain classes of
reaction systems.

3 Explicit solution formulas

In this section we recall under which conditions the CME can be solved analytically.
Only the main results are presented, but the proofs can be found in [33].

3.1 Monomolecular reaction systems

Definition 1 (Monomolecular reaction channels) The following three types of reac-
tion channels are called monomolecular 4:

Conversion: S j −→ Sk ( j 6= k) with propensity α(x) = c jk · x j

Degradation: S j −→ ∅ with propensity α(x) = c j0 · x j

Inflow: ⋆ −→ S j with propensity α(x) = c0 j

A reaction system is called monomolecular if and only if all its reaction channels are
monomolecular.

Since j,k ∈ {1, . . . ,d} and j 6= k, a monomolecular reaction system can have up to
d(d −1) conversions, d degradation channels, and d inflow channels. Here and below,
c jk is a nonnegative reaction constant ( j,k ∈ N0). Conversions and degradations are
nearly the same. The only difference is that in a conversion the reaction product Sk

can possibly be involved in other reactions, whereas in the degradation reaction the
symbol ∅ denotes the group of “dead” or “disappeared” species which cannot undergo
a reactions any more. Since this group is of minor interest, it is usually ignored, i.e.
the numbers of particles belonging to ∅ is not counted in the random variable X(t).
Inflow reactions differ from conversions because ⋆ denotes a constant “source”. The
probability that an inflow reaction channel fires in a certain time interval is constant,
whereas the likeliness that a conversion reaction channel fires depends on x j, i.e. the
number of existing particles of S j.

The exact probability distribution of every monomolecular reaction system can be
expressed in terms of multinomial and Poisson distributions. Let |x| := ∑d

j=1 |x j| denote

the 1-norm of the vector x ∈ R
d . For every s = (s1, . . . ,sd) ∈ [0,1]d with |s| ≤ 1, the

4Usually the reaction channels are enumerated by one single index. For monomolecular reactions, how-
ever, it is more convenient to use two indices, namely one for the reactant and one for the reaction product.
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multinomial (or polynomial) distribution M (x,N,s) is defined by

M (x,N,s) =











N!
(1−|s|)N−|x|

(N −|x|)!
d

∏
j=1

s
x j
j

x j!
if |x| ≤ N and x ∈ N

d
0

0 otherwise.

Moreover, for a nonnegative parameter vector λ = (λ1, . . . ,λd) ∈ R
d , the product Pois-

son distribution is

P(x,λ ) = e−|λ |
d

∏
j=1

λ x j
j

x j!
, x ∈ N

d
0

Theorem 1 (cf. [33]) Consider a monomolecular reaction system with d species and
suppose that the system is initially in state X(0) = ξ ∈ N

d
0 with probability 1, i.e. p0 =

δξ . Then, the exact solution of the associated chemical master equation at time t > 0
is

p(t, · ) = P
(

· ,λ (t)
)

∗M
(

· ,ξ1,s
(1)(t)

)

∗ . . . ∗M
(

· ,ξd ,s
(d)(t)

)

(2)

where ∗ denotes the d−dimensional convolution. The vectors s(k)(t) ∈ [0,1]d and
λ (t) ∈ R

d are the solutions of the reaction-rate equations

ṡ(k)(t) = As(k)(t), λ̇ (t) = Aλ (t)+b,

s(k)(0) = εk, λ (0) = (0, . . . ,0)T .
(3)

In these equations εk denotes the k-th column of the identity matrix in R
d×d , b ∈ R

d is
the vector

b =
(

c01 , c02 , . . . , c0d
)T

, (4)

and A ∈ R
d×d is the matrix with entries a jk defined by

a jk = ck j for j 6= k ≥ 1, akk = −
d

∑
j=0

ck j. (5)

Remarks:

1. The result holds under more general conditions. First, the reaction constants ck j

can be time-dependent (cf. [33]), but for simplicity this case is not considered
here. Second, the result remains true if the initial distribution δξ is replaced by

p0( · ) = P
(

· ,λ0
)

∗M
(

· ,ξ1,s
(1)
0

)

∗ . . . ∗M
(

· ,ξn,s
(n)
0

)

.

In this case, we only need to substitute s(k)
0 for εk and λ0 for (0, . . . ,0)T in (3).
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2. Since other initial distributions can be represented as superpositions of delta
peaks, systems with arbitrary initial distributions can be solved analytically.

3. Often the formula (2) can be simplified. If no inflow reaction channels are
considered (i.e. c0 j = 0 for all j), then λ (t) ≡ (0, . . . ,0)T . Hence, the term
P

(

· ,λ0
)

= δ0 can be omitted in (2). If ξ j = 0 for some j, then the correspond-
ing term M

(

· ,ξ j,s( j)(t)
)

= δ0 can be omitted.

4. For constant ck j the ordinary differential equations (3) can be easily solved. Ob-
viously s(k) is simply the k−th column of the matrix exp(tA), and λ (t) contains
the first d entries of λ̃ (t) = exp(tÃ)(0, . . . ,0,1)T ∈ R

d+1 where Ã is the block
matrix

Ã =









A b

0 · · · 0 0









∈ R
(d+1)×(d+1).

With Theorem 1 it is possible to generate stochastic simulations of monomolecular
systems without executing every single reaction event. All that needs to be done is to
determine the parameter vectors s(k)(t) and λ (t) by solving the ODEs (3), to generate
the random vectors

X (0) ∼ P
(

· ,λ (t)
)

, X ( j) ∼ M
(

· ,ξ j,s
( j)(t)

)

, j = 1, . . . ,d,

and to set X(t) = X (0) + X (1) + . . .+ X (d). Then, X(t) is distributed according to the
exact solution (2), because the convolution of distributions corresponds to the sum of
the associated independent random variables. The computational costs to generate X(t)
do not depend on the length of the time interval [0, t] nor on the number of times the
reaction channels fire. Therefore, sampling from the exact distribution is much more
efficient than generating realizations with SSA if the system is highly reactive.

3.2 Autocatalytic reaction channels

Another class of reaction channels for which explicit solution formulas are available
are isolated autocatalytic reaction channels.

Definition 2 (Autocatalytic reactions) A reaction channel is called autocatalytic if
and only if it has the form

S j −→ S j +S j with propensity α(x) = c · x j. (6)

Theorem 2 (cf. [33]) Suppose that at t = 0 there are 0 < ξ j ∈N molecules of a species
S j evolving according to the autocatalytic reaction (6) with rate c ≥ 0. Moreover, let
N (m,N,s) denote the negative binomial distribution

N (m,N,s) =

(

N +m−1
m

)

sN(1− s)m.
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Then, the probability to find x j = ξ j +∆x j ∈ N molecules of S j at time t is

p(t,ξ j +∆x j) = N (∆x j,ξ ,s(t)) where s(t) = exp(−ct).

Remark. If c = c(t) is time-dependent, then the result remains true for s(t) =
exp(−∫ t

0 c(τ)dτ).

3.3 Catalytic reaction channels

Catalytic reaction channels are characterized by the fact that one species is involved
but not affected itself. If Si is the catalyst and the system is in state X(t) = x, then the
propensity of the catalytic reaction channel depends on xi, but the i−th entry of the
stoichiometric vector is zero because the number of particles of Si does not change.
Typical examples are

S j +Si −→ Sk +Si ( j 6= k) with propensity α(x) = c1 · x jxi

S j +Si −→ Si with propensity α(x) = c2 · x jxi

Si −→ S j +Si with propensity α(x) = c3 · xi

(7)

with i 6= j and i 6= k. In each of these cases we can interpret (7) as monomolecular
reaction channels with a modified constant, namely

S j −→ Sk ( j 6= k) with propensity α(x) = c̃1 · x j

S j −→ ∅ with propensity α(x) = c̃2 · x j

⋆ −→ S j with propensity α(x) = c̃3

where c̃l = clxi. For these reactions, the exact solution is obtained from Theorem 1.
Of course, this is only possible as long as Xi(t) ≡ xi, i.e. as long as the number of Si

particles is not changed by any other reaction. This assumption is not realistic if the
evolution is considered on the entire time interval. Nevertheless, the re-interpretation
of (7) as monomolecular reaction channels will turn out to be useful in the context of
the splitting approach.

Note that not all catalytic reactions can be simplified in this way. An example
for a catalytic reaction channel which cannot be reduced to a monomolecular one is
S1 +S2 +Si −→ S3 +Si.

3.4 Motivation of the splitting approach

The above theorems provide solution formulas for uncoupled monomolecular, auto-
catalytic and certain types of catalytic reactions. These results do not hold if different
types of reactions are coupled. For example, the joint probability distribution of the
system

⋆ −→ S1, S1 −→ ∅, S1 −→ S2, (8)

⋆ −→ S2, S2 −→ ∅, S2 −→ S1, (9)

S1 −→ S1 +S1, S2 −→ S2 +S2, (10)

S1 −→ S1 +S2, S1 +S2 −→ S1 (11)
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can not be constructed from the previous theorems although the reaction channels in
(8) and (9) are monomolecular, the reaction channels in (10) are autocatalytic, and
the reaction channels in (11) belong to (7). However, the exact time-dependent distri-
bution of each subsystem is available. The observation that often subsystems can be
treated much more efficiently than the entire system motivates the splitting approach
for stochastic simulations which is presented in the next section.

4 Splitting methods for stochastic reaction systems

4.1 Splitting methods for ordinary differential equations

Splitting methods are widely used to solve ordinary differential equations

ẏ = f (1)(y)+ f (2)(y), y(0) = y0, (12)

(cf., e.g., [23, 30, 40]) and it is instructive to consider the ODE setting before adapting

the concept to the simulation of stochastic reaction systems. For j ∈ {1,2} let Φ( j)
t (ξ )

be the flow of the subproblem

u̇ = f ( j)(u), u(0) = u0, (13)

i.e. Φ( j)
t : u0 7→ u(t) maps the initial value to the solution at time t ≥ 0. The Lie-Trotter

splitting computes approximations yn ≈ y(tn) at tn = nh by propagating the two parts
of the ODE (12) one after the other in each time-step:

yn+1 = Φ(2)
h ◦Φ(1)

h (yn), y0 = ξ .

Here and below, ◦ means composition, i.e. Φ(2)
h ◦Φ(1)

h (yn) = Φ(2)
h (Φ(1)

h (yn)). Under
natural conditions, it can be shown that the order of this method is 1. A second-order
method is provided by the Strang splitting

yn+1 = Φ(1)
h/2 ◦Φ(2)

h ◦Φ(1)
h/2(yn)

which propagates the two subproblems in a symmetric way. Splitting methods can be
very effective provided that it is much easier to compute (or approximate) the flows of
the subproblems than propagating the full problem. This is the case, e.g., if the exact
solution of the subproblems (13) is known but the full problem (12) cannot be solved
analytically. The extension to more than two subproblems

ẏ = f (1)(y)+ . . .+ f (m)(y), y(0) = y0. (14)

is straightforward: the Lie-Trotter splitting is given by

yn+1 = Φ(m)
h ◦ . . .◦Φ(1)

h (yn),

and the Strang splitting is

yn+1 = Φ(1)
h/2 ◦ . . .◦Φ(m−1)

h/2 ◦Φ(m)
h ◦Φ(m−1)

h/2 ◦ . . .◦Φ(1)
h/2(yn).
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4.2 Stochastic simulation via splitting

Now we are ready to apply the splitting approach to a system with d ∈ N species and
r reaction channels R1,R2, . . . ,Rr. Let Φ{i1,...,im}

t (ξ ) denote the Markov jump process
corresponding to the subsystem with reaction channels Ri1 , . . . ,Rim and initial state ξ . A

realization of Φ{i1,...,im}
t (ξ ) could be obtained, e.g., by applying SSA with initial state

ξ and final time t after setting the reaction constants of all other Rk 6∈ {Ri1 , . . . ,Rim}
to zero. By definition, we have ξ = Φ{i1,...,im}

0 (ξ ) and ξ = Φ /0
t (ξ ) with probability

1. Moreover, it follows from the Markov property that Φ{i1,...,im}
t1+t2 (ξ ) = Φ{i1,...,im}

t1 ◦
Φ{i1,...,im}

t2 (ξ ).
The reaction system is partitioned into disjoint subsets I j of reaction channels, i.e.

I j ⊂ {1, . . . ,r} with I j ∩ Ik = /0 for j 6= k. In analogy to the Lie-Trotter splitting for

ODEs, the Markov process X(t) = Φ{1,...,r}
t (ξ ) of the total system can be approximated

at tn = n ·h by

X(tn+1) ≈ Xn+1 = ΦIm
h ◦ . . .◦ΦI1

h (Xn), X0 = ξ . (15)

This means that first the state vector Xn changes only according the reaction channels Rk

with k ∈ I1, then only according the reaction channels Rk with k ∈ I2, and so on. Clearly,
this does not coincide with the true dynamics where all reaction channels can always
fire. However, since each subsystem is only propagated over a small time interval
with length h it can be expected that the Lie-Trotter splitting (15) yields at least an
approximation. As in the ODE setting, a better accuracy is achieved with the Strang
splitting

X(tn+1) ≈ Xn+1 = ΦI1
h/2 ◦ . . .◦ΦIm−1

h/2 ΦIm
h ◦ΦIm−1

h/2 ◦ . . .◦ΦI1
h/2(Xn), X0 = ξ

which we will use henceforth.
Now the crucial idea is that the subsets I j are chosen in such a way that some of the

ΦI j
h can be computed with the explicit solution formulas from Section 3. For example,

we could choose I1, I2, I3 ⊂{1, . . . ,r} to be the index set of all monomolecular, autocat-
alytic and catalytic reaction channels, respectively, and I4 = {1, . . . ,r} \ (I1 ∪ I2 ∪ I3).
Then, only ΦI4

h needs to be computed by SSA (or alternative methods) whereas ΦI1
h ,

ΦI2
h , and ΦI3

h can be sampled from the exact solution formulas. The necessary compu-
tational work does not depend on the number of reaction events. Hence, this strategy
is much more efficient than SSA if the first three subsystems contain highly reactive
reaction channels.

We remark, however, that sometimes it is better to simulate some reaction chan-
nels with SSA although an explicit solution is known. Suppose, for example, that in
the previous example only the catalytic subsystem I3 is very reactive. Then, it would
not pay to simulate ΦI1

h and ΦI2
h with the analytic solution formulas, because sampling

from the corresponding distributions could be more expensive than a simple SSA simu-
lation of ΦI1∪I2∪I4

h . The efficiency of the splitting method is optimized if the number of
subsystems is kept as small as possible and only the computationally critical reaction
channels are simulated by sampling from the exact distributions.
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4.3 Advantages and relation to other approaches.

The splitting method proposed here belongs to the class of tau leaping methods, i.e.
to the methods which make time-steps (leaps with step-size τ) over several reaction
events. The rather broad term “tau-leaping”, however, includes quite a lot of methods
some of which are based on completely different ideas. Our method does hardly have
anything in common, e.g., with the tau-leaping and Poisson-Runge-Kutta methods in
[2, 4, 7, 9, 19, 20, 35, 43, 44, 47], because these methods operate in terms of reac-
tions: they compute how many times each reaction channel fires during the time-step
and then update the particle numbers. This entails the unpleasant consequence that
particle numbers can become negative with a certain probability, and avoiding negative
particle numbers requires considerable algorithmic efforts; cf. [7]. Roughly speaking,
these methods switch to SSA if the risk of negative particle numbers is too high. In
our splitting method the exact distributions for the substeps are directly given in terms
of particle numbers. Hence, the particle numbers always remain nonnegative integers.
This is also true for the Reversible-equivalent-monomolecular tau method which has
been proposed in [45]. This method is similar to ours in the sense that it operates in
terms of particle numbers instead of in terms of reactions, and it makes use of the ana-
lytical solution of the reversible subsystems Si ↔ S j and ⋆→ Si →∅. In contrast to our
approach, reversible bimolecular reactions are approximated by monomolecular ones,
whereas in our apporach the class of reaction subsystems which are treated exactly is
larger.

The idea to treat fast but simple subsystems analytically has already been applied
in [8]. It was assumed that due to a separation of fast and slow scales a part of the
system is always in near-equilibrium with an explicitly known stationary distribution.
Our method does not require any equilibrium assumption and yields also very precise
results for transient dynamics far from equilibrium.

5 Numerical examples

Clearly, the question how to split the reaction system into subsystems depends strongly
on the structure of the system itself. In this section, we present two examples which
illustrate how our approach can be applied to a given problem, and, on the other hand,
demonstrate the efficiency and accuracy of the splitting. All simulations were per-
formed on a Laptop equipped with Intelr CoreTM 2 Duo 2.2 GHz processor and 2 GB
of RAM. The programs were written in MATLABr.

5.1 Intracellular kinetics of a virus

As a first example, we consider the viral replication of bacteriophage T7 after infec-
tion of a bacterium. The model proposed in [48] consists of two kinds of viral nucleic
acids, namely the template S1 and the genome S2, along with a structural protein S3.
These three species interact via the reaction channels listed in Table 5.1. The reaction
R1 models the modification of a genome into a template. The template catalyzes the
production of new genome particles (via R3) and structural proteins (via R5). Together
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R1 : S2 → S1 α1(x) = c1 · x2 ν1 = (1,−1,0)T

R2 : S1 → ∅ α2(x) = c2 · x1 ν2 = (−1,0,0)T

R3 : S1 → S1 +S2 α3(x) = c3 · x1 ν3 = (0,1,0)T

R4 : S2 +S3 → ∅ α4(x) = c4 · x2x3 ν4 = (0,−1,−1)T

R5 : S1 → S1 +S3 α5(x) = c5 · x1 ν5 = (0,0,1)T

R6 : S3 → ∅ α6(x) = c6 · x3 ν6 = (0,0,−1)T

Table 1: Reaction channels for the viral replication of bacteriophage
T7 according to [48].

with structural proteins the genome can produce progeny virus (R4). Degradation of
templates and structural proteins can occur via R2 and R6, respectively. In our numeri-
cal tests we used the parameters from [48]:

c1 = 0.025, c2 = 0.25, c3 = 1, c4 = 7.5 ·10−6, c5 = 1000, c6 = 1.99,

X0 = (1,0,0)T , t ∈ [0,200].

In order to apply the splitting method we divide the six reaction channels into three
subsystems

I1 = {1,2,6}, I2 = {3,5}, I3 = {4}

and use the Strang splitting

Xn+1 = ΦI1
h
2
◦ΦI2

h
2
◦ΦI3

h ◦ΦI2
h
2
◦ΦI1

h
2
(Xn), X0 = ξ (16)

to approximate X(tn) = Φ{1,2,3,4,5,6}
tn (ξ ) at tn = nh. The three subsystems are propa-

gated as follows.

1. All reactions of the first subsystem (i.e. R1, R2, R6 in Table 5.1) are monomolec-
ular. If Xn = x, then according to Theorem 1

ΦI1
h
2
(x) ∼ P

(

· ,λ (h/2)
)

∗M
(

· ,x1,s
(1)(h/2)

)

(17)

∗M
(

· ,x2,s
(2)(h/2)

)

∗M
(

· ,x3,s
(3)(h/2)

)

.

The parameter vectors s(1), s(2), s(3), and λ are the solutions of the ODEs (3)
with

A =





−c2 c1 0
0 −c1 0
0 0 −c6



 (18)

and b = (0,0,0)T . Since there are no inflow reactions in this subsystem, it fol-
lows that λ (t) ≡ (0,0,0)T , which means that the term P

(

· ,λ (h/2)
)

= δ0( · )

11
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Figure 1: Marginal distributions of the species S1 and S2 of the
lambda phage model at the final time t = 200. The solid lines are
the normalized histograms of 10,000 SSA runs whereas the dashed
lines correspond to the same number of simulations with the splitting
method. The results agree very well, although the splitting method
(18,067 seconds ≈ 5 hours) was almost 30 times faster than SSA
(540,432 seconds ≈ 150 hours). The marginal distribution of S2 was
plotted in two different panels because the second local maximum in
x2 ≈ 200 (right panel in the second line) is only visible on a much
smaller scale.

can be cancelled from (17). To simulate ΦI1
h/2(x), we only need to generate ran-

dom vectors

Z(k) ∼ M
(

· ,xk,s
(k)(h/2)

)

, k = 1,2,3,

and to set ΦI1
h/2(x) = Z(1) + Z(2) + Z(3). This can be further simplified because

R1 and R2 only affect S1 and S2 whereas R6 only affects S3. As a consequence,
in the matrix (18) the lower right entry is decoupled from the upper left 2× 2
block. We finally obtain

Z(k) = (Y (k),0) with Y (k) ∈ R
2, Y (k) ∼ M

(

· ,x1,r
(k)(h/2)

)

,

r(k) = exp

(

h

(

−c2 c1

0 −c1

))

εk ∈ R
2, k ∈ {1,2}

Z(3) = (0,0,Y (3))T with Y (3) ∼ B( · ,x3,exp(−c6h/2)).

with B denoting the binomial distribution.

12



0 5 10 15 20 25 30 35 40
0

5
x 10

−3 Difference in S
1

0 50 100 150 200 250 300
0

2

4
x 10

−3 Difference in S
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2
x 10

−3 Difference in S
3

Figure 2: Difference between the SSA approximation of the marginal
distributions and the result obtained from the splitting method (t =
200).

2. The second subsystem contains only the catalytic reaction channels R3 and R5

where S1 acts as a catalyst, but remains unchanged. Moreover, R3 and R5 are not
coupled. Suppose that the state attained after the first half-step is x̃ = ΦI1

h/2(x).
Then, according to Theorem 1 and the discussion in 4.2, we have

ΦI2
h
2
(x̃) ∼ P

(

· ,λ (h/2)
)

∗M
(

· , x̃1,s
(1)(h/2)

)

(19)

∗M
(

· , x̃2,s
(2)(h/2)

)

∗M
(

· , x̃3,s
(3)(h/2)

)

.

Again, the parameter vectors are obtained by solving the ODEs (3), but this
time with A = 0 because there are no conversions or degradations in the second
subsystem. It follows that s(k)(t) ≡ εk and hence

ΦI2
h
2
(x̃) ∼ P

(

· ,λ (h/2)
)

∗δx̃( · ) (20)

with λ (h/2) = hb/2 and inflow constants b = (0,c3x̃1,c5x̃1). Simulating ΦI2
h/2(x̃)

is easily done by generating random numbers from the univariate Poisson distri-
butions

Z(2) ∼ P
(

· ,λ2(h/2)
)

, Z(3) ∼ P
(

· ,λ3(h/2)
)

,

and setting ΦI2
h/2(x̃) = x̃+(0,Z(2),Z(3))T .

13



3. The last subsystem consists of the only reaction channel R4 which cannot be
treated analytically with any of the above results. Realizations of ΦI3

h must be
computed by running SSA (or, e.g., one of the tau-leaping algorithms) for this
single reaction on a short interval of length h.

Figure 1 shows the marginal distributions of S1 and S2 at t = 200. Both distributions
are bimodal: there is a peak in 0 and a second local maximum around 20 (for S1) and
200 (for S2), respectively. The same effect appears in the marginal distribution of S3

(not depicted). The reason is that either the first particle of S1 quickly replicates via R3

and R1, thereby producing many particles of the other two species, or all species die
out via R2 and R6. This has been extensively discussed in [48].

The plots represent histograms of N = 10,000 realizations with SSA (solid line)
and the Strang splitting (dashed line, step size h = 0.2). This means that we used the
approximation p(t,x) ≈ χN(t,x)/N where χN(t,x) is the number of realizations which
were found in state x at time t. Up to the usual sampling error the splitting method
agrees very well with the result of SSA. The difference between the marginal distribu-
tions obtained with SSA and the splitting method is shown in Figure 2. Of course, this
is not to be understood as an error plot, because both SSA and the splitting method are
affected by the sampling error. The roughness of the curves indicate that the difference
would have been even smaller if more realizations could have been generated. With
the splitting method the efficiency was considerably improved: the SSA simulations
took more than 150 hours (!) whereas the simulations with the splitting method were
completed after little more than 5 hours.

5.2 MSEIR model

As a second example, we consider a stochastic variant of the MSEIR model for the
spread of an infectious disease (see [28] for details). The population is divided into
five species, namely individuals with passive immunity (M), susceptible individuals
that can be infected (S), the exposed individuals (E) who are infected but not yet able
to transmit the disease, the infectious individuals (I), and individuals who have recov-
ered from the disease and have acquired permanent immunity (R). The numbers of
individuals of M, S, E, I, and R are denoted by x1, x2, x3, x4, and x5, respectively.
These classes interact via the reaction channels listed in Table 5.2.

The reaction channels R1, . . . ,R5 model the birth of new individuals. The offspring
of S is susceptible whereas the offspring of all other species is assumed to have tempo-
ral passive immunity which is lost after some time (via R6). Susceptible individuals can
be infected by infectious ones via R14. The infected individuals enter the class E before
becoming infectious after some time (via R7). The infectious individuals may recover
(via R8) and remain immune afterwards. The reaction channels R9, . . . ,R13 model the
death of individuals.

The Markov process of the full system is approximated with the Strang splitting

Xn+1 = ΦI1
h
2
◦ΦI2

h
2
◦ΦI3

h
2
◦ΦI4

h ◦ΦI3
h
2
◦ΦI2

h
2
◦ΦI1

h
2
(Xn), X0 = ξ .

with the partition

I1 = {1,2}, I2 = {3,4,5}, I3 = {6, . . . ,13}, I4 = {14}.
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R1 : M → M +M α1(x) = c1 · x1 ν1 = (1,0,0,0,0)T

R2 : S → S +S α2(x) = c2 · x2 ν2 = (0,1,0,0,0)T

R3 : E → E +M α3(x) = c3 · x3 ν3 = (1,0,0,0,0)T

R4 : I → I +M α4(x) = c4 · x4 ν4 = (1,0,0,0,0)T

R5 : R → R+M α5(x) = c5 · x5 ν5 = (1,0,0,0,0)T

R6 : M → S α6(x) = c6 · x1 ν6 = (−1,1,0,0,0)T

R7 : E → I α7(x) = c7 · x3 ν7 = (0,0,−1,1,0)T

R8 : I → R α8(x) = c8 · x4 ν8 = (0,0,0,−1,1)T

R9 : M → ∅ α9(x) = c9 · x1 ν9 = (−1,0,0,0,0)T

R10: S → ∅ α10(x) = c10 · x2 ν10 = (0,−1,0,0,0)T

R11: E → ∅ α11(x) = c11 · x3 ν11 = (0,0,−1,0,0)T

R12: I → ∅ α12(x) = c12 · x4 ν12 = (0,0,0,−1,0)T

R13: R → ∅ α13(x) = c13 · x5 ν13 = (0,0,0,0,−1)T

R14: S + I → E + I α14(x) = c14 x2 x4/(
5

∑
k=1

xk) ν14 = (0,−1,1,0,0)T

Table 2: Reaction channels for the stochastic MSEIR model.

Realizations of the subsystems were generated as follows:

1. The first subsystem contains all autocatalytic reaction channels. Since R1 and R2

are not coupled and the particle numbers of E, I, and R stay constant, Theorem 2
yields

ΦI1
h
2
(x) = (x1 +Z(1),x2 +Z(2),x3,x4,x5)

T

with

Z(1) ∼ N ( · ,x1,exp(−c1h/2)) , Z(2) ∼ N ( · ,x2,exp(−c2h/2)) .

2. Suppose that after the first substep the new state is x̃ = ΦI1
h/2(x). The catalytic

reaction channels R3,R4,R5 form the second subsystem. Since these reaction
channels are independent and the particle numbers of all but the first species
remain constant, we obtain from Theorem 1 that

ΦI2
h
2
(x̃) =

(

x̃1 +Z(1) +Z(2) +Z(3), x̃2, x̃3, x̃4, x̃5

)T
,

with

Z(1) ∼ P ( · ,c3x̃3h/2) , Z(2) ∼ P ( · ,c4x̃4h/2) , Z(3) ∼ P ( · ,c5x̃5h/2) .

This can be simplified to

ΦI2
h
2
(x̃) = (x̃1 +Z, x̃2, x̃3, x̃4, x̃5)

T , Z ∼ P ( · ,(c3x̃3 + c4x̃4 + c5x̃5)h/2)) .
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3. All reaction channels of the third subsystem are monomolecular and can thus
be treated with Theorem 1. Let x̂ = ΦI2

h/2(x̃) = ΦI2
h/2 ◦ΦI1

h/2(x). Since no inflow
reactions occur, Theorem 1 yields that

ΦI3
h
2
(x̂) = Z(1) +Z(2) +Z(3) +Z(4) +Z(5), Z(k) ∼ M ( · , x̂k,s

(k)(h/2))

where s(k)(h/2) = exp(hA/2)εk with

A =













−c6 − c9 0 0 0 0
c6 −c10 0 0 0
0 0 −c7 − c11 0 0
0 0 c7 −c8 − c12 0
0 0 0 c8 −c13













.

These formulas can be simplified because the reaction channels that act on M
and S (namely R6, R9, and R10) are not coupled with those acting on E, I, and R
(R7, R8, R11, R12, and R13). This can be used to replace the five random vectors
Z(k) ∈R

5 by three random vectors in R
3 and two random vectors in R

2. We omit
the details because the derivation is similar to the computation of ΦI1

h/2(x) for the
bacteriophage T7 model.

4. Let x̄ = ΦI3
h/2(x̂) = ΦI3

h/2 ◦ΦI2
h/2 ◦ΦI1

h/2(x) be the current state after the first three
substeps. The last subsystem contains only R14. The propensity of R14 is some-
what unusual, but as long as it is decoupled from the other reaction channels, it is
equivalent to the simple conversion S −→ E with propensity α14(x) = c14x2 and
modified constant c14 = c14x̄4/∑5

k=1 x̄k. Note that although the number of parti-
cles of S and E changes when R14 fires, the total size of the population remains
constant at the value ∑5

k=1 x̄k. According to Theorem1, it follows that

ΦI4
h (x̄) =

(

x̄1,Z
(1)
1 +Z(2)

1 ,Z(1)
2 +Z(2)

2 , x̄4, x̄5

)T

where

Z(k) ∼ M ( · , x̄k,s
(k)(h)), s(k)(h) = exp(hA/2)εk, A =

(

−c14 0
c14 0

)

.

This can be simplified to

ΦI4
h (x̄) = (x̄1,Z, x̄3 + x̄2 −Z, x̄4, x̄5)

T

where Z ∼ B( · , x̄2,exp(−c14h)).

For our numerical test the stochastic MSEIR model was considered with the con-
figuration

X0 = (0,1000,0,1,0)T , t ∈ [0,5], ck =

{

10 if k = 7 or k = 14
1 else.
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Figure 3: Marginal distributions of the five species of the MSEIR
model at the final time t = 5. All marginal distributions are bimodal.
The marginal distributions of M, E, I, and R have a large peak in the
state 0 (left panels) and a smaller mode in the interior of the state
space (right panels). The bimodalities show that the disease will ei-
ther disappear quickly or spread over large parts of the population.
The solid lines are the normalized histograms of 100,000 SSA runs
whereas the dashed lines correspond to the same number of simula-
tions with the splitting method. The results agree very well, although
the splitting method (14308 seconds) was almost five times faster than
SSA (68605 seconds).
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An approximation of the marginal distributions at the final time t = 5 is shown in
Figure 3. In each panel the solid line is the normalized histogram of 100,000 realiza-
tions computed with SSA. As in the previous example, all species exhibit a pronounced
bimodal behavior. The peak in the left panels means that the species M, E, I, and R
completely disappear with a probability of about 0.22. This can happen because the
evolution starts with only one infectious individual such that there is a chance that the
few individuals who carry the disease in the initial phase all recover or die. The second
mode, shown in the right panels, appears on a much smaller scale. It corresponds to
the case where the infection propagates sufficiently fast in the initial phase such that it
finally spreads over a large part of the population. In this case, the number of suscepti-
ble individuals decreases from about 1000 down to about 230, as indicated by the two
modes in the marginal distribution of S.

The dashed lines in Figure 3 show the approximation obtained after the same num-
ber of realizations with the splitting method with step size h = 0.1. In this approxima-
tion, the probabilities of extinction (i.e. the peaks in the state zero) are slightly larger,
and a small shift appears in the marginal distributions of S and E. Nevertheless, the
qualitative behavior is captured very accurately, and the computational work was sig-
nificantly reduced: the splitting method (14308 seconds) was almost five times faster
than SSA (68605 seconds).

6 Error bounds for operator splitting methods

6.1 The chemical master equation as an abstract Cauchy problem

Before we analyze the error behavior of the stochastic splitting method, the relation
between the chemical master equation (1) and the Markov process X(t) has to be spec-
ified. Let ℓ1(Nd

0) be the d-dimensional sequence space

ℓ1(Nd
0) =

{

q : N
d
0 −→ R | ∑

x∈N
d
0

|q(x)| < ∞
}

which is a Banach space when endowed with the usual norm ‖q‖ = ∑x∈N
d
0
|q(x)|. The

chemical master equation of a stochastic reaction system with propensities αk(x) and
stoichiometric vectors νk (k = 1, . . . ,r) can be formulated as an abstract Cauchy prob-
lem (cf. [13, 27])

∂t p(t, · ) = A p(t, · ), p(0,x) = δξ (x) (21)

with operator A defined by

A p(t,x) =
r

∑
k=1

(

αk(x−νk)p(t,x−νk)−αk(x)p(t,x)
)

; (22)
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on a suitable dense domain D(A ) ⊂ ℓ1(Nd
0). We assume that A generates a strongly

continuous semigroup
(

etA
)

t≥0 of contractions, i.e.

e(t+s)A = etA esA , e0A = I, ‖etA ‖ ≤ 1

lim
t↓0

etA u = u for all u ∈ ℓ1(Nd
0)

lim
t↓0

etA u−u
t

= A u for all u ∈ D(A );

cf. [27]. We emphasize that the semigroup operators etA are not defined via the ex-
ponential series; since A is an unbounded operator, its exponential series does not
converge. In the error analysis of the splitting method we assume for the sake of sim-
plicity that the reaction system is partitioned into only two subsystems with index sets
I1 and I2, but splittings with more than two subsystems can be analyzed in a similar
way. Moreover, we only consider the Strang splitting, but similar results can also be
proven for the Trotter splitting. Let

X (h)
n+1 = ΦI1

h/2 ◦ΦI2
h ◦ΦI1

h/2(X
(h)
n ), X (h)

0 = ξ

be the approximations obtained from the splitting method with step size h, and let

p(h)
n (x) = P(X (h)

n = x) be the associated probability distribution. Then, by construction,

p(h)
n evolves according to the recursion

p(h)
n+1 = ehA1/2ehA2 ehA1/2 p(h)

n , p(h)
0 = δξ (x) (23)

where A1 and A2 are the operators corresponding to the subsystems I1 and I2, respec-
tively. In the next subsection we prove that under certain abstract regularity conditions

‖p(h)
n ( · )− p(tn, · )‖ ≤ h2tnC.

For bounded generators A1 and A2, it is easy to prove a corresponding result in the op-
erator norm because all semigroup operators can be defined by the exponential series
and one only needs to compare the first terms of ehA1/2ehA2ehA1/2 and eh(A1+A2). In the
case of the chemical master equation, however, this is not possible due to the unbound-
edness of the generators. Error bounds for the Strang splitting in the context of partial
differential equations have been proven, e.g., in [11, 15, 22, 24, 25, 34, 36, 37, 41, 49]
under various assumptions (commutator bounds, boundedness of one of the genera-
tors, norm equivalences). Up to small modifications, the error bound given below
(Theorem 3) has already been proven in [31], but for the convenience of the reader, we
reproduce the proof here. A more general result was shown in [24].

6.2 Error analysis for the Strang splitting

Lemma 1 Let S be the generator of a strongly continuous contraction semigroup (etS)s≥0

on a Banach space B. Then, the operators

Dm(tS) = etS −
m−1

∑
k=0

tk

k!
Sk, m ∈ {1,2,3} (24)
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satisfy the bounds

‖D1(tS)u‖ ≤ t‖Su‖ for all u ∈ D(S),

‖D2(tS)u‖ ≤ t2

2
‖S2u‖ for all u ∈ D(S2),

‖D3(tS)u‖ ≤ t3

6
‖S3u‖ for all u ∈ D(S3).

Proof. Straightforward integration shows that

D1(tS)u = (etS − I)u =

t
∫

0

eσSSu dσ

D2(tS)u = (etS − I − tS)u =

t
∫

0

(eσS − I)Su dσ =

t
∫

0

σ
∫

0

eτSS2u dτ dσ ,

and, in a similar way, that

D3(tS)u =

t
∫

0

σ
∫

0

τ
∫

0

eξ SS3u dξ dτ dσ ,

(see also Section 3 in [24]). Now the result follows from the fact that ‖etS‖ = 1.

Lemma 2 Let (A+B), A, and B generate strongly continuous contraction semigroups
and suppose that v ∈ D(Am1 Bm2 Am3) for all m1,m2,m3 ∈ N0 with |m| := m1 + m2 +
m3 ≤ 3. The local error of the Strang splitting is bounded by

‖eh(A+B)v− ehA/2ehBehA/2v‖ ≤ h3 ∑
|m|=3

‖Am1 Bm2 Am3 v‖.

Proof. To simplify notation, we define

ak,N(h) =



















hk

k!
Ak if k < N

Dk(hA) if k = N > 0

ehA if k = N = 0

and bk,N(h) =



















hk

k!
Bk if k < N

Dk(hB) if k = N > 0

ehB if k = N = 0

such that, e.g.,

ehA =
3

∑
k=0

ak,3(h) =
2

∑
k=0

ak,2(h) =
1

∑
k=0

ak,1(h) = a0,0(h).

With this representation, it can be easily checked that

ehA/2ehBehA/2v = ∑
j+k+l≤3

al,3− j−k(h/2)bk,3− j(h)a j,3(h/2)v

=
(

I +h(A+B)+
h2

2
(A+B)2

)

v

+ ∑
j+k+l=3

al,3− j−k(h/2)bk,3− j(h)a j,3(h/2)v.
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Comparing with

eh(A+B)v =
(

I +h(A+B)+
h2

2
(A+B)2

)

v+D3(h(A+B))v

shows that the local error of the Strang splitting is bounded by

‖eh(A+B)v− ehA/2ehBehA/2v‖
≤ ‖D3(h(A+B))v‖+ ∑

j+k+l=3

‖al,3− j−k(h/2)bk,3− j(h)a j,3(h/2)v‖.

By construction, each term al,3− j−k(h/2)bk,3− j(h)a j,3(h/2)v contains exactly one fac-
tor of the type Di. The other two factors are either the semigroup operators ehA/2, ehB

or terms of the type hk

k! Sk with S ∈ {A,B}. The general principle is that all exponen-
tial factors can only appear on the left of the Di-factor, whereas all factors of the type
hk

k! Sk can only appear on the right of the Di-factor. Hence, Lemma 1 and the equality
‖ehA/2‖ = ‖ehB‖ = 1 provide the bound

‖al,3− j−k(h/2)bk,3− j(h)a j,3(h/2)v‖ ≤ Ch3‖Am1 Bm2 Am3 v‖

with suitable numbers m1 +m2 +m3 = 3 and a constant C ≤ 1. For convenience of the
reader, all 10 terms and the corresponding bounds are listed in Table 3.

Theorem 3 Let (A + B), A, and B generate strongly continuous contraction semi-
groups and suppose that u(tk) ∈ D(Am1 Bm2 Am3) for all m1,m2,m3 ∈ N0 with |m| ≤ 3
and all k = 0, . . . ,n. Then, the global error of the Strang splitting is bounded by

‖(ehA/2ehBehA/2)nu0 − etn(A+B)u0‖ ≤ h2tn sup
k=0,...,n

∑
|m|=3

‖Am1 Bm2 Am3 u(tk)‖

Proof. It can be shown by induction that the error after n > 0 steps is

Ψn
hu0 − etn(A+B)u0 =

n−1

∑
k=0

Ψk
h

(

Ψh − eh(A+B)
)

e(n−1−k)h(A+B)u0 (25)

where Ψh = ehA/2ehBehA/2. Since ‖Ψk
h‖ ≤ 1 and e(n−1−k)h(A+B)u0 = u(tn−1−k), this

yields

‖Ψn
hu0 − etn(A+B)u0‖ ≤

n−1

∑
k=0

‖
(

Ψh − eh(A+B)
)

u(tn−1−k)‖, (26)

and it follows from Lemma 2 that

‖Ψn
hu0 − etn(A+B)u0‖ ≤ h3

n−1

∑
k=0

∑
|m|=3

‖Am1 Bm2 Am3 u(tn−1−k)‖

≤ h2tn sup
k=0,...,n

∑
|m|=3

‖Am1 Bm2 Am3 u(tk)‖.
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Figure 4: Error of the splitting method for different step sizes. The
circles and crosses mark the error ‖p(t,x)− χN(t,x)/N‖ at the final
time t = 1 for N = 105 (◦) and N = 106 (×) realizations. The accuracy
obtained with N SSA runs is indicated by the two dotted lines. The

dots (•) show the pure splitting error ‖p(h)
n ( · )− p(nh, · )‖ in the final

approximation n = 1/h. The function h 7→ 10 · h2 (dashed line) was
included for comparison.

Remark. Unfortunately it is difficult to verify the abstract assumptions of Theorem 3
in case of a particular CME. The main problem is that as far as the authors know there
is no result which defines the domain of the generator (22) explicitly. Even for birth-
death-processes involving only one species and two reactions, the situation is already
surprisingly complex; cf. [3]. Hence, in most situations it will not be possible to
guarantee second order convergence via Theorem 3. Our result explains, however,
why in most applications second order convergence is indeed observed.

6.3 Numerical example

The error behavior is illustrated by a simple toy problem:

R1 : ⋆ → S1 α1(x) = c1 ν1 = (1,0)T

R2 : S1 → ∅ α2(x) = c2 · x1 ν2 = (−1,0)T

R3 : S1 → S1 +S2 α3(x) = c3 · x1 ν3 = (0,1)T

R4 : S2 → S1 α4(x) = c4 · x2 ν4 = (1,−1)T
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We use the configuration

c1 = 40, c2 = 20, c3 = 10, c4 = 10, X0 = (0,0)T , t ∈ [0,1]

because for these parameters the essentially populated part of the state space is so small
that a highly accurate solution of the chemical master equation can be computed with
standard methods. This numerical solution can be used to study the error behavior of
the stochastic splitting method.

In the splitting method the system was partitioned into the monomolecular subsys-
tem (R1, R2, R4) and the catalytic reaction (R3). Realizations of these subsystems were
generated by sampling from the exact distributions according to Theorem 1. In Fig-

ure 4 the circles mark the error ‖p(t,x)− χ(h)
N (t,x)/N‖ at the final time t = nh = 1 for

different step sizes h. For each step size, N = 105 realizations of the splitting method

were computed, and as before, χ(h)
N (t,x) denotes the number of realizations which were

found in state x at time t. Figure 4 shows that for large step sizes the error decreases
proportional to h2, but in the limit h −→ 0 it converges to a constant value ≈ 0.026.
The reason is that the total error can be decomposed into the two parts

‖p(t, · )−χ(h)
N (t, · )/N‖ ≤ ‖p(t, · )− p(h)

n ( · ))‖+‖p(h)
n ( · )−χ(h)

N (t, · )/N‖.

The term ‖p(t, · )− p(h)
n ( · )‖ is the pure splitting error. It depends on the step size,

but not on the number of realizations. According to Theorem 3 with A = A1, B = A2,
B = ℓ1(Nd

0) we conjecture that

‖p(t, · )− pn( · )‖ ≤ Ch2t (t = nh)

although we are not able to verify the assumptions made in Theorem 1. Hence, as
long as the splitting error dominates, we expect second order decay. The second term

‖p(h)
n ( · )− χ(h)

N (t, · )/N‖ is the sampling error which mainly depends on the number
of realizations. It follows from Chebyshev’s inequality that

P

(∣

∣

∣p(h)
n (x)− χ(h)

N (t,x)

N

∣

∣

∣ ≤ 1√
Nε

)

≥ 1−Cε for all ε > 0.

Clearly, the total error is always bounded from below by the sampling error, which can
only be reduced if the number of simulations is increased. Of course, other simulation
methods such as SSA are affected by the sampling error in the same way. The dotted
line in Figure 4 confirms that the same number of realizations generated with SSA does
not yield a better accuracy than the splitting method if h ≤ 0.02. We have repeated the
experiment with N = 106 simulations. Again, the error of the splitting method (crosses)
first decreases proportional to h2 and then converges to the accuracy of SSA (≈ 0.009,
dotted line).

The dots show the pure splitting error ‖p(h)
n ( · )− p(t, · )‖ without any sampling

error. The values were obtained by applying the deterministic Strang splitting (23), i.e.
the Strang splitting in terms of the probability distribution instead of the corresponding
realizations. Of course, this is only possible because in this small model problem, A1

and A2 can be represented by matrices of moderate size. The deterministic splitting
error decreases proportional to h2 in perfect agreement with Theorem 3.
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j k l ‖al,3− j−k(h)bk,3− j(h)a j,3(h/2)u0‖ ≤ bound

0 0 3 ‖D3(hA/2)u0‖ ≤ h3‖A3u0‖
0 1 2 ‖D2(hA/2)hBu0‖ ≤ h3‖A2Bu0‖

0 2 1 ‖D1(hA/2)
(hB)2

2
‖ ≤ h3‖AB2u0‖

0 3 0 ‖ehA/2D3(hB)u0‖ ≤ h3‖B3u0‖

1 0 2 ‖D2(hA/2)
hA
2

u0‖ ≤ h3‖A3u0‖

1 1 1 ‖D1(hA/2)(hB)
hA
2

u0‖ ≤ h3‖ABAu0‖

1 2 0 ‖ehA/2D2(hB)
hA
2

u0‖ ≤ h3‖B2Au0‖

2 0 1 ‖D1(hA/2)
(hA)2

8
u0‖ ≤ h3‖A3u0‖

2 1 0 ‖ehA/2D1(hB)
(hA)2

8
u0‖ ≤ h3‖BA2u0‖

3 0 0 ‖ehA/2ehBD3(hA/2)u0‖ ≤ h3‖A3u0‖

Table 3: Bounds for all terms al,3− j−k(h/2)bk,3− j(h)a j,3(h/2)u0 ap-
pearing in the proof of Theorem 3 ( j + k + l = 3). These bounds are
not optimal, because we did not make the effort to compute the con-
stants C < 1 for the right-hand sides. For example, the bound for
j = k = 0 and l = 3 can actually be improved to ‖D3(hA/2)u0‖ ≤

1
6 ·23 h3‖A3u0‖.
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Staatsexamen, Universität Tübingen, Germany (1999)
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