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ON REDUCED MODELS FOR THE CHEMICAL MASTER
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Abstract. The chemical master equation plays a fundamental role for the understanding of gene
regulatory networks and other discrete stochastic reaction systems. Solving this equation numerically,
however, is usually extremely expensive or even impossible due to the huge size of the state space.
Thus, the chemical master equation must often be replaced by a reduced model which operates
with a considerably smaller number of degrees of freedom but hopefully still provides the essential
information about the dynamics of the full system. We prove error bounds for two reduced models
which have previously been proposed in the literature. Based on the error analysis, an alternative
model reduction approach for the chemical master equation is introduced and discussed, and its
advantage is illustrated by numerical examples.
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1. Introduction. Many processes in nature can be considered as reaction sys-
tems in which d ∈ N different species interact via r ∈ N reaction channels. The
time evolution of such a system is usually modeled by the traditional reaction-rate
equations, a set of d coupled ordinary differential equations which indicate how the
concentrations of the d species change in time. This approach is simple and computa-
tionally cheap, but fails in situations where the influence of inherent stochastic noise
cannot be ignored, and where certain species have to be described in terms of integer
particle numbers instead of real-valued, continuous concentrations. This is the case
in gene regulatory networks, viral kinetics with few infectious individuals, and many
other biological systems.

The chemical master equation (CME) respects the discreteness and randomness
of the problem and thus provides a more accurate model. The system is considered
as a random variable Z(t) which evolves according to a Markov jump process on
N

d
0. If Z(t) = z for some state1 z = (z1, . . . , zd) ∈ N

d
0 then exactly zj particles of

the j-th species exist at time t. The object of interest is the probability p(t, z) =
P(Z(t) = z) that at time t the system is in state z ∈ N

d. The probability distribution
p is the solution of the CME, a special type of the Kolmogorov forward equation.
Unfortunately, solving the CME numerically turns out to be a considerable challenge
in most cases because the number of relevant states is so large that traditional methods
cannot be applied. Explicit solution formulas are known for monomolecular reaction
systems (cf. [2]), but not for general CMEs.

The chemical master equation and the reaction-rate equations describe the dy-
namics on the mesoscopic and the macroscopic scale, respectively. Between these two
extremes a number of other models exist. The reaction-rate equation is supposed to
approximate the mean of the solution of the CME, and an improved approximation
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is obtained by including equations of motion for the covariance matrix or even higher
moments, cf. [3]. Stochastic effects can be modeled by the chemical Langevin equation,
a stochastic differential equation obtained by appending an appropriate noise term
to the reaction-rate equation. The corresponding probability density is the solution
of a high-dimensional Fokker-Planck-equation. This approach differs from the CME
in that the quantities of the species are real numbers instead of integers. A more
elaborate discussion of various models and their relationships can be found, e.g., in
[4, 5, 6, 7, 8, 9].

Hybrid models combine different descriptions to represent different parts of the
problem. This can be accomplished in various ways, and many hybrid approaches
can be found in the literature. The common idea is to represent only the small but
“critical” part of the system by an accurate but costly model and to use a “cheaper”
model for the other part. When single trajectories are to be generated by stochas-
tic simulation, the goal is usually to remove the fast time-scales from the dynamics
(cf. e.g. [10, 11, 12, 13, 14, 15, 16, 17] and references therein), but this is not the objec-
tive of this article. Our goal is to approximate the associated probability distribution
directly (i.e. not via stochastic simulation), and to use hybrid approaches as a model
reduction technique which decreases the huge number of degrees of freedom down to
a small fraction. Such approaches have been proposed, e.g., in [18, 19, 20, 4, 21]. The
reduction of the problem, however, comes at the cost of a lower accuracy because
in addition to the approximation error caused by solving the differential equations
numerically, there is now a modeling error due to the fact that the CME is partly
replaced by coarser descriptions. The numerical error can usually be investigated with
classical numerical analysis and depends on approximation parameters such as, e.g.,
the step-size used for time-integration. Hence, the numerical error can – in theory,
not in practice – be made arbitrarily small by changing the parameter(s) of the chosen
method. In contrast, the modeling error only depends on the problem itself, and there
is no way to decrease this error. Moreover, much less is known about this type of
error. All hybrid models are based on an intuitively plausible approximation, but a
detailed error analysis is often not available.

The goal of this paper is twofold: to provide such an error analysis for two of
these reduced models (in Section 4), and, based on these results, to propose a new
reduced model which yields a more accurate description (in Section 5). The results
are illustrated by numerical experiments in Section 6 and summarized in Section 7.
First of all, however, two introductory sections about the CME (Section 2) and the
corresponding reduced models (Section 3) are provided.

2. The chemical master equation. In this section the main model for discrete
stochastic reaction systems is introduced and discussed. The results presented here
are not new and can be found elsewhere in the literature, but since certain properties
will frequently be used throughout the article, these facts are compiled for convenience
of the reader.

2.1. Discrete stochastic reaction systems. We consider a system of d ∈ N

species S1, . . . , Sd which interact through r ∈ R reaction channels. Each of the species
is a group of discrete units (e.g. humans, cells, molecules etc.) with the same property
(e.g. infected, susceptible or immune individuals in a model of a viral infection). These
discrete units will be referred to as “particles” henceforth.

Let Zi(t) ∈ N0 be the number of particles of the i−th species at time t ≥ 0.
The vector Z(t) = (Z1(t), . . . , Zd(t)) is assumed to evolve according to a Markov
jump process. Jumps between states occur whenever the particle number change
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because one of the reaction channels fires. Each reaction channel is uniquely defined
by the associated stoichiometric vector ξk ∈ Z

d and the propensity function γk :
N

d
0 −→ [0,∞). If Z(t1) = z, then at the time t2 > t1 of the next reaction event Z

jumps to the new state Z(t2) = z + ξk where k is the number of the corresponding
reaction channel. The propensity function indicates, roughly speaking, the reactivity
of a channel depending on the current state: Up to terms of O(dt2), γk(z)dt is the
probability that the k−th reaction channel will fire in the infinitesimal time interval
[t1, t1 + dt). A rigorous derivation can be found in [22, 23]. Suppose that the reaction
scheme of the k−th reaction channel is

n1S1 + . . . + ndSd −→ m1S1 + . . . + mdSd(2.1)

with ni,mj ∈ N. Then, the propensity function is typically

γk(z) = ck

(

z1

n1

)

· . . . ·

(

zd

nd

)

,(2.2)

with some reaction constant ck > 0. Other propensity functions may be used in
special cases, e.g. if inhibition by other species is modeled. The stoichiometric vector
of (2.1) is simply (m1 − n1, . . . ,md − nd).

Since individual realizations of such a system are random, one is interested in
the probability p(t, z) = P(Z(t) = z) that there are zi particles of Si at time t. The
probability distribution p is the solution of the chemical master equation (CME)

∂tp(t, z) =
r

∑

k=1

(

γk(z − ξk)p(t, z − ξk) − γk(z)p(t, z)

)

z ∈ N
d
0(2.3)

(cf. [23]) with γk(z − ξk) = p(t, z − ξk) = 0 for all z − ξk 6∈ N
d
0. Since p(t, z)

has to be computed for each state z in a large and high-dimensional state space,
solving the CME is usually highly nontrivial and computationally expensive. On the
other hand, the full solution may contain far more information than actually required
because one is only interested in a few species, say S1, . . . , Sd1

, which are considered
as the “critical” ones (0 < d1 < d). All other species Sd1+1, . . . , Sd are only relevant
because they interact with the critical species. In this situation, the goal is only to
compute the time-dependent marginal distribution

∑

zd1+1
. . .

∑

zd
p(t, z). Since it is

very inefficient (or even impossible) to solve the full CME just in order to obtain a
low-dimensional marginal distribution, the question arises if an approximation of the
marginal distribution can still be obtained if the behavior of the “secondary” species
is modeled in a coarser but cheaper way. Before such model reduction approaches are
studied, a closer look on the CME for the full system is necessary.

2.2. Partition of the problem. It is convenient to use the partition

z = (x, y),
x = (x1, . . . , xd1

) = (z1, . . . , zd1
) ∈ N

d1
0

y = (y1, . . . , yd2
) = (zd1+1, . . . , zd1+d2

) ∈ N
d2
0

(2.4)

(0 < d1 < d, d2 = d − d1) of the state vector z, and to decompose the stoichiometric
vectors into

ξk = (νk, µk),
νk = (νk,1, . . . , νk,d1

) = (ξk,1, . . . , ξk,d1
) ∈ Z

d1

µk = (µk,1, . . . , µk,d2
) = (ξk,d1+1, . . . , ξk,d1+d2

) ∈ Z
d2

(2.5)
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for every k = 1, . . . , r. Moreover, the propensity of each reaction is assumed to be
separable: there are functions α : N

d1
0 → [0,∞) and β : N

d2
0 → [0,∞) such that

γk(z) = γk(x, y) = αk(x)βk(y).(2.6)

This assumption is satisfied by the standard propensities (2.2), and in a vast majority
of applications even by non-standard propensities. The decomposition (2.6) is not
unique because the reaction constant ck from (2.2) can be either included in αk or βk

or partly in both. It turns out, however, that this non-uniqueness does not cause any
problems. With the partition (2.4)-(2.6), the full CME (2.3) reads

∂tp(t, x, y) = (Ap)(t, x, y)

=

r
∑

k=1

(

αk(x − νk)βk(y − µk)p(t, x − νk, y − µk) − αk(x)βk(y)p(t, x, y)
)

(2.7)

It will always be assumed that the initial data p0(x, y) = p(0, x, y) is a probability
distribution, i.e. p0(x, y) ≥ 0 for all (x, y) ∈ N

d
0 and

∑

x∈N
d1
0

∑

y∈N
d2
0

p0(x, y) = 1.

2.3. State space truncation. For numerical computations we only consider
the truncated state space

Ω(x̄,ȳ) = Ωx̄ × Ωȳ, Ωx̄ = {x ∈ N
d1
0 : x < x̄}, Ωȳ = {y ∈ N

d2
0 : y < ȳ}.(2.8)

Here, (x̄, ȳ) ∈ N
d is some suitably chosen truncation vector, and the relations x < x̄

and y < ȳ are to be understood entry-wise. In the CME (2.7) the propensities and the
distribution must be evaluated at (x − νk, y − µk) and for certain (x, y) and (νk, µk),
this state may lie outside of Ω(x̄,ȳ). Therefore, we formally extend the propensities
and the distribution by defining

αk(x) = 0 if x 6∈ Ωx̄, βk(y) = 0 if y 6∈ Ωȳ, p(t, x, y) = 0 if (x, y) 6∈ Ω(x̄,ȳ).(2.9)

The interpretation of (2.9) is that there is no “probability inflow” from the outside
of Ω(x̄,ȳ) into the truncated state space. On the boundaries, we impose the discrete
Neumann boundary condition

αk(x) = 0 if (x + νk) 6∈ Ωx̄, βk(y) = 0 if (y + µk) 6∈ Ωȳ.(2.10)

This means that the Markov jump process cannot leave Ω(x̄,ȳ) because all reaction
channels that would cause a jump from (x, y) ∈ Ω(x̄,ȳ) to (x + νk, y + µk) 6∈ Ω(x̄,ȳ) are
suppressed. On the natural boundary

{(x, y) ∈ Ω(x̄,ȳ) : x + νk 6≥ 0 or y + µk 6≥ 0 for some k = 1, . . . , r}

the Neumann boundary condition (2.10) is always satisfied, because propensity func-
tions are always defined in such a way that the particle numbers remain nonnegative.

From now on, we consider the CME (2.7) on the truncated state space unless
otherwise stated. The restriction of the operator (2.7) to the finite state space is
again denoted by A. It will be tacitly assumed that Ω(x̄,ȳ) is so large that p(t, ·)
almost vanishes close to the artificial boundary such that the truncation error can be
neglected. For functions q : Ω(x̄,ȳ) −→ R we define the norm

‖q(x, y)‖ =
∑

x∈Ωx̄

∑

y∈Ωȳ

|q(x, y)|.
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2.4. Properties of the CME. An important property of the operator A on
the bounded state space with boundary condition (2.10) is the fact that

∑

x∈Ωx̄

∑

y∈Ωȳ

(Aq)(x, y) = 0(2.11)

for any function q : Ω(x̄,ȳ) −→ R. This can be checked as follows. With the abbrevia-
tion fk(x, y) = αk(x)βk(y)p(x, y) we obtain

∑

x∈Ωx̄

∑

y∈Ωȳ

(Ap)(x, y) =
r

∑

k=1

∑

x∈Ωx̄

∑

y∈Ωȳ

(

fk(x − νk, y − µk) − fk(x, y)
)

.

For every fixed k ∈ {1, . . . , r} let

Ω̊k =
{

(x, y) ∈ Ω(x̄,ȳ) : (x + νk, y + µk) ∈ Ω(x̄,ȳ)

}

be the “interior” of Ω(x̄,ȳ). Then, according to (2.10)

∑

x∈Ωx̄

∑

y∈Ωȳ

fk(x, y) =
∑

(x,y)∈Ω̊(x̄,ȳ)

fk(x, y)(2.12)

and, with x̃ = x − νk and ỹ = y − µk

∑

x∈Ωx̄

∑

y∈Ωȳ

fk(x − νk, y − µk) =
∑

x̃+νk∈Ωx̄

∑

ỹ+µk∈Ωȳ

fk(x̃, ỹ) =
∑

(x̃,ỹ)∈Ω̊k

fk(x̃, ỹ)(2.13)

due to (2.9). Since (2.12) and (2.13) coincide this shows that

∑

x∈Ωx̄

∑

y∈Ωȳ

(

fk(x − νk, y − µk) − fk(x, y)
)

= 0

for every k = 1, . . . , r and hence (2.11) follows. As a consequence of (2.11), the total
mass

∑

x∈Ωx̄

∑

y∈Ωȳ
p(t, x, y) of the solution of the CME is conserved, because

∑

x∈Ωx̄

∑

y∈Ωȳ

∂tp(t, x, y) =
∑

x∈Ωx̄

∑

y∈Ωȳ

(Ap)(t, x, y) = 0.

Moreover, the solution p(t, x, y) stays nonnegative for all times if this is true for
p(0, x, y): If p(t, x⋆, y⋆) = 0 for some state (x⋆, y⋆) ∈ Ω(x̄,ȳ) and p(t, x, y) ≥ 0 for all
(x, y) ∈ Ω(x̄,ȳ), then (2.7) implies that ∂tp(t, x⋆, y⋆) ≥ 0 such that p(t, x⋆, y⋆) cannot
become negative. Together these properties imply that the solution of the CME is a
probability distribution if p(0, x, y) is a probability distribution.

Equation 2.11 also implies that at least one of the eigenvalues of A is zero, and
with the Gershgorin circle theorem it can be shown that all nonzero eigenvalues have
a strictly negative real part. Hence, if p(0, x, y) is a probability distribution, then
the solution of the CME will converge to a stationary distribution ρ = ρ(x, y) with
Aρ = 0.
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2.5. Relation to the reaction-rate equations. Under certain conditions, the
traditional reaction-rate equations yield an approximation to the mean

E(t) =

(

Ex(t)

Ey(t)

)

=
∑

x∈Ωx̄

∑

y∈Ωȳ

(

x

y

)

p(t, x, y).

It follows from the chemical master equation that

(

Ėx

Ėy

)

=
∑

x∈Ωx̄

∑

y∈Ωȳ

(

x

y

)

(Ap)(t, x, y) =
r

∑

k=1

(

νk

µk

)

∑

x∈Ωx̄

∑

y∈Ωȳ

αk(x)βk(y)p(t, x, y)

(cf. [3]) where we have used that according to (2.9) and (2.10)

∑

x∈Ωx̄

∑

y∈Ωȳ

(

x

y

)

αk(x − νk)βk(y − µk)p(t, x − νk, y − µk)

=
∑

x̃+νk∈Ωx̄

∑

ỹ+µk∈Ωȳ

(

x̃ + νk

ỹ + µk

)

αk(x̃)βk(ỹ)p(t, x̃, ỹ)

=
∑

x̃∈Ωx̄

∑

ỹ∈Ωȳ

(

x̃ + νk

ỹ + µk

)

αk(x̃)βk(ỹ)p(t, x̃, ỹ).

In order to obtain a closed differential equation, the mean of the propensity is ap-
proximated by the propensity of the mean:

∑

x∈Ωx̄

∑

y∈Ωȳ

αk(x)βk(y)p(t, x, y) ≈ αk(Ex(t)) · βk(Ey(t)).(2.14)

This yields

(

Ėx

Ėy

)

≈
r

∑

k=1

(

νk

µk

)

αk(Ex) · βk(Ey)

and hence one may hope that the solution (ηx, ηy) of the reaction-rate equation

(

η̇x

η̇y

)

=
r

∑

k=1

(

νk

µk

)

αk(ηx) · βk(ηy)(2.15)

approximates E(t). If all propensities are at most linear, i.e. if

αk(ηx) = ck,1x + ck,2, βk(ηy) = ck,3 or αk(ηx) = ck,1, βk(ηy) = ck,2y + ck,3

for all k = 1, . . . , r with some constants ck,1, ck,2, ck,3 ∈ R, then the approximation
(2.14) is exact and consequently (ηx, ηy) = (Ex, Ey). For more complicated systems,
however, the reaction-rate equations do not provide a reasonable approximation to
the true dynamics.

3. Model reduction.
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3.1. Product approximation. In a first step, the solution p(t, x, y) is sup-
posed to be approximated by the direct product (u⊗ v)(t, x, y) = u(t, x)v(t, y) of two
probability distributions u(t, x) and v(t, y) which only depend on x or y, respectively.
Clearly, it cannot expected that u ⊗ v is an exact solution of the CME (2.7), i.e.

∂t(u ⊗ v)(t, x, y) 6= A(u ⊗ v)(t, x, y).(3.1)

In order to derive equations of motion for u and v we impose the condition that the
“marginals” of both sides of (3.1) coincide:

∑

y

∂t(u ⊗ v)(t, x, y) =
∑

y

A(u ⊗ v)(t, x, y) for all x ∈ Ωx̄(3.2)

∑

x

∂t(u ⊗ v)(t, x, y) =
∑

x

A(u ⊗ v)(t, x, y) for all y ∈ Ωȳ(3.3)

Here and below, the shorthand notation
∑

x and
∑

y is used for
∑

x∈Ωx̄
and

∑

y∈Ωȳ
.

We assume (and verify below) that

∑

x

∂tu(t, x) = 0 and
∑

y

∂tv(t, y) = 0(3.4)

for all t ≥ 0 which implies
∑

x u(t, x) = 1 and
∑

y v(t, y) = 1 for all t > 0 provided
that this is true for t = 0. As a consequence, the left-hand side of (3.2) reduces to

∑

y

∂t(u ⊗ v)(t, x, y) =
∑

y

∂tu(t, x) · v(t, y) +
∑

y

u(t, x) · ∂tv(t, y) = ∂tu(t, x)

whereas the right-hand side of (3.2) is

∑

y

A(u ⊗ v)(t, x, y) =

r
∑

k=1

(

∑

y

βk(y − µk)v(t, y − µk)

)

αk(x − νk)u(t, x − νk)

−
r

∑

k=1

(

∑

y

βk(y)v(t, y)

)

αk(x)u(t, x).

As before, one obtains with (2.9), (2.10) and ỹ = y − µk that

∑

y

βk(y − µk)v(t, y − µk) =
∑

ỹ+µk

βk(ỹ)v(t, ỹ) =
∑

ỹ

βk(ỹ)v(t, ỹ).

The same steps can be carried out mutatis mutandis for (3.3). This yields a coupled
system of equations of motion for u(t, x) and v(t, y):

∂tu(t, x) =

r
∑

k=1

(

∑

y

βk(y)v(t, y)

)

(

αk(x − νk)u(t, x − νk) − αk(x)u(t, x)

)

(3.5)

∂tv(t, y) =

r
∑

k=1

(

∑

x

αk(x)u(t, x)

)

(

βk(y − µk)v(t, y − µk) − βk(y)v(t, y)

)

(3.6)

Similar as in Section 2.4 it can easily be shown that the solution of (3.5)-(3.6) does
indeed satisfy the condition (3.4). Suitable initial data for the new equations of mo-
tion are u(0, x) =

∑

y p(0, x, y) and v(0, y) =
∑

x p(0, x, y).
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Lemma 1. If u(0, x) and v(0, y) are probability distributions, then the solution
u(t, x) and v(t, y) of the reduced model (3.5)-(3.6) remains a probability distribution
for all times.

Proof. Equation (3.4) implies the mass conservation
∑

x u(t, x) = 1 and
∑

y v(t, y) =
1 for all t ≥ 0. It remains to prove that u(t, x) ≥ 0 and v(t, y) ≥ 0 for all t ≥ 0 and
(x, y) ∈ Ω(x̄,ȳ). Suppose that there is a t⋆ and state x⋆ such that

u(t⋆, x⋆) = 0, u(t⋆, x) ≥ 0 for all x 6= x⋆, v(t⋆, y) ≥ 0 for all y

Then we have

∂tu(t⋆, x⋆) =
r

∑

k=1

(

∑

y

βk(y)v(t, y)

)

(

αk(x⋆ − νk)u(t, x⋆ − νk) − αk(x⋆)u(t, x⋆)

)

≥ 0

because by assumption αk(x⋆)u(t, x⋆) = 0 and all other terms are positive. Hence,
u(t, x⋆) cannot decrease below 0. The same argument applies to all other x and to
v(t, y).

Discussion. While the full CME (2.7) involves
∏d1

i=1 x̄i ·
∏d2

j=1 ȳj unknowns, the re-

duced model (3.5)-(3.6) contains only
∏d1

i=1 x̄i +
∏d2

j=1 ȳj degrees of freedom, which
is a significant reduction. The linear CME is now replaced by two nonlinear equa-
tions, but this is not really an inconvenience because each of these equations inherits
the structure of a CME. In (3.5) the propensities αk are multiplied by the factor
∑

y βk(y)v(t, y), and vice versa for (3.6). The two equations are only coupled via
these factors such that for fixed v(t, y) the differential equation (3.5) is linear, and for
fixed u(t, x) (3.6) is linear. Hence, the reduced model can be conveniently solved with
the second-order Strang splitting method:

1. Choose a step size h > 0, set n = 0.
2. Half step in u(t, x): Compute an approximation un+1/2(x) by solving (3.5)

from t to t + h/2 while keeping vn(y) fixed.
3. Full step in v(t, y): Compute an approximation vn+1(x) by solving (3.6) from

t to t + h while keeping un+1/2(x) fixed.
4. Half step in u(t, x): Compute an approximation un+1(x) by solving (3.5) from

t + h/2 to t + h while keeping vn+1(y) fixed.
5. Set n = n + 1 and go to 2.

In each sub-step only a lower-dimensional linear CME has to be solved.
The product approximation is akin to the dynamical low-rank approximation, cf.

[24, 25]. In this approach, the solution of an evolution equation is represented by a
sum of rank-1 tensor products which are propagated along with the solution. This
strategy has been applied to the CME in [26].

3.2. Hellander-Lötstedt model. The number of degrees of freedom can be
further decreased if instead of v(t, y) only its approximative expectation

η(t) ≈
∑

y

yv(t, y)(3.7)

is considered. Taking the derivative on both sides of (3.7) yields via (3.6)

η̇(t) ≈
r

∑

k=1

(

∑

x

αk(x)u(t, x)

)

∑

y

y

(

βk(y − µk)v(t, y − µk) − βk(y)v(t, y)

)
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=

r
∑

k=1

(

∑

x

αk(x)u(t, x)

)

µ
∑

y

βk(y)v(t, y)(3.8)

where we have used again that (2.9) and (2.10) imply
∑

y

yβk(y − µk)v(t, y − µk) =
∑

ỹ

(ỹ + µ)βk(ỹ)v(t, ỹ)

(cf. Section 2.5). Now we have to approximate
∑

y βk(y)v(t, y) in terms of η(t):

∑

y

βk(y)v(t, y) ≈ βk

(

∑

y

yv(t, y)

)

≈ βk(η(t))(3.9)

The first approximation is essentially the same as in (2.14), and the second follows
from (3.7). Substituting (3.9) into (3.8) and (3.5) yields coupled equations of motion
for w(t, x) ≈ u(t, x) and η(t):

∂tw(t, x) =

r
∑

k=1

βk(η(t))

(

αk(x − νk)w(t, x − νk) − αk(x)w(t, x)

)

(3.10)

η̇(t) =

r
∑

k=1

(

∑

x

αk(x)w(t, x)

)

µkβk(η(t))(3.11)

This approach for reducing the CME has been proposed by Andreas Hellander and
Per Lötstedt in [20] using a different derivation. Although similar models are known in
other application areas (cf. [27, 28, 18]), the equations (3.10)-(3.11) will be called the
Hellander-Lötstedt model henceforth. In this model, the marginal distribution w solves
a CME with propensities depending on η whereas η solves a classical reaction-rate
equation similar to (2.15), but including factors depending on w. The total number

of degrees of freedom is now reduced to
∏d1

i=1 x̄i + d2. As before, the equations of
motion can be solved with the Strang splitting method. In [20] a method based on
stochastic simulations has been constructed.

Lemma 2. Let w(t, x) and η(t) be the solution of the Hellander-Lötstedt model
(3.10)-(3.11). If w(0, x) is a probability distribution and η(0) ≥ 0, then w(t, x) re-
mains a probability distribution and η(t) ≥ 0 for all times t > 0.

Proof. The fact that w(t, x) remains a probability distribution can be proved by
adapting the arguments from the proof of Lemma 1. Suppose that for some t⋆ ≥ 0
we have ηi(t

⋆) = 0 and ηj(t
⋆) ≥ 0 for all j 6= i. Then (3.11) yields

η̇i(t
⋆) =

r
∑

k=1

(

∑

x

αk(x)w(t⋆, x)

)

µk,iβk(η(t⋆))

where µk,i denotes the i−th entry of the k−th stoichiometric vector. If µk,i < 0, then
βk(η(t⋆) = 0 due to (2.10). Hence η̇i(t

⋆) ≥ 0, and ηi(t) cannot decrease below 0.

4. Error estimates for the reduced models. The derivation in the previous
section raises the question how accurately the reduced models (3.5)-(3.6) or (3.10)-
(3.11) approximate the solution of the full CME (2.7). This question is now investi-
gated. In applications the equations of motion of each model have to be solved by
applying a suitable numerical method (such as, e.g. the Strang splitting) which causes
an additional numerical error. In this article, however, only the modeling error of the
reduced models is analyzed.
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4.1. Accuracy of the product approximation.

4.1.1. Exact solutions in special cases.
Proposition 1. Suppose that the exact solution of the CME (2.7) admits an

exact product representation: there are probability distributions û(t, x) and v̂(t, y) such
that p(t, x, y) = (û ⊗ v̂)(t, x, y) = û(t, x)v̂(t, y). Let u(t, x) and v(t, y) be the solution
of the product approximation (3.5)-(3.6) If u(0, x) = û(0, x) and v(0, y) = v̂(0, y),
then the solution of the product approximation is exact:

u(t, x) = û(t, x), v(t, y) = v̂(t, y), u(t, x)v(t, y) = p(t, x, y)

for all t ≥ 0, (x, y) ∈ Ω(x̄,ȳ).

Proof. Since p(t, x, y) = (û ⊗ v̂)(t, x, y) is the exact solution of the CME, we have
(in contrast to (3.1))

∂t(û ⊗ v̂)(t, x, y) = A(û ⊗ v̂)(t, x, y).

Taking sums with respect to x or y, respectively, shows that û and v̂ solve (3.5)-(3.6).
Since u(0, x) = û(0, x) and v(0, y) = v̂(0, y), the uniqueness of the solution implies
u(t, x) = û(t, x) and v(t, y) = v̂(t, y).

Proposition 1 applies not only to the trivial case where the subsystems represented
by the variables x and y are decoupled, but also to monomolecular reaction systems.
A reaction system is called monomolecular if and only if all of its reaction channels
are monomolecular, and a reaction channel is called monomolecular if it belongs to
one of the following three classes (j 6= i):

Reaction channel α(x) β(y)

Conversion: Sj −→ Si c · xj 1 if 1 ≤ j ≤ d1

1 c · yj−d1
if d1 < j ≤ d

Degradation: Sj −→ ∅ c · xj 1 if 1 ≤ j ≤ d1

1 c · yj−d1
if d1 < j ≤ d

Inflow: ⋆ −→ Sj c 1 if 1 ≤ j ≤ d1

1 c if d1 < j ≤ d

Of course, the reaction constant c > 0 may have different values in different
reaction channels. Here and below, ⋆ denotes a constant “source” and ∅ is the group
of “dead” or “disappeared” particles; cf. [29]. Monomolecular reaction systems are
special because the solution of the associated CME is explicitly known (cf. [2]) which
can be used, e.g., to construct efficient stochastic simulation methods (cf. [29]). For
the tensor product model, we have the following

Corollary 1. Consider the CME (2.7) and the product approximation (3.5)-
(3.6) without any truncation of the state space (i.e. let (x̄, ȳ) = (∞, . . . ,∞) in (2.8)).
Suppose that all reaction channels are monomolecular and that p0(x, y) is a product
Poisson distribution. If u(0, x) =

∑

y p0(x, y) and v(0, x) =
∑

x p0(x, y), then the
product approximation reproduces the exact solution of the full CME, i.e.

u(t, x)v(t, y) = p(t, x, y) for all t ≥ 0, x ≥ 0, y ≥ 0.
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Proof. Under the above assumptions the solution of the full CME (2.7) remains
a product Poisson distribution for all times with a time-dependent parameter; cf.
Proposition 2 in [2]. Hence, Proposition 1 applies and yields the assertion.

4.1.2. A posteriori error bound. In most applications a tensor product rep-
resentation p(t, x, y) = (û ⊗ v̂)(t, x, y) of the CME solution is not possible such that
the reduced model (3.5)-(3.6) will only yield an approximation. Before we derive an
error bound for this approximation, we first give a geometric interpretation of the
equations of motion (3.5)-(3.6).

Let M be the manifold of all tensor products of probability distributions:

M =

{

(q1 ⊗ q2)(x, y) = q1(x)q2(y)
∣

∣

∣

∑

x

q1(x) =
∑

y

q2(y) = 1, q1(x), q2(y) ≥ 0

}

The tangent space in q1 ⊗ q2 ∈ M is

Tq1⊗q2
M =

{

δϕ : Ω(x̄,ȳ) −→ R

∣

∣

∣
there is a differentiable curve ϕ : R −→ M

such that ϕ(0) = q1 ⊗ q2 and δϕ =
dϕ

dt
(0)

}

=

{

δq1 ⊗ q2 + q1 ⊗ δq2

∣

∣

∣

∑

x

δq1(x) =
∑

y

δq2(y) = 0

}

.

Let f(x, y) have the property that
∑

x

∑

y f(x, y) = 0. Then, a projection of f into
the tangent space of q1 ⊗ q2 ∈ M is defined by

Pq1⊗q2
: f 7→

(

∑

y

f

)

⊗ q2 + q1 ⊗

(

∑

x

f

)

.

The condition
∑

x

∑

y f(x, y) = 0 holds, in particular, for f(x, y) = (Aq)(x, y) with
any q(x, y); cf. (2.11).

If u and v are the solutions of the product approximation (3.5)-(3.6), then u ⊗ v
solves the differential equation

∂t(u ⊗ v) = Pu⊗vA(u ⊗ v)(4.1)

because by definition of Pu⊗v

Pu⊗vA(u ⊗ v) =

(

∑

y

A(u ⊗ v)

)

⊗ v + u ⊗

(

∑

x

A(u ⊗ v)

)

=

(

∑

y

∂t(u ⊗ v)

)

⊗ v + u ⊗

(

∑

x

∂t(u ⊗ v)

)

= ∂tu ⊗ v + u ⊗ ∂tv = ∂t(u ⊗ v).
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Theorem 1. Let p(t, x, y) be the solution of the full CME ∂tp = Ap and let
u(t, x) and v(t, y) be the solution of (3.5)-(3.6). Then, the error ε(t) = ε(t, x, y) =
p(t, x, y) − u(t, x)v(t, y) is bounded by

‖ε(t)‖ ≤ ‖ε(0)‖ +

t
∫

0

‖(I − P(u⊗v)(s))A(u ⊗ v)(s)‖ds.

Proof. Comparing the full CME ∂tp = Ap with (4.1) shows that the error solves

∂tε = Aε + (I − Pu⊗v)A(u ⊗ v)

with initial data ε(0, x, y) = p(0, x, y) − u(0, x)v(0, y). The variation-of-constant for-
mula yields (upon omitting the arguments x and y)

ε(t) = exp(tA)ε0 +

t
∫

0

exp((t − s)A)(I − P(u⊗v)(s))A(u ⊗ v)(s)ds,(4.2)

and with ‖ exp(tA)‖ = 1 it follows that

‖ε(t)‖ ≤ ‖ε0‖ +

t
∫

0

‖(I − P(u⊗v)(s))A(u ⊗ v)(s)‖ds.

Discussion. In the product approximation the vector field generated by the CME
operator is projected into the tangent space. This ensures that the solution u ⊗ v
stays on the manifold M. Theorem 1 states that integrating the projection error
‖(I−Pu⊗v)A(u⊗v)‖ gives an upper bound for the error of the product approximation.
The above result is an a posteriori bound, i.e. the solution u⊗v appears on the right-
hand side of the error bound. In [30] a very similar result has been shown in the
context of the time-dependent Schrödinger equation.

A refined estimate is possible by taking into account that every solution of the CME
on Ω(x̄,ȳ) converges to a stationary distribution ρ = ρ(x, y); cf. Section 2.4. For
simplicity, now we assume that ρ is unique. Then, it can be shown that the limit
operator S = limt→∞ exp(tA) is

S : q(x, y) 7→ ρ(x, y)
∑

ξ

∑

ζ

q(ξ, ζ).

In particular, S maps every probability distribution to the stationary distribution ρ.
Let γ1, γ2 > 0 be constants such that

‖ exp(tA) − S‖ ≤ γ1e
−γ2t t ≥ 0.(4.3)

Such an inequality can be obtained from the Jordan canonical form of the matrix
representation of A on Ω(x̄,ȳ).

Theorem 2. Consider the situation from Theorem 1 and, in addition, assume
that (4.3) holds. Then, the error ε(t) = ε(t, x, y) = p(t, x, y)−u(t, x)v(t, y) is bounded
by

‖ε(t)‖ ≤ ‖ε0‖ +
γ1

γ2
(1 − e−γ2t) · max

τ∈[0,t]
‖(I − P(u⊗v)(τ))A(u ⊗ v)(τ)‖



ON REDUCED MODELS FOR THE CHEMICAL MASTER EQUATION 13

Remark. This error bound shows that the error cannot grow unlimited if the solu-
tions of the CME and of the product approximation converge to a steady state.

Proof. It follows from the definition of S that

S(I − P(u⊗v)(s))A(u ⊗ v) = 0

because
∑

ξ

∑

ζ f(ξ, ζ) = 0 for f = A(u⊗ v) or f = PA(u⊗ v). Hence, starting from
(4.2) we obtain

‖ε(t)‖ ≤ ‖ exp(tA)ε0‖ +

t
∫

0

‖ exp((t − s)A)(I − P(u⊗v)(s))A(u ⊗ v)(s)‖ds

≤ ‖ε0‖ +

t
∫

0

‖(exp((t − s)A) − S)(I − P(u⊗v)(s))A(u ⊗ v)(s)‖ds

= ‖ε0‖ +

t
∫

0

γ1e
−γ2sds · max

τ∈[0,t]
‖(I − P(u⊗v)(τ))A(u ⊗ v)(τ)

= ‖ε0‖ +
γ1

γ2
(1 − e−γ2t) · max

τ∈[0,t]
‖(I − P(u⊗v)(τ))A(u ⊗ v)(τ).

4.2. Accuracy of the Hellander-Lötstedt model. When discussing the ac-
curacy of the Hellander-Lötstedt model one has to keep in mind that w(t, x) and
η(t) do not approximate the joint probability distribution p(t, x, y) itself, but only
the marginal distribution of the x−variables and the expectation with respect to the
y−variables:

w(t, x) ≈
∑

y

p(t, x, y), η(t) ≈
∑

x

∑

y

yp(t, x, y)

An approximation of p(t, x, y) can be obtained by assuming that

p(t, x, y) ≈ w(t, x)φ(y, η(t))(4.4)

where φ(y, η(t)) is a suitably chosen distribution with mean η(t). In [20] a Gaussian
was chosen (in spite of the discreteness of the state space), but one could also use,
e.g., a Poisson distribution (in case of an unbounded state space) or a multinomial
distribution (in case of a bounded state space). Since the question which choice of
φ is the best in a particular application can often not be answered a priori, the
ansatz (4.4) will not be used here. Instead, we assume that the species represented
by the y−variables are of minor interest such that an approximation of the mean
∑

x

∑

y yp(t, x, y) provides a sufficient description of their dynamics.

4.2.1. The monomolecular case. As a first result, we prove that the Hellander-
Lötstedt model is exact in the monomolecular setting:

Proposition 2. Consider the CME (2.7) and the Hellander-Lötstedt model
(3.10)-(3.11) without any truncation of the state space (i.e. let (x̄, ȳ) = (∞, . . . ,∞)
in (2.8)). Suppose that all reaction channels are monomolecular and that p0(x, y) is
a product Poisson distribution. If w(0, x) =

∑

y p0(x, y) and η(0) =
∑

x

∑

y yp0(x, y),
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then the product approximation is exact in the sense that

w(t, x) =
∑

y

p(t, x, y) and η(t) =
∑

x

∑

y

yp(t, x, y) for all t ≥ 0, x ≥ 0.

Proof. It follows from Corollary 1 that the exact marginal distributions p1(t, x) =
∑

y p(t, x, y) and p2(t, y) =
∑

x p(t, x, y) are the solutions of (3.5)-(3.6), i.e.

∂tp1(t, x) =

r
∑

k=1

(

∑

y

βk(y)p2(t, y)

)

(

αk(x − νk)p1(t, x − νk) − αk(x)p1(t, x)

)

∂tp2(t, y) =
r

∑

k=1

(

∑

x

αk(x)p1(t, x)

)

(

βk(y − µk)p2(t, y − µk) − βk(y)p2(t, y)

)

.

Let Ey(t) be the exact expectation with respect to y. Since all reaction channels are
monomolecular, we have either βk(y) = c or βk(y) = cyj for some j ∈ {1, . . . , d2}.
This implies

∑

y

βk(y)p2(t, y) = βk(Ey(t))(4.5)

and in particular

∂tp1(t, x) =
r

∑

k=1

βk(Ey(t))

(

αk(x − νk)p1(t, x − νk) − αk(x)p1(t, x)

)

.(4.6)

Substituting the equation of motion for p2(t, y) into Ėy(t) =
∑

y y∂tp2(t, y) yields
with (4.5) and similar arguments as in Section 2.5 that

Ėy(t) =
r

∑

k=1

(

∑

x

αk(x)p1(t, x)

)

∑

y

(

βk(y − µk)p2(t, y − µk) − βk(y)p2(t, y)

)

=

r
∑

k=1

(

∑

x

αk(x)p1(t, x)

)

µk

∑

y

βk(y)p2(t, y)

=

r
∑

k=1

(

∑

x

αk(x)p1(t, x)

)

µk

∑

y

βk(Ey(t)).(4.7)

Equation (4.6) and (4.7) are exactly the equations of motion of the Hellander-Lötstedt
model, and since by assumption w(0, x) = p1(0, x) and η(0) = Ey(0), this proves the
assertion.

Remark. An alternative proof could be given by using the explicit solution formula
from Proposition 2 in [2].

4.2.2. The general case: assumptions and consequences. According to
the derivation one can expect that the Hellander-Lötstedt model yields a very good
approximation to the solution of the full CME (2.7) if

• an approximate product representation p(t, x, y) ≈ u(t, x)v(t, y) exists, and
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• v(t, x) is essentially represented by its expectation.
Both conditions hold if the marginal distribution p2(t, y) =

∑

x p(t, x, y) is local-
ized around the mean value Ey(t) =

∑

y yp2(t, y), i.e. if the covariance matrix
∑

x

∑

y(y − Ey(t))(y − Ey(t))T p(t, x, y) is sufficiently is small and higher moments
vanish. The conjecture that a small covariance with respect to y improves the accu-
racy of the Hellander-Lötstedt model has already been made in [20]. Proposition 2
shows, however, that this condition is not always necessary, since here the exact result
is obtained although the covariance matrix can be arbitrarily large. In this subsection
we prove an error bound which explains this observation. Only the error

‖u(t, ·) − w(t, ·)‖ + ‖
∑

y

yv(t, y) − η(t)‖

will be considered. An error bound for the Hellander-Lötstedt approximation to the
full CME solution can be obtained via the triangle inequality and Theorem 1 or 2.

From now on let |ω| =
√

∑d2

i=1 ω2
i denote the 2-norm of a vector or the associated

matrix norm, respectively. Note that this does not contradict the earlier use of | · |
for the absolute value of a real number.

Let u(t, x) and v(t, y) be the solution of the product approximation (3.5)-(3.6),
and let w(t, x) and η(t) be the solution of the Hellander-Lötstedt model (3.10)-(3.11).
The following assumptions are made:

(A1) For all k = 1, . . . , r we assume that either

βk(y) = ck or βk(y) = ckyi or βk(y) = ckyiyj or βk(y) = ck
yi(yi − 1)

2

for some i, j ∈ {1, . . . , d2}, where ck > 0 is the reaction constant of the k−th
reaction. This implies that the Hessian ∇2βk(y) = ∇2βk is constant and
∇3βk(y) = 0. Moreover, it implies that βk is Lipschitz continuous: There is
a constant L1 > 0 such that

|βk(y) − βk(ỹ)| ≤ L1|y − ỹ|

for all 0 ≤ y < ȳ and 0 ≤ ỹ < ȳ, and, in particular, that βk(y) ≤ L1|ȳ| is
bounded.

(A2) There is a constant L2 > 0 such that

∥

∥

∥

r
∑

k=1

βk(η(t)) ·
(

Ãku(t, x) − Ãkw(t, x)
)∥

∥

∥
≤ L2‖u(t, ·) − w(t, ·)‖

∥

∥

∥
Ãku(t, x)

∥

∥

∥
≤ L2

where

Ãku(t, x) = αk(x − νk)u(t, x − νk) − αk(x)u(t, x).

(A3) There is a constant L3 > 0 such that for all k = 1, . . . , r
∣

∣

∣

∑

x

αk(x)(u(t, x) − w(t, x))
∣

∣

∣
≤ L3‖u(t, ·) − w(t, ·)‖

∣

∣

∣

∑

x

αk(x)w(t, x)
∣

∣

∣
≤ L3

∣

∣

∣

∑

x

αk(x)u(t, x)
∣

∣

∣
≤ L3.
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Discussion of the assumptions. (A1) is satisfied if all reaction channels involve
at most two particles of the “deterministic” species Sd1+1, . . . , Sd1+d2 and standard
propensities (2.2) are used. This is reasonable because reactions with more than two
reactants are rare in biological systems. With some additional efforts and assumptions,
our error analysis could be extended to the case of non-standard propensities. (A2)
and (A3) can be seen as regularity assumptions. On a bounded state space these
conditions are always satisfied because all propensity functions are bounded. Hence,
formulas for L2 and L3 can easily be derived, but the corresponding expressions
depend on maxk=1,...,r maxx<x̄ αk(x) and are usually far to pessimistic. Assumptions
(A2) and (A3) are to be understood in the sense that constants L1 and L2 exist which
are much smaller than the worst-case estimate.

4.2.3. The general case: error bound.
Theorem 3. Let the expectation and the covariance matrix of v(t, ·) be denoted

by

Ev(t) =
∑

y

yv(t, y),

Σv(t) =
∑

y

(y − Ev(t))(y − Ev(t))T v(t, y).

Under the assumptions (A1), (A2), and (A3), there is a constant Ĉ depending on
r, L1, L2, L3, |ȳ|, and tend such that for all t ∈ [0, tend]

|Ev(t) − η(t)| + ‖u(t, x) − w(t, x)‖ ≤ Ĉ

r
∑

k=1

t
∫

0

|Rk(Σv(s))| ds,

with

Rk(Σv(t)) =
1

2

∑

y

(y − Ev)
T (∇2βk)(y − Ev)v(t, y) =

1

2
I
T (Σv(t) • ∇2βk)I.(4.8)

The symbol • means entry-wise multiplication of matrices, and I = (1, . . . , 1) ∈ R
d2 .

Proof of Theorem 3.

Step 1: Error in the marginal distribution. Subtracting (3.10) from (3.5) yields

∂tu(t, x) − ∂tw(t, x) =

r
∑

k=1

(

∑

y

βk(y)v(t, y)

)

Ãku(t, x) −
r

∑

k=1

βk(η)Ãkw(t, x).(4.9)

Following the approach in [3], we use a Taylor expansion of βk about Ev and obtain

βk(y) = βk(Ev) + ∇βk(Ev)(y − Ev) +
1

2
(y − Ev)T (∇2βk)(y − Ev)

since all higher-order terms vanish according to assumption (A1). This yields

∑

y

βk(y)v(t, y) = βk(Ev) +
1

2

∑

y

(y − Ev)T (∇2βk)(y − Ev)v(t, y)

= βk(Ev) + Rk(Σv(t))(4.10)
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with the remainder term from (4.8). Substituting (4.10) into (4.9) shows that

∂tu(t, x) − ∂tw(t, x) =

r
∑

k=1

βk(Ev)Ãku(t, x) −
r

∑

k=1

βk(η)Ãkw(t, x)

+

r
∑

k=1

Rk(Σv(t))Ãku(t, x).

Since u(0, x) = w(0, x) by assumption, we obtain with (A1) and (A2)

‖u(t, x) − w(t, x)‖ = ‖

t
∫

0

(∂su(s, x) − ∂sw(s, x))ds‖

≤
r

∑

k=1

t
∫

0

|βk(Ev(s)) − βk(η(s))| · ‖Ãku(s, x)‖ ds

+
∥

∥

∥

r
∑

k=1

t
∫

0

βk(η(s)) ·
(

Ãku(s, x) − Ãkw(s, x)
)

ds
∥

∥

∥

+

r
∑

k=1

t
∫

0

‖Rk(Σv(s))| · ‖Ãku(s, x)‖ ds

≤ rL1L2

t
∫

0

|Ev(s) − η(s)| + ‖u(s, x) − w(s, x)‖ ds

(4.11)

+L2

r
∑

k=1

t
∫

0

|Rk(Σv(s))| ds

Step 2: Error in the expectations. The exact expectation evolves according to
the equation

Ėv(t) =
∑

y

y∂tv(t, y)

=

r
∑

k=1

(

∑

x

αk(x)u(t, x)

)

∑

y

y

(

βk(y − µk)v(t, y − µk) − βk(y)v(t, y)

)

=

r
∑

k=1

µk

(

∑

x

αk(x)u(t, x)

)(

∑

y

βk(y)v(t, y)

)

.

Comparing with the equation of motion (3.11) and substituting the Taylor expansion
(4.10) shows that

Ėv(t) − η̇(t) =

r
∑

k=1

µk

(

∑

x

αk(x)u(t, x)

)(

∑

y

βk(y)v(t, y)

)

−
r

∑

k=1

µk

(

∑

x

αk(x)w(t, x)

)

βk(η(t))
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=

r
∑

k=1

µk

(

∑

x

αk(x)u(t, x)

)

(

βk(Ev(t)) + Rk(Σv(t))
)

−
r

∑

k=1

µk

(

∑

x

αk(x)w(t, x)

)

βk(η(t))

=

r
∑

k=1

µk

(

∑

x

αk(x)(u(t, x) − w(t, x))

)

βk(Ev(t))

+

r
∑

k=1

µk

(

∑

x

αk(x)w(t, x)

)

(

βk(Ev(t)) − βk(η(t))
)

+

r
∑

k=1

µk

(

∑

x

αk(x)u(t, x)

)

Rk(Σv(t)).

Integrating the time-derivatives and using the assumptions (A1) and (A3) yields the
error bound

|Ev(t) − η(t)| ≤
r

∑

k=1

t
∫

0

|µk| · |
∑

x

αk(x)(u(s, x) − w(s, x))| · |βk(Ev(s))| ds

+

r
∑

k=1

t
∫

0

|µk| · |
∑

x

αk(x)w(s, x)| · |βk(Ev(s)) − βk(η(s))| ds

+

r
∑

k=1

t
∫

0

|µk| · |
∑

x

αk(x)u(s, x)| · |Rk(Σv(s))| ds

≤ CrL1L3|ȳ|

t
∫

0

‖u(s, ·) − w(s, ·)‖ + |Ev(s) − η(s)| ds

(4.12)

+L3

r
∑

k=1

t
∫

0

|Rk(Σv(s))| ds.

Step 3: Gronwall lemma. Combining Equation (4.11) and (4.12) provides the
estimate

|Ev(t) − η(t)| + ‖u(t, x) − w(t, x)‖

≤ CrL1L2L3|ȳ|

t
∫

0

|Ev(s) − η(s)| + ‖u(s, x) − w(s, x)‖ ds

+ (L2 + L3)

r
∑

k=1

t
∫

0

|Rk(Σv(s))| ds.

Applying the continuous Gronwall lemma finally gives the error bound

|Ev(t) − η(t)| + ‖u(t, x) − w(t, x)‖ ≤ Ĉ

r
∑

k=1

t
∫

0

|Rk(Σv(s))| ds, for all t ∈ [0, tend]
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with Ĉ = (L2 + L3)e
CrL1L2L3|ȳ|tend .

As we have expected, Theorem 3 states that replacing the product approximation
(3.5)-(3.6) by the Hellander-Lötstedt model (3.10)-(3.11) causes an additional error
which depends on the covariance matrix of the y−variables. However, Theorem 3
also explains why under the conditions of Proposition 2 the exact result is reproduced
although here the covariance matrix of the y−variables is not necessarily small.

Corollary 2. Suppose that for all k = 1, . . . , r the propensity βk(y) is at most
linear, i.e. that either βk(y) = ck or βk(y) = ckyi where ck > 0 is the reaction
constant of the k−th reaction. Then, under the assumptions (A2) and (A3), the
Hellander-Lötstedt model coincides with the product approximation in the sense that

Ev(t) = η(t), u(t, x) = w(t, x).

Proof of Corollary 2. Since βk(y) is at most linear, it follows that ∇2βk = 0 and
hence Rk(Σv(t)) = 0 for all k = 1, . . . , r and t ∈ [0, tend]. According to Theorem 3,
this means that |Ev(t) − η(t)| + ‖u(t, x) − w(t, x)‖ = 0.

The above condition only requires βk(y) to be at most linear, but not the entire
propensity. Consider, for example, the reaction channels

Si + Sj −→ [...] or Si + Si −→ [...]

where [...] denotes an arbitrary reaction product. If i ∈ {1, . . . , d1} and j ∈ {d1 +
1, . . . , d1 + d2}, then α(x) = const. · xi and β(y) = yj for the first and α(x) =
const. ·xi(xi −1)/2 and β(y) = 1 for the second reaction channel. In both cases, β(y)
is at most linear although the total propensity α(x)β(y) is not.

We can now easily re-prove Proposition 2 as follows: Under the corresponding
conditions

w(t, x)
(⋆)
= u(t, x) =

∑

y u(t, x)v(t, y)
(3)
=

∑

y p(t, x, y)

η(t)
(⋆)
= Ev(t) =

∑

x

∑

y yu(t, x)v(t, y)
(3)
=

∑

x

∑

y yp(t, x, y)

where the equations marked by (⋆) follow from Corollary 2 and the equations marked
by (3) follow from Corollary 1. Combining Proposition 1 with Theorem 3 implies
even a slightly more general result: The Hellander-Lötstedt model reproduces the
exact result if the solution of the CME admits a tensor product representation and
propensities βk(y) are at most linear. However, these conditions are very restrictive.

5. Model reduction based on conditional expectations (MRCE). The
derivation of the Hellander-Lötstedt model proceeds in two steps:

• Product approximation of the CME (cf. Section 3.1), and
• Reducing the marginal distribution v(t, y) to its expectation (cf. Section 3.2).

The analysis in the previous section indicates that often the first step is the critical
one because Corollary 2 shows that the Hellander-Lötstedt model attains the same
accuracy as the product approximation if βk(y) is at most linear. This condition
is indeed satisfied in many applications. The product approximation, in contrast,
often turns out to be far too crude because the solution of the full CME simply
does not admit a reasonable approximation of the form p(t, x, y) ≈ u(t, x)v(t, y). This
observation motivates a model reduction based on conditional expectations which is
presented now.
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5.1. Derivation. By Bayes’ theorem there is a probability distribution p2(t, y |x)
such that

p(t, x, y) = p1(t, x)p2(t, y |x) for all (x, y) ∈ Ω(x̄,ȳ)(5.1)

where p1(t, x) =
∑

y p(t, x, y) is the marginal distribution and p2(t, y |x) is the con-

ditional distribution2 that at time t there are yj particles of Sj given that there are
xi particles of Si (i ∈ {1, . . . , d1}, j ∈ {d1 + 1, . . . , d1 + d2}). If p1(t, x) 6= 0, then we
simply have p2(t, y |x) = p(t, x, y)/p1(t, x). Summing both sides of the full CME (2.7)
with respect to y yields the equation of motion

∂tp1(t, x) =
r

∑

k=1

(

∑

y

βk(y)p2(t, y |x − νk)

)

αk(x − νk)p1(t, x − νk)

−
r

∑

k=1

(

∑

y

βk(y)p2(t, y |x)

)

αk(x)p1(t, x)

This equation is still exact but depends on p2(t, y |x) which is not supposed to be
computed. Similar as before, we replace p2(t, y |x) by substituting the approximation

∑

y

βk(y)p2(t, y |x) ≈ βk(η(t|x))(5.2)

where η(t|x) ≈
∑

y yp2(t, y |x) approximates the mean of the conditional expectation.
This gives an equation similar to (3.10):

∂tp1(t, x) ≈
r

∑

k=1

(

βk(η(t|x − νk))αk(x − νk)w(t, x − νk)

(5.3)
−βk(η(t|x))αk(x)w(t, x)

)

.

Next, we derive an equation of motion for the new variable η(t|x) ≈
∑

y yp2(t, y |x).
Applying the product rule to

∑

y yp(t, x, y) ≈ η(t|x)p1(t, x) shows that

p1(t, x)∂tη(t|x) ≈
∑

y

y∂tp(t, x, y) − η(t|x)∂tp1(t, x).(5.4)

Now
∑

y y∂tp(t, x, y) has to be approximated in terms of η(t|x) and p1(t, x). Substi-
tuting the CME (2.7) yields

∑

y

y∂tp(t, x, y)

=

r
∑

k=1

∑

y

y
(

αk(x − νk)βk(y − µk)p(t, x − νk, y − µk) − αk(x)βk(y)p(t, x, y)
)

=
r

∑

k=1

(

∑

y

(y + µk)βk(y)p2(t, y |x − νk)

)

αk(x − νk)p1(t, x − νk)

−
r

∑

k=1

(

∑

y

yβk(y)p2(t, y |x)

)

αk(x)p1(t, x)(5.5)

2Note that p2(t, y |x) differs from p2(t, y) defined in Section 4.
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In order to replace p2(t, y |x) we substitute the Taylor expansion

βk(y) ≈ βk

(

η(t|x)
)

+
〈

∇βk

(

η(t|x)
)

, y − η(t|x)
〉

which gives

∑

y

yβk(y)p2(t, y |x)

≈
∑

y

yβk

(

η(t|x)
)

p2(t, y |x) +
∑

y

y
〈

∇βk

(

η(t|x)
)

, y − η(t|x)
〉

p2(t, y |x)

≈ βk

(

η(t|x)
)

η(t|x) +
∑

y

(

y − η(t|x)
) 〈

∇βk

(

η(t|x)
)

, y − η(t|x)
〉

p2(t, y |x)(5.6)

≈ βk

(

η(t|x)
)

η(t|x)(5.7)

In (5.6) we have used that η(t|x) ≈
∑

y yp2(t, y |x) implies

∑

y

〈

∇βk

(

η(t|x)
)

, y − η(t|x)
〉

p2(t, y |x) ≈ 0,

and in (5.7) it was assumed that the term

∑

y

(

y − η(t|x)
) 〈

∇βk

(

η(t|x)
)

, y − η(t|x)
〉

p2(t, y |x)

=
∑

y

(

y − η(t|x)
)(

y − η(t|x)
)T

p2(t, y |x)

is so small that it can be neglected. This term approximates the covariance matrix of
p2(t, y |x) if η(t|x) approximates the conditional expectation. With (5.4), (5.3) and
(5.7), we obtain the following set of equations for w(t, x) ≈ p1(t, x) and η(t|x) ≈
∑

y yp2(t, y |x):

∂tw(t, x) =

r
∑

k=1

(

βk(η(t|x − νk))αk(x − νk)w(t, x − νk)(5.8)

−βk(η(t|x))αk(x)w(t, x)
)

∂tη(t|x) · w(t, x) = −η(t|x) · ∂tw(t, x)(5.9)

+

r
∑

k=1

(

η(t|x − νk)βk(η(t|x − νk))αk(x − νk)w(t, x − νk)

−η(t|x)βk(η(t|x))αk(x)w(t, x)
)

+

r
∑

k=1

µkβk

(

η(t|x − νk)
)

αk(x − νk)w(t, x − νk)

This reduced model will be denoted by MRCE as an abbreviation of model reduction
by conditional expectations. We remark, however, that model reduction based on
conditional moments is not a new idea. In fact, our approach (5.8)-(5.9) is closely
related to a corresponding model reduction approach proposed in [18, 19] for the



22 T. Jahnke

Fokker-Planck equation, and to similar techniques in the context of polymerization
kinetics (cf. [31]).

As in the Hellander-Lötstedt model, the differential equation for the x−variables
is a lower-dimensional CME with propensities depending on η. In contrast to (3.11),
however, the second equation (5.9) does not really look like a variant of the reaction-
rate equation, and since now η = η(t|x) depends on x, this equation is more compli-
cated. Moreover, the differential equation (5.9) has to be handled with care. Formally,
dividing by w(t, x) and replacing ∂tw(t, x) via (5.8) would an equation of motion for
η(t|x), but this can only be done for those x where w(t, x) 6= 0. If w(t, x) = 0, then
∂tη(t|x) is not defined, and for w(t, x) ≈ 0, the equation is ill-conditioned. Hence,
solving the system (5.8)-(5.9) numerically requires a method which copes with this
problem. Such a method will be derived in Section 5.2. For the time being, we assume
for simplicity that w(t, x) 6= 0 for all x ∈ Ωx̄. Under this condition, MRCE has the
following properties:

1. If η(0|x) ≥ 0 for all x ∈ Ωx̄ and if w(0, ·) is a probability distribution, then
η(t|x) ≥ 0 for all x ∈ Ωx̄ and w(t, ·) is a probability distribution for all t ≥ 0.
This can be shown by adapting the proof of Lemma 2.

2. The Hellander-Lötstedt model is recovered as a special case of MRCE: If
η(t|x) = η̃(t) is constant with respect to x, then (5.8)-(5.9) is equivalent to
(3.10)-(3.11). In this case, we obtain from (5.9) and using

∑

x ∂tw(t, x) = 0
that

d

dt
η̃(t) =

d

dt
η̃(t)

∑

x

w(t, x)

=
∑

x

∂tη(t|x) · w(t, x)

= 0 + 0 +

r
∑

k=1

µk

∑

x

βk

(

η(t|x − νk)
)

αk(x − νk)w(t, x − νk)

=

r
∑

k=1

µkβk

(

η̃(t)
)

∑

x

αk(x)w(t, x).

Hence, η̃ and w(t, x) is the solution of the Hellander-Lötstedt model (3.10)-
(3.11).

3. Under the conditions of Proposition 2 (monomolecular reaction channels and
product Poisson initial data) MRCE is exact, i.e.

w(t, x) =
∑

y

p(t, x, y) and η(t|x)w(t, x) =
∑

x

∑

y

yp(t, x, y).

The reason is that under these assumptions η(t|x) is indeed independent of
x. Hence, the solution of MRCE coincides with the solution of the Hellander-
Lötstedt model, which, according to Proposition 2, reproduces the exact re-
sult.

4. In Theorem 3 the error of the Hellander-Lötstedt model was bounded in terms
of the covariance matrix of the marginal distribution of the y−variables. We
conjecture that a similar result could also be shown for MRCE, but a detailed
error analysis is beyond the scope of this article.

5.2. An adaptive integrator for MRCE. It was pointed out in the previous
section that (5.9) only provides an equation of motion for those ∂tη(t|x) with w(t, x) >
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0, and that the case w(t, x) ≈ 0 may cause numerical instabilities. Now we sketch a
strategy how to cope with this problem.

Preliminaries. The following method computes approximations wn(x) ≈ w(tn, x)
and ηn(x) ≈ η(tn |x) of the solution of (5.8)-(5.9) at discrete times tn = tn−1 + hn ∈
[0, tend] with t0 = 0. The step-size hn can be chosen adaptively or kept constant.

Initial data. Let p(0, x, y) be the (known) initial distribution of the full CME
(2.7) and let w0(x) =

∑

y p(0, x, y). For those states with w0(x) ≥ ε the initial value
for the conditional expectations is given by

η0(x) =

∑

y yp(0, x, y)

w0(x)
for all x ∈ Ωx̄ with w0(x) ≥ 1.

Extrapolation of the expectations. Let wn be an approximation of the margi-
nal distribution w(tn, ·). A state x ∈ Ωx̄ is called active if wn(x) ≥ ε, and passive
otherwise. In our method ηn(x) will be only computed for the active states. For all
passive states the values of ηn(x) are not of any practical interest because it does not
really matter what happens in a state x that is only visited with a very low proba-
bility. Nevertheless, ηn(x) must be defined for all x ∈ Ωx̄ in order to evaluate the
right-hand side of (5.8) and (5.9). Thus, we define an estimate E[ηn](x) ≈ ηn(x) for
the passive states by extrapolation. This approach is based on the assumption that
x 7→ ηn(x) is smooth (in a discrete sense). The extrapolation procedure operates as
follows:

0. Input: ηn(x) for all active states x.
1. Define j = 0, χ(0)(x) = 1 if x is active and χ(0)(x) = 0 otherwise. The

function χ(j)(x) indicates whether or not ηn(x) has been defined for state x
after j iterations.

2. Define η̂
(0)
n (x) = ηn(x) for all active states x.

3. For any state x ∈ Ωx̄ let

B(x) =
{

x̃ ∈ Ωx̄ : max
i=1,...,d1

|xi − x̃i| = 1
}

be the set of all neighboring states, and let

Γ(j) =
{

x ∈ Ωx̄ : x is passive, but there is an active state x̃ ∈ B(x)
}

be the “border” of the set of those states for which η̂
(j)
n (x) is not yet defined.

4. If Γ(j) = ∅, then stop. The result E[ηn] = η̂
(j)
n is the desired extrapolation.

If Γ(j) 6= ∅, then do the following for every x ∈ Γ(j): Let

{x1, . . . , xκ} = B(x) ∩
{

x̃ ∈ Ωx̄ : χ(j)(x̃) = 1
}

be those adjacent states of x where η̂
(j)
n is already available. By definition of

Γ(j) we have 1 ≤ κ ≤ 3d1 −1. Define η̂
(j+1)
n (x) by averaging over these states:

η̂(j+1)
n (x) =

1

κ

κ
∑

l=1

η̂(j)
n (xl)

Set χ(j+1)(x) = 1 for all x ∈ Γ(j), j = j + 1 and go to step 3.
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It is worth mentioning that the extrapolation strategy does only give a crude esti-
mate for ηn(x). However, this does not cause any problems because wherever ηn(x)
appears in the right-hand side of (5.8) and (5.9), it is multiplied with w(t, x), and
since w(t, x) < ε for the passive states, the rather coarse approximation hardly affects
the accuracy.

Time integration by the Strang splitting. In order to keep the notation
simple, we reformulate MRCE as

∂tw(t, x) = H(η)w(t, x)(5.10)

∂tη(t|x) · w(t, x) = G(η, w)(x)(5.11)

where H(η)w and G(η, w) are abbreviations for the right-hand side of (5.8) and (5.9),
respectively.

A Strang splitting method is used for the time-integration, i.e. in each sub-step
only one of the two variables is updated while the other one is kept fixed. One
time-step consists in the following sub-steps:

0. Input: wn(x) for all x ∈ Ωx̄ and ηn(x) for all active states.
1. Compute the extrapolation E[ηn] of ηn(x) to the entire state space Ωx̄.
2. Half-step in the expectations: For all active states propagate (5.11) with a

half-step of the implicit midpoint rule, i.e.

ηn+1/2(x) = ηn(x) +
hn

2wn(x)
G

(

E[ηn] + E[ηn+1/2]

2
, wn

)

(x)

where E[ηn+1/2] and E[ηn] are the extrapolations of ηn+1/2 and ηn to the
entire state space Ωx̄. The factor 1/wn(x) does not cause any problems here
because w(t, x) ≥ ε for all active states. The nonlinear equation can be solved
by fixed-point iteration. For all passive states ηn+1/2(x) is not defined.

3. Full step in the marginal distribution: Solve the reduced master equation
(5.8) on the interval [tn, tn+1], i.e. compute

wn+1 = exp
(

hnH
(

E[ηn+1/2]
)

)

wn.

4. Update the active-passive partition: A state x ∈ Ωx̄ is active if wn+1(x) ≥ ε
and passive otherwise.

5. Half-step in the expectations: For all active states compute ηn+1(x) via

ηn+1(x) = ηn+1/2(x) +
hn

2wn+1(x)
G

(

E[ηn+1/2] + E[ηn+1]

2
, wn+1

)

(x).

In the above formulation of the algorithm is was tacitly assumed that the reduced state
space Ωx̄ is so small that the steps 2, 3 and 5 can be performed with no additional
difficulties. In many applications, however, Ωx̄ contains so many states that the
operator exponential in step 3 cannot be directly computed and that the nonlinear
equations in steps 2 and 5 cannot be solved in a straightforward way. In this case,
these steps have to be carried out in an approximative sense by introducing a suitable
spatial approximation of wn and ηn which allows to reduce the number of degrees
of freedom significantly. An extension of the adaptive wavelet method proposed in
[32, 33] to MRCE is currently developed.
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Fig. 6.1. Contour plot of the solution of the full CME (2.7) with parametri-
sation (6.1) at different times.
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Fig. 6.2. Left: Solution of the full CME (2.7) with parametrisation (6.1)
at time t = 2. Right: Product approximation at time t = 2.

6. Numerical examples. The three models are illustrated by a simple but
significant test problem. Only d = 2 species are involved, and we choose d1 = d2 =
1 in the partition from Section 2.2. This means, e.g., that the Hellander-Lötstedt
model approximates the marginal distribution of S1 and the expectation of S2. The
propensities and stoichiometric vectors are listed in Table 6.

k Reaction channel αk(x) βk(y) νk µk

1 S1 −→ ∅ c1x 1 −1 0
2 S2 −→ ∅ 1 c2y 0 −1
3 ⋆ −→ S1 c3 1 1 0
4 ⋆ −→ S2 1 c4 0 1
5 S1 + S2 −→ S1 + S1 c5x y 1 −1

Table 6.1

Reaction channels of the test problem. The stoichiometric vectors νk and
µk are scalars because d1 = d2 = 1.

A possible interpretation of this system is that S1 carries an infectious disease
and may infect the particles of S2 via the fifth reaction channel. The other reaction
channels correspond to the death of particles (k = 1, 2) and the birth or inflow of new
particles (k = 3, 4). The first four reaction channels are monomolecular and leave S1

and S2 decoupled, but this fact does not give an advantage to any of the models if
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Fig. 6.3. Comparison of the exact marginal distribution p1(t, x) (thin line)
with the corresponding approximations obtained with the reduced models (bold
line) for the parameters from (6.1).
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Fig. 6.4. Contour plot of the solution of the full CME (2.7) with modified
parametrisation (c3 = 0, c5 = 0.2) at different times.

c5 6= 0.
The reason for considering this simple system is twofold. For a suitable choice

of parameters, the state space of the problem is so small that the full CME (2.7)
can be solved with high precision and provides a reference solution which allows to
investigate the accuracy of the hybrid models. On the other hand, the reaction system
is complicated enough to generate bimodal solution profiles for certain configurations
(see below).

All numerical experiments were implemented in Matlab. The CME and the
differential equations (3.5)-(3.6) and (3.10)-(3.11) were solved with the ODE solver
ode15s with a very small tolerance such that the numerical error is negligible in
comparison to the modeling error. For the time-integration of MRCE the adaptive
Strang splitting method introduced in the previous section has been applied with
step-size h = 0.001 and ε = 10−8. In step 3 of the algorithm the matrix exponential
was evaluated exactly with Matlab’s expm-command.

In the first test the parameters

c1 = 2, c2 = 2.5, c3 = 25, c4 = 75, c5 = 0.05, tend = 2(6.1)

are used, and the initial distribution is the projection of a product Poisson distribu-
tion with mean at (4, 20) to the finite state space Ω(x̄,ȳ). Snapshots of the solution3

3In Figures 6.1, 6.2, 6.5, and 6.4 the two-dimensional solutions are visualized by contour plots
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Fig. 6.5. Left: Solution of the full CME (2.7) with modified parametrisation
(c3 = 0, c5 = 0.2) at time t = 2. Right: Product approximation at time t = 2.
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Fig. 6.6. Comparison of the exact marginal distribution p1(t, x) (thin line)
with the corresponding approximations obtained with the reduced models (bold
line) with modified parametrisation (c3 = 0, c5 = 0.2).

of the full CME (2.7) at different times are shown in Figure 6.1 and the left panel
of Figure 6.2. Figure 6.2 shows that in this first example the product approxima-
tion (3.5)-(3.6) yields quite a reasonable approximation. The marginal distributions
computed with the hybrid models are compared with the exact marginal distribution
p1(t, x) in Figure 6.3. Although the Hellander-Lötstedt model only uses approximately
half as many degrees of freedom as the product approximation, it achieves the same
accuracy. This is not a surprise: since all βk(y) are at most linear Corollary 2 states
that w(t, x) from (3.10) coincides with u(t, x) from (3.5). MRCE yields nearly the ex-
act result but uses almost twice as many degrees of freedom as the Hellander-Lötstedt
model.

For the second test the parameters c3 and c5 were set to c3 = 0 and c5 = 0.2.
This changes the behavior of the system completely. Now the only way for S1 to
reproduce is the reaction channel S1 + S2 −→ S1 + S1, but this requires that at least
one particle of S1 is still left (i.e. x 6= 0). If all particles of S1 have died, then no new
particles can appear because for c3 = 0 there is no inflow via the reaction channel
⋆ −→ S1. The snapshots in Figure 6.4 and the left panel of Figure 6.5 show that

although the corresponding distributions are actually only defined in discrete states (x, y) ∈ N
2

0
.
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now the solution of the CME develops two distinct peaks as time evolves. The peak
centered around (23,10) at t = 2 corresponds to the situation where S1 and S2 attain
a coexistent equilibrium whereas the peak on the axis x = 0 centered around (0, 30)
indicates the probability for extinction of S1. Such a bimodal solution profile appears
in many biological reaction system and indicate that due to the stochastic evolution
different scenarios are possible.

In the second example the product approximation gives a completely wrong re-
sult, which can be seen from Figure 6.5. The reason is that the essential rank of the
distribution p(t, x, y) is now so high that the solution cannot be approximated with
one single tensor product. In Figure 6.6 the exact marginal distribution p1(t, x) is
compared to the results of the hybrid models. Since Corollary 2 applies again, the
Hellander-Lötstedt model cannot give a better result than the product approxima-
tion. The right panel shows, however, that MRCE reproduces the marginal distribu-
tion very accurately. Hence, the additional efforts required for MRCE (solving more
complicated differential equations with more unknowns) pays.

7. Conclusions. Solving the chemical master equation (CME) is crucial for the
understanding of discrete stochastic reaction systems, but usually computationally
expensive or even impossible due to the huge size of the state space. This motivates
the idea to replace the full CME by a reduced model which represents some of the
species by a reduced CME coupled to other differential equations for the remaining
species. Three different model reductions are discussed in this paper. Error estimates
for the product approximation (3.5)-(3.6) and for the Hellander-Lötstedt model (3.10)-
(3.11) are proven in Theorem 2 and Theorem 3, respectively. The analysis revealed
that the main source of error in both models is the assumption that the solution of the
CME can be approximated by a direct product. In the MRCE approach introduced
in Section 5 this condition is removed by an ansatz based on conditional expectations.
This leads to a set of differential equations which involve approximately twice as many
unknowns as the Hellander-Lötstedt model, and which are more difficult to handle
numerically and analytically. The numerical examples in Section 6 indicate, however,
that the additional efforts pay, and that MRCE may produce a very accurate result
even in cases where the product approximation and the Hellander-Lötstedt model fail,
in particular when the CME distribution splits into several modes.

The results presented in this paper give raise to a number of new questions. An
error analysis of MRCE is missing so far. The derivation in Section 5.1 suggests,
however, that the approximation error could be bounded in terms of the covariances
of the conditional expectations of the y−variables, and it is one of our future research
goals to prove a corresponding error bound. Moreover, the numerical method outlined
in Section 5.2 is based on the assumption that the two sub-steps – propagating η(t|·)
for fixed w(t, ·) and vice versa – can be executed with standard methods. This is
only possible if the reduced state space Ωx̄ is sufficiently small, which is often not the
case in real-life applications. In a future work we plan to extend the adaptive wavelet
method from [32, 33] to the MRCE system (5.8)-(5.9). We hope that such a method
will allow to approximate the dynamics of reaction systems which are way out of the
scope of the existing methods.
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