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Abstract

We consider the convergence properties of return algorithms for a large class of rate-independent plasticity models. Based on recent
results for semismooth functions, we can analyze these algorithms in the context of semismooth Newton methods guaranteeing local
superlinear convergence. This recovers results for classical models but also extends to general hardening laws, multi-yield plasticity,
and to several non-associated models. The superlinear convergence is also numerically shown for a large-scale parallel simulation
of Drucker-Prager elasto-plasticity.
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1. Introduction

A key result in computational plasticity is obtained in the
seminal paper Simo and Taylor (1985), where simple radial
return algorithms are generalized to a large class of plasticity
models, and where superlinear convergence is observed using
the corresponding algorithmically consistent tangent. This re-
sult extends earlier work by, e.g., Wilkins (1964); Krieg and
Key (1976), and it is complemented by Simo et al. (1988a) for
multi-yield plasticity. Afterwards, the underlying ideas have
been applied to a broad range of applications (e.g., Borja and
Lee, 1990; Hofstetter et al., 1993); also see the references in
Simo and Hughes (1998).

Meanwhile, the application of return mappings is the stan-
dard computational approach. They are based on the following
strategy: if the trial stress is admissible, the response is elastic.
Otherwise, the trial stress has to be “returned” to the admissible
set. In the latter case, not only a nonlinear system of equations
has to be solved, but also the set of active constraints has to
be identified. Whereas the identification process is trivial for
single-yield models, the situation is more complex for multi-
yield problems. In many applications, the structure of the equa-
tions allows for efficient solution methods which are mainly
based on Newton’s method (possibly applied on a reduced sys-
tem). Once the incremental stress response is computed, the
algorithmically consistent tangent is defined as the derivative
of the stress response with respect to the trial stress (depend-
ing on the formulation it may also be the derivative w.r.t. the
strain increment). The resulting algorithms perform very well
in practice and yield fast nonlinear convergence of the (outer)
Newton iteration.

However, as rate-independent plasticity is inherently non-
smooth, the observed convergence properties cannot be ex-
plained by the standard Newton theory. Concerning conver-
gence properties of return algorithms, only a few results are
available. E.g., in Blaheta (1997) quadratic convergence is
shown if the active set of plastic material points is correctly

identified, and Alberty, Carstensen, and Zarrabi 1999 show
global convergence of a suitably damped generalized Newton
methods for simple associated plasticity models.

Only recently, plasticity has been analyzed in the context
of semismooth Newton methods (Hager and Wohlmuth, 2009;
Gruber and Valdman, 2009). These results consider simple
models, where explicit formulae for the closest point projection
are at hand, so that semismoothness can be checked directly by
a reformulation using nonlinear complementarity functions as
it is done in Hager and Wohlmuth (2009).

In this work we aim for the development of a general frame-
work for the construction and semismooth analysis of return
algorithms. In particular, we consider rate-independent mod-
els (and its viscous Duvault-Lions regularizations) of associated
plasticity with general nonlinear hardening, and three different
non-associated models (including multi-yield flow functions);
for all these cases we are able to prove local superlinear con-
vergence. Our algorithm to determine the stress response also
facilitates the computation of the corresponding consistent tan-
gent operator. However, we remark that for very specific ap-
plications often simpler ways for the evaluation of the stress
response are at hand (e.g., the nonlinear system can be reduced
to a scalar equation for the consistency parameter). Neverthe-
less, our algorithm is simple to implement and applicable to a
wide range of applications. In single-yield models, we re-obtain
the classical formulas as presented, e.g., in (Simo and Hughes,
1998, Section 3.6).

Our results strongly rely on nonsmooth analysis which it-
self is heavily influenced by the fields of optimization theory
and complementarity problems. This seems reasonable since
in rate-independent plasticity, plastic flow is typically charac-
terized by complementarity conditions. Moreover, for associ-
ated material models, it is known that the stress response cor-
responds to the solution of a minimization problem. Build-
ing blocks of this nonsmooth calculus are (typically set-valued)
generalized derivatives like Clarke’s generalized Jacobian or

Preprint submitted to Comp. Meth. Appl. Mech. Eng. March 28, 2011



the B(ouligand)-subdifferential, cf. Clarke (1983), which can
then be used to define corresponding generalized Newton meth-
ods for nonsmooth problems. In the context of proving super-
linear convergence of such methods, the notion of semismooth
functions (Mifflin, 1977; Qi and Sun, 1993) is of particular im-
portance. Nevertheless, it turns out that the classical results on
semismooth functions are not sufficient for a general analysis of
return algorithms. Only recently, suitable extensions of the im-
plicit function theorem to the semismooth case were obtained in
(Gowda, 2004; von Heusinger and Kanzow, 2008), which play
a crucial role in our applications. The new result on the semi-
smoothness of the orthogonal projection onto second order unit
cones (Hayashi et al., 2005; Goh and Meng, 2006) applies to
Drucker-Prager plasticity.

The paper is organized as follows. In Section 2, we start with
the equations of quasi-static elasto-plasticity and suitable dis-
cretizations in time (by backward differences - leading to the
incremental setting) and space (by the finite element method).
Introducing the (incremental) stress response function allows
to reformulate the incremental problem as a second order par-
tial differential equation. Section 3 then sets the focus on gen-
eralized Newton methods based on the nonsmooth calculus.
The abstract framework is then applied to various examples.
First, we consider standard problems in associated plasticity
in sections 4 and 5. Then, we focus on non-associated mod-
els, mainly motivated by soil mechanics. In Section 6, we
analyze Drucker-Prager plasticity as well as a smoothed vari-
ant. The latter also shows that the active set method proposed
in Section 3 resembles the well-known formulas for the con-
sistent tangent when applied to a single-yield model. In sec-
tions 7 and 8, we consider two problems in soil mechanics, the
modified Cam-clay model and the (multi-yield) cap-model, for
which existence and uniqueness results concerning the under-
lying initial boundary value problems have only been obtained
recently, cf. Dal Maso and DeSimone (2009); Dal Maso et al.
(2011); Babadjian et al. (2011). Finally, we present numer-
ical experiments with Drucker-Prager plasticity which verify
our theoretical results even for very large problems with sev-
eral million degrees of freedom.

2. Problem setting

Let Ω ⊂ Rd, d ∈ {2, 3} be the body of interest, let ΓD ⊂

∂Ω be the Dirichlet part of the boundary where we prescribe
a displacement uD, and let ΓN = ∂Ω \ ΓD be the Neumann
part where a traction force is applied. The Cauchy stress tensor
σ(x, t) is required to be in equilibrium with the external forces,
i.e. for a given body force (density) b : Ω × [0,T ] → Rd and a
traction force (density) tN : ΓN × [0,T ]→ Rd, we require

− divσ(x, t) = b(x, t) in Ω ,

σ(x, t)n(x) = tN(x, t) on ΓN .
(2.1)

Balance of angular momentum implies symmetry of σ, i.e.

σ(x, t) ∈ S := {η ∈ Rd,d : η = ηT } ,

where S denotes the symmetric second order tensors. In the fol-
lowing, we will mostly omit the dependence on (x, t) whenever
we consider relations which hold point-wise in space and/or at
a fixed time instance.

In this work we only consider the small strain setting, i.e., the
stress-strain relation is given by Hooke’s law

σ = C[ε(u) − εp] (2.2)

with the fourth order linear elasticity tensor C ∈ Lin(S , S )
which is assumed to be symmetric and positive definite. For a
given displacement u, ε(u) = 1

2 (Du + DuT ) ∈ S is the the total
strain, and εp ∈ S is the plastic strain. For isotropic materials,
Hooke’s law has the form σ = C[ε] = 2µ dev(ε) + κ tr(ε)1,
with the shear modulus µ > 0 and the bulk modulus κ > 0;
1 denotes the second order unit tensor. By dev(·), we de-
note the orthogonal projection onto the deviatoric subspace
S 0 = {σ ∈ S : tr(σ) = 0} ⊂ S w.r.t. the Frobenius inner product
σ : ε =

∑d
i,k=1 σikεik.

2.1. Quasi-static elasto-plasticity
The plastic evolution is described by the plastic strain εp,

and—in most cases—by further internal variables η. Together
with the Cauchy stress they build the generalized stress space

S = S × Rm, Σ = (σ, η) ∈ S .

The number m ∈ N of internal variables depends on the context.
Please note that η is not necessarily a thermodynamic stress, but
for the ease of notation, we treat it like a stress.

In rate-independent elasto-plasticity, time is merely a path
variable than a physical quantity, i.e. the system is invariant
under temporal rescaling (a mathematically precise definition
is given in Mielke (2005)). The generalized stress Σ is said to
be admissible if it satisfies

Σ ∈ K := {Σ̂ ∈ S : fi(Σ̂) ≤ 0 for i = 1, . . . , p}

for given yield functions fi : S → R. The path-/time-
dependency is reflected by an evolution law for the plastic strain
rate ε̇p which is functionally related to the current stress state
Σ. In rate-independent plasticity, this relation is typically given
in the form

ε̇p =

p∑
i=1

λiri(Σ) , (2.3)

with prescribed plastic flow directions ri : S → S (possibly
multi-valued) and the consistency parameters λi ≥ 0 (also
called plastic or Lagrange multipliers). In multi-yield plasticity
(p > 1), this form of the flow rule is often attributed to Koiter
(1960).

For the internal variables η (e.g. related with hardening), a
corresponding law has to be established. We consider two dif-
ferent cases. For standard materials, the evolution laws can be
written as

η̇ =

p∑
i=1

λihi(Σ) (2.4)
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with given functions hi : S → Rm. Note that hardening laws
are often formulated in terms of variables δ ∈ Rm which are
thermodynamically conjugate to η. But as we present return
algorithms in the stress-space, we will formulate the equation
w.r.t. the generalized stress Σ = (σ, η).

In a second application class, the internal variables are deter-
mined by suitable state equations, e.g., for the modified Cam-
clay or the cap-model in sections 7 and 8.

In the rate-independent case, the consistency parameters λi

are determined by the complementarity conditions in Karush-
Kuhn-Tucker (KKT) form, i.e.,

0 = λi fi(Σ) , λi ≥ 0 , fi(Σ) ≤ 0 ,

for i = 1, . . . , p.
If the generalized flow directions (r, h) are determined as the

derivative of the yield function f , we speak of an associated
flow rule. In this work, the associated flow rule means that both
the plastic strain rate and the law for the internal variables are
derived from the yield functions fi. This differs from the con-
vention sometimes used in soil mechanics, where the flow rule
is often said to be associated if only ε̇p =

∑
λiDσ fi(Σ).

We also consider rate-dependent visco-plasticity in the sense
of Duvault-Lions (Duvaut and Lions, 1976; Simo and Hughes,
1998). Denoting by Σ̄ = (σ̄, η̄) the solution of rate-independent
plasticity, the flow rule takes the form

ε̇p =
1
β
C−1[σ − σ̄] , (2.5)

depending on some relaxation parameter β > 0 (and similarly
for the internal variables if present).

For single-yield models, return algorithms can also be for-
mulated for visco-plastic models of Perzyna type. Here, we
only consider the generalized Duvaut-Lions model, as it is also
meaningful in multi-yield plasticity (Simo et al., 1988a).

2.2. Incremental plasticity
We introduce a time discretization of the interval [0,T ] by

using the partition 0 = t0 < t1 < · · · < tN = T and set 4tn =

tn − tn−1. Temporal derivatives are approximated by backward
differences, e.g. ε̇p(tn) ≈ 1

4tn
(εn

p − ε
n−1
p ). This results in the

incremental flow rule as

εn
p = εn−1

p +

p∑
i=1

4λn
i ri(Σn) , (2.6)

where we set 4λn
i = 4tn λn

i . Substitution into Hooke’s law gives

σn = C
[
ε(un) − εn−1

p
]
−

p∑
i=1

4λn
i C[ri(Σn)]

= σtr −

p∑
i=1

4λn
i C[ri(Σn)] .

(2.7)

with the trial stress σtr = C[ε(un) − εn−1
p ]. Similarly, we obtain

the incremental law for the internal variables, e.g., for linear
kinematic or isotropic hardening we can find

ηn = ηn−1 +

p∑
i=1

4λihi(Σn) . (2.8)

In other cases, e.g. the modified Cam-clay model, the hardening
law has to be modified accordingly.

The consistency parameter is determined by the incremental
complementarity conditions

0 = 4λn
i fi(Σn) , 4λn

i ≥ 0 , fi(Σn) ≤ 0 , (2.9)

for i = 1, . . . , p. Together, (2.7), (2.9) and the incremental law
for the internal variables, e.g. (2.8), implicitly define the return
mapping, i.e. they determine Σn and 4λn in terms of the trial
stress σtr and history parameters ηn−1 at time tn−1.

Our objective is to construct and to analyze the smoothness
of incremental generalized stress response functions

Rn = (Rn, En) : S → S , Σn = Rn(σtr) , (2.10)

so that the first component σn = Rn(σtr) is the return mapping
for the Cauchy stress, and the second component ηn = En(σtr)
determines the update of the history variables.

By means of the stress response function, the incremental
elasto-plasticity problem can be reformulated as a nonlinear
second order partial differential equation: depending on εn−1

p

and ηn−1 find σn and un such that

− divσn(x) = b(x, tn) , x ∈ Ω , (2.11a)

σn(x) = Rn(C[ε(un(x)) − εn−1
p (x)]

)
, x ∈ Ω , (2.11b)

un(x) = uD(x, tn) , x ∈ ΓD , (2.11c)
σn(x)n(x) = tN(x, tn) , x ∈ ΓN . (2.11d)

The incremental solution then defines the plastic strain and the
new history variables by

εn
p(x) = ε(un(x)) − C−1[σn(x)] , x ∈ Ω , (2.12a)

ηn(x) = En(C[ε(un(x)) − εn−1
p (x)] , x ∈ Ω . (2.12b)

Remark 2.1. It is not a priori clear that the nonlinear sys-
tem (2.11) is well-posed, and in particular for non-associated
models even the existence of a solution (in an appropriate weak
sense) cannot be guaranteed in all cases (Dal Maso and DeS-
imone, 2009; Dal Maso et al., 2011; Babadjian et al., 2011).
Below, we will refer to known existence results which strongly
depend on the model under consideration. Here, we will study
a finite element approximation of this system, and we always
assume that a solution exists.

2.3. Discretization by the Finite Element Method
The finite element discretization is based on the weak for-

mulation of (2.11): find un satisfying the boundary condition
(2.11c) and such that∫

Ω

Rn(C[ε(un) − εn−1
p ]

)
: ε(w) dx − `n(w) = 0 (2.13)

holds for all test functions w with w|ΓD = 0; the load functional
is given by

`n(w) ≡ `(tn,w) =

∫
Ω

b(tn) · w dx +

∫
ΓN

tN(tn) · w da . (2.14)
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The solution un of the nonlinear variational problem (2.13) then
defines the Cauchy stress by (2.11b) and the history update
(2.12).

Let Ω be polygonal with a triangulation Ω̄ = ∪T∈MT ; where
M denotes the set of mesh cells. The standard approach in com-
putational elasto-plasticity is to approximate the displacement
by Lagrange finite elements

Xh(uD) = {uh ∈ C0,1(Ω,Rd) : uh|T ∈ Pk,T ∈ M,

uh(x) = uD(x) , x ∈ D} ,

where D ⊂ ΓD are the nodal points on the Dirichlet boundary
ΓD ⊂ ∂Ω; we simply write Xh = Xh(0). Now, the incremental
finite element problem reads as follows: find un

h ∈ Xh(uD) such
that∫

Ω

Rn(C[ε(un
h) − εn−1

p ]
)

: ε(wh) dx = `n(wh) , wh ∈ Xh . (2.15)

Our objective is to study the local convergence of generalized
Newton methods for the discrete nonlinear equation (2.15).

Remark 2.2. For associated materials, it is possible to define a
(global) minimization problem for which (2.11) are just the op-
timality conditions. Then, powerful methods from optimization
are available, e.g., SQP methods (Wieners, 2007, 2008), inte-
rior point methods (Krabbenhoft, Lyamin, Sloan, and Wriggers,
2006), and augmented Lagrange methods (Sauter, 2010). For
these methods, global convergence can be guaranteed.

Remark 2.3. For lowest order discretization on simplices,
strains and stresses are constant in the cells T , and all inte-
grals can be evaluated exactly. In general, all integrals are
approximated by quadrature formulas, and then the return al-
gorithm is evaluated in every integration point. For simplicity
of the notation, we still use integrals although in praxis they are
approximated by quadrature.

From now on, as we will always consider the incremental
setting, we often omit the superscripts (·)n and time instances
and we always consider the time step from tn−1 to tn. History
variables at time tn−1 will be indicated by a superscript (·)old in
the following.

3. The generalized Newton method

In general, we cannot expect that the response function is
differentiable. Thus, an extended concept of differentiabiliy is
required in order to construct Newton type methods for the so-
lution of incremental plasticity in the form (2.15). A suitable
framework is provided by the introduction of set-valued gen-
eralized derivatives and corresponding generalized Newton al-
gorithms. Such methods are elaborately studied in the context
of (nonsmooth) optimization (Klatte and Kummer, 2002; Pang
and Facchinei, 2003a,b). A short compilation of known results,
together with a short list of suitable references, is given in the
appendix.

In the following we assume that the response function for the
Cauchy stress R : S → S is (locally) Lipschitz continuous.
This implies that R is differentiable almost everywhere, i.e., the
set ΘR := {θ ∈ S : R is differentiable at θ} is dense in S . The
set-valued B(ouligand)-subdifferential of R is given as

∂BR(σtr) =
{
S ∈ Lin(S , S ) : S = lim

θ→σtr,θ∈ΘR
DR(θ)

}
,

and Clarke’s subdifferential is its convex hull

∂R(σtr) = conv
{
∂BR(σtr)

}
.

Moreover, we assume that R is semismooth for all σtr , i.e., we
assume that for any S ∈ ∂R(σtr + θ):∣∣∣R(σtr + θ) − R(σtr) − S[θ]

∣∣∣ = o(|θ|) as θ → 0 (3.1)

is satisfied. If o(|θ|) can be replaced by O(|θ|1+s), we call R
semismooth of order s ∈ (0, 1] and if s = 1, we say R is strongly
semismooth.

In terms of this theory, S ∈ ∂R(σtr) is the algorithmically
consistent tangent. This defines the standard solution method
in computational plasticity, cf. Table 1.

(GN0) Choose u0
h ∈ Xh(uD), ε ≥ 0, and set k := 1.

(GN1) Compute σk−1
tr = C[ε(uk−1)− εold

p ], the stress response
σk−1 = R(σk−1

tr ), and the residual

rk−1(wh) =

∫
Ω

σk−1 : ε(wh) dx − `(wh) , wh ∈ Xh .

If ‖rk−1‖ ≤ ε, set u∗h = uk−1
h , STOP.

(GN2) Choose S ∈ ∂R(σk−1
tr ) and compute δuk

h ∈ Xh solving
the linearized problem∫

Ω

S[ε(δuk
h)] : ε(wh) dx = −rk−1(wh) , wh ∈ Xh .

(GN4) Set uk
h = uk−1

h + δuk
h and k := k + 1. Go to (GN1) .

Table 1: Generic generalized Newton algorithm (GN) for one
incremental step in elasto-plasticity.

Remark 3.1. The algorithm (GN) requires a suitable initial
iterate u0

h; otherwise, a damping strategy is required in order
to obtain global convergence. On the other hand, using small
time increments, a good initial iterate is usually available, and
in most cases a quasi-static simulation with small increments is
more efficient than a time consuming globalization strategy for
the Newton method.

Theorem 3.2. Assume that there exists a solution u∗h to problem
(2.15) and that R is semismooth (of order s), i.e. (3.1) holds.
Moreover, we assume that for each choice

S ∈ ∂R(C[ε(u∗h) − εold
p )

the bilinear form

(vh,wh) 7−→
∫

Ω

S[ε(vh)] : ε(wh) dx

is non-singular. Then, the generalized Newton method (GN) in
Table 1 converges locally superlinearly (of order 1 + s).
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For the proof we introduce a finite element basis ψ1, ....,ψN
of Xh, and we replace the integrals by a suitable quadrature.
Then, the nonlinear variational problem (2.15) can be written
as F(y) = 0 with a nonlinear function F : RN −→ RN . Let y∗

be the coefficient vector of the finite element solution u∗h. The
choice of S (at every integration point) defines the matrix

G(y∗) =

( ∫
Ω

S[ε(ψi)] : ε(ψ j) dx
)

i, j=1,...,N
.

Since the response function is the only nonlinear component in
the construction of F, the can apply the chain rule Prop. A.3,
i.e., F is also semismooth. Moreover, G(y∗) ∈ ∂F(y∗). Thus,
we can apply Prop. A.5, which gives the result.

Remark 3.3. Although F is semismooth whenever the response
function is semismooth, we cannot conclude in general, that
G(x∗) ∈ ∂F(x∗) is non-singular whenever S is regular at every
material point. This only holds for associated models with strict
convex energies (where S is symmetric positive definite), but for
non-associated models, the global regularity has to be assumed
additionally.

3.1. Local evaluation of the response function

The response function R is defined implicitly by the incre-
mental flow rule (2.7), the evolution or state equation for the in-
ternal variables, and the complementarity conditions (2.9). The
response depends on the trial stress σtr (which in fact is the in-
put parameter of the algorithm) and the material history of the
old time step ηold (which is fixed).

To evaluate the response function, we determine simultane-
ously the generalized stress Σ = (σ, η) ∈ S and the consistency
parameter 4λ ∈ Rp. Thus, we define the space T = S × Rp,
and we assume that a function G : T × S → S exists, such that

G
(
(Σ,4λ),σtr

)
= 0 (3.2)

holds if and only if the incremental flow rule (2.7) and the evo-
lution or state equation for the internal variables are satisfied.
The explicit construction of G depends on the application. E.g.,
for the hardening law in rate form as in (2.8), G takes the form

G
(
((σ, η),4λ),σtr

)
=

[
C−1[σ − σtr] +

∑p
i=1 4λiri(Σ)

η − ηold −
∑p

i=1 4λihi(Σ)

]
.

To enforce the complimentarity condition (2.9), we use an ncp-
function1 φ : R2 → R satisfying

φ( f , λ) = 0 ⇐⇒ f ≤ 0 , λ ≥ 0 , f λ = 0 ,

Then, the complementarity conditions are equivalent to

Φ( f (Σ),4λ) = 0 , (3.3)

where the vector-valued npc-function Φ : Rp × Rp → Rp is
given by Φi( f , λ) = φ( fi, λi).

1ncp = nonlinear complementarity problem

Here we use the ncp-function

φ ≡ φα( f , λ) = max{0, λ + α f } − λ , 0 < α ∈ R . (3.4)

Note that φ is semismooth. An appropriate choice of the pa-
rameter α > 0 may be important for the convergence properties
of the active set method below. Of coarse, other ncp-functions
can be used also.

Together, we now define the function

T : T × S → T , T ((Σ,4λ),σtr) =

[
G((Σ,4λ),σtr)
Φ( f (Σ),4λ)

]
, (3.5)

which completely determines the plastic flow for a given trial
stress σtr ∈ S (and given history variables of the previous time
step): for a given trial stress σtr, the solution (Σ∗,4λ∗) ∈ K ×
Rp
≥0 ⊂ T of the nonlinear, nonsmooth equation

T ((Σ∗,4λ∗),σtr) = 0 (3.6)

satisfies the equations for the material update. This implicit
characterization is the basis for our analysis. For a pre-
cise formulation, we introduce the following notation for set-
valued partial subdifferentials: T ∈ ∂(Σ,4λ)T ((Σ,4λ),σtr) ⊂
Lin(T ,T ) if and only if P ∈ Lin(S ,T ) exists suth that [T P] ∈
∂T ((Σ,4λ),σtr). Likewise, ∂B

(Σ,4λ) is defined.

Theorem 3.4. Let T as given in (3.5) be semismooth (i.e.
G and Φ( f (·), ·) are semismooth) and for a given trial stress
σtr ∈ S let (Σ∗,4λ∗) ∈ T be a solution of (3.6). Then,
(Σ∗,4λ∗) ∈ K × Rp

≥0 is admissible. If in addition each ele-
ment T ∈ ∂(Σ,4λ)T ((Σ∗,4λ∗),σtr) is non-singular, a neighbor-
hood U ⊂ S of σtr and a semismooth function Y : U ⊂ S → T
exists satisying Y(σtr) = (Σ∗,4λ∗) and

T (Y(θ), θ) = 0 , θ ∈ U . (3.7)

Moreover, if [T P] ∈ ∂BT (Y(θ), θ), we have

−T−1P ∈ ∂BY(θ) ⊂ ∂Y(θ) . (3.8)

The proof is a direct application of the implicit function the-
orem for semismooth functions Prop. A.4.

We have Y(σtr) = (R(σtr),4λ∗) = (R(σtr),H(σtr),4λ∗), i.e.,
the first component of Y is just the (incremental) stress response
function with σ∗ = R(σtr) as given in (2.10). Thus, the theorem
shows that the response function R is semismooth.

3.2. Computing the response function - an active set method
Within the generalized Newton method (GN) the stress re-

sponse is evaluated (independently in every integration point)
again by a generalized Newton method solving the nonlinear
equation (3.6). For simplicity, we assume that G is differen-
tiable, and we use the semismooth ncp-function φ ≡ φα as in
(3.4). Then, T is also semismooth, and in order to formulate the
Newton method, a generalized derivative has to be computed.

This can be done by an active set method. For (Σ,4λ) ∈ T ,
we define the active index set

A(Σ,4λ) = {i ∈ {1, . . . , p} : 4λi + α fi(Σ) > 0} ,
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and for a given iterate (Σk−1,4λk−1) ∈ T , we set Ak =

A(Σk−1,4λk−1) and Ik = {1, . . . , p} \ Ak. For a matrix A ∈ Rp,q

with rows Ai and an index set J ⊂ {1, . . . , p}, we define
AJ row-wise via (AJ )i = Ai if i ∈ J and (AJ )i = 0 oth-
erwise. This allows for a specific choice T

(
(Σ,4λ),σtr

)
∈

∂B
(Σ,4λ)T ((Σ,4λ),σtr) defined by

T
(
(Σ,4λ),σtr

)
:=

[
DΣG((Σ,4λ),σtr) D4λG((Σ,4λ),σtr)
αD f (Σ)A(Σ,4λ) − idI(Σ,4λ)

]
,

Then, the corresponding generalized Newton method is equiv-
alent to the (local) active set method (AS) which is given in
Table 2.

(AS0) Choose (Σ0,4λ0) ∈ T , ε ≥ 0, α > 0 and set k := 1.

(AS1) If
∣∣∣T ((Σk−1,4λk−1),σtr)

∣∣∣ ≤ ε,
set (Σ∗,4λ∗) = (Σk−1,4λk−1) and T∗ = Tk−1, STOP.

(AS2) Determine the active/inactive sets Ak and Ik and set
Tk = T

(
(Σk−1,4λk−1),σtr

)
.

(AS3) Solve Tk |δΣk, δ4λk] = −T ((Σk−1,4λk−1),σtr).

(AS4) Set (Σk,4λk) = (Σk−1,4λk−1) + (δΣk, δ4λk).

Set k := k + 1 and go to (AS1) .

Table 2: Local active set method (AS) to determine the response
function and the consistent tangent for a given trial stress σtr.

Again we can apply Prop. A.5: Since φα is semismooth and
provided that f and G are differentiable, the algorithm (AS)
converges superlinearly (quadratic if D f and DG are Lipschitz),
if each element in ∂(Σ,4λ)T ((Σ∗,4λ∗),σtr) is non-singular and
the initial guess is close to the solution.

Remark 3.5. In multi-yield plasticity, a suitable constraint
qualification is required in order to guarantee that Tk is reg-
ular. In some cases (e.g. for single crystal plasticity with many
slip systems), D f (Σk−1) does not have full rank, so that Tk is
singular. In this case, the local active set method cannot be
applied and has to be replaced by other solution methods.

3.3. Computation of the consistent tangent

For fast convergence of the (outer) generalized Newton
method (GN), we need a suitable candidate for a generalized
derivative S ∈ ∂R(σtr) of the response function. Using Y(σtr) =

(Σ∗,4λ∗) = (R(σtr),H(σtr),4λ∗), Theorem 3.4 directly yieldsSE
Λ

 := −(T∗)−1P∗ ∈ ∂Y(σtr) (3.9)

for any choice [T∗ P∗] ∈ ∂BT ((Σ∗,4λ∗),σtr). If G and f are
differentiable, we obtain T∗ directly in (AS) as the last gener-
alized Jacobian in the response computation. In many applica-
tions, P∗ ∈ ∂σtr T ((Σ∗,4λ∗),σtr) is easy to compute (often, it is
linear with respect to σtr).

4. General associated plasticity with kinematic hardening

In our first example, we consider associated multi-yield plas-
ticity with general linear kinematic hardening. It is well known
that for vanishing hardening the perfectly plastic limit is ob-
tained. Algorithmically, this corresponds to the closest point
projection Simo et al. (1988a), and when applied to simple von
Mises plasticity, this reduces to the classical radial return of
Wilkins (1964).

We formally introduce the back-stress η ∈ S and a corre-
sponding conjugate interval variable δ ∈ S which are related by
the state equation η = −H[δ] with a symmetric positive semi-
definite fourth order tensor H ∈ Lin(S , S ). We consider the
generalized stress space K = {(σ, η) ∈ S × S : f (σ + η) ≤ 0}.
The associated flow rule follows by postulating maximal plas-
tic dissipation, i.e. the flow rule is determined by maximizing
σ : ε̇p + η : δ̇ subject to (σ, η) ∈ K. Then

ε̇p =

p∑
i=1

λiD fi(σ + η) and δ̇ =

p∑
i=1

λiD fi(σ + η) ,

allowing to conclude εp = δ if the initial conditions coincide,
i.e. εp(0) = δ(0). This leads to the incremental flow rule

εp = εold
p +

p∑
i=1

4λiD fi(σ + η) = εold
p +

p∑
i=1

4λiD fi(σ −H[εp]) .

For convenience, we define the relative stress α = σ + η =

σ − H[εp] which allows us to conclude that plastic flow is de-
termined by the system

α = C
[
ε(u) − εold

p −

p∑
i=1

4λiD fi(α)
]
−H[εp]

= σ̂tr −

p∑
i=1

4λi(C + H)
[
D fi(α)

]
,

0 = 4λi fi(α) , 4λi ≥ 0 , fi(α) ≤ 0 .

with σ̂tr = σtr −H[εold
p ] = C[ε(u)] − (C + H)[εold

p ]. This yields
α = PK

(
σ̂tr

)
with the projection PK w.r.t. the inner product

induced by N−1 = (C + H)−1. In terms of σ, this gives the
incremental stress response

σ = (I − C ◦ N−1)[σ̂tr] + C ◦ N−1[PK(σ̂tr)] + H[εold
p ] .

Remark 4.1. In the simple case H = H0C with H0 ≥ 0 we
have C + H = (1 + H0)C, and PK is the projection w.r.t. C−1

and consequently

σ =
H0

1+H0
σ̂tr +

1
1+H0

PK(σ̂tr) + H0C[εold
p ] .

This includes the model of perfect plasticity (H0 = 0), where
σ = PK(σtr).

The stress response function R has the same smoothness
properties as the projection onto the admissible set. Accord-
ing to Section A.4, the projection is semismooth under quite
general conditions.
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Theorem 4.2. Suppose that fi ∈ C2(S ,R), i = 1, . . . , p are
convex and let I(η) = {i ∈ {1, . . . , p} : fi(η) = 0} be the set of
active indices for given η ∈ S . If D f (η)I(η) has rank |I(η)| for
all η ∈ ∂K, then the response functions of perfect plasticity and
linear kinematic hardening plasticity are semismooth.

Proof. The linear independence of the active indices implies
the constant rank constrain qualification (CRCQ). Thus, as
f ∈ C2(S ,R), all orthogonal projections PK are semismooth
(Proposition A.6).

5. Von Mises/J2 plasticity with nonlinear hardening

To accomodate for strain hardening, an often used isotropic
hardening law was proposed in Voce (1955), also see (Simo
and Hughes, 1998, Section 3.3). As internal variable, we can
use the accumulated plastic strain ep(t) =

∫ t
0 |ε̇p(s)| ds ≥ 0. Via

the potential

Ψv(ep) =
1
2 H0e2

p + (K∞ − K0)
(
ep +

1
δ

exp(−δep)
)
,

we can also express hardening in terms of the conjugate stress

η = DΨv(ep) = H0ep + (K∞ − K0)
(
1 − exp(−δep)

)
≥ 0 ,

with material constants H0 ≥ 0 (linear hardening modulus),
K∞ ≥ K0 ≥ 0 (saturation constants) and δ > 0 (saturation
growth constant). Particularly, for K∞ = K0 and H0 > 0, we
obtain linear isotropic hardening. For the generalized stress
Σ = (σ, η) ∈ S × R we consider the yield function

f (σ, η) = | dev(σ)| − η − Y0 .

In terms of ep, this is sometimes written as f (σ, ep) =

| dev(σ)| − Y(ep) with the dissipation function Y(ep) = Y0 +

H0ep + (K∞−K0)(1− exp(−δep)), cf. Gurtin and Reddy (2009).
Based on the the principle of maximum plastic dissipation, i.e.

max σ : ε̇p − η ėp subject to f (σ, η) ≤ 0 , η ≥ 0 ,

we obtain the associated flow rule

ε̇p = λDσ f (σ, η) = λ
dev(σ)
| dev(σ)| , and ėp = λ , (5.1)

as the corresponding optimality condition (please note that the
additional Lagrange multiplier corresponding to η ≥ 0 van-
ishes). We also remark that then |ε̇p| = λ = ėp ≥ 0 justifying
the definition of the accumulated plastic strain above.

In the incremental problem, it is well known that the flow
direction can be obtained from the trial stress directly as n =
dev(σ)
| dev(σ)| =

dev(σtr)
| dev(σtr)|

, and we find

σ = σtr − 4λC[n] and η = DΨv(ep) = DΨv(eold + 4λ) .

Following the framework of Section 3.1, we define

G
(
((σ, η),4λ),σtr

)
=

[
σ − σtr + 4λC[n]
η − DΨv(eold + 4λ)

]

and perform the active set method. However, as this is a single-
yield model, the solution of equation (3.6) and thus the stress
response can be determined easily. If f (σtr, η

old) ≤ 0, we can
set σ = σtr, 4λ = 0 and ep = eold

p . Otherwise, we require
f (σ, η) = 0 and G((σ, η),4λ) = 0. This can be reduced to a
scalar nonlinear equation h(4λ) = 0 for the consistency param-
eter as

0 = f (σ, η) = f
(
σtr − 4λC[n],DΨv(eold

p + 4λ)
)

=: h(4λ) .

Via implicit differentiation, the corresponding consistent tan-
gent can be determined explicitly, cf. (Simo and Hughes, 1998,
Section 3.3). Nevertheless, concerning semismoothness of the
response function, the representation via T (((σ, η),4λ),σtr) is
more adequate.

Theorem 5.1. For any given σtr ∈ S and eold
p ≥ 0, the reponse

function R(σtr) is semismooth.

Proof. The existence of a unique solution can easily be
checked, cf. (Simo and Hughes, 1998, Section 3.3). At a so-
lution Σ∗ = (σ∗, η∗) we always find that G is differentiable and
we conclude that T is semismooth by using the semismooth
ncp-function (3.4). By the implicit function theorem for semis-
mooth functions (Proposition A.4), this also shows the semis-
moothness of the response function, since it can be shown that
T∗ is always regular.

6. Drucker-Prager plasticity

A basic and widely used model in soil plasticity is the (non-
associated) Drucker-Prager model. For simplicity, we only con-
sider perfect plasticity and d = 3. A specific feature of the
Drucker-Prager model is the non-differentiability of the yield
function at the boundary of the elastic domain. This is often
seen as a drawback and we also consider a smoothed variant
(Krabbenhoft et al., 2006; Miehe and Lambrecht, 1999), which
renders the yield function smooth at the expense that it is no
longer possible to write down the response function explicitly.

6.1. Classical Drucker-Prager plasticity
The yield function

f (σ) = | dev(σ)| + k0(tan φ 1
3 tr(σ) − c)

defines the admissible set K, which is a cone with apex σapex =
c

tan φ1. It is important to note that f is not differentiable at the
apex of the cone. Here, k0 > 0 is a shape factor of the cone,
c ≥ 0 is related to the cohesion, and φ > 0 is the angle of
friction. The non-associated flow rule is based on the plastic
potential

g(σ) = | dev(σ)| + k0(tanψ 1
3 tr(σ) − c) ,

where ψ ∈ [0, φ] is the dilatency.
The incremental flow rule is then given as

εp = εold
p + 4λ s , s ∈ ∂g(σ) ,
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where s ∈ ∂g(σ) coincides with Dg(σ) whenever g is differen-
tiable at σ, i.e. if dev(σ) , 0. Defining

G[ε] = dev(ε) +
tanψ
tan φ

1
3

tr(ε)1 ,

we find εp = εold
p + 4λG[s], with s ∈ ∂ f (σ). If ψ > 0, G is

invertible and for isotropic materials we obtain

0 ∈ (C ◦G)−1[σ − σtr] + 4λ s , s ∈ ∂ f (σ) . (6.1)

Together with the complementarity condition, we find σ =

PF
k (σtr) with PF

k being the orthogonal projection onto the ad-
missible set K w.r.t. the inner product induced by F−1 :=
(C ◦G)−1.

Theorem 6.1. If ψ > 0, the stress response function of classical
Drucker-Prager plasticity is strongly semismooth.

Proof. The admissible set admits a representation as a scaled
an shifted second order unit cone, since

K =
{
σ = (devσ, 1

d tr(σ)) ∈ S 0 × R :

| dev(σ)| ≤ k0(c − tan φ 1
3 tr(σ))

}
.

The response function is an orthogonal projection if ψ > 0 and
by Proposition A.7, we find that R is strongly semismooth.

The response function can be given explicitly by means of
the dual cone K◦ of K with respect to the inner product induced
by F−1 = (C ◦G)−1, i.e.,

K◦ =
{
σ ∈ S : F−1[σ] : θ ≤ 0 for all θ ∈ K

}
.

With k◦(σ) := κ tan φ tanψ | dev(σ)| − 2µ
( tan φ

3 tr(σ) − c
)
, we

obtain K◦ =
{
σ ∈ S : k◦(σ) ≤ 0

}
and the projection/response

R(σtr) = PF
K(σtr) is given as

PF
K(σtr) =


σtr f (σtr) ≤ 0 ,
σapex k◦(σtr) ≤ 0 ,

σtr −
f (σtr)

2µ+tan φ tanψκF[D f (σtr)] else .

In the latter case D f (σtr) =
(
2µ dev(σtr)
| dev(σtr)|

+ κ tan φ 1
)

exists since
σtr < K ∪ K◦ implies dev(σtr) , 0. Moreover, in this case we
can define

Sreg(σtr) := I − 1
2µ+κ tan φ tanψ

(
F[D f (σtr)] ⊗ D f (σtr)

+ f (σtr)F ◦ D2 f (σtr)
)
,

with D2 f (σtr)[ε] =
1

| dev(σtr)|
(

dev(ε) −
dev(σtr):ε
| dev(σtr)|

dev(σtr)
| dev(σtr)|

)
.

Eventually, setting

S ≡ S(σtr) =


I f (σtr) ≤ 0 ,
0 k◦(σtr) ≤ 0 ,
Sreg(σtr) else ,

we find S ∈ ∂PF
K(σtr) as the algorithmically consistent tangent.

More details can be found in Sauter (2010, Section 7.4.2).

6.2. Smoothed Drucker-Prager plasticity

Since f is not differentiable, we also consider a smoothed
variant, cf. Krabbenhoft et al. (2006); Miehe and Lambrecht
(1999). For a smoothing parameter θ > 0, we define

fθ(σ) =
√
| dev(σ)|2 + θ2 + k0(tan φ 1

3 tr(σ) − c) ,

gθ(σ) =
√
| dev(σ)|2 + θ2 + k0(tanψ 1

3 tr(σ) − c) .

and enforce 0 = G(σ,4λ) = C−1[σ − σtr] + 4λDgθ(σ) instead
of (6.1).

Theorem 6.2. If ψ > 0, the stress response is uniquely defined
and the response function is semismooth.

Proof. By the same arguments as above, the response function
can be interpreted as the orthogonal projection w.r.t. (C ◦G)−1

and the result follows from Proposition A.6. Alternatively, we
can apply Theorem 3.4.

For smoothed Drucker-Prager plasticity, we will shortly in-
dicate that the consistent tangent S as introduced in Section 3.3
does indeed coincide with the definition given in Simo and Tay-
lor (1985); Simo and Hughes (1998). In this simple single-yield
model, we have p = 1 and the active set at the solution is triv-
ially given by

A∗ =

{1} 4λ∗ + α f (σ∗) > 0 ,
∅ 4λ∗ + α f (σ∗) ≤ 0 .

Since at the same time, the solution fulfills the complementarity
conditions (2.9) and in particular f (σ∗) ≤ 0, we find that in
the second case we have 4λ∗ = 0 and the response is elastic,
i.e. σ = σtr. Otherwise, we observe 4λ∗ > 0 and necessarily
f (σ∗) = 0 and σtr < K. This gives

T∗ =

[
C−1 + 4λ∗D2gθ(σ∗) Dgθ(σ∗)T

αD fθ(σ∗) 0

]
and P∗ =

[
−C−1

0

]
,

cf. (3.9). We set A =
(
C−1 + 4λ∗D2gθ(σ∗)

)−1 (note that
this is the exact Hessian matrix Ξ in Simo and Hughes (1998,
Chap. 3.6.1)) and the inverse of T∗ is

A −
A[Dgθ(σ∗)] ⊗ A[D fθ(σ∗)]

D fθ(σ∗) : A[Dgθ(σ∗)]
A[Dgθ(σ∗)]

αD fθ(σ∗) : A[Dgθ(σ∗)]
A[D fθ(σ∗)]

D fθ(σ∗) : A[Dgθ(σ∗)]
−1

αD fθ(σ∗) : A[Dgθ(σ∗)]

 .
According to (3.9), this gives the consistent tangent as

S =
(
A −

A[Dgθ(σ∗)] ⊗ A[D fθ(σ∗)]
D fθ(σ∗) : A[Dgθ(σ∗)]

)
◦ C−1 .

We see that in the simple case of single-yield plasticity, the ap-
proach of Section 3 reduces to the well-known formulas for the
algorithmically consistent tangent.
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7. Modified Cam-clay plasticity

Cam-clay plasticity and its variants (Roscoe and Burland,
1968; Roscoe and Wroth, 1968) are fundamental models in crit-
ical state soil mechanics in which pressure sensitivity plays a
dominant role in the sense that depending on the mean stress,
the materials may exhibit hardening or softening behaviour.
Modified Cam-clay is an enhancement of the original Cam-clay
model, and, in contrast to its predecessor, has a smooth yield
surface, being an ellipse in the deviatoric-hydrostatic plane. We
mainly follow the presentation given in Borja and Lee (1990)
and Zouain et al. (2007). In the former, also a return algorithm
in order to compute the response function and the consistent
tangent is given. Yet, being a key model in soil mechanics,
analytical results concerning existence and uniqueness of the
underlying initial boundary value problem have only been ob-
tained recently, cf. Dal Maso and DeSimone (2009); Dal Maso
et al. (2011). A main feature is that the yield function is not
convex w.r.t. the generalized stress Σ = (σ, η) ∈ S × R and that
the hardening law is non-associated. The material strength pa-
rameter η > 0 (related to the pre-consolidation pressure) serves
as an internal variable and determines the radius of the ellipse
in the direction of the hydrostatic pressure axis. For the ease of
notation, we use the abbreviations

q =

√
3
2 | dev(σ)| and p = −σm = −

1
3 tr(σ) ,

with the mean stress σm, where by convention the compression
is negative. The yield function is given as

f (Σ) = f (σ, η) = f (q, p, η) = q2 − M2 p(2η − p)

=
3
2 | dev(σ)|2 + M2σm(σm + 2η) .

Concerning the plastic strain rate we assume normality (how-
ever, also non-associated flow directions are possible as in Borja
and Lee (1990)), but for the evolution of the strength parameter,
a non-associated evolution law is proposed, i.e.

ε̇p = λDσ f (σ, η) ,

η̇ = −kη tr(ε̇p) = −kηλDσm f (σ, η) = −2M2kηλ(σm + η) ,

with the material parameter k related to the virgin compression
and the swell-recompression index. Concerning the evolution
law for the internal variable η, there are two possibilities: either
we use our standard approach and approximate time derivatives
by backward differences, or we solve the differential equation
exactly in terms of the plastic strain rate which gives

η = ηold exp
(
− k

(
tr(εp) − tr(εold

p )
))
. (7.1)

The exact integration allows to conclude that η always has the
same sign as ηold. Contrary, using backward differences in the
evolution law for η, this is not necessarily the case. Replacing
the evolution equation for η by the state equation (7.1) gives

G
(
((σ, η),4λ),σtr

)
=

 C−1[σ − σtr] + 4λDσ f (σ, η)
η − ηold exp

(
k tr

(
C−1[σ − σtr]

)) .
Here, the incremental evolution law for the internal variables
does not take the form (2.8).

Following Theorem 3.4, we have:

Theorem 7.1. Let εold
p and ηold > 0 be given, and as-

sume that a unique solution (u∗,σ∗, η∗) of the incremen-
tal problem exists satisfying T

(
((σ∗, η∗),4λ∗),σ∗tr

)
= 0 with

σ∗tr = C[ε(u∗) − εold
p ]. Moreover, assume that all elements in

∂(σ,η,4λ)T
(
((σ∗, η∗),4λ∗),σ∗tr

)
are non-singular. Then, the stress

response function R is semismooth.

8. A (Drucker-Prager) cap model

Drucker-Prager plasticity as presented in Section 6 has the
drawback that it allows infinitely large hydrostatic compres-
sion. Therefore, it has been proposed to cap the unbounded
set of admissible states, cf. DiMaggio and Sandler (1971);
Simo et al. (1988b); Hofstetter et al. (1993). So similarly to
the Cam-clay model, the admissible set is bounded in the σ-
space. However, instead of taking the form of an ellipse, the
yield surface is composed of three parts (p = 3): a Drucker-
Prager-like failure criterium, a tension cutoff and a bounding
hardening/softening cap. The generalized stress again takes the
form Σ = (σ, η) ∈ S × R, with η being a material strength pa-
rameter determining the center of the elliptic cap as given below
by the yield function f2. Analytical results concerning the ini-
tial boundary value problem have only been obtained recently
Babadjian et al. (2011). Setting

Fe(p) = C − γ1e−γ2 p + θp ,

Fc(p, η) =
1

R2 (X(η) −max{0, η})2 − (p −max{0, η})2 ,

the yield functions are given as

f1(Σ) = f1(q, p) = q − Fe(p) (linear-exponential DP)

f2(Σ) = f2(q, p, η) = q2 − Fc(p, η)2 (elliptic cap)
f3(Σ) = f3(p) = p − T (tension cutoff)

with the following material parameters: γi ≥ 0 are shape pa-
rameters of the linear-exponential Drucker-Prager failure cri-
terium, θ is related to the angle of friction, R is the shape pa-
rameter of the elliptic cap, and T ≥ 0 the tension cutoff. We
remark that only the elliptic cap described by f2 depends on
the strength parameter, but not the linear-exponential Drucker-
Prager envelope and the tension cutoff.

The tension cutoff T of must be chosen such that T < p∗,
where p∗ denotes the zero of Fe(p) = 0. If γi = 0, f1 reduces
to the Drucker-Prager criterium and p∗ = −C

θ
, which is just

the volumetric stress at the apex of the Drucker-Prager cone. If
T ≥ p∗, the tension cutoff would be redundant as f1(Σ) ≤ 0
would imply f3(Σ) ≤ 0. Hence, we always consider T < p∗. In
this case, we can guarantee that if the yield condition i is active,
fi is differentiable at the corresponding stress state. We also
remark that—as for the modified Cam-clay model— f2 is not
convex with respect to the strength parameter η since the cap is
elliptic. In order to have convex yield functions, also parabolic
(linear w.r.t. η, quadratic w.r.t. p) and linear caps have been
proposed.
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For the plastic flow direction, we again assume normality, i.e.
ε̇p =

∑3
i=1 λiD fi(σ, η) giving the incremental law

εp = εold
p +

3∑
i=1

4λiDσ fi(σ, η) ,

but again a non-associated hardening law is enforced. Various
formulations have been proposed, e.g., the state law (DiMaggio
and Sandler, 1971)

tr(εp) = W(1 − e−DX(η)) . (8.1)

Here, X(η) = η+RFe(η) denotes the intersection of the cap with
the hydrostatic axis and D,W are material parameters. In terms
of σ and σtr, we then define

G
(
((σ, η),4λ),σtr

)
=

[
C−1[σ − σtr] +

∑3
i=1 4λiDσ fi(σ, η)

tr
(
C−1[σtr − σ + C[εold

p ]
])
−W(1 − e−DX(η))

]
,

and the ncp-function

Φ( f (Σ),4λ) =

 φ( f1(σ),4λ1)
φ( f2(σ, η),4λ2)
φ( f3(σ),4λ3)

 .
The resulting equation T ((Σ,4λ),σtr) = 0 is a nonsmooth equa-
tion in R10. Application of Theorem 3.4 gives the following
result.

Theorem 8.1. Assume that the incremental prob-
lem has a unique solution (ε(u∗),σ∗, η∗) satisfying
T
(
((σ∗, η∗),4λ∗),σ∗tr

)
= 0 with σ∗tr = C[ε(u∗) − εold

p ],
and assume that all elements in ∂(σ,η,4λ)T

(
((σ∗, η∗),4λ∗),σ∗tr

)
are non-singular. Then, the stress response function R is
semismooth.

9. Numerical examples - (smoothed) Drucker-Prager

All computations have been performed with the parallel fi-
nite element program M++ (Wieners, 2010), which provides
a large class of linear solvers and preconditioners (including
multigrid).

Figure 1: Geometry of the strip footing.

9.1. A strip footing

We apply the non-associated Drucker-Prager material models
to a simple strip footing problem in 2D. Material parameters,
the geometry and some computational details can be found in
Table 3 and Figure 1. The smoothing parameter θ = 0.0001 is
very small such that the material response of the classical and
the smoothed Drucker-Prager model are comparable. The load
is applied with a constant rate in 60 incremental load steps and
at the final time T = 6, over 90% of the specimen are plastified.

Material parameters
Shear modulus: µ 5.5 MPa
Bulk modulus: κ 12.07 MPa
Cohesion: c 0.01 MPa
Friction angle: φ 30◦

Dilatancy angle: ψ 15◦

Scaling factor: k0 0.7
Smoothing parameter: θ 0.0001

Computational details
Degrees of freedom: 132 098
Final time: T 6
Time step size: 4t 0.1

Table 3: Material parameters of the (smoothed) Drucker-Prager
model, computational details and geometry of the strip footing.

Table 4 shows the nonlinear convergence history of the
(outer) Newton method at the times t20 = 2 (≈ 5% plastifica-
tion), t40 = 4 (≈ 50% plastification) and t60 = T (≈ 90% plasti-
fication). The iteration was stopped if either the Euclidian norm
of the residual was reduced by factor of 1e-08 or was below 1e-
10. We clearly observe superlinear convergence for both mod-
els. While for Drucker-Prager, we could use the closed-form
representation of the incremental response, for the smoothed
variant, we performed the active set method proposed in Section
3.2 in order to compute the stress response and the consistent
tangent.

Drucker-Prager Smoothed Drucker-Prager
k t20 t40 t60 t20 t40 t60

0 4.4e-05 8.2e-05 2.8e-04 4.4e-05 8.2e-05 2.8e-04
1 2.8e-05 8.3e-06 1.4e-04 4.4e-05 8.2e-06 1.4e-04
2 1.0e-05 4.4e-07 5.0e-06 2.8e-06 4.3e-07 5.1e-06
3 3.8e-07 1.5e-08 1.0e-06 9.5e-08 2.1e-08 1.0e-06
4 1.1e-08 4.6e-14 3.4e-07 1.8e-09 7.8e-14 3.3e-07
5 1.8e-14 1.5e-07 2.4e-15 1.5e-07
6 6.9e-08 5.9e-08
7 2.2e-08 1.1e-08
8 1.5e-11 4.7e-13

Table 4: Convergence history of the (outer) generalized New-
ton iteration for Drucker-Prager and smoothed Drucker-Prager
elasto-plasticity.
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(a) 3d view of the coarse mesh.
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(b) Loading regime.

(c) Projections of the geometry onto the x1–x2, x1–x3 and x2–x3 plane.

Figure 2: Geometry of the slope and the loading regime.

9.2. A slope failure problem

We now consider a more challenging 3d slope failure prob-
lem. The slope geometry and boundary conditions are shown
in Figure 2. Again, we use the Drucker-Prager material model,
but this time, we use the viscoplastic regularization of Duvaut-
Lions (2.5) with parameter β = 0.0005. In the incremental set-
ting, the flow rule becomes

εp = εold
p +

4t
β

C−1[σ − σ̄] ,

where σ̄ denotes the response of the rate-independent problem.
Substitution in Hooke’s law (2.2) then gives

σ =
β

β+4tσtr +
4t
β+4t σ̄ ,

being a convex combination of the elastic (β = ∞) and perfect
elasto-plastic response (β = 0). Though time has a physical
meaning in viscoplasticity, the material response only depends
on the quotient 4t

β
and therefore the considered time horizon

[0, 3.5] with 4t = 0.1 is artificial.

The material parameters can be found in Table 5.

Material parameters
Shear modulus: µ 5.5 MPa
Bulk modulus: κ 12.07 MPa
Cohesion: c 0.008 MPa
Friction angle: φ 25◦

Dilatancy angle: ψ 5◦

Scaling factor: k0 0.7
Specific weight: γ 0.033 MPa/m
Viscoplasticity: β 0.0005 s

Computational details
Degrees of freedom 3 826 995
on mesh refinement 4 6 452 451
level (MRL) 5 50 973 123
Final time: T 3.5 s
Time step size: 4t 0.1 s

Table 5: Parameters for the slope failure problem.

Within Ω, a body force is prescribed (gravity) and on a part of
the upper boundary (the blue shaded area in Figure 2), a traction
force applies. The loading regime is as follows: up to time t̂ =

1, the gravity force is applied incrementally and afterwards kept
constant, whereas no traction force is applied up to t̂. Beyond t̂,
the traction force is increased linearly with time.
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Figure 3: Accumulated plastic strain at time t = 2.9

As a result of the geometry, during the gravity loading phase,
the deformation is homogeneous w.r.t. the x1-direction. After
t = t̂, the deformation is fully 3d since the traction force triggers
a shear band. With the functions Lg = min{t, t̂} and Lt(t) =

max{0, t − t̂}, b = [0, 0,−γ]T , tN = [0, 0,−1/400]T and the
surface ΓN = (0, 3) × (9, 12) × {6}, the load functional (2.14)
takes the form

`(t,w) = Lg(t)
∫

Ω

b · w dx + Lt(t)
∫

ΓN

tN · w da .

The loading process is also illustrated in Figure 2(b). The slope
geometry is such that plastic behavior already sets on in the
gravity loading phase, i.e. the self-weight of the slope triggers
plastic deformation.

Mesh refinement level
k MRL 3 MRL 4 MRL 5
0 2.7e-04 1.9e-04 1.1e-04
1 5.7e-05 5.3e-05 6.2e-05
2 3.7e-06 1.5e-05 3.4e-05
3 4.9e-07 1.7e-06 6.9e-06
4 4.8e-10 2.2e-07 5.3e-07
5 7.8e-09 1.1e-07
6 6.1e-12 2.6e-08
7 3.1e-09
8 5.5e-11

Table 6: Slope failure problem: convergence of the (outer) gen-
eralized Newton iteration for Drucker-Prager plasticity at time
step 29 for different mesh refinement levels (MRL), also see
Table 5.

Table 6 shows the convergence on different levels of mesh re-
finement. We observe fast superlinear convergence for all lev-
els of mesh refinement, but the number of iterations is mesh-
dependent. This generally seems to hold true for problems in

elasto-plasticity, since it was not possible so far, to prove super-
linear convergence in a function space setting, cf. Gruber and
Valdman (2009) for more details. Finally, Figure 3 gives an il-
lustration of the accumulated plastic strain

∫ t
0 |ε̇p(s)| ds at time

t = 2.9 and we observe the formation of a shear band.

Appendix A. Semismooth Newton methods

For convenience of the reader we collect the results on semi-
smooth functions which are used in Sect. 3-8, see also Pang
and Facchinei (2003a,b). Here, we restrict ourselves to the Eu-
clidean case. For a corresponding calculus in function spaces,
see, e.g., Chen et al. (2000); Hintermüller et al. (2003); Ito and
Kunisch (2008).

A.1. Generalized derivatives

Let F : RN −→ RM be a continuous function. Then, F is
directional differentiable at x in direction h ∈ RN , if the limit

DF(x; h) := lim
t↓0

1
t
(
F(x + th) − F(x)

)
exist, and F is B(ouligand)-differentiable if additionally

1
|h|

(
F(x + h) − F(x) − DF(x; h)

)
= o(|h|) as h→ 0, h , 0 .

In the following, we always assume that F is Lipschitz con-
tinuous. Then, F is B-differentiable if and only if F is direc-
tionally differentiable. Moreover, by Rademacher’s theorem
(Clarke et al., 1998), the set of points ΘF ⊂ RN where F is
differentiable is dense. For x ∈ RN , we define the B(ouligand)-
subdifferential by

∂BF(x) =
{
B ∈ RM,N : B = lim

y→x,y∈ΘF
DF(y)

}
, (A.1)

12



and Clarke’s generalized Jacobian is its convex hull

∂F(x) = conv
{
∂BF(x)

}
⊃ ∂BF(x) . (A.2)

Note that ∂BF(x) = ∂F(x) = {DF(x)} for x ∈ ΘF .
The function F is called CD-regular at x, if all matrices in

∂F(x) are regular.

Proposition A.1. (Pang and Facchinei, 2003b, Thm. 7.5.3) If
F is CD-regular at x∗, δ > 0 exists such that F is CD-regular at
all x ∈ {y ∈ RN : |x∗ − y| < δ}.

A.2. Semismooth functions
The function F is semismooth at x, if it is locally Lipschitz

continuous at x and if the limit

lim
V ∈ ∂F(x + th′),

t ↓ 0, h′ → h

Vh′ (A.3)

exists for all h ∈ RN .

Proposition A.2. (Qi and Sun, 1993; von Heusinger and Kan-
zow, 2008). For F, the following statements are equivalent:

1. F is semismooth at x.
2. F is locally Lipschitz at x, DF(x; ·) exists and for any G ∈

∂F(x + h):

|Gh − DF(x; h)| = o(|h|) as h→ 0 .

3. F is locally Lipschitz at x, DF(x; ·) exists and for any G ∈
∂F(x + h):

|F(x + h) − F(x) −Gh| = o(|h|) as h→ 0 .

4. For all G ∈ ∂BF(x+h): |Gh−DF(x; h)| = o(|h|) as h→ 0 .
5. Fi is semismooth for all components i = 1, . . . ,M, i.e. for

all Hi ∈ ∂Fi(x + h) we have |Hih − DFi(x; h)| = o(|h|) as
h→ 0 .

If o(|h|) can be replaced by O(|h|1+s), s ∈ (0, 1], we call F
semismooth of order s, and in case s = 1, we say F is strongly
semismooth.

For semismooth functions, the following chain rule holds.

Proposition A.3. (Pang and Facchinei, 2003b, Prop. 7.4.4).
Let F : RN → RM be (strongly) semismooth in a neighborhood
of x̂ ∈ RN and let G : RM → RP be (strongly) semismooth in
a neighborhood of F(x̂). Then H : RN → RP, H = G ◦ F is
(strongly) semismooth in a neighborhood of x̂.

For T : RN × RM → RN we define

∂xT (x, y) =
{
Ax ∈ RN,N : Ay exists s.t. [Ax Ay] ∈ ∂T (x, y)

}
.

In the same way we define ∂yT (x, y) ⊂ RN,M .

Proposition A.4. (Gowda, 2004; von Heusinger and Kanzow,
2008) Let T be semismooth in a neighborhood of a point (x∗, y∗)
satisfying T (x∗, y∗) = 0, and let all matrices ∂xT (x∗, y∗) be non-
singular. Then, there exists an open neighborhood U(y∗) of y∗

and a function Y : U(y∗) → RN which is locally Lipschitz and
semismooth such that Y(y∗) = x∗ and T (Y(y), y) = 0 for all
y ∈ U(y∗). Moreover, if [Ax Ay] ∈ ∂BT (Y(y), y), we have

−A−1
x Ay ∈ ∂

BY(y) ⊂ ∂Y(y) .

A.3. A generalized Newton method
A generalized Newton iteration to compute a root x∗ of a

Lipschitz continuous function F : RN → RN is defined by

xk = xk−1 −G−1
k F(xk−1) , Gk ∈ ∂F(xk−1), k ≥ 1 . (A.4)

Proposition A.5. (Qi and Sun, 1993). Let x∗ be a solution
of F(x∗) = 0. Assume that F is semismooth (of order s) and
CD-regular at x∗. Then, provided that |x0 − x∗| is small enough,
the iteration (A.4) is well-defined and converges superlinearly
(with order 1 + s) to the solution x∗.

The proof is based on Proposition A.1 showing that the itera-
tion is well-defined and the superlinear convergence (with order
1 + s) then follows from property 3. in Proposition A.2.

A.4. Semismoothness of projection operators
Let A ∈ RN,N be symmetric positive definite, let (x, y)A =

xT Ay be an inner product in RN with norm |x|A =
√

(x, x)A, and
let K ⊂ RN be a convex set. Then, the orthogonal projection
P : RN → K ⊂ RN is well defined and uniquely characterized
by

(x − P(x), z − P(x))A ≤ 0 z ∈ K .

Note that P is non-expansive, i.e., |P(x) − P(y)|A ≤ |x − y|A.
In the case when K = {x ∈ RN : fi(x) ≤ 0 , i = 1, . . . , p}

with convex functions fi : RN → R, the projection x∗ = P(y)
and the corresponding Lagrange multiplier λ ∈ Rp, λ ≥ 0 are
characterized as a saddle point of the Lagrangian

L(x, λ) =
1
2
|x − y|2A + λT f (x) .

Proposition A.6. Let f ∈ C2(RN ,Rp) be convex and let x :=
P(y) ∈ K be the projection of y onto K. Furthermore assume
that the constant rank constraint qualification (CRCQ) holds at
x, i.e., there is a neighborhood U of x such that for each subset
J ⊂ I(x) of the active indices I(x) := {i ∈ {1, . . . , p} : fi(x) = 0}
and all z ∈ U, the matrices D f (z) j∈J have the same rank. Then,
the projection P is semismooth at y.

A proof can be found in (Sauter, 2010, Theorem A.11) and
is based on results given in Pang and Ralph (1996); Pang and
Facchinei (2003a,b). We remark that also a characterization
of the directional derivative DP(y; h) exists which is a pro-
jection in a distorted metric onto the critical cone (Pang and
Ralph, 1996). For y ∈ K, this coincides with the projection
onto the tangent cone, cf. Zarantonello (1971). We remark
that the (CRCQ) is implied by the linear independence con-
straint qualification (LICQ) but not by (and neither implies) the
Mangasarian-Fromowitz constraint qualification (MFCQ).

In some special cases no constraint qualification is necessary.

Proposition A.7. If K is a polyhedron or the second order unit
cone, i.e., B ∈ Rp,N and d ∈ Rp exist such that

K = {x ∈ RN : Bx ≤ d} or

K = {x ≡ (x̂, x0) ∈ RN−1 × R : |x̂| ≤ x0} ,

the orthogonal projection onto K is strongly semismooth.

13



The result follows from (Pang and Facchinei, 2003b,
Prop. 7.4.7) in the polyhedral case, and from Hayashi et al.
(2005); Goh and Meng (2006) for the second order unit cone.
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