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1. Introduction

In recent years big interest in analyzing the behaviour of electromagnetic fields in

nano-scaled environments has developed. In many situations these fields can – after

exploiting some basic material properties – be described by Maxwell’s equations in

the electric field formulation

d2

dt2
(σE) +∇× (α∇× E) = −dJ

dt
in Ω

div(σE) = 0 in Ω,

(1.1)

where E : Ω× [0, T ]→ R3 denotes the electric field, σ : Ω→ R3,3 the conductivity,

J : Ω × [0, T ] → R3 the current, Ω ⊆ R3 is a connected domain and α : Ω → R3,3

denotes the inverse of the magnetic permeability. In many applications, c.f. Refs.

6, 21, Ω has the form R3 \ B for some polyhedral domain B ⊂ R3. To be able to

solve system (1.1) numerically one possibly has to restrict the domain Ω to some

finite computational domain. On the newly created outer boundary one introduces

artifical boundary conditions, c.f. Refs. 7, 10, 15, 22. In the following we restrict

ourselves to possibly nonhomogeneous Dirichlet boundary conditions n×E = n×g
on ∂Ω, where g : ∂Ω × [0, T ] → R3 and Ω ⊂ R3 now denotes the restricted finite

computational domain. Other types of boundary conditions can be analyzed as well.

In realistic applications there usually is a sharp distinction between regions, where

σ can be bounded away from zero, called the conductor, and regions, where σ = 0

holds (cf. Figure 1). Only outside the conductor we need the second equation of

system (1.1), because, if we drop the condition div(σE) = 0 here, the solution E is
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Fig. 1. Realistic conductor

not unique anymore. However, the quantity ∇×E, which actually is the interesting

one in the outer space, is still uniquely determined. Inside the conductor the first

equation of system (1.1) is sufficient to determine the electric field E uniquely and

div(σE) = 0 follows from the fact that div(J) = 0 always holds for physical reasons.

Thus we may switch from problem (1.1) to the ungauged formulation

d2

dt2
(σE) +∇× (α∇× E) = −dJ

dt
in Ω

n× E = n× g on ∂Ω.

By applying some time-stepping scheme we obtain the problem to find u : Ω→ R3

such that

∇× (α∇× u) + βu = f in Ω

n× u = n× g on ∂Ω,
(1.2)

where f : [0, T ] × Ω → R3 is some right-hand side function dependening on J and

the values of u from the previous time-step(s) and β is given by σ scaled with the

length of the current time-step. Since div(∇ × u) = 0 for all u : Ω → R3 and it

holds div(f) = 0, too, this implies

div(βu) = 0 in Ω. (1.3)

Now equation (1.2) can be discretized with the finite element method and we get a

numerical approximation of the analytic solution u. To solve this problem efficiently

it is required to create problem-adapted approximation spaces. This can be obtained

either by mesh refinement (h-refinement) or the use of higher order ansatz spaces

(p-refinement). A combination of both (hp-FEM) can lead to exponentially fast

convergence of the approximated towards the analytical solution24. For problem

(1.2) h-adaptive mesh creation is discussed in e.g. Refs. 4, 8, 12. For the p- and

especially the hp-FEM several results for adaptive mesh creation can be found in e.g.

Refs. 12, 18, 26, 27. Since usually one does not know much about the exact solution

of the problem one wants to solve, the only way to decide how good the computed
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approximation is and where it is favourable to refine the mesh any further is by

means of the computed solution itself. Therefore one can use error indicators, which

give an upper bound for the approximation error. For h-adaptive mesh creation for

Maxwell’s equations there have been proposed several different error estimators,

e.g. Refs. 4, 8, 9, 12. However, for the p- and the hp-adaptive FEM the situation is

a bit more demanding. There one also has to deal with varying polynomial degrees

of the approximation space on different cells of the triangulation. Therefore an h-

adaptive error indicator cannot lead to satisfying results, because one has to take

into account the possible change of the polynomial degrees from cell to cell as well.

In Ref. 26 a p-hierarchical a posteriori error estimator for Maxwell’s equations in

the electric field formulation was proposed.

In this paper we will introduce a residual-based a posteriori error estimator and

prove its hp-efficiency. The estimator is quite similar to the FEM-part of the a

posteriori error estimator derived in Ref. 19, but to the best of our knowledge there

has not been any discussion about its hp-capabilities up to now. Thus we will derive

a similiar residual-based error estimator, which is based on a pure finite element

discretization, and prove its hp-efficiency, i.e. we derive upper and lower bounds

for the estimator in terms of the exact error. To conclude this paper we give some

numerical examples to illustrate the performance of the error estimator.

The paper is organized as follows: In section 2 we introduce some basic definitions

and general assumptions, which we will use throughout the paper. In section 3 we

present three interpolation operators and state some polynomial inverse estimates

we require in the proofs of the following section. The main results are derived in

section 4, where we introduce the residual-based a posteriori error estimator and

prove upper and lower bounds for it in terms of the exact error of the approximated

solution. Finally, section 5 gives some numerical examples, where the performance

of the error estimator from the previous section is shown in various different types

of problems.

2. Preliminaries

In this section we introduce the basic notations and state some general assumptions,

which we require throughout the paper. Further we derive the weak formulation of

problem (1.2).

Remark 1. Although a generalization of the results in this paper into the complex

space C3 is straightforward under certain conditions, we restrict ourselves to real-

valued functions u and coefficients α and β for simplicity. We do not want to make

the statements artifically involved by having to take into account all the notational

details required for complex-valued functions.
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2.1. Notations and General Assumptions

Let Ω ⊂ R3 be an open domain with Lipschitz continuous boundary. By L2(Ω) we

denote the Lebesgue space of all square-integrable functions in Ω and by γ ∈ N3
0

some multi-index. Then we define for r ≥ 0 the Sobolev spaces Hr and Hr(curl) by

Hr(Ω) := {u ∈ L2(Ω) : ∂γu ∈ L2(Ω) for all ‖γ‖1 ≤ r}

and

Hr(curl,Ω) := {u ∈ Hr(Ω)3 : ∇× u ∈ Hr(Ω)3},

respectively. If r = 0, we simply write H(curl,Ω) := H0(curl,Ω). By Hr
0 (curl,Ω) we

denote the functions u ∈ Hr(curl,Ω), which additionally satisfy the homogeneous

Dirichlet boundary conditions

n× u = 0 on ∂Ω. (2.1)

For the space H0(curl,Ω) one can obtain the following decomposition.

Theorem 1 (Helmholtz decomposition). For each v ∈ H0(curl,Ω) there exist

some z ∈ H0(curl,Ω) ∩ {u ∈ L2(Ω)3 : div(u) ∈ L2(Ω)} satisfying div(z) = 0 on Ω

and q ∈ H1(Ω) such that

v = z +∇q.

If ∂Ω is connected, we have q ∈ H1
0 (Ω). This splitting is orthogonal with respect

to the L2(Ω)- and the H(curl,Ω)-inner product. Further there exists some constant

CH > 0 such that

‖z‖H(curl,Ω) + ‖∇q‖L2(Ω) ≤ CH‖v‖H(curl,Ω).

This decomposition of v into z and ∇q is called Helmholtz decomposition.

Proof. See Theorem 1.2.3 in Ref. 14.

By K we denote a triangulation of Ω. To avoid strong mesh size changes we

assume that the shapes of the cells do not deteriorate too much. Therefore let K
satisfies the following regularity property24,25.

Definition 1 (Shape regularity). Let K ∈ K be the image of reference cell K̂

under some map FK : K̂ → K and set hK := diam(K). Then K is γ1-shape regular,

if and only if there exists some constant γ1 > 0 such that

‖∇FK‖L∞(K̂)

hK
+ hK‖(∇FK)−1 ◦ FK‖L∞(K̂) ≤ γ1 ∀K ∈ K. (2.2)

The polynomial degree vector on mesh K is denoted by p := (pK)K∈K, pK ∈ N0.

To get reliable results also the polynomial degrees present on two neighbouring cells
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should not differ too much. Therefore we assume there exists some constant γ2 > 0

(possibly different from γ1) such that

pK1
+ 1

γ2
≤ pK2

+ 1 ≤ γ2(pK1
+ 1) (2.3)

for all K1,K2 ∈ K with K1 ∩K2 6= ∅. Let K ∈ K be arbitrary. Then we define

ωK := K ∪ {L ∈ K : K ∩ L 6= ∅}.

Let Q̂ := [0, 1]3 be the reference cube and

T̂ := {x ∈ R3 : 0 ≤ x1, x2, x3, x1 + x2 + x3 ≤ 1}

the reference tetrahedron. The finite dimensional approximation space of piecewise

vector-valued polynomials is given by

V p(K,Ω) :=


{
u ∈ H0(curl,Ω) :

(
(∇FK)−Tu

∣∣
K

)
◦ FK ∈ QpK

(
K̂
)
∀K ∈ K

}
, if K̂ = Q̂{

u ∈ H0(curl,Ω) :
(
(∇FK)−Tu

∣∣
K

)
◦ FK ∈ TpK+1

(
K̂
)3

∀K ∈ K
}
, if K̂ = T̂

,

where the polynomial space QpK is given by

QpK = QpK ,pK+1,pK+1 ×QpK+1,pK ,pK+1 ×QpK+1,pK+1,pK

with

Qp,q,r

(
K̂
)

= span
{
xi1x

j
2x
k
3 : x ∈ K̂, i ∈ {0, . . . , p}, j ∈ {0, . . . , q}, k ∈ {0, . . . , r}

}
for p, q, r ∈ N0 and the polynomial space TpK is given by

TpK

(
K̂
)

= span
{
xi1x

j
2x
k
3 : x ∈ K̂, 0 ≤ i+ j + k ≤ pK

}
.

We denote the finite dimensional approximation space of piecewise scalar polyno-

mials by

W p(K,Ω) :=


{
u ∈ H1(Ω) : u

∣∣
K
◦ FK ∈ QpK+1,pK+1,pK+1

(
K̂
)
∀K ∈ K

}
, if K̂ = Q̂{

u ∈ H1(Ω) : u
∣∣
K
◦ FK ∈ TpK+1

(
K̂
)
∀K ∈ K

}
, if K̂ = T̂

.

We assume that the matrix-valued coefficients α, β : Ω → R3,3 are piecewise

polynomials with polynomial degree vectors pα = (pα,K)K∈K, pα,K ∈ N0, and

pβ = (pβ,K)K∈K, pβ,K ∈ N0, respectively. Further let α and β be uniformly positive

definite, i.e. there exist constants αmax ≥ αmin > 0 and βmax ≥ βmin > 0 such

that for all u ∈ L2(Ω)3 it holds

αmin‖u‖L2(Ω) ≤ |uTαu| ≤ αmax‖u‖L2(Ω)

and

βmin‖u‖L2(Ω) ≤ |uTβu| ≤ βmax‖u‖L2(Ω) (2.4)

a.e. in Ω, respectively.
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2.2. Weak formulation

To derive the weak formulation of problem (1.2) we assume that the boundary

function g : ∂Ω→ R3 is smooth enough such that there exists some lifting function

ug ∈ H(curl,Ω) satisfying

div(βug) = 0 on Ω

and ug = g on ∂Ω. Then it suffices to consider the homogeneous version of problem

(1.2) to find u : Ω→ R3 such that

∇× (α∇× u) + βu = f in Ω

n× u = 0 on ∂Ω.
(2.5)

By multiplying the first equation with some test function φ ∈ H0(curl,Ω) and

integration by parts we obtain the weak formulation∫
Ω

((∇× φ)Tα∇× u+ φTβu) =

∫
Ω

φT f ∀φ ∈ H0(curl,Ω). (2.6)

Analogously we obtain the discrete problem to find uFE ∈ V p(K,Ω) such that∫
Ω

((∇× φ)Tα∇× uFE + φTβuFE) =

∫
Ω

φT f ∀φ ∈ V p(K,Ω). (2.7)

For u, v ∈ H0(curl,Ω) let the bilinear form a : H0(curl,Ω)2 → R be given by

a(u, v) :=

∫
Ω

((∇× u)Tα∇× v + uTβv)

and define the energy norm ‖ · ‖Ω : H0(curl,Ω)→ R by

‖u‖2Ω := a(u, u).

The bilinear form a is elliptic, i.e. for some constant Cell > 0 it holds

a(u, u) ≥ Cell‖u‖2H(curl,Ω) ∀u ∈ H0(curl,Ω), (2.8)

and continuous, i.e. for some constant Cc > 0 it holds

|a(u, v)| ≤ Cc‖u‖H(curl,Ω)‖v‖H(curl,Ω) ∀u, v ∈ H0(curl,Ω) (2.9)

(for proofs see for example Ref. 21). Then the Lax-Milgram Theorem states that

there exists a unique solution u ∈ H0(curl,Ω) satisfying (2.6) and a unique solution

uFE ∈ V p(K,Ω) satisfying (2.7) for f ∈ L2(Ω)3. If β is only semi-positive definite

on some set of positive measure, then we still get uniqueness of the solutions in

the quotient spaces H0(curl,Ω)/Ker(∇×) and V p(K,Ω)/Ker(∇FE×), where ∇FE

denotes the discrete gradient, respectively.



7

3. Interpolation Operators and Polynomial Inverse Estimates

In this section we introduce interpolation operators for the spaces H1
0 (Ω) and

H0(curl,Ω) and give some polynomial inverse estimates, which we require in the

next section to prove the hp-efficiency of the residual-based error estimator.

We begin with the canonical interpolation operator Πgrad : H1
0 (Ω) → W p(K,Ω),

which interpolates functions from the space H1
0 (Ω) into the scalar finite element

approximation space W p(K,Ω). For this operator the following estimate was proven

in Ref. 24.

Theorem 2 (H1-conforming interpolation). Let u ∈ H1
0 (Ω). Then for all K ∈

K and all faces f̃ ⊂ ∂K of K there exists some constant Cgrad > 0 depending only

on γ1 and γ2 in R+ such that

‖Πgradu− u‖L2(K) +

√
hf̃

pf̃ + 1
‖Πgradu− u‖L2(f̃) ≤ Cgrad

hK
pK + 1

‖∇u‖L2(ωK),

where hf̃ := diam
(
f̃
)

and pf̃ is the maximal polynomial degree essentially present

at face f̃ .

Proof. From Ref. 24 and regularity assumptions (2.2) and (2.3) it follows

‖Πgradu− u‖L2(K) ≤ C1
hK

pK + 1
‖∇u‖L2(ωK) (3.1)

for some constant C1 > 0 independent of hK and pK . Futher, by using regularity

assumptions (2.2) and (2.3) we obtain easily√
hf̃

pf̃ + 1
‖Πgradu− u‖L2(f̃) ≤ C2‖Πgradu− u‖L2(ωK)

for some constant C2 > 0 depending solely on γ1 and γ2. Then the second estimate√
hf̃

pf̃ + 1
‖Πgradu− u‖L2(f̃) ≤ C1C2

hK
pK + 1

‖∇u‖L2(ωK)

follows immediately from inequality (3.1). Finally, setting Cgrad := C1(C2 +1) gives

the desired result.

The interpolation operator presented next maps functions from the space

Hr
0 (curl,Ω), r > 1

2 , to the vector-valued finite element approximation space

V p(K,Ω). In Ref. 11 Demkowicz and Buffa introduced a local H(curl)-conforming

projection-based interpolation scheme Πcurl
K : Hr

0 (curl,K) → V p
(
K
∣∣
K
,K
)

for

r > 1
2 . Therefore we simply define the global H(curl)-conforming interpolation

operator Πcurl : Hr
0 (curl,Ω) → V p(K,Ω) by Πcurlu

∣∣
K

:= Πcurl
K u. Then one can

prove the following estimate for the interpolation error.
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Theorem 3 (H(curl)-conforming interpolation). Let K ∈ K, f̃ ⊂ ∂K, ε > 0,

r > 1
2 + ε and u ∈ Hr(curl,K). Then there exists some constant Ccurl > 0, Ccurl ∈

O
(

1
ε

)
for ε→ 0, independent of hK and pK , such that

‖Πcurlu− u‖L2(K) +

√
hf̃

pf̃ + 1
‖Πcurlu− u‖L2(f̃) ≤ Ccurl

hkK
(pK + 1)r−ε

‖u‖Hr(ωK),

where k = min{r, pK + 2}.

Proof. The proof follows in the same fashion as the proof of Theorem 2. With

Theorem 5 in Ref. 11, the Bramble-Hilbert Lemma and regularity assumptions

(2.2) and (2.3) it follows

‖Πcurlu− u‖L2(K) ≤ C1
hkK

(pK + 1)r−ε
‖u‖Hr(ωK)

for some constant C1 > 0 independent of hK and pK . Then the second estimate

can be derived analogously to the proof above.

Remark 2.

(1) There have been proposed several approaches, e.g. in Refs. 9, 23, to overcome

the strong regularity assumptions u ∈ Hr(curl,Ω) for r > 1
2 + ε. Unfortunately

all these solutions extend the domain of integration from edge e to some patch

ωe ) e embedding e. Thus one obtains a quasi-local Clément-type interpolation,

which can be used for deriving p-estimates of the interpolation error, but an ex-

tension to the hp-context seems difficult, because those quasi-local interpolation

operators preserve polynomials but not piecewise polynomials.

(2) Following the lines of the proof of Theorem 5 in Ref. 11 we observe that this ex-

tra regularity u ∈ Hr(curl,Ω) for r > 1
2 +ε instead of u ∈ H(curl,Ω) is required

only in the first interpolation step of the interpolation-projection scheme, where

the function u is interpolated on the lowest order edge shape function φe by the

Whitney interpolant

ΠW
e u :=

(∫
e

uT te

)
φe.

Here e denotes some edge of K and te is the unit tangential of e. In Ref. 1

Amrouche et al. showed that this regularity assumption could be weakened to

u ∈ Hε(Ω) := {u ∈ L2+ε(Ω)3 : ∇× u ∈ L2+ε(Ω)3, n× u ∈ L2+ε(∂Ω)3}.

Now let us state the following important result from Ref. 16 on the interplay of the

two interpolation operators Πcurl and Πgrad defined above.

Theorem 4 (Commuting diagram property). The interpolation operators

Πgrad : H1
0 (Ω)→W p(K,Ω) and Πcurl : Hr

0 (curl,Ω)→ V p(K,Ω) for r > 1
2 make the
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following diagram commute:

H1+r
0 (Ω)

∇ //

Πgrad

��

Hr
0 (curl,Ω)

Πcurl

��
W p(K,Ω)

∇
// V p(K,Ω)

Proof. See Theorem 13 in Ref. 16.

For completeness let us also define the L2-interpolation Π : L2(Ω)3 → Xp(K,Ω),

which maps functions from the space L2(Ω)3 to the finite dimensional approximation

space of piecewise vector-valued polynomials

Xp(K,Ω) :=


{
f ∈ L2(Ω)3 : f

∣∣
K
◦ FK ∈ QpK+1,pK+1,pK+1

(
K̂
)3

∀K ∈ K
}
, if K̂ = Q̂{

f ∈ L2(Ω)3 : f
∣∣
K
◦ FK ∈ TpK+1

(
K̂
)3

∀K ∈ K
}
, if K̂ = T̂

We need this interpolation operator to distinguish between the right-hand side

function f and its implementation Πf .

Now we give some polynomial inverse estimates, which we require in the proofs of

the next section. First we collect some inverse estimates on an arbitrary cell K ∈ K.

Corollary 1 (Polynomial inverse estimates I). Let K ∈ K be arbitrary and

u ∈ QpK+1,pK+1,pK+1(K) or u ∈ TpK+1(K) denote some polynomial.

(1) Then there exists some constant Cpol,1 > 0 independent of hK and pK such that

‖∂γu‖L2(K) ≤ Cpol,1
pK + 1

hK
‖u‖L2(K)

for all multi-indices γ ∈ N3
0 satisfying ‖γ‖1 = 1.

(2) Let a, b ∈ R such that b > a > − 1
2 and define the smoothing function φK :

R3 → R+ by

φK(x) :=
1

hK
dist(x, ∂K).

Then there exists some constant Cpol,2 > 0 independent of pK such that

‖φaKu‖L2(K) ≤ Cpol,2(pK + 1)b−a‖φbKu‖L2(K).

Proof. The proofs on the reference cell K̂ follow the lines of the derivation of

the one-dimensional analogues Lemmata 4 and 5 in Ref. 5. Then one can apply a

mapping from reference cell K̂ to the actual cellK to get the desired result. From the

regularity assumptions (2.2) and (2.3) we know that the constants Cpol,1, Cpol,2 > 0

are independent of hK and pK .

Next we give some inverse estimates on a face f̃ ⊂ ∂K of cell K.
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Corollary 2 (Polynomial inverse estimates II). Let f̃ ⊂ ∂K be a face of some

cell K ∈ K and define

ωf̃ :=
⋃
L∈K
{L : f̃ is a face of L}.

The smoothing function φω
f̃

: R3 → R+ given by

φω
f̃
(x) :=

1

diam(ωf̃ )
dist(x, ∂ωf̃ ).

Further let a, b ∈ R such that b > a > − 1
2 . Then, for every polynomial

u ∈ QpK+1,pK+1,pK+1

(
K
∣∣
f̃

)
or u ∈ TpK+1

(
K
∣∣
f̃

)
there exists some extension

v ∈ H1
0 (ωf̃ ) such that

(1) v
∣∣
f̃

= φaω
f̃
u

(2) There exist some constants Cpol,3(a), Cpol,4(a) > 0 depending solely on a such

that

‖∂γv‖L2(ω
f̃
) ≤ Cpol,3(a)

(pf̃ + 1)1−a√
hf̃

∥∥∥φaω
f̃
u
∥∥∥
L2(f̃)

for all multi-indices γ ∈ N3
0 with ‖γ‖1 = 1 and

‖v‖L2(ω
f̃
) ≤ Cpol,4(a)

√
hf̃‖φ

a
ω

f̃
u‖L2(f̃).

(3) There exists some constant Cpol,5 > 0 independent of pf̃ such that

‖φaω
f̃
u‖L2(f̃) ≤ Cpol,5(pf̃ + 1)b−a‖φbω

f̃
u‖L2(f̃).

Proof.

(1) v ∈ H1
0 (ωf̃ ) can be constructed explicitly in the same way as in the proof of

Lemma 2.6 in Ref. 20.

(2) We observe

0 ≤ φω
f̃
≤ 1

2
(3.2)

and that for all x ∈ ωf̃ it holds∣∣∣∇φω
f̃
(x)
∣∣∣ ≤ 1

diam(ωf̃ )
|∇dist(x, ∂ωf̃ )|

≤ Cgradh
−1

f̃

(3.3)

for some constant Cgrad > 0 independent of hf̃ by regularity assumption (2.2).

Then the proof of the first inequality follows with Corollary 1, regularity as-

sumptions (2.2) and (2.3) and the second inequality.

The second estimate follows by a direct calculation.

(3) The proof follows the lines of the proof of Theorem 2.5 in Ref. 20.
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4. Error estimator

In this section we define the residual-based a posteriori error estimator and show

its hp-efficiency, i.e. we derive upper and lower bounds in terms of the exact error

of the approximated solution for the error estimator.

We define the error estimator η as the sum of local error indicators ηK , K ∈ K:

η2 :=
∑
K∈K

η2
K . (4.1)

For K ∈ K the local indicators ηK can be decomposed in the following way

η2
K := η2

R,K + η2
B,K ,

where ηR,K denotes the residual-based term and ηB,K the boundary term. The

residual term ηR,K is given by

η2
R,K :=

h2
K

(pK + 1)2

(
‖ res ‖2L2(K) + ‖ div(βuFE)‖2L2(K)

)
, (4.2)

where

res := Πf −∇× (α∇× uFE)− βuFE,

and the boundary term ηB,K by

η2
B,K :=

∑
f̃⊂∂K∩Ω

hf̃
2(pf̃ + 1)

(
‖nf̃ × [α∇× uFE]‖2

L2(f̃)
+ ‖nT

f̃
[βuFE]‖2

L2(f̃)

)
,

where nf̃ denotes the outward-pointing unit normal vector of cell K on face f̃ and

[·] denotes the jump over the face.

First we derive an upper bound for the energy error ‖u−uFE‖ in terms of the error

estimator η. This bound then serves as a lower bound for error estimator (4.1).

Theorem 5. Let uFE ∈ V p(K,Ω) be the solution of discrete problem (2.7) and

u ∈ Hr
0 (curl,Ω) be the solution of weak problem (2.6) for some ε > 0 and r > 1

2 +ε.

Further we assume that the triangulation K of Ω satisfies regularity assumptions

(2.2) and (2.3). Then there exists some constant C1 > 0 independent of mesh size

vector h and polynomial degree vector p such that

‖u− uFE‖2Ω ≤ C1

∑
K∈K

(pK + 1)2ε

(
η2
K +

h2
K

(pK + 1)2
‖Πf − f‖2L2(K)

)
.

Proof. By definition we have

‖u− uFE‖2Ω = a(u− uFE, u− uFE)

and, since Πcurl(u− uFE) ∈ V p(K,Ω), using the Galerkin orthogonality yields

‖u− uFE‖2Ω = a((I −Πcurl)(u− uFE), u− uFE), (4.3)
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where I denotes the identity mapping. Set e := u− uFE. Since e ∈ H0(curl,Ω), we

know from Theorem 1 that there exists some z ∈ H0(curl,Ω) and q ∈ H1(Ω) such

that e = z +∇q and (4.3) reads

‖u− uFE‖2Ω = a((I −Πcurl)e, u− uFE)

=
∑
K∈K

(∫
K

(
∇× (I −Πcurl)(z +∇q)

)T
α∇× (u− uFE)

+

∫
K

(I −Πcurl)(z +∇q)Tβ(u− uFE)

)
.

By Theorem 4 we obtain

‖u− uFE‖2Ω =
∑
K∈K

(∫
K

(∇× ((I −Πcurl)z +∇(I −Πgrad)q))Tα∇× (u− uFE)

+

∫
K

((I −Πcurl)z +∇(I −Πgrad)q)Tβ(u− uFE)

)

and, since ∇×∇q̃ = 0 for all q̃ ∈ H1(Ω), this implies

‖u− uFE‖2Ω =
∑
K∈K

(∫
K

(
∇× (I −Πcurl)z

)T
α∇× (u− uFE)

+

∫
K

(
(I −Πcurl)z +∇(I −Πgrad)q

)T
β(u− uFE)

)
.

Then integration by parts yields

‖u− uFE‖2Ω =
∑
K∈K

(∫
K

(I −Πcurl)zT (∇× (α∇× (u− uFE)) + β(u− uFE))

+

∫
K

(Πgrad − I)q div(β(u− uFE))

+

∫
∂K

(n× (I −Πcurl)z)T (n× (α∇× (u− uFE)))× n

+

∫
∂K

(I −Πgrad)qnTβ(u− uFE)

)
,

where n denotes the outward-pointing unit normal vector to cell K. Using the strong

formulation (2.5) in the first term and the divergence condition (1.3) in the second
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term yields

‖u− uFE‖2Ω =
∑
K∈K

(∫
K

(I −Πcurl)zT (f −∇× (α∇× uFE)− βuFE)

+

∫
K

(I −Πgrad)q div(βuFE)

+
∑

f̃⊂∂K∩Ω

1

2

(∫
f̃

(nf̃ × (I −Πcurl)z)T (nf̃ × [α∇× uFE])× nf̃

+

∫
f̃

(I −Πgrad)qnT
f̃

[βuFE]

))

and with the Cauchy-Schwarz inequality we have

‖u− uFE‖2Ω ≤
∑
K∈K

(
‖(I −Πcurl)z‖L2(K)‖f −∇× (α∇× uFE)− βuFE‖L2(K)

+ ‖(I −Πgrad)q‖L2(K)‖ div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
‖(I −Πcurl)z‖L2(f̃)‖nf̃ × [α∇× uFE]‖L2(f̃)

+ ‖(I −Πgrad)q‖L2(f̃)‖n
T
f̃

[βuFE]‖L2(f̃)

))
.

With Theorems 2 and 3 we get

‖u− uFE‖2Ω ≤
∑
K∈K

(
Ccurl

hK
(pK + 1)1−ε ‖z‖H1(ωK)‖f −∇× (α∇× uFE)− βuFE‖L2(K)

+ Cgrad
hK

pK + 1
‖∇q‖L2(ωK)‖div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃curl

√
hK

(pK + 1)
1
2−ε
‖z‖H1(ωK)‖nf̃ × [α∇× uFE]‖L2(f̃)

+ C̃grad

√
hK

pK + 1
‖∇q‖L2(ωK)‖nTf̃ [βuFE]‖L2(f̃)

))

for some constants C̃curl, C̃grad > 0, which are independent of hK and pK by regu-

larity assumptions (2.2) and (2.3). According to Ref. 1, Theorem 2.17, H(curl,K)
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is continuously embedded in H1(K)3 and, thus, it follows

‖u− uFE‖2Ω ≤
∑
K∈K

(
Ccurl

hK
(pK + 1)1−ε ‖z‖H(curl,ωK)‖f −∇× (α∇× uFE)− βuFE‖L2(K)

+ Cgrad
hK

pK + 1
‖∇q‖L2(ωK)‖div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃curl

√
hK

(pK + 1)
1
2−ε
‖z‖H(curl,ωK)‖nf̃ × [α∇× uFE]‖L2(f̃)

+ C̃grad

√
hK

pK + 1
‖∇q‖L2(ωK)‖nTf̃ [βuFE]‖L2(f̃)

))

and with Theorem 1 we obtain

‖u− uFE‖2Ω ≤ CH
∑
K∈K

(
Ccurl

hK
(pK + 1)1−ε ‖f −∇× (α∇× uFE)− βuFE‖L2(K)

+ Cgrad
hK

pK + 1
‖ div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃curl

√
hK

(pK + 1)
1
2−ε
‖nf̃ × [α∇× uFE]‖L2(f̃)

+ C̃grad

√
hK

pK + 1
‖nT

f̃
[βuFE]‖L2(f̃)

))
‖u− uFE‖H(curl,ωK).

Then the Cauchy-Schwarz inequality yields

‖u− uFE‖2Ω ≤ CH
√
C

( ∑
K∈K

(
Ccurl

hK
(pK + 1)1−ε ‖f −∇× (α∇× uFE)− βuFE‖L2(K)

+ Cgrad
hK

pK + 1
‖ div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃curl

√
hK

(pK + 1)
1
2−ε
‖nf̃ × [α∇× uFE]‖L2(f̃)

+ C̃grad

√
hK

pK + 1
‖nT

f̃
[βuFE]‖L2(f̃)

))2) 1
2

‖u− uFE‖H(curl,Ω)

for some constant C > 0 independent of hK and pK and with the ellipticity of the
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bilinear form a (2.8) we obtain

‖u− uFE‖2Ω ≤ C2
H

C

Cell

∑
K∈K

(
Ccurl

hK
(pK + 1)1−ε ‖f −∇× (α∇× uFE)− βuFE‖L2(K)

+ Cgrad
hK

pK + 1
‖ div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃curl

√
hK

(pK + 1)
1
2−ε
‖nf̃ × [α∇× uFE]‖L2(f̃)

+ C̃grad

√
hK

pK + 1
‖nT

f̃
[βuFE]‖L2(f̃)

))2

.

With Minkowski’s inequality this implies

‖u− uFE‖2Ω ≤ C2
H

C

Cell

∑
K∈K

(
Ccurl

hK
(pK + 1)1−ε

(
‖ res ‖L2(K) + ‖Πf − f‖L2(K)

)
+ Cgrad

hK
pK + 1

‖ div(βuFE)‖L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃curl

√
hK

(pK + 1)
1
2−ε
‖nf̃ × [α∇× uFE]‖L2(f̃)

+ C̃grad

√
hK

pK + 1
‖nT

f̃
[βuFE]‖L2(f̃)

))2

and it follows easily

‖u− uFE‖2Ω ≤ 2C2
H

C

Cell

∑
K∈K

(
2C2

curl

h2
K

(pK + 1)2(1−ε)

(
‖ res ‖2L2(K) + ‖Πf − f‖2L2(K)

)
+ C2

grad

h2
K

(pK + 1)2
‖ div(βuFE)‖2L2(K)

+
∑

f̃⊂∂K∩Ω

1

2

(
C̃2

curl

hK
(pK + 1)1−2ε

‖nf̃ × [α∇× uFE]‖2
L2(f̃)

+ C̃2
grad

hK
pK + 1

‖nT
f̃

[βuFE]‖2
L2(f̃)

))
.

Then there exists some constant C1 > 0 independent of h and p such that

‖u− uFE‖2Ω ≤ C1

∑
K∈K

(pK + 1)2ε

(
η2
K +

h2
K

(pK + 1)2
‖Πf − f‖2L2(K)

)
and this concludes the proof.

Next we derive an upper bound for the a posteriori error estimator η in terms

of the energy error ‖u − uFE‖. Therefore we first bound the local residual-based
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terms ηR,K and the local boundary terms ηB,K separately from above. Then we

combine these results to obtain an upper bound for the resdiual-based a posteriori

error estimator (4.1) in terms of the energy error.

Lemma 1. Let uFE ∈ V p(K,Ω) be the solution of discrete problem (2.7) and

u ∈ H0(curl,Ω) be the solution of weak problem (2.6). Further we assume that the

triangulation K of Ω satisfies regularity assumptions (2.2) and (2.3). Let K ∈ K
and ε > 0 be arbitrary. Then there exists some constant CR,K(ε) > 0 independent

of hK and pK such that

η2
R,K ≤ CR,K(ε)

(
(pK + 1)1+ε‖u− uFE‖2K +

h2
K

(pK + 1)1−ε ‖Πf − f‖
2
L2(K)

)
.

Proof. From Corollary 1 we know

‖ res ‖L2(K) ≤ Cpol,2(pK + 1)
1+ε
4

∥∥∥φ 1+ε
4

K res
∥∥∥
L2(K)

(4.4)

for some constant Cpol,2 > 0, which depends only on pα,K and pβ,K , and we observe∥∥∥φ 1+ε
4

K res
∥∥∥2

L2(K)
=

∫
K

φ
1+ε
2

K resT (f−∇×(α∇×uFE)−βuFE)+

∫
K

φ
1+ε
2

K resT (Πf−f).

By setting

vK :=

{
φ

1+ε
2

K res, in K

0, in Ω \K

we obtain∥∥∥φ 1+ε
4

K res
∥∥∥2

L2(K)
=

∫
Ω

vTK(f −∇× (α∇× uFE)− βuFE) +

∫
K

φ
1+ε
2

K resT (Πf − f)

=

∫
Ω

vTK(∇× (α∇× (u− uFE))− β(u− uFE)) +

∫
K

φ
1+ε
2

K resT (Πf − f)

with the strong formulation (2.5). Then integration by parts yields∥∥∥φ 1+ε
4

K res
∥∥∥2

L2(K)
= a(vK , u− uFE) +

∫
K

φ
1+ε
2

K resT (Πf − f)

and with the definition of vK , the continuity of the bilinear form a (2.9) in the first

term and the Cauchy-Schwarz inequality in the second term we get∥∥∥φ 1+ε
4

K res
∥∥∥2

L2(K)
≤ Cc

∥∥∥φ 1+ε
2

K res
∥∥∥
H(curl,K)

‖u−uFE‖H(curl,K)+
∥∥∥φ 1+ε

2

K res
∥∥∥
L2(K)

‖Πf−f‖L2(K).

(4.5)
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Now let us consider the norm
∥∥∥φ 1+ε

2

K res
∥∥∥
H(curl,K)

in more detail. By the definition

of the H(curl)-norm we have∥∥∥φ 1+ε
2

K res
∥∥∥2

H(curl,K)

=
∥∥∥φ 1+ε

2

K res
∥∥∥2

L2(K)
+
∥∥∥∇× (φ 1+ε

2

K res
)∥∥∥2

L2(K)

≤
∥∥∥φ 1+ε

2

K res
∥∥∥2

L2(K)
+

(1 + ε)2

2

∥∥∥φ ε−1
2

K ∇φK × res
∥∥∥2

L2(K)
+ 2

∥∥∥φ 1+ε
2

K ∇× res
∥∥∥2

L2(K)

with Minkowski’s inequality. We note

0 ≤ φK ≤
1

2
(4.6)

and that for all x ∈ K it holds

|∇φK(x)| = 1

hK
|∇dist(x, ∂K)|

≤ Cgradh
−1
K

(4.7)

for some constant Cgrad > 0 independent of hK . Then we obtain easily∥∥∥φ 1+ε
2

K res
∥∥∥2

H(curl,K)
≤ 1

2ε
‖ res ‖2H(curl,K) +

(1 + ε)2C2
grad

2
h−2
K

∥∥∥φ ε−1
2

K res
∥∥∥2

L2(K)

and with Corollary 1 it follows∥∥∥φ 1+ε
2

K res
∥∥∥2

H(curl,K)
≤ (pK + 1)1−ε

h2
K

(
C1(ε)(pK + 1)1+ε +

(1 + ε)2C2
gradC

2
pol,2

2

)
‖ res ‖2L2(K)

for some constant C1(ε) > 0 independent of hK and pK . Putting this into estimate

(4.5) and using (4.6) yields∥∥∥φ 1+ε
4

K res
∥∥∥2

L2(K)

≤

(
Cc

(pK + 1)
1−ε
2

hK

√
C1(ε)(pK + 1)1+ε +

(1 + ε)2C2
gradC

2
pol,2

2
‖u− uFE‖H(curl,K)

+
1

2
1+ε
2

‖Πf − f‖L2(K)

)
‖ res ‖L2(K).

Then by putting this into inequality (4.4) we get

‖ res ‖2L2(K)

≤ C2
pol,2

pK + 1

hK

(
Cc

√
C1(ε)(pK + 1)1+ε +

(1 + ε)2C2
gradC

2
pol,2

2
‖u− uFE‖H(curl,K)

+
1

2
1+ε
2

hK

(pK + 1)
1−ε
2

‖Πf − f‖L2(K)

)
‖ res ‖L2(K)
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and this implies

hK
pK + 1

‖ res ‖L2(K) ≤ C2(ε)

(
(pK + 1)

1+ε
2 ‖u− uFE‖H(curl,K) +

hK

(pK + 1)
1−ε
2

‖Πf − f‖L2(K)

)
(4.8)

for some constant C2(ε) > 0, which is depending solely on ε, pα,K and pβ,K .

Now we consider the second part ‖div(βuFE)‖L2(K) of the residual-based term ηR,K .

From Corollary 1 we know

‖ div(βuFE)‖L2(K) ≤ Cpol,2(pK + 1)
1+ε
4

∥∥∥φ 1+ε
4

K div(βuFE)
∥∥∥
L2(K)

(4.9)

for some constant Cpol,2 > 0, which depends only on pβ,K , and with the divergence

condition (1.3) this implies∥∥∥φ 1+ε
4

K div(βuFE)
∥∥∥2

L2(K)
=

∫
K

div(β(uFE − u))φ
1+ε
2

K div(βuFE)

=

∫
K

(β(u− uFE))T∇
(
φ

1+ε
2

K div(βuFE)
)

by integration by parts. Then the Cauchy-Schwarz inequality gives∥∥∥φ 1+ε
4

K div(βuFE)
∥∥∥2

L2(K)

≤ ‖β(u− uFE)‖L2(K)

∥∥∥∇(φ 1+ε
2

K div(βuFE)
)∥∥∥

L2(K)

≤ ‖β(u− uFE)‖L2(K)

(
1 + ε

2

∥∥∥φ ε−1
2

K ∇φK div(βuFE)
∥∥∥
L2(K)

+
∥∥∥φ 1+ε

2

K ∇ div(βuFE)
∥∥∥
L2(K)

)
with Minkowski’s inequality. With inequalities (4.6) and (4.7) it follows

∥∥∥φ 1+ε
4

K div(βuFE)
∥∥∥2

L2(K)
≤ ‖β(u− uFE)‖L2(K)

(
(1 + ε)Cgrad

2
h−1
K

∥∥∥φ ε−1
2

K div(βuFE)
∥∥∥
L2(K)

+
1

2
1+ε
2

‖∇ div(βuFE)‖L2(K)

)

and with Corollary 1 we get∥∥∥φ 1+ε
4

K div(βuFE)
∥∥∥2

L2(K)

≤ (pK + 1)
1−ε
2

hK

(
(1 + ε)CgradCpol,2

2

+
Cpol,1

2
1+ε
2

(pK + 1)
1+ε
2

)
‖ div(βuFE)‖L2(K)‖β(u− uFE)‖L2(K).
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for some constant Cpol,1 > 0, which depends solely on pβ,K . Putting this into

inequality (4.9) yields

‖div(βuFE)‖2L2(K)

≤ C2
pol,2

pK + 1

hK

(
(1 + ε)CgradCpol,2

2

+
Cpol,1

2
1+ε
2

(pK + 1)
1+ε
2

)
‖ div(βuFE)‖L2(K)‖β(u− uFE)‖L2(K)

Since β is uniformly positive definite (2.4) and the bilinear form a is elliptic (2.8),

this implies

hK
pK + 1

‖div(βuFE)‖L2(K) ≤ C3(ε)(pK + 1)
1+ε
2 ‖u− uFE‖K (4.10)

for some constant C3(ε) > 0 independent of hK and pK . Combining this result with

estimate (4.8) and using the ellipticity of the bilinear form a (2.8) implies

η2
R,K =

h2
K

(pK + 1)2

(
‖ res ‖2L2(K) + ‖ div(βuFE)‖2L2(K)

)
≤ C4(ε)(pK + 1)1+ε‖u− uFE‖2K + 2C2(ε)2 h2

K

(pK + 1)1−ε ‖Πf − f‖
2
L2(K)

for some constant C4(ε) > 0 independent of hK and pK and setting

CR,K(ε) := max
{
C4(ε), 2C2(ε)2

}
concludes the proof.

Now we consider the boundary term ηB,K .

Lemma 2. Let uFE ∈ V p(K,Ω) be the solution of discrete problem (2.7) and

u ∈ H0(curl,Ω) be the solution of weak problem (2.6). Further we assume that the

triangulation K of Ω satisfies regularity assumptions (2.2) and (2.3). Let K ∈ K
and ε > 0 be arbitrary. Then there exists some constant CB,K(ε) > 0 independent

of hK and pK such that

η2
B,K ≤ CB,K(ε)(pK + 1)1+ε

(
(pK + 1)2+ε‖u− uFE‖2ωK

+ h2
K‖Πf − f‖2L2(ωK)

)
.

Proof. Let f̃ ⊂ ∂K ∩ Ω be a face of cell K. Then we know from Corollary 2

that there exists some polynomial extension v ∈ H0(curl, ωf̃ ) such that vf̃
∣∣
f̃

=

φ
1+ε
2

ω
f̃
nf̃ × [α∇× uFE] and∥∥∥nf̃ × [α∇× uFE]

∥∥∥
L2(f̃)

≤ Cpol,5(pf̃ + 1)
1+ε
4

∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥
L2(f̃)

. (4.11)

for some constant Cpol,5 > 0 depending solely on pαK
. We observe∥∥∥φ− 1+ε

4
ω

f̃
vf̃

∥∥∥2

L2(f̃)
=

∫
f̃

(nf̃ × [α∇× uFE])T vf̃
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and w.l.o.g. we may assume ωf̃ = Kl ∪Kr for some Kl,Kr ∈ K. Then we get

∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
=

∫
f̃

(
nf̃ ×

(
(α∇× (u− uFE))

∣∣
Kl
− (α∇× (u− uFE))

∣∣
Kr

))T
vf̃

= a(vf̃ , u− uFE)

−
∫
ω

f̃

vT
f̃

(∇× (α∇× (u− uFE)) + β(u− uFE))

with the integration by parts formula and using the strong formulation (2.5) yields∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
= a(vf̃ , u− uFE)−

∫
ω

f̃

vT
f̃

(f −∇× (α∇× uFE)− βuFE)

= a(vf̃ , u− uFE)−
∫
ω

f̃

vT
f̃

res +

∫
ω

f̃

vT
f̃

(Πf − f)

≤ Cc
∥∥∥vf̃∥∥∥

H(curl,ω
f̃
)
‖u− uFE‖H(curl,ω

f̃
)

+
∥∥∥vf̃∥∥∥

L2(ω
f̃
)

(
‖ res ‖L2(ω

f̃
) + ‖Πf − f‖L2(ω

f̃
)

)
(4.12)

with the continuity of the bilinear form a (2.9) used in the first term and the

Cauchy-Schwarz inequality used in the last two terms. Now let us consider the

norm
∥∥∥vf̃∥∥∥

H(curl,ω
f̃
)

in more detail. By the definition of the H(curl)-norm we have

∥∥∥vf̃∥∥∥2

H(curl,ω
f̃
)

=
∥∥∥vf̃∥∥∥2

L2(ω
f̃
)

+
∥∥∥∇× vf̃∥∥∥2

L2(ω
f̃
)

≤

(
Cpol,4(ε)2hf̃ + Cpol,3(ε)2

(pf̃ + 1)1−ε

hf̃

)∥∥∥φ 1+ε
2

ω
f̃
nf̃ × [α∇× uFE]

∥∥∥2

L2(f̃)

with Corollary 2 and it follows

∥∥∥vf̃∥∥∥2

H(curl,ω
f̃
)
≤ 1

21+ε

(
Cpol,4(ε)2hf̃ + Cpol,3(ε)2

(pf̃ + 1)1−ε

hf̃

)∥∥∥nf̃ × [α∇× uFE]
∥∥∥2

L2(f̃)

from estimate (3.2). Putting this into inequality (4.12) yields∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)

≤ Cc

2
1+ε
2

√
Cpol,4(ε)2hf̃ + Cpol,3(ε)2

(pf̃ + 1)1−ε

hf̃

∥∥∥nf̃ × [α∇× uFE]
∥∥∥
L2(f̃)

‖u− uFE‖H(curl,ω
f̃
)

+
∥∥∥vf̃∥∥∥

L2(ω
f̃
)

(
‖ res ‖L2(ω

f̃
) + ‖Πf − f‖L2(ω

f̃
)

)
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and with Corollary 2 we obtain∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)

≤

(
Cc

2
1+ε
2

√
Cpol,4(ε)2hf̃ + Cpol,3(ε)2

(pf̃ + 1)1−ε

hf̃
‖u− uFE‖H(curl,ω

f̃
)

+ Cpol,4(ε)
√
hf̃

(
‖ res ‖L2(ω

f̃
) + ‖Πf − f‖L2(ω

f̃
)

))∥∥∥nf̃ × [α∇× uFE]
∥∥∥
L2(f̃)

.

Then, by estimate (4.8) and regularity assumptions (2.2) and (2.3) it follows∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)

≤ C1(ε)(pf̃ + 1)
1+ε
2

(
pf̃ + 1√

hf̃

‖u− uFE‖H(curl,ω
f̃
)

+
√
hf̃‖Πf − f‖L2(ω

f̃
)

)∥∥∥nf̃ × [α∇× uFE]
∥∥∥
L2(f̃)

for some constant C1(ε) > 0 independent of hf̃ and pf̃ . Putting this into inequality

(4.11) gives∥∥∥nf̃ × [α∇× uFE]
∥∥∥2

L2(f̃)

≤ C2
pol,5C1(ε)

(pf̃ + 1)1+ε√
hf̃

(
(pf̃ + 1)‖u− uFE‖H(curl,ω

f̃
)

+ hf̃‖Πf − f‖L2(ω
f̃
)

)∥∥∥nf̃ × [α∇× uFE]
∥∥∥
L2(f̃)

and this implies√
hf̃

pf̃ + 1

∥∥∥nf̃ × [α∇× uFE]
∥∥∥
L2(f̃)

≤ C2
pol,5C1(ε)(pf̃ + 1)

1
2 +ε

(
(pf̃ + 1)‖u− uFE‖H(curl,ω

f̃
) + hf̃‖Πf − f‖L2(ω

f̃
)

)
.

(4.13)

Now let us consider the second term ‖nT
f̃
β[uFE ]‖L2(f̃) of ηB,K . From Corollary

2 we know that there exists some polynomial extension vf̃ ∈ H1
0 (ωf̃ ) such that

vf̃
∣∣
f̃

= nT
f̃

[βuFE] and∥∥∥nT
f̃

[βuFE]
∥∥∥
L2(f̃)

≤ Cpol,5(pf̃ + 1)
1+ε
4

∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥
L2(f̃)

. (4.14)
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for some constant Cpol,5 > 0 depending solely on pβ,K . We observe∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
=

∫
f̃

vf̃n
T
f̃

[β(u− uFE)]

and w.l.o.g. we may assume ωf̃ = Kl ∩Kr for some Kl,Kr ∈ K. This yields∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
=

∫
f̃

vf̃n
T
f̃

(
(β(u− uFE))

∣∣
Kl
− (β(u− uFE))

∣∣
Kr

)
=

∫
Ω

(∇vf̃ )Tβ(u− uFE) +

∫
Ω

vf̃ div(β(u− uFE))

with the integration by parts formula and by using the divergence condition (1.3)

and the Cauchy-Schwarz inequality we get∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
≤
∥∥∥∇vf̃∥∥∥

L2(ω
f̃
)
‖β(u−uFE)‖L2(ω

f̃
)+
∥∥∥vf̃∥∥∥

L2(ω
f̃
)
‖div(βuFE)‖L2(ω

f̃
).

Then Corollary 2 implies∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
≤

(
Cpol,3(ε)

√
(pf̃ + 1)1−ε

hf̃
‖β(u− uFE)‖L2(ω

f̃
)

+ Cpol,4(ε)
√
hf̃‖ div(βuFE)‖L2(ω

f̃
)

)∥∥∥φ 1+ε
2

ω
f̃
nT
f̃

[βuFE]
∥∥∥
L2(f̃)

.

It follows with estimates (3.2), (4.10) and regularity assumptions (2.2), (2.3)∥∥∥φ− 1+ε
4

ω
f̃

vf̃

∥∥∥2

L2(f̃)
≤ C2(ε)

2
1+ε
2

(pf̃ + 1)
3+ε
2√

hf̃

‖u− uFE‖ω
f̃

∥∥∥nT
f̃

[βuFE]
∥∥∥
L2(f̃)

for some constant C2(ε) > 0 independent of hf̃ and pf̃ , since β is uniformly positive

definite (2.4) and the bilinear form a is elliptic (2.8). By putting this into inequality

(4.14) we obtain∥∥∥nT
f̃

[βuFE]
∥∥∥2

L2(f̃)
≤
C2(ε)C2

pol,5

2
1+ε
2

(pf̃ + 1)2+ε√
hf̃

‖u− uFE‖ω
f̃

∥∥∥nT
f̃

[βuFE]
∥∥∥
L2(f̃)

and this implies√
hf̃

pf̃ + 1

∥∥∥nT
f̃

[βuFE]
∥∥∥
L2(f̃)

≤
C2(ε)C2

pol,5

2
1+ε
2

(pf̃ + 1)
3
2 +ε‖u− uFE‖ω

f̃
.

Combining this result with (4.13) and summing over all faces f̃ ⊂ ∂K ∩ Ω gives

η2
B,K =

∑
f̃⊂∂K∩Ω

hf̃
2(pf̃ + 1)

(
‖nf̃ × [α∇× uFE ]‖2

L2(f̃)
+ ‖nT

f̃
[βuFE ]‖2

L2(f̃)

)
≤

∑
f̃⊂∂K∩Ω

(pf̃ + 1)1+ε
(
C3(ε)(pf̃ + 1)2+ε‖u− uFE‖2ω

f̃
+ 2C4

pol,5C2(ε)2h2
f̃
‖Πf − f‖2L2(ω

f̃
)

)
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for some constant C3(ε) > 0 independent of hf̃ and pf̃ by the ellipticity of the

bilinear form a (2.8) and with regularity assumptions (2.2) and (2.3) there exists

some constant CB,K(ε) > 0 independent of hf̃ and pf̃ such that

η2
B,K ≤ CB,K(ε)(pK + 1)1+ε

(
(pK + 1)2+ε‖u− uFE‖2ωK

+ h2
K‖Πf − f‖2L2(ωK)

)
.

By combining the results from Lemmas 1 and 2 above we can derive an upper

bound for the residual-based a posteriori error indicator η in terms of the energy

error ‖u− uFE‖.

Theorem 6. Let uFE ∈ V p(K,Ω) be the solution of discrete problem (2.7) and

u ∈ H0(curl,Ω) be the solution of weak problem (2.6). Further we assume that the

triangulation K of Ω satisfies regularity assumptions (2.2) and (2.3). Let ε > 0

be arbitrary. Then there exists some constant C2(ε) > 0 independent of mesh size

vector h and polynomial degree vector p such that

η2 ≤ C2(ε)
∑
K∈K

(pK + 1)3+2ε

(
‖u− uFE‖2ωK

+
h2
K

(pK + 1)2+ε
‖Πf − f‖2L2(ωK)

)
.

Proof. The result follows immediately by summing up the estimates from Lemmas

1 and 2 and using regularity assumptions (2.2) and (2.3).

Remark 3.

(1) The upper bound for error indicator η is dominated by the estimate for the

boundary term ηB,K derived in Lemma 2, because this term cannot be bounded

uniformly in p. However for the residual-based term ηR,K one can derive a

bound, which is uniform in h and p, by inserting a smoothing function – similar

to the one defined in Corollary 2 – into the error estimator η (c.f. Ref. 20, where

this technique was used for the Poisson problem, and Ref. 17, where it was used

in a discontinuous Galerkin framework). But, since the exact evaluation of such

a smoothing function for nonaffine mappings FK : K̂ → K is not an easy task,

we do not want to include this term into our estimator.

(2) The upper bound for the a posteriori error estimator (4.1) cannot be determined

fully cell-wise local. This is due to the way we applied Lemmata 1 and 2. There

we had to extend the cell boundary function defined on the face to a polynomial,

which is defined on a patch including the neighboring cells of the face.

(3) Note that in Theorem 6 we did not require the extra regularity u ∈ Hr(curl,Ω),

r > ε + 1
2 for ε > 0, instead of u ∈ H(curl,Ω) for the derivation of the upper

bound. This is due to the fact that we did not use the H(curl)-conforming

interpolation operator Πcurl in its proof.

With Theorems 5 and 6 we have shown that there exist upper and lower bounds

of the estimated error η in terms of the energy error ‖u − uFE‖. Thus the error

indicator can be considered to be hp-efficient.
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Fig. 2. Example 1: Error reduction of the exact and the estimated error. Left: β = 10−2. Right:

β = 102.

5. Numerical Examples

In this section we will apply the residual-based a posteriori error estimator from

Section 4 to some numerical examples. Due to the lack of examples for matrix-valued

coefficients α and β with known analytic solutions we consider only scalar-valued

coefficients here. First we consider some academic problems with smooth solutions

to investigate, whether the error indicator is robust with respect to changes in the

coefficients α and β. Then we go ahead to a more realistic example, where β is

discontinuous. In the fourth example we consider the special case of a problem,

which violates assumption (1.3). To conclude this section we consider a problem

admitting a singular solution and thus a real hp-adaptive grid should pay off. All

computations are performed with the finite element library deal.II2,3.

5.1. Example 1

In our first experiment we consider a rather simple case, where the coefficients α

and β are constant. We choose α := 1 and β ∈ {10−2, 102}. The domain is set to

Ω := (0, 1)3 and the analytic solution is given by

u(x) :=

 0

0

sin(πx1)

 .

Then the right-hand side reads f = (π2 + β)u. We start with a coarse grid of 8

hexahedrals of equal size and polynomial degree pK = 0, K ∈ K, on all cells. Since

the solution is smooth and does not possess any local features to detect we perform

global p-refinements only. In Figure 2 we show the resulting behaviour of the true

energy error and the estimated error in log10-log10-scale.

We do not observe much difference in the behaviour of the error estimator for

different values of β and thus can expect some robustness with respect to β in
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Fig. 3. Error reduction of the exact and the estimated error. Left: Example 2. Right: Example 3.

the case f ∼ β. This is an important feature of an error indicator for Maxwell’s

equations, because in time-dependent problems β gets scaled by the length of the

time-step, and this should not effect the performance of the estimator too much.

5.2. Example 2

In this example we choose

α(x) := sin(2πx1) sin(2πx2) sin(2πx3) + 1.5

and β := 1 is kept constant. The domain Ω and the analytic solution u are the

same as in Example 1. As above we only perform global p-refinement. The results

are shown in Figure 3 on the left-hand side.

Also in this situation the error estimator seems to perform well. The estimated

error approaches the exact error as the polynomial degree increases.

5.3. Example 3

In this experiment we consider a more realistic example than the previous ones. We

set α := 1 and choose

β(x) :=

{
1 , if max{|x1 − 0.5|, |x2 − 0.5|, |x3 − 0.5|} ≤ 0.25

0 , else

to be discontinuous. As already mentioned in the introduction this is a common

situation in realistic applications, where we have a conduction region (β = 1) and

an outer space (β = 0). The domain Ω and the smooth analytic solution u are

carried over from Example 1 again. Due to the discontinuity of β inside the cells of

our rather coarse grid consisting of only 8 hexahedrals we have to use high-order

quadrature rules to approximate the integrals sufficiently accurate. However we are

still able to benefit from the smoothness of the analytical solution and can peform
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global p-refinement only. The error curves are shown in Figure 3 on the right-hand

side. Again the error estimator shows a satisfying performance.

5.4. Example 4

Again we choose α := 1, but this time

β(x) := sin(2πx1) sin(2πx2) sin(2πx3) + 1.5.

Again, the domain Ω and the analytic solution u are the same as in Example 1. We

observe that this special choice of β and u does not satisfy assumption (1.3), since

div(βu) = 2π sin(2πx1) sin(πx1) sin(2πx2) cos(2πx3) 6= 0

and thus this example actually is out of the scope of this paper. Therefore we cannot

hope for a good performance of the originally presented a posteriori error estimator

(4.1). This can also be seen in Ref. 4, Table 5, where the ratio

ε :=
η

‖u− uFE‖
for a similar h-adaptive a posteriori error estimator does not approach a constant

value contrary to the statement of the authors, but increases dramatically. However

a simple modification of the indicator gives quite satisfactory numerical results also

for this example. Therefore we change the second part of the residual-based term

ηR,K to

‖ div(β(u− uFE))‖L2(K).

This modification takes into account the non-vanishing divergence div(βu) and,

hence, also this term should converge to zero, which would not be the case for the

one proposed in (4.2). As in the previous examples we carry out global p-refinement

only. The numerical results are plotted in Figure 4 on the left-hand side and show

a satisfactory performance of the modified a posteriori error estimator.

5.5. Example 5

In the last example we consider a problem with a singular solution. Let Ω :=

(−1, 1)3 \ ([0, 1)× (−1, 0]× (−1, 1)), α := β := 1 and

u(r, φ, x3) :=
2

3
r−

1
3


− sin

(
φ
3

)
cos
(
φ
3

)
0

 ,

where (r, φ, z) ∈ R+× [0, 2π)×R denote the cylindrical coordinates. Thus u has an

edge singularity along the reentrant edge at the axis x3 = 0. The right-hand side

function f equals u. Since u is constant along the x3-axis we construct a problem-

adapted mesh by the following refinement strategy: All cells, which are close to

the singularity are bisected, whereas on all other cells the polynomial degree is
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Fig. 4. Left: Example 4: Error reduction of the exact and the estimated error. Right: Example 5:

Error reduction of the exact and the estimated error.

increased. To obtain an adaptively refined grid we select a subset of cells to be

refined in every refinement step by the following marking strategy from Ref. 13

with θ = 0.3. Find a minimal set A ⊂ K such that∑
K∈A

η2
K ≥ θ2

∑
K∈K

η2
K

and refine all cells contained in A according to the foregoing rule. We start our

computations on a mesh consisting of 48 equally-sized hexahedrals and polynomial

degree vector p = 0. The final grid is shown in Figure 5. The performance of the

error estimator can be seen in Figure 4 on the right hand side. We observe that

the varying mesh sizes hK and different polynomial degrees pK , K ∈ K, over the

triangulation do not have a big influence on the performance of the error indicator.

Again the behaviour of the exact energy error can be seen clearly in the curve of

the estimated error.

6. Conclusion

We have derived a residual-based a posteriori error estimator for the finite element

solution of Maxwell’s equations in the electric field formulation. Moreover we have

proven its hp-efficiency and presented a set of testing examples to investigate the

behaviour of the error indicator in a broad range of applications.
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