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1 Motivation

In various scientific disciplines data gets modeled as networks which de-
scribe the entities of some system and one or more relations between them.
Many facts can naturally be described with this kind of model: Students
and their friendships, countries and their trade relations, proteins and
their interactions. Recently, huge sources of linked data originate from
the so-called Web 2.0. The bulk of user-generated content on the World
Wide Web (WWW) usually consists of text, picture or video contributions
that are linked to their contributor and to others who e.g. bookmarked
it. Articles on the online encyclopedia Wikipedia link to related articles,
users of the social network site Facebook link e.g. to their friends, schools
and favored movies, and via backlinks different blogs are interconnected.
Another source of linked data is the semantic web where e.g. personal pro-
file documents according to the Friend-of-a-Friend (FOAF) specification
create a network of people, organizations and projects. To make use of
the vast amount of linked data, algorithms are necessary that scale to the
large size of these datasets. If for example social scientists want to analyze
user behavior on social media sites they need network analysis tools that
are capable of processing networks of at least hundreds of thousands of ac-
tors. Tools designed in the age of survey-originating data, where networks
usually have at most a few hundred actors, are not suitable to analyze the
much larger communities on the web.

In many settings we observe that the connections between entities form
structures. Email networks will show dense groups of people which might
be friends or colleagues and a Wikipedia cross reference network shows
densely connected groups of articles that possibly belong to the same do-
main. Clustering networks means to identify these natural groups or com-
munities. Cluster analysis gives insights into the structures of networks
by identifying groups of closely related entities. Thus, cluster analysis re-
duces the complexity of a network by creating a smaller representation of
a large graph that has the same structure of modules. Overall, clustering
can be regarded as a general and widely-applicable analysis method. Be-
cause of its numerous fields of application, research on clustering methods
is conducted in many fields of science, e.g. statistics, mathematics, oper-
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ations research, physics, computational biology, sociology and computer
science.

Many graph clustering algorithms require the knowledge of the number
of clusters in advance. Other clustering methods generate a hierarchi-
cal structure of clusters and sub-clusters. Newman and Girvan [NGO04]
introduced the modularity function as a measure for the quality of a clus-
tering. This function measures how different the cluster densities are
from the densities of the same clusters when the edges of the graph are
randomly rewired while maintaining the same degree distribution. Mod-
ularity clustering has the advantage that the measure can be used as an
objective function that can be maximized. Modularity became popular
very quickly as the measure seems to be easy to understand and its appli-
cability for clustering can been analyzed independently from the analysis
of algorithms that maximize it. Many researcher with experience in algo-
rithm design could work on improved modularity maximization algorithms
without the need to verify whether the results represent useful clusterings.

Maximizing the modularity of a graph clustering computationally is a
challenging task. The complexity of finding a clustering with maximal
modularity is in the class of NP-hard problems [BDG"08]. This makes it
impossible to compute the optimal solution for larger networks in reason-
able time. Even most of the so far proposed heuristics are not capable of
processing very large datasets with millions of vertices and edges in rea-
sonable time. This thesis will deal with the problem of developing a fast
and scalable algorithm for finding a high modular clustering for very large
graphs. Scalability will be considered in terms of time complexity as well
as in terms of memory complexity. In this thesis clustering is primarily
considered as a large combinatorial optimization problem. The applica-
bility of specific clustering algorithms for solving scientific or industrial
problems is only a minor aspect of this work.

The need to be able to analyze very large networks arises from the size of
networks that have to be analyzed for current and upcoming services and
systems. For example, the sizes of telephone call networks or friendship
networks from social network site, whose cluster analysis is e.g. required
for emergency assistance services as discussed in [GSOS10, OSGS10], will
probably consist of at least tens of millions of subscribers as graph ver-
tices and billions of calls indicating the edges. So, scalability is a major
issue for algorithm design. Although a lot of algorithms have been pre-
sented in recent years, only a very few of them are capable of processing
huge networks. An algorithm that is fast and memory efficient as well as
capable of finding high quality clusters was missing. In this thesis such



algorithms will be presented. Furthermore, the results of the analysis of
these algorithms and the underlying heuristic maximization strategies for
the modularity measure are believed to be useful for the development of
other optimization algorithms for combinatorial problems.

This thesis is organized as follows. In Chapter 2 a general introduction
to graph clustering will be given. Then, the class of modularity-based
graph clustering algorithms will be discussed in Chapter 3. The main
contribution of this thesis, two innovative randomized greedy modularity
clustering algorithms, will be introduced in Chapter 4. Finally, Chapter
5 provides a summary and an outlook.

Note on self-citations

Parts of the work described in this thesis have been previously published.
The RG algorithm has been presented first at the 4th ACM/SIGKDD
Workshop on Social Network Mining and Analysis [OGSS10]. The ex-
tension of RG, RG+, has been presented first at the 2010 IEEE Work-
shop on Optimization Based Methods for Emerging Data Mining Prob-
lems [OGS10]. Finally, the analysis of merger processes of agglomerative
hierarchical modularity clustering algorithms has been presented at the
34th Annual Conference of the German Classification Society [OGS11].
Text, tables, figures and algorithms have been partly adopted without
modifications and partly with modifications. Especially Chapter 4 on the
algorithms RG and RG+ heavily draws from the previous publications.

The reused parts of the previously mentioned publications are under
the copyright of the Association for Computing Machinery, the Institute
of Electrical and Electronics Engineers, respectively Springer-Verlag and
are used with the permissions of the respective copyright holders.






2 Introduction to Graph
Clustering

This chapter provides an overview of literature on data clustering in gen-
eral and graph clustering in particular. The objective of this chapter is
to introduce the preliminaries for the in-depth discussion of modularity
maximization algorithms in Chapter 3.

Clustering will be introduced as a technique to group similar patterns
(objects, data points). The result of a clustering technique will also be
denoted as a clustering. A clustering where each pattern belongs to exactly
one group will be denoted as a partition. As will be discussed later on,
clustering is a generic technique that can be employed to solve various
problems. Given that clustering techniques have now a history of over one
hundred years (compare Section 2.1) and gained increasing popularity, it
is hard to give an overview that truly respects the many different views
various scientific fields developed. As the major contribution of this thesis
is of algorithmic nature, the view on clustering may be biased from that
point of view.

The classic clustering techniques like linkage-based algorithms [Sneb7,
SS63, MS57] and k-means [Mac67] have been developed to group data
points in an Euclidean space. In the Euclidean space, each data point is
given by its coordinates and the distance measure is defined between the
points in space. In a graph, each data point (vertex) is characterized just
by the links to its neighbors, the coordinates in space are not given.

Graph clustering is getting increasing attention. The availability of very
large sets of network data fostered the research on clustering techniques
and their application to different types of problems. The identification
of matural groups’ helps to understand the structure of connections be-
tween the entities of a network. In addition, services like recommendation
systems can be built on the basis of this technology.

Work in the field of graph clustering is conducted and discussed in sev-
eral scientific communities: the complex networks community (see e.g.
Proceedings of the National Academy of Sciences of the United States of
America, Physical Review E by American Physical Society, New Journal of
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Physics by Institute of Physics and Deutsche Physikalische Gesellschaft),
the data mining community [RZ07] (see e.g. ACM SIGKDD Conference
on Knowledge Discovery and Data Mining and IEEFE International Con-
ference on Data Mining series) and the social networks community (see
e.g. Social Networks by Springer). The origin of the quality measure mod-
ularity and most approaches for this measure’s optimization come from
complex networks community. This community mostly refers to clustering
as community detection.

As the application of graph clustering is not limited to the mentioned
communities, the research on this topic is even more wide-spread. In
bioinformatics, cluster analysis is used for classification of gene expression
networks [XOXO02] and protein interaction networks [BHO03]. In logistics,
for example methods to solve the uncapacitated facility location problem
are based on graph clustering [CS03]. Overviews of applications of cluster-
ing techniques provide for example Schaeffer [Sch07] and Xu and Wunsch
[XWO05].

2.1 Clustering

A good generic definition of clustering (also referred to as cluster analysis)
is provided by Jain et al. [JMF99, p. 1]: “Clustering is the unsupervised
classification of patterns (observations, data items or feature vectors) into
groups (clusters)”. Independently of what the patterns actually are, those
patterns that are similar with regards to some measure, should be classified
into a common group and those patterns that are not similar should be
classified into different groups.

Although some authors use a different denotation and speak e.g. of 'su-
pervised clustering’, in this thesis clustering is regarded, especially in dis-
tinction to supervised classification approaches, as a method that searches
for groups of similar patterns without additional information like already
partly grouped patterns.

Clustering data with help of computers started with Sneath’s [Sne57]
seminal work in 1957. However, first numerical classification methods have
been described by Czekanowski [Cze09] in 1909 and by Kulczynski [Kul27]
in 1927 (see [LL95]). A complete historical overview of (graph) clustering
is out of the scope of this thesis. A good summary of the rich and diverse
history of classification is provided by [JMF99]. Porter et al. [POMO09]
provide a short historical overview on community identification in social
networks, the term used in the social sciences for clustering graph data,
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from a perspective of that field.

The definition of clustering from above leads to the first problems. First,
clustering requires an explicit or implicit similarity measure, second, a
rule is required to decide if the similarity is strong enough to classify
two patterns into the same group. While in some settings the (desired)
number of clusters is known, in other settings the number of clusters has
to be determined along with the assignment of patterns into groups.

2.1.1 Clustering with Distance Measures

Classic data clustering works with patterns that can be represented as
points in an Euclidean space [JMF99]. The i-th pattern is represented by
a d-dimensional feature vector z; = (z;1,- -+ ,2;4). The distance d(z;, z;)
between the patterns z; and z; is used for the determination of clusters.
Problems of this kind of clustering are e.g. how to represent a pattern in
the Euclidean space and which measure to use to determine the distances.
An example for a clustering in a two-dimensional space is shown in Figure
2.1. A small example shows the problem of determining distances. Let us
assume each data point represents a product, property 1 is the product
price in Euro, property 2 is the number of sold units and the distance
measure is the Euclidean distance. What would happen when the price is
not given in Euro but in British Pound or U.S. Dollar? As only one axis
would be scaled a non-linear transformation of the distances would occur.
That could e.g. lead to a situation where points that previously would
have been assigned to the same cluster are now in different clusters.

This example is a warning of oversimplified treatment of cluster analysis
and its results. But assumed that the defined distances and the scaling
of the dimensions of the feature space provide a good measure for the
(dis-) similarity of patterns, clustering algorithms can find useful groups.
As examples for clustering algorithms, the two well-known representatives
k-means and DBSCAN will be introduced in the following.

One of the most popular clustering techniques is k-means [Mac67]. For
a given constant k, k-means tries to identify k clusters in such a way that
the sum of the squared distances of all data points to their respective
cluster centroid is minimal. Here, the cluster centroid is defined as the
arithmetic mean of each data point of the cluster for all dimensions. Let
X = {x1,...,z,} be a set of data points, the k-means problem is to find
a clustering {C1,...,Cx}, C; C X, U,C; = X so that the sum of squared
distances distances between the data points x; and the cluster centroid ¢
is minimal. The function that has to be minimized is
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Figure 2.1: Example of a clustering of points in a two-dimensional space.
The dashed ellipses indicate clusters.

d= Z Z d(x;, ¢,)?. (2.1)

t x;€Ct

Finding the partition with the minimal value of d is NP-hard [ADHP09].
The most widely used heuristic for this problem is the one developed
by Llyod [Llo82], which in turn has been optimized in several ways (e.g.
[KMNT02]). K-means partitions the set of data points into non-overlapping
clusters. The algorithm belongs to the class of distance-based algorithms
as the distance is the only factor taken into account.

Another well-known clustering algorithm is DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) by Ester et al. [EKSX96].
As the algorithm’s name says this algorithm searches for dense regions of
the data space and so belongs to the class of density-based algorithms.
Unlike k-means DBSCAN does not assign every data point to a cluster
but marks those points which are not in a dense region as noise. Another
difference is that the number of clusters does not need to be known in
advance.

DBSCAN clusters are defined as follows. Let D be a set of data
points and d(p,q) be the distance between the points p,q € D. The
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e-neighborhood N(p) = {q¢ € D|d(p,q) < €} of a point p are all other
points in the maximal distance of €. A point p is directly density-reachable
from a point g (ddry(p)) if p is in ¢’s e-neighborhood and the size of ¢’s
e-neighborhood is at least MinPts, where MinPts is a parameter:

ddry(p) & p € N(q) AN |Nc(q)| > MinPts (2.2)

If p is not directly density-reachable from ¢ but there is a chain of
other directly density-reachable points connecting them, then p and ¢ are
density-reachable (denoted as dr,(p)). Furthermore, two points p and ¢ are
density-connected (denoted as de(p, q)) if there is a point o so that both
are density-reachable from o. A cluster is then defined as a non-empty
subset C' of D which follows two conditions:

1. Maximality:

Vp,ge D:peCAdry(q) =qeC (2.3)

2. Connectivity:

Vp,q € C :dc(p, q) (2.4)

The procedure of DBSCAN is quite simple. The algorithm visits every
point p € D. If p has not been visited before, it either marks p as noise
(if |Ne(p)| < MinPts) or creates a new cluster around p and adds all
points in p’s neighborhood to the new cluster (if they are not already part
of another cluster). With each visited point p’ in p’s neighborhood, the
neighborhood of p gets expanded by the neighborhood of p’ when p’ is
directly density-reachable from p.

K-means and DBSCAN are only two examples of algorithms for cluster-
ing with a distance measure. A complete overview of cluster algorithms
for the Euclidean space and related aspects of cluster analysis is out of
the scope of this thesis. Several good introductory works provide this
overview - see for example [JMF99].

2.2 Graph Clustering

The second large sub-domain of clustering is the clustering of graphs.
Here, clustering means the identification of dense subgraphs that are only
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Figure 2.2: Example of a graph clustering. Vertex shapes represent
clusters.

sparsely interconnected with each other. Graph clustering differs from
distance-based clustering as the distance is not known for all pairs of
patterns. Instead, for graph clustering the proximity is given only for
some pairs of patterns. An example of a graph clustering is given in
Figure 2.2.

Usually, graph clustering means the clustering of vertices but lately it
has been argued that for some types of graphs the edges build natural
groups rather than the vertices [ABL10]. But there is a duality between
vertices and edges, too. Graphs can be transformed into dual graphs by
creating a vertex for every edge from the dual graph and creating links
between all new vertices when two edges in the dual graph are connected
to the same vertex. In this thesis, all considerations are restricted to the
clustering of vertices. Next, the graph and graph clustering terminology
for the rest of this thesis will be introduced. Afterwards, an overview of
algorithms for graph clustering will be given.

For further reading two recent and very comprehensive review articles
on graph clustering published by Schaeffer [Sch07] and Fortunato [For10]
are highly recommended. Both give an overview on graph clustering tech-
niques as well as on related topics like evaluating and benchmarking clus-
tering methods and applications of graph clustering. Another good intro-
ductory work has been written by Gaertler [Gae05].

10



2.2 Graph Clustering

2.2.1 Terminology Graphs

In the following paragraphs the most important graph terminology for this
thesis will be introduced.

Graph A graph in terms of graph theory is a tuple G = (V, E) with
V ={v1,...,u,} the set of vertices and E = {ey, ..., e,,} the set of edges.
Accordingly, n = |V is the number of vertices of G and m = |E| the
number of edges.

Undirected and directed edges A directed graph is a graph where the
edges have directions, i.e. traversing an edge is only possible in one di-
rection. In contrast the undirected edges of undirected graphs can be
traversed in both directions.

An undirected edge is denoted by {v,,v,} and a directed edge (arc) by
(vg,vy) With v, v, € V.

Vertex degree For undirected graphs, the number of edges a vertex is
connected to is called the vertex degree: d(v,) = |[{{vs, vy} € E,v, € V}|.
In directed graphs, each vertex has an indegree d7' = [{(vy,v,) €
E,v, € V}| and an outdegree d3"* = |{(vs,vy) € E,v, € V}| which
describe the number of edges that end, respectively, start at vertex v,.

Neighbor The neighbors of a vertex v, are all other vertices that are
connected to v, by an edge. That means, for undirected graphs the neigh-
bors of vertex v, are N(v,) = {v, € V|{vs,v,} € E} and for directed
graphs the neighbors are N(v,) = {v, € V|(vs,vy) € EV (vy,v,) € E}.

Successor and predecessor In directed graphs the set of neighbors can
be divided into two subsets: the successors and the predecessors. The
successors of vy, Succ(v,y) = {v, € V|(vs,v,) € E}, are all vertices where
an edge starting in v, ends. Correspondingly, the predecessors of v,,
Pred(v,) = {v, € V|(vy,v,) € E}, are all vertices where an edge ending
in v, starts.

Weighted graphs A graph is called weighted when there are weights
assigned to the edges. That means, the graph is a triple G = (V, E,w)
with the weight function w : E — X and X is an arbitrary number system,

11
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e.g. real values R. If no weights are attached to the edges a graph is called
unweighted.

Loop An edge who'’s endpoints are both attached to the same vertex is
called a loop: {vg, v, }.

Simple graph A graph is called simple when it is undirected, loop-free
and there is at most one edge between any distinct pair of edges.

Path A path is a series of vertices which are connected by edges. Two
vertices vy, v, € V are connected by a path when there is a series of vertices
V1, V2., V1,0 with Vi € 1,00t — 1 : {v,,v,41} € E. The number of
vertices of a path is called the length of the path.

In the case of directed graphs, two vertices vy,v; € V are connected
by a path when there is a series of vertices vy, vo,...,v;_1,v; with Vi €
L...t—1:(vg,vp41) € E.

Shortest path The shortest path between a pair of vertices is that path
between them with the minimum number of vertices in between. Of
course, there can be several shortest paths between two vertices. In the
following the length of the shortest path between two vertices vy, vy € V'
is denoted by sp(vy, v2).

Connected graph An undirected graph is called connected when there
is a path between any pair of vertices. A directed graph is called weakly
connected when there is a path between any pair of vertices when the edge
directions are disregarded. A directed graph is called strongly connected
when there is a path between any pair of vertices while taking the edge
directions into account.

Diameter The diameter of a graph is the maximal length of any shortest
path between two vertices of the network: diam(G) = max,, ,,ev 5p(vs, vy).

Clique A clique is a complete subgraph, i.e. a set of vertices with an
edge between every pair of vertices. A maximal clique is a clique that is
not part of a larger clique.

12
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Density The term density refers to the ratio of edges of a graph to the
maximal number of possible edges. The number of edges of a dense graph
is near to the maximum number of edges while the number of edges in a
sparse graph is far below this number. The maximum number of edges in
a simple graph with n vertices and m edges is n(n — 1)/2 and therefore
the density D*? is

2m

Dud - -
n(n —1)

(2.5)
In a directed graph without loops or multiple edges, the maximum num-

ber of edges is twice the number of the undirected variant as edges can go
in both directions. Accordingly, the density D? of directed graphs is

m

D:m.

(2.6)

2.2.2 Terminology Graph Clustering

The following terms related to graph clustering will be used in this thesis:

Non-overlapping clustering A clustering of a graph is the assignment of
vertices to groups of vertices called clusters. A non-overlapping clustering
C ={C,......,Ck} is a partition of the vertices of a graph G = (V, E)
into groups C; C V so that Vi, j,i # j: C;NC; =0 and U;C; = V.

Overlapping clustering An overlapping clustering C° = {CY,......,C¢}
is a set of clusters Cf C V with U;CY =V and Ji,5 : CY N CY # 0.

Cluster size The cluster size denotes the number of vertices a cluster
consists of: size of cluster C; := |C}|.

Singleton A cluster of size 1, i.e. a cluster that consists of exactly one
vertex, is called singleton or singleton cluster.

Intra-cluster edge An edge {v,,v,} is called intra-cluster edge, if it
connects vertices within the same cluster: v, € C;,v, € C; = i = j. The
number of intra-cluster edges of a vertex v, € C; is denoted as di* (C;).

13
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Figure 2.3: Example of a dendrogram

Inter-cluster edge An edge {v,,v,} is called inter-cluster edge, if it con-
nects vertices from different clusters v, € Cj,v, € C; = @ # j. The
number of inter-cluster edges of a vertex v, € C; is denoted as d3"*(C;).

Dendrogram A dendrogram is a figure showing the decomposition of a
hierarchical cluster structure with clusters and subclusters. An example
of a dendrogram is shown in Figure 2.3.

2.2.3 Graph Properties

Graphs as the representations of networks can be described by various
structural properties. The two basic properties diameter and density have
already been introduced in Section 2.2.1. In this section, the properties
degree distribution, average path length and transitivity will be discussed.
Natural, self-organized networks have characteristic values of these prop-
erties. As we will discuss later on in Chapter 4, the structural properties
of graphs are important for the design of graph clustering algorithms.

The entities and links of a network can basically arise from two different
sources. First, a network can result from a central planning process. For
example, a country’s railroad system is (ideally) the result of a route
optimization process. An employee of the railroad company takes factors
like travel demand and geography into account when deciding which cities
should be connected. In contrast to this central planning process, the
friendship network of a social network site is created decentralized and
self-organized. The decision about the creation of a link is made by the
involved persons individually.

The properties of natural networks have been the subject of intensive re-
search. Albert and Barabési [AB02], Newman [New(03] as well as Leskovec
et al. [LLDMOS8] published comprehensive reviews on the structure of nat-
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ural networks. Natural networks usually evolve over time and the static
networks that get analyzed are snapshots of the entities and their con-
nections at some point in time. Some properties of natural networks are
a result of an evolutionary generation process. For example, when two
persons A and B are friends, and B is also a friend of C, it is more likely
that A and C become friends in the future than in a situation where they
do not have a common friend B.

In the following, some important properties of natural networks will be
discussed.

2.2.3.1 Degree Distribution

The degree distribution in simple undirected networks is the distribution
of the number of neighbors of a vertex. In directed graphs, each vertex
has an indegree and an outdegree. Accordingly, directed graphs have an
indegree distribution and an outdegree distribution.

The following description of the degree distribution is for undirected
graphs but applies analogous to indegree and outdegree distributions of
directed graphs. Let p; be the fraction of vertices with a degree k, i.e. py is
the probability that a randomly picked vertex has degree k. The analysis
of many natural networks revealed that they usually have a power-law
degree distribution [AB02]. That means, that there is a « so that

Pr ~ k™. (27)

Newman [New03] reports a values between 2 and 3 for various types of
networks. But not all networks have a power-law degree distribution. In
each network category (social, information, technological and biological),
Newman found some networks that have a power-law degree distribution
and some that do not have a power-law degree distribution. Among the
analyzed social networks are networks like a film actors network (links
between actors that have appeared in the same movie), which has a power-
law degree distribution and networks like co-authorship networks (links
between researchers that have co-authored a paper), which do not have
this kind of degree distribution. But even those natural networks without
a power-law distribution have still a highly skewed degree distribution
with predominantly low-degree vertices and few high-degree vertices.
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2.2.3.2 Average Path Length

While the diameter is the maximal length of the shortest path between
any pair of vertices the average path length

(@)=~ S spluvy). (28)

TL(’I’L - 1)/2 Vg, Uy EV,i>j

is the average length of the shortest paths connecting any two vertices in
V.

The low average path length in real-world social networks is called the
small-world phenomenon. This term goes back to the famous experiment
of Milgram [Mil67] in the 1960s. Milgram asked participants of his ex-
periment to forward letters to a designated target person by sending the
letter to somebody they know and who is likely to be “closer” to the tar-
get person. The result of the experiment was that the letter reached the
target in only about six steps.

This property of a low average path length despite of a huge number of
vertices can be found in many natural graphs. And as every vertex is kind
of nearby from any position in the graph, cluster analysis can not easily
separate different regions. Leskovec et al. [LLDMOS] report for various
social networks average path lengths between about 4 and 8.

The small-world phenomenon is popularly known by two “numbers”:
the Erdés number and the Bacon number. The Erdos number gives the
co-authoring distance to the mathematician Paul Erdés and the Bacon
number gives the co-appearing distance to the movie actor Kevin Bacon.

2.2.3.3 Transitivity

The transitivity or clustering effect is a property of many natural graphs
that is most comprehensibly described by the example of friendship: When
Alice is friend with Bob and Charly, there is a high probability that Bob
and Charly are friends as well.

The clustering coefficient measures how densely connected the neighbor-
hoods of the graph’s vertices are. Different formulations for the clustering
coefficient CC of a graph G = (V, E) have been proposed [New03]. The
global clustering coefficient compares the total number of triangles in the
graph to the total number of connected triples of vertices:

3 - number of triangles in G

CC,(G) = (2.9)

number of connected triples in G
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Figure 2.4: The vertex triples {vy, v, v3}, {v1,v3,v4} and {vy,v3,v4} are
connected triples, but only the first triple is also a triangle.

In effect, the clustering effect measures the ratio of the number of triple
where all three possible edges exist to the number of triples where at least
two edges exist (compare Figure 2.4). Each triangle (v, vy, vs) with the
edges {vy, vy}, {vy, vp} and {vg, v, } has to be counted three times because
it belongs to three connected triples (v,, vy, vy ), one with the edges {v,, v, }
and {v,,v;}, one with the edges {v,,v;} and {v;,v,}, and one with the
edges {vg, v, } and {v,, v, }.

In contrast to the global variant, the local variant of the clustering
coefficient first normalizes the number of triangles connected to a vertex
with the number of triples connected to the vertex and aggregates the
results afterwards:

1 number of triangles connected to v,
coe) =~ 5

- (2.10)

= number of triples connected to v,
Vx
The transitivity (measured by the local clustering coefficient) is very

high for collaboration networks (between about 0.6 and 0.8) and lower for
contact-/friendship networks (between about 0.1 and 0.3) [LLDMOS].

2.2.4 Graph Clusters as Cohesive Subgroups

At the beginning of Chapter 2, clustering has been defined as the classifi-
cation of patterns into groups where similar patterns should be classified
into the same group and non-similar patterns should be classified into
different groups. For a graph clustering this generic definition can be
specialized to: a cluster should be a subgroup of vertices that is densely
connected inside and weakly connected to the rest of the graph.
Wasserman and Faust [WF94] list several notions of cohesive subgroups.
The most tightly interconnected subgroup is a clique where each vertex in
the subgroup is connected with all other vertices in the subgroup. A less
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strict definition than the clique is a k-plex, where all vertices in a subgroup
of size s have to be connected to at least s — k other subgroup members.
Further definitions are based on the nodal-degree, the reachability or the
diameter.

But there are other definitions, too. Radicchi et al. [RCCT04] define a
community in the strong sense as a cluster C; C V where every vertex in
that cluster has more intra-cluster edges than inter-cluster edges:

dzz (Cz) > dg:t(Cl),VUm € Cz (211)

Furthermore, they define a community in the weak sense as a cluster
where the total number of intra-cluster edges exceeds the total number of
inter-cluster edges:

D dr(C) > Y dr(C) (2.12)

UIECZ' UZECZ'

Zhang et al. [ZWWT09] added the definition of clusters in the most
weak sense to this classification. A cluster in the most weak sense is a
cluster where twice the number of intra-cluster edges is never less than
the number of edges joining the cluster to any other cluster:

2.3 di(Cy) > Y ARG (2.13)

Vg ECZ' Vg €C¢

From the lack of a clear definition of what a cohesive subgroup or com-
munity is follows the lack of the generally accepted definition of the quality
of a clustering (as will be discussed later in Section 2.2.7).

2.2.5 Cluster Hierarchy

The generic cluster definition demands intra-cluster density and inter-
cluster sparsity. If a set of patterns has been clustered in such a way, one
might experience that the patterns inside one group are similar in relation
to their degree of dissimilarity to the other groups of patterns, but still
not all patterns within one group are equally similar to each other. Then,
groups of patterns can be divided into smaller subgroups, where the degree
of similarity of the patterns of one subgroup is even higher than in the
super-group.

That many natural networks consist of communities on different levels
of granularity becomes obvious when thinking of the usual communication
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structures most people will experience every day. For example, think of a
communication network in an organization. The members of a team will
probably interact very frequently. The members of different teams of one
department will probably communicate less frequently. But the level of
communication of members of different departments will be even lower.

An early discussion of the hierarchy of systems and subsytems is Si-
mon’s seminal work on complex systems from 1962 [Sim62]. Lately, this
topic got increasing attention. Hierarchies of clusters have been identified
for example in metabolic networks [RSM*02, SPGMAO7], communication
networks [SPGMAOQ7] and networks of species [CMNO8]. Likewise, the
router-level topology of the Internet is hierarchical [LAWDO04].

In contrast to these works, Ahn et al. [ABL10] see the hierarchical
network structures as a hierarchy of groups and subgroups of edges and
not of vertices. Regardless of whether vertices or edges actually form
hierarchical structures, there is much evidence for natural hierarchies in
the topology of networks.

The clustering hierarchy is in so far an interesting property of many
natural networks as it challenges cluster analysis. Does it make sense
to calculate a flat clustering for “naturally” hierarchical structures? If
yes, how to determine clusters at the “correct” level of granularity? How
to validate that all clusters are on the same level of granularity? And
first of all, how to determine whether a network has a hierarchical cluster
structure or not? Although these questions are very interesting, they are
out of the scope of this thesis.

2.2.6 Graph Clustering Algorithms

An example for an early motivation for partitioning graphs is the problem
that motivated the development of the well-known algorithm of Kernighan
and Lin [KL70]. Their problem was to assign the components of electronic
circuits to circuit boards so that the number of connections between the
boards is minimal (minimum-cut problem). This problem is different from
the problem discussed in the following as the number of clusters is pre-
defined. In other related problems the maximal size of a cluster or re-
strictions on the size of the clusters (e.g. equal size) might be given. In
the most generic case of clustering, no restrictions on the number or size
of clusters is predefined and a clustering algorithms has to determine the
number of clusters and their components in parallel.

19



2 Introduction to Graph Clustering

2.2.6.1 Linkage Algorithms

The agglomerative hierarchical linkage-algorithms are the oldest cluster-
ing algorithms. The first linkage algorithm has been proposed by Sneath
[Sneb7] in 1957 to cluster bacteria. Subsequently, further linkage algo-
rithms like complete-linkage [SS63] and average-linkage [MS57] have been
proposed.

Single linkage, complete linkage as well as average linkage are agglomer-
ative hierarchical. The linkage algorithms build a dendrogram by merging
step by step those clusters whose distance is minimal. Let d(v,,v,) be
the distance of the vertices v, and v, and d(C;, C;) the distance of two
clusters C; and C;. The three linkage algorithms differ from each other
only in the definition of the cluster distance function.

Single linkage algorithms merge those two clusters C; and C; where the
distance between any vertex from cluster C; and any vertex from cluster
C; is minimal:

d(C;,Cj) = min  d(vs,vy) (2.14)

Uzeci,vyECj

Complete linkage algorithms merge those two clusters C; and C; where
the maximal distance between any vertex from cluster C; and any vertex
from cluster Cj is minimal:

d(C;,Cj) =  max  d(vg,vy) (2.15)

UxECi,’UyECj

Average linkage algorithms merge those two clusters C; and C; where
the average distance between any vertex from cluster C; and any vertex
from cluster Cj is minimal:

1

UxECi,UyECj

All linkage algorithms create dendrograms, but provide no rule at which
level to cut it to receive a flat clustering. If the number of “natural”
or desired clusters is known it is easy to get a clustering, otherwise an
additional rule to determine the cut level is necessary.

Linkage algorithms have been originally introduced for clustering data
points in a vector space. Usually it is hard to define a distance measure
for vertices of a graph and so the applicability of these methods for graph
clustering is limited.
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2.2.6.2 Splitting algorithms

While the linkage algorithms are agglomerative hierarchical and provide
a rule which clusters have to be merged in every step, several splitting
algorithms have been proposed that are divisive hierarchical and use dif-
ferent rules to determine the next split. The following summary of such
algorithms follows the good discussion provided in [Gae05].

Minimum-Cut A minimum-cut clustering algorithm recursively bi-parti-
tions a graph by splitting the vertex set V' into two subsets so that the
number of edges with one endpoint in each subset is minimal. That means,
if w(X,Y’) denotes the number of edges with one edge endpoint in X and
one edge endpoint in Y, then the cut ) C X C V is a minimum cut when
for all D C Y C V the following holds: w(X,V \ X) <w(Y,V\Y).

Smin (V) = @g{lng()(,V\X) (2.17)
The computation of the optimal cuts is usually NP-hard in the worst
case and therefore heuristic approaches are required [Gae05]. These algo-
rithms create dendrograms like the linkage algorithms discussed in Section
2.2.6.1 and they suffer from the same problems: If a flat clustering is de-
sired, there is no rule how to extract it from the dendrogram.
Other common cut measures are:

Ratio cuts minimize the ratio of the number of edges between the two
cuts to the product of the cut sizes:

w(X,V\ X)

Sraio V)= i
io(V) = min X[V \ X))

(2.18)

Balanced cuts minimize the ratio of the number of edges between the
two cuts to the size of the smaller cut side:

w(X,V\ X)

St V) = 0, (X (VX))

(2.19)

Conductance cuts Conductance Cuts are based on the conductance
measure [Bol98] and they are similar to Balanced Cuts. Once again, the
idea is to normalize the cut size in relation to the smaller cut side. While
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the Balanced Cut normalizes with the number of vertices, the Conduc-
tance Cut normalizes with the total degree of the smaller cut side:

- w(X,V\ X)
Sconductance<v> - @7?)1(12\/ min(d(X), d<V \ X))

(2.20)
where d(X) denotes the total degree of the vertices in X.

Bisectors are like Minimal Cuts but cut a graph in two equally sized
subgraphs:

Sbisector<v) min U}(X, V \ X) (221>

XV VI/2)<IXI<V]/2]

2.2.6.3 Edge Betweenness Clustering

Newman and Girvan [NGO04] proposed an algorithm that iteratively re-
moves the edge with the highest betweenness centrality from a graph. The
betweenness centrality of a vertex v is defined as the fraction of shortest
paths between any two other vertices that pass v (Equation 2.22). If
there are several shortest paths between a pair of vertices, the fraction of
shortest paths that include a specific edge is counted.

Cpv)= Tuu (V) (2.22)

(2
utvtwev Y

where o, is the number of shortest paths between the vertices u and w
and oy, (v) is the number of shortest paths between the vertices u and w
that pass the vertex v.

The edge betweenness measure [Fre77] favors edges between communi-
ties over edges within communities. Obviously, the dense connections
of vertices within a cluster make intra-cluster edges highly redundant
for shortest paths. However, an inter-cluster edge will be part of many
shortest paths because different clusters are only sparsely connected and
shortest-paths have to pass these vertices when connecting vertices of dif-
ferent 'natural’ clusters.

By iteratively removing the edges the once connected graph is decom-
posed into more and more unconnected subgraphs. That means, a hierar-
chy of clusters and subclusters is created and once again the same problem
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of selecting the ’optimal’ partition (as e.g. for the linkage algorithms - see
2.2.6.1) occurs.

Tests have shown that good clustering results can only be achieved when
the betweenness centrality of all edges is recalculated after each edge re-
moval. This is a major issue as this leads to the very high time complexity
of the edge betweenness clustering algorithm of O(mn?). Therefore, the
algorithm can only be used for small networks. It seems worthwhile to
study the effect of approximating heuristics for betweenness centrality on
the results of clustering approach.

2.2.6.4 Objective Functions

Cluster detection methods can be divided into two groups. There are
techniques that optimize an explicit objective function. The objective
function is a quality measure of a clustering. The algorithm how to find the
clustering with the best objective function value is exchangeable. Then,
there are other cluster methods without an explicit objective function that
define clusterings operationally, i.e. where the solution is the result of a
specific algorithm. The previously discussed linkage, splitting and edge
betweenness algorithms are all operationally defined.

Let € be the set of all partitions of a graph G = (V, E) and let F :
2 — R be an objective function where higher values of F indicate better
partitions, then the graph clustering problem is to find a partition C* with

F(CY) = max F(C). (2.23)

Shi et al. [SCY*10] compiled a comprehensive list of objective func-
tions for the detection of non-overlapping communities in networks. The
principle of most of these objective functions is to normalize the number
of inter-cluster edges in some way. As inter-cluster sparsity is one of the
abstract ideas of clustering, the inter-cluster edges contribute to a viola-
tion this objective. A problem of most objective functions is that they are
(contrary to their name) not actually suitable for finding a good partition
through optimizing them. For the trivial solution where all vertices be-
long to the same cluster the number of inter-cluster edges is minimal. Of
course, this result provides no information on the structure of the graph.
In detail, the explicit objective functions compiled by Shi et al. are
given in the following. In this section, di' and d5* denote as usual the
indegree, respectively the outdegree of vertex v, and |V| and |C;| denote
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the number of vertices in the graph G = (V| F), respectively in the cluster
C;.

Conductance measures the ratio of inter-cluster edges to the total edge
number:

out CZ
Z 2vsec; b (C) (2.24)

C;eC EUIGC

Expansion measures the number of inter-cluster edges per vertex:

.dout Cz

P(C)= > 2ovseo, b (G) (2.25)

CieC G

Cut ratio measures the fraction of all possible edges that are inter-cluster
edges:

out
’U eC; Uz (CZ)
E E=t 2.2
1Cil(IV] = 1Cil) (226)

c;eC

Normalized cut

_ D uec, B (C) | Xec, B(C)
M(C)—%( SRR SR ) (2.27)

Maximum-ODF measures the maximum fraction of inter-cluster edges
per vertex:

dout C.
Z MATy, 0, d< ) (2.28)
CieC

Average-ODF measure the average fraction of inter-cluster edges per
vertex:

dout )

DNTDY

C; ec Z vz €C;

(2.29)
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Flake-ODF measures the fraction of vertices that have less intra-cluster
edges than inter-cluster edges:

P(C) = = e c[cf ) (2.30)

Cc,eC

Description length measures how a clustering reduces the information
needed to encode a graph’s topology. A similar information-based measure
is used for the Infomap algorithm discussed in Section 2.2.6.7.

P(C) = nlogl+%l(l+1)logm+l09 <ﬁ <n(nT; 1)/2) I <ncvjj>>

i=1 i>j

(2.31)

n; and m; are the number of vertices, respectively, the number of edges
in cluster 7 and ¢;; is the number of edges connecting vertices in cluster ¢
with vertices in cluster j.

Community score is the square of the average intra-cluster edge count
per vertex:

he - 3 (z dm)) -

ey |Cil
Internal density measures the density of the clusters:

% e, 2(C)
Pul€)= 2, <1‘ ClEE 1>/2> 23

C,eC

Modularity measures the difference between the fraction of intra-cluster
edges and the expected value of the fraction of intra-cluster edges:

Py(C) =Y (dm(q) .y {dm(a)D (2.34)

m m
Cc,eC

where d™(C;) is the number of intra-cluster edges of cluster C; and E[]
the expected value.
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The comparison to the expected value makes modularity a suitable mea-
sure for finding good partitions by maximization. While other objective
functions have problems with the trivial solution (one cluster contains all
vertices), modularity does not suffer from this problem. This property
made modularity very popular and is the reason why modularity is the
topic of this thesis. The objective function will be discussed in detail
in Chapter 3. Several further objective functions derived or inspired by
modularity will be discussed in Chapter 3, as well.

2.2.6.5 Spectral Clustering

Spectral clustering methods are a class of algorithms that make use of the
top few eigenvectors of a matrix representation of the graph to divide the
vertices into groups. A good overview of spectral clustering techniques is
provided by Kannan et al. [KVV04] and Luxburg [vL07].

The first spectral graph clustering algorithm has been proposed by Do-
nath and Hoffman [DH73]. Their method works with the eigenvectors of
the adjacency matrix A of the graph G = (V, E). For unweighted graphs
the element a;; of A is 1 if there is an edge between the vertices i and j
in E and otherwise a;; is 0 (2.35). In the case of a weighted graph a;; is
the weight of the edge connecting the vertices i and j.

(2.35)

1 ifi#jand (vg,vy) € E
a; =
7 0 otherwise.

Other methods use instead of the adjacency matrix the Laplacian matrix

d(v,) ifi=j
liji=4q—1 if i # j and (v, vy) € E (2.36)
0 otherwise.

where d(v,,) is the degree of vertex v,.

Several clustering methods based on the eigenvectors of one of the above
matrix representations of a graph have been proposed. Unnormalized
spectral clustering uses the Laplacian matrix to discover the clusters if
the number £ of clusters is known. The n x k matrix V is created from
eigenvectors corresponding to the k£ smallest eigenvalues. The n rows of
V are handled as the feature vectors for clustering in the Euclidean space
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and an algorithm like k-means (see Section 2.1.1) is used to retrieve a
partition.

The main idea of the algorithm is to assign each vertex a point in R”
so that the k-means algorithm can be employed to identify the clusters.
The eigenvectors corresponding to the k smallest eigenvalues contain the
required information. Each of the k eigenvectors represents one dimension
of the R¥.

2.2.6.6 Label Propagation Algorithms

Label propagation is in its broadest sense an iterative method where labels
are passed along between the members of a (partially) labeled set of data
points.

Raghavan et al. [RAKO07] proposed a label propagation algorithm for
community detection in large networks. The algorithm initially assigns
each vertex an unique label. Then, the labels get iteratively propagated
through the network. In each iteration a random order of the vertices is
determined. Then, the labels of all vertices get updated one by one. A
vertex gets the label the maximum of its neighbors have. In case of a tie,
one of the labels with the maximum number of occurrences is randomly
selected. The iterative process stops when all vertices have a label that at
least half of their respective neighbors have. The partition is determined
by the final labels. All vertices that have the same label are regarded to
be in the same cluster and vertices with different labels are in separate
clusters.

A major advantage of this algorithm in comparison with most other
graph clustering algorithms is that it totally relies on local information
that can be quickly computed. The fast inner loop of this approach and
the fast convergence result in a near linear time complexity (with respect
to the number of edges). Furthermore, Raghavan et al. report that their
label propagation algorithm clusters homogeneous random graphs into ex-
actly one cluster while many other algorithm return several clusters which
is false. However, with regard to other quality measures the algorithm per-
forms less good. The modularity (see Section 3) of the identified clusters
is low - especially in comparison to algorithms that optimize this quality
measure explicitly.

Similar approaches to that of Raghavan et al. have been analyzed e.g.
by Frey and Dueck [FD07]. While Raghavan et al. use binary labeling (a
vertex has a specific label or it does not have it) Frey and Dueck described
a method where the affinity of one vertex to another vertex gets iteratively
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updated based on two different types of real valued messages that are
passed between vertices.

2.2.6.7 Infomap Algorithm

The viewpoint that clustering a graph is a kind of size reduction of the cod-
ing of the information on the graph’s structure is the starting point of the
algorithm of Rosvall and Bergstrom [RB07]. They assume an encoding-
decoding process, where a graph is encoded in a signal Y and decoded
again to the graph Z. The challenge is to determine a signal Y so that
the information loss is minimal and the decoded graph Z is as similar to
the original graph X as possible.
The description of a community structure is given by the tuple

aq l11 e llm

Y=Ra=|:|,M=|: -. : (2.37)

where a is the cluster assignment vector, M is the adjacency matrix of the
clusters described in a, m is the number of clusters and [;; is the number
of edges connecting vertices in cluster ¢ with vertices in cluster j.

The information necessary to describe the graph X given that the signal
Y is known is

H(X|Y) = log [ﬁ (”(”l_ 1)/2) I1 (”Z”J)] , (2.38)

i=1 i>j v

where n; the number of vertices in cluster ¢. Minimizing H(X|Y) means
finding a signal Y so that the additional information necessary to recon-
struct X is minimal. Rosvall and Bergstrom used a simulated annealing
approach to minimize H(X|Y) and, as a consequence, the clustering is
slow. However, other algorithms could be employed, too.

2.2.7 Clustering Quality

In Section 2.2.6 a number of methods to identify communities in networks
has been described. Inevitably the question arises which of the methods
finds the best partition. Unfortunately, there is no answer to this question,
as there is no universally valid definition of a good partition.
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Therefore, authors who compare community identification algorithms
(e.g. [LLM10, SCY™"10]) avoid trying to generate quality rankings of clus-
tering methods and limit their analysis to properties of the clustering
methods like cluster sizes. However, one approach of assessing clustering
quality could be to use the classification of clusters in the strong, weak
and weakest sense as discussed in Section 2.2.4. A clustering with predom-
inantly strong clusters will be probably a good clustering in any definition
one might come up with as it has very strict requirements regarding the
intra-cluster density. Unfortunately, this classification is of little help in
practice as most clusters identified by many graph clustering methods are
at best clusters in the weakest sense. So, this classification scheme is not
able to distinguish the quality of many algorithms.

Trying to compare the results of clustering methods means to compare
the clusterings they calculate. In this context, the question arises how to
measure the similarity of partitions. The comprehensive discussion of simi-
larity metrics conducted by Meila [Mei07] (see also [For10]) will be summa-
rized in the following. Let C = (C4,Cy,...,Ck) and C' = (C1,C5, ..., Cr)
be two partitions. The number of pairs of patterns the partltlons agree
or disagree on is the basis for several measures. Let ¢(C,u) denote the
cluster of u in partition C, n, the number of patterns in cluster C; and
n = Y% ny the number of patterns in C. Likewise, n} and n' are the
according values for the partition C’. In the four sums

o Nii = | {{u,v}e(C,u) = c(C,v) Ac(C'yu) = c(C',v)} |
o Noo = | {{u,v}e(C,u) # c(C,v) Ac(Cu) # c(C,v)} |
o Nip = | {{u,v}c(C,u) = c(C,v) A e(Cu) # c(C,v)} |
o Now = | {{u,v}]e(C,u) # c(C,v) A c(Cyu) = e(C',v)} |

each pair of patterns is counted once. Therefore, Ni; + Nyg + Nig + No1 =

n(n —1)/2.

Wallace [Wal83] proposed the two measures

Nll
WHC ) = -2 (239
and
Wiz(C,C') = N (2.40)

D op M (g — 1)/2
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that give the probability that a pair of patterns that is in the same cluster
in C is also in the same cluster in C’ and that a pair of patterns that is in
the same cluster in C’ is also in the same cluster in C, respectively. Folkes
and Mallows [FM83] proposed to use the geometric mean of Wr and Wrr

F(C,C) = /Ws(C,CYWiz(C,C) (2.41)

Other measures are the Rand index

Ny
R(C,C) = 2.42
( ) N11 + Noo + No1 + Ny ( )

and the Jaccard index

/ Nll
= . 2.4
JC.C) N1 + Noi + Ny (2.43)

These measures have problems like not ranging over the interval [0, 1].
Normalizations to solve those issues have e.g. led to the proposal of an
adjusted rand index that normalizes with the expected value of the Rand
index [HAS85]. For advanced measures that go beyond pairwise pattern
assignment counting see [Mei07].

Measuring the similarity of partitions is also of interest for assessing the
stability of a clustering method. If a small change in the data causes a
dramatic change in the partition, a clustering approach is instable. This
in turn poses the question, whether the identified graph structures are
significant or merely a result of chance.
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3 Modularity Clustering

3.1 Introduction

The popular modularity function introduced in [NGO04] is a measure for
the quality of a partition of an undirected, unweighted graph. Modularity
measures the difference between the empirical observed number of links
within clusters to the expected number. The expected value is calculated
for a random graph with the same degree sequence as the observed graph.

Let G = (V, E) be an undirected graph and C' = {C},...,C,} a parti-
tion, i.e. a clustering of the vertices of the graph into groups C; so that
Vi,j:i# j=C;nNC; =0 and U;,C; = V. We denote the adjacency
matrix of G as W and the element of W in the z-th row and y-th column
as Wy, where w,, = wy, = 1if {v,,v,} € E and otherwise w,, = w,, = 0.
The modularity @ of the partition C' is

QC) =Y (en—a) (3.1)

with

B D vpeCy 2ovyec, Way

e. N
Y D veev Zvyev Wzy

(3.2)

and

a; = Zeij (33)

J

e;; is the fraction of edge endpoints belonging to an edge connecting C;
with C;. The a; are the row sums of the matrix spanned by the ¢;; and
give the total fraction of edge endpoints belonging to C;. The difference
e;i — a? is a result of the following model: Let G be the set of all labeled
graphs with the same degree sequence as GG. Then, e; is the empirical
fraction of edge endpoints belonging to edges that connect vertices in the
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Figure 3.1: Modularity computation example [OGSS10].

group C; and a? is the expected fraction of edge endpoints belonging to
edges that connect vertices in C; for a graph in G.

As a; is the fraction of the degrees in cluster Cj, the probability that
a random edge {v,,v,} of a graph in G connects two vertices in C; is
P((v, € Cy) A (v, € Ci)) = P(v, € C)P(v, € C;) = a;a; = a} when
start vertex v, and end vertex v, are chosen independently. This means,
modularity measures the non-randomness of a partition.

To illustrate the calculation of the modularity of a partition Figure 3.1
shows a small example. For a clustering of the example graph with 5
vertices into the clusters Cy = {v1,v2}, C2 = {vs, v4, v5} the values of e;;
are the sums of the matrix elements belonging to a pair of C; and C;
divided by the total sum of all matrix elements: e;; = %, €19 = €9] = %,
€99 = %. The modularity of the partition of the example graph into the

two clusters is Q = (e1;—a?)+(exn—a3) = (12—2—%2)+(14—2—1—722) = —=. The
negative value of Q obviously indicates a suboptimal partition. Assigning
the vertex v3 to C improves () to %.

While the notation of modularity in Equation 3.4 helps to understand
the principle idea of the quality measure, this notation brings disadvan-
tages when extending the formula and incorporating further concepts. A

more practical notation of modularity is

Q=53 (wa— Z2) 50 (). C) (3.4)

2m
$7y

where m is the number of edges in the graph, s, is the total degree
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of vertex v,, C(z) denotes the cluster of v, and the Kronecker sym-
bol §(C(z),C(y)) = 1 when v, and v, belong to the same cluster and
d(C(z),C(y)) = 0 otherwise. In this notation the modularity contribu-
tions of vertex pairs rather than the contributions of whole clusters are
summed.

3.1.1 Optimization Problem

The higher the modularity of a partition is, the less random it is. Modu-
larity clustering means clustering by means of maximizing the modularity
of a partition. According to the general definition of the graph cluster-
ing problem in Equation 2.23, let 2 be the set of partitions of G. The
modularity clustering problem is to find a partition C* € Q with

Q(C*,G) = maz{Q(C,G)|C € Q}. (3.5)

In contrast to many other graph clustering approaches without an ex-
plicit measure for the quality of a partition (e.g the linkage algorithms dis-
cussed in Section 2.2.6.1), modularity clustering allows to compute graph
partitions by optimizing an objective function. This way common meta-
heuristics can be employed to find good partitions (see section 3.2.2).
Brandes et al. [BDG'08] proved that finding a partition with maximal
modularity is NP-hard. As a consequence, employing heuristics to find
high modular partitions is the only practicable way to find a partition
based on the modularity measure for large graphs.

3.1.1.1 Modularity Delta AQ

The change of modularity when a partition is altered is an important
measure. This change will be denoted as AQ. While there are several
operations on partitions, only the AQ of the merge of two clusters will
be discussed now as it is required throughout this thesis. The AQ of all
other operations will be discussed when needed.

Merging two clusters C; and C; of a partition C' means that C; and C}
get replaced by C; U Cj;. The number of clusters in the resulting partition
C"is |C'| = |C|—1. In the following AQ(C;, C;) or short AQ(7, j) denotes
the modularity difference between the partitions C’ and C', which is:
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3 Modularity Clustering

AQ(i,j) =Q(C") = Q(C)

=) QC) - ) QC)
Ca€l’ Ca€C
= Z Q(CL) +Q(C; U Cy)

Ca€C\{C;,C5}

- Y QC)+QC) +Q(Cy)
CaeC\{C;,C;}
=Q(C; U Cj) — Q(C;) — Q(Cy)
= ((eii + 55 + eij + e5i) — (@i + a5)*) = (e — af) — (ej; — @)
=€ + ejj + eij + 6]‘2‘ — a? — 2(1,2‘&]‘ — a? — €4 + a? — ejj + a?
=ei; + €5 — 2a,a;
:2<ez’j — aiaj) (36>

3.1.2 Clustering Quality of Modularity

As mentioned before, clustering is the classification of patterns into groups
where similar patterns should be classified into the same group. This defi-
nition is still very vague. The lack of clarity arises from the fact that there
is no generally accepted definition of what a cluster, respectively a good
partition is. Therefore, evaluating the clustering quality an algorithm pro-
duces is a difficult task. Roughly speaking, a partition should resemble the
structure of a network. That means, among others, if the network has no
community structure at all, the clustering algorithm should not find sev-
eral communities. Furthermore, if the community structure is hierarchical
than the algorithm should reproduce this hierarchical decomposition.
While all those different properties for good partitions are postulated,
these properties are often only tested by the postulating author for his
newly presented clustering algorithm. Usually, the clustering quality of
algorithms is only evaluated with respect to a single measure. The most
common measure is the accuracy of resembling a known community struc-
ture. Because no general standard of comparison is available, one way
clustering algorithms have been evaluated are by comparing their results
with the ’known’ cluster structure of special randomly created networks.
One attempt was to create a set of densely connected graphs and then
randomly and sparsely connect these graphs. The quality of algorithms is
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then judged by their ability to retrieve the densely connected subgraphs.
One major drawback of this approach is that it does not state, what a
good partition is, but implicitly assumes that the set of densely connected
graphs is the optimal partition.

With their introduction of the modularity function, Newman and Gir-
van [NGO04] evaluated their new measure through this comparison with a
‘ground truth’. This ’ground truth’ is an observed partition of the net-
work, e.g. the partition resulting from a split up of a club after a dispute
(see Karate club data set description in 4.6.1). Furthermore, they created
random networks with a known community structure by creating densely
connected groups of vertices with z;, links going from each vertex to a
randomly selected vertex from within the respective group. Then, the
groups get connected by connecting each vertex with z,,; vertices from a
different group.

The use of the ’known community structure’ of natural networks for
evaluations has some methodological problems. The communities that
could be identified in the natural networks by observations are supposed
to be the result of a natural group building process on the basis of the social
relation that has been modeled in the network. As the process by which
the entities of the network determine their group membership is unknown
and probably different for every network, measuring the clustering quality
of algorithms by the degree they resemble the random interaction process
explained above is a kind of an anecdotal evidence. There is no indication
that those natural networks an author has select for evaluating his or her
community detection method are a good representation of for any class
of natural networks. Also, the noise in the natural grouping process is
not considered. This makes the evaluation of algorithms by comparing
their clustering results with a few small natural networks with a known
community structure problematic.

The technique used by Newman and Girvan to create random networks
with known community structures has some methodological flaws, too:

e Only small networks with 128 vertices have been analyzed.
e The sizes of all communities are equal.

e The properties (e.g. density, degree distribution) of the random
networks are different from natural networks.

e The random networks do not have a hierarchical community struc-
ture, i.e. natural communities that consists of other natural com-
munities on a higher level of detail.
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3 Modularity Clustering

e To compare the known community structure with the algorithmic re-
sults, the number of "correctly’ identified vertices have been counted,
which taken alone is a problematic measure.

Especially the fact that the networks used for the evaluation are not
representative for natural networks does not allow for a generalization of
the evaluation results. The naturally hierarchical community structures
are very important e.g. in sociology. This can be seen from the way
sociology is divided into sub-fields by the level in the hierarchical struc-
ture of interaction networks they analyze: microsociology, mesosociology,
macrosociology and global sociology [Sme97].

Lancichinetti et al. [LFRO08, LF09a] proposed with the LFR bench-
mark (Lancichinetti-Fortunato-Radicchi benchmark) a generalization of
the benchmark of Newman and Girvan which is a random graph with a
more realistic community structure as the vertex degrees as well as the
community sizes have a power-law distribution. Lancichinetti and Fortu-
nato [LF09b] applied this benchmark to assess the clustering quality of
different graph clustering methods including algorithms that are based on
modularity maximization and algorithms based on other approaches.

Every comparison of partitions with the known community structure
of an artificial graphs suffers from the problem that the generator of the
graph is based on some assumptions what a ’good’ cluster or a 'matu-
ral group’ is. But as there is no common agreement on this matter, all
comparative quality assessments suffer from a selection bias.

Overall, modularity can be regarded as suitable objective function for
graph clustering, even though no generally valid quality assessment is
available. Although modularity seems to be useful for cluster analysis,
this quality function has some deficiencies which will be discussed in con-
junction with a general review of its properties in Section 3.1.3.

3.1.3 Problems of Modularity Clustering

In Section 3.1.2 it has been discussed that an absolute judgment on a
cluster algorithm’s clustering quality is problematic. However, the analysis
of properties of clustering algorithms is helpful. In this section, properties
of the modularity measure will be discussed which cause three deficiencies
of the modularity clustering algorithms, namely the resolution limit, the
cluster size bias, and the identification of non-significant communities.
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3.1.3.1 Resolution Limit

Fortunato and Barthélemy [FBO7] could show that algorithms that max-
imize modularity cannot find communities smaller than a resolution limit
which directly results from the maximization of the objective function.
Their proof goes as follows: Let 45 be the number of edges connect-
ing two clusters A and B and let Kx be the the total degree of cluster
X. The modularity of a partition increases, when two clusters A and B
with AQ(A, B) > 0 are merged (see Section 3.1.1.1). In a more detailed
formulation Equation 3.6 becomes AQ(A, B) = lag/m — K4 Kp/2m?.

Assume that the two clusters A and B are about the same size and have
both a total degree of approximately K. Even when the clusters A and B
are only very weakly connected by a single edge (lap = 1), AQap might
still be positive:

A merge increases modularity when

lap  KaKp

m 2m? >0

when [45 is 1 follows

1 K Kp

m 2m?2

under the assumption that K4 and Kpg are approximately K follows

1 - K?
m  2m?2
—2m > K?

<—K <V2m

This means, two connected clusters A and B will always be merged if
their size K is below v/2m.

Fortunato [Forl0] gives an intuitive explanation for this fact: If two
subgraphs are connected with more than the expected edges, they are
supposed to have a strong topological correlation. However, when the
subgraphs are small compared to the total graph size (with respect to
their degrees), the expected number of edges can be smaller than 1. In
this case, any connection between the clusters will keep them together -
even if both are cliques connected by a single edge.

This means that clusters with less than about v2m edges can be iden-
tified by maximizing modularity only, when they are not connected to
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3 Modularity Clustering

another cluster below the resolution limit. How far the resolution limit
actually effects the results of modularity clustering for real-world datasets,
has not been analyzed so far. It will depend on the connection structure
of the ’true’ clusters. If small clusters are only at the periphery of large
graphs, the theoretical resolution limit will not effect the clustering re-
sult. If small clusters tend to cluster together, they are not identifiable by
maximizing modularity.

Several strategies to deal with the resolution limit have been discussed.
Ruan and Zhang [RZ08| proposed to recursively cluster a network. The
clusters identified by optimizing the modularity of the source graph (level
1) are partitioned by clustering the subgraphs induced by the clusters
(level 2). This method is applied as long as the clustering of a subgraph
yields more than one cluster.

Lai et al. [LLN10] proposed a procedure that reweights the edge weights
of intra-cluster and inter-clusters differently. A random-walk preprocess-
ing is used to iteratively put heavier weights on possible intra-community
edges than on inter-community edges.

In the recent literature, some authors mixed the resolution limit problem
with the problem of identifying clusters at the same level of granularity,
which occurs, when a network has a cluster hierarchy as discussed in
Section 2.2.5. However, resolution limit and cluster granularity are two
distinct problems. Due to the resolution limit not only clusters of the
same super-cluster may not be separable, but clusters may be aggregated
that would only meet at the root of the hierarchical cluster tree.

While Arenas et al. [AFGO08| do this mix-up, too, the parameterized
variant of modularity they propose is still worth looking at. Their idea is to
make the importance of a structure dependent on the number of vertices.
So, Arenes et al. propose to identify communities C' = {C,...,Cy} of a
graph G = (V, E) at a scale r by maximizing a parametrized variant of
modularity @,

k 2
@r(C.6) = Zzl < 2w + nr ( 2w + nr (37)

where n is the number of vertices of the graph, |C;| is the number of vertices
in cluster C;, w is the total weight of all edges, w; is the total weight of
all edges in cluster ¢« and w;; is the weight of all intra-cluster edges of
cluster . What Arenas et al. actually do is nothing else than introducing
a loop of weight r to every vertex. The loops increase the total weight
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of the intra-cluster edges. So, if r is set to a sufficiently high value, the
intra-cluster strength will make the inter-cluster connections relatively less
unlikely in the null model. Therefore, for appropriate r > 0 substructures
get identifiable and for appropriate r < 0 the superstructures can be
identified. There is, however, no rule how to determine the appropriate
value of r for a desired result.

3.1.3.2 Cluster Size Bias

A second weakness of the modularity measure is its bias towards clusters
of equal size [Bra08]. The square term a? in the modularity function
>, (ei; — a?) gives the expected value. The sum of these terms Y. a? is
minimized when all a; are of equal size. As a result, higher values of ) can
be reached when all a; are roughly the same. As equal sized clusters are
always favored but the natural cluster size distribution might be totally
different, this property of modularity could prevent finding the natural

community structure.

3.1.3.3 Non-significant Communities

Reichardt and Bornholdt [RB06] showed that clustering by maximizing
the modularity function identifies clusters even in random networks. Ob-
viously, it makes no sense to partition random graphs in groups as these
groups cannot be significant. Reichardt and Bornholdt could also show,
that the expected modularity of random graphs is positively correlated
with the sparsity of the graph and argue that it is, therefore, difficult to
detect true modularity in sparse graphs.

As a consequence of the notion that positive values of modularity do not
imply that partitions are significant, Kashtan and Alon [KA05] proposed
to normalize modularity by the modularity of a randomized network:

_ Qreal B Qrand
Qmaaﬂ - Qrand

where (), is the standard modularity, Q,..q the average Q of a random-
ized network and @), the maximal modularity of a graph with the same
degree sequence.

Qm (3.8)

3.1.4 Generalizations of Modularity Clustering

The original modularity definition by Newman and Girvan [NG04] is for
all undirected, unweighted graphs, but not necessarily simple, loop-free
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graphs. The concept of modularity can be generalized to directed and/or
weighted graphs while the null model remains a configuration model graph
[New10]. Of course, then, the configuration model includes directions and
weights. The generalized modularity measures return the same results
as the original modularity definitions for weighted graphs where all edge
weights are equal, respectively for directed graphs, where all edges have
a reciprocal edge. Other variations of the objective function will be dis-
cussed in Section 3.1.5.

3.1.4.1 Modularity of Weighted Graphs

The simplest and most straightforward generalization of the modularity
measure is the extension for weighted graphs. The definition of e;; in
Equation 3.2 has to be adapted so that instead of counting the fraction
of edges between two clusters, the fraction of edge weights of all edges
connecting two clusters has to be calculated. For weighted graphs the
term e;; is replaced by

g s Lnyec; U (3.9)
Y v Zvyev Wzy

where w is the edge weight function and wg, is the weight of the edge
connection the vertices v, and v,.

Then, the term aia¥’ (the product of the row sums of (e}})) gives the
expected total strength of the edges between the clusters C; and Cj in-
stead of the expected number of edges. Correspondingly, the weighted
modularity is then defined as Q¥ =Y, (e — (al)?).

i 7

3.1.4.2 Modularity of Directed Graphs

Arenas et al. [ADFGO7] proposed a straightforward generalization of the
standard modularity measure for directed graphs. The modularity variant
for directed graphs still calculates the difference between the fraction of
intra-cluster edges to the expected fraction of intra-cluster edges. But
the expected number of edges between two vertices changes when the
null model shall remain a randomly rewired graph with the same degree
distribution. Because of the edge directions a vertex in a directed graph
has an indegree and an outdegree distribution. As a consequence, for both
possible edge directions, there are distinct expected numbers of edges.
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Let G = (V,FE) be a directed graph. The generalized definition of
Equation 3.4 for directed graphs is

in Jout

1
_ - = 3(C;, C; 3.10
w=n T (1w, )acic) (3.10)
where d/" and d;?“t give the indegree and the outdegree and 6(C;, C;) is the
Kronecker symbol. In contrast to the undirected variant the normalization
is now by m and not by 2m because each edge is now considered only once
and not twice (once in each direction).

While Arenas et al. primarily introduced the generalized modularity
for their discussion of a modularity-preserving size reduction technique
for graphs, Leicht and Newman [LNOS8] discussed this generalized mea-
sures’ ability to incorporate edge directions in the discovery of commu-
nities in directed networks. By example they showed that the directed
modularity variant is able to identify the known true community struc-
ture of a randomly created network and a football-competition network
in contrast to the undirected original formulation. They concluded that
the directed modularity makes good use of the direction information of
the edges. However, this evaluation has some weaknesses: the analyzed
networks are small, the networks do not have the usual properties (e.g.
degree distribution) of self-organized real-world networks and the differ-
ences might be an artefact of the optimization algorithm rather than the
objective function.

Kim et al. [KSJ10] showed that the assumption of Newman and Leicht
about the generalized modularity’s consideration of edge directions is
partly wrong. They showed that a flaw of this generalization is that
the edge direction between two vertices or clusters has no influence on
the AQ of their join (see Figure 3.2) when the total in- and outdegrees
remain identical.

Kim et al. [KSJ10] proposed therefore a different approach to identify
clusters in directed networks. Their idea is to replace the modularity
function, informally defined as

Q" =(fraction of links within communities) (3.11)

— (expected value of this fraction)
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Figure 3.2: Example of Kim et al. [KSJ10] for a problem of the directed
modularity variant. The vertices v; and v3 respectively the
vertices vy and vy have identical in- and outdegrees. Therefore,
directed modularity can not distinguish between both example
situations with different flow directions.

by the new difference

Q" =(fraction of time spent walking within communities (3.12)
by a random walker)

— (expected value of this fraction).

This formulation is able to exploit edge directions for clustering as the
edge directions determine how the walker can continue the random walk.
The edge direction between two arbitrary vertices v, and v, can determine
whether v, and v, are part of a short cycle (high return probability) or
whether v, and v, are part of no or only long cycles (low return prob-
ability). So, the probability that v, and v, are in the same community
depends on the edge direction.

As the generalized modularity measures are only slightly different to
the originally proposed definition, so far developed algorithms for mod-
ularity clustering can be adapted with little effort. For example, Leicht
and Newman [LNO8] presented a spectral algorithm (see Section 3.2.4.1)
for their study of the generalized modularity.

3.1.5 Variations of Modularity Clustering

While the generalizations discussed in Section 3.1.4 are equivalent to the
original formulation of modularity when directed or weighted networks
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are appropriately simplified, the variations presented in this section take
the idea of modularity and modify the measure to produce different parti-
tions. Gaertler et al. [GGWO07] call modularity an instance of significance-
driven graph clustering as modularity measures the non-randomness of a
partition. The null-model used by modularity for calculating the non-
randomness of a partition is the random wired configuration model of a
graph with the same degree sequence than the considered graph. However,
other null-models could be used as well. In the following, those alternative
null-models will be discussed.

3.1.5.1 Modularity Variation for Simple Graphs

In its original form, modularity is defined for multigraphs (i.e. a graph
where multiple edges between two vertices are allowed) with loops. Many
natural networks do not allow multiple edges or loops. Consider, for ex-
ample, the friendship network of a social network site. Neither can an user
be a friend of some other user twice, nor can an user be his own friend.
For community detection in this type of network, a network model which
allows multiple edges and loops is not appropriate.

As Massen and Doye [MDO05] noted, clustering simple networks (net-
works that do not allow multiple edges) by maximizing modularity has a
significant drawback. The expected fraction of edges between a vertex pair
Vg, Uy, which is = 2= is not limited to the range [0, 1/m]. That means, in
some cases the expected number of edges according to the network model
behind the modularity measure is > 1 and, therefore, the configuration
model expects more edges than the semantic of the network allows.

To overcome this problem, Massen and Doye proposed to create an
ensemble G’ of random networks with the same degree sequence where
multiple edges and loops are forbidden and to calculate the probability
of an edge between two vertices from this ensemble. The new quality
function @' is

Q= Z (eii — fi) (3.13)

where f; is the estimated fraction of intra-cluster edges in cluster C; com-
puted from averaging the graphs in the ensemble G'. The term f; replaces
the square of the marginal distribution (a?) used by modularity (see Equa-
tion 3.4).
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The simulation approach of Massen and Doye is an unsatisfying method
as it requires G’ to be large to provide precise probabilities. Therefore,
Cafieri et al. [CHL10] worked on an algebraic solution and proposed al-
ternative null models for graphs with loops but no multiple edges, graphs
with multiple edges but no loops and graphs without multiple edges nor
loops.

Adapting the null model to reflect the changed expected values of the
fraction of edges that connect two vertices means in the notation intro-
duced in Section 3.1 that the term a? (see Equation 3.4) has to be replaced.

The modularity variant @Q,,; for graphs without loops is [CHL10]

Ay Kok, 1 1
Qu= 3[Rt (e e 10

u, eV iu>v

where ¢, and ¢, denote the cluster of the vertices u and v and ¢ is the
Kronecker symbol.

The relevance of this variation decreases with the size of graph un-
der consideration. The alteration for graphs without loop is in the term
Zml—ku + le_kv. For large natural graph it seems fair to assume that the
outdegree of a vertex v, will grow sub-linear to the total number of edges
so that lim,, ,~(2m — k,) = 2m.

For graphs without multiple edges, Cafieri et al. do not give a closed
term but show a method to redistribute excess probabilities from vertex
pairs where the expected value is greater than 1. The redistribution algo-

rithm applies to graphs without loops as well as to graphs with loops.

3.1.5.2 Alternative Reference Graphs

The principle of the modularity measure is to test whether a given set
of vertices forms a dense subgraph by comparing it to an expected inner
connectivity. The thought behind modularity is, how many intra-cluster
edges would one expect in a randomly chosen group of vertices? The
expected value is clearly related to the number of vertices in the group.
Furthermore, the expected value will be higher if the vertices in the group
have high degrees. Newman and Girvan proposed to compare the number
of intra-cluster edges to the expected number of a group of vertices with
the same degrees in an arbitrary graph with the same degree sequence as
the analyzed graph.

But there is no compelling reason to define the measure of comparison
in this way. A first attempt to define a different, better null model that

44



3.1 Introduction

is not just a generalization of the original one, has been conducted by
Chang et al. [CPHL10]. In their model the expected number of edges
between two vertices depends not only on the two vertices’ degrees, but
on the degrees of all vertices of the graph. Chang et al. provide only a
brief evaluation of their quality criterion, but their work is a first step in
a previously neglected direction of research. If specific knowledge on the
topology of a graph or its generating process is known in advance, it seems
plausible that an adapted null model is able to provide better results.

3.1.5.3 Overlapping Clusters

Many networks have structures, where a clear assignment of a vertex to
a cluster is not possible [LLDMOS8] or is for some reason not desirable.
In fact, many natural networks have an overlapping community structure
as e.g. Palla et al. [PDFVO05] could show for scientific collaboration and
protein interaction networks. Consider a phone call network where a link
between two vertices means the denoted persons had a phone conversation.
Usually, people will be part of several natural groups. Families will be
densely linked as well as groups of friends or co-workers. If a clustering
algorithm assigns a vertex to exactly one cluster, the multitude of social
embeddings can not be represented. However, clusterings with overlapping
clusters, where vertices can belong to more than one cluster, can represent
this structures.

Several modularity variations for overlapping clusters have been pro-
posed recently. In the following the EAGLE algorithm and the algorithm
of Nicosia et al. will be discussed. While the first algorithm assigns ver-
tices to one or more clusters, the second algorithm assigns vertices for each
cluster a degree of affinity.

3.1.5.4 The EAGLE Algorithm

Shen et al. [SCCHO09] developed the algorithm EAGLE (agglomerativE hi-
erarchicAl clusterinG based on maximal. cliquE) for the detection of hier-
archical overlapping community structures. First, their algorithm searches
for maximal cliques (cliques that are not part of a larger clique). From this
set of maximal cliques, those cliques that consist only of vertices that are
also part of another larger maximal clique are removed. Maximal cliques
smaller than a threshold are removed, too. An overlapping clustering of
the network is given by the set of maximal cliques and singleton clusters
that are created from all vertices that are not part of any maximal clique.
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3 Modularity Clustering

From this initial overlapping clustering a dendrogram is created by join-
ing in every step those two communities C; and Cy which have the largest
value of the similarity function S, which is defined as

SO =g X fma - L) (3.15)

2|E|
vz €C01,vy €Co,x7#Y

where |E| is the number of edges of the graph, d(v,) is the degree of vertex
v, and mg, = 1 when the vertices v, and v, are connected by an edge and
otherwise mg, = 0. In this phase overlapping clusters are merged to new,
larger overlapping clusters. The similarity function S sums (analogous to
the AQ for non-overlapping cluster mergers) the difference between the
fraction of new intra-cluster edges and the expected fraction of new intra-
cluster edges. As before, the fractions are calculated to the total number
of edges in the graph.

From the dendrogram the best overlapping clustering is selected with
the extended modularity measure

1 1 d(v,)d(vy)
EQ = 3T Z > [mxy i (3.16)

i v €C5,vy€C; ,y(vx)’Y(Uy)

where y(v,) is the number of communities the vertex v, belongs to. The
EQ measures extends the original formulation by the term m which
has been introduced to normalize the impact of a vertex.

3.1.5.5 The Algorithm of Nicosia et al.

Nicosia et al. [NMCMO09] proposed a variation of modularity for overlap-
ping communities in directed graphs that assigns to each vertex a vector
of ‘belonging factors’. For a partition C' with |C| clusters the belong-
ing factors of vertex v, are [ag1, -, 0y)c)]. The factors are computed
by optimizing an overlap variation of modularity and normalized so that
Zchll Oy e =

For a directed graph G = (V, E) the overlap variation of modularity
Qov is defined as follows:

1 R i 0
Qov = E Z Z Bl(m,y),Cimxy - — |E| — (317)

Ci€C vg,uy€V
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where 610(1;;&!/ o, 18

Zvyev Flag,c ayc;)
V]

ﬁf(ﬁy (3.18)

and

szev ‘F<O‘r,Ci7 O‘y,ci)
6[(:1:,3/ |V|

where the function F determines the way an edge contributes to modular-
ity of community C;. For example, F could be set to F = (o, + a;2)/2.
That would mean, the degree to which an edge is regarded as an intra-
cluster edge of C; is the average of the edge’s both endpoints’ degrees of
belonging to C.

While the approach of Shen et al. (see Section 3.1.5.4) describes an
algorithm, the approach of Nicosia et al. proposes a quality measure that
can be optimized by other types of algorithms than the genetic algorithm
Nicosia et al. originally used.

(3.19)

3.1.5.6 Localized Modularity

For the null model of modularity the assumption is made that connections
between every pair of vertices are equally probable. Muff et al. [MRCO5]
presented a measure to cluster networks like protein folding networks or
metabolic networks, where this assumption does not apply. Their localized
modularity measure for a partition C' is defined as

o Lz (Lz)ln<Lz)out
0= 2 (2 ) 620

with L; the number of intra-cluster edges of cluster C;, (L;):n and (L;)ou
the number of edges ending, respectively starting at a vertex in C; and
L;, the number of edges in the neighborhood of C}, i.e. all edges adjacent
to a vertex in C; or adjacent to a cluster C; is connected to.

In contrast to the modularity measure, the localized modularity measure
has not the total number of edges in the denominator, but just the number
of edges in the neighborhood of a community. Muff et al. regard their
measure as complementary to modularity, as it gives a second view on a
network on a more detailed level.

As the LQ) measure does not take the total number of links in a network
into account, it will not suffer likewise from a resolution limit (compare
Section 3.1.3.1).
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3 Modularity Clustering
3.2 Modularity Maximization

A large number of algorithms have been developed to optimize modular-
ity since Newman [New04] proposed the first algorithm. Table 3.1 gives
an overview on proposed modularity maximization strategies. In a first
step, there are exact algorithms whose approaches guarantee to find the
optimal solution and there are heuristics that are designed to find good
solutions, but most probably do not find the optimum. The heuristics can
be subdivided into non-hierarchical, divisive hierarchical and agglomera-
tive hierarchical algorithms. The discussion of modularity maximization
algorithms is restricted to representatives of each of these classes of algo-
rithms.

3.2.1 Excact Algorithms

Maximizing modularity is a discrete optimization problem and the num-
ber of distinct partitions is finite. Theoretically, the modularity of all
partitions of a graph could be calculated to find the optimal solution (ex-
haustive search). However, in practice this will not be possible due to the
required computational effort.

The formulation of modularity maximization as an integer linear pro-
gram (ILP) allows finding a partition with maximal modularity without
considering all possible partitions. Different ILPs have been proposed by
Agarwal and Kempe [AKO08] and Brandes et al. [BDG07]. Again, solv-
ing these ILPs is only possible for very small graphs. But the ILPs are
of interest for another reasons. Agarwal and Kempe relaxed the ILP to
a linear program (LP) by dropping the integer constraint. The solution
of the LP relaxation can be used to generate a partition in an additional
rounding phase. More interesting is that the solution of the LP relax-
ation provides an upper bound for the maximally reachable modularity.
Later on, this upper bound will be used for the evaluation of heuristic
modularity maximization algorithms.

Modularity optimization can also be formulated as a mixed integer
quadratic program (MIQP) as Xu et al. [XTP07] showed. Transform-
ing modularity optimization to an IP or MIQP is convenient in so far
as fast software packages (e.g. IBM ILOG CPLEX Optimization Studio)
exist that can be used to solve the transformed problems.
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3 Modularity Clustering

3.2.2 Implementations of Metaheuristics

A metaheuristic is a general approach that describes a strategy how to op-
timize an objective function. Metaheuristics have been developed to deal
with general problems of heuristic search problems like realizing a wide
coverage of the search space or preventing to get stuck in local optima.
For the maximization of the modularity of a partition, implementations
of several metaheuristics have been developed and tested. In the follow-
ing, the two non-hierarchical metaheuristics simulated annealing (Section
3.2.2.1) and generic algorithms (Section 3.2.2.2) are presented. Simulated
annealing [Haj88] as well as genetic algorithms [GS92] converge to the
optimum in probability (P(optimum reached) = 1 as search steps — 00)
when properly applied. Hierarchical implementations of metaheuristics
are discussed in Section 3.2.3 and Section 3.2.4.

3.2.2.1 Simulated Annealing

Simulated annealing is a greedy heuristic which is designed to be able to
leave local optima. A simulated annealing algorithm starts from a random
initial state. Then, its way through the search space is regulated by an
acceptance function. If a randomly selected state in the neighborhood
of the current state is worse than the current state it is accepted with a
probability given by the acceptance function. This function has a cooling
schedule that constantly lowers the probability of accepting a worse state.

Based on this optimization schema, Medus et al. [MAnDO05] designed
their algorithm. Starting from an initial partition, one vertex at a time is
moved from its current cluster to an empty cluster or a non-empty cluster
which is connected to the selected vertex. The acceptance of a move is de-
termined by the induced modularity difference and the annealing schedule.
When more than an upper bound of successive move tries are not accepted,
the algorithm terminates. Medus et al. reported that the simulated an-
nealing algorithm is ten times slower than the edge betweenness algorithm
(see 2.2.6.3) which has a complexity of O(mn?).

A related metaheuristic, called mean field annealing, has been applied
by Lehmann and Hansen [LHO7b] to the maximization of modularity. In
contrast to simulated annealing, mean field annealing uses a deterministic
rather than a probabilistic approach to determine whether to accept a
next state that has a lower value of the quality function than the current
state has. Run times for this algorithm have not been reported but the
reported quality is low.

20



3.2 Modularity Maximization

3.2.2.2 Genetic Algorithms

The genetic algorithm is a metaheuristic inspired by biologic evolution.
This class of algorithms mimics the evolutionary process with mutations,
cross-overs and selection. A genetic algorithm starts with a random set
of solutions. The search space is scanned by producing new candidate
solutions through recombinations (crossovers) and slight changes (muta-
tions) of existing solutions. The probability that a solution of the current
generation is used to create a solution of the next generation depends on
its quality which is determined by a fitness function.

Tasgin et al. [THBO7] used this metaheuristic to maximize the modu-
larity of a graph clustering. Because modularity should be maximized it
is used as the fitness function. A solution is encoded as a vector where the
i-th position of the vector has the identifier of the cluster the i-th vertex
belongs to. Because of this encoding exchanging parts of the vectors of
two solutions to simulate cross-overs is not a good idea. The transfer of
parts of the vectors would not exchange the information encoded in this
parts as the cluster identifiers of two solutions do not necessarily match.
Therefore, a crossover is realized by selecting two solutions k.. and kges
and applying the following procedure to the cluster assignments in kgeq:
A set S of vertices from ki, is randomly selected. The vertex assignments
in kg are changed so that a vertex that is in the same cluster as a ver-
tex in S in ks 1s also in the same cluster in kgz.;. Mutation is realized
by randomly selecting two vertices and moving the second vertex to the
cluster of the first vertex.

3.2.3 Hierarchical Agglomerative Algorithms
3.2.3.1 Plain Greedy Algorithm

The first algorithm that was proposed for clustering by optimizing mod-
ularity [New04] was based on a steepest gradient search (plain greedy).
This algorithm calculates for every step of the algorithm the modularity
change (AQ) upon the join of every pair of connected clusters. The pair
of vertices with the largest modularity increase is joined. If several pairs
have the same maximal modularity increase, one of these pairs is selected
randomly. This procedure is extremely slow and Clauset et al. [CNMO04]
proposed an algorithmic improvement (usually referred to as the CNM
algorithm) that saves time by caching the AQ for every adjacent pair of
vertices. This saves a lot of time, as in each step the AQs change only for
a small fraction of all vertex pairs. This modification provides a speed-up
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3 Modularity Clustering

without affecting the results. We denote this heuristic in the following as
the PG (plain greedy) algorithm independently of its first slow [New04]
or later improved implementation [CNMO04].

The pseudocode of PG without caching A@s is given in Algorithm 1.
The algorithm first initializes the matrix e that stores the fractions of
edges between any two clusters and the vector a of the row sums of e.
The two data structures are necessary to calculate the AQ of a merger
and are updated in every join operation. Retrieving the modularity max-
imal partition from the full dendrogram can be realized by maintaining
a list of join operations. This list is then used in the procedure extract-
ClustersFromJoins to get the desired partition. To identify the optimal
partition, in the dendrogram building phase the modularity of the parti-
tions after every join can be stored as well. Then, the extraction method
can identify the join after that the partition with the maximal modularity
is found.

Clauset et al. estimate the complexity of the CNM implementation to
be in O(mdlogn) for a network with n vertices, m edges and a depth d of
the resulting cluster hierarchy. They argue that for sparse networks where
m ~ n and a roughly balanced dendrogram (i.e. the depth of all branches
of the dendrogram is roughly identical) with d ~ logn the run-time is
nearly linear with O(nlog®n).

However, for real-world networks there is no indication for d ~ logn.
Wakita and Tsurumi [WT07] showed that the assumption of balancedness
of the dendrogram does not hold for their large friendship network from
the Japanese social network site mixi [Mix]. They presented metrics (con-
solidation ratios) and proposed to select a join not solely on the maximal
AQ but on the product AQ(C;, C;)-ratio(C;, C;). The ratio(C;, C;) could
e.g. be set to min(|C;|/|C}l, |C;|/|Ci]) so that equally sized clusters are
preferred. However, the analysis of the algorithm of Wakita and Tsurumi
indicates that the improvement of their algorithm is not due to a skillful
choice of the metrics but a result of the randomization effect of the metrics
(compare discussion of balancedness in Section 4.2).

3.2.3.2 Multi-Step Greedy (MSG)

Another well performing algorithm has been published by Schuetz and
Caflisch [SC08a]. Their multi-step greedy algorithm performs several joins
in every step. All joins between connected clusters are grouped by their
modularity delta. All joins in the top [ groups will be performed. The
pseudocode of the MSG algorithm in Algorithm 2 shows the similarity of
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3.2 Modularity Maximization

Algorithm 1 Plain greedy algorithm
Data: undirected, connected graph g, constant k
Vv Initialize
forall the v € V do

forall the neighbors n of v do

| elv,n| « 1/(2 * edgecount)

end

afv] < rowsum(ev])
end

¥ Build Dendrogram (Greedy)

for i = 1 to rank(e)-1 do
maxDeltaQ < —oo
forall the connected clusters c1, ¢2 do
delta@ <+ 2(elcl, 2] — alcl] * a[c2])
if delta®) > maxDelta() then
mazxDelta() < delta@)
nextjoin < (cl,c2)
end
end
join(nextjoin)
joinList <— joinList + nextjoin
end
clusters < extractClustersFromdJoins(joinList)

93



3 Modularity Clustering

MSG to PG.

The MSG algorithm has a complexity of O(mdlogn). With the same
argumentation as [CNMO04] (d ~ logn) the authors estimate the time
complexity to be O(nlog®n) [SCO8b]. While the multi-step approach is
likely to result in a less unbalanced merging process than the plain greedy
algorithm, there is no good reason for the assumption of d ~ logn. A
drawback of this algorithm is that the clustering quality depends on the
parameter [ that needs to be guessed. To achieve their published compet-
itive algorithm runtimes, the optimal value of this parameter has to be
known in advance. Otherwise, six independent runs of the algorithm are
needed to receive a result near to the result with the optimal parameter [

[SCO8b].

3.2.3.3 Modularity-based Multilevel Graph Clustering (MOME)

One of the so-far best performing algorithms in terms of speed and quality
has been developed by Zhu et al. [ZWM108]. Their algorithm is based on
the multilevel paradigm introduced by Bui and Jones in their influential
paper [BJ93]. The idea of the multi-level paradigm is to create a series
of more and more coarsed problem representations, find a solution for
the most coarsed problem and refine this solution while projecting the
solution step by step back to the initial problem. The algorithm of Zhu
et al. could be seen as an instance of the multilevel refinement scheme for
modularity clustering published by Noack and Rotta [NROS8| in parallel.
See the discussion on that scheme in Section 3.2.6.

In a first phase, the coarsening phase, the algorithm recursively cre-
ates a set of graphs. Starting with the input graph, each vertex of the
graph will be merged with the neighbor that yields the maximal increase
in modularity. If the modularity delta is negative for all neighbors, the
vertex will be left as it is. The resulting graph will be recursively pro-
cessed until the graph can not be contracted any more. Subsequently, in
the uncoarsening phase, the set of successively collapsed graphs will be
expanded while the communities get refined by moving vertices between
neighboring communities. For several real-world networks this algorithm
found the best so-far published clustering quality. However, while an ex-
plicit analysis of the run-time complexity is missing, the results from the
evaluation indicate that it is by far not linear.
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Algorithm 2 MSG algorithm
Data: undirected, connected graph g, constant k
Vv Initialize
forall the v € V do

forall the neighbors n of v do

| elv,n| + 1/(2 * edgecount)

end

afv] < rowsum(e[v])
end

¥ Build Dendrogram (Multi-Step Greedy)

while (i, j) with AQ(i,7) > 0 exists do

delta@sSet « {}

forall the connected clusters c1, c2 do

delta@ «+ 2(elcl, 2] — (alcl] * a[c2]))
delta@sSet < deltaQsSet + {(c1, 2, delta)}

end
touched < {} // list of already joined clusters
forall the (cl,c2,deltaQ)) € delta@sSet do
if delta@ in top | values N\ cl,c2 & touched then
join(cl,c2)
joinList < joinList + (c1,c2)
touched < touched + {cl, c2}
end

end
end
clusters < extractClustersFromdJoins(joinList)
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Algorithm 3 MOME algorithm

Data: undirected, connected graph G
Vv Coarsing
coarsedGraphs < {G}

repeat
coarsed < False

forall the v € V' in random order do
w < arg max,ey AQ(v, u)
if AQ(v,w) > 0 then
merge(G', v, w)
coarsed < True
end
end
if coarsed then
| coarsedGraphs < coarsedGraphs U G’
end

until coarsed == False;

V¥ Uncoarsing and Refinement
forall the G € coarsedGraphs do
// borderline = vertices with inter-cluster edges
borderline < get Borderline(Q)
forall the v € borderline do
C,, < argmaxc,ec AQ(v, ;)
if AQ(v,C,) > 0 then
move(v, C;)
borderline < update Borderline(G, borderline)

end
end
end
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3.2.3.4 Unfolding Algorithm

A very fast agglomerative hierarchical algorithm has been developed by
Blondel et al. [BGLLO8]. The algorithm starts with singleton clusters.
Every step of the algorithm consists of two phases. At first, all vertices are
sequentially and iteratively moved between their current and a neighboring
cluster, if this increases the modularity. In the case that several moves
have a positive AQ, the one with the highest AQ is chosen. To speed up
this process a threshold is introduced to determine when to stop the first
phase based on the relative increase in modularity. The pseudocode of the
algorithm is shown in Algorithm 4.

Although Blondel et al. do not refer to it, the algorithm’s first phase
uses the local optimization procedure first proposed in [New06b]. The
only difference is the introduction of the threshold that determines when
to stop the local optimization. However, the introduction of a threshold is
important for the good results in terms of run-time. The most modularity
gain is achieved in the first iterations. Later iterations provide very little
improvement and omitting them saves a lot of time without significantly
decreasing the achievable modularity.

In the second phase of each step, the result of the first phase is used to
create a new graph, where all vertices that have been assigned to the same
cluster in the first phase are represented by one vertex. The edge weights
between the original vertices are summed up as the new edge weights
between the new vertices. Then, the algorithm returns to the first phase
and moves the new vertices between clusters.

Blondel et al.’s reference implementation of this algorithm showed to
be very resource efficient. A graph with about 118 millions vertices and
one billion edges can be processed on a machine with 24GB RAM.

3.2.3.5 Adaptive Algorithm

A principle idea of Ye et al.’s [YHYO08] adaptive clustering algorithm is
to define new measures that shall reflect the forces with which a vertex

is attracted to a cluster. If the force from a cluster (FO%) on a vertex

is greater than the force of its current cluster (Fz(ns)) then the vertex is
moved. The forces are defined as follow:

. 9, k), 0) = k(v))
F)(v) = el (v) - SE (3.21)
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Algorithm 4 Unfolding algorithm (BGLL algorithm)
Data: undirected, connected, weighted graph inputGraph, threshold t
g < inputGraph
while ¢ can be contracted do
// Phase 1: refine intermediate solution by moving vertices between
clusters
forall the vertices v, do
| c[ve] i // all vertices are placed in their own cluster

end
while totallncrease >t do
forall the vertices v do
best «— v
maxDelta@) < 0
totallncrease < 0
forall the neighbors w of v do

delta@ <+ deltaQ from move of ¢ from c[v] to c[w]

if delta®) > maxDelta() then

max Delta@ < delta®

best <+ w
end

end

clv] « clbest]

totalIncrease < totallncrease + maxDelta()

end

end

// Phase 2: contract graph as induced by partition from phase 1
g < contract(g,cl])

end
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3.2 Modularity Maximization

t
P = e felf) - ] (3.22)

te{ngbs}

()
c, dgfl) is the total degree of all vertices in cluster ¢, k(v) is the degree of
vertex v and {ngbs} is the set of neighboring clusters of the current cluster

of vertex v.

where e;/(v) is the number of edges a vertex v has to vertices in cluster

The algorithm has two alternating phases. In the first phase in repeated
sweeps, the vertices are moved, if there is a F,; > Fj, that pulls a vertex
into another cluster. If this process converges, the algorithm proceeds to
the second phase and all pairs of clusters with a maximal value of AQ
(i.e. all pairs in the equivalence class of mergers with the highest AQ) are
merged. Then the process returns to the first phase. After this procedure
generated a complete dendrogram, the cut with maximal modularity is
extracted.

This algorithm is similar to the PG algorithm or the MSG algorithm.
But while those algorithms are truly agglomerative hierarchical and once
joined vertices never get separated later on, the adaptive algorithm moves
vertices between clusters after every step of mergers.

Ye et al. [YHYO8] estimate the runtime for their algorithm to be
quadratic in the number of vertices, but do not report runtimes from
experiments to verify this estimation. The number of iterations depends
on how fast the adaptive moves reduce the number of clusters. This will
clearly depend on the processed dataset. Every adaptive move phase is ex-
pensive, as the calculation of all forces Fj, and F,,; requires a super-linear
number of operations in the number of vertices. The partitions identified
by the adaptive algorithm have a high quality in terms of modularity.

3.2.4 Hierarchical Divisive Algorithms

Divisive hierarchical algorithms recursively split a graph into subgraphs.
This means, in the first step all vertices are put into the same cluster
which then is split into two (bi-sectioning) or more subclusters. Then, the
subclusters are recursively split by applying the same split procedure as
before on the subgraphs induced by the clusters.
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Algorithm 5 Adaptive algorithm

Data: undirected, connected graph g
while |V| > 2 do

// Phase 1: adaptive moves

forall the vertices ve V do

in £, (0)

forall the neighboring clusters t do

out FO(Z (v)

bestT = s

maxOut < —oo

if out > mazxOut then
maxQOut < out

bestT =t
end

end

move(v,bestT)

end

// Phase 2: agglomerative hierarchical join step
maxDeltaQ « —oo

forall the connected clusters c1, c2 do

if deltaQ(cl, c2) > maxDelta@ then
mazxDelta() + delta@)
nextjoins < {(cl,c2)}
end
if deltaQ(cl, c2) = maxDelta then
| nextjoins < nextjoins | J{(c1,c2)}
end

end

join(nextjoins)

end
partition <— extractBestCutFromDendrogram()
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3.2.4.1 Spectral Algorithms

Various spectral graph clustering algorithms have been developed (see
Section 2.2.6.5). As the eigensystem of a graph’s adjacency matrix does
not reflect the modularity, finding highly modular structures by spectral
analysis requires the combination of techniques, respectively the use of
scoring methods to differentiate cuts identified through spectral analysis
with their modularity.

To maximize modularity several spectral algorithms have been devel-
oped [WS05, New06b, RZ07, RZ08]. All of them suffer from a high time
complexity. The maximal graph size they are able to process in reasonable
time is in the order of some ten thousands of vertices.

Well-performing spectral modularity clustering algorithms have been
proposed by Ruan and Zhang [RZ07], who combined ideas of existing
spectral clustering methods to the algorithm KCUT. This algorithm re-
cursively partitions a graph in k& subgraphs, where k is between 2 and an
upper limit [. In each step, for all k& the candidate partition is calculated
and the partition with maximal modularity is selected. KCUT splits the
graph with a method similar to the unnormalized spectral clustering de-
scribed in Section 2.2.6.5. For the given upper limit [, the eigenvectors
corresponding to the [ largest eigenvalues of the normalized Laplacian ma-
trix are used to create a n x [ matrix V. For each k € {2,...,1} the first
k columns of V are taken and clustered with a k-means algorithm.

In a consecutive work, Ruan and Zhang [RZ08| improved KCUT. The
new QCUT algorithm alternates between a partitioning phase executing
cuts by means of the KCUT algorithm and a refinement phase. QCUT
alternates between the two phases until neither of them is able to increase
modularity. In the refinement phase, vertices are moved between clusters
and clusters are merged. A matrix T = (¢,;),xx is computed, where ¢, is
the modularity change that results from a move of vertex v to cluster j.
Furthermore, a matrix S = (s;;)kxx is computed where s;; is the the AQ
when the clusters 7 and j are merged. From both matrices that operation
is executed that produces the highest modularity gain. After each move
or merger operation the required fields in both tables are updated and the
procedure is continued as long as an operation with a positive AQ exists.

3.2.4.2 Extremal Optimization

The divisive hierarchical algorithm by Duch and Arenas [DAO05] is an algo-
rithm that uses the concept of extremal optimization [BP99] to determine
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the recursive splits of the clusters. Extremal optimization is an approach
for finding good solutions of combinatorial problems by locally refining a
solution. The local refinement is realized by using a local fitness function.
Instead of using the global function (for which a near-optimal solution
is searched), the refinement alters a solution by employing a second local
fitness function. The component of the solution with the least local fitness
is altered.

The algorithm of Duch and Arenas uses the extremal optimization ap-
proach to find the cuts for recursive bi-sectioning. The vertices of a cluster
are randomly split into two groups. Then, iteratively the vertex with the
least fitness is moved from its current group to the other group. The
fitness of the vertex v, of cluster Cj is

Gz = Kz — du, 0 (3.23)

where k, is the number of intra-cluster links and d,,, the degree of vertex
vz. The term a; is - as before - the row sum (marginal distribution) of the
i-th row of the matrix (e;;).

When the split of a cluster has been determined, all edges between
vertices of different groups are deleted. The groups are regarded as the
clusters and they get split themselves until further bi-sectioning does not
increase the global modularity.

Fortunato [Forl0] gives a time complexity of O(n?logn) for this ex-
tremal optimization algorithm. As the costs are more than quadratic the
algorithm of Duch and Arenas is not capable of processing large networks.

3.2.4.3 lterated Tabu Search

Iterated tabu search (ITS) [MLROG6] is (like standard tabu search [Glo86])
a heuristic for combinatorial optimization problems. Tabu Search is an
iterative metaheuristic. While tabu search explores the search space and
examines one solution after the other, it maintains a tabu list of not-
allowed operations to determine the next solution. In every step the best
solution in the neighborhood of the current solution is selected that is
not prohibited to be selected by a rule in the tabu list. With appropriate
tabu rules, tabu search can leave local optima but tends to stick to one
region of the search space. To overcome this limitation iterated tabu
search randomly alters previously found optima to find new start points
to continue the tabu search.

This metaheuristic has been applied to maximizing modularity by Lii
and Huang [LH09]. Their ITS for modularity maximization recursively bi-
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partitions a graph. A cluster is split into two by starting with a random
division into two subclusters that then get optimized. Getting trapped
in cyclic move operations is prevented by appropriate tabu rules. To
escape one region of the search space the clusters are perturbed by moving
critical vertices, i.e. vertices whose move has an impact on the partitions
modularity.

For small graphs (datasets up to and including the Email dataset, see
Section 4.6.1) the ITS algorithm of Lii and Huang [LLH09] finds very good
solutions. However, for larger graphs (with tens of thousands of vertices
and more) the identified partitions are of comparable low quality and the
search time was in the range of hours. Therefore, the algorithm is not
qualified to be applied on large graphs with millions of vertices.

3.2.5 Other Non-Hierarchical Algorithms
3.2.5.1 Contraction-Dilation Algorithms

Mei et al.’s [MHST09] contraction-dilation algorithm is centered around
a local vertex moving procedure (and with this is very similar to the
unfolding algorithm of Blondel et al. discussed in Section 3.2.3.4). The
algorithm alternates between a contraction phase and a dilation phase.
In the contraction phase every vertex is moved from its current cluster
to the cluster where A(Q is maximal. The algorithm tries to move every
vertex of the list of vertices until in one round no vertex could be moved.
Mei et al. called this phase contraction phase because some clusters will
be empty after all of their vertices have been moved to other clusters.
After the contraction phase the dilation phase starts and a perturbation
is conducted to escape local maxima. The perturbation is realized by
moving every vertex with a perturbation rate p to a random cluster. Mei
et al.’s experiments showed that a perturbation rate between 0.4 and 0.8 is
best for most of their test networks. The algorithm starts with a random
assignment of the vertices to ¢4, clusters, where ¢,,,, is a parameter.
Then, the alternating contraction and dilation phases are iterated for a
given number of times.

The idea of this algorithm is quite simple and for smaller networks com-
petitive quality could be achieved. The biggest advantage of this algorithm
is its easy implementation and low memory consumption. However, the
vertex movement procedure is costly, when a partition (after each pertur-
bation) is bad and several rounds are needed to find a local maximum.
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3.2.5.2 Label Propagation Algorithms

In Section 2.2.6.6 a label propagation clustering algorithm has been dis-
cussed that has been proposed as a fast alternative to maximizing the mod-
ularity of a partition. Based on that work, label propagation algorithms
that explicitly optimize a partition’s modularity have been developed.

Barber and Clark [BC09] presented the algorithm LPAm (Label Prop-
agation Algorithm for Modularity) that constrains the label propagation
to maximize modularity. The original label update rule [RAKO7] for a
vertex v, was

I/, = argmax( Z My (1, 1)) (3.24)

! vy eV

where [ is an abritary label, [, is the label of the vertex v, and ¢ is the
Kronecker symbol, i.e. §(z,y) = 1 for x = y and otherwise 0.

The adapted update rule for modularity maximization replaces the ad-
jacency matrix M with the modularity matrix B = (b;;), where

a;a;

(3.25)

bij = mij — om .
That means, while M is the matrix of the existing edges, B is the matrix
of the number of existing edges minus the number of expected edges. The
label update rule for LPAm is then

I = arg?aax( D bayd(ly, 1) (3.26)

vy eV

Liu and Murata [LM10] proposed an extension of LPAm, LPAm+, that
solves the problem that LPAm gets stuck in local maxima, because it fa-
vors clusters of the same size. LPAm+ uses LPAm to find a partition.
Then, an agglomerative hierarchical algorithm (in their implementation
the MSG algorithm, see Section 3.2.3.2) can be used to merge commu-
nities and to escape a local maximum. After the run of the hierarchical
algorithm, LPAm is used again. The alternating use of the two algorithms
is stopped, when no further improvement of modularity can be achieved.
The LPAm+ approach needs significantly more computational time than
LPAm, but the average performance in terms of modularity could be in-
creased significantly, as well. The partitions found by LPAm-+ are for
all test datasets better than those of LPAm and MSG with respect to
modularity.
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3.2.6 Refinement Techniques

Refinement techniques are algorithms that optimize a clustering identified
by a separate algorithm. A clear differentiation of refinement techniques
from main clustering algorithms by the way the algorithms work is not
possible. The differentiation is based on the way the algorithms are em-
ployed.

The influential algorithm of Kernighan and Lin [KL70] (see Section
2.2.6) has inspired the first proposed refinement technique for modularity
clustering by Newman [New(06b] and is an essential part of the MOME
algorithm (Section 3.2.3.3), the unfolding algorithm (Section 3.2.3.4) and
the contraction-dilation algorithm (Section 3.2.5.1).

A comprehensive discussion of refinement strategies has been conducted
by Noack and Rotta [NR08, NR09]. Sticking to their terminology, these
strategies are called Complete Greedy (Algorithm 6), Fast Greedy (Algo-
rithm 7) and Adapted Kernighan-Lin (Algorithm 8).

The complete greedy refinement repeatedly calculates the globally best
move of a single vertex. If the best move has a positive impact on mod-
ularity, it is executed, otherwise the procedure stops. This approach is
costly in terms of the number of required operations as in every step for
all vertices the AQ for each potential move to a neighboring cluster has
to be computed.

Algorithm 6 Complete greedy refinement (in notation of [NROS])

Input: graph, partition
Output: partition
repeat
// determine globally best move of any vertex v
// to any target cluster D
(v, D) «+ argmax(, py AQ(v, D)
if AQ(v,D) > 0 then
| move vertex v to cluster D
end

until AQ(v, D) < 0;

The fast greedy algorithm is computationally less demanding. It iter-
atively sweeps the set of vertices and moves a vertex to the neighboring
cluster that causes the maximal positive modularity increase. The algo-
rithm stops, when in one sweep no vertex move could increase the overall
modularity.
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Algorithm 7 Fast greedy refinement (in notation of [NROS])
Input: graph, partition
Output: partition
repeat
foreach verter v do
D <« arg maxp AQ(v, D) // determine for v best target cluster D
if AQ(v,D) > 0 then
| move vertex v to cluster D
end

end
until no improved partition found;

The adapted Kernighan-Lin refinement is a more complex algorithm
than the two previously described refinement techniques. Similar to the
global greedy algorithm, the adapted Kernighan-Lin refinement executes
the globally best move, but in contrast even, when this move decreases
modularity. An additional restriction is that every vertex may only be
moved once. After every move operation the resulting partition is stored,
if it has a higher modularity than the best previously found partition (peak
modularity). Further moves are executed, as long as there is a vertex
that has not been moved before and as long as the peak modularity has
been increased in the last k£ steps. When this move procedure stops, the
algorithm returns to the best previously found partition and starts from
the beginning. The complete algorithm ends, when the partition could
not be improved in the last move procedure.

Sun et al. [SDJB09] proposed a different adaptation of the Kernighan-
Lin algorithm. Their algorithm considers also moves of vertices to new
clusters (singletons) and it has no break condition of quitting when no
improved partition has been found in the last £ moves. No evaluation
of the effect of including empty clusters as a move target has been con-
ducted. However, a positive impact is doubtful for the same reason why
the Kernighan-Lin refinement is unlikely to escape a local maximum: To
form a new dense cluster from a singleton, probably several modularity-
decreasing moves have to be made in a row.

Noack and Rotta conducted tests to evaluate the refinement quality and
the runtime of the three algorithms. The complete greedy as well as the
Kernighan-Lin refinement method scale much worse than the fast greedy
refinement. The complete greedy approach achieves with the increased
computation effort only a slight advantage over the fast greedy algorithm.
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Algorithm 8 Adapted Kernighan-Lin refinement (in notation of [NROS§])
Input: graph, partition
Output: partition

repeat
peak <— partition
mark all vertices as unmoved
while unmowved verter v exists do
D < argmaxp AQ(v, D) // determine for v best target cluster D
move v to cluster D, mark v as moved
if Q(partition) > Q(peak) then
| peak < partition
end

if k& mowves since last peak then
| break

end
partition < peak
end

until no improved partition found;

The Kernighan-Lin method resulted in minor advantages compared to
the fast greedy algorithm and the complete greedy algorithm, but is pro-
hibitively expensive.

The fast greedy refinement algorithm provides the best trade-off be-
tween time and quality. This refinement technique does not necessarily
stop at a local maximum, but could also stop at a saddle point. How-
ever, in all test runs, where the fast greedy algorithm optimized a solution
found by the RG algorithm (see Chapter 4) the procedure stopped at a
local maximum. It seems that the modularity function usually has no
plateaus (at least in the datasets used in Section 4.6).

The three discussed refinement algorithms achieve only minor improve-
ments of modularity. The only method that could theoretically escape a
local maximum is the adapted Kernighan-Lin refinement, because this is
the only approach that allows moves that decrease modularity. However,
as Noack and Rotta argue, an escape is not very likely as that would
usually require a series of sharply modularity-decreasing moves.

Therefore, Noack and Rotta [NRO8] propose a multi-level refinement al-
gorithm (Algorithm 9). The refinement requires that first, in a coarsening
phase, a set of increasingly coarser graphs is created by an agglomerative
hierarchical algorithm (coarsener). In the following refinement phase, the
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hierarchical information encoded in the set of coarsed graphs is used to re-
ceive better refinement results with e.g. one of the refinement algorithms
(refiner) shown above. The refinement starts with refining the coarsest
graph. Then the cluster assignments of this graph are projected to the
next less coarse graph and the refinement takes place once again. While
other refinement techniques only move single vertices, the multi-level re-
finement tries to move groups of vertices: in the first step whole clusters,
then smaller groups and only in the last step single vertices.

Algorithm 9 Multi-Level refinement [NROS|

Input: graph, reduction factor

Output: partition

Vv Coarsening Phase

level[1] « graph

for/=1...ndo
level[l+1] <« coarsener (level[l],reduction factor)
if no clusters merged then

| break
end

end

V¥ Refinement Phase

forl=1,,—1...1do
project clustering from level[l+1] to level[l]
partition <— refiner(level[l], partition)

end

3.2.7 Pre-Processing

Some algorithms that have been proposed as main clustering algorithms
can also be used to refine partitions. Especially those algorithms that do
extensive local searches and have a high complexity and, therefore, are not
able to cluster large networks in a reasonable amount of time, could be
still of use to optimize already good partitions. For example, a simulated
annealing algorithm like the one of Medus et al. [MAnDO5] (see Section
3.2.2.1) could be used. In this case, it depends on the point of view,
whether to say the main algorithm is accompanied by a post-processing
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refinement or a pre-processing is applied to find a good starting point for
the main algorithm.

In the following, two pure pre-processing approaches are presented that
are not able to find good partitions on their own: the neighborhood-
similarity approach of Wang et al. [WSWAO0S| and the random-walk pre-
processing of Pujol et al. [PBDO06].

Wang et al. [WSWAO8] combine the plain greedy algorithm (see Sec-
tion 3.2.3.1) in the implementation of Clauset et al. [CNMO4], respec-
tively the algorithm of Wakita and Tsurumi [WTO07], with a pre-processing
that generates clusters on the base of vertex similarity. Let N(v) =
{w € V|(v,w) € E} be the set of neighbors of a vertex v. Wang et
al. [WSWAOQ8] measure the similarity of a pair of vertices v and w by the
Jaccard index of the neighborhood of the vertices:

_IN@AN@)|
[N (v) UN(w)]
Furthermore, they define near neighbors as those neighbors that have a
higher similarity than the average

Sjaccard<vu U}) (327>

S'accar a, b
Nnear('U) = {w\(v,w) € E7 Sjaccard<v7w) > E(mb)EE J d< ) } ’

|E|
(3.28)

and good neighbors as those neighbors that have a higher similarity than
the average near neighbor

EaEN (v) Sjaccard(au U)
Nyood(V) = § wl(v,w) € E, Sjsccara(v,w) > nen )
I { ! | Nnear (V)]

(3.29)

Finally, Wang et al. define friends as those vertices v and w that are
reciprocally good neighbors of each other

Friend(v,w) < (v € Nyppa(w)) A (W € Nyooa(v)). (3.30)

The initial partition of a graph consists of clusters, where all vertices
are directly or indirectly friends. This partition is then clustered with a
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plain greedy algorithm. The similarity-based pre-processing significantly
improved the clustering quality and the overall run-time.

Pujol et al. [PBDO06] presented another pre-processing method that is
intended to reduce the dimensionality of the clustering problem in a com-
putationally cheap way. Once the problem dimension is reduced, it does
not matter that the following greedy agglomerative hierarchical algorithm
is rather expensive in terms of time.

The pre-processing idea of Pujol et al. is based on random walks. Let
A be the adjacency matrix of a graph G and [ the identity matrix. Fur-
thermore, the diagonal matrix D = (dj;) is defined as dj; = 1+ 3, a;;.
Then, the matrix

M= (A+1)D! (3.31)

gives the transition probabilities for random walks on the graph G. m; is
the probability of a random walker to go from vertex i to vertex j. Let ng
be the probability distribution that the j-th random walker is at vertex i
at time ¢. One random step of all random walkers changes the probability
distribution as follows

G = M'G". (3.32)

The idea of Pujol et al. is not to calculate the stationary state but the
transient state after three steps, i.e G3. Then, a vertex i is assigned to
that group j where g;; is maximal. That means, all vertices in one group
have been visited most often by the same walker. Choosing the transient
state after only e.g. three steps ensures that the random walkers stay in
the neighborhood of the initial position.

The random-walk pre-processing step was able to improve the runtime
as well as the quality in terms of modularity compared to Newman’s plain
greedy algorithm.

Both pre-processing methods could also be promising approaches to
improve other algorithms. Especially, other agglomerative hierarchical al-
gorithms like the MSG algorithm (see Section 3.2.3.2) could benefit from
a pre-processing. PG as well as MSG suffer from imbalanced merger pro-
cesses (see Section 4.2) which a pre-processing is likely to prevent or at
least to reduce.
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Figure 3.3: Dynamic update problem [GMSW10b]. A function F is re-
quired that updates the partition C(G) to C'(G’) when the
graph G is updated to G'.

3.2.8 Dynamic Update Algorithms

Often, real-world networks actually represent snapshots of the relations
between the modeled entities at one point in time while the relations
constantly change. In friendship networks new friendships are formed
and other friendships are broken off. In co-citation networks, with every
new paper new links between co-authors emerge. If one wants to keep
community information up-to-date, the clustering process has to be redone
with every change of the graph or an update algorithm has to be used that
incorporates the changes in the graph in the existing partition.

The generic dynamic update problem is depicted in Figure 3.3. When
a graph G is updated and becomes G’ two approaches to update the
partition C(G) to C’'(G’) are possible: apply the same produce T' to G’
that has been used to cluster G or use an incremental update procedure
F that calculates C’'(G") on basis of C'(G) and the changes of the graph
d. A general introduction to incremental update algorithms for graph
clustering methods is out of the scope of this thesis. A good overview on
this topic provides [Fra07].

The incremental update algorithms presented below are heuristics with
a procedure F' that does not guarantee to find the partition a reclustering
would identify. If the update procedures are called many times, update
errors (the differences to C’'(G’)) can accumulate. So far, the only incre-
mental update algorithm for graph clustering that does not suffer from
this problem is the algorithm of Franke and Geyer-Schulz [FGS09] for
updating restricted random walk clusterings.

Incremental update algorithms for graph clustering based on modularity
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have been developed by Gorke et al. [GMSW10a, GMSW10b] and Nguyen
et al. [NXDT10]. Both methods work with local update heuristics to
incorporate the changes in the graph structure in the partition. Gorke
et al. showed that updating a modularity optimal partition of G' to a
modularity optimal partition of the altered graph G’ is NP-hard. As a
consequence, update algorithms for modularity-based partitions have to
be heuristic to be of practical use.

The Quick Community Adaptation (QCA) algorithm of Nguyen et al.
is based on a case differentiation of simple graph change events: adding
a vertex (including adjacent edges), deleting a vertex (including adja-
cent edges), adding an edge, deleting an edge. When a cluster update is
considered as necessary from the nature of the graph alteration, a local
update procedure based on the forces idea of Ye et al. [YHY08] (see Sec-
tion 3.2.3.5) is employed. Nguyen et al. compared the QCA algorithm
with the static Unfolding algorithm (see Section 3.2.3.4) on three datasets.
While the static algorithm requires more and more time with the growth
of the analyzed graphs, the runtime of the QCA update procedure re-
mains constant. The QCA algorithm showed bad results for one dataset
(the modularity dropped behind the one of the partitions identified by the
Unfolding algorithm; the number of communities strongly increases while
the number of communities slightly decreases for the Unfolding algorithm)
but the results for two other datasets were comparable to the results of
the static Unfolding algorithm.

The update algorithm by Gorke et al. uses a more sophisticated strat-
egy. Assuming that the changes in the graph cause only local changes in
the partition, the idea is to break up parts of the partition C'(G) receiving
a preclustering C (G). That means, vertices assumed to be affected by the
graph update (V) are moved from their cluster in C(G) to a singleton.
Then, agglomerative hierarchical algorithms are started from this initial
partition (instead of starting from singletons) to compute C(G’). The
unfolding algorithm of Blondel et al. (see Section 3.2.3.4) as well as the
plain greedy algorithm (see Section 3.2.3.1) have been evaluated for this
task.

Several strategies to break up the relevant regions of a graph have been
proposed by Goerke et al. Three subset strategies calculate the set V' of
vertices that will be freed, i.e. removed from their current cluster and
put into a singleton, based on their relation to the vertices involved in an
update. If the edge (v,w) gets changed in an update of the graph, then
V gets calculated as follows:
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e breakup strategy: V = C(v)|JC(w), where C(u) is the cluster of
vertex u

e neighborhood strategy: V = Ny(v) J Ng(w) , where Ny(v) is the d-
hop neighborhood of vertex v, i.e. all vertices is a maximal distance
of d starting from v

e bounded neighborhood strategy: the first s vertices found by a
breadth-first search started at v and w

A fourth strategy is based on searching in the previous partition’s den-
drogram for those vertices that are (depending on the graph change op-
eration) supposed to be candidates for the different cluster assignment in
the updated partition.

Goerke et al. [GMSW10b| evaluated the performance of the four strate-
gies in combination with the PG or the Unfolding algorithm. The perfor-
mance of a combination of break-up strategy and an algorithm to start
from the partition resulting from the break-up procedure (preclustering)
depended on the network used for evaluation.

An insight from a later on discussed property of agglomerative hierar-
chical algorithms (see Section 4.2) is of interest for the discussion of the
dynamic modularity clustering algorithms presented above: The huge dif-
ferences in the cluster sizes (newly freed singletons on the one hand and
large non-altered clusters on the other hand) of the partition used as a
starting point for the agglomerative hierarchical clustering are a bias for
merger decisions. So, the breaking up of clusters can produce a problem-
atic situation for agglomerative hierarchical algorithms.
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4 Randomized Greedy
Algorithms

In this chapter the randomized greedy (RG) algorithm for modularity clus-
tering and its extension RG+ will be presented. RG has been published
first in [OGSS10] and RG+ has been introduced in [OGS10].

First the idea of the RG algorithm and its implementation will be dis-
cussed. Then an important property for agglomerative hierarchical algo-
rithms like RG, the balancedness of the merge process, will be discussed.
The analysis of the balancedness provides the idea for the advanced RG+
algorithm, which will be presented next. Afterwards, implementation de-
tails, a discussion of time and memory complexity and evaluation results
for both algorithms follow.

4.1 RG Algorithm

Randomized algorithms have been successfully employed for a broad range
of problems. This class of algorithms differs from deterministic algorithms
in so far, as they make random choices during execution. For a good
generic introduction to randomized algorithms, the different ideas behind
randomization and examples for various types of problems, see the text
book by Motwani and Raghavan [MR95].

Random choices are used in many modularity clustering algorithms dis-
cussed in Section 3.2 for tie breaking. If an algorithm is not able to decide
which of several options is best (e.g. because the AQ of all options is
equal) a random choice is used as a tie break. In contrast to those algo-
rithms, two new algorithms will be presented, for which randomization is
a fundamental principle. Next, it will be discussed, how randomization
can be used to decrease complexity, and how it can increase optimization
quality.
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4.1.1 ldea

The first greedy algorithm (Algorithm 1) developed by Newman [New04]
follows a quite simple approach. As every agglomerative hierarchical algo-
rithm does, this algorithm starts with putting each vertex of the processed
graph in a separate cluster (singleton). Then, in each step of the algo-
rithm those two clusters are merged that result in the highest AQ. This
way, the complete dendrogram is created in n — 1 steps. That level of the
dendrogram is considered as the final clustering, that yields the highest
value of modularity. The decision variable of this algorithm is the delta
of the quality function upon a join (AQ). Recall the derivation of AQ for
merge operations (Equation 3.6). The AQ of the partition C” resulting
from the join of the clusters C; and C} of the partition C is:

AQ(i, j) =Q(C) = Q(C)

=) Q(C.) = ) QCu)
CqeC’ CqeC
= ) QIC)+QCUC)

CaeC\{C;,C5}

- > QC)+QC) +Q(Cy)
CaeC\{C;,C5}
=Q(C; U Cj) — Q(C;) — Q(Cy)
= ((eii + €55 + eij + e5i) — (@i + a5)*) = (e — af) — (ej; — @)
=€ + ejj + eij + 6]‘2‘ — a? — 2(1,2‘&]‘ — a? — €4 + a? — 6]‘]‘ + a?
=ei; + €5 — 2a,a;

:2(62‘3‘ — aiaj)

where e;; + e;; = 2e;; because of the symmetry of the adjacency matrix.

Newman [New04] noted that merging two unconnected clusters will al-
ways result in a decrease of modularity. This is intuitive as the observed
fraction of edges between unconnected clusters is 0 and the expected value
for connected graphs has to be greater than 0. The formal analysis goes
as follow: If two clusters C; and C; are not connected e;; = e;; is 0. As
only connected graphs are considered, each vertex has a degree of at least
1 and, therefore, every cluster has a degree of at least 1. So, a; > 0 for
every C; € C. Consequently, the modularity change is
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AQ(i,j) =2 | ey — aia,
~ =
=0 >0

<0

for unconnected clusters C;, C;.

As a join of two clusters can only increase the modularity if those two
clusters are connected, unconnected clusters do not have to be considered
for a join.

The modularity change AQ(i,7) depends just on the local properties
of the two involved clusters. The terms a; and a; are the sums of the
degrees of the vertices in cluster C; respectively C; divided by 2 times the
total number of edges in the graph. The term e;; is the number of edges
connecting vertices in cluster C; and C; once again divided by 2 times the
total number of edges in the graph. As AQ(7, j) depends only on the total
degrees of the merged clusters and the number of edges connecting both,
the distribution of the vertex degrees has a huge influence on the number
of different values AQ(i, j) can take.

Especially in larger graphs many possible cluster joins will be equivalent
in terms of modularity change. For example, the dataset of collaborations
of authors [New01] consists of 116181 edges. That means, in step one (i.e.
with the start configuration into singletons) there are 116181 possible
joins. But there are only 3475 classes of equivalent joins in terms of
modularity. For this reason, considering all potential joins is unnecessary
as many of them will be structurally identical. For each class of equivalent
joins (with respect to the modularity metric) only one member needs to
be considered to find the join that increases modularity most. Of course,
picking one join of each equivalent class without calculating the AQ of
each join is not possible as the equivalence classes are unknown. But
anyway joining that pair of clusters with maximal AQ in each step does
not necessarily lead to a global maximum. Therefore, it can be assumed
that considering only a sample of all pairs of vertices for a join performs
as well as considering all pairs of vertices. Especially, because of the low
number of equivalence classes of joins, there is a good probability of having
a pair of vertices in the sample with a near maximal AQ.
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4.1.2 Core Algorithm

Based on the observation that natural networks show a high redundancy
of those structures determining the modularity delta upon a join of two
clusters and the knowledge that choosing the local optimum in every step
of the algorithm is not necessary as it does not lead to the global opti-
mum, the randomized greedy (RG) algorithm has been developed. The
pseudocode of RG is shown in Algorithm 10. There is only a slight differ-
ence of the randomized approach compared to the plain greedy algorithm.
But while the conceptual change is minor, it takes major changes of the
algorithm’s implementation to exploit the full speed-up potential as will
be discussed later.

The RG algorithm generates a set S of k randomly selected vertices.
For every pair of vertices consisting of at least one vertex v € S the
AQ is calculated and that join with the highest value of AQ is executed.
L.e. instead of considering every edge for a join as the previous greedy
algorithm does, just a small sample of edges is considered. All other parts
of the RG algorithm are the same as for the plain greedy algorithm. As
PG does, RG creates a full dendrogram and selects that cut from the
dendrogram with the highest modularity as the result.

The approach of RG has an additional advantage compared to PG.
Randomizing the path through the search space offers the possibility to
start over from the beginning and to find another solution. As a single
run of the randomized algorithm is extremely fast, it does not matter that
it occasionally might find comparably bad solutions, as the best solution
out of several runs can be selected as the final result. RG(r) denotes the
RG algorithm with a parameter r, where r gives the number of runs from
which the best result is taken. In Figure 4.1 the influence of r on the
results of the RG algorithm is shown by test runs on the yeast dataset
(see Section 4.6.1). With increasing r the modularity converges towards
the best identifiable solution.

The core of the randomized greedy algorithm (Algorithm 10) can be
improved by integrating the following 2 ideas.

1. Tuning of the sample size for searching for an improvement of AQ
in the greedy phase (section 4.1.3).

2. Postprocessing to guarantee a local optimum (section 4.1.4).

Algorithm 11 shows the pseudocode of the RG algorithm including these
improvements. This pseudocode shows that version of the RG algorithm
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Algorithm 10 Generic randomized greedy algorithm

Input: undirected, connected graph g, constant k
Output: clustering
v Initialize (same as for Plain Greedy Algorithm)
forall the v € V do

forall the neighbors n of v do

| elv,n| + 1/(2 * edgecount)

end

afv] < rowsum(e[v])
end

¥ Build Dendrogram (Randomized Greedy)
for i = 1 to rank(e)-1 do
maxDeltaQ < —oo

cl < random community
for all communities c2 connected to c1 do
delta@ + 2(elcl, 2] — (alcl] * a[c2]))
if delta®) > maxDelta() then
mazx Delta() < delta()
nextjoin < (cl,c2)
end
end

end

join(nextjoin)

joinList <— joinList + nextjoin
end

clusters < extractClustersFromdJoins(joinList)

for j = 1 to k do //search among k communities for best join
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Figure 4.1: Analysis of the effect of parameter r. The results show the av-
erages of 100 test runs of RG on the yeast dataset (see Section
4.6.1) [OGSS10].

that has been implemented for the evaluation in Section 4.6. Details of
the improvements are discussed in the following subsections.

4.1.3 Tuning of k

Tests have shown that the best results are achieved when £ is not fixed but
gets adjusted during the cluster calculation. At the beginning & should
be set to 1, because in only slightly contracted graphs a high number of
cluster pairs with the same AQ exist. About half of the n — 1 necessary
joins to build the complete dendrogram should use this value for k. During
the second half of the joins — when the size of the equivalence classes is
much lower than in the beginning — a choice of k£ = 2 is best. Only on rare
occasions a higher value of £ led to better results while it always took more
time. For none of the real-world datasets used to evaluate performance
and quality a value of k& > 10 increased the quality, but usually lowered it.
The decline in quality for higher values of £ is probably the result of a less
balanced merge process (compare Section 4.2). Within a range between 1
and 10 the run-time impact of any choice of k is very low. The adjustment
of k usually improves the quality by less than 1%.
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4.1 RG Algorithm

Algorithm 11 Randomized greedy algorithm with refinement and heuris-
tic for parameter k

Input: undirected, connected graph g

Output: clustering

» Initialize (same as for Plain Greedy Algorithm)

¥ Build Dendrogram (Randomized Greedy)
for i = 1 to rank(e)-1 do
maxDeltaQ < —oo

if i < rank(e)/2 then
I k<1

end
else
| k<2
end
for j = 1 to k do //search among k communities for best join
¢l < random community
for all communities c2 connected to c1 do
delta@ < 2(e[cl, 2] — (alcl] * a[c2]))
if deltaQ) > maxDelta() then
mazx Delta() < delta()
nextjoin < (cl,c2)
end

end

end

join(nextjoin)

joinList <— joinList + nextjoin

end

clusters < extractClustersFromdJoins(joinList)

» Fast greedy refinement (see Algorithm 12)
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4.1.4 Postprocessing: Fast Greedy Refinement

Once a clustering has been calculated, the quality of the result can usually
be increased by a local optimization postprocessing step as discussed in
Section 3.2.6. After the extraction of the best clustering from the dendro-
gram, the RG algorithm uses a fast greedy postprocessing. An increase
of modularity is tried to be achieved by moving vertices to neighboring
clusters. The list of vertices is walked through and each vertex is moved
to a connected cluster, if this increases the modularity of the partition.
When in one pass through the list of vertices no vertex move with positive
AQ was found, the procedures stops. Then, either a local maximum or a
saddle point has been reached. Surprisingly, a series of test runs on the set
of real-world networks (see Section 4.6.1) showed that all partitions found
are local optima. Having reached a saddle point would imply that there is
a vertex move with AQ = 0. It seems to be very rare in natural networks
that a vertex is equally strongly connected to two (or more) clusters.

In the average case, the fast greedy refinement process is able to improve
the modularity of a clustering found by the RG algorithm by 1-2 %. The
time complexity of this refinement step depends on the number of vertices
and the number of clusters, and scales worse than the randomized greedy
clustering. For small clusters with a few thousand vertices the run-time
is low compared to the main clustering phase. However, for large graphs
with more than 4-5 million vertices the run-time of this step approaches
the one of the randomized greedy clustering. A stop rule for the iterative
sweeps over the set of vertices can improve the runtime with only slight
effects on the quality. The number of sweeps could be set to a fixed number
or be set in relation to the graph’s size. Or a probably even better way
would be to stop the iterations, if the modularity gain in an iteration falls
below a given threshold.

Algorithm 12 shows the pseudocode of the fast greedy refinement.

4.1.5 Analysis of Equivalence Class Sizes

In Section 4.1 it has already been mentioned that the idea for the RG
algorithm is based on the observation that in natural networks many joins
are equal with respect to the induced modularity change AQ and that,
anyway, choosing in every step of the algorithm the join with the highest
value of AQ) is no guarantee to reach the global optimum.

In the following the behavior of the algorithm will be discussed in detail.
Figure 4.2 shows the distribution of the sizes of the equivalence classes at
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4.1 RG Algorithm

Algorithm 12 Fast greedy refinement

Input: undirected, connected graph g, partition p
Output: clustering

Vv Fast greedy refinement

change < true

while Change do

change « false

forall the v € V do

C. < currentCluster(v, p)

bestDeltaQ + 0

forall the neighboring clusters C,, of v as given by p do
delta@ < moveDeltaQ (v, C., C},)

if delta) > bestDelta() then
best Delta() < delta@)

C* <« C,
end
end
f bestDelta() > 0 then
move(v, C,, C*)
change < true
end
end

o

end
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Figure 4.2: Distribution of the sizes of the equivalence classes at five steps
of the RG algorithm during a sample run on the yeast dataset
(see Section 4.6.1). Step 1 shows the initial situation before
the first join. The other four steps are those steps where the
average class size is for the first time lower or equal to 8,6,4
respectively 2. The x-axis has a logarithmic scale.

five distinct steps. At the beginning there are many large classes. During
the run of the algorithm the class sizes decrease. One reason is that the
number of clusters decreases, but it is more significant that through the
joins of clusters the number of similar structures decreases.

Because the change of modularity caused by a merger of two clusters C;
and C; is AQ(C;, C;) = 2(e;; — a;a;), only the number of edges connecting
both clusters and both sums of outdegrees influence AQ). That means,
when initially all clusters are singletons and therefore e;; is either 0 or
1/(2m), only the degrees of the singletons determine the AQ. As most
natural networks have a power-law degree distribution, most vertices have
a low degree. As a result of that, many pairs of vertices (= possible joins)
have the same AQ.

Equivalent joins are defined as follows:

J1 = j2 & AQ(1) = AQ(J2) (4.1)
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4.1 RG Algorithm

Table 4.1: Overview of the number of equivalence classes of joins and av-
erage sizes of equivalence classes before the first join for several
networks (for a dataset description see Section 4.6.1).

Name Edges Equiv. classes Avg. class size
Karate 78 36 2.17
Jazz 2742 900 3.05
Email 5451 677 8.05
Yeast 7031 675 10.42
PGP 24340 1616 15.06
Condensed Matter 116181 3475 33.43
WWW 1090108 9820 111.01

with AQ(j) the modularity delta when executing the join j. Table 4.1
shows the initial average size of equivalence classes of mergers for several
networks.

The randomization strategy exploits that in natural networks many
joins are identical with respect to AQ. The larger a network is, the larger
the equivalence classes of identical joins are. This shows that the random-
ization strategy is especially suitable for large networks. The quality and
run-time evaluation discussed in Section 4.6 supports this conclusion.

A sample run of the RG algorithm on the yeast dataset shows the extent
of the local similarities. Figure 4.3 shows the number of possible joins and
the equivalence classes of joins. The number of possible joins decreases
constantly, because every merge operation decreases the number of clus-
ters and with it the number of possible joins. The number of equivalence
classes increases in the beginning, because the number of distinct clus-
ter degrees increases and the number of distinct connection strengths of
clusters increases. Later on, the number of equivalence classes decreases
when the effect of decreasing numbers of possible joins exceeds the effect
of diversified cluster degrees and cluster connection strengths.

Figure 4.4 shows the resulting average size of the equivalence classes at

each step. The graph has a convex shape. The average class size decreases
especially fast in the beginning and looses momentum to the end.
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Figure 4.3: Number of equivalence classes and number of possible joins (=
number of edges) during a sample run of the RG algorithm on
the yeast dataset.
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Figure 4.4: Average class size of the equivalence classes during a sample
run of the RG algorithm on the yeast dataset. (Note, that the
minimum average is always 1 at the end of the run.)
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4.2 Balancedness

By definition, agglomerative hierarchical algorithms start with a partition
of the graph into singleton clusters. The clusters get merged step by step
and a complete dendrogram is created. From this dendrogram the clus-
tering with the highest modularity will be extracted. Most agglomerative
hierarchical algorithms for modularity clustering use the modularity dif-
ference upon a join (AQ) as the decision variable. One or more mergers
with the highest values of AQ) picked either from all possible mergers (PG,
MSG) or from a sample (RG) are executed.

A critical problem of agglomerative hierarchical clustering algorithms
for modularity optimization is what can be denoted as the locality prob-
lem. The AQ of the merger of two clusters depends on how strongly their
respective neighborhoods are already contracted. Figure 4.5 shows the
graph with which the dependence of the merge process on prior merg-
ers by a greedy selection process will be illustrated. Under the assump-
tion that the shown vertices are a subgraph of a graph with 100 vertices
and 400 edges the following example is discussed. All neighboring ver-
tices of v; have the same degree. Therefore, AQ(vy,v,) is the same for
y = 2,3,4 and 5. If vy and vz are already merged to the cluster {vy, vs},
AQ({v1}, {ve,v3}) > AQ{v1},{vs}) = AQ({v1},{vs}). However, if vy
and vs are already merged to the cluster {vg,vs}, AQ({v1}, {vs, v5}) >
AQ({v1},{v2}) = AQ({v1},{vs}). The cluster with which v; will be
merged solely depends on which of v;’s neighbors has been merged before.
Let us assume that there is no other pair of vertices with a higher AQ
than AQ({v2}, {vs}) = AQ({va},{vs}) (e.g. because all not shown ver-
tices have a degree greater than six), then the final cluster assignment of
vy is only determined by the sequence of the mergers of the vertices.

Because of this locality problem, unbalanced merging processes lead to
bad merging decisions. The merging process of an agglomerative hierar-
chical algorithm is defined as balanced, if all (remaining) clusters grow
roughly evenly. That means, the current size of a cluster is not correlated
with the cluster’s probability to be merged in the next step. A merging
process is maximally unbalanced, when a single cluster grows while all
other remaining clusters remain singletons.

The problem of an unbalanced merging process is shown by a compari-
son of the three algorithms RG, PG and MSG. First, the differences in the
balancedness of the merging process are shown. Afterwards an analysis of
the impact of balancedness on the merging process follows that will show
why the randomized variant achieves superior clustering results in terms
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Figure 4.5: Example for influence of prior mergers on merge decision.

of modularity.

Figure 4.6 shows the merging processes of RG, PG and MSG on the
yeast dataset. The plain greedy merging process contains many phases
where one cluster is merged many times in a row. The largest of these
phases consists of 347 joins. In contrast, the clusters grow simultaneously
for RG. For the larger PGP dataset the differences in the merge process are
even more striking as can be seen from Figure 4.7. Another approach with
a more balanced merge process than that of PG is MSG. This algorithm
joins in every iteration all clusters within the top [ equivalence classes
with regard to modularity. Not recalculating the AQs after every join,
but executing several joins from one calculating step, lets several clusters
grow simultaneously. However, the merge process is still not balanced and
the few large clusters that grow simultaneously grow extremely fast.

An unbalanced merge process means that there is a considerable size
difference between the clusters during the process. While a few clusters
are large, most clusters are small or even singletons. This uneven cluster
sizes mean that some parts of the network are much stronger contracted
than others. The uneven graph contraction directly influences the local
search heuristic of a greedy algorithm, as shown in the example motivated
in Figure 4.5 and discussed above.

PG merges in every step those two clusters C; and C; where AQ(C;, C))
is maximal. As a result of this, a large cluster tends to get merged over
and over with singletons. From the perspective of the singleton C; = {v,},
large neighboring clusters are a problematic bias for the determination to
which cluster the singleton belongs in an optimal clustering.

In Section 3.2.3.1 another problem of unbalanced mergers has already
been discussed. When the runtime complexity of an algorithm depends
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Figure 4.6: Sample merge processes of the PG, the MSG (level parame-
ter [ = 35), and the RG algorithm on the yeast network from
[KCY*06] (in each case without applying refinement proce-
dures). PG achieved a modularity of 0.670, MSG 0.698 and
RG 0.680. The depicted cluster size is the size of the larger of
both merged clusters. Note the different scales of the y-axis.
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Figure 4.7: Sample merge processes of the PG, the MSG (level parameter
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[ = 44), and the RG algorithm on the PGP key signing network
from [BnPSDGAO04] (in each case without applying refinement
procedures). PG achieved a modularity of 0.849, MSG 0.869
and RG 0.874. The depicted cluster size is the size of the larger
of both merged clusters. Note the different scales of the y-axis.



4.3 RG+ Algorithm

Table 4.2: Fractions of vertices of sample clusterings for different datasets
that are not connected to any vertex in another cluster.

Network #Vertices #Inner Vertices %lInner Vertices
Karate 34 17 50%
Jazz 198 48 24%
Email 1133 393 35%
PGP 10680 9340 87%
Condensed Matter 27519 15996 58%
WWWwW 325729 301120 92%
LiveJournal 4843953 2922965 60%

on the depth of the dendrogram, an unbalanced merge process is negative
not only for the quality, but also for the time-performance.

4.3 RG+ Algorithm

As shown in Section 4.2 the contraction of the neighborhood of a ver-
tex influences the gradient at the vertex (AQ). Furthermore, it has been
shown in Section 4.2 that the randomized approach of RG prevents an
uneven contraction of the graph. However, prior mergers still influence
succeeding merge decisions. Obviously, for some vertices it is harder to
decide to which cluster they belong than for others. For example, a vertex
with degree 1 always belongs to its only neighbor in an optimal clustering.
Making decisions about vertices that are easier to assign to the 'correct’
cluster first would provide more information for the harder to make deci-
sions. This is the starting point of our idea for the RG+ algorithm.

A simplified, but illustrative notion for this separation into ’easy’ and
’hard’ decisions is that some vertices are on the ’border’ of clusters and
have connections to vertices in other clusters. These vertices are the only
ones that can potentially be assigned to a 'wrong’ cluster (given that
we already know the correct assignment for all other vertices). Vertices
that are only connected to other vertices in the same cluster are denoted
in the following as inner vertices with respect to a particular clustering.
Vertices that have connections to at least one vertex in a different cluster
are denoted as boundary vertices. Table 4.2 shows that for many datasets
more than 1/2 of all vertices are inner vertices.

But the simplified distinction between inner vertices and boundary ver-
tices is insufficient to separate those vertices that are ’easy’ to assign to
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the correct clusters and those that are "hard’ to assign correctly. If it was
not, it would be sufficient to take the groups of inner vertices as a starting
point and then search for the best assignment of the boundary vertices.
Unfortunately, the possibly wrong assignments of any of the boundary
vertices would have affected the whole merge process and, therefore, the
assignment of the inner vertices will be wrong, too. However, the com-
parison between inner and boundary vertices indicates that there will be
a considerable amount of vertices which have a clear cluster assignment.

4.3.1 ldea

In contrast to non-hierarchical heuristics, most hierarchical algorithms
can not alter decisions once they are made. Once a hierarchical divisive
approach separated two vertices into different clusters they cannot be re-
merged later on. Likewise, a hierarchical agglomerative approach cannot
separate two vertices once they are merged. This means, each decision
(whether it is a split or a join) narrows the search space. Of course, hier-
archical algorithms could use backtrack strategies to search along several
join paths. But this is a very expensive search strategy, as this strategy
does not correct errors but actually creates several dendrograms. The lim-
itation of not being able to alter decisions once they are made does not
apply to, for example, a simulated annealing algorithm, which can reach
every solution in the search space independently of the current position
in the search space (with different probabilities, of course).

The heuristic of the randomized greedy algorithm (and heuristics of
other greedy algorithms for modularity clustering as well) is very simple
and completely local. An influence on the AQ), which is the decision
variable of the greedy algorithms, have only the two involved clusters of
a merge operation. Not even the structure of the subgraph including
the vertices in a distance of one is taken into account. Although the
randomized greedy algorithm is able to find very good partitions, it makes
many bad decisions in the dendrogram building phase that have to be
corrected in the refinement phase. However, the refinement procedure is
only able to fix some bad assignments of vertices to clusters. If the merge
process is led by early bad merge decisions into a section of the search
space where all local maxima are low compared to the global maximum,
the refinement will not be able to leave this section (because it is local,
t00).

A different decision variable than A(@ would be desirable: one that is
not totally local. It should take more information into account so that
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supposedly good mergers that are bad from a more global view are not
realized. A drawback from taking a more global view is the higher time
complexity, when not just two clusters (the ones that are candidates for
a merger) have to be considered, but also their direct neighbors or, even
worse, all clusters within a distance of two. The problem is to find a fast
heuristic with a better accuracy (in determining which vertices belong to
the same cluster in the clustering with maximum modularity) than the
accuracy provided by the AQ.

The idea behind the RG+ algorithm is based on the following assump-
tion: Some vertices will belong to the same group in every possible clus-
tering of the graph representing a local modularity optimum. If these
vertices could be identified and the respective groups could be built, then
the graph can be collapsed to some degree without errors, i.e. without
merging two clusters that contain vertices that do not belong together
in an optimal clustering. This idea is related to the approaches of e.g.
Raghavan et al. [RAKO07] and Gfeller et al. [GCDLRO05] who do splitting,
respectively, measuring the significance of a cluster assignment. Gfeller et
al. compute several partitions of a graph where each time random noise
is added to the graph. Then, they calculate for all pairs of vertices the
probability of being in the same cluster from the partitions. This way,
they try to identify instabilities. Raghavan et al. split several solutions
into maximal overlaps as they expect their label propagation algorithm
not to identify all communities in a single run.

Let P* = {C*',...,C*} be the set of all clusterings where Q(C*') is
a local optimum. Those pairs of vertices v,, v, that are part of the same
cluster for all locally optimal clusterings need to be identified, i.e.

Y3, i v, € CFF A vy € i, (4.2)
This relation between vertices is transitive. That means,

(Vi3 1 v € CFF Awy, € CF)
A3y i v, € CiF Av, € CF)
=V, 3, v, € CFF Av, € G

Because of the transitivity, the groups of vertices that pairwise belong
together in an optimal clustering, can be easily built. These groups will
be denoted as core groups.
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4.3.2 Implementation

The idea for the advanced clustering algorithm assumes that identifying
the core groups is easier than finding the optimal clustering directly. Un-
fortunately, there is no good reason to believe that identifying pairs of
vertices that are always in the same cluster in all local optima is easier
than directly finding the clustering with maximal modularity. Vertices
with only one neighbor can be easily paired with their respective neigh-
bors. For all vertices with a higher degree, it is not clear that they have
any neighbor that is in the same cluster in all locally optimal clusterings.
The presented idea is rather an illustrative description than a statement
about the topology of the search space.

However, the idea is still helpful. It is unclear, if there are groups at all,
but that does not matter as it is impossible to compute them in reasonable
time anyway. (Computing the core groups would require to compute P*
completely. Then, the clustering with maximal modularity would also
be known and the core groups are not required any more.) Therefore, a
heuristic needs to be employed to assess the core groups. If in the core
groups vertices are grouped that do not belong to the same core group for
all local optima, this does not matter as long as these vertices belong to
the same cluster in the globally optimal clustering. Still, this is a heuristic
approach.

The implementation of the idea for RG+ into an algorithm consists
basically of two phases:

1. Assess core groups.
2. Cluster core groups.

In the first phase, the algorithm tries to assess the core groups. A small
sample of z locally optimal clusterings is used to assess the core groups.
This approach shows the first significant difference to RG and most other
algorithms for modularity maximization. While the AQ heuristic of the
RG algorithm is purely local, this heuristic to build the core groups of
vertices is based on a sample of local maxima and, therefore, a 'more
global’ one.

Because of its nondeterministic nature, the RG algorithm (see Algo-
rithm 11) creates with a high probability a different clustering every time
it is executed. Therefore, and because of its speed, RG is the ideal algo-
rithm to create the set of clusterings needed for the assessment of the core
groups.
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Figure 4.8: Example how core groups are extracted from several
clusterings.

Once the initial clusterings are created, the core groups get assessed
from this clustering. A schematic example for the extraction of core groups
from clusterings is shown in Figure 4.8.

Algorithmically this task is performed as follows. First, one clustering
is regarded as the temporary set of core groups. Then, one clustering at a
time is used to split groups of the temporary set of core groups whenever
vertices are part of the same temporary group but in different clusters in
the currently processed clustering. Let g,, ; denote the core group of which
vertex v, is part of in step ¢ and Ci(v,) denote the cluster of v, in the
t-th clustering. Whether two vertices v, and v, are in the same temporary
core group after the ¢-th split is given by the recursive formulation

ozt = Gyt = Gugt—1 = Guyt—1 /\ Ci(vz) = Ci(vy). (4.3)

In a second phase, the core groups will be used as the starting point for
the main clustering step. The partitions used to extract core groups have
been generated starting from a partitioning of the graph into singletons.
Now, the RG algorithm is started once again with the core groups as the
initial partition.

The pseudo-code for RG+ is given in Algorithm 13 where the func-
tion RG(graph,partition) contracts the graph starting from a given
partition. The function split(c,clustering[i]) splits the cluster
c into subclusters, so that only vertices that are in the same cluster in
clustering[i], are in the same subcluster.

4.4 Custom Datatypes of RG and RG+

The time and memory complexity and thus the scalability of a piece of
software depends not only on the employed algorithms, but on the way the
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Algorithm 13 RG+ algorithm

Input: Graph graph, number of clustering for core group generation z
Output: clustering
Vv Identify core groups

singletons < {{v, }|v, € V'}
for i=1...z do
| clusterings|i] + RG(graph, singletons)

end

coreGroups < clustering[1]

for i=2...z do

forall the clusterc € coreGroups do
if not all vertices in c in same cluster in clusteringsfi/ then

| coreGroups < coreGroups — ¢ + split(c, clusterings|i])

end

end

end

V¥ Generate clustering

clustering < RG(graph, coreGroups)
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algorithms have been implemented. One key factor of the implementations
are the utilized data structures. The way, data gets stored best, depends
on the operations on the data structure that need to be supported and
on the relative frequency of the calls of such operations. A prominent
example are the different implementations of a priority queue. A priority
queue is a data structure, where elements with associated keys are stored.
A fast extraction of the element with the lowest key is sought. A priority
queue can be implemented in several ways, e.g. with a linked list or a
balanced binary tree [CLR09]. Extracting the element with the lowest
key takes O(n) when the priority queue is implemented with a linked list
but only O(logn) when a balanced binary tree has been used. On the
contrary, inserting a new element is faster (O(1)) with linked lists than
with balanced binary trees (O(logn)). This brief comparison is intended
to illustrate the difference between the complexity of an algorithm and
the complexity of an implementation.

The focus of the implementation of the RG and RG+ algorithm was
on scalability. To be able to process huge datasets, resource-efficiency in
terms of time and memory is required. For this reason, C++ has been
chosen to implement the algorithms as it allows better control over the
data storage than most other modern languages (e.g. Java or Python).

The run-time efficiency of the reference implementation of the RG and
RG+ algorithms relies on the proficient choice and implementation of data
structures. Those data structures that have a major impact on the run-
time of the clustering process and are necessary for the complexity analysis
conducted in section 4.5 are discussed in the following.

4.4.1 Sparse Matrix

The data structure storing the matrix (e;;) is the most run-time critical
one, because most read and write operations of the RG algorithm are
on this data structure. The matrix storing the connections between the
communities will be huge, but very sparse in the beginning. Its rank
decreases with every join of two communities until it is one after the last
community join. Concurrently, the once sparse matrix will become denser.
Especially in the beginning, when the rank of the matrix is very large
while the density is very low, a fast way to join sparse rows and columns
is required - that means a procedure to replace two rows, respectively two
columns, by their sum.

The matrix (e;;) is stored as an array of hash tables. Only non-zero
elements are stored. This allows fast access to the elements of interest.
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By using an array of hash tables instead of a matrix two rows can be joined
in linear time to the number of non-zero elements as it can be iterated
over the key set of a row. The costs of resizing the hash table are almost
negligible as it is rarely necessary due to the limited size changes of rows
(which again is a result of the balanced growth process).

The used hash tables are instances of the unordered_map container from
the Boost C++ Libraries [Boo]. For each hash value a linked list (called
bucket) stores all associated elements. This hash table implementation
has an amortized lookup speed of O(1).

4.4.2 Active Row Set

To be able to select a random cluster which will be considered for a merger,
a list of all rows in the matrix (e;;) that are still active, is stored. An active
row is one that represents a cluster, whereas inactive rows are those that
are no longer in use because they have been merged with other rows. The
ActiveRowSet is an encapsulated array of all active rows. Selecting a
random cluster means reading a random field of the array. Once a row
gets inactive, as the corresponding cluster has been merged into another
cluster, the corresponding field in the array is replaced by the value in the
last used field of the array and the counter of used fields is decreased by 1.
This means, an array of length n is initialized for a graph with n vertices.
After 3 arbitrary merge operation, the counter of used fields has the value
n — 3 and the ids of all still active rows are in the first n — 3 fields of the
array.

This data structure allows looking up and maintaining the list of active
rows in constant time.

4.5 Complexity

In this section the time and memory complexity of the reference imple-
mentations of the two algorithms RG and RG+ will be analyzed. The
complexity analysis is important to assess the scalability of an algorithm
as it describes the algorithms asymptotic requirements of computational
resources.
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4.5.1 Time Complexity
4.5.1.1 RG

The RG algorithm has to initialize the data structures for the matrix
(ei;) and the vector a before it can start with building the dendrogram.
To initialize the matrix (e;;), for each undirected edge two fields of (e;;)
have to be written. Simultaneously, the vector a can be created through
summation of the matrix rows. This has a complexity of O(m), with m
the number of edges.

RG needs to perform n—1 joins to build the complete dendrogram for a
graph with n vertices and m edges. For every join, k clusters are randomly
selected, and for each of them the A@s of a merger with their respective
neighbors is calculated. Then, the pair with the highest AQ is joined.

The complexity of the dendrogram building phase is roughly estimated
with the help of the average cluster size. The degree reduction in (e;;) is
not considered. The algorithm performs two tasks in every step. First, it
searches for a join and then executes it.

The search for a join consists of calculating the AQ for k& randomly
selected clusters and each of their respective neighbors. A cluster can not
have more neighboring clusters than the outdegree sum of the vertices
it consists of. The average outdegree of a vertex is 2m/n. Because RG
starts with n singleton clusters and builds the dendrogram by merging two
clusters in every step until all vertices belong to one cluster, the average
cluster size over all steps is:

= Z 1/i (4.4)

s(n) is the n-th harmonic number and, therefore, s(n) ~ In(n) + v
where v is the Euler-Mascheroni constant (0.5772...) (see p. 75 [Knu00]).
Altogether, the complexity of finding the next join is O(In(n) - m/n).

To execute this join, two rows of the matrix (e;;) need to be merged.
To minimize the costs, the elements of the sparser row are copied into the
denser of both rows. This copy procedure takes time linear to the number
of non-zero elements of the sparser row. As shown above, an upper limit
for the average compound cluster degree is In(n) - m/n.
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Both, finding and executing a join have a complexity of O(In(n) - m/n)
and these tasks are performed in every one of the n — 1 steps. Together
with the initialization, the overall complexity is O(m + n(ln(n) - m/n)) =
O(mInn). Note, that this is just an upper bound for the average case.

Estimating the average case is hard, because of the complex estimation
of the average cluster degree. Merging two clusters has two effects. To
begin with, the outdegree of the new cluster that emerges from the join has
an outdegree of d(Cy)+d(Cs) — |o(Cy, Cs)| —21(Cy, Cy), where d(C;) is the
degree of cluster C;, o(C1, Cy) is the overlap of neighbors from C and Cs,
and [(C1, Cy) is the number of edges connecting vertices in C; with vertices
in Cy. Additionally, the outdegree of all clusters in o(C}, Cs) decreases by
1. Assessing the overlap is the critical problem. The average overlap of
two randomly selected neighbors would be a bad estimation. Those pairs
of clusters that are selected for a join will probably have many common
neighbors. So, for not degenerated real-world datasets the complexity of
O(mInn) will not be a tight bound.

The complexity of the refinement depends on the number of clusters
found by the main algorithm and the quality of the clustering, because
the quality influences the number of iterations required. In each iteration,
for every vertex the AQ for all moves to adjacent clusters has to be cal-
culated. The refinement procedure stops when in one iteration no move
with positive AQ has been found. For a partition C' = {Cy,---,C,},
AQ is calculated for the move of every vertex to every cluster it is con-
nected to. So, each iteration has a complexity of O(pn) and i iterations
take O(ipn). Unfortunately, the number of clusters and the number of
required iterations are unknown as they depend on the input data. Table
4.3 shows the results of the test that have been conducted to assess the
asymptotic runtime of the refinement procedure. The high time ratio for
the refinement on the LiveJournal dataset results from the large number
of iterations (between 19 and 50). After 5 iterations usually more than
95% of all vertex moves have been made. A limitation of the number of
iterations ensures that the refinement does not scale worse than the den-
drogram creation without significantly effecting the result, but this implies
that the solution is not guaranteed to be a local optimum.

4.5.1.2 RG+

For RG+, RG needs to be run Inn times (see Section 4.6.2) and then
the core groups need to be extracted from the clusterings. RG without
the fast greedy refinement has a complexity of O(mlnn). RG with an
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Table 4.3: Time and modularity results by algorithm phase for RG and a
selection of test datasets.

Dendrogram KL-Refinement  Time Ratio
Network time ¢4 [s] Q time g [3] Q tri/ta
Yeast 0.032 0.680 0.018 0.695 0.56
PGP 0.110 0.874 0.050 0.878 0.45
Cond. Mat. 0.552 0.733 0.296 0.749 0.54
WWW 6.056 0.935 2.278 0.937 0.38
LiveJournal 29921 0.734 20.296 0.760 0.68

iteration restricted refinement does not scale worse.

The core group extraction is done by integrating a clustering into the
temporary core groups one at a time. In each integration step for each pair
of vertices in a group of the temporary core groups is tested whether it is
in the same cluster in the currently processed clustering. For a clustering
with ¢ clusters and a maximal cluster size of s this needs O(cs?). For a
low number of clusters and very uneven cluster sizes the complexity could
get almost as worse as O(n?), but in our test the core group extraction
required between 0.8% and 1.5% of the total runtime independently of the
size of the graph. In part this can be explained by the decreasing maximal
size of a core group. Each integration step leads to a finer clustering in the
temporary core groups, so that the processing costs per integration step
tend to fall except in the very unlikely case that the currently processed
clustering is identical with a previously processed clustering.

The final run of RG is started from the core groups, so that a consider-
ably lower number of merge operations needs to be executed to create the
full dendrogram than when starting from singletons. But the complexity
estimation of O(mInn) can be used once again, as this term is dominated
by the core cluster creation in any case. Altogether, the time complexity

is O(In(n) - m - In(n)) = O(m(Inn)?).

4.5.2 Memory Complexity

The two data structures RG relies on are the matrix (e;;) and the vector
a. (e;;) is realized as an array of hash tables. After initialization this
matrix has 2m elements. The hash overhead is a constant factor and does
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not need to be taken into account. As shown for the time complexity, the
total number of edges decreases in every step. The vector a; has initially
n elements which decrease by 1 in every step. The generated dendrogram
is stored in a list of performed joins, which has n — 1 entries. So, the
compound memory required by RG has a complexity of O(n + m).

The refinement step requires once again the storage of (e;;) and a. Ad-
ditionally, for each vertex all adjacent clusters are stored. A cluster C;
is adjacent to a vertex v, if Jv, € V : {v,,v,} € E ANv, € C;. Thus, a
vertex cannot be connected to more clusters than vertices and at most 2m
connections need to be stored. Therefore, the refinement needs O(n + m)
memory.

RG+ runs RG several times. Additional to RG, RG+ needs to store the
core groups. These groups are stored as an array of arrays and need O(n)
memory. To save memory, after each run of RG the generated clustering
is used to split the core groups at once and the clustering is deleted before
the next run of RG. As the final clustering of the core groups is a run of
RG on an already partially contracted graph, it requires no higher amount
of memory than in the initial runs. Thus, RG+ has a memory complexity
of O(n +m), too.

4.6 Evaluation

In this section, the reference implementations of several modularity opti-
mization algorithms will be compared with regard to their performance in
maximizing the modularity measure and with regard to the resource usage
(time and memory). For the evaluation, the real-world datasets described
in Section 4.6.1 will be used. The quality of the clusterings found is not
evaluated. The ability to identify community structures by maximizing
the modularity measure has been discussed in Section 3.1.2.

4.6.1 Datasets

For the evaluation of the algorithms publicly available real-world datasets
are used. If necessary, these graphs were transformed into connected,
undirected graphs by extracting the largest connected component of the
symmetrized graph. Self-loops have been removed, when they exist. An
overview of the datasets is provided by Table 4.4. The shown vertex and
edge numbers are given for the transformed graphs. In the following the
semantics of the evaluation networks as well as network transformations
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Table 4.4: Real-world test datasets used for algorithm evaluation

Name Network Type Vertices Edges Reference
Karate social 34 78 [ZacT7]
Football game plan 115 613 [GNO02]
Net.Sci. co-authorship 379 914 [GNO2]
Jazz musician overlap 198 2742 [GDO03]
Email communication 1133 5451  [GDDG™03]
Yeast protein interact. 2559 7031 [KCY™"06]
PGP key signing 10680 24316 [BnPSDGAO4]
Cond.Mat.  co-authorship 27519 116181 [New01]
WWW hyperlink 325729 1090108 [AJB99]
LiveJournal friendship 4843953 42845684 [LLDMOS]

performed will be described.

Karate This dataset describes the personal relations between members
of a karate club and was created by Zachary [Zac77], who analyzed how the
club split up into two new clubs after an internal conflict. Zachary could
show that the personal relations were a good indicator for the prediction
of which member joined which of the new founded clubs. As this dataset
is well-studied, it has been used by several authors to evaluate the quality
of cluster methods. A good quality is assumed, when a method splits the
network into the groups which have been observed. The partition with
maximal modularity consists of four clusters and each observed group is
represented of two of them [BDGT08].

No changes to the network were necessary, as it already had all required
properties.

Football This network of United States college football represents the
game schedule of Division I for the 2000 season. It was collected by Gir-
van and Newman [GNO02]. The vertices in this network are the teams of
Division 1. Edges indicate that two teams have had a regular-season game
against each other. For this network no transformation was necessary.

In contrast to the other networks of the test set of networks, the football
network is no self-organized, evolved network. The teams are divided
into conferences around 8-12 teams each which primarily influence the
opponents of a team. Characteristic properties of the other networks as a

103



4 Randomized Greedy Algorithms

power-law degree distribution are not given for this network.

Network Science This network of co-authorship of researchers working
in the field of network science has been compiled by Newman [New(6a]
from the bibliographies of two review articles on networks. From the net-
work with 1589 scientists and 2742 links, the largest connected component
with 379 scientists and 914 links has been extracted.

Jazz The Jazz network describes the network of jazz bands obtained by
Gleiser and Danon [GDO03] from The Red Hot Jazz Archive. It consists
of 198 bands that performed between 1912 and 1940. A link between
two bands means that they have at least one musician in common. The
network is already undirected and connected, so no transformation has
been conducted.

Email Guimera et al. [GDDG"03] compiled a dataset from the email
interchanges between members of the Rovira i Virgili University (Tarrag-
ona, Spain). The network contains an unweighted, directed link from one
person to another, when at least one email had been sent in this direc-
tion. From the original connected network with 1133 persons and 10902
directed links, a symmetrized network with 5451 links has been created.

Yeast The yeast dataset from Krogan et al. [KCY"06] describes the
protein-protein interactions of Saccharomyces cerevisiae. The edge weights
give the interaction probability of two proteins, where interaction means
that e.g. two proteins carry out a molecular process together. The
weighted network has been transformed into an unweighted one for our
evaluation.

PGP This network represents the web of trust of users of the Pretty-
Good-Privacy encryption software. In this network of PGP users, a link
means that at least one of both users has signed the public key of the other
one. Signing means that an user verifies that a public key belongs to the
person stated in the key metadata. The dataset provided by Boguna et al.
[BnPSDGAO04] already consisted only of the largest connected component
of this network. Probably because of an error, the dataset contained 24
multiple links which have been removed.
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Condensed matter This is the network of co-authorship of scientists
posting preprint articles on the condensed matter archive at www.arxiv.org.
The network is based on the preprints posted between January 1, 1995
and June 30, 2003. The network consists of 31,163 authors and 120,029
undirected co-authorship relations. The largest connected component of
this network with 27519 authors and 116181 links is used.

LiveJournal LiveJournal [Liv] is an online community, where members
can create blogs. Furthermore, members can create ’friend’ lists where
they add fellow members without requiring the consent of the added
person. The result is a directed, unweighted network. Leskovec et al.
[LLDMO8] collected a dataset of 4,847,571 LiveJournal members and
68,993,773 directed links. We symmetrized the network and extracted
the largest connected component with 4,843,953 members and 42,845,684
undirected links.

4.6.2 Parameter Settings

Extensive tests helped to identify those parameter settings, with which
RG and RG+ find clusterings with the highest modularity.

For RG, as already mentioned in Section 4.1.3, the best results are
achieved when the parameter k (which specifies the number of communi-
ties among which the join with the highest AQ) is searched) is set to 1 for
the first half of the steps and set to 2 for the second half. As shown in
Table 4.1, natural graphs have only a few, but large classes of equivalent
joins with respect to AQ. The behavior of the graphs is as discussed (see
Section 4.1.5): With an increasing number of executed join operations the
number of equivalence classes increases, too, and, therefore, the average
class size decreases. During the first steps, the number of equivalence
classes of joins is low and their sizes are large. Then, joining a vertex
with that neighbor where A(Q is maximal, is sufficient. Later on, when
the graph is already semi-contracted, selecting the best join from a larger
basis is necessary to prevent choosing a bad join.

For RG+, the best setting for RG, when running as a part of RG+, is
determined as follows: First, the parameter k of RG for the initial runs
of RG (starting from singletons) and the final run (starting from core
groups) is separately determined. The tests showed that the value of k
for the initial runs has no influence on the achieved modularity of the
final clustering (Figure 4.9). The observed differences in the results are
minimal, show no correlation with the value of k and are within the range
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Figure 4.9: Average modularity of 30 test runs of RG+ on four datasets
subject to the sample size k of the employed RG algorithm for
core group creation phase. The sample size k in the core group
clustering phase is set to 1000.

of expected variance. As the value of k does not matter at all, it is set to
1 to save computational costs.

For the core-groups clustering phase, however, the modularity achieved
on average increases with increasing k (Figure 4.10). This analysis results
fit with the explanation given above for different settings of £ in the first
and second half of the steps of RG. Here, the grouping of vertices into
core groups eliminated the structural similarities in the graph. Therefore,
a more exhaustive search is necessary. Setting k to 1000 showed to be
sufficient. For smaller graphs, this means a complete search among all
possible joins like PG does. For larger graphs this value is sufficient,
too, and a higher value of k£ did not increase the modularity achieved on
average.

A third parameter is the number of partitions used to generate the core
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groups. Here, tests have shown that a rough estimation for the best value
of z is about z ~ In|V| (Figure 4.11). If z is set to a larger value, the
average quality decreases again. It seems likely that with the number of
clusterings the chance to receive an odd clustering increases and that this
leads to a split of good core groups.

4.6.3 Evaluation Results

The algorithms RG and RG+ are evaluated in terms of clustering quality
and runtime with help of the natural networks presented in Section 4.6.1.
As a measure of comparison the results for the MOME algorithm and
the BGLL algorithm are shown as well. Because RG, RG+, MOME and
BGLL are non-deterministic, the results are given for the average case in
Table 4.5 and for the best case in Table 4.6. The average case results
show the modularity and runtime averages of 100 test runs in each case.
The best case results show the modularity of the best clustering result
achieved in a specified amount of time.

To achieve comparability for the algorithm evaluation, all results have
been obtained from test runs on a dedicated test machine with an Intel
Xenon 2.66 GHz CPU and 16 GB RAM. The machine runs Gentoo Linux
and our C++ implementations of RG and RG+ have been compiled with
GNU gcc 4.3.4. The source code of MOME has been kindly provided
by Zhu. To be able to run MOME in the same Linux environment as
RG and RG+, Visual C++ library calls have been exchanged with their
equivalent GNU gcc library calls. The adapted sources have been recom-
piled with GNU gcc 4.3.4. The source code of the BGLL algorithm has
been downloaded from the authors’ website at http://sites.google.
com/site/findcommunities/. Note, that the shown time and memory
usage results are actually results for the respective implementations rather
than the algorithms as such. Only the modularity results are actually in-
dependent from the implementation, if the pseudorandom numbers of the
used random number generator are regarded as true random numbers.

In Table 4.6 the best achieved modularity of RG+ is compared to the
upper bound and previously published results. The upper bound is calcu-
lated with help of the method and software of Agarwal and Kempe [AKO0S].
Agarwal and Kempe compute the upper bound by solving a linear pro-
gram (LP) which is the relaxation of the integer linear program that finds
a clustering with maximal modularity (see 3.2.1). For large networks, the
LP consists of an enormous number of constraints. Even on a high perfor-
mance computer the available main memory of 144GB limited the ability
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Table 4.5: Modularity and runtime averages of 100 runs of RG, RG+, MOME and BGLL. Entries showing “oom”
could not be calculated because the program ran out of memory (i.e. > 28 GB memory usage).

Network RG RG+ MOME BGLL

Q time [s] Q time [s] Q time [s] Q time [s]
Karate 0.412  0.004 0.417  0.005 0.420  0.002 0.419  0.000
Football 0.589 0.008 0.605 0.014 0.580 0.007 0.605 0.000
Jazz 0.444 0.015 0.445 0.058 0.444 0.011 0.443 0.000
Network Science 0.840  0.007 0.848 0.040 0.842  0.020 0.848  0.000
Email 0.572  0.038 0.580 0.276 0.573  0.082 0.543  0.000
Yeast 0.695  0.049 0.710 0.525 0.700  0.175 0.696 0.01
PGP 0.880 0.242 0.886 1.813 0.880 0.748 0.883 0.050
Condensed Matter 0.749 0.972 0.765 14.8 0.756 2.588 0.751 0.220
WWW 0.936 10.178 0.943 120.1 0.937 28.68 0.935 6.43
LiveJournal 0.760 481.9 0.771 10417.9 oom oom 0.728  229.49
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Table 4.7: Main memory usage measured with pmap (“writeable/private”
memory). MOME ran out of memory (oom) on the LiveJournal
dataset after using 16 GB RAM and 12 GB swap memory. For
BGLL the peak memory of both executables required to get a
partition is measured.

Name RG RG+ MOME BGLL
PGP 5MB 6MB 25 MB 157 MB
Condensed Matter 16 MB 21MB 71 MB 157 MB
WWW 171 MB 228 MB 764 MB 167 MB
LiveJournal 5.55 GB 5.78 GB oom 1.7GB

to calculate the upper bound. The largest network which could be pro-
cessed is the Network Science dataset with 379 vertices and 914 edges. For
those networks where the calculation of the upper bound was feasible, the
results are shown. Note that it is unknown whether there is a clustering
whose modularity reaches the upper bound or not. For larger networks, it
is not possible to know whether RG+ achieves near-optimal modularity.
However, the RG+ algorithm achieves superior modularity to previously
published heuristics.

As shown in Table 4.5, RG achieves for most datasets about the same
quality as MOME and BGLL with significantly lower computational ef-
fort than MOME but more effort than BGLL. However, RG outperforms
MOME and BGLL for the two largest datasets in terms of modularity.
RG+ is able to find clusterings with a much higher modularity than RG,
MOME and BGLL. However, the cost of this higher quality in terms of
modularity is a much higher runtime. But as can be seen from Table 4.7,
RG+ scales only worse than RG and MOME in terms of runtime. The
memory usage of RG+ scales only slightly worse and the total memory
usage is only slightly higher compared to RG and much lower compared
to MOME. BGLL has a low memory consumption. However, an exact
comparison to the other algorithm implementations is difficult because
the BGLL implementation allocates about 150 MB RAM independently
of the actual requirements.

The results of Table 4.6 show that for most networks the equality of
RG, MOME and BGLL in terms of modularity does not only hold for the
average case but also the best case. Once again, the results of RG+ are
significantly higher than those of RG, MOME and BGLL.
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Table 4.8: Comparison of the number of clusters found in real-world
datasets in test runs of different algorithms.

Network RG RG+ MOME BGLL
Karate 3 3 4 4
Football 7 10 7 10
Jazz 3 3 3 4
Network Science 18 19 18 18
Email 12 11 10 11
Yeast 25 36 25 36
PGP 84 117 69 102
Condensed Matter 57 7 49 66
WWW 704 921 233 472
LiveJournal 1924 3079 n/a 5471

4.6.4 Cluster Size Distributions

The results presented in Section 4.6.3 compare the performance of algo-
rithms with respect to the objective function. When used in an application
context to analyze real-world data to solve a real-world problem, further
properties of the clusters identified by a clustering algorithm are of inter-
est. One essential property of partitions is the distribution of the cluster
sizes.

The number of clusters of the partitions identified by RG, RG+, MOME
and BGLL in test runs on several real-world datasets are shown in Table
4.8.

The analysis of the merge processes of hierarchical clustering algorithms
in Section 4.2 explain why the RG+ algorithm usually finds solutions with
more clusters than the RG algorithm. Because RG totally relies on the
AQ measure for selecting joins, and this measure is totally local and is
likely to merge at least some vertex pairs where both vertices belong to
different clusters in an optimal clustering. Once a bad merge operation
groups together vertices from two different “optimal” clusters, this cluster
nucleus is likely to be merged with vertices from both “optimal” clusters.

The MOME algorithm finds a considerable smaller number of clusters
than RG and RG+ for larger networks. For smaller networks the results
are about the same for all algorithms as all find a near optimal, respectively
optimal solution.

The number of clusters shows only an incomplete picture of the parti-
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tions an algorithm identifies. For the six datasets Network Science, Email,
Yeast, PGP, Condensed Matter and WWW Figures 4.12-4.14 show the
distribution of cluster sizes for RG, RG+, MOME and BGLL. Figures for
the smaller datasets have been omitted as all algorithms find the same
near optimal solutions.

The results show that especially MOME identifies larger clusters than
RG+. This algorithmic behavior is especially intense for the larger data-
sets. The RG algorithm shows a less clear behavior. RG produces results
with a cluster size distribution very similar to RG+ for some datasets
(PGP, WWW), but partitions with cluster size distributions more similar
to MOME for other datasets (Yeast, Condensed Matter). In contrast to
this difference regarding the small clusters, the three algorithms show no
pattern regarding the maximal cluster size.

The explanation for the higher number of small clusters is the same as
the explanation for the higher number of total clusters. Because of the
core group identification step of RG+, this algorithm is able to separate
vertices that both other algorithms may have merged into one cluster,
because of the complete reliance on the A() measure.

4.6.5 Evaluation Summary

To wrap up the results of the evaluation of different clustering algorithms,
RG and RG+ are two algorithms which are able to identify clusterings
with high quality in terms of modularity. The quality improvement RG+
is able to achieve comes with extra computational costs. When choosing
one of the algorithms a trade-off between runtime and quality has to be
made.

The actual problem in clustering huge datasets is the memory complex-
ity. MOME was not able to cluster the LiveJournal dataset with about 4.8
million vertices and 43 million edges as the algorithm needed more than
the 16GB RAM (4Swap) of our test machine. RG and RG+ required less
than 6GB RAM for this dataset. But even with a memory complexity of
O(n + m) the memory limits of non-high-performance machines will be
reached soon. However, telecommunication networks as well as networks
on social networks sites can exceed hundreds of millions of vertices. Mem-
ory efficiency is a major challenge in processing huge datasets but so far
received almost no attention in the modularity clustering literature.
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Figure 4.12: Cluster size distribution of test runs of RG, RG+, MOME
and BGLL for the datasets Network Science (top) and Email
(bottom).
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5 Conclusion and Outlook

In this thesis two algorithms for modularity clustering have been pre-
sented. With the fast and scalable agglomerative hierarchical algorithm
RG it has been shown that a less exhaustive greedy search can find su-
perior results than a steepest gradient search. The analysis of the merge
processes of different agglomerative hierarchical algorithms showed the
problem of unbalanced growth that RG is able to avoid. A deeper analysis
of the impact of unevenly contracted graph regions on the local measure
AQ (denoted as the locality problem) and thereby on succeeding merge
decisions provided the basis for the development of the advanced algo-
rithm RG+. Guided by the objective to find a way to make better cluster
assignment decisions for vertices that lie on the border of two natural
clusters, the identification of core groups has been approached. In core
groups vertices are collected that are very likely to belong to the same
cluster. The core groups are expected to be a broadly flawless graph con-
traction that does not suffer from the locality problem. The succeeding
merge process benefits from the initial contraction, as fewer wrong merges
in the first contraction phase mislead the decisions in the later steps. The
evaluation proves the advantages of RG+. This algorithm finds for many
datasets partitions with higher modularity than any previously published
algorithm we are aware of.

The RG+ algorithm consumes considerable more time than the RG
algorithm as it requires several runs of RG to determine the core groups.
However, future work could use two strategies to improve the runtime
of RG+: First, the number of clusterings used to build core groups can
be adjusted to receive a balance between runtime and modularity that
better fits the needs of a specific application scenario. Second, the initial
clusterings of RG can be computed in parallel on hardware with multiple
processors or multi-core CPUs and sufficient memory. Then, RG+ requires
only slightly more runtime than RG.

The work presented in this thesis provides a tool to identify natural
groups’ in very large networks. The main contributions are the analy-
sis of previous algorithms and the derivation of new heuristic ideas for
combinatorial optimization algorithms.
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Whether the proposed algorithms are of any practical value has not
been discussed as the assessment of cluster quality is still an open research
problem if the assessment is not bounded to a specific use case. Future
work has to show whether the identified communities have those properties
required in a specific application context. Therefore, the contributions of
this thesis are mainly directed to researchers and algorithm developers that
require scalable concepts to solve combinatorial optimization problems.

However, research on clustering methods in general can benefit from the
ideas presented in this thesis. The core group identification approach can
be seen in an abstract way as a heuristic method to find those points in
a search space where the paths to several local optima separate. These
points are therefore promising points to (re-)start the search of optimiza-
tion heuristics. Analyzing how the performance of other algorithms (e.g.
genetic algorithms or simulated annealing) improves by starting from the
cluster core solution is another task for future research.

Graph clustering will probably be a very active field of research for a
long time as many challenges of practical relevance have not been solved,
yet. An algorithmic challenge is to write memory efficient and distributed
algorithms. A conceptual challenge is to find a way how to determine
clustering quality, respectively, what clustering quality means in a specific
domain.
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