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Abstract

Quality properties, such as performance or reliability, are crucial for the success of a
software system and largely influenced by the software architecture. Their quantitative
prediction supports systematic, goal-oriented software design and forms a base of an engi-
neering approach to software design. Researchers have proposed numerous approaches to
predict a quality property based on a software architecture models. Using such prediction
techniques can lead to better design decisions than experience.

Still, it is hard to design architectures that exhibit a good trade-off between multiple,
often conflicting quality properties and costs. Even with a given functional design, many
degrees of freedom in the software architecture (e.g. component deployment or server
configuration) span a large design space. At the same time, the relation between a design
decision and its effects on the quality properties can be complex and can depend on other
design decisions. Thus, manually exploring the design space and finding architectures with
good trade-offs is laborious.

To provide support for this task, the goal of an automated method should be to find
optimal trade-off candidate architectures software architects and stakeholders can analyse
and use for well-informed decisions, knowing the effects and incurred trade-offs of their
choices.

A number of existing approaches addresses the challenge of improving software architecture
by automatically suggesting improvements. For example, rule-based approaches that only
target performance improvement have been suggested. While they codify useful knowledge
from the performance prediction domain, they ignore the possible trade-off with other qua-
lity attributes. Additionally, frameworks to address multi-criteria optimization of software
architectures considering several degrees of freedom have been proposed However, their
support of different degrees of freedoms or of expressive quality prediction techniques is
limited, thereby severely limiting the class of analysable systems.

This thesis proposes a method and tool to improve component-based software architec-
tures (CBA) by searching the design space using metaheuristics. The method relies on
existing performance and reliability prediction methods to evaluate candidate architec-
tures. It supports software architects in making trade-off decisions and negotiating quality
requirements with a system’s stakeholders. The main contributions are the following:

• First, we identify the information needs of software architects and stakeholders that
can be filled with an automated method based on model-based quality prediction.
Based on this, we extend a process model for the development of new component-
based systems with our method and include a more solid process for determining
appropriate quality requirements. The method provides quantitative feedback from
model-based quality predictions for software architects, requirements engineers, and
stakeholders to be used in architecture design and requirements analysis. Further-
more, we embed the method in other scenarios such as software evolution scenarios
or capacity planning.

xi



xii Abstract

• Second, we provide a framework for multi-objective optimization of software archi-
tectures based on quality predictions. This framework is independent of the used
CBA metamodel and quality analysed due to its flexible and extensible degree of
freedom model. Additionally, it allows to include domain-specific knowledge in form
of architectural tactics operators known from literature and operationalized in this
work.

• Third, to instantiate this framework, we provide concrete degrees of freedom for CBA
affecting performance, reliability, and costs as well as performance and costs tactics
for the Palladio Component Model, which allows state-of-the-art quality predictions.

The method proposed in this thesis helps software architects (1) by saving significant costs
for manually exploring the potentially large design space, (2) by providing a more solid
process for determining appropriate quality requirements, thus providing input for well-
informed trade-off decisions in the requirements analysis phase, and (3) by providing an
extensible analysis framework applicable in a large class of practical scenarios. In addition
to development of new systems, the method can be used in software evolution scenarios
(such as adding new functionality or change the software to adapt to changing usage or to
a new environment).

We have validated the accuracy and applicability of our method and evaluated the perfor-
mance of our extensions of the optimization step (e.g. using tactics). This thesis describes
experiments with the novel method on two complex component-based software systems,
the first being a business reporting system (BRS); and the second being an industrial
control system (ICS) from ABB, which consists of more than 25 components deployed on
up to 8 servers and is implemented in several million lines of code. We found that the
explored design space indeed provided potential for improvement and required to make
trade-off decisions. Furthermore, our tool was able to closely approximate the globally
optimal candidates. Additional, our extension of standard evolutionary algorithms with
tactics was able to find solutions 50% to 90% faster on average.
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Zusammenfassung

Die quantitative Vorhersage von Qualitätseigenschaften (wie beispielsweise Performanz
i.S.v. Zeitverhalten und Ressourceneffizienz, sowie Zuverlässigkeit) für komponentenba-
sierte Software-Architekturen unterstützt den systematischen, zielorientierten Software-
Entwurf nach Ingenieurprinzipien, indem die Eigenschaften des zu entwickelnden Artefakts
schon vor der eigentlichen Erstellung abgeschätzt werden können. Forscher haben verschie-
dene Ansätze um quantifizierbare Qualitätseigenschaften basierend auf einem annotierten
Modell einer Software-Architektur vorherzusagen vorgeschlagen ((Balsamo et al., 2004)
und (H. Koziolek, 2010) geben einen Überblick über Ansätze für Performanz, (Gokhale,
2007) für Zuverlässigkeit). Die Verwendung solcher Vorhersageverfahren unterstützt das
Treffen von besseren Entwurfsentscheidungen (H. Koziolek und Firus, 2005).

Doch auch mit der Verwendung solcher Verfahren ist es schwierig, Architekturen zu entwer-
fen die eine gute Abwägung zwischen den oft im Konflikt stehenden Qualitätseigenschaften
aufweisen. Weiterhin sind auch die Kosten von Qualitätseigenschaften zu berücksichtigen.
Selbst wenn ein funktionaler Entwurf bereits vorliegt, liegen noch viele Freiheitsgrade
im Entwurf einer komponentenbasierten Software-Architektur vor (wie zum Beispiel die
Verteilung von Komponenten auf verfügbare Rechner, oder die Konfiguration dieser Rech-
ner) und spannen einen beträchtlichen Entwurfsraum auf. Dabei ist der Zusammenhang
zwischen einer Entwurfsentscheidung und ihren Konsequenzen keineswegs trivial, sondern
kann komplex sein und außerdem von weiteren zu treffenden Entwurfsentscheidungen ab-
hängen. Daher ist die manuelle Suche nach optimalen Lösungen in diesem Entwurfsraum
zeitaufwändig. Eine lückenhafte Durchsuchung des Entwurfsraums führt aber in der Regel
zur suboptimalen Entwürfen.

Bei der Suche nach besseren Entwürfen kann sich der Software-Architekt weiterhin nicht
auf die Umsetzung vorher bereits festgelegter Anforderungen (z.B. dass die Antwortzeit
des Systems kürzer als eine Sekunde sein soll) konzentrieren, denn diese können im Verlauf
der Entwicklung noch gegen andere Qualitätseigenschaften abgewogen werden, oder aber
wegen zu unerwarteter zu hoher Kosten verworfen werden (Berntsson Svensson et al.,
2011).

Um diese Aufgabe zu unterstützen, muss es das Ziel einer automatisierten Methode sein,
Architekturkandidaten zu finden, die eine optimale Abwägung von Qualitätseigenschaf-
ten darstellen; die also Pareto-optimal hinsichtlich mehrerer zu optimierenden Qualitäts-
eigenschaften sind. Diese optimalen Architekturkandidaten können dann von Software-
Architekten und anderen Interessenvertretern analysiert werden und die Grundlage für
Entwurfsentscheidungen sein, bei denen die Konsequenzen der einzelnen Alternativen be-
reits bekannt sind. So können Entscheidungen auf Basis von gesicherten Informationen
anstatt von Intuition getroffen werden.

Forscher habe verschiedene Methoden vorschlagen, um den Software-Architekten bei der
Suche nach optimalen Entwurfskandidaten auf Basis von modellbasierten Vorhersagen zu
unterstützen. Allerdings haben diese Ansätze spezifische Stärken und Schwächen. Regel-
basierte Ansätze ((Xu, 2010; Trubiani, 2011)) wurden für Performanzverbesserungen vor-
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xiv Zusammenfassung

geschlagen. Sie kapseln Domänenwissen aus dem Bereich der Performanzvorhersageverfah-
ren als ausführbare Regeln, die angewendet werden können um die Performanzeigenschaf-
ten (z.B. den zu erwartenden Durchsatz und die Antwortzeit) von Software-Architekturen
zu verbessern. Sie betrachten allerdings nicht die Auswirkungen dieser Änderungen auf
andere Qualitätsattribute. Die multikriterielle Optimierung von Software-Architekturen
entlang mehrerer Freiheitsgrade wird von einigen Ansätzen unterstützt (z.B. (Aleti et al.,
2009a; Saxena und Karsai, 2010b). Allerdings bieten diese Ansätze entweder nicht die
Möglichkeit, verschiedene Freiheitsgrade flexibel miteinander zu kombinieren (Aleti et al.,
2009a), oder sie unterstützen nur vereinfachte Qualitätsvorhersagetechniken (Saxena und
Karsai, 2010b).

Die vorliegende Arbeit schlägt eine automatisierte Methode vor, um komponentenbasierte
Software-Architekturen basierend auf modellbasierter Qualitätsvorhersagen zu verbessern.
Sie bietet damit Unterstützung für Abwägungsentscheidungen in der Anforderungsanaly-
sephase. Die Hauptbeiträge gliedern sich in drei Gruppen:

• Die Informationsbedürfnisse von Software-Architekten und Interessensvertretern, die
von einer automatisierten Methode basierend auf Qualitätsvorhersageverfahren er-
füllt werden können, wurden ermittelt. Weiterhin erweitert die Arbeit ein Prozess-
modell, um die automatisierte Verbesserungsmethode in den Entwicklungsprozess
einzufügen und eine fundierte Möglichkeit, Qualitätsanforderungen zu bestimmen,
zu bieten. Das Ergebnis dieser Methode ist eine Rückmeldung über die erreichbaren
Qualitätseigenschaften und deren Konflikte untereinander an Software-Architekten,
Anforderungsingenieure und Interessensvertreter, die diese Information in der An-
forderungsanalyse und im Architekturentwurf nutzen können. Weiterhin bettet diese
Arbeit die Methode auch in andere Szenarien wie zum Beispiel die Weiterentwicklung
bestehender Systeme ein.

• Ein weiterer Beitrag ist ein Rahmenwerk für die multikriterielle Optimierung von
Software-Architekturen basierend auf existierenden Qualitätsvorhersageverfahren und
dem Konzept der Freiheitsgrade. Ein wichtiger Bestandteil ist eine Modellierungs-
sprache für Freiheitsgrade, die unabhängig vom verwendeten Metamodell zur Model-
lierung der Architektur ist. Damit ist das Rahmenwerk selbst unabhängig von dem
verwendeten Metamodell und den verwendeten Qualitätsvorhersageverfahren.

Der Entwurfsraum kann weiterhin basierend auf den modellierten Freiheitsgraden für
ein Eingabearchitekturmodell automatisiert instanziiert werden, so dass der Software-
Architekt nicht manuell die einzelnen Parameter der aktuellen Architektur finden
muss. Zusammen mit den verfügbaren Qualitätsvorhersageverfahren instanziiert das
Rahmenwerk weiterhin ein Optimierungsproblem, für das mit evolutionären Algo-
rithmen nach annähernd optimalen Lösungen gesucht wird. Weiterhin erlaubt das
Rahmenwerk, domänenspezifisches Wissen als sog. Taktikoperatoren einzubinden.

• Das Rahmenwerk wird in dieser Arbeit für das Palladio Komponentenmodell (PCM,
(Becker et al., 2009)) instanziiert indem die Freiheitsgrade des PCM modelliert wer-
den. Weiterhin werden allgemeine Freiheitsgrade von komponentenbasierten Software-
Architekturen, die Performanz, Zuverlässigkeit und Kosten beeinflussen, metamodel-
lunabhängig beschrieben. Schließlich enthält die Arbeit Performanz- und Kostentak-
tiken für die gezielte Verbesserung von PCM-Modellen.

Als Vorteil dieser Arbeit wird der Software-Architekt unterstützt, indem (1) Kosten für
die manuelle Suche im potentiell großen Entwurfsraum durch die Automatisierung einge-
spart werden, (2) die Bestimmung von Qualitätsanforderungen mit einem Fundament zur
Abschätzung der erreichbaren Qualitäten und Konflikte untermauert wird, welches wohl-
informierte Abwägungsentscheidungen schon in der Anforderungsanalysephase ermöglicht
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und (3) ein flexibles und erweiterbares Rahmenwerk für die Architekturoptimierung bereit-
gestellt wird, dass in vielen praktischen Szenarien anwendbar ist. Die Methode kann sowohl
bei der Neuentwicklung von Systemen verwendet werden als auch in Evolutionsszenarien,
wie zum Beispiel dem Hinzufügen neuer Funktionalität oder der Anpassung des Systems
wegen veränderter Benutzung oder einer anderweitig veränderten Systemumgebung.

Damit entwickelt die Arbeit den momentanen Stand des Wissens weiter und ist somit
von Vorteil auch für Forscher im Bereich Architekturoptimierung, da sie (1) die Rolle von
modellbasierter Qualitätsvorhersage im Prozess der Qualitätsanforderungsermittlung aus-
arbeitet, (2) die erste Methode vorstellt, die eine flexible und erweiterbare Definition des zu
durchsuchenden Entwurfsraums ermöglicht und (3) die erste Methode vorstellt die domä-
nenspezifisches Wissen mit multikriterieller Software-Architekturoptimierung verbindet.
Damit liefert diese Arbeit einen weiteren Schritt zur weiteren Entwicklung von Software-
Technik hin zu einer Ingenieurwissenschaft.

Um die vorgeschlagene Methode zu validieren, wurde zum einen die Genauigkeit und An-
wendbarkeit der Methode untersucht und zum anderen die Effizienz- und Gütesteigerungen
unserer Erweiterungen des Optimierungsschritts (u.a. durch die o.g. Taktiken) untersucht.
Die vorgeschlagene Methode wurde für zwei komplexe, komponentenbasierte Systeme ange-
wendet, zum einen für ein Geschäftsberichtserstattungssystem (business reporting system,
Wu und Woodside, 2004b), zum anderen für ein Prozesskontrollsystem von ABB, das die
Anwendbarkeit unserer Methode im industriellen Kontext zeigt. Es zeigte sich dass der
untersuchte Entwurfsraum das erwartete Potenzial für Qualitätsverbesserungen enthielt,
dabei aber auch einen Konflikt zwischen den Qualitätseigenschaften so dass sie gegenein-
ander abgewogen werden mussten. Weiterhin konnte unser Werkzeug die global optimalen
Kandidaten gut annähern. Außerdem haben unsere Erweiterung des verwendeten evolutio-
nären Algorithmus durch Taktiken zu einer Reduzierung der Laufzeit von im Mittel 50%
- 90% geführt.
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und Ehemann unterstützt hat: Ohne ihn wäre diese Arbeit in so vielfacher Hinsicht nicht
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1. Introduction

The complexity of software systems has been growing since the advent of programming.
To cope with complexity and the further constraints of practical software development,
software engineering strives to apply “a systematic, disciplined, quantifiable approach”
(IEEE Std 610.12-1990, 1990) to develop software. The name software engineering suggests
that properties from classical engineering shall be applied. Engineers, in general, design
and build artefacts based on theories and methods, while working under financial and
organizational constraints (Sommerville, 2004, p.7).

This thesis is a step towards adopting engineering principles in software engineering. The
remainder of this chapter motivates our work. Section 1.1 motivates the need for automa-
ted improvement of software architecture models, and Section 1.2 describes the underlying
challenges in detail. Shortcomings of existing approaches are discussed in Section 1.3.
Section 1.4 lists the proposed scientific contributions of this work. Finally, an outline is
provided in Section 1.5.

1.1. Motivation

Engineering Principles

Two principles of engineering disciplines are that (1) engineers are able to predict and rea-
son on properties of the developed artefacts during design, i.e. by using an abstract repre-
sentation of the artefact (prediction) and (2) that systems are systematically constructed
from more elementary components, which can be developed independently (composition).

A classical example for the first principle is statics in civil engineering: Bridges are built
after calculations and simulations based on statics theory suggest that they will endure
expected load. The ability to predict properties and reason on an artefact on an abstract
level makes projects more amendable to planning and avoids late detection of problems.
Note that the models may be approximations: For example, the detailed motion of air
along air plane wings cannot be exactly determined, but only approximated.

An example for the second principle can be drawn from construction engineering: For
buildings, the design is separated into concerns: While architects and structural engineers
design the structural features of buildings such as walls and roof, other aspects are covered
by specialists such as heating specialists, electrical engineers, and plumbing engineers.
The independent development of building blocks allows to produce results faster and more
efficiently due to abstraction and division of labour.
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2 1. Introduction

Problems due to late Quality Attribute Consideration

As software is intangible, systems are complex, and software engineering is a relatively
new discipline, realizing large, software-intensive projects is challenging and risky. The
list of failed or challenged software projects is long (Glass, 1998), and a number of re-
cently challenged projects (i.e. projects that were significantly delayed or significantly over
budget) can be partially traced back to problems with software architecture and quality
attributes such as performance or reliability, i.e. quality problems that originate from the
high-level organization of systems. Prominent examples concerning performance are pro-
vided by Schmietendorf and Scholz (2001) and H. Koziolek, 2008: The automated baggage
handling systems at Denver airport and Heathrow airport, and SAP’s Business by Design
project.

Baggage handling systems: The initial problems with the baggage handling system cau-
sed the airport to open 16 month later than scheduled, almost $2 billion over budget
and without an automated baggage system. Here, the system was planned to serve
one terminal first, but later should serve all terminals of the airport (Montealegre
and Keil, 2000). The system was not able to cope with this increased demand, i.e. it
was not scalable enough. Similar problems in smaller scale occurred in Heathrow’s
newly built Terminal 5 in 2008: the number of messages generated by the baggage
system was to high for the system (Charette, 2008), so that during the first weeks
of operation, 23000 bags were lost and more than 500 flights were cancelled, causing
losses of £16 millions (Thomson, 2008). The number of passengers of the operating
carrier British Airways dropped by 220000 in the month afterwards, which is mostly
contributed to the baggage handling problems (Robertson, 2008).

SAP’s Business by Design is an ERP solution targeting medium-sized enterprises. In
contrast to previous solutions, Business by Design is a software-as-a-service solution:
the application is hosted by SAP (or a specialized provider) and enterprises rent it,
paying per use or per user. The project was announced in 2007 (Briegleb, 2008),
planned to be launched at the beginning of 2008 (Briegleb, 2007), and planned to
win 10000 customers by 2010 leading to $1 billion sales (Storm, 2008).

However, performance problems delayed the start of the project: An early imple-
mentation was significantly slower than SAP’s standard solution, and was only able
to handle 10 concurrent users instead of the desired 1000 users (Briegleb, 2007). As
a result, the project start was delayed until mid 2010 (Eriksdotter, 2010). At the
beginning of 2011, Business by Design has 400 customers (CIO Wirtschaftsnachrich-
ten, 2011). The costs of this delay are not known, but can expected to be high due
to the large planned project volume.

In all cases, the lack of predicted quality properties (here performance) lead to high losses,
both financially and in reputation, and shows the need to adopt the engineering principles
in software engineering. Furthermore, quality properties need to be considered early in a
software project life cycle.

Problems of Early Quality Requirement Specification

While an early consideration of quality attributes is desirable, collecting quality require-
ments early from stakeholders often leads to a long wish list of quality properties because
the effects of quality demands for software are not well understood. In other engineering
disciplines, it is common understanding that demanding a high-speed train will lead to
higher costs than demanding a local train with maximum speed of 70 km/h. The conse-
quences of demanding a software system that answers requests within 100 microseconds,
is available 365 days a year, and secured against any type of conceivable attack, however,

2



1.1. Motivation 3

are not necessarily known to stakeholders. Fulfilling all requirements from such a list may
lead to an expensive and over-engineered solution. The costs of quality requirements is
difficult to assess at an early development stage, so that quality requirements, even if sta-
ted, are often dismissed later (Berntsson Svensson et al., 2011, p.9). Thus, while quality
attributes need to be considered early, the actual quality requirements must be questioned
and negotiated during the software development process.

Software Architecture and Quality Prediction

New methodologies realizing the two engineering principles of prediction and composition
have been continuously introduced in software engineering to cope with the increased com-
plexity. In the early days of software development, high-level languages and abstract data
types enabled programmers to reason about their programs on a more abstract level than
individual machine instructions (Garlan and Shaw, 1994). To cope with the complexity
of today’s large software systems, software architecture (Taylor et al., 2009) provides a
high-level abstraction for reasoning about a software system.

Furthermore, to achieve composability of software building blocks, software components
(Szyperski et al., 2002) strive to provide sufficient information for third party usage via
interfaces, while encapsulating internal behaviour and complexity. Furthermore, a goal
of the resulting component-based software architecture (CBA) is to make properties of
software systems more predictable due to well-defined composition of components.

Quality properties considered at the level of (component-based) software architecture are
performance, reliability, maintainability, costs, or security. Experienced software architects
know styles and tactics to improve quality properties of a software architecture (Bass
et al., 2003). Using analysis methods such as the Architecture Trade-off Analysis Method
(ATAM) (Clements et al., 2001), software architects can analyse effects of design decisions
on quality attributes based on informal estimations, and try to uncover trade-offs and
conflicts among different quality attributes.

In recent years, many researchers have proposed to encode architectural design decisions
into software architecture models (e.g., using architecture description languages or UML)
(Taylor et al., 2009) thus enabling automated reasoning. Performance and reliability are
considered important quality attributes in practice (Berntsson Svensson et al., 2011, p.5),
so that a number of approaches evaluate architecture models for performance (Balsamo
et al., 2004), (H. Koziolek, 2010) in terms of expected response times, throughputs and
resource utilizations; or for reliability (Goseva-Popstojanova and Trivedi, 2001; Immonen
and Niemelä, 2008) in terms of probability of failure on demand. This systematic support
can lead to better decisions than experience (Martens et al., 2011). The reasoning is foun-
ded on theories for different quality attributes, such as queueing theory for performance
prediction or Markov models for reliability prediction.

Support for Interpretation of Results

As a major challenge in this area, most evaluation tools are only able to determine the
quality attribute values (e.g. 5 sec response time) for a given architectural model. Inter-
pretation of prediction results, problem identification, and improvement of the software
architecture are manual tasks in current practice (Woodside et al., 2007). Automation
is desirable, because the manual tasks (i) require rich architectural experience, (ii) are
laborious and therefore cost-intensive, and (iii) are error-prone due to the overwhelmingly
complex design space for humans (Bass et al., 2003). Furthermore, isolated improvement
of a single quality attribute can result in degradation of other quality attributes, which is
hard to determine and quantify manually.
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Figure 1.1.: Traditional Model-based Quality Prediction Process (adapted from (H. Ko-
ziolek, 2008))

1.2. Problem

Model-based quality prediction helps software architects to build high-quality software
systems by enabling them to analyse a software architecture model for its quality proper-
ties, both for newly designed systems (i.e. without an implementation) or systems that
are being evolved, redesigned, or brought into a new environment. Figure 1.1 shows the
prediction process.

However, only the steps from an annotated software architecture model to a quality analysis
model (e.g. queueing networks for performance) and its analysis is supported by automated
methods (indicated by the dashed box). The software architect then has to interpret the
prediction results manually, map them back to the software architecture level, and make
design decisions. These manual feedback tasks are difficult and time-consuming and should
be supported better (Woodside et al., 2007).

Furthermore, the feedback provided by model-based prediction is not only relevant for the
software architect, but also should provide information for the requirements engineering
phase: The quality properties achievable by the current software architecture needs to
be fed back into the requirements analysis phase, providing an input for negations about
quality preferences, quality requirements, and resulting costs, and thus enabling well-
informed trade-off decisions. Thus, support of the feedback task should also drive the
quality requirements analysis process.

Three main challenges arise for supporting this feedback task and providing input for
quality requirements analysis.

Trade-off Decisions: A single software quality attribute cannot be considered in isolation,
because improving a system with respect to one software quality attribute may have
an effect on other software quality attributes (Bass et al., 2003, p.73). Often, ar-
chitecture design decisions imply a trade-off between software quality attributes, i.e.
there is a conflict of quality attributes for this decision. For example, security and
reliability may conflict for architectural decisions regarding data storage: While a
system is secure if it offers few places that keep sensitive data, such an organization
may lead to single points of failure and decreased reliability (ibid., p.73). Simi-
larly, many architectural decisions made to improve software quality attributes have
potential to conflict with performance (ibid. p.74) due to additional required calcu-
lation and with costs due to increased development effort. Thus, when designing an
architecture, trade-off decisions must be made.
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As a result, automated improvement approaches need to consider several quality
attributes and provide input for trade-off decisions made by the software architect
and stakeholders. At the same time, automated improvement approaches should be
extendable to consider any quantitatively analysable quality properties the software
architect is interested in.

Flexible Degrees of Freedom: To automatically improve software architectures, changes
of the software architecture must be explored. For different quality attributes, dif-
ferent sets of decisions are relevant, although these sets may also overlap. For
example, the component deployment, the selection of components, and the server
and middleware configuration (such as server speed, communication settings and
load balancing) are degrees of freedom affecting performance and reliability proper-
ties. None of these degrees can be considered separately, they have to be considered
in combination to accurately predict system quality.

To support architects in improving software architectures with respect to any quan-
tifiable and predictable quality property, a flexible and extendible formulation of the
design space to be explore is required.

Efficient Exploration and Optimization: The design space to be considered may be large,
so that a full exploration is not feasible for non-trivial problems. Due to possibly
time-consuming quality analyses (e.g. queueing network simulation), the optimiza-
tion problem cannot solved exactly in other ways. For example, for sophisticated
performance prediction approaches, such as the Palladio Component Model (Becker
et al., 2009) or Layered Queueing Networks (Franks et al., 2009), performance pro-
perties cannot be determined with closed formulas; instead, simulation or approxi-
mation algorithms are necessary. In addition, the design decision space is discrete
and combinatorial. We cannot assume any function properties we can exploit for
optimization (such as continuity or differentiability) of the quality analyses.

At the same time, finding the exact globally Pareto-optimal solutions is not neces-
sarily required, an approximation found in reasonable time is often enough to solve
a given architectural design decision problem. Thus, an efficient technique to find
near-optimal architecture models is required.

1.3. Existing Solutions

In software engineering (and in other engineering disciplines), automated search-based
approaches have been applied to numerous problems to help software developers to come
up with improved and better solutions (Harman, 2007). Optimization is a special case of
search in which solutions that are best with respect to an objective function are sought.
Searching better or even optimal designs is called design space exploration. Design space
exploration can be used to support the feedback task: A software tool searches for improved
software architecture models and proposes them to the software architect as feedback.

For performance, some approaches address the challenge of automating the improvement
of architectures. Rule-based approaches (Performance Booster (Xu, 2010), PANDA (Tru-
biani, 2011)) codify knowledge from the performance domain into processable rules, to
detect causes for performance problems in software models and suggest or automatically
apply mitigation rules. However, these approaches are limited to performance prediction
and to changes for which rules are available. Thus, they cannot provide input for trade-
off decisions in the requirements analysis phase. In this work, we thus propose a novel
combination of performance domain knowledge as applied by these approaches with more
flexible metaheuristic optimization approaches.
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Figure 1.2.: Model-based Architecture Improvement Process with Feedback into Require-
ments Engineering

Specialized performance deployment optimization approaches (Planner2 (Zheng and
Woodside, 2003), the method by Sharma and Jalote (2008), CERAS Deployment Op-
timization (Li et al., 2009)) apply custom optimization algorithms to the component de-
ployment problem. While the optimization algorithms are efficient, they are limited to
deployment problems and to performance, and also do not provide trade-off support.

For reliability, numerous optimization approaches have been suggested (Kuo and Wan,
2007). However, they consider limited degrees of freedom, e.g. only redundancy, too.

Furthermore, metaheuristic-based approaches (e.g. ArcheOpterix (Aleti et al., 2009a),
GDSE (Saxena and Karsai, 2010b)) have been suggested that address optimization of
multiple quality properties. ArcheOpterix provides Pareto-optimal solutions as the out-
put, thus enabling trade-off decisions. However, they are either fixed to explore certain
degrees of freedom (such as allocation or service selection), or do not support the software
architect in defining the relevant design space, thus requiring a large effort to adopt the
method for new design problems. A more detailed discussion of existing approaches is
provided in Chapter 4.

1.4. Contributions

The contribution of this thesis is an automated method to improve component-based
software architectures based on model-based quality predictions, thus providing support
for trade-off decisions in the requirements analysis phase.

Figure 1.2 shows the high-level process: Our method automatically identifies the design
space that is opened up by the properties of CBA and relevant quality criteria and deter-
mines the optimal candidates using model-based quality prediction techniques.

The output of our method is a set of optimal trade-off architecture candidates (i.e. Pareto-
optimal candidates) in the identified design space for the considered multiple quality cri-
teria. This set provides a basis for well-informed trade-off decisions: It enables software
architects and stakeholders to negotiate requirements based on quantitative information
about the current system architecture and its potential. In an iterative development
process, the Pareto-optimal candidates thus can be used as a basis for decisions in the
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requirements engineering phase, so that the effects of decisions is known when making
them.

This contribution has three main aspects:

• First, we identify the information need of software architects and stakeholders that
can be filled with an automated method based on model-based quality prediction.
We extend a process model for development of new component-based systems with
our method but also embed the method in other scenarios such as evolution scenarios.
As a result, quantitative feedback is provided for software architects, requirements
engineers, and stakeholders to be used in architecture design and requirements ana-
lysis.

• Second, we provide a framework for multi-objective optimization of software archi-
tectures based on quality predictions and the notion of degrees of freedom. This
framework is independent of the used CBA metamodel and quality analysed, but
still allows including domain-specific knowledge in form of tactics operators.

• Third, to instantiate this framework, we provide concrete degrees of freedom for CBA
affecting performance, reliability, and costs as well as performance and costs tactics
for the Palladio Component Model.

In the following, we discuss the different aspects of the contribution in more detail.

Process

We analyse the decision support needs of software architects and stakeholders when using
model-based quality prediction and embed the automated improvement method into the
software development process and life cycle. Chapter 5 describes this aspect in detail. The
contributions of this work in this aspect are the following:

Decision Support Needs in Requirements Analysis and Architecture Design: Starting
from the assumption that a component-based architecture model and quality
analyses are available, we discuss how software architects, requirements engineers,
and stakeholders can be supported by an automated improvement method. Because
quality requirements should be subject to negotiation also in the architecture
design phase, we cannot assume fixed requirements. Instead, software architects,
requirements engineers, and stakeholders require input for well-informed trade-off
decisions in the requirements analysis phase (Section 5.1).

Quality-Exploration enhanced Component-based Development Process: We extend
the component-based development process by Cheesman and Daniels (2000) and
H. Koziolek and Happe, 2006 to include an automated architecture exploration
workflow in the quality analysis step, which provides Pareto-optimal candidates for
the considered design space. Additionally, we extend the process to incorporate
the use of the newly achieved information for decision making in different phases
(Section 5.2).

Architecture Exploration Scenarios: Automated architecture exploration is not restric-
ted to the development of new systems. We discuss the required input information
of the automated architecture exploration. Based on this, we provide additional sce-
narios where automated architecture exploration can provide valuable information
for software architects and stakeholders as a basis for decisions. For example, chan-
ging functional requirements, changing system environment, or changing usage are
stimuli for architecture evolution and architecture exploration (Section 5.4).

7



8 1. Introduction

Framework

To fulfil the identified need for an automated architecture exploration, we provide an
automated CBA improvement framework based on multi-objective optimization with the
following contributions:

Degree of Freedom Model: To support the exploration of different types of design deci-
sions, we provide a formal, generic, flexible, and extendible formulation of the design
space for optimizing CBA models for a number of quality properties. We propose a
novel metamodel for describing degrees of freedom (DoF) of any CBA metamodel that
uses EMOF (Object Management Group (OMG), 2006a) as meta-metamodelling lan-
guage. This design space formulation is generic as it is independent of the used CBA
metamodel. It is flexible as different degrees of freedom (e.g. component allocation
and component selection) can be combined for a system at hand. It is extendible as
additional degrees of freedom can be defined for a CBA metamodel or even custom
for a specific software system at hand (Chapter 6).

Automated Design Space Instantiation: Given a CBA model and a set of degrees of
freedom of the CBA metamodel, we provide a method to derive the degrees of free-
dom instances of the input model automatically. The degrees of freedom instances
span a design space, for which an optimization problem is automatically formula-
ted. The software architect can review the found degree of freedom instances and
add constraints, but does not have to specify the complete design space manually
(Section 6.4.1).

Generic Multi-objective Optimization Framework for CBA: For multi-objective optimi-
zation, we describe a CBA optimization framework, which is independent of the used
CBA metamodel an quality prediction techniques, and builds upon standard multi-
objective optimization frameworks. Given an input CBA model, a set of degrees of
freedom for the underlying CBA metamodel, and a set of quality prediction adap-
tors that make quality prediction techniques for instanced of the CBA metamodel
available to the framework, the framework can automatically instantiate the above
described design space and explore it using standard metaheuristic optimization al-
gorithms such as evolutionary algorithms. Any quality prediction technique on the
given CBA metamodel can be plugged into the framework by providing an adaptor,
so any combination of quality criteria for which prediction techniques exist can be
considered (Sections 8.1, 8.2, and 8.4).

Integration of Domain-specific Knowledge: Metaheuristic optimization techniques (i.e.
approximate optimization techniques that do not make any assumption about the
function to be analysed) treat the function to be optimized as a black-box. However,
domain-specific knowledge how to improve quality attributes is available, e.g. in the
form of architectural tactics (Bass et al., 2003) or performance patterns. For example,
to improve reliability redundancy could be introduced. To improve performance, the
load should be uniformly spread to processing nodes.

To integrate this knowledge in an evolutionary algorithm, we propose quality tactics
operators. The use of tactics operators can make the time-consuming optimization
more efficient and lead to 50% - 90% faster optimization for our test problems.
Additionally, for some types of design spaces, we propose two techniques to generate
starting populations (a hybrid with analytic optimization and an allocation scheme
heuristic).

Framework Instantiation

To instantiate this framework, we provide concrete degrees of freedom for CBA and tactics
for the Palladio Component Model.

8
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Identification of Degrees of Freedom for CBA: we present a list of degrees of freedom
that could be available in any CBA metamodel in general, i.e. that are based on
common principles of component-based software architecture or of software systems
in general. The list focusses on performance, reliability, and costs. For each identified
degree, we provide a definition in the Palladio Component Model (Becker et al.,
2009), the Component-Based Modeling Language (Wu and Woodside, 2004b) or the
ROBOCOP component model (ROBOCOP consortium, 2003) (Chapter 7).

Performance Tactics: We codify a number of performance tactics as tactics operators for
the Palladio Component Model, which make use of well-known performance domain
knowledge and principles, focussing on bottleneck removal. Additionally, as some of
these tactics lead to higher costs, we also provide inverse costs tactics which can be
applied in places of the system where enough capacity is available (Section 8.3.1).

1.5. Outline

The thesis is structured into three main parts. Part I lays the foundations on which the
work is build and discusses related work. It is organized as follows.

Chapter 2 lays the foundations concerning software architecture and quality attributes.
Section 2.1 presents basics and definitions on component-based software architec-
ture and the component-based development process on which this thesis is built.
Section 2.2 discusses quality of software architecture and introduces the related
terms used in this thesis. Section 2.3 introduces basic concepts regarding model-
ling and meta-modelling. Section 2.4 presents foundations of model-based quality
prediction techniques. As an example of one CBA metamodel and quality predic-
tion technique, Section 2.5 presents the Palladio Component Model which is used
in examples throughout the thesis and in our case studies. Finally, Section 2.6 des-
cribes two other CBA metamodels which are used throughout the thesis to show the
metamodel-independence of this work.

Chapter 3 introduces required knowledge on multi-criteria optimization. Section 3.1 brie-
fly describes basic terms for optimization in general. Then, Section 3.2 discusses
how multiple, conflicting criteria can be handled in optimization. Section 3.3 briefly
discusses classical approaches to multi-objective optimization and their limitations,
which make them not applicable in this work. Then, Section 3.4 describe meta-
heuristic multi-objective optimization, which make no assumptions on the search
problem, thus can be used for any optimization problem, and are used in this thesis.
In particular, the subclass of evolutionary algorithms is used, which are described in
Section 3.5.

Chapter 4 discusses related work in two sections. The main Section 4.1 discussed related
approaches that target to automatically improve software architecture models (or
similar abstract software models which could be used at the software architecture
level). Then, the shorter Section 4.2 describes the use of domain-specific knowledge
in optimization to distinguish our tactics operators.

Part II contains the contributions of this thesis and is organized as follows.

Chapter 5 analyses how the software architect and other stakeholders can be supported
by an automated method to improve a CBA model. In Section 5.1 discusses the goals
and requirements of such an automated method. Section 5.2 presents our extension
of the quality-driven development process (H. Koziolek and Happe, 2006) which in
turn extends the component-based development process by Cheesman and Daniels
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10 1. Introduction

(Cheesman and Daniels, 2000). Then, the relation between the representation of
the software architecture as a model and the actual software system is discussed
in Section 5.3. Section 5.4 presents development and evolution scenarios in which
our method can be used. Section 5.5 discusses assumptions and limitations of our
method. Finally, Section 5.6 concludes.

Chapter 6 describes how CBA can be changed automatically to achieve better quality. It
formalizes a design space that can be automatically searched. Section 6.1 describes
the requirements that automated changes have to adhere to to enable an automa-
ted search. section 6.2 illustrates the topics addressed in this chapter on a PCM
example model. The following sections describe the concepts formally and in de-
tail. Section 6.3 defines how the architecture can be changed automatically to affect
quality attributes, formalizing the concept of a degree of freedom to describe such
variation options. Then, Section 6.4 describes the resulting space of architecture
candidate models reachable by automated improvement. Finally, Section 6.5 lists
limitations of this method and Section 6.6 summarizes.

Chapter 7 describes which degrees of freedom are available in CBA models, independent
of the used CBA metamodel. Section 7.2 presents degrees of freedom found in the
application layer software. Section 7.3 describes degrees of freedom in the deploy-
ment. Finally, we discuss how additional degrees of freedom, which are not generic
for CBA, might be available in specific metamodels or specific systems in Section 7.4.
Section 7.5 discusses the limitations of our method, and Section 7.6 concludes the
chapter.

Chapter 8 then describes the optimization technique we developed to find optimal CBA
models in the design space introduced in Chapter 6. Section 8.1 describes the opti-
mization problem and discusses the applicable optimization techniques. Section 8.2
presents how evolutionary optimization is applied to the problem. Section 8.3 pre-
sents our extension to evolutionary optimization that allows to include more domain-
specific knowledge as tactics operators. Section 8.4 presents the architecture for a
CBA optimization framework that automates the described optimization method
while being independent of the used CBA metamodel. Finally, Section 8.5 discusses
additional aspects and concludes the chapter.

Finally, part III presents the validation of this work and concludes.

Chapter 9 describes the validation of our method, which is structured into two main goals:
(1) To assess the validity of the automated improvement method in terms of the ac-
curacy of the results and the applicability of the method and (2) to evaluate the
performance of the optimization step quantitatively. First, Section 9.1 describes the
evaluation goals in more detail and derives questions for both goals. Section 9.2 pre-
sents the used implementation of the optimization framework. Section 9.3 presents
the three case study systems. Then, Section 9.4 described the results for the validity
of our automated improvement approach and Section 9.5 describes the quantitative
evaluation of the optimization step’s performance.

Chapter 10 concludes by summarizing the contributions and the conducted validations
(Section 10.1), highlighting the benefits achieved by our method (Section 10.2), poin-
ting to assumptions and limitations discussed throughout this work (Section 10.3),
and outlining future research efforts and ideas (Section 10.4).
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2. Component-based Software
Architectures and Quality

This chapter describes the foundations on which this thesis is built and introduces the
used terminology. Section 2.1 introduces component-based software architecture (CBA)
and presents the terms and views used in this thesis. Section 2.2 describes how software
architecture influences quality attributes, and how quality attributes are considered du-
ring software architecture design. To set the foundations for modelling aspects, Section 2.3
briefly introduces modelling and meta-modelling. Quantitative quality attributes can be
predicted based on architecture models, which is presented in Section 2.4. Then, Sec-
tion 2.5 describes the Palladio Component Model (PCM), which is used in this thesis to
predict quality properties of CBA. Other available CBA modelling techniques are descri-
bed in Section 2.6. Finally, Section 3 describes the basics of multi-criteria optimization,
which are used to improve CBA models in this work.

2.1. Component-based Software Architecture

This section presents foundations on component-based software architecture. Section 2.1.1
present definitions for software architecture, components, and respective models. Sec-
tion 2.1.2 describes a development process for developing component-based system’s based
on architecture specification.

2.1.1. Definitions

Numerous definitions for software architecture have been formulated; and the research
community has not finally agreed on a common wording. A general definition, that is used
in the remainder of this work, emphasizes design decisions:

Definition 2.1 Software Architecture (Taylor et al., 2009, p.58)

A software system’s architecture is the set of principal design decisions made about the
system.

Interestingly, what is a principal design decision depends on the system goal. Examples
names by Taylor et al. (2009, p.58) are the structure of the system, important decisions
on functional behaviour, the interaction of components, and non-functional properties.

13



14 2. Component-based Software Architectures and Quality

This definition only mentions the core concept of design decision. It is independent of the
question how these design decisions are formulated, and thus includes intangible software
architectures that are not documented. Thus, this definition separates between the soft-
ware architecture and its representation in documentation. In contrast, other definitions
of software architecture, such as by Perry and Wolf (1992) and the IEEE standard (IEEE
Std. 1471-2000, 2000), already describe how these design decisions are captured. Addi-
tionally, other definitions emphasize the static structure of the system (system building
blocks (Perry and Wolf, 1992), organization of the system as a set of components (IEEE
Std. 1471-2000, 2000)).

An important subset of design decisions refer to the structure of the system, i.e., its
decomposition into building blocks. To manage complexity of software systems, architects
apply the principles of encapsulation, abstraction and modularity (Taylor et al., 2009)
to structure the system. The resulting building blocks are called software component:
“A software component is an architectural entity that (1) encapsulates a subset of the
system’s functionality and/or data, (2) restricts access to that subset via an explicitly
defined interface, and (3) has explicitly defined dependencies on its required execution
context” (Taylor et al., 2009, p.69).

Researchers have strived to extend the notion of a software component so that the compo-
sition of systems from independently developed components becomes possible. Szyperski
et al. (2002) has identified the following characteristics of a software component that can
be independently developed and reused, stressing the composability and reuse by third
parties:

Definition 2.2 Software Component (Szyperski et al., 2002, p.41)

A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.

The contractually specified interfaces define the services that a component provides to
its environment. The component can only be accessed using these provided interfaces.
Interfaces specify a contract between offering component and the users in the environment
and contain all information that users can rely on when interacting with the component.

To be reusable in by third parties, a component needs to make its dependencies expli-
cit. First, dependencies include required interfaces: the component needs to specify which
interfaces needs to be provided by other components in its environment. Second, depen-
dencies specify additional dependencies to the execution environment, such as the required
platform or required resources.

As a result, a component can be independently deployed and will provide its services in
an environment that provides the required context capabilities (required interfaces and
platform). A component is furthermore a unit of deployment, which means it cannot be
deployed partially (Szyperski et al., 2002, p.36) and thus keeps its internals hidden at
all times. Thus, the component can be used by third parties based on the interface and
dependency information only to compose a system.

In the following, I mainly use the terms of the PCM to describe the elements of component-
based architectures. The elements described, however, mainly match the elements descri-
bed used by other authors. I give the terms used by other authors where applicable, in
particular of Taylor et al. (2009).

To form a system, components are instantiated and connected to each other. The required
capabilities of every component need to be provided, i.e. the required interface of a com-
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2.1. Component-based Software Architecture 15

ponent needs to be connected to another component that offers this interface as a provided
interface.

Definition 2.3 Component Assembly

A component assembly defines how a set of components is instantiated and connected to
each other. A valid component assembly connects all instantiated required interfaces of
the used components to instantiated provided interfaces of other used components. A
connector connects a required interface of one component to the provided interface of
another component.

Component assembly is called configuration by Taylor et al. (2009).

A system created by connecting hundreds of components, however, is confusing. Thus,
a hierarchical decomposition into subsystems and composed components is required to
structure the system and manage the complexity.

Definition 2.4 Component Composition and Composed Structure

Component composition is the act of hierarchically structuring the system by encapsu-
lating a component assembly into one architectural element, called composed structure.
Component composition can be either black box (composed component) or white box
(subsystem). The result of a black-box composition is a component (see Def. 2.2).

Component composition or composed structure in this sense is not defined by Taylor et al.
(2009) explicitly. They, however, also identify the necessity to structure a large system into
subsystems as a unit of analysis (Taylor et al., 2009, p.304). In contrast to the definition of
a composed structure here, their notion of a subsystem does not require any encapsulation
and resulting explicit interface specification at the subsystem level.

A software architecture that is structured based on software components and connectors
is called a component-based software architecture in the following.

Definition 2.5 Component-based Software Architecture (CBA)

A component-based software architecture is a software architecture whose principal design
decisions regarding the structure of the systems are made by structuring the system as a
set of software components. The system is thus described as a composition of components.

To express (component-based) software architectures, architects have to describe the ar-
chitecture in some type of artefact. These artefacts can be ranging from natural language
descriptions over UML models to formal architectural description languages such as Rapide
(Luckham et al., 1995) or the Palladio Component Model (Becker et al., 2009).

Definition 2.6 Architecture Model (Taylor et al., 2009, p.75)

An architecture model is an artefact that captures some or all of the design decisions that
compromise a system’s architecture.

An architecture model is a formal architecture model if it is based on a formally defined
language, e.g. defined by a metamodel (cf. Section 2.3).

For appropriately describing component-based software architectures, we define
component-based architecture models to be formal models describing component-based
architectures. Models of single component, just like components, can be independently
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Figure 2.1.: Main CBA Concepts

created and composed to form a component-based architecture model. Thus, a component
model can be delivered together with a component and be reused by third parties when
composing an architectural model.

Definition 2.7 Component-based Architecture Model (CBA Model)

A component-based architecture model is a formal architecture model that uses software
components as the main entity to describe the design decisions: (1) software component
are explicit model entities which encapsulate internal decisions and provide information
on interfaces and dependencies, (2) the model of a component can be reused in any CBA
model, (3) structural design decisions are expressed as a composition and assembly of
software components, only making use of the provided interfaces and context dependen-
cies of the component models, and (4) other design decisions are described in relation
to the composition or to the components (e.g. by annotating components, connectors, or
assemblies).

For example, control flow is described by specifying the control flow of single components,
so that the overall system’s behaviour emerges as an consequence of combining several
components. For example, Service Effect Specifications (SEFF) describe component beha-
viour in the PCM. A SEFF is an abstraction of the component C’s control flow describing
calls to required components if one of C’s services is called.

In contrast, in UML models, system behaviour is often described only by sequence dia-
grams, which mix interaction between components with component-internal behaviour,
and thus directly define the overall system’s behaviour for a given use case. Such a model
is not considered a CBA model in this work.

A CBA model is thus restricted to design decisions that can be expressed in terms of soft-
ware components and annotations to them. Internal decisions of components are usually
not considered when working with the CBA, because components may be provided by
third parties. The focus of this model are structural design decisions, while other types
of decisions (e.g. behaviour, interaction, non-functional properties) are annotated(?) to
the structural elements. Some types of design decisions, such as non-existence decisions
(Kruchten, 2004) (e.g. the system does not use remote procedure calls), cannot be expres-
sed with a CBA model, and need to be represented with other types of models.

Figure 2.1 shows the main concepts in CBA models required for the purpose of this work.
The concepts are modelled differently in different CBA metamodels. For example, an as-
sociation may be represented by an additional association class, or a class in our figure
may be represented by just an association in a concrete CBA metamodel. Additionally,
multiplicities may be different, and concrete CBA models may contain more details on
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2.1. Component-based Software Architecture 17

other aspects of the CBS (e.g. a more detailed model or the resource environment, dis-
tinguishing for example hardware servers from virtual machines as suggested by (Hauck
et al., 2009)).

An interface in our terminology is a definition of access to a subset of functionality, as
described in definition 2.2. In other CBA metamodels, terms like service or port could
be used here, too. All three terms have the common notion of defining the access to the
components functionality, although the meaning may differ in detail.

As components offer access to functionality via interfaces, their dependency to other com-
ponents’ functionality is expressed as a dependency to interfaces, too. The interface itself
serves as the contract which both parties adhere to. Additionally, components have de-
pendencies to other system resources, such as hardware resources, operating system, or
middleware resources.

Concrete component metamodels may contain information than described above. Our
definition of CBA models only states the minimum requirements for such models, but
allows any extensions to it. For example, different communication styles and dynamic
change of connectors are emphasized by the SOFA 2.0 component model (Bures et al.,
2006). Still, SOFA 2.0 shares the main concepts described above. Thus, our automated
improvement method can be applied to SOFA 2.0 models as well.

In the remainder of this thesis, we refer to concepts of CBA using the terms described
in this chapter and the property names are used as shown in Figure 2.1. If no property
name is given in the figure, the name defaults to the referenced type (e.g. ComponentIns-
tance.component to refer to the Component from a Component Instance).

2.1.2. Component-based Software Development Process

The development of component-based systems is unique in its “combination of top-down
and bottom-up that component orientation demands” (Szyperski et al., 2002, p.458). Se-
veral development processes have been suggested to reflect these unique properties. Chees-
man and Daniels (2000, Chapter 2) have proposed such a process based in the Rational
Unified Process (RUP), which we present below.

Figure 2.2 shows the development process. Boxes represent workflows. They are connected
by thick grey arrows indicating change of activity and thin black arrows that show the flow
of information in the form of artefacts. As it can be observed from the directions of the
thick arrows, the order of the workflow steps is not fixed, i.e. the process is not a waterfall
model. Instead, the actors can freely change from one workflow to the other, reflecting the
iterative nature of RUP.

The process contains the following steps:

Requirements: In the first step, the functional business requirements of the customers are
analysed in this workflow. The outcome is a business concept model that models the
relevant concepts of the system’s domain and a use case model that described inter-
actions of users with the system. Together with these use cases, quality requirements
may be specified. For example, a quality requirement might describe that a use case
should support a number of simultaneous users and respond within a specified time
on average.

Specification: In this phase, the CBA is designed based on the business concept mo-
dels and the use case models. Software architects model the overall architecture
by first identifying business interfaces and system interfaces and then creating com-
ponent specifications. Existing components should be taken into account. If technical
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Figure 2.2.: Component-based Development Process (from Cheesman and Daniels (2000))

constraints are encountered in later phases of the process, these can be also conside-
red in the specification step. The output of this step are component specifications
and the CBA.

Provisioning: In this step, components are purchased from third-parties if components
matching the specification already exist, or implemented. For newly implemented
components, the designed interface specifications are input for component developers
to provide conforming component implementations. The output of this step are
implemented components.

Assembly: In this step, the components are assembled according to the CBA model. The
output of this step is the complete deployable application, including artefacts that
define the wiring of components, such as EJB deployment descriptors.

Test: The complete application can now be tested according to the use case models, using
test environments.

Deployment: In the deployment step, the application is installed in its target environment.

2.2. Quality of Software Architectures

The software architecture of a system is critical to achieve quality, thus, quality should
be considered when designing software architecture (Bass et al., 2003, p.73). Section 2.2.1
describes the quality attributes relevant at an architecture level. Then, Section 2.2.2
describes how to quantify quality attributes and presents the related terms.

2.2.1. Quality Attributes of Software Architecture

Developing high quality software products is a goal in many development projects. Ho-
wever, quality is a highly subjective term and depends on the goals and perceptions of
stakeholders. To better reason on software product quality, software quality models have
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been suggested to describe and measure software quality (e.g. (ISO/IEC 9126-1:2001(E),
2001), by (Boehm et al., 1976), or by (McCall et al., 1977), see (Falcone, 2010) for a
discussion and comparison).

Software quality attributes (also called quality characteristics) are characteristics which
provide the basis for evaluating quality of software systems (adapted from (Falcone, 2010,
p.81)). Examples for software quality attributes of software systems are reliability, usabi-
lity, and performance.

Software quality attributes are one of the influence factors to take into account when desi-
gning a software architecture (Bass et al., 2003, p.73),(Posch et al., 2004, p.75). Relevant
software quality attributes when designing software architecture are reliability, modifiabi-
lity, performance, security, testability, and usability (Bass et al., 2003, Sec.4.4). For some
software quality attributes, quantitative quality metrics are available to assess the level of
quality achieved by a software system.

Performance: Performance is concerned with the timing behaviour and resource efficiency
of the system. Important performance measures are response time of system services,
resource utilization, and throughput (Jain, 1991). More comprehensive measures
also take the time needed by users to accomplish tasks into account (Smith and
Williams, 2002b), i.e. the duration of providing input for the system and waiting for
the system response. Such measures can be considered the response time of usage
scenarios, taking the user actions into account, too.

Reliability: Reliability is the capability of a system to provide functionality as expected
for a specified period of time in the intended execution context. It is for example
measured as the probability of failure on demand (POFOD). The notion of availability
is closely related and focusses on the fraction of time that the system is available to
serve requests (Bass et al., 2003, p.73). For example, one may require that a system
is available 360 days a year.

Modifiability: Modifiability is concerned with the costs of changing the software system,
e.g. if new functionality should be added or if corrective changes are made (ibid.,
p.80 et seqq.).

Security: Security is the capability of the system to resit unauthorized usage, i.e. to protect
sensitive data and services so that only authorized users can access them (ibid., p.85).

Testability: Testability describes how well the software can be tested to detect faults (ibid.,
p.88). Measures for testability are how effective given tests can discover faults, or
how much effort has to be made to achieve a certain test coverage (ibid., p.89).

Usability: Usability describes how easy users can work with the system and accomplish
their tasks (ibid., p.90). For example, the ability to undo incorrect inputs easily
makes a system more usable, and at the same time has consequences for the system’s
architecture.

Depending on the goals of the system to be developed, additional software quality attri-
butes may be relevant, such as portability or interoperability.

Thereby, single software quality attributes cannot be considered in isolation, because im-
proving a system with respect to one software quality attribute has an effect on other
software quality attribute (ibid., p.73). Often, software quality attributes conflict: For
example, security and reliability often negatively influence each other: While a system
is secure if it offers few places that keep sensitive data, such an organization may lead
to single points of failure and decreased reliability (ibid., p.73). Furthermore, almost all
software quality attributes conflict with performance (ibid., p.74).
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Additionally, economic considerations are a major driver of software development (ibid.,
p.307). Business quality attributes are, for example, costs, monetary benefit, and time-to-
market (ibid., p.95).

Costs: Costs are the main quality to trade-off against the software quality attributes na-
med above. What types of costs need to be considered depends on the organizational
context: Usually, the direct development costs have to be considered. Additional
costs are maintenance costs, hardware procurement costs, operating costs, or licen-
sing costs.

Monetary benefit: The benefit to be achieved by the developed software system can be
quantified and compared to the expected costs, to calculate the return-of-investment.

Time-to-market: Development time may be important if a new type of system is developed
that is supposed to capture a share of an emerging new market. This quality can
also be translated in monetary .

We denote software quality attributes and business quality attributes together as quality
attributes.

To achieve a software system with high quality for the relevant quality attributes, me-
thods have been suggested to design software architectures based on identified relevant
quality attributes. For example, Attribute-Driven Design (ADD) (Bass et al., 2003, p.155
et seqq.) is a recursive decomposition process to identify the structural organization of
a software architecture driven by relevant quality attributes. The system is structured
based on known architectural tactics and architectural patterns. The result is a high-level
organization of the system, which is refined in further architecture design steps. However,
even a well-designed software architecture is no guarantee that the resulting software sys-
tem will indeed have the envisioned qualities. Instead, it provides only a foundation to
be able to achieve these qualities. More decisions are made throughout the further design
and implementation of the software system that may deteriorate the qualities.

After an initial version software architecture has been designed (using ADD for the initial
steps or other methods), it can be used to analyse what qualities can be achieved when
realizing the system. Evaluating the quality attributes early can help to identify wrong
decisions, which are expensive to revert later in the process. Early architecture evaluation
is reported to save costs later in development processes (ibid., p.263).

Several software architecture evaluation methods have been suggested to evaluate a soft-
ware architecture with respect to quality attributes (a survey is provided by Dobrica and
Niemelä (2002)). A widespread method that has been used in numerous industrial case
studies (H. Koziolek, 2011) is the Architecture Trade-off Analysis Method (ATAM) (Cle-
ments et al., 2001), which focusses on identifying software quality attributes relevant for
different stakeholders, the quality metrics to assess them, and associated risks and sensitive
points in the architecture; as well as on discussing the current architectural decisions. In
the process of architecture evaluation, the conflicts and trade-offs among software quality
attributes can be uncovered, and their resolution can be negotiated among stakeholders
(Bass et al., 2003, p.264).

A more quantitative approach to trade-off resolution is the Costs Benefit Analysis Method
(CBAM) (Bass et al., 2003, ch.12), which strives to provide decision making support by
quantifying the utility of achieved software qualities and compare them to the expected
costs, thus enabling return-of-investment calculations. CBAM can be used after ATAM
to decide whether certain architectural decisions to achieve quality actually pay off. To
do so, the effect of architecture decisions on quality attributes has to be estimated. By
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Figure 2.3.: Software Quality Terms

calculating the costs and utility for each quality attribute, these are also traded off against
each other.

However, ATAM and CBAM are high-level architecture evaluation methods and focus on
discovering relevant quality attributes, their trade-offs and associated risk. They are based
on manual estimations of the effects of design decisions on quality properties. As such they
can be combined with methods focussing on evaluating certain quality attributes in more
detail by using quantitative model-based quality prediction techniques based on formal
models of the software architecture (Dobrica and Niemelä, 2002, p.650).

For a given software architecture design problem at hand, software architects have to
select the appropriate methods to use from the available set of approaches. The use of
quantitative quality prediction techniques can be a result of risk analysis: If a set of quality
attributes are identified to be crucial for the system, it can be worthwhile to study them in
more detail using quantitative prediction techniques. The approach presented in this thesis
supports architecture decisions where quantifiable quality attributes have been identified
as important.

Before discussing quantitative model-based quality prediction techniques in Section 2.4,
we introduce the notion of quantitative quality properties of software systems in the next
section and general foundations on modelling in Section 2.3.

2.2.2. Quantitative Quality Properties

Figure 2.3 illustrates the terms to describe quantitative qualities in this thesis. The
concepts are related to the terms used in the Quality of Service Modelling Language
(QML) (Frølund and Koistinen, 1998) (cf. comparison in Appendix D), however, we use
names from the context of software architectures (e.g. as introduced in the previous section
and as used by Böhme and Reussner (2008b) and (Bass et al., 2003)).

As described in the previous section, quality attributes are characteristics of software
systems. However, quality attributes are abstract notions of quality, and do not directly
provide means to quantify the quality of a system. To quantify quality attributes, quality
metrics such as mean response time or POFOD have been introduced.
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22 2. Component-based Software Architectures and Quality

Quality attribute Quality metric Description

Performance
Response time Time interval between sending a request to a system and

receiving a response. Smaller values are preferable.
Utilization Ratio of the time that a resource is busy (e.g. processing

requests or being held) to the total elapsed time in a period
of time. High utilization leads to long waiting time, while
low utilization is a indicator for oversized resources. Thus,
a targeted nominal values needs to be specified.

Throughput Rate in which a system handles requests, measured in re-
quests (or tasks or other units of work) per time unit. Higher
values are usually preferable.

Reliability Probability of failure
on demand (POFOD)

Probability that a request to a service of the system or an
interaction with the system will fail, i.e. will not provide the
expected result. Lower values are preferable.

Costs
Component procure-
ment costs

Sum of the costs of all bough third-party components. Lo-
wer values are preferable.

Initial CBA costs Sum of component costs (development or procurement) and
hardware procurement costs. Lower values are preferable.

Table 2.1.: Example Quality Metrics

Definition 2.8 Quality Metric (adapted from (Böhme and Reussner, 2008a))

A quality metric qm is a precisely defined method which is used to associate an element e
of an (ordered) set V∗qm to a system S.

Different research areas for quality attributes have proposed different quality metrics to
describe their quality attribute. We describe some important quality metrics in table 2.1.

The same quality metric can be relevant in multiple places when evaluating an software
system. For example, the mean response times of the three most important services of a
system can be considered three separate criteria. Additionally, the same quality metric can
be relevant in multiple scenarios relevant for the system. For example, the response time
of a service at normal workload conditions may be considered as well as the response time
of this service at peak workload times, leading to two quality criteria based on which the
quality of the system is judged. A scenario defines a number of environment conditions
under which the quality metric is to be collected, e.g. workload conditions for performance
metrics or types change requests for modifiability metrics. Thus, we define a quality
criterion as the collection of a quality metric for a place in the software system in a
certain scenario. While a quality metric only defines how to quantify, a quality criterion
binds a quality metric to a concrete element of software system.

Definition 2.9 Quality Criterion

A quality criterion q collects a quality metric qm at a defined place in a system S in a
defined scenario. Thus, a quality criterion is defined specifically for a system S. It can
be collected for different instances of S, e.g. different versions of S over time, or different
configurations of S for different customers. Let instances(S) denote the set of all instances
of S, and let m(q) denote the quality metric on which q is defined. Then, a quality criterion
can be considered a function

q : instances(S)→ V∗m(q)

We deliberately do not restrict the notion of a system instance to certain interpretations,
e.g. system versions over time, execution environment, or product configurations on pro-
duct lines. What sensible system instances to consider are depends on the development
project. For specialized software such as process control systems (see also our case study
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in Section 9.3.2), it may be sensible to consider each version of the system deployed for
a customer’s plant as one system instance. For mass software which is sold to millions of
customers, it may be more useful to consider different editions of the system—for example
the premium and the standard edition—as different instances, and reason on them assu-
ming a certain minimum execution environment of the end users. Furthermore, the notion
of system instance and scenario may overlap: While a certain workload condition may be
considered a scenario for which a quality criterion is defined in one case, in other cases the
system under different workload conditions may be considered different system instances
which are judged based on a workload-independent quality criterion.

In the following, we just speak of the mean response time or the POFOD of a software
system if there is only one relevant quality criterion for these quality metrics.

For quality criteria, requirements can be specified which state which values have to be
achieved to satisfy the stakeholder’s needs for this quality. For example, a quality require-
ment may state that a service of a system must respond faster than 5 seconds in the given
scenario. Thus, a quality requirement adds a value to achieve to a quality criterion. All
values better than the requirement equally satisfy the stakeholders needs.

Definition 2.10 Quality Requirement

A quality requirement r defines a value which satisfies a quality criterion q. If the value
is achieved by a system instance, the quality criterion is satisfied. Values better than the
required values all have equal utility for the stakeholders. Formally, a quality requirement
is a tuple of a quality criterion and a value from the respective quality metric’s domain:

r = (q, v) with v ∈ V∗m(q)

This notion of a quality criterion and quality requirement are related to quality attribute
scenarios (QAS) of ATAM (Bass et al., 2003, p.75). A QAS defines which quality metric
to collect at which place in the system (called artefact in QAS) in which scenario (called
stimulus and environment in QAS), and defines which value of the metric is required to
be observed for this scenario (called response measure in QAS). Thus, a QAS, in our
terminology, is the combination of a quality criterion and a quality requirement for it.

Quality requirements are strict concepts, defining that there is no need to further improve
a quality beyond the stated values. However, it is not clear whether stakeholders can make
such precise and absolute definitions about their preferences (cf. discussion in Section 5.1).
Thus, we also introduce the notion of a quality bound, which also defines a value for a
quality criterion which must be achieved, but does not state whether values better than
the systems are of equal utility. Thus, improvement beyond the bounds may be desirable
as well.

Definition 2.11 Quality Bound

A quality bound b defines a value to minimally achieve for a quality criterion q. Further
improvement of the value beyond the quality bound may or may not be desirable. Formally,
a quality bound is a tuple of a quality criterion and a value from the respective quality
metric’s domain:

b = (q, v) with v ∈ V∗m(q)

Finally, a system instance has a certain value for the quality criteria. For example, a
service X of a version of the system deployed at customer Y has a mean response time of 5
seconds when called with a defined workload. We denote this value as a quality property.
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Figure 2.4.: Relationship between Real World, Model, and Metamodel from (Stahl and
Völter, 2006, p.86)

Definition 2.12 Quality Property

A quality property is a value that a system instance has for a quality criterion q. Let s be
a system instance. Then, the quality property is the function value of q:

q(s)

2.3. Modelling Concepts

Before discussing model-based quality prediction in the next section, this section intro-
duces the basic concepts of modelling and meta-modelling which enable to describe formal
models of software architectures Section 2.3.1 describes basic concepts of modelling and
meta-modelling. Then, Section 2.3.2 presents the Essential Meta Object Facility (EMOF)
(Object Management Group (OMG), 2006a) as an example for a meta-metamodel which
can be used to define CBA metamodels. .

2.3.1. Models and Metamodels

Definition 2.13 Formal Model (from (Becker, 2008b) based on (Stachowiak, 1973) )

A formal model is formal representation of entities and relationships in the real world (abs-
traction) with a certain correspondence (isomorphism) for a certain purpose (pragmatics).

In the remainder of this work, we denote formal models by the term model, too. Metamo-
dels formally describe the set of models for a particular modelling domain:

Definition 2.14 Metamodel (adapted from (Stahl and Völter, 2006, p.85))

A metamodel is a formal model that describes the possible models for a domain by defining
the constructs of a modelling language and their relationships (abstract syntax) as well as
constraints and modelling rules (static semantics).

By that, a metamodel defines the abstract syntax and the static semantics of a modelling
language, but not the concrete syntax (Stahl and Völter, 2006, p.85). Figure 2.4 shows
the relations between real world, model, and metamodel.

A metamodel is a formal model itself, describing the entities and relationships of models
in the target domain. Thus, its structure can again be described by a metamodel, leading
to a hierarchy of arbitrarily many meta-levels. The meta-relationship here is relative to
a currently considered model. Models that are two meta-levels away from the currently
considered model are called meta-metamodel.

Models that are described by a metamodel are called instances of the metamodel. We
distinguish several levels: First, models that match to the structure prescribed by the
metamodel by the abstract syntax structurally conform to the metamodel. Additionally,
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Figure 2.5.: General Modelling Schemata

models which structurally conform to the metamodel and fulfil the static semantics conform
to the metamodel.

To simplify reasoning on models in the remainder of this work, we introduce the following
relation symbols and names. We write M C MM if a model M structurally conforms to a
metamodel MM. We use the relation M J MM if a model M conforms to a metamodel
MM . Furthermore, a model M is a set of model elements, where each model element
e ∈ M is an instance of a meta-class mc of M ’s metamodel MM, denoted by the relation
e instanceOf mc : ∀M C MM : ∀e ∈M : ∃mc ∈ MM : e instanceOf mc. The index at the
end of this work (p. 327) lists the used symbols and relations for quick reference.

Metamodels for software architectures often only describe the static semantics of models
in the target domain. Additional semantics, e.g. dynamic semantics, of the target domain
are often not captured formally by the metamodel (Becker, 2008b). Instead, the additional
semantics may be annotated to the metamodel using natural language or by defining a
mapping to a model which has more semantics; or they are simply a mutual agreement
between the metamodel users. We call models that conform to the metamodel and fulfil
the relevant additional semantics valid model instances.

While static semantics can be easily checked automatically for a metamodel, there are often
no means to check dynamic semantics based only a on given model and its metamodel,
without additional information (such as a mapping to a formal system) (Becker, 2008b,
p.28). Often, whether a model instance is a valid model instance can only be checked by
human interpretation or by transforming the model into other formalisms (for example
simulation code or formal mathematical models for analyses) where the violation of the
semantics are uncovered.

To give an example for static semantics, the PCM metamodel (cf. Section 2.5) prescribes
that in a valid model, each component of a system need to be allocated to a server.
Otherwise, the model is invalid, and cannot be transformed into quality models for analysis.

Additionally, to give an example for dynamic semantics, for each variable characterization
used in for example an internal action, the variable needs to have a value assigned when
evaluating the characterization. This semantics are not expressed in the PCM metamo-
del, but are checked when transforming the model into quality models such as Layered
Queueing Networks (LQNs). If no variable assignment is available, an error occurs.

In the context of this thesis, our modelling focus is a CBA. The meta-modelling levels for
this setting are shown in Figure 2.5(a) and, as an example, for the PCM in Figure 2.5(b).
The metamodel level is a software architecture metamodel, describing the concepts used to
model software architectures. For example, the PCM is a software architecture metamodel.
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The meta-metamodel level is a model to describe metamodels. For example, the Essential
Meta Object Facility (EMOF) (Object Management Group (OMG), 2006a) is such a meta-
metamodel which describes, among others, UML models. It is independent of the target
domain to model software architectures. EMOF describes itself, so no more meta-levels
are required.

2.3.2. Essential Meta Object Facility

In this section, we describe the Essential Meta Object Facility (EMOF) (Object Manage-
ment Group (OMG), 2006a) as an example of a meta-metamodel for software architectures.
We use EMOF throughout the thesis as a meta-metamodelling language. EMOF is chosen
because it is a widespread meta-metamodelling language (in its full form MOF it is the
metamodel of UML) and has extensive tool support.

Figure 2.6 shows the aspects of EMOF relevant in this section again. The attributes of
the classes as well as details of the associations are omitted here, see (Object Management
Group (OMG), 2006a,d) for the detailed specification of the metamodel.

Concepts in a metamodel are modelled using Classes1. Each Class is of a certain Type

and contains a set of Properties. Properties are TypedElements, that means they
have a Type. The Type of a Property can be a DataType such as primitive types of
enumerations, or a Class. With Properties, associations as well as attributes of Classes
can be modelled. Properties have additional properties which are not shown here, such
as cardinality and whether they are composite.

As an example, consider the excerpt of the PCM in Figure 2.7. An AssemblyContext is
the place holder of a component in a System. A ResourceContainer represents a server.
An AllocationContext maps a component to a server by referencing an AssemblyContext
and a ResourceContainer. The Allocation contains AllocationContexts for all components
in the System.

While Figure 2.7 shows the excerpt of the PCM metamodel in UML graphical syntax,
Figure 2.8 shows the same concepts as instances of the MOF meta-metamodel. The excerpt
contains four Classes (described above). Three Properties connect the concepts to
each other. For example, the Property assemblyContexts defines the association between
AllocationContext and AssemblyContexts that defines which component is allocated by
this AllocationContext.

To reason on EMOF-based models (i.e. instances of EMOF, and instances thereof), we
introduce some further terms. As described in the previous section, models consist of
model elements. In EMOF, relevant model elements are instances of Classes and ins-
tances of Properties. Properties model attributes and relationships of Classes. Thus,
in instances of instances of EMOF, the descendants of Properties have values. For
example, instances of the assemblyContext Property shown in Figure 2.8 refer to concrete

1For better readability, the name of (meta)metamodel elements is inflected for plural forms, e.g. one MOF
Property, several MOF Properties.
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Figure 2.8.: Allocation Excerpt of PCM shown as an Instance of EMOF

AssemblyContext in PCM model instances. To reason on these values, we refer to Pro-

perties of Classes using a dot-notation, so for example, for an AllocationContext A,
A.assemblyContext refers to the instance of AssemblyContext referenced by the Property
instance’s instance.

For a model M , let vm(M) denote the value of the model element m in M . For example,
in a model M , let A be an instance of Allocation context, which refers to an instance of
AssemblyContext C as the component instance to deploy. Then, vA.assemblyContext(M) =
C.

Thus, we can compare the values of properties two models M and M ′ which contain some
shared model elements. For example, two versions V1 and V2 of architecture models can
be compared, i.e. two models. In model V1, the AllocationContext A refers to server1 as
A.resourceContainer. In model V2, A.resourceContainer refers to server2. Then, we can
say that vA.assemblyContext(V1) 6= vA.assemblyContext(V2).

If the model M does not contain the model element m, the function vm is undefined
and comparisons with it always evaluate to false. If a model element is a containment
association, the equality also checks for equality of the contained model elements.

In the following, for a more comprehensive presentation, we additionally assume that all
model elements are connected, i.e. that for any two model elements m and m′ in a model,
we can either navigate from m to m′ or from m′ to m using the above described dot-
notation.

To define static semantics, the Object Constraint Language (OCL) (Object Management
Group (OMG), 2006b) can be used for EMOF-based metamodels.
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2.4. Model-based Quality Prediction

Quantitative quality prediction techniques allow to evaluate software architecture models
(or, more generally, other models of software) for their quantitative quality properties.
In this section, we focus on component-based techniques in particular. Section 2.4.1 des-
cribes the general concepts of quality prediction. The next two sections briefly describe
basics of quality prediction for performance (Section 2.4.2) and other quality attributes
(Section 2.4.3). Section 2.4.4 describes the concept of quality completions, which help to
bridge the gap between abstract software architecture models and quality-relevant, but
low-level details of the software systems. Finally, Section 2.4.5 presents the inclusion of
quantitative quality prediction into the component-based development process.

2.4.1. General Concepts

Figure 2.9 shows the main concepts: When using quantitative quality prediction tech-
niques, the software system (lower left corner) may be already implemented or only exist
as a design so far. If the software system is already implemented, it has certain quality
properties (lower right corner). If it is still in the design phase, it does not have quality
properties yet. Only after the system design will be realized in an implementation, it will
have quality properties. These quality properties, of course, do not only depend on the
design but are also influenced by the decisions made during implementation.

When modelling the software architecture of the software system (upper left corner), we
abstract from the system in its whole complexity. Depending on the software architecture
metamodel, different aspects of the system can be reflected in the model. For example, in
the PCM, an abstract specification of the behaviour is modelled (cf. Section 2.5). Aspects
that cannot be expressed in the modelling language are left out. For example, variable
assignments and component state cannot be modelled in the PCM. Additionally, for a
concrete software system at hand, the modeller decides how to abstract from the software
system in the model. For example, even though the PCM allows to model passive resources,
the modeller may decide not to model the detailed locking behaviour of a database system.

As a result, the abstraction of the model depends on both the metamodel capabilities and
the modellers decisions how to abstract.

Based on the model of the software architecture, quality properties can be predicted (upper
right corner) for the software system. Thus, we say that the model implies the predicted
quality properties. If the software architecture model reflects the software system well
enough for a given quality property, and if the quality prediction method (for example a
queueing network analysis for performance) is sound and valid for this model, the quality
can be accurately predicted, i.e. the implied predicted quality property value is the same
than or similar to the actual quality property of the system.
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Quality prediction techniques thus allow to evaluate architecture models to predict the
quality properties of the (possibly to be implemented) system. We can express the eva-
luation as a function on the models:

Definition 2.15 Quality evaluation function

The quality evaluation for a quality criterion q can be expressed as a quality evaluation
function from the set VM := {M ′ |M ′ JMM } of model instances conforming to M ’s
metamodel MM to the set of possible values of q’s quality metric m(q), denoted V∗m(q).

Φ∗q : VM→ V∗m(q)

Then, Φ∗q(M) denotes the evaluated value of a quality criterion q for an architectural model
M ∈ MM.

For example, when evaluating the quality metric mean response time (mrt), V∗mrt = R+.
For a specific candidate a, the mrt in seconds for an offered service s (denoted q = mrts
here) might evaluate to Φ∗mrts(a) = 5 sec. When evaluating the probability of failure
on demand (pofod), V∗pofods = [0, 1]. For example, for an offered service S of a specific
candidate a, Φ∗pofods could evaluate to Φ∗pofods(a) = 0.005.

2.4.2. Performance

Early methods for performance modelling of computer systems are hardware-focusses me-
thods (H. Koziolek, 2008, p.30 et seqq.), which model a system based on the used resources
such as CPUs and hard disks. Example modelling techniques are queueing networks, sto-
chastic Petri nets, or Markov chains (Bernardo and Hillston, 2007). Requests to the
resources are abstractly modelled. In particular, control flow within the software is not in
the focus (H. Koziolek, 2008, p.37).

Software Performance Engineering (SPE) (Smith, 1990; Smith and Williams, 2002b) shifts
the focus to the software behaviour, leading to mixed software/hardware models. The
driving scenario is the evaluation of software designs for performance early in the software
life cycle, to avoid expensive redesign due to performance flaws later. Furthermore, the
whole development process should be accompanied by SPE, so that drifts from the initially
predicted behaviour can be detected and countered quickly.

Since SPE, numerous methods to model and analyse software designs (and software archi-
tectures) have been developed, a survey is presented by Balsamo et al. (2004).

In early SPE methods, such as (Smith and Williams, 2002b), the performance relevant
properties of software designs are captured in specialized software performance models,
which focus on the performance-relevant aspects only. However, two manual tasks make
the use of such methods difficult: First, the software performance models need to be
created in addition to software design models (e.g. in UML (Object Management Group
(OMG), 2005)). During the evolution of the design, they need to be kept corresponding to
each other. Second, results on the software performance model level need to be mapped
back to the software design to make decisions.

To encounter the gap between design and performance model, automated transformation
approaches have been suggested which allow to directly annotate a software design model
(e.g. a UML model) with performance-relevant information (e.g. using the UML MARTE
profile (Object Management Group (OMG), 2006c)) and then automatically transform the
design model in a performance model for analysis. Thus, the performance aspects are closer
to the design and easier to maintain during the development process. Additionally, the
results of analyses can be mapped back to the design, e.g. also using MARTE annotations.
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However, SPE methods require a white-box view of the software system and thus are not
applicable to component-based systems if components are provided by third-parties.

For component-based software, approaches have been suggested to enable performance
prediction for component-based systems based on performance specification of individual
components. Surveys on existing methods is provided by Becker et al. (2006), (H. Koziolek,
2010), and Crnković et al. (2010). The main features, as identified by (H. Koziolek, 2010),
are

Schedulable resource demands: Accesses of components to different types of active re-
sources, such as CPUs or hard disks need to be reflected by the models, because
the contention and resulting waiting times on the resource level is the main influen-
cing factor for performance analysis. To enable prediction across different platforms,
the resource demands need to be specified in a platform independent way, e.g. by
modelling the used byte code instructions (Krogmann et al., 2010).

Passive resource demands: In addition to active resources, additional passive resources
such as semaphores or thread pools may be available at the software level and lead
to waiting times. Thus, the access of components to such limited passive resources
need to be modelled.

Control flow: Because the order of requests to active and passive resources can affect the
resource contention, the internal control flow within components should be reflected
by component performance specifications.

Required service calls: Because the final assembly of components into a system is unk-
nown when specifying a component performance specification, the calls to other
required components need to be modelled explicitly so that the overall performance
model can be derived by composing the component performance specifications.

Parameter dependencies: As the usage context of components is also unknown when spe-
cifying component performance models, any parameter that affects the performance
of a component (e.g. the amount of processed data) must be explicitly modelled and
the performance specification of the component needs to be parametric.

Internal state: Similarly to the usage parameters, the state of a component may affect
the performance relevant properties and should be modelled in these cases.

The last four properties are not only relevant for performance prediction for component-
based systems, but also for other quality attributes such as reliability. Only if a component
quality specification is parametrized and encapsulates the inner performance relevant pro-
perties, it can be composed to system performance models without the need to adopt it
to other parts of the system.

2.4.3. Other Quality Attributes

We briefly present techniques for the three other quality attributes that have quantitative
prediction techniques based on architecture models in the following.

Reliability prediction on the software architecture level has been studied since the mid
1990s (Gokhale, 2007). Surveys are presented by (Goseva-Popstojanova and Trivedi, 2001;
Gokhale, 2007; Immonen and Niemelä, 2008). The targeted quality metrics to predict
are, for example, the POFOD. However, compared to performance, reliability prediction
techniques are more difficult to use because their predictions cannot be validated by mea-
surements during the course of a software development project.

For security, quantitative evaluation is difficult (Grunske and Joyce, 2008). Still, a num-
ber of techniques has been presented. (Grunske and Joyce, 2008) provide a survey on
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quantitative security prediction techniques, especially focussing on techniques applicable
for component-based systems, for which similar considerations that for performance (i.e.
parametrization with respect to usage and hardware) are of particular importance. For
example, their own technique evaluated the risk of security breaches (the quality metric)
based on estimated attack probabilities and modular attack trees for the components of
the system. Thus, while quantitative security prediction is still in an early research stage,
techniques such as presented by Grunske and Joyce (2008) can be used to evaluate a CBA
model for security properties.

Approaches to predict costs of a software architecture differ from the above, because
costs is a business quality attribute, which is also related to the development process and
organizations involved in creating the architecture, thus taking a more broad view on the
system and its surroundings.

Costs estimation approaches are usually concerned with predicting the costs of a software
project. Example methods are COCOMO II (Constructive Cost Model, (Boehm et al.,
2000)) and its relatives (Boehm and Valerdi, 2008). The estimation of the relevant pa-
rameters is the crucial aspect in these methods. Numerous surveys on costs estimation
techniques for software development projects are available, for example (Briand et al.,
1999),(Jørgensen, 2007) and (Boehm and Valerdi, 2008, p.78). However, the accuracy of
costs estimation for newly developed systems is limited and costs estimation are often
based on experience only in practice (Berntsson Svensson et al., 2011, p.8).

Calculating the overall costs of a software architecture based on the estimated costs of its
constituent, i.e. components (bought or developed in-house), middleware, and hardware, is
then more straightforward: Usually, the costs for the overall system is the sum of costs of its
parts. Costs models of the overall system can become more complex if particular licensing
models are used (such as pay-per-use for externally hosted components, i.e. services, which
make the costs dependent on the usage) or if more complex contracts with the vendors
of third-party components are available (such as a quantity discounts if several compo-
nents are bought from the same vendor). Still, these relations can be straightforwardly
represented by a mathematical function, which may be project- or organization-specific.

2.4.4. Quality Completions

By definition, a CBA model is an abstraction of the modelled software architecture. Ho-
wever, for performance, low-level details of the system implementation also affect the
performance properties of the later system. For example, in distributed systems, the
choice of third-party communication middleware may have a large impact on the response
time and scalability of the system. While the architecture in this case should reflect that
a third-party communication middleware is used, it is impractical to include low-level
performance-relevant detail of the communication middleware itself in the architecture
model.

To include such detail in a non-intrusive way, performance completions (Woodside et al.,
2002) have been suggested to weave relevant low-level detail into the performance mo-
del before performance analysis, thus keeping the architectural model unchanged. The
concrete messaging mechanisms used by a communication middleware (e.g. that each mes-
sage is confirmed by an acknowledge message on the middleware level) can be included in
the performance model without having to consider them at the software architecture level
(e.g. here we only model that the sender component sends a message). Technically, perfor-
mance completions can be realized as model transformations (Becker, 2008b; Kapova and
Reussner, 2010; Kapova, 2011). Annotations to the software architecture model mark the
places where low-level details should be added. If the considered low-level aspects provide
configuration options (such as communication middleware offers configuration regarding
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Figure 2.10.: Example Feature Model for Messaging Configuration from (Happe et al.,
2010)

message size, reliability of deliveries, etc.), the chosen configuration can be reflected by
the annotations.

Feature models and feature configuration (Czarnecki and Eisenecker, 2000) as general
often-used models for describing configurability. Feature models describe the possible
configurations for the considered aspect (e.g. communication middleware) as a tree of fea-
tures that can be selected. The performance effect of each feature can be captured by model
transformation fragments. Then, the software architecture can be annotated by a feature
configuration, which describes the selected features. For performance prediction, the trans-
formation fragments of the selected features are combined to one model transformation
when executing the performance completion (Kapova and Reussner, 2010; Kapova, 2011).
Figure 2.10 shows an example feature model describing different performance-relevant op-
tions to configure a message-oriented middleware, as used by Happe et al. (2010) and
(Kapova and Becker, 2010).

Other low level details which can be handled by completions are the performance impact
of application servers, e.g. to consider the effect of different thread pool configurations
(Kapova, 2011). Similarly, low-level aspects important for other quality attributes than
performance (e.g. reliability) could be modelled by the completion mechanism as well,
leading to the general concept of quality completions.

2.4.5. Integration in the CB Development Process

Prediction of quantitative quality properties can be included in the CB development pro-
cess as proposed by H. Koziolek and Happe, 2006 and shown in Figure 2.11 (we adjusted
the names of workflows and artefacts to match the terminology used in this work, cf. Sec-
tion 2.2.1). Compared to the basic CB development process by Cheesman and Daniels (cf.
Figure 2.2), a new workflow Quality Analysis has been introduced in which the created
specifications are analysed for their quality properties.

The inputs of the quality analysis workflow are component specifications, the CBA spe-
cification, and use case models, which also contain informal information on quality requi-
rements. The output of the quality analysis steps are the predicted quality properties.
If the quality properties do not match the quality requirements, the specification in the
specification workflow needs to be updated.

Figure 2.12 shows the internals of the quality analysis step. Several developer roles are
involved. To enable quality prediction, deployers provide additional models for the resource
environment, including its quality properties. Domain experts estimate quality relevant
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Figure 2.11.: Quality-driven Component-based Development Process by H. Koziolek and
Happe, 2006

properties of the use cases models and thus refines them into usage models suitable for
quality prediction. Then, the quality analyst (this role is often assumed by the software
architect) integrated all information (including the information on quality requirements
from the requirements workflow) into one model and uses quality prediction approaches
to predict the quality properties of the design (first transforming the CBA into a suitable
quality model such as queueing networks, and then analysing the quality).

2.5. Palladio Component Model

The Palladio Component Model (PCM, (Becker et al., 2009; Reussner et al., 2011)) is a
metamodel for component-based software architectures and also provides a set of analysis
tools for performance, reliability, and costs evaluation.

The PCM is specifically designed for component-based systems and strictly separates pa-
rametrized component performance models from the composition models and resource
models, also providing configuration options of the models. Thus, the PCM naturally
supports many architectural degrees of freedom (e.g., substituting components, changing
component allocation, etc.).

Section 2.5.1 describe an example PCM model, which is used as a running example throu-
ghout this thesis. Section 2.5.2 presents the main concepts of the PCM metamodel relevant
for this thesis, and relates them to the general CBA concepts described in Section 2.1.1.
The next three sections 2.5.3, 2.5.4, and 2.5.5 describe the quality analyses available for
the PCM for performance, reliability, and costs, respectively.

2.5.1. Example PCM Model

Consider the minimal PCM model example in Fig. 2.13, which is realized using the Ecore-
based PCM metamodel and visualized here in UML-like diagrams for quick comprehension
(the key for the diagram is shown in Figures A.1 and A.2 in the appendix, p. 293). The
architecture model specified by the software architect consists of three connected software

33



34 2. Component-based Software Architectures and Quality

Allocation

Quality Requirement 

Annotation

Quality Information 

Integration

Q
o

S
 A

n
a

ly
s
is

Quality Analyst

System Model 

Transformation

Deployer Domain Expert

System Environment 

Specification (incl. Quality 

Properties)

Use Case Analysis

Usage Model Refinement

Use Case Models

Scenarios

(Activity Charts)

Annotated System 

Architecture

Fully Quality-

Annotated System 

Architecture

Quality 

Evaluation

Model

Quality 

Criteria

Quality Properties

Component

Architecture

Component Specs & 

Architecture
Use Case Models

Refined 

User 

Model

System

Environment

Component 

Developer

Business

Requirements

Quality Evaluation

Deployment

Diagrams

Component Quality 

Specification

(Data Dependencies,

Resource Consumption)

Annotated

Deployment 

Diagrams
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components C1 - C3 deployed on three different hardware nodes. The software compo-
nents contain cost annotations, while the hardware nodes contain annotations for perfor-
mance (processing rates), reliability (mean time to failure (MTTF), mean time to repair
(MTTR)), and cost (fixed and variable cost in an abstract cost unit).

The example system used here is a Business Trip Management system with booking func-
tionality. Users are administrative employees that plan and book journeys. They either
plan the journey for an employee and book it (80% of all cases), or they only check the
journeys efficiency and order a reimbursement for an employee that has booked himself
(20% of all cases). The system is intentionally kept very simple here, because it meant
to convey the PCM concepts quickly, and is not meant to be an example of practical
component-based design.

For each software component service, the component developers provide an abstract be-
havioural description called service effect specification (SEFF). SEFFs model the abstract
control flow through a component service in terms of internal actions (i.e., resource de-
mands accessing the underlying hardware) and external calls (i.e., accessing connected
components). Modelling each component behaviour with separate SEFFs enables us to
quickly exchange component specifications without the need to manually change system-
wide behaviour specifications (as required in e.g. UML sequence diagrams).

For performance annotations, component developers can use the extended resource-
demanding service effect specifications (RDSEFFs). Using RDSEFFs, developers specify
resource demands for their components (e.g., in terms of CPU instructions to be executed),
which, during analysis, are divided by the processing rate of the modelled resource envi-
ronment to determine the actual execution time demanded from the processors. Resource
demands can be specified as distribution functions, either using standard functions such as
exponential distribution or gamma distribution, or by defining a stepwise approximation
of any distribution function, e.g. based on measurement data. Figure 2.14(a) shows an
example for a single resource demand specification, and Figure 2.14(b) shows the resulting
predicted response time distribution for a request to the overall system.
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Figure 2.14.: Examples for Arbitrary Distribution Functions (Gouvêa et al., 2011)

For reliability, component developers specify failure probabilities for component internal
actions, which can be determined for example using software reliability growth models
(Musa et al., 1987), or code coverage metrics during testing. The PCM also supports hard
disc drive rates and software resources such as thread pools.

A software architect composes component specifications by various component developers
into an application model. With an additional usage model describing user arrival rates
(open workload) or user population and think time (closed workload) of the system, and
an additional model of the resource environment and the allocation of components to
resources, the model is complete and can be transformed into analytical or simulation-
based models for quality analyses.

For the PCM, we briefly explain the existing analysis methods for performance and relia-
bility in the following sections. For each architectural candidate, we evaluate the quality
property (e.g. “response time 5 sec”) for each quality criterion (e.g. criterion “response time
of service s”).

The predicted quality properties for the example shown in Fig. 2.13 are depicted in Tab. 2.2.
Although the example in Fig. 2.13 is simple, it is not obvious on how to change the ar-
chitecture model efficiently to improve the quality properties. For example, the software
architect could increase the processing rate of server S1, which would result in better
performance but higher cost. The software architect could also change the component al-
location (33 = 27 possibilities) or incorporate other component specifications with different
QoS attributes.

The design space even for such a simple example is huge. Manually checking the possible
design alternatives in a trial-and-error approach is laborious and error-prone. The software
architect cannot easily create design alternatives that are even locally optimal for all quality
criteria, and finding global optima is practically impossible because it requires modelling
each alternative. In practice this situation is often mitigated by over-provisioning (i.e.,
incorporating fast and expensive hardware resources), which can lead to unnecessary high
cost.
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Quality Criterion Metric Value

Performance
Avg. Resp. Time 4.6 sec
Utilization S1 42 %
Utilization S2 37 %
Utilization S3 10 %

Reliability POFOD 7.36E-4

Cost Overall Cost 54 units

Table 2.2.: Quality Property Prediction Results
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2.5.2. PCM Metamodel

Figure 2.15 shows the excerpt2 of the PCM metamodel that corresponds to the general
CBA concepts shown in Figure 2.1. The mapping of concepts is described in detail in
Appendix A.2. The excerpts of the metamodel for RDSEFFs is shown in Appendix A.4.

Note that the PCM metamodel is actually specified in Ecore (Steinberg et al., 2008), which
is another meta-metamodelling language in the context of the Eclipse Modelling Tools
(EMF). Ecore and EMOF are very similar (Steinberg et al., 2008, Sec. 2.6.2) or even
“effectively equivalent” (Merks, 2007) and EMF provides means to serialize in memory
models as both Ecore models and EMOF models (Steinberg et al., 2008). Thus, we do
not make a distinction between Ecore and EMOF in this work and use EMOF to describe
metamodels (including the PCM).

There is no defined root model element in the PCM. An architecture is described for
analysis using an allocation model (which refers to the other model parts, see associations
in Figure 2.15) and a usage mode (not shown here). Thus, the repository is unaware of
systems using it, and systems are unaware of allocations using it, so that different CBA
models can use a shared repository or system.

2.5.3. Performance Analysis

For performance analysis, the PCM supports a transformation into a discrete-event simu-
lation (SimuCom (Becker et al., 2009)) or LQNs to derive response times, throughputs,
and resource utilizations.

2The property names in the PCM are usually named like the referenced type. For example, Allocation-
Context.assemblyContext refers to the AssemblyContext to deploy. These default names are left out
of Figure 2.15. For simplicity, we have left the complex inheritance hierarchy out of Figure 2.15. Thus,
the figure does not accurately reflect which abstract class introduces which properties for the concepts.
Appendix A.3 shows more details on the inheritance hierarchy of components and composed structures.
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SimuCom is based on model-to-code transformations and the SSJ simulation framework
(L’Ecuyer and Buist, 2005). It is in the class of extended queueing networks: The re-
sources of the PCM are mapped to queueing stations, which an be governed by different
scheduling strategies. The discrete-event simulation executes the modelled control flow of
the system and issues requests to the queueing stations for each resource demand. For
resource demand distributions, a sample is drawn from the distribution each time the re-
source demand is evaluated. Thus, SimuCom allows analysing models containing resource
demands specified as arbitrary distribution functions, but can be time-consuming to derive
stable results. The resulting performance data is a detailed log of events occurring during
the simulation (calls and resource demands), from which any performance measure can be
derived.

The transformation PCM2LQN (H. Koziolek and Reussner, 2008) generates a Layered
Queueing Network (LQN, (Franks et al., 2009), cf. Section 2.6.1) instance from a PCM
instance. Similarly to SimuCom, the control flow is retained and mapped to LQN activities.
Components are mapped to LQN tasks and resources are mapped to LQN processors,
which are the queueing stations in the analysis. Several scheduling strategies are supported.
Resource demands in LQNs are simplified to mean values and variance. The LQN solver
(Franks et al., 2009) provides a heuristic performance analysis using mean value analysis
(Reiser and Lavenberg, 1980) and can often quickly produce results. However, some control
flow constructs such as arbitrary passive resources cannot be used. Additionally, an LQN
simulator is available, which supports all LQN constructs including passive resources.

2.5.4. Reliability Analysis

For reliability analysis, the PCM supports a transformation into absorbing discrete time
Markov chains (DTMC) (Brosch et al., 2010, 2011a) or a reliability simulation to derive
the probability of failure on demand (POFOD) for an usage scenario.

The control flow of the system is mapped to a Markov chain. For each RDSEFF action
has a software failure rate, a transition to a failure state is generated with the respective
probability. For internal actions, the availability of the hardware is also considered. Then,
the probability to reach the success state is calculated using standard techniques, taking
into account the PCM control flow actions. For example, the probability for a failure in a
sequence of internal actions is the product of each individual failure probability.

The failure rates of the resources are defined as mean-to-failure and mean-time-to-repair
values for servers and failure probabilities for linking resources. Then, the above calcula-
tions are executed for each possible hardware state (a faster approximative solution can
also skip hardware states with low probability).

2.5.5. Cost Model

Reducing costs is a major interest in software development and thus need also to be taken
into account when designing software architectures. For finding the best software archi-
tecture for a given software development project, one needs to trade off quality attribute
improvements and costs. Thus, it is important to take into account costs and cost savings
that architectural design options induce in later development stages.

Costs arise in multiple phases of the software development life cycle, and are caused by
multiple activities. Costs that are affected by the software architecture are component
cost, system cost, and hardware cost. To assess the total cost of ownership, a cost model
has to take development costs, but also later costs such as maintenance into account.

Component cost arise in various life cycle stages. First of all, components need to be
provisioned. This results in development costs for components that are developed in-
house and procurement costs for buying or licensing third-party components. Possibly,
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third-party components first need to be adapted to the system, also causing development
costs which depend on how well the component as-is suits the system as well as how
understandable and usable its interfaces are. In later life cycles, components induce testing
costs, and maintenance costs or licensing / support costs. Different components with
different quality attributes may result to different cost. For example, developing a high-
performance component with highly optimized algorithms might be more expensive than
using a standard component off the shelf.

System costs are costs that are related to the overall system and cannot be attributed
to single components. These costs arise when assembling the system and when selecting
and preparing the required middleware (such as application servers, operating systems
and messaging systems). Again, options of different quality might result in different cost.
For example, a highly reliable messaging system might require more initial set-up cost or
licensing costs than a simpler solution.

Hardware costs arise from the procurement of hardware to deploy the system. This includes
costs for servers as well as for infrastructure such as network. In addition, the operation of
the system in terms of operating costs such as hardware maintenance and energy costs can
be taken into account, if these costs will be attributed to the developing organization, too.
Today’s IT services offer many different deployment options, from acquiring servers in an
own computer centre up to deploying a system at a third-party infrastructure provided,
e.g. in a cloud. Depending on the resource demands and resource efficiency of the software
system, a different amount of hardware needs to be acquired and paid for.

To include the cost dimension in this work, we realized a simple cost annotation model
that allows to express the cost differences of different design options and to assess the cost
differences between architectural candidates. The model allows to annotate the software
architecture with costs estimations. Similar to other costs optimization approaches, such
as (Cortellessa et al., 2008), it does not provide means to estimate the costs, as this is a
different research field. The advantage of the independent costs annotation model is that
it can either be created based on rough estimations, or it can be created based on results
from more sophisticated cost estimation approaches, such as COCOMO II (Boehm et al.,
2000) and its relatives (Boehm and Valerdi, 2008), or project- or organization-specific
approaches.

The used cost model allows to assign costs to components and to hardware. It distinguishes
initial costs and operating costs, so that the software architecture effects to the total cost
of ownership can be assessed. Users can either calculate total costs for example calculating
the present value of the costs based on a assumed interest rate, or they can treat the two
types of costs as separate criteria to improve and to trade off. Thus, component costs reflect
all relevant costs induced by that component’s implementation and later life cycle phases.
Different options for a component can be modelled as different available components, and
then be annotated with component costs.

Hardware costs annotate servers and / or processing resources. Here, selection of fixed
hardware entities can be annotated with fixed costs each. For example, a server of type A
with certain reliability and performance properties properties costs 1000e, while a server of
type B with different properties costs 1500e. Alternatively, a cost function can be specified
to map parameters of the hardware to a price, to reflect a wider range of options. For
example, a costs function can map clock speed of CPUs to costs based on the price tables
of CPU producers. Again, the model allows to specify both initial costs and operation
costs.

For cost analysis, we have developed a PCM cost solver for this work. It relies on a static
analysis of a PCM model instance annotated with the presented costs model. It calculates
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the cost for each component and resource based on the annotations specified in the PCM
instance and then adds these cost to derive the overall expected cost for the architecture.
If a server specified in the model is not used, i.e. no components are allocated to it, its
cost do not add to the overall cost.

The costs model and costs solver are simple, because the main challenge of cost prediction
is the estimation of costs, which we assume given. If the initial costs and operating costs of
the single parts of the architecture are known, it is straightforward to calculate the overall
costs.

2.6. Other CBA Models With Predictive Capabilities

Two other component models that support performance prediction are CBML and RO-
BOCOP, which are presented in the following. A survey on other component-models that
can be used for performance prediction has been presented by H. Koziolek, 2010. For
methods for other quality attributes, refer to the surveys mentioned in Section 2.4.3.

2.6.1. CBML

The Component-Based Modeling Language (CBML, (Wu and Woodside, 2004b; Wu,
2003)) is a component model based on Layered Queueing Networks (LQN) (Franks et al.,
2009).

Before describing the component-based extensions of CBML, we give a brief overview
on LQNs in the following. The goal of LQNs is to capture the software-related effects
for performance analysis. In particular, it has been observed that layered systems may
introduce additional queueing delays if a limited number of threads to process requests are
available on each layer and block while the layer is waiting for responses of lower layers
(Franks et al., 2009).

Figure 2.16(a) shows a small example LQN. The four parallelogram represent LQN Tasks,
which represent software processes forming the layers. The layering of tasks is not strict:
the Database task is accessed by both the DataReporting task and the Application task.
A task can provide a set of services, called entries. An entry can have a fine-grained
behaviour model consisting of a graph of activities, as shows for Entry1. Resource demands
are given in brackets, other numbers denote call probabilities. Tasks are deployed by
mapping them to Processors, shown as circles.

CBML extends LQN and adds the possibility to specify reusable components. Figure 2.17
shows the CBML metamodel and Figure 2.16(b) shows such a component. The component
offers three services, called inPorts, Entry4 to Entry6 in the example. Each inPort is
delegated to an internal entry. OutPorts (not shown in the example) can analogously
be used to model control flow leaving the component. Components can specify dedicated
processors (processor P2 in the example) or replaceable processors.

Both system and allocation is modelled by a set of Slots. Each Slot corresponds to a
component instance, but also defines how its component is connected to other components
in the system (connectors) and the deployment of its component (component allocation
instance).

For performance analysis, CBML models are transformed into plain LQNs by resolving
the bindings. For example, the LQN model shown in Figure 2.16(a) could be the resulting
LQN model of a CBML input model containing Figure 2.16(b) and additional components
for the WebServer and Application task.
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2.6.2. ROBOCOP

ROBOCOP (ROBOCOP consortium, 2003; Bondarev and Chaudron, 2006; Bondarev
et al., 2006, 2007) is a component model primarily targeting the automotive domain.
With the component model, a development environment, a set of quality analyses, and a
specification for ROBOCOP runtime environments are provided.

The ROBOCOP metamodel is not defined explicitly as a metamodel, so we extracted it
from the grammar, natural language description and figures in the publications and project
deliverables. Figure 2.18 shows the resulting metamodel3.

Components are modelled with the so-named meta-class Component (Bondarev and Chau-
dron, 2006). A ResourceModel and a BehaviourModel describe non-functional aspects of
a component (Bondarev et al., 2007), while an ExecutableModel contains the implemen-
tation of the component (Bondarev and Chaudron, 2006). The implementation of com-
ponents is realized as Services, which are comparable to public classes in object-oriented
programming (Bondarev and Chaudron, 2006).

A Service defines a set of provided Ports and a set of required Ports (ROBOCOP consor-
tium, 2003, A.2.3, p.214), which are equivalent to ProvidedRoles and RequiredRoles, res-
pectively, in the PCM. Each port refers to an Interface (ROBOCOP consortium, 2003,
ibid.).

3Note that we have not optimized the model for readability, but rather reproduce the concepts as ac-
curately as possible to keep resemblance to the ROBOCOP publications, using the names from the
grammar where appropriate. If the concepts were modelled anew using a metamodel, some aspects
could be represented more elegantly.
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For performance properties, the resource usage of a component is defined in the Resour-

ceModel described in Bondarev and Chaudron (2006). For each operation the component
implements (referenced as ior for implemented operation resource usage), CPU usage and
memory usage can be defined, or can remain undefined if the component does not require
one of the two resource types. Here, we abstract from the details of this specification by
using the types CPUUseDescr and MemoryUseDescr as a place holder for the concrete re-
source usage description, because the details are not relevant in this work (see (Bondarev
and Chaudron, 2006) for details).

The assembly of components is realized by a ScenarioModel (Bondarev et al., 2004).
The ScenarioModel instantiates Services as ServiceInstances. A Binding connects
two components by binding a provided Port to a required Port and by referring to the
respective ServiceInstances that contain the Ports to make the references unique.

The allocation of component to servers is realized by a SW/HW architecture mapping
(SWHWArchitectureMapping (Bondarev et al., 2006)). It maps a a Component to a Pro-

cessingNode. Note that the roles were not named in the available ROBOCOP documen-
tation, so we added our own names to be able to refer to metamodel properties later.
Interestingly, components are directly mapped to servers and component instances (ser-
vice instances in ROBOCOP) are not considered in the mapping. This is a difference
to the general CBA metamodel described in Section 2.1 and leads to the limitation that
different component instances cannot be mapped separately to their own server nodes in
ROBOCOP.

The quality properties of the different hardware resources (HW IP blocks) of a server
are defined as separate models. In case of performance, a HWIPBlockPerfModel models
the performance properties of a hardware IP block. Hardware IP blocks can be CPUs,
memory, or bus blocks. For each, quality properties are defined to allow performance
analysis together with the component performance properties. As we do not require further
details on the ROBOCOP performance analyses in this work, we do not give further detail
on these model elements (see (Bondarev and Chaudron, 2006) for details).
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3. Multi-Criteria Optimization

To find the best software architecture in a development context can be understood an
optimization problem with multiple quality criteria to consider. This section lays the
foundations for multi-criteria optimization and introduces the terms and concepts required
to understand the remainder of the thesis.

Section 3.1 briefly lays foundations for optimization in general. Then, Section 3.2 des-
cribes how to deal with multiple, possibly conflicting criteria when solving optimization
problems. Section 3.3 briefly describes classical methods and their limitation before Sec-
tion 3.4 provides a overview on Pareto-based approximative metaheuristic techniques. As
a particular metaheuristic technique used in this work, Section 3.5 presents multi-objective
evolutionary algorithms.

3.1. Optimization

Optimization is the procedure of determining the best solution in a given context.

The available solutions are mathematically characterized as a set of decisions D, each
of which has a set of possible alternative choices Ad, d ∈ D. Then, a single solution
can be characterized as a vector x in the decision space O = Πd∈DAd. The vector x is
called decision vector. If values in Ad are (mostly) discrete, the problem is also named a
combinatorial optimization problem.

What solutions is best is defined by an objective function on D which is to be minimized
or maximized. In case of single-objective optimization, the objective function assigns
scalar values (e.g. real numbers) to each decision vector, for example f : O → R. In case
of multi-objective optimization discussed in the next section, the objective function is a
vector-valued function mapping each x to a vector of values.

Possibly, additional constraints can be defined which have to be fulfilled by decision vectors
in order to be viable alternatives. Let constraints denote a set of constraints, where each
constraint is defined as a predicate on the vector x.

An optimization problem (here for minimization of a single-objective function) can then
be written formally as :

min
x∈O

f(x) subject to ∀P ∈ constraints : P (x)
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46 3. Multi-Criteria Optimization

The domain of f is the objective space. The image of all viable alternatives in O (i.e. all x
that fulfil the constraints) is the set of achievable values in the given optimization problem.

The concept optimization is related to search and design space exploration as follows.
Search algorithms find an object with certain properties in a set of objects. Thus, they
can be used for optimization: The goal of such optimizing search algorithms is to find the
optimal objects as defined by an objective unction in a set of objects, i.e. in the decision
space. Search-based optimization techniques use search to find the optimal solutions (or
an approximation thereof).

The term design space exploration is used in embedded system design and denotes the
(often multi-criteria) optimization of embedded system designs. In particular, the term
denotes the “process of systematically altering design parameters [to achieve better quality
of the design]” (Gries, 2003, p.5). For example, the number of parallel gates in a circuit
can be increased, which improves performance at the expense of area (Gries, 2003, p.5).

3.2. Handling Multiple Criteria

When optimizing real-world problems, multiple criteria are often of interest. As discussed
in Section 2.2.1, multiple criteria are relevant for quality of software architectures. In
decision making theory, three methods to handle problems with multiple criteria (i.e.,
in our case, quality criteria) have been identified based on when decision makers have
to articulate their preferences for solutions (cf. van Veldhuizen and Lamont (2000), and
Branke et al. (2008)): a priori, a posteriori, and interactive preference articulation.

• First model the preferences for each criterion, then create a scalar objective function
and use single-objective optimization (a priori method)

• Find the optimal trade-off solutions (Pareto-optimal solutions, cf. Section 3.2.2) and
then decide (a posteriori method)

• Interactively articulate preferences (interactive method)

Note that we distinguish multi-criteria optimization problems and multi-objective optimi-
zation problems in this work. In multi-criteria optimization problems, multiple criteria
are relevant in the real world problem. They may be solved by using single-objective op-
timization (mapping all criteria to one scalar objective function based on preferences) or
multi-objective optimization (using the criteria (or a representation thereof) directly as
the vector-valued objective function). This distinction is not common in the literature1

Section 3.2.1 describes the three types of handling multi-criteria problems in more de-
tail and discusses their advantages and disadvantages. Section 3.2.2 then defines Pareto-
optimality to define optimal solutions in multi-objective problems.

3.2.1. Preference Articulation

We present the three methods when to articulate preferences in the following, giving
examples for quality of software architecture to better relate the concepts to our goal.

1In the literature, e.g. (Deb, 2001), multi-objective refers to both the solved-real world problem and the
solution technique. In that terminology, multi-objective problems (i.e. multi-criteria problems) can be
converted to single-objective problems. We find our terminology more useful as it is more precise.
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3.2.1.1. A Priori Preference Articulation

In the preference-based method or a priori method, the preferences of the decision ma-
ker are elicited and captured in a preference model that allows to rank solutions. Using
a-priori preferences, a multi-criteria problem can be mapped to a single-objective optimi-
zation problem by defining a scalar objective function based on the preference model. For
example, a simple preference model could state that performance is more important than
costs for a given software architecture, so that an architecture candidate is preferable to
another one if its has lower costs.

A more complex preference model for quality properties could assign utility values to
different quality property values and then compare architecture candidates based on the
overall utility. For example, let us assume that the software architect (together with the
stakeholders) agrees that a response time of 5 seconds for a given service of the system
has a utility of 0.5 while a response time of 2 seconds has a utility of 1. At the same
time, a POFOD for this service of 0.99 has a utility of 0.3, a POFOD of 0.995 a utility
of 0.7 and a POFOD of 0.999 a utility of 1. At the same time, the software architect
and the stakeholders agree that both quality properties are equally important. Then,
an architectural candidate with POFOD 0.99 and response time 2 seconds has a overall
utility of 1.3 and a second candidate with POFOD 0.995 and response time 5 seconds has
a utility of 1.2. In this scenario, one would deduce that the first candidate is better under
this preference model.

The problem of this approach is that finding such a preference model is difficult (Deb, 2001,
p.6)(Miettinen, 2008, p.3, p.19). The decision maker(s) may not have enough information
to accurately model their preferences (Veldhuizen and Lamont, 1998, p.50). Furthermore,
preference models may depend on what trade-offs are reachable. If the expectations of the
decision maker about the achievable quality properties are too pessimistic or too optimistic
when modelling the preferences, the preference model may be wrong for the actual decision
making situation (Miettinen, 2008, p.18). Furthermore, if several stakeholders are involved
in the decision making, creating a preference model that reflects all stakeholders preferences
and appropriately weights them is even more difficult.

3.2.1.2. A Posteriori Preference Articulation

In the a posteriori method, no preferences are assumed before the search, so that two
solutions can only be ranked with respect to each other if one is objectively better, i.e.
better in all objectives. If one solution is better in one objective and the other solution
is better in another objective, these two solutions are incomparable. In this method, an
automated search supporting the decision maker cannot rank such solutions, so that the
goal of the search is to find the set of Pareto-optimal solutions (see next Section 3.2.2).
The result is a multi-objective optimization problem.

A posteriori methods usually have a higher computational effort than a priori methods,
because the full approximation of the Pareto front needs to be found instead of only a
single solution. Their advantage, however, is that decision makers do not have to create a
preference model in advance, but instead can select a suitable solution from the automa-
tically found Pareto-optimal set. Thus, this method also provides more insight into the
trade-offs of the given problem. For example, an experiment by Corner and Buchanan
(Corner and Buchanan, 1997) showed that decision making using an a priori method was
both assessed to be more difficult and to require more effort than decision making using
an a posteriori method.

47



48 3. Multi-Criteria Optimization

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140

O
b

je
ct

iv
e

 1

Objective 2

(Weakly) dominated solutions

Pareto optimal solutions

Figure 3.1.: Example for Pareto Optimal Solutions

3.2.1.3. Interactive Preference Articulation

The third method is an intermediate solution in which an automated search process and
the decision maker interact: While the search progressed, the decision maker reviews the
currently available solutions and interactively modifies the preference model. Interactive
methods usually build on top of a posteriori methods in that they start with presenting
a Pareto-optimal solution to the decision maker (Miettinen et al., 2008b, p.28), based on
which the decision maker can start to model his preferences. Thus, every a posteriori
method can be extended to become an interactive method.

3.2.2. Pareto Optimality

Recall that in a multi-objective optimization problem, the objective function is vector-
valued, i.e. f(x) = 〈f1(x), . . . , fn(x)〉 for n objectives. Each objective function component
fi could be optimal when minimized or maximized. Usually, the criteria conflict with
each other, which means that there is no single solution which is optimal with respect to
all individual objective function components (otherwise, one could reduce the problem to
one of the criteria, leading to a single-objective problem). Thus, there is mostly no single
objectively optimal solution to a multi-objective optimization problem. Instead, the task
of multi-objective optimization is to find all solutions with optimal trade-offs between the
objectives, so that the decision maker can choose one solution in the subsequent preference
articulation phase.

The concept of Pareto-optimality and Pareto-dominance define such optimal trade-off
solutions. The concepts are illustrated in Figure 3.1 and defined in the following.

First of all, it is necessary to define when a solution is better than another. First, let
fi(x) ≤i fi(y) denote that x is equal to or better than y with respect to the i-th ob-
jective function component. An objective relation independent on preferences is Pareto-
dominance, which imposes a strict partial order2 on the decision space (cf. (Deb, 2005)
and (Knowles et al., 2006)):

2The Pareto-dominance relation is asymmetric and transitive (Deb, 2005, p.29 et seq.).
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Definition 3.1 Pareto dominance and non-dominance (from Noorshams (2010) based on
Knowles et al. (2006, p.4))

A solution x ∈ O Pareto-dominates (or short: dominates) a solution y ∈ O denoted by
x ≺ y if

f(x) 6= f(y) ∧ ∀i : fi(x) ≤i fi(y) (3.1)

A solution x is non-Pareto-dominated (or short: non-dominated) by y if

y ⊀ x (3.2)

As a result, a solution a is better than another solution b if it a ≺ b, whereas incomparable
solutions are non-dominated (w.r.t. each other). A weaker comparison of solutions is done
by the notion of weak Pareto dominance, which drops the asymmetry property and is
reflexive instead, i.e. two equal solutions are considered to weakly Pareto dominate each
other, too:

Definition 3.2 Weak Pareto dominance (based on Knowles et al. (2006, p.4))

A solution x ∈ O weakly Pareto-dominates (or short: weakly dominates) a solution y ∈ O
denoted by x � y if

∀i : fi(x) ≤i fi(y) (3.3)

Based on Pareto-dominance, optimality can be defined as follows:

Definition 3.3 Pareto optimality (from Noorshams (2010) based on Deb (2005))

A solution x ∈ O is Pareto-optimal (or short: optimal) w.r.t. a set C ⊆ O if

∀y ∈ C : y ⊀ x (3.4)

A solution x is globally Pareto-optimal (or short: globally optimal) if x is Pareto-optimal
w.r.t. the entire feasible search space O. The set of all non-dominated, (globally) optimal
solutions is called the Pareto-set. The by F mapped Pareto-set is called the Pareto-front.

The notion of Pareto-dominance can also be applied to sets of solutions as follows:

Definition 3.4 (Weak) Pareto dominance of sets (based on Knowles (2006))

For a dominance relation rel ∈ {≺,�} and for two sets of solution vectors A,B ⊆ O, we
define the dominance relations for two sets as

A rel B ⇔ ∀y ∈ B : ∃x ∈ A : x rel y

Figure 3.1 above illustrates the terms of this section assuming minimization of the objec-
tives. The red squared results are the Pareto-optimal solutions, they form the Pareto front.
The blue diamond-shaped solutions are (weakly) dominated by the optimal solutions.

The multi-objective optimization problem can thus be defined as follows. Let
≺

min denote
the optimization with respect to Pareto-dominance, i.e. the best elements are the Pareto-
optimal solutions. Then, the optimization problem is

≺
min
x∈O

f(x) subject to ∀P ∈ constraints : P (x)
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3.3. Classical Methods

In this section we provide a some classical methods to solve multi-objective optimization
problems. Several methods are based on scalarizing the objective function, of which we
present the two most common ones (Ehrgott, 2005, p.98) in the following.

In the weighted sum method (cf. (Deb, 2001, Sec.3.1)), the objective function components
are combined by a weighted sum. Then, the weights are systematically varied: For each
assignment of the weight, the resulting single-objective problems. Graphically, this can be
pictured as sampling the Pareto front with tangents (cf. Figure 3.1). The disadvantage
of this method is that the tangents skip non-convex parts of the Pareto front, i.e. dents
towards in the case of minimization problems. For example, the Pareto-optimal solution
at (59, 1.6) could not be detected.

The ε-constraint method mitigates this problem. Here, all but one objective function
components are transformed into constraints of the optimization problem. Then, a single-
objective technique can be used to determine the best solution with respect to this objective
while fulfilling the constraints in the other objectives. The front can be sampled by varying
the constraint values. For our example in Figure 3.1, one could optimize objective 1 subject
to objective 2 being smaller than an ε2 value, and successively vary ε2 from 120 down to
0. Afterwards, the same can be repeated for optimizing objective 2 with constraints on
objective 1.

For optimization problems where these sub-problems can be efficiently solved, e.g. using
linear programming, these scalarizing methods can quickly produce However, if the sub-
problems themselves have to be solved by metaheuristics as well (e.g. single-objective
evolutionary optimization), a multi-objective metaheuristic is expected to be more effi-
cient as it can make use of all information found during the search, while a sub-problem
optimization is reset for each sub-problem.

Other classical optimization techniques such as lexicographic optimization (Ehrgott, 2005,
p.128) or different varieties of goal programming (weighted, min-max, cf. (Deb, 2001,
Sec.36)) require additional preference information (priorities of objectives and reference
point, respectively), and thus are not further discussed here.

For quality prediction of software architecture, however, the quality analysis which is
used as objective function can be arbitrarily complex. For example, for performance,
only models with strong assumptions can be expressed as closed formulas. For others,
approximate numerical or even simulative solutions are required (Jain, 1991).

3.4. Multi-objective Metaheuristics

Metaheuristics are approximate high-level search-based optimization strategies that are
independent of the optimization problem, i.e. they make no assumptions on the objective
function properties but treat the objective function as a black box (Blum and Roli, 2003).
Often, metaheuristics are non-deterministic.

Two main types of metaheuristic have been suggested (Blum and Roli, 2003):

Trajectory methods (or local describe a trajectory in the search space: They start at one
(possibly random) solution in the search space. A successor solution is found based on
the current solution and the metaheuristic’s method. For example, steepest ascent hill
climbing explore the neighbourhood of the current solution and pick the best solution
from the neighbourhood. The neighbourhood of a solution can be differently defined: For
example a neighbour solution could be to vary a single decision, i.e. one component of
the decision vector x, by one step. This process is repeated until no better solution is
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found in the neighbourhood, which means that a local optimum has been reached. More
sophisticated trajectory methods are simulated annealing (which also allows downward
moves to escape local optima), tabu search, and variable neighbourhood search (Blum and
Roli, 2003). Because trajectory methods always handle one current solution, they tend to
be better suited for single-objective optimization and less for multi-objective optimization
where the goal is to find a set of solutions.

Population-based methods, however, operate on a set of current solutions, manipulate this
set in each iteration of the search, and generate multiple result solutions in one run (Deb,
2001, p.7). Thus, most population-based methods are suited to handle multi-objective
optimization problems. Furthermore, candidate evaluation within one population can be
parallelized. Most classical methods, only update a single solution at a time (are not
population-based) and thus cannot take advantage of parallel candidate evaluation (Deb,
2001, p.83).

The most popular method are evolutionary algorithms, which are detailed in the next
Section 3.5. Other population-based methods are ant colony optimization and particle
swarm optimization (Blum and Roli, 2003). All three have multi-objective versions.

Successful metaheuristics balance two goals during the search, intensification and diver-
sification. Yagiura and Ibaraki (2001) provide a concise definition: “Intensification is to
search carefully and intensively around good solutions found in the past search [...]. Di-
versification, on the contrary, is to guide the search to unvisited regions” (Yagiura and
Ibaraki, 2001, p.24).

3.5. Evolutionary Algorithms

Evolutionary algorithms are a class of population-based metaheuristics inspired by the
biological process of evolution and have been initially proposed by Holland (1975). The
guiding principle is to create new offspring based on a current population of candidates,
and then select the fittest to survive and mate. Evolutionary algorithms have been par-
ticularly successful for hard multi-objective optimization problems (Deb, 2001). Due to
their suitability for the optimization problem tackled in this work (discussed in more detail
after the problem is defined, in Section 8.1.3), we present them here in more detail.

Section 3.5.1 describes the basic algorithm, which is described specifically for our problem
in more detail later in Section 8.2. Section 3.5.2 then gives an overview on the stan-
dard reproduction operators, followed by an overview on selection strategies described in
Section 3.5.3. To ensure that the search does not loose already found good solutions,
the concept of elitism has been suggested and is discussed in Section 3.5.4. Finally, Sec-
tion 3.5.5 describes how the performance of different evolutionary optimization techniques
can be compared to assess the utility of new algorithms or extensions.

3.5.1. Basic Algorithm

Figure 3.2 shows the basic evolutionary algorithm. The three parameters are the popula-
tion size n, the number of parents per iteration µ, and the number of offspring per iteration
λ. The input to the process are n usually randomly generated solutions.

In the first step a©, each yet unevaluated solution is evaluated, i.e. the objective function
components are calculated. The evaluated solutions (n in the first iteration n + λ in the
subsequent iterations) are fed into the next step.

In the selection step b©, two inner selection steps take place. First, the population is again
reduced to n solutions by removing the worst ones (not in the first iteration). Second, µ
solutions are selected to be the “parents” of the this iteration.
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Figure 3.2.: Basic Evolutionary Algorithm

In the reproduction step c©, λ new solutions are generated based on the selected parents.
The resulting set of n+ λ solutions are input to the evaluation step.

The process is repeated until a stop condition is fulfilled after evaluation. The Pareto-
optimal solutions found so far are determined and form the result set.

The next two sections provide more detail on the reproduction (Section 3.5.2) and selection
step (Section 3.5.3).

3.5.2. Reproduction

The two goals of the candidate reproduction step are to move the search to new, yet
unevaluated, and preferably better candidate vectors (Blum and Roli, 2003). Reproduction
operators take one or several candidates as an input (input candidates) to generate new
candidates based on them.

The two standard operators for evolutionary algorithm are crossover and mutation.
Usually, for each pair of candidates to generate new candidates from, the operators to
apply are chosen randomly. A common configuration is that the probability of a crossover
is determined by a configuration parameter called crossover rate. Additionally, the candi-
date (resulting from the crossover or unchanged) is mutated. The operator selection can
be become more complex if additional operators are applied.

The number of candidates to generate with these operators, also called number of offspring,
is configurable parameter λ.

3.5.2.1. Mutation

The driving idea of mutation operators is that more good candidates (and potentially
superior ones) can be found in the neighbourhood of a given input candidate. Thus, a
mutation operator creates a candidate that is similar to the input candidate. Usually,
mutation operators take a single input candidate.

There are different options to implement mutation operators. They vary in the ways single
genes are changed, and how the genes to change are selected.

Regarding the mutation of a single gene, some mutation operators make use of an order on
the value range of a dimension, and only apply a small change to each gene. This method
is useful for degrees of freedom with a notion of similar values for a single dimension (e.g.
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for real-values dimension, such as a continuous processing rate degree, the distance can
be used). Then, the similarity of the resulting genome to the input candidate’s genome
is achieved by the small distances between an input gene and a resulting gene. Not all
dimensions have a useful distance measure, either because they have no order at all, or
also because single elements in the order differ too much from each other. Here, mutation
operators randomly choose a different value from the value domain of a dimension.

Regarding the mutation of the complete genome, the mutation operator selects a number
of genes to mutate. One option is to statically decide how many genes are mutated as
described above per application of the mutation step (e.g only one gene is mutated, or
all genes are mutated). Alternatively, the number of genes to mutate can be determined
probabilistically. Here, often a mutation rate is specified that defines the probability to
mutate each gene. An often chosen value for the mutation rate is the inverse of the genome
length (Aguirre and Tanaka, 2005), so that the expected number of mutated genes is 1
per mutation, but also more or fewer genes can be varied. The benefit of probabilistic
mutation is that more candidates are possible as the outcome of a mutation. Local optima
can be overcome if two genes are varied at once. At the same time, little mutation is also
possible so that the good candidates are not disrupted.

3.5.2.2. Crossover

Crossover operators (also called recombination operators) combine two or more input
candidate (the parents) to form new candidates (the offspring). The driving idea is that
the advantageous properties of promising parents may lead to even better offspring when
combined. The new candidates are likely to be superior than a random candidate (Deb,
2001, p.93).

Again, there are different options for crossover operators. The simplest case is the one-point
crossover. Here, the genome of two parents is cut at a random point, and new candidates
are created by recombining the resulting pieces (the front part from one parent, and the
back part from the other parent, cf. Fig.3.3(a)). For genomes with a fixed length , the
random point needs to be the same in both parents in order to achieve offspring genomes
with the same length. An extension of the one-point crossover is the use of several cut
points. Fig. 3.3(b) shows a two-point crossover, for example. The number of cut points
can also be randomly varied during the optimization run.

The cutting of the genomes at several, but few point results in a higher probability for
genes that are close to each other on the genome to stay together in the offspring (also
called linkage (Luke, 2009, p.36)). For example, in a one-point crossover, the start gene
and end gene in an array genome are always separated, whereas two neighbouring genes
are only separated if the cut point is placed between them. If the genome can be structured
into blocks of genes in a meaningful way to better reflect the properties of the search space,
few-point crossover operators can make use of this structural knowledge.

If no relation between neighbouring genes is given in the search space, using such a cros-
sover operator might introduce unnecessary bias that impedes the search. The uniform
crossover operator (Sywerda, 1989) (cf. Fig 3.3(c)) randomly chooses which parent’s gene
to copy for each gene of the offspring. Thus, in this work the uniform crossover has been
used. See (Spears and DeJong, 1991) for a more detailed discussion of the advantages and
disadvantages of this operator.

As an extension to the process, a hybrid method could be devised that uses different
crossover strategies for several parts of the genome, e.g. for several degree of freedom
types. Additionally, similarly to the mutation operators, the crossover strategy could also
be varied over time, focussing more on diversification or intensification, depending on the
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(b) Two-Point Crossover
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Figure 3.3.: Different Crossover Operators (adapted from (Luke, 2009))

state of the search. A more detailed overview on additional crossover operators can be
found in (Deb, 2001, p.111 et sqq.), including crossover operators that can be used for
genomes with varying length, and crossover operators that do not just choose one of the
parents’ value for the offspring, but combine the values themselves (e.g. by taking the
mean of both parents’ values) (Deb and Goyal, 1996).

3.5.3. Selection

The goal of candidate selection is to select promising solutions for reproduction and to
remove the worst solutions from the current population, so that the search can focus on
promising candidates.

As we are considering a multi-objective problem, it is not straightforward what the most
promising and the worst candidates are. On the one hand, promising candidates have good
quality properties, but in the face of conflicting objectives, the measure of good quality
properties is not obvious. On the other hand, promising candidates should be the basis
for a successful continuation of the search. Here, a diversity of candidates is advantageous
to achieve a good approximation of the true Pareto-front.

Selection strategies are concerned with measuring usefulness of candidates for the search
so that promising candidates can be used for reproduction and the worst candidates can
be discarded.

Different selection strategies have been suggested in the literature. Initial approaches to
multi-objective evolutionary optimization use weighting of the objectives (possibly varying
weights in the course of the optimization) to assign the candidates a usefulness measure
and select the most useful one. However, such approaches do not reflect the goal of
multi-objective optimization to find a Pareto-front well (Deb, 2001, p.173). Thus, newer
approaches assess the usefulness of a candidate based on Pareto-domination (suggested
by Goldberg (1989)). While the earliest of such approaches (e.g. (Fonseca and Fleming,
1993; Srinivas and Deb, 1994)) still considered both the objective values and the Pareto-
domination and thus, their performance depend on the shape of the Pareto front (Deb,
2001, p.206,222). Recent approaches only consider Pareto-domination and are discussed
in the following.

Pareto-dominance does not impose a total order on candidates in a population. Only if a
candidate A is better in one and at least equal in all other quality properties than another
candidate B, A dominates B and is objectively superior. To compare candidates that
do not dominate one another, additional measures that are independent of the absolute
objective values are introduced.
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Two popular measures for how well a candidate performs with respect to Pareto-dominance
are the Pareto rank (suggested in the Non-Sorting Genetic Algorithm NSGA (Srinivas and
Deb, 1994)) and Pareto strength (suggested in the Strength Pareto Evolutionary Algorithm
SPEA (Zitzler and Thiele, 1999)).

The Pareto-rank (Deb, 2001, p.210 et seq.) of a candidate is a measure of how “close” a
candidate is to the Pareto-front. The candidates of the current Pareto-front are assigned
the lowest and best rank of one. Then, all candidates of the Pareto-front are removed
and the Pareto-front of the remaining candidates is calculated. The now non-dominated
candidates are assigned a rank of two and then are removed. This approach is continued
until all candidates have been assigned a rank.

The Pareto strength measure (in its revised form described in Zitzler et al. (2002a)) is
based on the number of dominating candidates. The raw strength of a candidate c is the
ratio of candidates in the population that c dominates. Then, the sum of the raw strength
values of all candidates dominating c is calculated and determines c’s Pareto strength
value. The smaller the Pareto strength value, the better the candidate is.

Still, candidates can have the same Pareto rank or Pareto strength, as it is a discrete
measure. To discriminate between two candidates with the same Pareto rank or Pareto
strength, density measures to favour candidates in objective space areas with low candidate
density have been suggested.

The density measure “crowding distance” is used in NSGA-II (Deb, 2001, p.248 et seq.).
For a candidate A, the crowding distance is the average distance between the neighbouring
candidates of A along the objectives. The higher the crowding distance, the lower is the
density of that region and the better is candidate A. In SPEA2, the density of candidates
is calculated as the inverse of the distance to the k-th nearest neighbour of a candidate.

Together, the Pareto rank / Pareto strength and the density measure impose a fine-grained
order that discriminates most candidates, called fitness. The fitness assignment in NSGA-
II (using Pareto rank and crowding distance), for example, is the following. Let ≺ denote
Pareto-dominance (cf. Section 3.2.2) and for a candidate c, let r(c) denote the Pareto rank
of c and d(c) denote the crowding distance of c. A candidate c’s fitness f(c) is determined
so that f(c) > f(c′) if

• c′ is dominated by c, or

• c′ is not dominated by c nor does c′ dominate c and c′ has a higher Pareto rank than
c, or

• c′ is not dominated by c nor does c′ dominate c and c′ has the same Pareto rank,
and c′’s crowding distance d is smaller.

Formally, this means

f(c) > f(c′) ⇔ c ≺ c′′

∨ c ⊀ c′ ∧ c′ ⊀ c ∧ r(c′) > r(c)

∨ c ⊀ c′ ∧ c′ ⊀ c ∧ r(c′) = r(c) ∧ d(c′) < d(c)

Based on the fitness, candidates are selected for reproduction. In some approaches, unfit
candidates are also selected for deletion, whereas other approaches just delete the complete
parent population and only keep the new candidates.

A problem of both fitness measures is that they may lead to circular preference of solu-
tions, which may lead to circular behaviour of the algorithms and hinders convergence
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(Zitzler et al., 2010, p.62). New approaches for fitness assignment have been suggested
that overcome these problems (Zitzler et al., 2010; López-Ibáñez et al., 2011).

A popular selection strategy for selecting a set of solutions from the population based on
their fitness is the tournament selection. This strategy has been shown to be superior
to other selection strategies (Deb, 2001, p.89). In tournament selection, candidates are
pairwise compared and the winner of each pair is selected. The number of rounds that a
candidate has to win in order to be selected can be configured and steers how selective
the tournament is. Other selection methods degenerate when one candidate in the popu-
lation is much better than others, leading to a reduced diversity in the population (scaling
problem (Deb, 2001, p.92)).

There are more differences in detail in different selection here, the reader is referred to
(Deb, 2001) and the experiments comparing the effects of different aspects in (Laumanns
et al., 2001). The parameters of the search need to be carefully set, because they steer how
well the algorithm can converge to the front by determining the relation of exploration of
new candidates and preservation of current good solutions.

3.5.4. Elitism

Elitism is an extension to multi-objective evolutionary algorithm which has been introdu-
ced by Rudolph (2001).

Elite solutions are optimal with respect to all previously evaluated solutions. Elitist evolu-
tionary algorithms preserve elite solutions, i.e. they ensure that elite solutions are always
carried over into the next generation in the selection phase (Deb, 2001).

Elitist evolutionary algorithms supposedly converge faster than the basic algorithm (Deb,
2001, p.235), which has been demonstrated in experiments by Zitzler and Thiele (1999);
Zitzler et al. (2000), Veldhuizen (1999) and Knowles and Corne (2000), which are summa-
rized by Deb (2001, p.375). For example, Zitzler et al. (2000) have compared basic versions
of existing algorithms with elitist versions and found that the elitist version was almost al-
ways superior to the basic version (with respect to their coverage indicator, which is briefly
described in Section 3.5.5). Furthermore, Rudolph and Agapie (2000) have proven that
their formulations of a elite-preserving multi-objective evolutionary algorithms converge
towards the globally Pareto-optimal solutions (other algorithm versions are covered in an
earlier and later publication).

Often, however, a bounded archive for elite solutions is used, where some elite solutions
are deleted if the archive is full to ensure a maximum memory consumption. More recent
convergence proofs are also available for elitist evolutionary algorithms with bounded ar-
chives (López-Ibáñez et al., 2011) if their strategy to delete solutions from the archive
fulfils some properties. However, these proofs do not hold for the two famous elitist evo-
lutionary algorithms NSGA-II (Deb et al., 2000) and SPEA2 (Zitzler et al., 2002a), both
using bounded archives, too.

3.5.5. Comparing Multi-objective Evolutionary Optimization Techniques

The performance of an optimization approach is typically measured by assessing the qua-
lity of the solutions and the time needed to generate the solutions (Zitzler et al., 2008).
Compared to the straightforward assessment of single-criteria optimization approaches and
exact methods, performance assessment of multi-criteria evolutionary optimization faces
two main challenges (Zitzler et al., 2008): First, the evolutionary optimization is a stochas-
tic process. Each run can create a different result. Thus, for each optimization approach
and example problem, the outcome is random variable, and each concrete run is a sample
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from that distribution. As a result, the performance of an algorithm cannot be assessed
based on a single run for a given problem. Second, the result is a Pareto-front where
each candidate has multiple values, one for each objective, so we cannot directly use the
objectives as a metric for quality. Thus, we require additional quality metrics based on
the objective values to assess the quality of the Pareto front.

To address the first problem, when comparing multi-objective optimization techniques,
all experiments should be replicated several times so that we obtain a set of resulting
Pareto-fronts and can estimate the underlying random variable.

To address the second problem, several quality metrics and indicators have been suggested.
We present the which quality metrics and indicators used in this work in the following.

First, the Pareto dominance relation can be used as a quality metric to test whether the
result sets produced by one optimization approach A dominates the results from another
approach B. For a number of runs created by each approach, we can compare each pair of
runs from A and B and rank the runs according to how many other fronts they dominate.
If the Pareto fronts created by A have statistically significant better ranks than the results
created by B, we can objectively say that one algorithm is better (Zitzler et al., 2008,
p.389). Section 3.5.5.1 below presents more detail on this method.

However, we do not always obtain such a clear result. Two Pareto fronts are incompa-
rable if one front is better in one region of the objective space and another one in another
region. To assess such cases, several quality indicators have been proposed (Zitzler et al.,
2002b, 2008) that use additional preference information to calculate a quality indicator
for a Pareto front (unary quality indicator) or for a pair or Pareto fronts to compare
(binary quality indicator), and thus can be used for comparison and statistical tests. Sec-
tions 3.5.5.2 and 3.5.5.3 thus present two quality indicators, the coverage indicator and
the hyper-volume measure. Finally, Section 3.5.5.4 briefly describes other indicators not
used in this work.

3.5.5.1. Pareto Dominance Ranking

Pareto dominance ranking (Zitzler et al., 2008) is a method to compare the outcome of
a set of runs for two optimization approaches (or settings) S and T . Recall that for two
Pareto fronts P1 and P2, P1 � P2 denotes that all candidates in P2 are weakly dominated
by at least one candidate in P1 and that P1 and P2 are not equal (cf. Section 3).

Then, for each optimization approach S and T , we perform a set of runs {Sr |r = 0, . . . , n}
and {Tr |r = 0, . . . , n}. We select a certain iteration i to compare the results at. Then,
each run has produced a Pareto front P (Si

r) or P (T i
r). We can now compare all P (Si

r)
with all P (T i

r) and assign a rank to each front similar to the Pareto rank used in NSGA-II
as follows (adapted from Knowles et al. (2006)):

rank(P (Si
r)) =

∣∣{P ∣∣P ∈ {P (T i
r) |r = 0, . . . , n} ∧ P (Si

r) � P ∧ P 6� P (Si
r)
}∣∣

and vice versa for T . The lower the rank, the better P (Si
r) is with respect to the runs

created by T . The result of the ranking is a rank value for each run of each setting. We
can then compare whether the ranks of the runs one of the optimization approaches S or
T is statistically significantly smaller (thus better) than the ranks of the runs of the other
one.

If a significant difference is detected, the optimization approach with the better ranks can
be deemed the better one for the given problem. However, the dominance ranking method
does not provide information of how much better the approach is. To quantitatively assess
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Figure 3.4.: Example of the Hyper-volume of a Pareto Front

the difference, we additionally use the quality indicators presented below. Additionally, if
fronts of the runs are often incomparable, the no significant result can be determined and
we can only resort to the quality indicators for comparison.

We use the Performance Assessment Tools (Knowles et al., 2006) provided with the PISA
optimization framework (Bleuler et al., 2003) to calculate the Pareto Dominance Ranks
and perform the statistical tests.

3.5.5.2. Coverage Indicator

The original coverage indicator C(P1, P2) has been proposed by Zitzler et al. (Zitzler and
Thiele, 1999) and is a useful measure to compare two optimization runs’ resulting Pareto
fronts P1 and P2 independent of the scaling of the objectives. The coverage indicator
compares how many candidates in A are non-dominated by candidates in B and vice
versa. The additional preference information here is that the number of non-dominated
candidates is relevant.

3.5.5.3. Hyper-volume Indicator

The hyper-volume, also called size of the dominated space (Zitzler and Thiele, 1999), mea-
sures the volume (in the three dimensional case) of the objective space weakly dominated
by a Pareto front. For minimization problems, this measure requires a reference point to
define the upper bounds of this volume. Figure 3.4 visualizes the hyper-volume of a Pareto
front “front 1” and a reference point z as a grey area. The reference point is usually set to
the maximum values encountered in all compared optimization runs.

Because the scale of the objectives can be very different (e.g. POFOD ranges from 0, ...,
1, while costs is orders of magnitude larger), the objective values are normalized using the
reference point before determining the hyper-volume. The values of each objective are nor-
malized so that the reference point has the value 1 for each objective3. The normalization
uses the metric dq defined for each quality criterion.

3We assume here that all objective values are positive, so that the point of origin is unchanged. However,
one could as well add a second minimal reference point z′ and normalize the front so that z′ lies at
point (0, . . . , 0)
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Figure 3.5.: Example of the Hyper-volume of a Normalized Pareto Front

Figure 3.5, for example, shows a normalized front. The theoretically maximally achievable
hyper-volume is 1; however, this value is only reached if one candidate has the value 0
in all objectives and thus is the only single candidate in the Pareto front. For a point o
in the objective space, let norm(o,z) denote the normalized objectives values with respect
to a reference point z. As a result of the normalization, we cannot compare the absolute
volumes across different settings.

Let the function hvolume(P,z) denote the normalized hyper-volume enclosed by the front
P and the reference point z in the objective space Πq∈QVq as shown in grey in Figure 3.5.
Mathematically, a hyper-rectangle is constructed for each candidate c in the front with the
opposite corners norm(Φ(c), z) and (1, . . . , 1). Then, the union of these hyper-rectangles
is determined and its hyper-volume is measured. For example, the volume for a Pareto
front with a single candidate having the normalized objective values (0.5,0.3,0.6) and the
reference point (1,1,1) is (1− 0.5)(1− 0.3)(1− 0.6) = 0.14. In other words, hvolume(P,z)
measures the size of the dominated objective space with respect to the metrics dq, q ∈ Q.
Then, we can compare two Pareto fronts by comparing their hyper-volumes.

3.5.5.4. Other Methods

Another proposed method how to assess and compare optimization approaches is to calcu-
late the so-called empirical attainment function for each optimization approach. However,
while this method looses less information and keeps the multi-dimensionality of the results
(Zitzler et al., 2008), it is only practically applicable to two objectives and does not provide
a single measure how to compare two optimization approaches. Thus, we do not consider
empirical attainment functions in this work.

Additionally, we decided not to use other quality indicators that require additional utility
information like the R indicator (Zitzler et al., 2008), because we want to impose as little
preference information as possible (cf. Section 5.1).
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4. Related Work

This chapter surveys related work to out method and is divided into two aspects. First,
we discuss other methods that share the goal of our method, i.e. that target to support
the software architect in improving a component-based software architecture based on
model-based quality prediction in Section 4.1. As a focus of this work is performance
improvement, we consider methods that improve either performance or performance com-
bined with other quality attributes.

Second, we relate our tactics-based new heuristic operators to existing work in the field of
evolutionary algorithms in Section 4.2.

4.1. Supporting Software Architects to Improve CBA

Numerous model-based quality prediction methods allow the software architect to model a
software architecture and evaluate a single or several quality attributes. We have presented
some of these methods in Section 2.4, and refer to the mentioned surveys for more detail.
Most of these methods, however, do not explicitly support the software architect or quality
analyst in changing the software model based on the evaluation results. Still, prediction
methods that target CBA can be used as quality predictors in the improvement approach
presented in this work.

In this section, we present methods that build on or extend model-based quality prediction
methods to help the software architect to improve a software architecture at hand, i.e. that
explicitly support the task of interpreting model-based prediction results and finding better
architectures.

For some methods, we provide several references in the following: Both one of the early
works as well as the most recent paper. Thus, we obtain a better understanding of when
a method was initially proposed as well as the most recent status.

This section is organized as follows. First, Section 4.1.2 discussed the criteria to com-
pare related methods. Then, Section 4.1.3 described improvement methods that target
performance, or performance combined with costs. Section 4.1.4 then discussed methods
that, like our method, target several quality attributes including performance. Finally,
Section 4.1.5 concludes the findings and highlights gaps in the related works.
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4.1.1. Scope of this Survey

We focus on methods that are applicable at the software architecture level, and thus
exclude more low-level improvement approaches that for example optimize code (e.g. for
parallel execution, or when compiling). Some of the methods presented in the following are
more general and do not specifically target component-based systems or do not specifically
target software architecture, but are applicable at this level as well.

Because all architecture models have some notion of components, we broaden our survey
beyond the requirements of CBS (cf. Section 2.1) to consider methods striving to improve
any notion of software architecture. Thus, we use the term “software architecture” instead
of CBA in the following.

Additionally, we focus on software performance prediction. Thus, we only consider ap-
proaches that improve performance as one of the considered quality attributes, or that can
be readily extended to consider performance (such as the ArcheOpteryx method, see be-
low). The main other research area concerned with architecture optimization is reliability
optimization, where redundancy of components and component deployment are the main
considered degrees of freedom to improve an architecture’s reliability. (Kuo and Wan,
2007) provide a survey on such methods.

Two other prominent domains in which automated improvement and optimization is used
are the design of embedded systems and the self-adaptation of systems (often service-
oriented ones) at runtime.

For the first area of embedded systems, (Gries, 2003) and (Grunske et al., 2006) provide
a survey. Design space exploration frameworks like the ones suggested by (Künzli et al.,
2005; Künzli, 2006) have been developed for this domain. However, the degrees of freedom
and quality properties in these domains are more homogeneous and better understood,
and the frameworks are tailored to them, so that the frameworks are at the same time
not readily applicable to software architecture optimization as considered in this work.
On the other hand, completely generic multi-objective optimization frameworks like PISA
(Bleuler et al., 2003) and Opt4J (Lukasiewycz et al., 2010) have been developed in this
context, and can be used for the problem of software architecture optimization as well (cf.
Chapter 8).

In the second area of self-adaptive systems, methods have different goals. A survey of
existing approaches and research challenges is given by Cheng et al. (2009). First, it is
often more important that the methods deliver quick responses to reconfiguration requests
instead of providing optimal ones. After all, the optimization must not consume more
resources that the adaptation saves. Second, a self-adaptive system is already in a certain
state when considering adaptation. Thus, the goal is not to find an globally optimal state
to change to without consideration of the current state, but also to find a near good state.
Finally and most importantly, self-adaptive systems have to decide autonomously for a
new configuration that satisfies the requirements of the environment, while the goal of this
work is to provide interpretation and decision support.

Considering all quality attributes and also other domains such as the design of embedded
systems, a large number of optimization approaches have been suggested. We are currently
working on a broader review considering more that 200 papers in this broader domain by
Aleti et al. (2012). For the broad scope of software engineering task in general, (Harman,
2007; Harman et al., 2009) has coined the term search-based software engineering.

4.1.2. Criteria for Automated Improvement Support Comparison

In the following sections, we compare the related work with respect on three aspects,
namely the targeted improvement problem (Section 4.1.2.1), the applied solution (Sec-
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tion 4.1.2.2), and the flexibility of a method to be extended in the future (Section 4.1.2.3).
We first introduce each aspect with a short outline of its criteria, and then describe the
criteria in detail, arguing which properties are desirable for each criterion to achieve a
useful and expressive architecture improvement support.

4.1.2.1. Addressed Improvement Problem

First, the improvement problem addressed by the method is considered. These characte-
ristics determine for which improvement problems an approach can be used. The main
properties here are (P.1) the addressed quality attributes and quality criteria, (P.2) which
architecture properties are considered to be varied to improve these quality attributes (e.g.
component deployment, server configuration), and (P.3) the goal of the improvement (e.g.
single improvement step, optimize utility, multi-criteria optimization). Additional proper-
ties regarding the problem are (P.4) whether the problem is formulated on the design level
(e.g. using an architectural model) or on the quality analysis model level (e.g. queueing
networks) and (P.5) whether additional architectural constraints can be considered.

P.1 Quality Attribute (Criteria): The addressed quality attribute(s) and the quality
criteria considered to assess these attributes (in parenthesis), if applicable. The more
quality attributes and criteria can be considered, the better support an approach can
give to software architects in general. Still, for special architecture design cases where
only few quality properties are of crucial interest and others are known to be of minor
interest, methods that target these quality attributes only are just as useful.

P.2 Changed architecture properties: The properties of the architecture that are
changed by the method to improve the quality attributes. Here, we name those (in
case studies or described explicitly). These properties correspond to our concept of
change types and degrees of freedom. However, because the architecture properties
cannot necessarily independently varied as we define our notion of degrees of freedom,
we use this more neutral term here. Here, the more architecture properties can
be considered, the better support an approach can give to software architects in
general. Again, in scenarios where only few architecture properties are open for
change, methods that target a limited set of properties can be just as useful (see also
Section 5.4 for a discussion of architecture improvement scenarios).

P.3 Improvement goal: The goal of the improvement methods differ: Some target
to satisfy given requirements, other target to find optimal solutions with respect to
an objective function. The underlying difference are the assumed preferences of the
software architect and how much is assumed to be known about them. As described
in Section 3.2.1, the three types of preference articulation are a priori, a posteriori,
and interactive.

A notable subtypes of a priori preference in the context of architecture improve-
ment are quality requirements. Quality requirements means that software architects
and stakeholders agree on certain values that have to be achieved for each quality
property. Thus, they are a form of preference model, which can be understood as
assigning a utility of 1 to each candidate meeting all quality requirements and a
utility of 0 to all others.

As we have discussed in Section 3.2.1, a priori preference articulation is difficult. In
both cases (utility functions or quality requirements), it is questionable whether sta-
keholders can reliably agree on such a preference model before knowing the available
optimal trade-off candidates (We discuss this aspect in more detail in Section 5.1).

P.4 Design Level? Solutions automatically found for problems on the design level (e.g.
based on UML models or other architecture modelling languages) can be more easily
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understood and realized by software architects than solutions found on lower level of
abstraction, e.g. on the queueing network level. In the latter case, solutions need to
manually mapped back to the design level. Furthermore, it is not necessarily clear
whether a solution found on the lower level is feasible on the design level. Thus,
architecture improvement on the design level is more desirable.

P.5 Architectural Constraints: Finally, if the problem is defined on the design level,
additional architecture constraints specified by the software architect can be included
in the improvement, to ensure that all found solutions are actually feasible. To give
some examples, software architects may restrict the number of components to the
number of available development teams, they may restrict the number of servers
available to deploy the system, or they may exclude certain combination of changes.
Here, the most flexibility is achieved by allowing arbitrary constraints formulated
by the software architect. However, if methods only address certain changeable
architecture properties, sophisticated architecture constraints are not required.

4.1.2.2. Solution Approach

Second, the solution approach to the problem is discussed. These characteristics deter-
mine how well a method can solve the posed problem, and also show the assumptions
and simplifications a method makes in order to efficiently solve the problem. A relevant
property is (S.1) the used quality model, which determines the expressiveness and validity
of the predictions. The used optimization or improvement technique (S.2) described which
actual optimization or improvement algorithms are used to find better solutions. Finally,
we check whether and how domain-specific knowledge (S.3) is integrated into the method.

S.1 Quality model: We survey what quality prediction model is used. In particular,
the composition of quality properties from properties of single architecture elements
is of interest. Here, simplified models assume aggregation functions, e.g. that a qua-
lity property of the system is the sum of quality properties of architecture elements,
such as components. While such a simplified models can be useful for some quality
attributes (such as costs), other quality attributes are emerging properties of the
system (e.g. performance or reliability) and their simplified handling requires strong
assumptions. Thus, more expressive quality models are desirable in general. Howe-
ver, in particular domains such as service-oriented systems where the performance
of one service is independent of the performance of another, such assumptions are
more realistic. Thus, depending on the domain of software architectures considered,
less expressive quality can enable more efficient optimization approaches at the cost
of being limited to that domain. In the table, we name the concrete quality models
used in presented case studies in parenthesis.

S.2 Optimization / Improvement technique: Here, we name the optimization or
improvement algorithm used to solve the improvement problem of each method. Ba-
sed on the formulated problem and the chosen quality model, different optimization
techniques are feasible (cf. Section 3.5). The choice influences the performance of
the method, i.e. how good found solutions are and how computationally expensive
a method is. All methods described in this work do not guarantee to deliver the
globally optimal solution due to the complexity of the problem. The more restric-
ted the problem is (limited choice of quality attributes, limited changed architecture
properties), the more efficient optimization approaches are used.

S.3 Domain-specific Rules / Tactics: Because one contribution of this work is the
integration of domain-specific knowledge as tactics operators into the improvement
process, we survey the use of domain-specific knowledge in other methods. In this
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property, we do not consider the domain-specific problem formulation in all opti-
mization problems, such as the encoding of the genome in evolutionary algorithms.
We only consider domain-specific rule that integrate knowledge in addition to the
objective function. Regarding the integration of domain-specific knowledge in opti-
mization techniques in general, Section4.2 surveys related work.

4.1.2.3. Flexibility

Third, we survey the flexibility and extensibility of each method. If a method is strictly
limited to the current quality attributes, it can only be used to support the software
architect for these and cannot be extended to consider additional quality attributes and
concerns, potentially particular for the developing organization. The most flexibility is
provided by a framework approach that (F.1) allows to plug-in arbitrary quantitative
quality prediction techniques, that (F.2) explores to change the architecture in any way
desired by the software architect, and that (F.3) allows to study architectures described
in different modelling languages.

However, flexibility comes at the price of efficiency, because methods that are limited to
certain quality attributes can make simplifications and thus achieve more efficient optimi-
zation techniques. Still, we believe that for an automated method that should support a
software architect in the improvement task, flexibility is more important, because (a) the
methods are automated and thus the additional effort is machine effort and cheap and
(b) each particular architecture design problem may be faced with special constraints and
requirements, so that the assumptions of limited methods may not hold in many cases.

F.1 QA extendable?: Here, we check whether additional quality attributes (QA) can
be integrated into the method if quantitative model-based prediction approaches
are available. Different levels achievable here are that (1) the method is restricted
to the considered quality attributes, (2) the method can be extended to quality
attributes with the same assumptions on quality composition (see S.1 above), or (3)
the method can be extended for any new quantitative model-based quality prediction
technique, thus enabling trade-off between any relevant quantitatively-analysable
quality attributes.

F.2 Changed architecture properties extendable?: Here, we survey whether a me-
thod can be extended to cover more additional changeable architecture properties.
The most flexibility is provided by an approach that additionally lets software archi-
tects model the possible changes for their specific architecture improvement problem.
In the table, we only provide a simplified classification, more details on the require-
ments for such flexibility in an automated approach are described in Section 6.1.

F.3 Metamodel / Quality model independent?: First, in different organizations,
different architecture modelling languages might be used. Training of developers
and possibly used other available analysis techniques or code generation prevent the
software architect to freely choose the architecture modelling language as needed by
the improvement method. While model transformations can be used to translate
from one to the other, information may get lost if the two models do not have
the same level of detail. Thus, it is desirable for a method to be applicable to
any architecture modelling language. On the other hand, the available changeable
architecture properties depend on the architecture modelling language, thus, certain
assumptions about the architecture modelling language have to be made.

Second, different quality models may be appropriate for different types of systems.
Additionally, depending on the available input data and training of the developers,
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using a certain quality model may be beneficial. Thus, it is desirable if different
quality models can be used by an improvement method.

Both aspects are related because a model transformation from the architecture mo-
delling language to the quality modelling language needs to be available in order to
analyse an architecture.

4.1.3. Performance Improvement Methods

In this section, we discuss related approaches that improve or optimize performance, possi-
bly combined with costs optimization or costs constraints. We do not consider methods to
improve only costs of a software architecture without considering other quality attributes,
because such methods focus more on the economic and organizational context of a project
than on the software architecture.

Tables 4.2 to 4.3 show an overview of all surveyed method improving performance only
or performance and costs as quality attributes. In the tables, we refer to the methods by
their name, the last name of first author of the first paper describing the method, the year
of the first publication and the year of the most recent publication. The entries of the
table, however, are based on the most recent status of the method. Refer to the detailed
description of each method in this section for the references.

As described above, we focus here on methods that improve a software architecture (or,
more generally, high-level software design) based on performance models and performance
predictions. The methods considered provide interpretation support and automatically
suggest new architecture candidates. Thus, we exclude monitoring-based approaches like
(Parsons and Murphy, 2008) that only provide feedback on potential problems without
suggesting solutions, manual approaches such as Cortellessa and Frittella (2007), or ap-
proaches that only target to present the available information to the software architect
for an easier result interpretation and decision making, such as (Bondarev et al., 2007) or
(Krogmann et al., 2009).

Planner2

The Planner2 (Zheng and Woodside, 2003) methods improves the deployment of a software
architecture in order to meet soft deadlines, i.e. requirements that a certain percentage of
requests must fulfil the defined response time deadline.

The considered quality attribute is performance, in particular percentiles of response time
(e.g. the response time that 90% of requests achieve). Two properties of the architecture
are changed: The deployment of tasks to servers (where the tasks can be interpreted
as components in the software architecture) and the change of priorities of tasks. The
goal of the optimization is the satisfaction of the above-mentioned soft deadlines. The
method operates on the performance model level, not on the design level. No architectural
constraints are discussed.

The used performance model are Layered Queueing Networks (LQNs), which are expres-
sive. To optimize deployment and priorities, a problem-specific, approximative algorithm
is used which makes use of the detailed performance results of the LQN evaluation, such
as utilization of servers. Thus, the algorithm is based on domain-specific rules.

The method is restricted to LQNs and cannot be extended to other quality attributes, due
to the specialized optimization algorithm. For the same reason, the changeable architec-
tural properties are fixed.

The main difference to our method is that Planner2 is a highly specialized method to solve
this particular problem, but it is not extendible to help the software architect for other
types of decisions.
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Approach P.1 Quality Attribute
(Criteria)

P.2 Changed architec-
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Planner2 (Zheng 2003) Performance (response
time percentile)

Deployment, priorities Satisfy requirements % %

OPEDo (Buchholz
2006–2009)

Performance (any mea-
sure)

Resource demand,
number of resources,
resource speed, buffer
space

Optimize utility func-
tion (arithmetic ex-
pression of result mea-
sures)

% %

PANDA (Cortellessa
2007–2011)

Performance (response
time, throughput)

Split components, de-
ployment, scheduling

Satisfy requirements ! %

Performance Booster
(Xu 2008–2009)

Performance (mean
response time,
throughput), costs
of changes

Deployment, change
resource demands,
introduce concurrency,
change interaction
among processes

Optimize or satisfy re-
quirements

% %

Deploying Compo-
nents For Performance
(Sharma 2008)

Performance (through-
put)

Component deploy-
ment

Optimize % %

CERAS Deployment
Optimization (Li 2009)

Performance (through-
put), costs

Deployment Optimize one quality
subject to require-
ments of the other

% %

SLA-Driven Planning
Framework (Li 2010)

Performance (mean
response time), costs
(including power costs)

Number of threads,
number of cores,
resource speed

Multi-criteria optimi-
zation

% %

Table 4.1.: Problem Criteria for Performance Improvement Methods

Approach S.1 Quality model S.2 Optimization / improve-
ment approach

S.3 Domain-
specific rules /
tactics

Planner2 (Zheng 2003) Performance model (LQN) Problem-specific algorithm !

OPEDo (Buchholz 2006–
2009)

Discrete-event simulation
analysis (JMT, OMNeT++)

Metaheuristics (Evolutionary
Algorithm, Kriging-models,
Random, Local searches)

%

PANDA (Cortellessa 2007–
2011)

Performance model (LQN or
EQN)

one improvement step, or hill
climbing

!

Performance Booster (Xu
2008–2009)

Performance model (LQN),
cumulated costs of changes

rule-based; hill climbing or
steepest ascent hill climbing

!

Deploying Components For
Performance (Sharma 2008)

Performance model (DTMC) Problem-specific algorithm
(similar to greedy bin
packing)

!

CERAS Deployment Optimi-
zation (Li 2009)

Performance model (LQN),
costs based on resource usage

Solution of multiple linear
programming problems

%

SLA-Driven Planning Frame-
work (Li 2010)

Performance Model (Simple
QN), Power model

Multi-objective Evolutionary
Algorithm (SMS-EMOA)

%

Table 4.2.: Solution Criteria for Performance Improvement Methods
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Approach F.1 Quality attributes exten-
dable?

F.2 Changed architecture
properties extendable?

F.3 Metamo-
del / Quality
model inde-
pendent?

Planner2 (Zheng 2003) % % %/ %

OPEDo (Buchholz 2006–
2009)

% Any simulation model para-
meter

!/ !

PANDA (Cortellessa 2007–
2011)

% any performance antipattern
solution as rules

!/ !

Performance Booster (Xu
2008–2009)

% any rule on LQN %/ %

Deploying Components For
Performance (Sharma 2008)

% % %/ %

CERAS Deployment Optimi-
zation (Li 2009)

% % %/ !

SLA-Driven Planning Frame-
work (Li 2010)

% % %/ %

Table 4.3.: Flexibility Criteria for Performance Improvement Methods

OPEDo

The OPEDo tool (Buchholz and Kemper, 2006; Arns et al., 2009) has been developed to
optimize discrete event systems that are analysed with simulation methods. Any perfor-
mance result measure from the simulation can be optimized.

In the application of OPEDo, changed architecture properties were change of resource
demand, change of number of resources, change of resource speed, and change of buffer
sizes. In general, the tool can be used to vary any parameter of a simulation model.

The goal of the improvement is to optimize a utility function, which the user defines
as an arithmetic combination of result values. The user directly handles the simulation
model, thus, the method does not target the design level. No architectural constraints are
available, because the model to optimize is a black box, only exposing the parameters to
vary.

The tool is configurable and can be used to optimize models for different simulation engines,
such as the mean value analysis of the Java Modelling Tools (Bertoli et al., 2009) or
OMNeT++ (Varga and Hornig, 2008). Different metaheuristics, such as evolutionary
algorithms or local search) are used to solve the optimization problem. No domain-specific
rule are available.

While several result values from the simulation can be aggregated to form a utility function,
only one evaluation approach seems to be connected to the tool, so that only one simulation
for performance can be executed per candidate. Thus, we classified OPEDo to be a
performance-only improvement method.

The simulation engines are connected to the OPEDo tool by simulation-engine-specific
adaptors, that provide the OPEDo tool with the configurable parameters and result va-
lues. Users configure which parameters to vary. However, the tool can only vary a single
parameter per optimization variable in the model. Thus, degrees of freedom that require
adjustment of several model elements are not supported (e.g. component selection in the
PCM, cf. Section 7.2.1).

Additionally, there is not necessarily a mapping of these parameters to design decisions,
e.g. whether it is possible to vary the demanded time of a component. Thus, any model
parameter can be optimized, and users have to select the right parameters manually for
their problem.

The focus of OPEDo is to provide several optimization techniques and a graphical user
interface. The question of how a model at hand is connected to the optimization is sim-
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plified and solved using parameters. Thus, the method is limited to Here, our notion of
degrees of freedom and the automatically derived design space for quality improvement
could complement the OPEDo tool and could be integrated as a so-called “black box
model”.

Thus, the main difference to our method is that OPEDo is limited to simulation approaches
and only allows to search design spaces spanned by single parameters in the simulation
models. The mapping to design spaces the software architect faces is not necessarily clear.

PANDA

The PANDA method (Performance Antipatterns aNd FeeDback in Software Architectures,
(Cortellessa and Frittella, 2007; Cortellessa et al., 2009; Trubiani, 2011)) is concerned with
detecting software performance antipatterns in design models and suggesting solutions
to the software architect. For antipatterns where an automated solution is possible, an
automated search can independently search for optimal solutions.

The targeted quality attribute is performance and different criteria such as response time
and throughput can be considered. When antipatterns are detected and solution strategies
are available, refactoring action change the architecture model. Currently, automated
refactoring actions are the splitting of components, the change of component deployment,
and the change of scheduling.

The goal of the approach is to remove antipatterns until performance requirements are
fulfilled. No architectural constraints are considered.

The used performance model has to be expressive to collect enough information for anti-
pattern detection. Used performance models were LQNs and different variants of EQNs
(among them the SimuCom simulator (Becker et al., 2009)). The improvement is done
step-wise as feedback to the software architect, or applying several antipattern solutions in
a hill climb or exhaustive search. The antipattern rules can be considered domain-specific
rules.

The method is inherently limited to performance. It is, however, independent of the
used software architecture metamodel. So far, it has been applied to UML (Cortellessa
et al., 2010a) and, in joint work, to the PCM (Trubiani and A. Koziolek, 2011). The
antipattern rules need to be manually specified again for each target metamodel, based on
a metamodel-independent description.

As a stand-alone, automated method, PANDA is limited to those architecture changes for
which rules exist and automated solution is possible. The method cannot explore regions
of the design space for which no domain-knowledge has been codified. Additionally, it is
limited to performance.

PANDA can, however, also be combined with our method, as shown by Trubiani and A.
Koziolek, 2011. In this study, the antipattern detection and solution has been implemented
for the PCM using our framework. The solution of antipattern for the PCM has been
realized as directed changes of degrees of freedom, i.e. as tactics operators. Using this
combination, the antipattern detection and solution can thus also be used when improving
a software architecture for several quality attributes. Then, the search can both efficiently
explore regions of the design space where domain-knowledge in form of antipatterns (and
other tactics, cf. Section 8.3) is available, but also use the exploratory power of stochastic
search methods like evolutionary algorithms.

Performance Booster

Performance Booster (Xu, 2008, 2010) is a method to configuration and design improve-
ments on the performance model level. Based on a LQN model, performance problems
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(e.g., bottlenecks, long paths) are identified in a first step. Then, mitigation rules are
applied. The improved quality attribute is performance (in terms of response time or
throughput), while constraints on the number of changes can be defined as maximum
cumulated change costs.

To mitigate the detected performance problems, several changes can be applied to the per-
formance model: the deployment of tasks (i.e. components) is changed, resource demands
are reduced, concurrency is introduced, or the interaction among processes is changed.

The goal of the improvement is to satisfy given requirements, or to optimize a single
performance criterion. As the method operates on the LQN level, found changes need to
be manually mapped back to the design model, and may even not be feasible on the design
level. No architecture constraints are supported.

Like for PANDA, the used performance model has to be expressive to collect enough in-
formation to detect performance problems. The method has been applied to LQNs only,
but the rules could be rewritten for other performance models with similar expressive-
ness. Based on the performance prediction results, Performance Booster tries to apply the
performance problem rules.

Two types of rules are distinguished, namely rules for design changes and for configuration
changes. Design changes are associated with some cost, because they cannot readily be
achieved for the real system. while configuration changes are considered to be free. Thus,
the method always applies as many configuration changes as possible before using a design
change, to keep the expected costs low. An upper limited for the costs (i.e. the amount of
design changes) can be given.

Some of the suggested design changes require changing the implementation of components,
which is not desired when dealing with black box components. As the approach suggests
changes on the level of LQNs, it might not only be costly, but infeasible to map suggested
solutions back to the design. For example, it might be impossible to speed-up a certain
component implementation to reach a certain service time because of inherent algorithmic
complexity.

As a method, Performance Booster is limited to improving performance criteria. The
set of rules can be extended, if performance domain knowledge is available, so that more
architectural properties are changed.

Compared to our method, Performance Booster shares the limitations of PANDA. Simi-
larly, its rules can be integrated in our method as tactics, so that the available performance
domain knowledge is used.

Deploying Components For Performance

Sharma et al. have presented a method for deploying components for performance (Sharma
and Jalote, 2008). The considered performance criterion is throughput, and the only
considered change of the architecture is component deployment. The goal of the method
is to optimize a system’s throughput.

The used performance model are Discrete Time Markov Chains (DTMCs). A problem-
specific algorithm, similar to a greedy bin packing approach, deploys the components
one by one (e.g. based on their resource demand, in descending order) to the available
servers. The underlying performance knowledge is that the load should be evenly spread
in the system. However, communication overhead is not considered, although it can have
a significant impact on the performance of a distributed system.

The method is only applicable to deployment optimization to improve performance, which
is the main limitation compared to our method.
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CERAS Deployment Optimization

The CERAS (Centre for Research in Adaptive Systems) Deployment Optimization (Li
et al., 2009; Litoiu et al., 2010) targets to cost-optimally deploy a set of services in a
cloud computing environment while fulfilling performance (throughput) requirements. The
method works on the LQN level and thus not directly on a design level. Still, the mapping
back to the design level is comparably straightforward, because only the deployment is
changed. No architectural constraints are considered.

The method requires a performance model that considers resource contention among ser-
vices, which is important to consider if several services share the same server. Costs are
determined based on the predicted server load.

To find the cost-optimal deployment, the method uses an iterative approach: A simplified
model is optimized using efficient linear programming. Then, for the found optimal mo-
del, the correct queueing delays are determined using an LQN. The queueing delays are
integrated in the simplified model, which is solved again. These steps are repeated until
the models converge.

We consider the method to be quality model independent, because the queueing delays
could be derived by other performance prediction techniques as well. Still, the method
is limited to performance and costs, and to changing the deployment, which is the main
limitation compared to our method.

SLA-Driven Planning Framework

The SLA-driven planning framework (Li et al., 2010a) targets to size and optimize enter-
prise applications with service-level agreements (SLAs), in particular an SAP ERP system.
The target quality attributes are performance (in terms of mean response time) and costs
(in terms of procurement costs of the hardware and power costs for operating the system).
The considered sizing options are to change the number of cores and the resource speed.
Additionally, the optimal number of thread is determined.

The goal of the method is to find Pareto-optimal sizing options of an enterprise application
so that a human decision maker can assess the achievable service-level agreements and the
associated costs. The method does not work on a design level model and no architectural
constraints are considered.

The performance model is a simple queuing model (queueing network with finite capacity
regions). A multi-objective evolutionary algorithm (SMS-EMOA (Beume et al., 2007)) is
used and no domain-specific rules are considered.

The method is specific to performance and the used three-tiered performance model. Thus,
it is tailored towards enterprise applications and not readily transferable to other types of
software architectures.

4.1.4. Improvement Methods for Multiple Quality Attributes

In this section, we discuss related approaches that improve or optimize several quality
attributes other than only performance and costs. Tables 4.4 to 4.6 give an overview on
the surveyed methods improving several quality attributes. In the tables, we refer to the
methods by their name, the last name of first author of the first paper describing the
method, the year of the first publication and the year of the most recent publication. The
entries of the table, however, are based on the most recent status of the method. Refer to
the detailed description of each method in this section for the references.
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Approach P.1 Quality Attribute
(Criteria)

P.2 Changed architec-
ture properties

P.3 Improvement goal P
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AgFlow (Zeng 2003–
2008)

Performance (mean
response time, res-
ponse time variance),
reliability (POFOD),
availability (service
accessible), costs,
reputation

(Web) service selection Optimize utility func-
tion (simple additive
weighting of objec-
tives)

! %

QoS-aware Service
Composition (Canfora
2005–2008)

Performance (mean
response time), costs,
availability, reliability

(Web) service selection Satisfy requirements,
or optimize a single
criterion subject to
requirements

! %

ArchE (Bachmann
2005–2008)

Modifiability (costs),
performance (schedu-
lability)

Change of responsibili-
ties

Satisfy requirements ! %

ArcheOpterix
(Grunske 2006–2011)

Reliability, perfor-
mance (communica-
tion overhead), energy,
costs

Component deploy-
ment, redundancy
allocation

Multi-criteria optimi-
zation

! !

SASSY (Menasce
2008–2010)

Performance (response
time, throughput),
availability, security

Service selection, ar-
chitectural patterns

Optimize utility func-
tion (any)

! %

PETUT-MOO (Mas-
war 2007–2010)

Performance (utiliza-
tion, latency, schedu-
lability), availability,
costs

Replicate components,
remove idle processors,
replace software com-
ponents, increase or
decrease bus capacity

Multi-criteria optimi-
zation

! %

Generic Design Space
Exploration Frame-
work (Saxena 2010)

Performance (utili-
zation, worst-case
execution time), costs

Product line configura-
tion

Optimize a single crite-
rion

! !

Table 4.4.: Problem Criteria for Improvement Methods for Multiple Quality Attributes

Approach S.1 Quality model S.2 Optimization / improve-
ment approach

S.3 Domain-
specific rules /
tactics

AgFlow (Zeng 2003–2008) Linear aggregation function
of individual service proper-
ties

Linear Integer Programming %

QoS-aware Service Composi-
tion (Canfora 2005–2008)

Aggregation function of indi-
vidual services properties

Evolutionary Algorithm %

ArchE (Bachmann 2005–
2008)

Modifiability analysis (im-
pact analysis), real-time per-
formance model (RMA)

rule-based, focus on one im-
provement step and interac-
tion

for modifiabi-
lity

ArcheOpterix (Grunske
2006–2011)

Hardware/software reliabi-
lity model, DTMC, Markov
reward model for energy,
communication overhead
function

Multi-objective Evolutionary
Algorithm (NSGA, MOGA),
Multi-objective Ant Co-
lony (P-ACO), own hybrid
(hAGO)

%

SASSY (Menasce 2008–2010) Aggregation function of indi-
vidual services properties

Hybrid (heuristic service se-
lection, hill climbing)

heuristic neigh-
bourhood filte-
ring

PETUT-MOO (Maswar
2007–2010)

Performance Model (e.g.
LQN, RMA), Sum of costs

Multi-objective Evolutionary
Algorithms (e.g. SPEA-2)

%

Generic Design Space Explo-
ration Framework (Saxena
2010)

Arithmetic function on archi-
tecture elements’ properties

Constraint satisfaction solver %

Table 4.5.: Solution Criteria for Improvement Methods for Multiple Quality Attributes
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Approach F.1 Quality attributes exten-
dable?

F.2 Changed architecture
properties extendable?

F.3 Metamo-
del / Quality
model inde-
pendent?

AgFlow (Zeng 2003–2008) Any linear aggregation func-
tion

% %/ (!)

QoS-aware Service Composi-
tion (Canfora 2005–2008)

Any aggregation function % %/ (!)

ArchE (Bachmann 2005–
2008)

! Any modification rule %/ !

ArcheOpterix (Grunske
2006–2011)

! Can be problem-specifically
implemented

!/ !

SASSY (Menasce 2008–2010) Any aggregation function Any architectural patterns
with composition function

%/ (!)

PETUT-MOO (Maswar
2007–2010)

! Any model refactorings as
transformations

(!) / !

Generic Design Space Explo-
ration Framework (Saxena
2010)

Any aggregation function Configuration options
and constraints can be
metamodel-specifically defi-
ned

!/ (!)

Table 4.6.: Flexibility Criteria for Improvement Methods for Multiple Quality Attributes

AgFlow

AgFlow is a quality-of-service aware middleware for web service composition (Zeng et al.,
2003, 2004, 2008) and includes optimization capabilities to select an optimal set of web
services to optimize a weighting utility function on different quality properties of the
service composition. Currently, performance (response time and response time variance),
reliability (POFOD), availability (probability that a service is able to accept a request),
and reputation (based on a user-defined ranking) are considered as quality criteria.

The considered quality properties of the individual web services have to be known, e.g. ba-
sed on monitoring data. These quality properties are assumed to be fixed and independent
from any selection choices. Then, the quality properties of the composed service is derived
based on a linear aggregation function for each quality criterion. The used utility function
defines weights for each quality criterion. No domain-specific rules are used.

Based on the linear utility function, the linear quality evaluation functions and binary
variables to select services, a linear programming problem is defined and solved using
standard techniques.

Additional quality properties could be integrated, if linear composition functions can be
specified, or the functions can be linearized. Only service selection is supported. Thus,
the approach is dependent on the used metamodel (it is not mentioned how it could
be extended to other metamodels describing service-oriented systems, and it cannot be
extended to other CBA metamodels). Due to the limitation to linear quality composition
functions, it is only partially independent of the used quality model.

Compared to our method, the main limitation of AgFlow is the restriction to service
selection and linear quality aggregation functions based in independent and fixed service
quality properties.

QoS-aware Service Composition

Canfora et al. have suggested QoS-aware Service Composition (Canfora et al., 2005, 2008)
to optimize web service compositions for a quality attribute of interest while satisfying a
number of other quality attributes. Currently, performance (mean response time), costs,
availability, and reliability (as defined above for AgFlow) are supported.
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Like AgFlow, the quality properties of the individual services are assumed to be known and
fixed. Then, in contrast to AgFlow, any aggregation function can be used to describe the
quality properties of the composed service: The assumption for linearity is dropped. The
resulting optimization problem becomes more difficult, so that evolutionary algorithms are
used to solve it.

Concerning extensibility to additional, possibly application-specific quality attributes, the
method allow for users to define their own quality functions. These functions can aggregate
quality properties of individual services.

Only service selection is supported. Thus, like AgFlow, the approach is limited to service-
oriented metamodels. Due to the assumption of an aggregation function for quality pro-
perties, the method is only partially independent of the used quality model.

Compared to our method, the main limitation of Canfora’s method is the restriction to
service selection and quality aggregation functions based in independent and fixed service
quality properties.

More works on service selection

In addition to these two initial methods, more work in this direction has been presented.
The additional methods share the limitation that (1) they are limited to service selection
as a degree of freedom and that (2) they use simple quality composition formulas for calcu-
lating the quality properties of a composed service based on the known quality properties
of individual services.

Instead of using expressive quality models, these approaches rather focus on quickly fin-
ding approximate solutions so that they can be used to adapt service-oriented systems at
runtime.

ArchE

The ArchE framework (Bachmann et al., 2005; McGregor et al., 2007; Dı́az Pace et al.,
2008) assists the software architect during the design to create architectures that meet
quality requirements. It helps to create architectural models, collects requirements (in
form of scenarios), collects the information needed to analyse the quality attributes for
the requirements, provides the evaluation tools for modifiability or performance analysis,
and suggests modifiability improvements based on rules. Currently, modifiability and
performance are supported quality attributes.

The used model is a preliminary architecture which assigns functionality to building blocks
in the architecture. Such a mapping is called responsibility. The changeable architecture
properties are the change of responsibilities (e.g. adding or splitting responsibilities). The
goal of the improvement is to satisfy given requirements. No architectural constraints are
considered.

The quality model for modifiability is impact analysis (Bohner and Arnold, 1996) based
on the responsibility model. For performance analysis, rate monotonic analysis (RMA)
(Klein et al., 1993) is used.

The current architecture is changed by applying rules that codify architectural tactics
(Bass et al., 2003). Currently, only rules for improving modifiability have been realized. It
is also planned to add rules that modify parameters of the performance model (Dı́az Pace
et al., 2008).

However, ArchE focusses on interaction with the user when improving the architecture.
Although ArchE also provides a multi-step mode where a number of tactics is applied in a
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hill-climbing or exhaustive search fashion, the focus is on suggesting a single improvement
to the user and have the user review this suggestion before continuing. The intent of
ArchE is not to automatically provide an optimal solution (Dı́az Pace et al., 2008, p.187).
Consequently, the method does not focus on the feasibility of suggestions. For example, the
moving of functionality to improve modifiability is suggested, but whether such moves are
possible cannot be checked due to the limited expressiveness of the models. Additionally,
the performance effects of such changes must be manually estimated.

ArchE allows to plug-in in any quality prediction technique (Dı́az Pace et al., 2008) as qua-
lity reasoning frameworks. These reasoning frameworks are additionally supposed to apply
domain-specific knowledge and propose changed architectures. Thus, both the considered
quality attributes and the used quality models can be changed.

The architecture description is fixed to be in the form of so-called quality attribute scena-
rios. Thus, is is unclear how changes proposed by one quality reasoning framework can be
propagated so that the effects on other quality properties are considered.

As a result, compared to our work, ArchE does not search the whole design space, but
advances step-wise based on rules with user-interaction. The architecture model is not
component-based, consequently, degrees of freedom as presented later in this paper cannot
be readily identified and the combination of suggestions by different quality reasoning
frameworks can only be partially automated.

ArcheOpterix

ArcheOpterix (Grunske, 2006; Aleti et al., 2009a,b; Meedeniya et al., 2010) is a generic
framework to optimize software architectures modelled as AADL models (Architecture
Analysis and Description Language (Feiler et al., 2006)). Several optimization problems
have already been solved with this method. Optimized quality attributes include reliability
(Meedeniya et al., 2010, 2011a), performance (Aleti et al., 2009a,b), and energy (Meedeniya
et al., 2010).

Currently, the addresses changeable architecture properties are component deployment
(Aleti et al., 2009a,b) and redundancy allocation (Grunske, 2006; Meedeniya et al., 2010),
which is the combination of changing the number of used servers and replicating the
components onto the additional ones to improve reliability. The goal of the improvement
is to find the Pareto-optimal architecture candidates, i.e. multi-criteria optimization.

Architectural constraints can be defined in ArcheOpterix, examples are memory
constraints, localization constraints, and co-localization constraints (Aleti et al., 2009b).

Different quality models have been used in different ArcheOpterix applications. For energy
prediction, a Markov reward model has been created (Meedeniya et al., 2010). Reliability
is modelled with their own hardware/software reliability model (Meedeniya et al., 2011a),
using a Discrete Time Markov Chain (DTMC) (Meedeniya et al., 2010), or with a formula
for data transmission reliability (Aleti et al., 2009a). The performance model is simpler
and considers only communication overhead (Aleti et al., 2009a).

As optimization techniques, several metaheuristics have been used. A new hybrid optimi-
zation algorithm combining a first phase of ant colony optimization and a second phase
of evolutionary algorithms (hAGO) is suggested by Aleti et al. (2009b) and compared
empirically to an ant-colony algorithm (P-ACO (Doerner et al., 2004)) and an evolutio-
nary algorithm (MOGA (Fonseca and Fleming, 1993)). NSGA is used by Meedeniya et al.
(2010). These optimization techniques are generic and do not use further domain-specific
knowledge.
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Due to its framework character, ArcheOpterix is extendible to any other quality attri-
butes for which quantitative prediction for AADL models is available. Quality prediction
techniques can be plugged in as “Attribute Evaluators”. The attribute evaluators receive
information about the architecture candidate to evaluate via a metamodel-independent
interface.

The core of the framework is an architecture analysis module in which the optimization
problem at hand is defined independent of the metamodel. However, the optimization
problem to solve has to be defined by implementing a new architecture analysis module as
a set of Java classes. Thus, the changed architecture properties are defined anew for each
problem at hand.

Thus, the framework (as of version 2.1 1) is currently limited to the studied deployment
problems. No support for degrees of freedom that appear in multiple problems is given
yet. Thus, the software architect has to be familiar with how to describe optimization
problem definition and how to implement these as ArcheOpterix modules.

As such, the ArcheOpterix framework is closest our our method in goal and capabilities.
The main difference is that ArcheOpterix does not yet provide a way to model the archi-
tecture properties to change (neither conceptually nor in the tool). To use the framework
for new architecture improvement problems, the implementation has to be changed.

SASSY

Menascé et al. (Menascé et al., 2008; Menascé et al., 2010; Menascé et al., 2010) generate
service-oriented architectures that satisfy quality requirements. The considered quality
criteria are performance (response time, throughput), availability, and a simple security
representation. In addition to service selection, more architecture properties can be chan-
ged by introducing architectural patterns such as load balancing or redundancy.

The goal of the method is to optimize a user-defined utility function defined on the quality
criteria. No architectural constraints are available. The quality models are similar to
the ones used by Canfora et al. (see above): Individual service quality properties can be
aggregated to composed quality properties.

To solve the resulting optimization problem, SASSY uses its own hybrid algorithm. The
optimization in SASSY is separated into two phases, service selection optimization and
pattern application: First, the optimal services are selected for a randomly generated
architecture using the algorithms described by Menascé et al. (2010) which apply branch-
and-bound principles. Then, SASSY generates a number of new candidates in the ar-
chitectural patterns neighbourhood of the current solution by applying one architectural
pattern each. The best resulting candidate is chosen and again fed into the optimal service
selection optimization. The current candidate is such changed until no more improvements
are possible. Then, the procedure is re-initialized with another random architecture and
repeated, until a maximum number of evaluations have been spent or the user stops the
search.

During this search, the neighbourhood of the hill-climbing is filtered by a heuristic: Only
the k service selections that have been worst so far (contributed least to the overall utility)
are improved by architectural patterns that target the problematic quality properties. This
heuristic is similar to our tactics

First, the k quality properties with the lowest numeric contribution to the utility are
determined. Then, architectural patterns are only applied to components that are involved
in exhibiting this quality property. For example, the two services that exchange sensitive

1available at http://mercury.it.swin.edu.au/g archeopterix/downloads/ArcheOpterix 2.1.zip
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data are relevant for a security property, or all services that together provide one service
of the composed system are relevant for the execution time of this composed service.
This information is directly available from the definition of the relevant quality properties.
Only patterns that are known to improve the quality attribute of the problematic quality
property are chosen.

Thus, while this heuristic makes use of the domain-specific knowledge about which pat-
tern is expected to improve which quality criterion, Still, for the purpose of (web)service-
oriented systems (where services are provided by independent service providers, which
excludes the hardware environment with its difficult contention effects), such heuristics
capture all relevant domain knowledge. The simple and abstract models of quality criteria
used in this service-oriented scenario do not provide more detailed information that could
be leveraged by tactics.

SASSY can be extended to consider additional quality properties and additional architec-
tural patterns. However, only quality properties for which the quality of the composed
service can be expressed as a function of the individual services and the effect of the conside-
red architectural patterns are supported. For example, performance cannot be considered
in a scenario where services are hosted locally and have contention effects. Similarly, only
architectural patterns that can be expressed in the service composition workflow and for
which the effect on quality composition is known can be used.

Like AgFlow and Canfora’s method, the approach is limited to service-oriented metamo-
dels. Due to the assumption of an aggregation function for quality properties, the method
is only partially independent of the used quality model.

Compared to our method, the main limitation of SASSY method is the restriction to
service-oriented systems and quality aggregation functions based in independent and fixed
service quality properties.

PETUT-MOO

The PETUT-MOO tool (Performance-Enhancing Tool using UML Transformations and
Multi-objective Optimizations, (Maswar et al., 2007; Li et al., 2010b)) is a model-driven
framework to improve a software architecture modelled in UML using model refactorings.

The targeted quality attributes are performance (utilization and latency) and costs, but
the authors emphasize that any quality prediction technique could be considered. The
currently discussed changes of the architecture are to replicate components, to remove
idle processors, to replace software components, and to increase or decrease bus capacity.
The goal of the improvement is to find the Pareto-optimal architecture candidates, i.e.
multi-criteria optimization. Architectural constraints are not discussed.

The quality models used or describes in the publications are different performance models
(e.g. LQN, RMA) and a costs model that sums up costs of parts. The predictions are made
using the ROBOCOP environment (ROBOCOP consortium, 2003). For optimization, the
method uses the PISA framework (Bleuler et al., 2003) and thus can apply a number of
optimization techniques such as SPEA2 (Zitzler et al., 2002a). No domain-specific rules
are used.

The tool is independent of the considered quality attributes, any quality prediction tech-
nique based on UML can be plugged in. Additional architecture refactoring transforma-
tions can be integrated in the method, thus, different architecture properties can be studies.
However, it is not clear whether the combination of transformations necessarily results in a
design space with valid candidates, because transformations might have conflicting effects
in general (as discussed by Kapova and Becker (2010) for a similar issue when applying
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model completions). Furthermore, it is not clear how the architecture transformations are
translated into genes in the evolutionary algorithms.

The architecture refactoring transformations are UML-specific at this time, but it seems
that they could as well be defined for other metamodels, thus we categorize the method
as partially metamodel independent.

The main limitation compared to our method is that the combination of changes to form
the design space is not considered, as there is no definition of how the model transforma-
tions interact. Additionally, the publications only describe the approach so far. Only a
very brief example is described without providing details on the optimization (Li et al.,
2010b). The tool is not available online. Thus, it remains unclear whether the method is
already realized or rather a proposal for a future method.

Generic Design Space Exploration Framework

The recently suggested Generic Design Space Exploration Framework (GDSE) (Saxena
and Karsai, 2010b,a) is motivated from the embedded systems domain, but targets to
provide a general, domain-independent framework using model-driven techniques. The
framework can be used for any design-level metamodel by extending the metamodel and
thus marking the relevant classes and properties for optimization.

Only one example application of the framework has been described so far. The considered
quality attributes were performance (utilization and worst-case execution time) as well
as costs. The changed architecture properties was the configuration of a product line
architecture. The improvement goal was to optimize one of the considered quality criteria.

The quality model, however, is simple: The user can define an arithmetic function over any
architecture properties. For example, the utilization of a processor can thus be described
as a function on the properties of the tasks deployed to this processor. Then, as the relation
between architecture properties and quality properties is a simple function, the resulting
optimization problem can be mapped to a constraint satisfaction problem and be solved
by standard solvers. Domain-specific tactics are not used.

The considered quality attributes are extendable and can be modelled by the user. Howe-
ver, more complex quality evaluation functions than expressible by an arithmetic function
are not supported (Saxena and Karsai, 2010b, p.1947), (e.g. values retrieved by simulation
or approximative algorithms).

The set of changed architecture properties can be extended by extending the target design
metamodel by using an abstract template language, and thus defining design alternatives
and constraints in the target domain. However, the model can only reflect discrete design
decisions, such as feature configuration, and does not seem to support more complex
changes in the models, e.g. including changes of connectors. The original model is never
changed (as it would be required to feed it in prediction approaches), on the contrary,
the design space formulation as a constraint satisfaction problem is extracted and fed
into standard solvers. Thus, the design alternative model of GDSE would have to be
substantially changed to enable prediction of more complex quality attributes.

The main limitations compared to our method are that (1) the modelling language to define
design alternatives inherently does not support complex quality prediction techniques and
(2) the design alternatives seem to be limited to configuration problems, so that more
complex changes of the architecture cannot be considered.
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4.1.5. Summary

To summarize, we observe that the surveyed methods vary in scope and focus. In the
following, we summarize the main findings and motivate the need for a more comprehensive
approach.

The first category of methods improving performance (possibly in combination with costs,
described in Section 4.1.3) provide specialized solutions for removing performance pro-
blems. However, they lack the combination with other quality attributes. Architecture
decisions that improve performance are particularly known to conflict with almost any
other quality attribute (Bass et al., 2003, p.74). Thus, a method that also considers other
quality attributes and thus highlights trade-off is expected to be more beneficial to the
software architect.

The second category of methods that consider performance combined with other quality
attributes (in addition to costs, described in Section 4.1.4) has a diverse set of methods.

AgFlow, the QoS-aware Service Composition, and SASSY specifically target web-service-
oriented system. They use the assumption that services have independent quality proper-
ties to achieve efficient optimization techniques. However, their application is limited to
architectures where their assumption holds. Note that this is not the case in any service-
oriented architecture, as the CERAS method shows: As soon as two services are deployed
together on the same server, their performance properties may be affected by the resource
demand of the other server.

The focus of ArchE is more on the interaction with the method user. Although a multi-
step mode is available, the method often requires user input to decide how a change will
affect other quality attributes. Thus, the method is useful if the architecture models are
in an early stage and much estimation of the user is required.

ArcheOpterix, PETUT-MOO, and GDSE are methods that share the goals of this work:
They all have framework-character and target a flexible approach to architecture (or de-
sign) improvement. However, each of them has limitations. The main ones are:

ArcheOpterix does not provide models to define the changeable architecture properties, but
requires the user to write an architecture analysis module in Java for each new combination
of changeable architecture properties and quality attributes. The interaction between the
different framework parts with respect to architecture changes and their effect on quality
properties is not well-defined.

PETUT-MOO is an initial proposal for an optimization approach. It is unclear how the
different architecture transformations can be combined to form the design space. Still,
the flexibility of model transformations to describe architecture changes is promising and
could be integrated into our method in future work.

While GDSE has a sound foundation in model-driven techniques, it is severely limited
by the definable quality functions. Because the optimization problem formulation as a
constraint satisfaction problem depends on the simplicity, the method cannot easily be
extended to more powerful quality prediction techniques.

Interestingly, none of the framework methods integrates domain-specific knowledge, while
this is common for methods that only improve performance.

As a result, we observe that none of the surveyed methods fulfils the criteria for automated
improvement support discussed in Section 4.1.2. Open issues are the insufficient combina-
tion of expressive quality predictions and a simple-to-use but flexible optimization problem
definition. Because this combination of properties leads to difficult optimization problems
(cf. Chapter 9), even for metaheuristics, the integration of domain-specific knowledge is
desirable.
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4.2. Problem-specific Knowledge in Metaheuristics

In the field of metaheuristic search techniques (Coello Coello et al., 2010) and evolutionary
algorithms in particular, problem-specific knowledge, including domain specific knowledge,
can be integrated into a metaheuristic in several ways (Grefenstette, 1987; Cheng et al.,
1999). First, the problem representation itself contains knowledge about the domain. For
example, genetic encoding can be chosen so that only feasible solutions are constructed.

Second, the initial population may be constructed instead of being randomly generated
by considering domain-specific knowledge (Grefenstette, 1987). Third, the performance of
the search can be enhanced by problem-specific knowledge, discussed in the following.

For some metaheuristic techniques, neighbourhoods can define how the search can advance.
Here, knowledge about the problem can help to design a neighbourhood with a smooth
fitness landscape, in which metaheuristics can search efficiently.

Usually, the starting population of an evolutionary algorithm is randomly chosen. Here,
start population heuristics can be used to already start with a population that has above-
average fitness (Grefenstette, 1987).

In evolutionary techniques, heuristic operators can be defined that contain problem-specific
knowledge. For example, Cheng et al. (1999) present a heuristic crossover operator based
on a problem-specific neighbourhood definition. Grefenstette (1987) present two heuristic
crossover operators for the travelling salesman problem. While previous crossover opera-
tors for this problem only ensured that the resulting path is valid, the heuristic crossover
operators also take the costs of edges into account when merging two parent solutions
into an offspring solution. However, these heuristic operators are defined based on static
properties of the search problem (neighbourhood, edge costs).

Pillay and Banzhaf (2010) have suggested a heuristic mutation operator for the exami-
nation timetabling problem which is concerned with planning the dates for a set of exa-
minations so that the enrolled students do not overlap. In their mutation operator, only
examinations that are in conflict with others are re-planned, and each re-planned exami-
nation is scheduled to a time slot with lowest costs. Costs are a proximity measure for
examinations with the same students and prefers well-spaced examination for each student
to leave time for preparation. Thus, this heuristic mutation operator uses more than sta-
tic properties of the search problem, because it also takes into account additional metrics
(here costs). However, the proposed heuristic mutation operator is the only mutation used
in the examination timetabling optimization and it is not combined with traditional mu-
tation operator. Thus, the approach may suffer drawbacks of rule-based approaches that
parts of the search space are not reached.

In performance prediction (and quality prediction in general), often more information than
the quality criterion to optimize is generated by a quality evaluation, too. For example,
a performance evaluation does not only result in response time and/or throughput values
for a given architecture, but also provide additional measures like the utilization of servers
or the frequency of communication between computing node or components. Experienced
software architects intuitively know styles and tactics to improve quality attributes of
a software architecture (Bass et al., 2003). Some of these tactics can be codified into
processable rules to improve a software architecture, as realized in the rule-based quality
improvement methods (e.g. (Xu, 2010)) presented in the previous section.

In addition to static problem properties (such as edge costs) and the predicted quality
property (e.g. mean response time), the tactics consider additional information from the
quality evaluation (e.g. resource utilization). This information is not available in the
optimization problem definition per se, but it can only be obtained by candidate evaluation.
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In this work, we suggest the use of this detailed problem-specific knowledge in a new
tactics operator (presented in Section 8.3). This type of heuristic operator is always
problem-specific (e.g. for performance prediction), but can be plugged into an evolutionary
optimization algorithm and thus be combined with the standard, randomized evolutionary
operators. To the best of our knowledge, tactics operators for quality improvement and
the resulting hybrid optimization has not been described before.
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5. Supporting the Architect to Improve
Component-based Architecture Models

In this chapter, we discuss how the software architect and other stakeholders can be sup-
ported by an automated method to improve a CBA model. The benefit such assistance
is reduced effort due to the partial automation of the design space exploration task. Ad-
ditionally, it has been recognized that automated, search-based approaches can help to
produce unexpected, but valuable solutions that humans would have overlooked because
of bias (Harman, 2007, Sec.7.3), because of time constraints, or because of limited insight
into the problem.

In Section 5.1, we discuss the goals and requirements of such an automated method.
Section 5.2 presents our extension of the quality-driven development process (H. Koziolek
and Happe, 2006) which in turn extends the component-based development process by
Cheesman and Daniels (Cheesman and Daniels, 2000). Then, the relation between the
representation of the software architecture as a model and the actual software system is
discussed in Section 5.3. In Section 5.4, we present development and evolution scenarios
in which our method can be used. Section 5.5 discusses assumptions and limitations of
our method. Finally, Section 5.6 concludes.

5.1. Goal of Automated Improvement Support

The goal of this work is to provide software architects with an automated method that
supports them to improve a given CBA based on quality predictions and to determine
optimal trade-offs. We assume that the software architect has identified a set of quality
properties that are relevant for the software system and that a subset of these quality
properties can be quantitatively analysed. Additionally, we assume that an initial software
architecture model with the required quality annotations is already available, so that
this subset of quality properties can be predicted. Then, the software architect requires
assistance in making use of the prediction results to improve the architecture.

Usually, several quality properties, such as performance, reliability, security, or costs, are
relevant for a software architecture. These quality properties may be conflicting, as dis-
cussed in Section 2.2.1. Achieving good performance can be costly due to more expensive
hardware or more development and maintenance effort for highly optimized or parallelized
components. Similar trade-offs exist between other quality properties (Bass et al., 2003,
p.73). Usually, there is no architecture for a given software system that delivers optimal

85



86 5. Supporting the Architect to Improve Component-based Architecture Models

values for all quality properties, e.g. that allows the system to have good performance, be
highly reliable and secure as well as maintainable and portable while having low costs of
development and operation.

Different stakeholders of the software system may have different preferences for quality
properties: While performance is important for users, maintainability is relevant for de-
velopers and costs matter for managers. When designing an architecture, the software
architect and requirements engineers have to trade-off these quality properties (including
costs) against each other while considering the preferences of all stakeholders and negotia-
ting with them.

For an automated improvement process, however, we require a clear definition of how to
compare and judge software architecture models, so that the automated method can search
for improved architecture candidates. An order on candidates needs to be introduced,
which automatically leads to the definition of the optimal candidates.

As presented in Section 3.2.1, there are three methods of how to handle multiple conflicting
criteria in optimization: the a priori method, in which preferences are articulated before
the search so that any two candidates can be compared; the a posteriori search where no
information about the preferences among criteria is modelled before the search, so that
the goal of the search is to find Pareto-optimal candidates; and an interactive approach
focussing on the elicitation of user preferences using intermediate search results.

As described in Section 3.2.1, modelling preferences is difficult. Thus, we believe it is
not appropriate to assume that software architects can reliably specify their preferences
before the search, especially because several stakeholders may be involved. Indeed, in the
context of the cost-benefit analysis method (CBAM), researchers noted that “eliciting the
utility characteristics from the stakeholders can be a long and tedious process“ (Bass et al.,
2003, p.311). Still, utility curves are collected in CBAM and cost-benefit calculations are
done with them, even though it is recognized that the captured utility values are “rough
approximations” (Bass et al., 2003, p.311). Furthermore, an automatically determined set
of Pareto-optimal candidates could be useful in discussion and agreement among stakehol-
ders, as these candidates objectively and quantitatively show the available optimal options
and thus are a basis for well-informed trade-off decisions.

Some methods to support software architects in improving the design assume that quality
requirements are available, i.e. that the software architect and stakeholders agree on certain
values that have to be achieved for each quality property (e.g. (Bachmann et al., 2005),
cf. Chapter 4). Quality requirements are another form of preference model, which can be
understood as assigning a utility of 1 to each candidate meeting all quality requirements
and a utility of 0 to all others.

In line with the argumentation above, the difficulty here is to find and agree upon the
required values. It is certainly possible to ask each stakeholder for required values for e.g.
performance and reliability, resulting in for example statements that the system should
respond within a second and be available 364 days of the year. However, it is questionable
whether trade-offs among the quality properties are sufficiently considered in such an
approach: If a system that satisfies the above stated requirements costs millions, while
the relaxation of of the quality properties by few percent saves a significant amount of
costs, stakeholders may want to reconsider their requirements. Thus, also the quality
requirements are subject the actually achievable quality properties. This fact is recognized
in methods like ATAM, where architecture evaluation meetings are supposed to “uncover
conflicts and trade-offs [between previously stated quality requirements], and provide a
forum for their negotiated resolution” (Bass et al., 2003, p.264). As a result, quality
requirement values should not be used to guide an automated search, because the final
requirements may actually depend on the outcome of the search.
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While it is difficult for stakeholders and architects to specify their full preferences, they may
indeed know that certain values for quality properties are unacceptable. Here, the question
is not which quality properties are desired for a system, but which quality properties are
certainly unacceptable. For example, a project may have a fixed upper limit for budget or
user representatives may state that a response time of the system of more than 15 seconds
on average is unacceptable. While this information is not enough to rank all possible
solutions in an automated search, it provides partial preference information that can still
be used within an a posteriori method.

For the problem of improving software architectures for their quality properties, the a pos-
teriori method is thus more useful than the a priori method. First, no tedious preference
modelling is required. Second, the insights into the existing trade-offs can be used in nego-
tiations with stakeholders. Knowing the properties of the problem, the software architect,
requirements engineers, and the stakeholders can agree on how to resolve the conflicts and
trade-offs among quality properties. Partial preference information can be used to guide
the search and focus on relevant regions of the Pareto front (cf. Section 8.2.5.2).

We expect no benefits from an interactive method over the a posteriori method in this work:
First of all, quality predictions can be time consuming and thus the rate of candidate
evaluation is relatively slow. As a result, the software architect cannot be constantly
interacting with the method, but has to wait for new results, which we expect to be a
tiring process. Additionally, if the software architect is not the only decision maker but
needs to get feedback from multiple other stakeholders, the interaction loop becomes even
longer. Thus, it seems to be more beneficial to first automatically collect all Pareto-
optimal solutions and use these, e.g. in a meeting with stakeholders, to select the best
architecture candidate or to agree on further manual changes of the architecture. Still, if
these expectations are not fulfilled, an a posteriori method can be extended to become an
interactive method, too.

Note that the above argumentation does not apply to all types of software systems or
software-intensive systems. In some domains with real-time constraints and safety consi-
derations, quality requirements are given and strict, be it because of physical constraints
(e.g. the time to inflate an air bag after impact) or legal constraints (e.g. safety requi-
rements in air planes). In such situations, quality requirement values are given and are
not subject to trade-offs as described above. An automated improvement method could
translate these requirements into constraints, while searching for candidates with good
trade-offs in other quality properties no strict requirements are available for.

As a result of this discussion, we observe that an automated, search-based approach to
support the software architect to improve a given software architecture for quality proper-
ties should apply the a posteriori method. Unless strict quality requirements are externally
imposed, all quality properties are subject to trade-off and negotiation. Thus, the goal
of such an automated method is to find the Pareto-optimal solutions, i.e. the candidates
with optimal trade-offs.

5.2. Process

This section presents the component-based development process with quality exploration,
which is an extension of the quality-driven CB development process. Section 5.2.1 pre-
sents the extension of the overall quality-driven CB development process. Section 5.2.2
described the extension of the quality analysis workflow and Section 5.2.3 presents the
new Architecture Exploration workflow. Finally, Section 5.2.4 describes the use of the ex-
ploration results for decision making in both the specification workflow and requirements
workflow.
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Figure 5.1.: Component-based Development Process with Quality Exploration (based on
(H. Koziolek and Happe, 2006))

5.2.1. Component-based Development Process with Quality Exploration

The original process by H. Koziolek and Happe, 2006 is shown in Figure 2.11, Section 2.4.5,
which in turn extends the CB development process by Cheesman and Daniels (Figure 2.2,
Section 2.1). However, the quality-driven CB development process does not account for
automated support for improving the CBA based on the insight gained from quality pre-
diction. Thus, we extend the quality analysis step in their process and the flow of artefacts
to include our method.

Figure 5.1 shows the resulting component-based development process with quality explo-
ration. Our extension (marked bold) changes the outputs of the quality analysis workflow:
the step does not only provide predicted quality properties for the input specification as in
the original method, but also provides the set of optimal candidates with quality properties.
The candidates are optimal with respect to the considered quality criteria and degrees of
freedom. This information can be used in both the specification and the requirements
workflow for decision making, which is explained in more detail in Section 5.2.4 below.

Additionally, the use case models contain only quality criteria (and possible upper quality
bounds), but not final quality requirements like in the original process: We assume that
stakeholders should not be forced to model their full preferences for quality criteria in
advance, but instead should be supported to make well-informed trade-off decisions (cf.
Section 5.1). Only after at least one iteration of quality analysis (thus marked with paren-
theses), stakeholders can decide on quality preferences based on the available trade-offs.

5.2.2. Quality Analysis Workflow

Figure 5.2 shows our extension of the quality analysis workflow. All workflows in the
middle of the figure are updated. Note that, in contrast to (H. Koziolek and Happe,
2006), we assume in this work that these tasks are executed by the software architect
instead of a specialized quality analyst role, because the workflow now contains making
design decisions and negotiating with stakeholders, too. Still, it is possible that software
architect delegates part of these tasks to a specialized quality analyst. The workflows of
the deployer and the domain expert remain unchanged.
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In the first workflow Quality Criteria and Bounds Modelling, software architects formalize
the quality criteria that are relevant and that should be considered in the following work-
flows. The relevant quality criteria are collected from the use case models (e.g. duration
of a use case, i.e. the cumulated response times of the involved services). Additional qua-
lity criteria may be added (e.g. the costs criteria or maintainability criteria which are not
captured in use cases). For some few quality criteria, unacceptable values may be known
(cf. Section 5.1), so that the software architect can also specify them as quality bounds.
Then, the quality criteria and quality bounds are annotated to the architecture and to
the refined usage model using our extension of the Quality of service Modelling Language
(QML) (Frølund and Koistinen, 1998), cf. Section 8.2.5.2 and Appendix D. The resulting
quality model (referencing the CBA) is transferred to the next workflow.

In the Architecture Information Integration workflow, all information from the other de-
veloper roles is integrated to form the fully quality-annotated architecture model. If in-
formation is missing, the software architect has to estimate it or trigger other developer
roles to provide this information. The resulting model can be a complete PCM instance,
for example, as shown in Figure 2.13 in Section 2.5. In general, the resulting model
contains the component architecture (e.g. a PCM system model and PCM allocation mo-
del), component quality specification (e.g. PCM SEFFs), an environment model (e.g. a
PCM resource environment model), a usage model (e.g. a PCM usage model) and quality
criteria and bounds (e.g. annotated to the PCM using QML).

The resulting fully quality-annotated architecture is input to the Architecture Exploration
workflow. The goal of this workflow is to identify possibilities how to improve the CBA. It
thus has two aspects: First the identification of possible changes of the CBA, i.e. the iden-
tification of design space (or a part thereof), and second the search for improved or even
optimal solutions in this design space, i.e. the optimization. In this work, this workflow
is implemented by an Automated Architecture Exploration workflow (explained in detail
below in Section 5.2.3) that automatically identifies the design space that is opened up
by the properties of CBA and searches this design space for improved solutions. Addi-
tionally, the software architect may manually explore the design space in this workflow,
either for quality criteria that are not quantifiable or not analysable, or for design aspects
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that cannot be analysed automatically. For example, manual architecture exploration is
conducted in ATAM (cf. Section 2.2.1), too, which could be combined with the method
and process described in this work (so that our method provides automated exploration of
parts of the design space and quantitative data to be used within ATAM). The outcome of
the architecture exploration workflow is a set of candidates that are Pareto-optimal with
respect to the relevant analysable quality criteria.

The result of the quality analysis workflow is thus a set of Pareto-optimal architecture
candidates with quality properties. Additionally, all other evaluated candidates with qua-
lity properties are available for inspection if needed (not shown in the figure because the
optimal candidates are the main result).

5.2.3. Architecture Exploration Workflow

Figure 5.3 shows the implementation of the Architecture Exploration workflow with our
Automated Architecture Exploration. The input to this workflow is the fully quality-
annotated architecture, including quality criteria and bounds. The presented workflow
has manual steps (shown in grey) and automated steps (shown in white with grey pat-
tern).

In the first step Degree of Freedom Identification, the degrees of freedom are automatically
identified for the given software architecture based on the principles of component-based
architectures and the used CBA metamodel. For example, components can be allocated to
different servers (allocation degree of freedom) and components can be replaced by other
components that offer the same interfaces and require no more interfaces than available
in the system (component selection degree of freedom). The notion of degrees of freedom
is explained in more detail in Chapter 6. These degrees of freedom span the design space
that can be searched automatically later.

In the second step Degree of Freedom Review, the found degrees of freedom are reviewed
by the software architect. The software architect can remove degrees of freedom that
should not be explored or add custom, system-specific degrees of freedom. Additionally,
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the software architect can add information to the architecture models about available
options in e.g. the hardware environment (alternatively available servers) or the component
architecture (e.g. available alternative component implementations), and then rerun the
degree of freedom identification so that additional degrees of freedom can be identified.
Furthermore, the software architect can configure the found degrees of freedom, and for
example specify the range of CPU speeds that should be explored.

In the third step Architecture Constraint Specification, the software architect may define
additional constraints for the design space. For example, considering our PCM example
model from Figure 2.13, an additional constraint could be that BusinessTripMgmt and
BookingSystem must not be deployed on the same server because of e.g. conflicting system
library version requirements. Another reason for additional constraints could be quality
criteria that are not analysable and thus have to be considered by the software architect.
For example, the software architect might want to separate two components handling
critical data to separate servers so that in case of a attack to one server, only one of the
component is compromised. We assume, however, that few constraints on the degrees of
freedom are required in this step (cf. Section 8.2.2).

Finally, the forth step Optimization runs an optimization tool to find the Pareto-optimal
candidates when varying the software architecture along the degrees of freedom. The result
is a set of Pareto-optimal architectural candidates with their quality properties. Because
the optimization cannot guarantee globally optimal results for complex quality properties
(cf. Section 8.1.3), the resulting set is an approximation thereof.

Note that while we assume here that one initial software architecture model is given, it is
also possible that the software architect already starts with several architecture candidates.

The first three steps of this workflow are described in Chapter 6 in more detail, while the
last step is described in Chapter 8.

5.2.4. Decision Making

Based on the Pareto-optimal candidates found in the architecture exploration, decisions
are made in the specification workflow or the requirements workflow. In the specification
workflow, the software architect makes decisions based on the found results. In the requi-
rements workflow, all or a subset of the stakeholders make decisions, possibly guided by
the software architect or by specialized requirements engineers. In the following, we refer
to both groups as decision makers.

The decision maker review the found set of Pareto-optimal candidates. Based on the
optimal candidates, the decision makers negotiate to agree on the best trade-off candidate
for the given situation and the (implicit) preferences. The effect of demands by stakeholder
groups (e.g. for fast response times, or a maintainable architecture) becomes quantifiable
in terms of costs and effect on other quality properties. While we expect this task to
be simpler than modelling preferences from scratch (see Section 5.1), selecting such a
final candidate from the set is still difficult (Branke et al., 2008) and subject to multi-
criteria decision making research (Belton and Stewart, 2002). For example, the Analytic
Hierarchical Process (Saaty, 1980) has been used to decide for an architecture alternative
out of many (Zhu et al., 2005).

For our architecture exploration method, decision making support based on multi-attribute
value theory (Keeney, 2003, Chapter 3) for this phase has been investigated by Rohrberg
(2010), who also provides a graphical visualization of results. Results can be explored for
two objectives using Pareto front diagrams (cf. Figure 3.1, page 48) and for any number of
objectives using Value Charts ((Carenini and Loyd, 2004) as shown in Figure 5.4). Value
Charts also provide decision making support by allowing to model preferences in form of
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Figure 5.4.: Value Chart Example by Rohrberg (2010) for Result Analysis and Decision
Making Workflow (The bars in the upper part reflect the utility of achieved
quality properties as defined in a utility function. The width of each column in
the upper part can be changed interactively by the user to reflect the weights of
objectives, and the ranking in the lower part of the figure changes accordingly.)

utility functions and observe the change of resulting overall utility of all candidates when
changing weights of objectives.

In the best case, the decision makers choose one of the resulting architecture candidates
to be realized, and updates the system architecture accordingly. Then, the architect
can proceed to the later phases of the CB development process (Provisioning, Assembly,
Testing, Deployment).

Alternatively, the analysis of the found trade-offs and the properties of the optimal archi-
tecture candidates leads to new insights, for example that two quality criteria are more in
conflict than expected. These insights can stimulate more high-level decisions in both the
specification workflow and the requirements workflow:

• In the specification workflow, insights can stimulate more high-level design changes.
For example, the use or other architecture styles can be considered, e.g. the use of
a pipe and filter architecture instead of a blackboard-centred architecture (Garlan
and Shaw, 1994), if the central blackboard turns out to be a bottleneck with respect
to performance. The results of the exploration can provide hints here, for example
because the main difference of candidates along the Pareto-front is the configuration
of the server that holds the blackboard component or mechanism.

• In the requirements workflow, insights can stimulate re-negotiations of the expecta-
tions of the system. For example, functional requirements may be revised to make
the system less complex (for example, the scope of the system or the level of au-
tomation could be reduced). In the worst case, the project is cancelled because its
realization turns out to be too risky or expensive.

In summary, the architecture exploration results enable decision makers to decide based
on quantitative information about the system in form of the available optimal solutions
and the resulting trade-offs. Thus, the process makes the effect of demands predictable in
terms of their effect on other quality properties, including costs.

5.3. Model-based Improvement

In this section, we consider how a model-based architecture optimization approach relates
to the targeted task of improving a given software system for its quality properties. Fi-
gure 5.5 visualizes the relation between the targeted task (lower part) and the model-based
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optimization, building upon the model-based prediction concepts shown in Figure 2.9,
page 28.

The starting point of the improvement process is a software system to improve, shown in
the lower left corner. Improving the quality properties of the system means to change the
software system in some way. In this work, we are concerned with changes of the software
architecture, which is a subset of all possible changes. Such changes may affect the quality
properties the system has (in case of an implemented system) or will have (in case of a
system design without implementation).

To reason on the software system, the software architecture model is an abstraction cap-
turing the details relevant for quality analyses. A (not necessarily strict) subset of the
possible changes can be reflected on the model level as changes of the software model. In
this work, we focus on the improvement of quality properties only. Changes to the func-
tionality are excluded. Thus, the optimization on the model level is restricted to changes
that are known to not affect the functionality of the system. These changes are descri-
bed by degrees of freedom. Different degrees of freedom in combination span the search
space in which our optimization method searches for good software architecture models
(more details on the problem formulation in Chapter 6 and on the optimization method
in Chapter 8).

In this work, we present a method to improve the software system on the model level. The
quality properties to consider are predicted based on a model of the software architecture.
Additionally, the changes that can be applied to improve the system are described on the
model level. Then, an optimization problem can be formulated on the model level to find
the best software architecture models with respect to the quality properties reachable by
these changes.

If the software architecture model reflects the system well in terms of the quality properties
of interest, i.e. if it does not abstract away details that are important for the quality
property, the found optimal changes on the model level correspond to optimal choices on
the actual system level for those changes that can be reflected in the models. Of course,
changes that cannot be reflected on the model level cannot be considered.

5.4. Scenarios

In addition to the inclusion in a CB development process as presented in Section 5.2,
the automated architecture exploration can be used in other scenarios during software
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development and software evolution. In this section, we discuss these different application
scenarios.

The automated architecture exploration can be applied in any process that fulfils the
preconditions to apply our method, which are the following:

Architecture Models: The CBA must be described by an architectural model that
conforms to a CBA metamodel. The described aspects include components, the
static structure, and their deployment to hardware nodes.

Usage Information: Information about the targeted usage of the system must be avai-
lable. Because many quality properties such as performance and reliability, but also
security, safety, and energy-consumption, depend on how the system is used, this
information has to be provided in a usage model.

Quality Annotations: The above models must be annotated with quality annotations so
that the models can be transformed into analysis method of the respective quality
property. Then, the analysis models can be evaluated and the quality properties of
the software architecture can be predicted.

Stimulus for Exploration: For a newly designed system, the stimulus for architecture ex-
ploration is the development project itself. For an already implemented and possibly
running system, some additional stimulus must be present to cause new architecture
exploration. We discuss the possible stimuli below.

Stimuli that cause architecture exploration can be any of the following and possibly more.
The first four scenarios are concerned with software evolution, while the two last ones are
additional types of analyses which can be conducted at any development or evolution time.

Changed requirements: Over time, software systems evolve. Causes of software evolution
are changed functional requirements or changed perception of quality criteria and
the subsequent change of preference and trade-off decisions. For example, system
users may demand a new functionality, which is new functional requirement. Another
example is that users get used to quickly responding systems due to their use of other
systems, so that it could be beneficial to improve the previously sufficient response
time of the system.

Changing hardware or middleware: A second driver of software evolution is changed tech-
nical environment. For example, new hardware, new operating systems, or new
middleware may be available. The need to adopt new technology can stem from li-
censing or maintenance problems or from the expectation of reduced costs or better
quality properties. Then, the quality analysis step of the CB development process
has to be repeated to predict the effects on quality properties, possibly inducing
further changes of the design. In this scenario, the architecture exploration could
explore different allocation options and could be analysed by systems deployers.

Changing usage: The usage of a system might change over time or may be predicted to
change. For example, the workload of a web-based system may increase or decrease
over time; or it may even change dramatically when events such as Christmas shop-
ping or acquisition of other companies with a resulting higher number of internal
system users. Here, the first step is to predict whether and how the quality proper-
ties of the system will be affected by the usage changes. If the quality properties
are predicted to be affected, the software architect may want to update the system
design. New architecture exploration can result in different optimal architecture
candidates, e.g. an updated allocation of components to servers. To continue the
example, a web-based system with increased load could be allocated to more servers,

94



5.4. Scenarios 95

while and decreasing load can be encountered by consolidating servers. Possibly, the
software architect also considers higher-level changes of the architecture and revisits
the specification phase.

Deployment in a new environment: An existing system could be deployed at a new site.
For example, an enterprise resource planning system could be deployed at a new
customer. The new customer may use the system differently or even require adjust-
ments of the system (both is likely to be the case for enterprise resource planning
systems). Then, the automated architecture exploration can result in better confi-
guration of the system or unveil the need to more deeply change the system’s design
in order to cope with the new situation. This situation can be a combination of the
three scenarios “Changed requirements”, “Changed hardware”, and“Changing usage”
described above.

Capacity planning: For performance, the number of users as well as their input parameters
can have an effect on the overall performance of the system (Menascé et al., 2004,
p.101). These values need to be included in the usage specification, as described
above. At the same time, it can be studied how the optimal CBA changes along
changing number of users or other usage model parameters to study the scalability
and robustness of the system. To do so, these usage model parameters can be
considered degrees of freedom and objective at once, so that the scalability of the
system at hand in relation to other degrees of freedom can be studied.

Exploration of high-level design decisions: The architecture exploration can also be used
when manually studying more high-level design options, for example concerning ar-
chitectural styles, which cannot be mapped to our degrees of freedom. In these cases,
the automated architecture exploration can be applied separately to each high-level
design alternatives to determine the potential of each. Thus, each design alterna-
tive can be compared “at its best” without manually tuning the degrees of freedom
(Zheng and Woodside, 2003).

While in a new development, many degrees of freedom are available (from the software
level, such as component selection, to the deployment level, such as used middleware,
hardware selection and allocation of components to servers, cf. Chapter 7), the degrees
of freedom are usually more limited for existing systems. We give some examples in the
following:

1. In a system the components are already implemented or bought for, software archi-
tects usually do not consider to exchange or reimplement certain components. Still,
even this can be considered under special circumstances, if the quality of the existing
components is not sufficient or the environment or other factors of the system have
changed so much that the existing components are not useful any more.

2. If a system is already installed on procured servers, the allocation may be limited
to these servers or an extension of these servers instead of freely choosing more
resources.

3. If developers are already familiar with certain middleware techniques, these should
not be changed any more.

On the other hand, systems that are built to be flexible, such as service-oriented sys-
tems that use external pay-per-use services or systems running in virtualized environments
(cloud computing), retain many degrees of freedom during their life cycle.

The architecture exploration as proposed in this work could even encompass more aspects
than the CBA architecture if these aspects are contained in a common (CBA) model of
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the system and if they can be quantitatively and automatically analysed: For example,
our method could be integrated with business process modelling to achieve a concurrent
engineering approach (Paech et al., 2009). Given an integrated metamodel that covers
both quality properties of the IT system and the business processes, degrees of freedom
can be identified and our method can be directly applied to optimize response time of both
IT system and human activities together.

Furthermore, if models for the utility and development costs of functionality (e.g. in form of
components) are available, the architecture optimization can even be used to study trade-
offs between functional properties and quality attributes. For example, a software architect
may ask whether it is better to sacrifice some convenience functionality to achieve better
performance. For all functionality aspects, costs are a trade-off (as the implementation
of the functionality results in development costs or procurement costs to buy and adapt
the components). Thus, as costs are usually also in conflict with other quality attributes,
we observe that functionality decisions and quality decision can be interconnected as well.
The design space identification aspect of the architecture exploration, however, is expected
to be manual.

Note, however, that due to the planned interaction with the software architect, our me-
thod is probably not applicable as-is for the runtime adaptation of autonomous software
systems. In such scenarios, the preferences as well as the available degrees of freedom must
be unambiguously modelled beforehand, so that the system can autonomously execute op-
timization algorithms to cope with changed situations. Because these requirements differ
from the requirements studied in this work (cf. Section 5.1), we do not consider autono-
mous system optimization further. In our work, the software architect (or another role,
such as the system deployer in the “changed hardware” scenario) is the ultimate decision
maker, and the automated exploration method’s task is to provide decision support.

Our method can, however, support a software architect in designing such adaptive, auto-
nomous systems. If quality prediction approaches are available that predict the adaptive
system’s quality properties in different envisioned situations, these quality properties can
be used to make trade-off decisions for architectural aspects that are fixed at design time.
For example, an adaptive system could be designed which can autonomously deploy its
components to one to three servers, depending on the workload. Then, the software archi-
tect may face the question of which third party component to buy to realise a functionality.
The architectural model could be analysed for the envisioned workloads could be analysed
for quality properties, and the potential trade-offs of different available third-party can
be studied. Furthermore, the choice of adaptation rules or adaptation policies could be a
variable for the improvement. In all these sketched cases, the expected system workload
must be known to make quality predicions.

To summarise, architecture exploration can be applied by software architects regardless of
whether a system is already implemented or not. Especially for performance predictions,
quality predictions for implemented systems can even be more accurate because the quality
models can be built from measurements of the system.

5.5. Assumptions and Limitations

The assumptions of our method as presented in this chapter are the following:

Relevant quality criteria known: We assume that the software architect, together with
other stakeholders, has already identified the relevant quality criteria (cf. Section 5.1).
If new quantitatively analysable quality criteria become relevant after the architecture
exploration step, this step should be repeated to account for them.
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Available models: We assume that the software architect has a model of the CBA
annotated with information to predict the relevant quality properties (cf. Section 5.1).
The techniques how to obtain such quality annotations depends on the quality criterion
(cf. e.g. (Jain, 1991; Menascé et al., 2004) for performance, (Gokhale, 2007) for an overview
regarding reliability, or (Boehm et al., 2000) for costs).

Because this assumption is fundamental to our work, we discuss the need for modelling as
motivated in Section 1.1, its costs, and its benefits in more detail in Section 10.3.

A limitation of our method is the following:

Qualitative quality attributes: Our method is restricted to quality attributes that can
be quantitatively assessed and automatically analysed based on models. Quality attributes
such as security, usability, and portability are difficult to capture in architecture models
and no quantitative models are available at this time. Thus, they cannot be considered in
our automated method yet. These qualities have to be considered manually by the software
architect. As soon as quantitative prediction methods for these quality attributes, they
can be integrated in our method.

Furthermore, our method inherits all assumptions and limitations of the underlying quality
prediction techniques (e.g. for the PCM, see (Becker et al., 2009) for performance and (H.
Koziolek and Brosch, 2009) for reliability).

Assumptions and limitations of our formulation of the degrees of freedom and the design
space as well as the applied optimization technique are discussed separately in Sections 6.5
and 8.5 in the respective chapters.

5.6. Summary

In this chapter, we discuss how software architects can be supported by an automated
method that helps them to interpret quality prediction results, map them back to the
software architecture level and make design decision based on them to improve the quality
properties of the software system (feedback tasks).

The contributions of this chapter are

• Analysis of the possible automated decision support to help software architects with
the feedback tasks: We identify the need for a method that requires no initial prefe-
rence articulation (a posteriori method).

• Integration of automated architecture exploration in the CB development process.

The benefit of assistance with this task is reduced effort due to the partial automation
of the design space exploration task and possibly new insights that would not be found
manually.
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As described in the previous chapter, the starting point for an automated model-based
architecture improvement is a software architecture model and a set of quality attributes
of interest.

To improve an input software architecture model automatically, we require a formulation
of how an automated method can change this input model in order to find improved
variants. We define the design space of the input software architecture model as the set
of all architecture models reachable from the input software architecture model by an
automated improvement method. Thus, the leading question of this chapter is:

How can the design space be formalized so that a software tool can automa-
tically search it for architectural models with improved quality attributes of
interest?

In this chapter, we identify what changes are possible and relevant with respect to this
question. The resulting set of possible architecture models, or architectural candidate
models, is input to the automated search for the best architecture models using multi-
objective optimization described in the next chapter.

The concepts described in this chapter are applicable to any component-based software
architecture model. Thus, we describe them independently of any metamodel using only
the properties of CBA as presented in Section 2.1. Additionally, we give examples for
the three CBA metamodels PCM, ROBOCOP, and CBML when presenting the types
of changes that make up the design space for CBA in Chapter 7. Partially, the concepts
can be transferred software architecture models in general, too, if the software architecture
metamodel unambiguously models different aspects of software architectures with different
metamodel elements.

The remainder of this chapter is organized as follows. Section 6.1 describes the requi-
rements that automated changes have to adhere to to enable an automated search. In
section 6.2 we first illustrate the topics addressed in this chapter on a PCM example mo-
del, revisiting the constraints described above and giving an intuitive description of the
core ideas. In the following sections, the concepts are then described formally and in de-
tail. In section 6.3, we define how the architecture can be changed automatically to affect
quality attributes, and we formalize the concept of a degree of freedom to describe such
variation options. Then, Section 6.4 describes the resulting space of architecture candidate
models reachable by automated improvement. Finally, Section 6.5 lists limitations of this
method and Section 6.6 summarizes.
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In the next Chapter 7, we then discuss what degrees of freedom are inherent to component-
based architecture models, and list relevant degrees for performance, reliability, and costs.

6.1. Requirements for Automated Improvement

The goal of an automated improvement process is to find meaningful design alternatives
that can be realized in the system at hand. Thus, the automated process cannot change
the CBA model arbitrarily but must adhere to a set of constraints to ensure that the
results are meaningful. Based on the discussion in the previous chapter, we have identified
four constraints that describe the allowed changes.

First, the considered changes must be relevant for the considered quality attributes to
have potential to improve quality properties. For example, the allocation of components
to servers is relevant for performance and can also be relevant for costs if the number
of needed servers is varied (cf. Section 7.3.1). To give a counterexample, the names of
components are irrelevant for performance, thus, their change is irrelevant for automated
performance improvement.

C1 Changes must capture relevant influence factors on quality properties.

Second, we are only interested in changes of the architecture model that conform to the
metamodel. This means that the changed architecture model must conform to the meta-
model as described in Section 2.3. This is reflected in constraint C2:

C2 After changing the architecture model, the result must be a model conforming to the
architecture metamodel.

Third, we want to address changes that affect the quality attributes of the system, but
not its intended functionality. For example, we do not want to replace a component A
that realizes accounting functionality in the system with a faster component B that just
stores the passed information without processing it. Additionally, the system described by
the model must be realizable. For example, we cannot change the model by dividing the
resource demand of an internal action representing a highly optimized search algorithm,
if the resource demand of the search algorithm in the real system cannot be optimized
further. These two aspects are related, because the reduction of the resource demand in
this case could only be achieved by limiting the functionality of the search algorithm by
e.g. searching only half of the data. This is reflected in constraint C3:

C3 The functional behaviour described by the software architecture model must remain
unchanged and the system must be realisable.

If two software architecture models provide the same functionality, we call them
functionally-equivalent.

Because the architecture model abstracts from the actual system and its implementation,
the models do not necessarily contain enough information to decide automatically for any
change whether it changes functionality or not. For example, the automated improvement
method Performance Booster (Xu, 2010) contains a rule that suggests to reduce the re-
source demand of an LQN software task to improve performance. Such a change leads
to a conforming model, because only the resource demand parameter—a double value in
LQN—is changed in the suggested new model. However, we cannot decide automatically
whether the changed software task can still provide the same functionality with this redu-
ced effort, because information on the used algorithms and the resulting functionality is
not contained in the LQN model. In this example, only humans can interpret the suggested
new model with reduced resource demand and decide whether it is functionally-equivalent
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to the initial model. Furthermore, even if the architectural model contained a specification
of the functional semantics, the resulting problem would be undecidable in general.

However, in an automated improvement process, it is infeasible to ask the human de-
signer to decide the fulfilment of constraint C3 manually for every change that fulfils
constraint C2. Thus, as a forth constraint, which change fulfil constraint C3 must be des-
cribed on the metamodel level, so that these description can be reused automatically when
assessing model instances. As a result, we exclude changes of the architecture model that
may lead to changes of the functional behaviour of the system in automated improvement.
We only use changes we know not to affect functionality, because the metamodel semantics
prescribe it. Then, no human designer needs to provide additional information during the
improvement process.

C4 Which changes fulfil constraint C3 must be described on the metamodel level. If a
change may affect functionality, it is excluded.

Note that this constraint does not exclude to extend a software architecture model by
introducing annotations that provide additional information to decide constraint C3, so
that more changes can be considered in the automated improvement.

6.2. Overview and PCM Example

To illustrate the concepts of this chapter, we discuss them informally for an example
architecture model in this section. Consider the example model shown in Figure 2.13 in
Section 2.5, page 35. For the following discussion, let us assume that we are interested
in improving performance (mean response time) and reliability (probability of failure on
demand) of calling the IBusinessTripMgmt.plan service as well as costs of the system.
This section illustrates what can be changed in this example architecture in an automated
improvement method. The concepts are described formally and in detail in the next
sections 6.3 and 6.4.

6.2.1. Valid Changes in the Example

Valid changes keep the architecture model valid and do not change functionality.

In the example model, the allocation of components can be changed. If we move com-
ponent PaymentSystem to server S2, we do not affect the functionality of the system (as
this is encapsulated inside PaymentSystem and BookingSystem as SEFFs, which remain
unchanged), but we affect the quality attributes: The system becomes cheaper, because
one server less is required, while the performance of the system may worsen, because
components PaymentSystem and BookingSystem now compete for server S2’s processing
resources.

Additionally, we can change the server configuration in the example model. The system’s
functionality does not depend on the chosen hardware. Thus, other processors can be used
in all three servers. For example, faster and more expensive processors (e.g. 2.5GHz with
costs 884 units) could be bought, which may additionally have a higher reliability. This
change affects performance, reliability, and costs of the architecture model.

Finally, some of the architecture’s components may offer standard functionality for which
other implementations (i.e. other components) are available. In the PCM, components offer
the same functionality if they provide the same interfaces. In this example, let us assume
a fourth available component QuickBooking also offers the IBooking interface as shown
in Figure 6.1. Then, BookingSystem can be replaced by QuickBooking without changing
the functionality of the system. Because QuickBooking has less resource demand, is more
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reliable, but is also more expensive than BookingSystem in this example, the resulting
architecture model has a lower response time, lower probability of failure on demand, but
higher costs.

QuickBooking

[Cost = 400 Units]

Check 

Cache

Determine 

Cheapest

Resource Demand 

= 12.5E+8 CPU Instr.

Failure Probability 

= 0.0001

Resource Demand 

= 2.5E+8 CPU Instr.

Failure Probability 

= 0.00025

<<implements>>

IBooking <<RDSEFF>> IBooking.book

Figure 6.1.: Alternative Implementation of the IBooking interface

More changes may be possible, such as adding load balancing capabilities or replicating
servers for increased reliability. Note that we are only interested in changes that actually
have a potential to affect the quality attributes of interest. To give a counter example,
in a scenario where performance and reliability are studied, the change of a name of a
component in the PCM does not change the system’s functionality (because names are
not used for references, they are labels) and the resulting model is valid, as long as the
name is not empty. Still, even though this change fulfils the constraints, it is not interesting
here, because it does not affect performance or reliability. If maintainability was one of
the quality attributes of interest, however, the name might be of interest, because it affects
the understandability of the architecture.

6.2.2. Illustration of Change Constraints

To illustrate invalid changes, we revisit the constraints described in the introduction of
this chapter with respect to this example.

Constraint C1 requires that a change is relevant for the considered quality attributes. As-
suming that performance and costs are relevant here, the names of components as well as
any other names are irrelevant. Constraint C2 requires that changes result in a well-formed
model with respect to the metamodel. For example, a change that removes component
BookingSystem from the model is not of interest. The resulting model would be inva-
lid because component BusinessTripMgmt’s requirement of a component implementing
interface IBooking would not be satisfied.

Constraint C3 requires that the functional behaviour of the described system remains un-
changed. For example, changes to the behaviour specification of components may affect
functionality. If we remove the internal action DetermineCheapestHotel of BookingSys-
tem to reduce the resource demand of this component, this could mean that the component
does not determine the cheapest hotel any more, but picks a hotel randomly. Even if we
simply change the order of the internal actions of BookingSystem.book, this can lead to
a change of functionality: For example, if we move DetermineCheapestHotel after the
external call to IPayment.pay, this could change the component’s behaviour from sending
the cheapest hotel information to the PaymentSystem to sending any hotel information,
thus making the PaymentSystem pay a different one than the booked ones.

Constraint C4 requires that we describe functional-equivalence on the metamodel level. To
continue the example, the behaviour specifications in the PCM cannot be modified auto-
matically as is, because there may be changes that change functionality, as sketched above.
Thus, we have to exclude changes that remove internal actions from the behaviour specifi-
cation in the PCM in general (unless we can define a subset of changes removing internal
actions on the metamodel level that can be guaranteed to not change functionality).
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As a result, we see that for example removing components without substitution, or changes
of the behaviour specification are no valid changes in the PCM, and thus cannot be ex-
ploited by an automated improvement process.

6.2.3. Degree of Freedom Examples in the PCM

As we have seen from the example, whether a given change (here: removing an internal ac-
tions, or reallocating a component) may or may not affect functionality can be determined
from the semantics of the PCM metamodel. These semantics are not formally described in
the PCM metamodel, they are part of the interpretation of metamodel elements. Thus, the
constraint whether functional behaviour may be affected by a change must be manually
interpreted in relation to the metamodel’s semantics.

A metamodel, however, describes all possible conforming model instances. Thus, from
analysing functionality effects on the metamodel level, we cannot only conclude that a
specific change at hand (e.g. moving component BookingSystem to server S3) is valid, but
also that this type of change is valid in general (e.g. the allocation of components can be
changed in general). We can analyse the metamodel semantics and determine types of
changes that do not affect functionality. We call such types of changes degrees of freedom
(DoF) of a metamodel.

As we see in this example, the PCM metamodel offers at least three such DoF: (1) changing
component allocation, (2), changing resources of servers (here the processors), and (3)
exchanging components which offer the same interfaces. As the metamodel semantics
need to be considered, a DoF definition is specific to the CBA metamodel at hand. Still,
the concept of DoFs can be applied to any CBA metamodel: The DoF metamodel for
EMOF that we present in Section 6.3.3 can be used to model DoF of any EMOF-based
CBA metamodel.

In Chapter 7, we discuss the degrees of freedom of the PCM in detail and define them
formally. Here, we proceed with this intuitive notion to illustrate how to apply degrees of
freedom to an architecture model at hand, and how the design space of possible changes
for that architecture model is defined by them.

6.2.4. Degrees of Freedom Instances in the Example

Based on the degrees of freedom of a metamodel, i.e. the notion what can be automatically
changed in model instances of this metamodel, a set of changes that could be applied to a
specific system at hand can be derived. We group the changes according to which model
elements are changed, because mostly, such changes can then be considered independently
from each other. For example, there are several options of how to change the allocation
of BusinessTripMgmt in our example and there are several independent options of how to
change the allocation of BookingSystem. Different types of changes are independent, too:
We can replace the component BookingSystem by the component QuickBooking regardless
of its allocation (i.e. of the allocation of its AssemblyContext). At the same time, changes
within the group are mutually exclusive: We cannot allocate BusinessTripMgmt to both
server S1 and server S2 in this system. We call such groups of changes on a set of model
elements in a specific system at hand degree of freedom instances (DoFI) or simply degree
of freedom. The seven degree of freedom instances here are

1. Allocation of BusinessTripMgmt

2. Allocation of BookingSystem

3. Allocation of PaymentSystem
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Degree of freedom Degree of freedom instance
d

Design option set
designOptionsd

Allocation
of BusinessTripMgmt {S1, S2, S3}
of BookingSystem {S1, S2, S3}
of PaymentSystem {S1, S2, S3}

Resource Selection
of CPU Server1 {P1, ..., P13}
of CPU Server2 {P1, ..., P13}
of CPU Server3 {P1, ..., P13}

Component Selection Alternatives for IBooking {BookingSystem, Quick-

Booking}

Table 6.1.: Degrees of Freedom in the Example

4. Select processor for S1

5. Select processor for S2

6. Select processor for S3

7. Select component to provide functionality of IBooking

For each such degree of freedom instance, several options on how to change the system may
exist. For example, component BusinessTripMgmt could be relocated to S2 or S3. Inclu-
ding the initial architecture model, three options on how to allocate BusinessTripMgmt

exist in this example. Thus, the degree of freedom instance has three design options avai-
lable. For the resource selection degree (here processors), the number of design options
depends on how many different processor types are available for the given software sys-
tem. Let us assume that in this example, 13 different processor types {P1, ..., P13} are
available with different processing rates (from 1GHz to 4GHz in equidistant steps), fai-
lure probabilities, and costs. Then, 13 options exists for each resource selection degree of
freedom instance in this example. Finally, assuming only the one possible replacement for
BookingSystem as described above, the degree of freedom instance to select a component
to realize IBooking’s functionality has two design options, namely BookingSystem and
QuickBooking. Table 6.1 lists all degrees of freedom for the example and their design
option sets, denoted designOptions.

6.2.5. Design Space of the Example

Together, the degree of freedom instances define a set of possible architecture models.
Each of these possible architecture models is defined by choosing one design option for
each DoFI. We call such a possible architecture model an architectural candidate model
or just candidate model. The set of all possible candidate models is the set of all possible
combinations of the design options.

The size of this set is the product of all design option set sizes. For n DoFIs d1, ..., dn,
we have n design option sets designOptionsd1 , ..., designOptionsdn . Then, the size of the
design space is

∣∣designOptionsd1
∣∣ · ... · ∣∣designOptionsdn

∣∣. In our example model, we get

|{S1, S2, S3}|3 · |{P1, ..., P13}|3 · |{BookingSystem, QuickBooking}| = 33 · 133 · 2 = 118638
architecture candidate models defined by the DoFI.

We call this set of possible architecture models the design space. Figure 6.2 visualizes the
design space as a seven-dimensional space.

Each candidate model in the design space can be characterized with respect to the DoFI
by the set of chosen design options, i.e. as a point in this space. The initial architecture
model (i.e. the initial candidate model) can be characterized as shown in Table 6.2. Ano-
ther candidate model, shown in Figure 6.3, can be characterized as shown in Table 6.2.
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Figure 6.2.: Visualization of the Seven-dimensional Design Space of the Example
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Figure 6.3.: A Architectural Candidate Model in the Example

Compared to the initial candidate model, we have changed the allocation of Business-

TripMgmt, and chose a different processor for S2. Using the quality analyses described in
Sections 2.4 and 2.5, we obtain different response time, probability of failure on demand
and costs.

In many cases, the options of DoFI are independent, as in our example. However, in some
cases, design options of DoFI may conflict with each other. For example, two components
may have conflicting operating system requirements so that they cannot be deployed on
the same server. Such interactions between DoFI and their design option sets can be
detected by checking the constraints of the metamodel again.
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Degree of freedom Degree of freedom instance Initial Candi-
date Model

Candidate Mo-
del of Fig. 6.3

Component
allocation

of BusinessTripMgmt S1 S2
of BookingSystem S2 S2
of PaymentSystem S3 S3

Resource Selection
of CPU Server1 P4 = 1.75GHz P6 = 2.25 GHz
of CPU Server2 P5 = 2GHz P8 = 2.75 GHz
of CPU Server3 P3 = 1.5 GHz P4 = 1.75 GHz

Component Selec-
tion

Alternatives for IBooking BookingSystem BookingSystem

Quality Analysis Results

Response time 7.3 sec 6.8 sec
POFOD 1.14E-3 7.95E-4
Costs 1078.55 units 1294.85 units

Table 6.2.: Choices for two Architectural Candidate Models

6.3. Degrees of Freedom

For the definition of the design space that can be explored in an automated improvement
method, we define the core concept of a degree of freedom of a software architecture model
in this section. Then, in the next Section 6.4, we can formulate the design space to be
explored as the space spanned by the combination of different degrees of freedom. We
formally define degrees of freedom using natural language and logic predicates in this
section. The definitions are independent of any concrete CBA metamodel, but only reason
on properties of metamodels in general and CBA metamodels (cf. Section 2.1).

As described in the introduction of this chapter, our goal in this chapter is to describe
how an initial architecture model can be changed automatically to achieve better quality
properties. Thus, we first provide descriptive definitions for changes and sets of changes in
Section 6.3.1. Then, we define degrees of freedom as rules to produce such sets of changes
in Section 6.3.2.

6.3.1. Change Definitions

This section provides preparatory definitions and terms to enable us to reason about model
changes and their properties when defining degrees of freedom in the next section 6.3.2. We
first define how to describe a change of a model. Additionally, we make some preparatory
definitions about classes of changes, in particular the distinction of change types. Then,
we introduce predicates describing that change types fulfil the constraints C1, C2, C3
and C4 informally described in the introduction of this chapter.

6.3.1.1. Change

First, let us define how to describe changes of models. For the purpose of defining the design
space, we are not interested in how model changes are realized technically. The important
aspect of changing a model is that a change results in a new model with potentially different
quality properties. Thus, we define a change solely as a pair of an initial model M and
a result model M ′. The relevant properties of changes are the model elements that are
updated and the new values these model elements take.
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Definition 6.1 Change

A model change c is some operation on a model M that leads to a new model M ′ that
is different than M , i.e. M ′ 6= M . For this work and the following definitions, it is
sufficient to describe a change as the pair of initial model M and result model M ′ and
write c = (M,M ′). Alternatively, we write M

c7→ M ′.
Recall from Section 2.3.2 that we refer to the value of a model element m in a model M as
vm(M). To be able to describe the differences of M and M ′, we refer to the set of model
elements that have been changed as updated(c) ⊆M with

updated(c) :=
{
m ∈M

∣∣vm(M) 6= vm(M ′)
}

For example, consider the following changes of our example model (Figure 2.13, page 35).

• The processing rate of server S1 (modelled as a parameter of the server’s
CPU called ProcessingResourceSpecification.processingRate) is changed to 2.5GHz.
Then, the changed model element is CPU.processingRate: updated(c) = {
CPU.processingRate}. The old value of this model element is vCPU.processingRate(M)
= 1.75GHz and the new value is vCPU.processingRate(M

′).

• We can move component BookingSystem from server S2 to server S3.
The model element that describes BookingSystem’s allocation Allocation-

Context.resourceContainer has been updated. Let the allocation context
of BookingSystem be called AL-BookingSystem. Then, updated(c) = {
AL-BookingSystem.resourceContainer}. The old value of this model ele-
ment is vAL-BookingSystem.resourceContainer(M) = 1.75GHz and the new value is
vAL-BookingSystem.resourceContainer(M

′).

6.3.1.2. Change with Valid Models

For an automated improvement, we are interested only in valid model instances as defined
in Section 2.3, which is reflected by constraint C2. Recall from Section 2.3.1 that the rela-
tion M J MM expresses that a model M conforms to a software architecture metamodel
MM , i.e. that M structurally conforms to MM (i.e. M ∈ MM) and that M fulfils the
static semantics of MM. Then, we define a change to have conforming models if it both
models conform to the metamodel.

Definition 6.2 Change with Conforming Models

A change c = (M,M ′) for a metamodel MM has conforming models (written as
hasConformingModels(c,MM)) if both the source model M and the result model M ′ are
valid instances of MM :

hasConformingModels(c,MM) :⇔M J MM ∧M ′ J MM

Our example model (Figure 2.13, page 35) is a valid model. If we remove component
PaymentSystem without replacing it with something else, however, the result model is
invalid because the required interfaces of BusinessTripMgmt and BookingSystem remain
unbound.

6.3.1.3. Valid Change

In addition to having valid models, we require changes to not change functionality and
result in a realizable architecture model in an automated quality improvement method,
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which is reflected by constraint C3. Let us define a predicate valid(c,MM) to express that
a change has conforming models, that it does not change the functionality of the CBA,
and that the described result model is realizable (cf. Section 6.1).

Definition 6.3 Valid Change

A change c = (M,M ′) for a metamodel MM is valid (written as valid(c,MM)) if it has
conforming models and if it does not change the functionality of the described CBA:

valid(c,MM) :⇔ hasConformingModels(c,MM)

∧M ′ is functionally equivalent to M

∧M ′ is realizable

In our example model (Figure 2.13, page 35), moving the internal action DetermineCheap-

testHotel in BookingSystem.book after the call to the IExternalPayment interface is a
change with valid models, but not a valid change, because the functionality is not retained.
Similarly, reducing the resource demand of the internal action DetermineCheaptestHotel

by 90% is a valid model, but probably not a valid change, if we assume that the algorithm
is already rather efficiently implemented or estimated to be efficient.

6.3.1.4. Change Types

Because a metamodel defines all possible model instances, it can be used as a reference to
describe changes on any model instance. Each model element is an instance of a metamodel
element. Thus, changes can be classified according to which metamodel element describes
the model elements they update:

Definition 6.4 Change Type

A change type ct defines a set of metamodel elements changeable(ct) ⊆ MM. Then, all
changes c that have valid models and that only change instances of metamodel elements
in changeable(ct) are of the change type ct. Let C denote the set of all possible changes in
models described by MM, i.e. C = (MM×MM)\ {(M,M) |M ∈ MM}. Then,

ct :=

{
c ∈ C

∣∣∣∣∣ hasConformingModels(c,MM)

∧ ∀e ∈ updated(c) : ∃m ∈ changeable(ct) : e instanceOf m

}

For example, the allocation of components is a change type in the PCM. Let us denote
this change type with alloc. The set changeable(alloc) contains the metamodel element
that maps components to servers; in the PCM it is AllocationContext.resourceContainer:
changeable(alloc) = {AllocationContext.resourceContainer}.

With the definitions above, all changes of a change type by construction fulfil constraint C2
“After changing the architecture model, the result must be a model conforming to the
architecture metamodel” informally described in the introduction of this chapter. Let us
additionally define predicates for change types that fulfil the constraint C3 “The functional
behaviour described by the software architecture model must remain unchanged and the
system must be realisable”. These predicates reason on the metamodel level, so they adhere
to constraint C4 “Which changes fulfil constraint C3 must be described on the metamodel
level. If a change may affect functionality, it is excluded”.
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6.3.1.5. Functionally Equivalent Change Types

As discussed in Section 6.1, automated quality improvement must not change the functio-
nality of the described CBA and must result in realizable models (constraint C3). Addi-
tionally, which changes fulfil this constraint must be described on the metamodel level, so
that humans are not involved during the improvement process (constraint C4). Thus, we
define a predicate funcEquiv(ct,MM) for functional equivalent change types that express
that all changes of that change type are functionally-equivalent and realizable:

Definition 6.5 Functionally Equivalent Change Type

A change type ct for a software architecture metamodel MM is called functionally equivalent
(written as funcEquiv(ct,MM)) if every change c ∈ ct is a valid change:

funcEquiv(ct,MM) :⇔

∀c ∈ ct : valid(c,MM)

Because changes in ct have valid models by definition, this effectively requires that for
every change c = (M,M ′) ∈ ct that M ′ is functionally equivalent to M and realizable
based on the semantics of the metamodel MM.

Because the predicate is defined on the metamodel level for all valid models and because
it reasons on all possible changes of ct, reasoning on functionally equivalent changes types
fulfils constraint C4.

For example, in the PCM, we can vary the processing rates of server resources without
affecting the system’s functionality. The change type procRate with the changeable ele-
ment changeable(procRate) = { ProcessingResourceSpecification.processingRate}
is functionally-equivalent in the PCM: funcEquiv(procRate,PCM).

6.3.1.6. Change Type that Affects Quality Attributes

For automated quality improvement, only changes that affect quality attributes of software
architecture models are relevant, as described with constraint C1. We define the predi-
cate affects(ct,Q) to express that changes of a change type ct potentially affect a quality
attribute Q.

Definition 6.6 Change Type that Affects a Quality Attribute

A change type ct for a software architecture metamodel MM potentially affects a quality
attribute Q (written affects(ct,Q)) if there exists at least one possible model instance M ,
at least one change c that is an instance of ct, and at least one quality criterion qc that
measures Q so that if c is applied to M , the resulting new model instance M ′ has a different
quality property than M :

affects(ct,Q) :⇔

∃qc ∈ measures(Q) ∃M J MM ∃(M,M ′) = c instanceOf ct : qc(M) 6= qc(M ′)

For example, changing the allocation of components (change type alloc above) or changing
the processing rate of resources (change type procRate above) may affect performance.
Thus, with P denoting the quality attribute performance, it holds that affects(alloc,P) and
affects(procRate,P). In contrast, changing the names of components does not affect any
quality attribute that can be automatically analysed for PCM models. Thus, if we denote
the change type that changes a component name by name, we can write ¬affects(name,P).
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6.3.1.7. Indivisible Change Types

For the automated improvement as sketched before, we are interested in the degrees of
freedom in the architecture models that span the design space to search. Thus, we are
interested in those change types that—in combination—can characterize the design space.

First, it is useful to exclude trivial changes that do not affect quality attributes, such as
the change of a label, from the change types to consider to focus on relevant changes for
the automated improvement. We have introduced the predicate affects(ct,Q) for these
relevant changes.

Additionally, we want to consider “small”, i.e. indivisible, change types that can then be
combined explicitly to create larger changes. In an indivisible change type, all metamodel
elements contribute to the quality property effect (1). Additionally, an indivisible change
type is not separable in several functionally-equivalent change types that together can
produce changes with the same quality effects (2).

Let us consider two simple examples for divisible change types. As a counter example for
(1), consider an example change type allocAndLabel that contains the change of alloca-
tion of components and the change of component names with changeable(allocAndLabel)
= {AllocationContext.resourceContainer, RepositoryComponent.entityName}. Let
us assume that we only consider the quality attributes performance and reliability in this
example. Then, the component name has no effect to both quality attributes. Thus, this
change type is divisible, because we can as well remove the metamodel element Reposito-
ryComponent.entityName from the changeable elements and directly use the change type
alloc as described above.

As a counter example for (2), consider an example change type allocAndPR that contains
the change of allocation of components and the change of resources’ processing rates
with changeable(allocAndPR) = {AllocationContext.resourceContainer, Processin-
gResourceSpecification.processingRate}. This change type is divisible, because we
can as well consider two different change types“allocation of components”alloc and“change
of processing rate” procRate described above. Thus, to characterize the design space, we
use only alloc and procRate and do not consider the change type allocAndPR.

The two change types alloc and procRate are indivisible change types with respect to
performance, because they affect performance and they cannot be divided. In this case,
they cannot be divided because they only contain one changeable metamodel element.

As an example for a indivisible change type with multiple changeable metamodel ele-
ments, consider the selection of components in the PCM as change type compSelec. An
example is given for the Business Trip Management system (Figure 2.13, page 35) where
we assume that an alternative component that can replace the BookingSystem component
is available (cf. Figure 6.1, page 102). To replace the BookingSystem component by
the alternative QuickBooking component in the PCM, several model elements have to
be updated: First, the AssemblyContext.encapsulatedComponent is changed to point
to QuickBooking instead of BookingSystem. Additionally, the connectors in the system
have to be updated to refer to the provided and required roles of QuickBooking ins-
tead of BookingSystem. Thus, the changeable elements are changeable(compSelec) =
{AssemblyContext.encapsulatedComponent, AssemblyConnector.providedRole, As-

semblyConnector.requiredRole} (for simplicity, we do not discuss the delegation connec-
tors, here, see Section C.1.1 for a complete description of this change type). This change
type is indivisible, because changing only a subset of the changeable elements in a valid
PCM model leads to either invalid models or does not affect quality. For example, changing
only the encapsulated component of the AssemblyContext or only the connectors leads to
invalid models.
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For the automated improvement, we want to consider these as-“small”-as-possible, i.e.
indivisible, change types like compSelec, alloc and procRate, to be able to define the design
space as a space spanned by the combination of such change types.

To define indivisible change types, let c1◦...◦cn denote a sequence of changes where change
ci, 1 < i ≤ n, is applied to the result model of change ci−1, and c1 is applied to the initial
model. We then write M

c1◦...◦cn−→ M ′ to denote that the sequence of changes c1 ◦ ... ◦ cn
has the initial model M , which is at the same time the initial model of c1, and the result
model M ′, which is at the same time the the result model of cn.

Definition 6.7 Indivisible Change Type

A change type ct for a software architecture metamodel MM is indivisible with respect to
a quality attribute Q (written as indivisible(ct,MM,Q)) if all updated elements contribute
to the quality property effect or ensure either validity or functional equivalence and if the
change type is not separable into several change types. This means that the change type
is functionally-equivalent and affects quality attribute Q (6.1), that there does not exist
a subset ct′ of the changeable metamodel elements that form a functionally-equivalent
change type by itself with the same quality effects (6.2) and that there do not exist two
subsets of changeable metamodel elements ct′ and ct′′ (6.3) that do not contain each other
as subsets (6.4), that form functionally-equivalent change types (6.6), and that contain
changes which can produce any change of ct when combined (6.5):

indivisible(ct,MM,Q) :⇔ funcEquiv(ct,MM) ∧ affects(ct,Q) (6.1)

∧ (∃qc ∈ measures(Q) : ¬∃ct′ : changeable(ct’) ⊂ changeable(ct)

∧ funcEquiv(ct’,MM)

∧∀c = (M,M ′) ∈ ct ∃c′ = (M,M ′′) ∈ ct′ : qc(M ′) = qc(M ′′)
)

(6.2)

∧
(
¬∃ct′, ct′′ : changeable(ct’) ⊂ changeable(ct)

∧ changeable(ct”) ⊂ changeable(ct) (6.3)

∧ changeable(ct’) 6⊆ changeable(ct”)

∧ changeable(ct”) 6⊆ changeable(ct’) (6.4)

∧ ∀c ∈ ct : ∃c′ ∈ ct′, c′′ ∈ ct′′ : M c′◦c′′−→ M ′ ∨M c′′◦c′−→ M ′ (6.5)

∧funcEquiv(ct’,MM) ∧ funcEquiv(ct”,MM)) (6.6)

Minimal change types are the analogues to degree of freedoms, which will be defined in the
next subsection. In our experience (cf. Chapter 7), indivisible change types mostly have
only one metamodel element in the set of changeable elements changeable. Well-designed
CBA metamodels should separate concerns and thus, changing one non-functional aspect
of the system should result in changing only a single model element, which is instance of
a single metamodel element. Changes that affect multiple model elements are thus often
divisible into a sequence of smaller changes that are of indivisible change types (see most
degrees of freedom for CBA in Chapter 7).

6.3.1.8. Primary Changeable Elements

Sometimes several model elements need to be changed to ensure the consistency of the
model, however, although the changes describes just one conceptually indivisible change
in the system. For example, if a component is replaced in the PCM, one needs to update the
reference to the component in the system (AssemblyContext.encapsulatedComponent)
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but also the connectors connecting the component to the rest of the system, because they
need to refer to the roles of the new component (i.e. they define which interfaces provided
or required by the new component are connected to which other interfaces of the other
components in the system). Still, the change of connectors are determined by the change
of components and offer no further valid possibilities: For one change of the component
in AssemblyContext.encapsulatedComponent, there is only one valid way how to change
the connectors. Thus, we observe that there is one primary element to change in the set
changeable in this case, while the changes of the other elements are a consequence of that
primary element’s change.

In both cases described above, if any two changes of an indivisible change type have
the same new values in the instances of the primary changeable elements, then they are
the same change (i.e. the other changed model elements get the same new values, too).
We formally describe this condition with the predicate hasPrimaryChangeable(ct) in the
following.

Let updated(c,e) denote the subset of changed model elements in c that are instances of
metamodel element e.

updated(c,e) := {m |m ∈ updated(c) ∧m instanceOf e}

Recall that vm(M ′) denotes the value of the model element m in model M . Then, we
define the predicate hasPrimaryChangeable(ct) as:

Definition 6.8 Change Type has Primary Changeable Element

A change type ct has a primary changeable element primaryChangeable(ct) ∈
changeable(ct) if the new values of instances of primaryChangeable(ct) define the new
values of all other changed metamodel elements. That means that if two changes have the
same new values for all instances of primaryChangeable(ct), then they also have the same
values for all other instances of the other

hasPrimaryChangeable(ct) :⇔ ∃p ∈ changeable(ct) ∀c = (M,M ′) ∈ ct, c′ = (N,N ′) :

updated(c,p) = updated(c’,p)→
(

∀e ∈ updated(c,p) : ve(M
′) = ve(N

′)

→
∀e′ ∈ updated(c) ∪ updated(c’) : ve′(M

′) = ve′(N
′)

)

If there are several such p in changeable(ct), fixing any of them to one value uniquely
defines the values of the other. We refer to any fixed of these p as primaryChangeable(ct)
in the following.

The predicate is trivially fulfilled for all change types that have a changeable elements set
of size 1.

In general, there may be additional cases where several model element are changed without
one being the primary element as defined above. As metamodels may have an arbitrary to-
pology of meta-model elements, a metamodel could require to change any number of model
elements in order to realize one conceptual change (e.g. the allocation of a component) that
does affect the functionality of the system. However, we exclude such metamodels here
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and assume in the following that every indivisible change type has a primary changeable
element, so ∀ct : indivisible(ct,MM,Q)→ hasPrimaryChangeable(ct).

Then, the changes of an indivisible change type can always be described in terms of one
primary changeable metamodel element. For the possible additional other changeable
elements, the instance’s new value can be unambiguously derived from the values of the
primary element’s instances. We assume that this condition is fulfilled in real-world me-
tamodels, however, we cannot prove this assumption. Still, the assumption is not vital for
the method presented in this work: To remove this assumption, the notion of degrees of
freedom in the following could be extended to support virtual model elements that reflect
the conceptual changes of an indivisible change type and are equipped with additional
rules that map a change of this single virtual model element to a set of model elements.

6.3.1.9. Change Groups

For a given architecture model at hand that describes a concrete system, the instances
of changeable metamodel elements need to be identified to determine the automatically
achievable changes. To reason on the changes available for a given architecture model
and on their combination, we can further group changes of a change type based on which
model element (i.e. which instance of the primary changeable metamodel elements of ct)
are changed. These groups are the analogues to degree of freedom instances defined in the
next subsection. We call such groups change groups.

Definition 6.9 Change Group

A change group cg is a subset of an indivisible change type ct and contains changes
that change the same primary model element in a model M . A change group cg de-
fines the changed model element primaryChanged(cg) ∈ M that is an instances of its
change type ct’s primary changeable element primaryChangeable(ct). Then, we say that all
changes c ∈ ct that change primaryChanged(cg) but that do not change other instances of
primaryChangeable(ct) are in the change group cg. Let ct be an indivisible change type with
changeable elements changeable(ct). Let primaryChanged(cg) ∈ M be the model element
to group the changes for, with primaryChanged(cg) instanceOf primaryChangeable(ct).
Then, the change group cg is defined as

cg := {c |c ∈ ct ∧ primaryChanged(cg) ∈ updated(c)

∧¬(∃ce ∈ updated(c) : (ce 6= primaryChanged(cg) ∧ ce instanceOf primaryChangeable(ct)))}

cg :=

c
∣∣∣∣∣∣∣∣∣
c ∈ ct
∧ primaryChanged(cg) ∈ updated(c)

∧ ¬(∃ce ∈ updated(c) :

(ce 6= primaryChanged(cg) ∧ ce instanceOf primaryChangeable(ct)))



6.3.1.10. Summary

In this section, we define a set of terms and predicates that allow us to reason on changes
of architectural models. In a simplified summary, the following terms have been defined:

Change: A change c is a pair of initial model M and result model M ′ written as c =
(M,M ′) or as M

c7→ M ′.
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Change with Conforming Models: A change has conforming models if both the source
model M and the result model M ′ are valid instances of MM . This is written as
hasConformingModels(c,MM).

Valid Change: A change is valid if it has conforming models and if it does not change the
functionality of the described CBA.

Change Type: A change type is a class of changes updating model elements that are
instances of the same set of metamodel elements. Only changes with valid models
are considered.

Functionally Equivalent Change Type: A change type ct for a software architecture meta-
model MM is functionally equivalent (written as funcEquiv(ct,MM)), if all its changes
do not change the functionality of their initial models.

Change Type that Affects a Quality Attribute: A change type ct for a software architec-
ture metamodel MM potentially affects a quality attribute Q (written affects(ct,Q))
if there exists at least one change c ∈ ct that changes the quality attribute as mea-
sured with any available metric.

Indivisible Change Type: A change type is indivisible if it is functionally-equivalent and
affects a quality attribute and if no subsets of its changeable metamodel elements
are change types of their own that can produce equivalent changes in combination.

Primary Changeable Element: The value of instances a primary changeable element of a
change type ct define the new values of all other changed metamodel elements of ct.

Change Group: A change group is a subset of an indivisible change type. A change group
contains changes that change the same primary model element.

Now, equipped with these terms and definitions, we proceed to the information required to
automatically instantiate and explore the design space for automated quality improvement.

6.3.2. Degree of Freedom Definitions

In this section, we describe rules of how an automated method can produce changes that
adhere to the three constraints C2, C3, and C4. To fulfil the forth constraint C1, each
rule additionally contains the information which quality attribute is potentially affected.

For an automated improvement, it is impractical to enumerate all valid changes of a given
system to be improved, because the number of valid changes is too large for reasonably
large CBA models. Instead, to enable the use of a larger set of optimization techniques,
such as metaheuristics, we need an explicit definition of all software architecture models
reachable by any combination of valid changes—the design space—without enumerating
all changes. In addition to the definition how to apply a single change, we need information
of how multiple changes can be combined and what the results are.

As we cannot ask the human designer to evaluate each change whether its models are
functionally equivalent, we have to restrict the design space to the changes of functional-
equivalent change types, i.e. we include only changes for which we can decide the functional
equivalence of their models on the metamodel level. Additionally, we exclude any changes
that do not affect the quality attributes of interest. Thus, our design space is all software
architecture models reachable by any combination of changes from indivisible change types.

We define this design space by creating an enriched description of indivisible change type
that can automatically produce any candidate from the design space of a given architecture
model. In the following, we discuss the required information to support this operationa-
lization in an automated improvement process, resulting in the definition of degrees of
freedom.
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Server S4
Processing Rate = 24MB/Sec

MTTF = 50 000 hours

MTTR = 6 hours

Cost =  90 Units

Res. Type = 

HDD

Figure 6.4.: An Additional Server with only Hard Disc Drive

6.3.2.1. Required Information for Enriched Change Type Description

As described above, from the metamodel and its static semantics, we can decide whether
a change has conforming models by checking the resulting model of a change. To continue
with the example, component BookingSystem can be allocated from server S2 to server
S3, because the resulting model is valid. However, component BookingSystem cannot be
allocated to a storage server S4 shown in Figure 6.4, because the resulting model would
be invalid as S4 does not offer the required CPU resource.

While we can determine whether a change is valid from the static semantics, we cannot
readily determine the list of valid changes for a given software architecture model without
applying the change and checking the resulting model for validity. This list, however, is
required in an effective automated improvement process that can produce valid changes
without checking the result models.

Thus, for effective automated improvement of software architecture models, we need an
enriched description of an indivisible change type ct that contains all required information
to produce its valid changes c ∈ ct. Such a description should only refer to the metamodel
and should be independent of the concrete system to improve so that it has to be defined
only once (in this work for the PCM) and can be reused for any improvement of model
instances of that metamodel.

The required information, explained in detail in the following, is

1. which model elements in the architecture model at hand are changed together
(changeable(ct) and primaryChangeable(ct)),

2. rules that describe the new values that these model elements can take, thus describing
all possible changes c ∈ ct, and

3. additional information for the interaction of changes.

Elements that are changed together

We identify the model elements that can be changed independently of the system at hand
by defining their metamodel elements (changeable elements). One of these metamodel
elements is identified as the primary changeable element.

Selection rules define which model elements can be selected to be changed. Often, all
instances of the primary changeable element in the model can be changed, so this is the
default selection rule. Sometimes, only a subset can be changed. In particular, if instances
of multiple metamodel elements are changed together, the change of the primary chan-
geable element’s instance defines the choice of the other changeable element’s instances.
For example, in the PCM, if a component is replaced, the AssemblyContext is changed to
instantiate the new component in this place in the system and the AssemblyConnectors

connecting this AssemblyContext have to be updated accordingly. In such cases, we need
rules that describe which instances of the other changeable elements must be changed to
get a valid change.

Each instance of the primary changeable element selected by the rules is the primary
changed element of a change group.
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Server S1

 

Component2

Server S2

Component3

Server S3

Component1

<<LinkingResource>>

<<LinkingResource>>

Figure 6.5.: Simple Example with Partially Connected Servers

Rules that describe the values

Value rules describe the values changed model elements can take. Value rules describe
the possible values of changed model elements statically and independent of other changes
that are applied to the architecture model. A set of values is defined for the primary
changed element. Additional rules define which values the other changeable elements
instances take depending on the value of the primary changeable element’s instance. In
our example, such a rule needs to state that all servers offering the required resources are
valid values to change the allocation of the component to.

Interaction of changes

In some cases, however, the set of allowed values for a model element depends on changes
applied to other model elements of the architecture model, i.e. changes interact with each
other. There are two types of change interactions: First, for two model elements that
are changed, some combinations of values from their sets of possible values may produce
invalid models. Second, changes may add or remove model elements and thus restrict the
applicability of other changes.

Concerning the combination of values that lead to invalid models, let us look at an example.
Consider the simplified system shown in Figure 6.5. Component1 communicates with
Component2 and Component3, all of which are allocated to different servers. Server S1 is
connected to server S2 with one LinkingResource and to server S3 with another one. In
this case, we cannot allocate Component1 to server S3, because it could not communicate
with Component2. We can, however, combine the three changes that (a) we allocate
Component1 to server S3, (b) we allocate Component2 to server S1, and we (c) allocate
Component3 to server S1, too. In this case, all possible values for the allocation of all three
components are all three servers. To decide whether a specific combination of changes is
valid, we have to additionally validate the result model of the changes and check the
metamodel constraint that defines that communicating components have to be allocated
to servers that are connected.

In general, we check a subset of the metamodel’s constraints again to decide whether a
result model is valid. If interactions are seldom compared to the number of independent
changes, this does not strongly affect the effectiveness of the improvement. As a result, the
enriched description should refer to those metamodel constraints that may be violated by
produced candidate models, so that not all metamodel constraints have to be validated for
every produced model. We refer to these metamodel constraints as interaction constraints.

Finally, the second type of change interaction is that changes may also add new model
elements or remove elements. In that case, if one change is applied to a model and adds a
new model element, new instances of primary changeable model elements may be available,
or existing instances may be removed. Thus, we explicitly specify which type of model
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Information Description

Changeable elements The set of changeable metamodel elements
changeable(ct) of the change type

Primary changeable element The primary changeable metamodel element
primaryChangeable(ct) ∈ changeable(ct) of the change
type

Selection rules Rules to select the model elements to change for each
changeable metamodel element in changeable(ct)

Value rules Rules to define the values that the selected model ele-
ments can take

Interaction constraints A set of metamodel constraints that may be violated by
the selection and value rules because of interactions with
other changes

Added elements A list of metamodel elements this change type may add
instances of

Table 6.3.: Required Information to Produce Changes

elements may be added or removed by the production rules. We add a list of added
elements to the description that names the metamodel elements of which instances may
be added or removed.

Table 6.3 summarizes the discussed information.

6.3.2.2. Degree of Freedom

An enriched description of an indivisible change type as discussed above can produce any
valid changes of this change type. We call this enriched description a degree of freedom:

Definition 6.10 Degree of Freedom (DoF)

A degree of freedom of a software architecture metamodel MM with respect to a quality
property Q consists of information and rules to produce the changes of an indivisible
change type ct. A DoF contains the following information to produce these changes:

• The set of changeable elements changeable(ct) ⊂ MM.

• The primary changeable element primaryChangeable(ct) ∈ changeable(ct).

• For each changeable element:

– Selection rules (optional, the default is: all instances of changeable(ct) in the
model at hand)

– Values rules

• Interaction constraints (optional)

• Added elements (optional)

Examples for DoF are the DoF that produce the change types alloc, and compSelec in
the PCM shown in table 6.4. The rules are described informally here, they are defined
formally in Chapter 7 in Sections 7.3.1 and 7.2.1.

The DoFs of a metamodel need to be determined manually, because metamodels usually
do not include a formal specification of functional equivalence of two models. If they

117



118 6. Formalization of the Design Space

DoF infor-
mation

in component allocation DoF alloc in component selection DoF
compSelec

Changeable
elements

changeable(alloc) =
{AllocationContext-
.resourceContainer}

changeable(compSelec)
= {AssemblyContext-
.encapsulatedComponent,
AssemblyConnector-

.providedRole,
AssemblyConnector-

.requiredRole}
Primary
changeable
element

primaryChangeable(alloc)
= AllocationContext-

.resourceContainer

primaryChangeable(compSelec)
= AssemblyContext-

.encapsulatedComponent

Selection
rules

All instances of AllocationCon-

text

All instances of AssemblyContext

Value rules All servers that offer the resources
that the reallocated component re-
quires and that provide linking re-
sources to all communication part-
ners of the component.

All components that provide all in-
terfaces of the component to be re-
placed and that require no more in-
terfaces that the component to be
replaced.

Interaction
constraints

none none

Added ele-
ments

none If one of the new components to use
is a composite component, new in-
ner components are available.

Table 6.4.: Example DoF

contained such information, this information could be used to extract the possible DoF
automatically. However, no metamodel to describe component-based software architecture
is known today that offers such specification, so we do not further discuss this automated
extraction and require that DoFs are manually determined by analysing the metamodel
static semantics.

6.3.2.3. Degree of Freedom Instance

DoF allow to produce all changes of a change type for any software architecture model
that is an instance of a CBA metamodel. For improving a concrete software architecture
model at hand, however, we are only interested in changes that lead us to other models
in the design space of this model. Thus, we are interested in a representation of these
changes that relate to this given software architecture model.

An intermediate step of determining all possible changes for a given model at hand is to
consider degree of freedom instances (DoFI). DoFI can be considered instances of a DoF for
a given CBA model at hand: While a DoF defines generic change types such as “allocation
of software components”, a DoFI instantiates a change type in a model at hand and for
example describes the “allocation of the BusinessTripMgmt component”.

The resulting representation of the design space on the model level—as opposed to the
metamodel level—additionally allows software architects to manually modify the design
space as desired and thus adjust the automated improvement process to their needs (cf.
Section 6.3.3).

In Section 6.3.1.9, we have observed that changes of a change type can be further grouped
according to which model elements they affect in a concrete CBA model at hand (change
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groups). As these model elements can often be varied independently, we use this grouping
on the enriched description level:

Definition 6.11 Degree of Freedom Instance (DoFI)

A degree of freedom instance d of a software architecture model SM with respect to DoF
G with change type ctG is a rule for producing changes of a change group cgd. It consists
of

• the primary model element to be changed (primaryChanged(d) =
primaryChanged(cg)) which is an instance of its G’s primary changeable ele-
ment primaryChangeable(ctG) and

• the the possible values that these elements can take (called design option set and
written as the set designOptions(d)) determined by the DoF’s value rules for these
elements.

The values for the other changeable elements changeable(ctG) can be derived with G’s
value rules.

With this definition, a DoFI can produce all changes of a change group. Moreover, the DoFI
may produce more changes than contained in the associated change group, by producing
changes that are not valid.

As an example, consider again the simple system with Component1, Component2, and
Component3 shown in Figure 6.5. The relevant DoFI for our example here is the allocation
of Component1 with the possible values {S1, S2, S3}. This DoFI can produce the change
that we allocate Component1 to server S3. The resulting model is invalid, because the
components could not communicate with each other. Thus, only when excluding the invalid
changes from the set of produced candidate models with the interaction constraints, the
set of produced changes equals the set of changes in the change group. Still, there changes
where Component1 can be allocated to server S3, e.g. if all other components are also
allocated to that server, so S3 is in the design option set of the DoFI.

Thus, the set of changes produced by a DoFI needs to be additionally restricted by the
interaction constraints of its DoF to ensure that only valid changes are produced. Let the
predicate interaction(M,G) denote that a model M fulfils the interaction constraints of
the DoF G with change type ct, let changeGroup(cg) denote that cg is a change group,
and let changes(d) denote the changes produced by a DoFI d. Then, we can say that
when excluding the invalid changes from the set of produced candidate models with the
interaction constraints, the set of produced changes equals the set of changes in a change
group of ct:

∃cg ⊂ ct : changeGroup(cg) ∧ cg = {c = (M,M ′) ∈ changes(d) |interaction(M’,G)}

Then, defining one DoFI for each model element that is instance of the DoF’s changeable
element is equivalent to the DoF definition itself. We show this property in the following.

6.3.2.4. DoFIs represent DoF

With a combination of changes produced by degree of freedom instances, all changes of
the respective DoF in a model at hand can be produced.
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Theorem 6.1. For a model M and an indivisible change type ct produced by DoF G, a
set of DoFI D can be defined which–in combination–produces an equivalent sequence of
changes for all changes of ct. Not all DoFI are necessarily instantiated on M directly,
they may as well be instantiated in an intermediate model after a new model element has
been added.

Proof. For all changes c = (M0,M
′) ∈ ct, a sequence of changes c1 ◦ ... ◦ cn can be found

where each cj is produced by a DoFI and the sequence of changes is equivalent to the

change c, i.e. M0
c1◦...◦cn−→ M ′.

Let P be the set of instances of the primary changeable element:

P = {p |e ∈M0 ∧ e instanceOf primaryChangeable(ct)}

We show that we can find DoFIs that can produce a set of changes (not necessarily valid
ones) that are equivalent to c when applied in sequence.

Let the index set I = {1, ..., |P |} ⊂ N be an index set that orders the primary changeable
element’s instances P in any order. Let i ∈ I. Let di denote the d ∈ D that changes
pi ∈ P , so that primaryChanged(di) = pi.

Then, each di can produce one change ci that assigns the value of pi in the result model M ′

to pi as follows. For this, let N(p← v) denote the result model of a change c that changes
a model N by assigning the value v to the primary model element p. In c, possibly other
non-primary model elements are changed (as they are unambiguously defined by the value
of p, we can omit them here). Additionally, let Mi, 0 < i ≤ |I| denote the result model of
ci, so for example, c1 = (M0,M1). Then, we produce the changes as follows:

For 1 < i ≤ |I| (if any) we produce ci = (Mi−1,Mi) with Mi := Mi−1(pi ← vpi(M
′)).

There is such a ci because the value vpi(M
′) is in the set of all possible values produced

by the DoF G (otherwise c itself could not have used it). ci is not necessarily a valid
change. If ci adds a new model element (or several ones) to the model Mi−1 which is
instance of primaryChangeable(ct), we collect this set of new model elements in a new set
Ai. Ai = {e |e ∈MiMi−1 ∧ e instanceOf primaryChangeable(ct)}

After a pass through all instances of the primary changeable element in M , we have
collected more instances of the primary changeable element in the sets Ai if changes have
added model elements of that type. Thus, we need to repeat the following assignments
until all instances have been handled. Because models are finite, this repetition always
stops. Let A :=

⋃
1≤j≤|I|Aj be the set of collected elements.

Let n be the number of changes we have created to far. Mn is the resulting model of
the last change. Then, with 1 ≤ k ≤ |A| we create additional changes cn+1, ..., cn+|A| as
cn+k = (Mn+k,Mn+k(ak ← vak(M ′))). We collect possible additional added elements as
An+k = {e |e ∈Mn+kMn+k−1 ∧ e instanceOf primaryChangeable(ct)}. If the union A :=⋃

1≤k≤|A|An+k is not empty after this pass, we repeat this paragraph with the new A.

As a result, the last change cn produces the model Mn = M ′, because all pi have the new
value vpi(M

′) and all model elements a from the set Ak, 1 < k ≤ n have the new value
va(M ′). Thus, the sequence of changes c1 ◦ ... ◦ cn is equivalent to the change c, because
its changes produce the same model M ′ as a result.
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Figure 6.6.: Degree of Freedom and Change Concepts

6.3.2.5. Result

We can apply changes produced by different DoFIs independently and thus, the combi-
nation of the DoFIs defines the design space. Within a DoFI, the changes are mutually
exclusive and cannot be combined.

Then, in automated software architecture improvement, a model is varied automatically by
choosing a DoFI d and varying its changed model element changed(d). The model element
is varied by choosing a new value for this model element from the design option set. The
resulting model may be invalid which can be detected by the interaction constraints. All
so created models that fulfil the interaction constraints then also fulfil the constraints C2,
C3 and C4.

Additionally, we can combine changes by using several DoFI at once. In that case, we can
change the changed model elements of each DoFI independently by assigning them values
from the respective design option set. Thus, based on a starting architecture model, all
architecture models that are reachable by a combination of changes are defined. We discuss
the resulting design space of possible architecture models in more detail in Section 6.4.

Figure 6.6 shows an overview of the concepts introduced in this section and the previous
section. It does not show all concepts and constraints and thus does not serve as a definition
itself, but rather to summarize the concepts.

Note that due to possible interactions of changes, DoF definitions may depend on each
other. If a new DoF is introduced in a given set of DoF, the value rules and the interaction
constraint of the DoF may have to be updated to account for possible conflicts.

Even if DoFs are only formally defined in relation to a metamodel, we describe DoFs that
are common for component-based software architecture metamodels in general in Chap-
ter 7. We describe these general DoF of CBA informally by referring to the properties of
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CBA (Section 2.1). Additionally, we define these DoF formally for the PCM as an example
if appropriate. These general descriptions of DoF can be applied to other metamodels as
well if the metamodel supports the concepts. In that case, our general description gives
an orientation how to formally define the DoFs.

For a concrete system at hand, additional DoFI to be considered in the design space can
also be defined ad hoc. To do so, DoF is described on the metamodel level like other DoF,
defining value rules for the primary element. Then, the DoFI can be either instantiated
automatically, or manually for the system at hand. The manual instantiation has the
advantage that no selection rules are needed for the primary model element. Additionally,
if the set of changeable elements contains more elements than just the primary one, the ad-
hoc DoFI needs to specify the selection rules and value rules for the additional elements.
Interaction rules and added elements need to be added if required. For system-specific
degrees of freedom, a simpler modelling language could be devised as well, which allows
the software architect to directly annotate a model element with design options. Such a
language is subject to future work.

6.3.3. Degrees of Freedom in EMOF

In the previous sections, we have defined DoF and DoFI in general based on our definitions
of changes of CBA models. This definition is independent of any used CBA metamodel or
meta-metamodel.

What changes affect quality attributes and can be identified to be functionally equivalent
on the metamodel level depends on the concrete CBA metamodel. Thus, DoFs need to
be specified manually for each CBA metamodel. In this section, we provide a language
to specify DoF and DoFI for CBA metamodels specified in EMOF. In addition to the
description, we give an illustrative example. Using this language, experts for a given CBA
metamodel can define the DoF for this metamodel. For the PCM, we define the DoF using
this language in Chapter 7. The language is defined in form of a metamodel defined using
EMOF and is called DoF metamodel in the following.

The selection rules and values rules are defined as OCL queries in our DoF metamodel.
The OCL queries must be OCL expressions with one or several context definitions, as
defined in the OCL specification (Object Management Group (OMG), 2006b, p.167) with
the grammar rule 12.12.1 packageDeclarationCS.

Example: To give an example for a degree of freedom of a EMOF-based metamodel,
consider the simplified metamodel for describing component allocation in Figure 6.7.
The metamodel only describes allocation as a mapping from components (from a
repository) to servers (from a resource environment). A valid model must map all
components from the repository to servers, i.e. there must be a mapping for each
component. For the sake of illustration, let us additionally assume that there are
components that can only be executed on servers with a single core. These components
have the property Component.singleThreaded set to true (see OCL constraint in the
figure).

A possible degree of freedom (DoF-A) is the allocation of components. A second DoF
(DoF-B) is to vary the number of cores of a server.

(Primary) Changeable Elements: The changeable elements changeable(g) are the set of
elements of the metamodel whose instances can be changed. changeable(g) is a
set of Properties of the metamodel MM . Each property pi ∈ changeable(g) is
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Figure 6.7.: Simple Example Metamodel Describing Allocation to Illustrate DoFs.

member of a metamodel Class that we call the the changeable container of pi
changeableContainer(pi) (cf. figure 2.6 in Section 2.3.2). One of the properties pi
is the primary changeable element, usually written as the first one.

For DoF-A, the Property Mapping.toServer has to be changed to change the al-
location of a component. Thus, changeable(DoF-A) = {Mapping.toServer}. For
DoF-B, the changed Property is Server.numberOfCores: changeable(DoF-B) =
{Server.numberOfCores}.

Selection Rules: Properties cannot be directly selected in models based on EMOF. Thus,
we select the changeable container changeableContainer(pi). The default selec-
tion rule selects all instances of changeableContainer(pi). The DoF may spe-
cify more specific rules that constrain which instances of changeableContainer(pi)
can be selected. For each changeable element, this can be expressed
by an OCL query selectionRule(pi) selecting the instances of this Pro-

perty’s class changeableContainer(pi). This query defines which instances of
changeableContainer(pi) are possible, either statically or based on another selec-
ted instance of Cj , j < i. In the latter case, the query is defined in the OCL context
of the selected instance of Cj . To avoid cycles, only the values of preceding Proper-

ties pj , j < i may be referenced. The selection rules for the primary element can
be defined in any context. They are executed for each instance of the metamodel
element in whose context they are defined and the union of the results is the set of
matching model elements.

No selection rules are required for DoF-A and DoF-B; any instances
of Mapping.toServer and Server.numberOfCores: can be changed:
selectionRule(Mapping.toServer) = selectionRule(Server.numberOfCores) = ∅.

Value Rules: For each pi, rules describe the set of all potential new values that pi may
take in combination with any other change of the other change types for the meta-
model at hand. For pi, the description of all potential new values is an OCL query
valueRule(pi) which returns a range R of possible values for Properties of Type

DataType, or a set of model elements for Properties of Type Class. The value
rules are defined in the context of the selected instance of pi’s container class.

The value rules may also refer to other changeable elements pj , j < i. The restriction
j < i here ensures that the allowed values can be determined by one pass through
all Properties. While the new values of Properties of Type Class can always
be defined generically on the metamodel level, the values for Properties of Type
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Figure 6.8.: Degrees of Freedom in EMOF

DataType may depend on the model instance at hand. Then, a generic range is given
on the metamodel level, which can be restricted on the model instance level.

In our example, a component can be mapped to all modelled servers from the resource
environment, with the restriction that the server has to have a resourceType with the
same value as the component’s requiredResoureType. This description of possible
values can be expressed with the following OCL query valueRule(Mapping.toServer)
to select the allowed value for a Mapping.toServer Property:

context Mapping
de f : g e t A v a i l a b l e S e r v e r s : Set ( Server ) =
s e l f . system . model . resourceEnvironment . a v a i l a b l e S e r v e r s
−>s e l e c t ( resourceType = s e l f . mappedComponent . requiredResourceType )

For DoF-B, because Server.numberOfCores is a Property whose Type is a Da-

taType, we need to give a range for the possible values. For the degree of
freedom on the metamodel level, any number of cores could be possible, so the
valueRule(Server.numberOfCores) defines a range RB = N+. This range can be res-
tricted later for a concrete system at hand (cf. Section 6.4.1), because no servers
with e.g. a million cores exists nowadays.

Interaction Constraints: The DoF refers to the metamodel constraints that may be vio-
lated by this DoF as interactionConstraints(g). In the example, DoF-A and DoF-B
interact, because certain combination of values of their design option sets are invalid.
A single threaded component must not be allocated to a server with multiple cores.
Thus, the invariant shown in Figure 6.7 is referenced here for both DoF.

Added elements: The added elements are a set of metamodel elements of which this DoF
may add new instances or remove instances. In this example, no elements are added.

Figure 6.8 shows the resulting metamodel for degrees of freedom in EMOF.

In addition to the DoF, the degree of freedom instances can also be characterized in more
detail for metamodels specified in EMOF. Figure 6.9 shows the DoFI metamodel in EMOF.

All degrees of freedom instances d (class DegreeOfFreedom) refer to one model element
that is the primary changeable element primaryChanged(d). The Property that is defined
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Figure 6.9.: Degree of Freedom Instance Metamodel for Models in EMOF

in the DoF cannot be directly referenced in MOF, thus we usually refer to the model
element containing the Property. Which Property is actually updated when using a
degree of freedom instance needs to be separately defined. If the Property’s multiplicity
is larger than one, and if we want to separately vary each of the elements referenced by the
Property, however, referencing the containing model element is not enough to uniquely
identify the changed element. If the Property is a composition1, we can also refer to the
referenced model element or to the model element referenced by the Property. Otherwise,
we need additional information to identify the changed element for the list of elements of
the Property.

The degrees’ design option sets is defined differently depending on the MOF Type of the
possible values and is reflected by the different subclasses of DegreeOfFreedom. Leftmost,
the ClassDegree models values for changeable Properties of Class: A set of model ele-
ments (here Entities) is referenced by a ClassDegree instance and form the design option
set.

The other subclass of DegreeOfFreedom DataTypeDegree models degrees for Properties
of Type DataType. Here, RangeDegree models design option sets that are an interval of a
strictly and totally ordered DataType, specified using interval boundaries. Two example
subclasses are shown by DiscreteRangeDegree (for natural numbers) and ContinuousRan-
geDegree (for real numbers). The RangeDegrees could be sub-classed for additional strictly
and totally ordered DataType, or to allow to define several intervals of strictly and totally
ordered DataType, if required.

The UnorderedDegree models unordered design option sets of a specified DataType. Here,
subclasses either list a set of primitive type values or refer to an enumeration in the CBA
metamodel.

To define degrees of freedom for CBA metamodels defined in other meta-metamodelling
languages than EMOF or Ecore, it may be advisable to redefine the DoF metamodel for
these meta-metamodelling languages. We expect this conversion to be straightforward.
The model described here has also been published by A. Koziolek and Reussner, 2011.

1A composition Property in EMOF has the attribute isComposite set to true. It defines a composition
in the UML sense, i.e. the referenced model element only belongs to this one instance of the Property.
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6.4. Design Space

This section describes how the design space for a system at hand can be defined using
DoF and DoFI as well as potential custom constraints. Figure 6.10 shows an informal
outline of the concepts discussed in this section. We first discuss in more detail how DoFI
can be derived for a particular architecture based on the DoF (Section 6.4.1). Then, we
introduce our definition of the design space based on the system at hand and the DoFI
(Section 6.4.2). The design space can be constrained by restrictions from the DoF and
manual constraints (Section 6.4.3). Finally, we conclude this section with some additional
remarks on details of the problem representation (Section 6.4.4.

6.4.1. Derive Degree of Freedom Instances for a System

The DoFI can be automatically instantiated for a given architecture model at hand. Then,
before the DoFI are used in an automated improvement the software architect can review
the determined DoFI and adjust them.

The input to automated instantiation of the DoFI is a architecture model which we denote
here as a set of model elements M and a set of DoF, denoted G. The DoFI are instantiated
by applying the selection rules of the DoF to determine the primary changed elements
and by applying the value rules to determine the design option sets. Not all DoFI are
instantiated in the initial model M : If a DoFI d adds elements, additional DoFIs d1, ..., dn
may be instantiated in intermediate models, i.e. d opens up new DoFIs. We can ignore
that other DoFIs d′1, ..., d

′
n may become irrelevant for an intermediate model if a model

element is removed by a DoFI d′ here. In both cases, the DoFIs d1, ..., dn and d′1, ..., d
′
n

depend on d and d′, respectively, because they have only effect if d or d′, respectively, have
a certain value.

The DoFI are instantiated for a architecture model at hand with the algorithm shown
in Java-like pseudo code below. It uses the DoF metamodel in EMOF described in Sec-
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tion 6.3.3. The function query(q, M) evaluates a OCL query q in all matching instances2

in the set of model elements M. The function getAllInstancesOf(M,MC) retrieves all ins-
tances of the meta class MC in the set of model elements M. The statement M(p ← v) for
a model M, an instance of a property p and a value v denotes the model transformation
that property instance p is assigned the new value v. As a side remark, note when imple-
menting this algorithm, a property instance would be technically referred to by the pair
metamodel property and instance of the container class.

For the sake of readability of the algorithm below, we assume that G is ordered so that if
a DoF g1 opens up new degrees of DoF g2, g1 precedes g2 in G. As there are no circular
dependencies in the currently considered DoF, this is sufficient. If a DoF could circularly
open up new degrees of freedom of other types, then one has to repeat the algorithm until
no new model elements are added.

1 ins tant ia t eDoFI (
2 Set M /∗ CBA model ∗/ ,
3 Set G /∗ s e t o f DoF∗/ ){
4
5 // output : s e t o f DoFI :
6 Set determinedDoFIs = new Set ( ) ;
7
8 // Var iab l e to s t o r e new model e lements t ha t are c rea t ed by a DoF
9 Set addedModelElements = new Set ( ) ;

10
11 for ( g in G) {
12
13 Set potent ia lPr imaryElements ; // p o t e n t i a l primary changed e lements
14
15 // s e l e c t a l l i n s t ance s o f primary changeab le e lement
16 i f ( g . primaryChangeable . s e l e c t i o n R u l e != null ) {
17 potent ia lPr imaryElements = query ( g . primaryChangeable . s e l e c t i onRu l e , M) ;
18 potent ia lPr imaryElements . add ( query ( g . primaryChangeable . s e l e c t i onRu l e ,
19 addedModelElements ) ) ;
20 } else { // s e l e c t a l l i n s t ance s in model
21 potent ia lPr imaryElements = ge tA l l In s tance sOf (M, g . primaryChangeable
22 . changeable . class ) ;
23 potent ia lPr imaryElements . add ( ge tA l l In s tance sOf (
24 addedModelInstances , ( g . primaryChangeable
25 . changeable . class ) ) ;
26 } // end e l s e
27
28 while ( potent ia lPr imaryElements . s i z e ( ) != 0){
29
30 Set justAddedModelElements = new Set ( ) ;
31
32 for ( primaryElement in potent ia lPr imaryElements ){
33
34 Set va lue s = query ( g . primaryChangeable . valueRule , primaryElement ) ;
35
36 i f ( va lue s . s i z e ( ) > 1) {
37 DoFI d = new DoFI ( ) ;
38 d . primaryChanged = primaryElement ;
39 d . des ignOpt ions = va lues ;
40 determinedDoFIs . add (d ) ;
41
42 // i f g opens up new DoFI because o f add i t i ons ,
43 // app ly d to check f o r new model e lements
44 i f ( g . addedElements . s i z e > 0){

2Matching instances are instances of the metamodel element that is the OCL context of the selection rule,
see Section 6.3.3. For example, the selection rule for the primary changeable element ProcessingRe-
sources of the Resource Selection Degree of Freedom is defined in context of an ResourceEnvironment,
so it is executed for all resource environment model elements in the architecture model.

127



128 6. Formalization of the Design Space

45 for ( v in d . des ignOptions ){
46 Model newM = M(d . primaryChanged <− v ) ;
47 justAddedModelElements . add ( add i t iona lE lements (newM,M) ) ;
48 } // end f o r
49 } // end i f
50 } // end i f
51 } // end f o r
52
53 potent ia lPr imaryElements . c l e a r ( ) ;
54
55 // check i f g opened up new in s t ance s o f i t s e l f
56 // and i f yes , i n s t a n t i a t e them .
57 i f ( justAddedModelElements . s i z e ()>0){
58 // app ly g i t s e l f again .
59 i f ( g . primaryChangeable . s e l e c t i o n R u l e != null ) {
60 potent ia lPr imaryElements . add ( query ( g . primaryChangeable . s e l e c t i onRu l e ,
61 justAddedModelElements ) ) ;
62 } else {
63 potent ia lPr imaryElements . add ( ge tA l l In s tance sOf ( justAddedModelElements ,
64 g . primaryChangeable ) ) ;
65 } // end i f
66 } // end i f
67
68 addedModelElements . add ( justAddedModelElements ) ;
69
70 } // end wh i l e
71 } // end f o r g in G
72 return determinedDoFIs ;
73 }

For each DoF g, we traverse the architecture model M and collect all instances of primary
changeable element as follows. If there is a selection rule for the primary changeable
element, it is executed on all model instances for which the selection rule is defined and on
model elements opened up by previous DoF (stored in the list addedModelElements). If
there is no selection rule for the primary changeable element, all instances of the primary
changeable element are selected.

Then, for each determined potential primary changeable element, the value rule is executed
to determine all possible values. If the set of possible values is larger than one, a new DoFI
is instantiated.

If the DoF g opens up new DoFIs because of added model elements, these model elements
are added to the list addedModelElements so that later DoF can check them for instan-
tiating DoFI, too. Additionally, the selection rule of the current DoF is repeated to find
possible additional instantiations. The filled set of DoFI is returned at the end.

We assume here that the number of DoFI is finite, i.e. that the finite initial set of DoFI for
the initial model only (transitively) opens up a finite number of new DoFI. Otherwise, the
algorithm below does not terminate. For the currently considered DoF (cf. Chapter 7),
the number of added DoFI is finite because new degrees are only opened up for component
selection degrees and the number of available components is finite. We do not expect that
meaningful DoF will produce an infinite set of DoFI for a given model. Still, we cannot
exclude this case in general. To account for possibly infinite number of potentially opened
DoFIs, a counter could be introduced in the algorithm below to stop instantiation after a
maximum number of DoFIs is reached.

After determining all DoFI, software architects can review the DoFI. They may want to
define more specific subsets of allowed values for primitive types, or to exclude values that
are not wanted from design option set. Additionally, they can consider to specify and add
system-specific degrees of freedom (see Section 6.3.2).
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Degree of
freedom

Degree of freedom instance
Primary Changed Element of the DoFI Design option

set of the DoFI

Allocation
AllocationContext.resourceContainer of Busi-

nessTripMgmt

{S1, S2, S3}

AllocationContext.resourceContainer of Boo-

kingSystem

{S1, S2, S3}

AllocationContext.resourceContainer of Pay-

mentSystem

{S1, S2, S3}

Resource Selection
ResourceContainer.activeResourceSpecifications
of Server1 for CPU

{P1, ..., P13}

ResourceContainer.activeResourceSpecifications
of Server2 for CPU

{P1, ..., P13}

ResourceContainer.activeResourceSpecifications
of Server3 for CPU

{P1, ..., P13}

Component Selec-
tion

AssemblyContext.encapsulatedComponent for
IBooking

{BookingSystem,
QuickBooking}

Table 6.5.: DoFI Definitions for the Example Model

For the degrees of freedom that define a general value range such as the natural numbers,
we can as well define a more restricted, system-specific set of values for a DoF before
determining the DoFI. For example, the capacity of all passive resources could be restricted
to values between 2 and 25 for a given system. Thus, the software architect does not need
to specify the range later manually for each DoFI.

Note that the values of the other, non-primary changeable elements are not relevant for
determining the design space, thus they are not considered here.

In the example in Section 6.2, the DoF to consider are the allocation of components to ser-
vers, the choice of processors, and the selection of a component type for the BookingSystem
component (these degrees of freedom are formally defined for the PCM in Chapter 7). The
Allocation Degree is instantiated once per component allocation instance. The changed
element is AllocationContext.resourceContainer of the component allocation instance.

For the Resource Selection degree, let us assume that there is a resource repository
which defines the thirteen possible processors P1, ..., P13. Then, the Resource Selection
Degree is instantiated once per server3. The changed element is the ResourceContai-
ner.activeResourceSpecifications of the respective server. The ProcessingResourceSpecifi-
cation that contains the specification for the resource type for CPU is varied. Finally, the
Component Selection degree is instantiated just once, because for the other components
instances, no alternatives are available (thus, the design option sets would have size one).
The changed element is the AssemblyContext.encapsulatedComponent of the component
instance of BookingSystem.

Table 6.5 shows the DoFI for the example model. The information of the table is the
same as the information of table 6.1 previously, but now in the format of DoFI, naming
the primary changed element. As described before, the design space contains 118638
architecture candidate models.

6.4.2. Unconstrained Design Space

The degrees of freedom instantiated for a given architecture model span the design space
which can be searched by automated improvement methods. Note that the term design

3Once per server because we only consider the CPU here it would be additionally instantiated per server
for each additional resource type such as hard disc drive, if these were considered

129



130 6. Formalization of the Design Space

space here does not refer to the full design space of the software architecture with all
decisions that are made during the course of designing it, but that it only refers to the
decisions that can be explored in an automated improvement method. Although this
definition of the term design space may be misinterpreted to mean all decisions related to
the system design, we use this term because it has been established in related domains,
such as the design space exploration for embedded systems.

The design space is the set of all software architecture candidate models produced by the
changes types of a selected set of DoF for a given system at hand. Let M be a architecture
model and G the set of DoF to consider. Let D denote the set of DoFI instantiated in M ,
either directly after automated derivation or after the review and possible adjustment of
the software architect.

Definition 6.12 Architectural Candidate Model
An architectural candidate model (or just candidate model) is a software model M ′ that
is a result of applying a sequence of changes produced by a set of DoFI D to an initial
architecture model M . The DoFI in D do not have to be instantiated on M directly, they
may be instantiated on intermediate models, too. The predicate candidateModel(M’,M,D)
states that a software model M ′ is an architectural candidate model for an initial model
M and a set of DoFI D:

candidateModel(M’,M,D) :⇔ ∃c1, ..., cn ∈ {c |c ∈ changes(d), d ∈ D} : M
c1◦...◦cn−→ M ′

As DoFI may produce invalid changes, an architectural candidate model is not necessarily
conforming to the metamodel. Recall that M J MM expresses that a candidate model M
conforms to the metamodel MM (cf. Section 2.3.1).

The initial architecture model itself is an architectural candidate model, too, “produced”
by applying the empty sequence. The set of architectural candidate models for a set of
DoFI D and an initial architecture model M is called the unconstrained design space:

Definition 6.13 Unconstrained Design Space

The unconstrained design space for a set of DoFI D and an initial architecture model M
is the set of architectural candidate models of D and M . We denote the unconstrained
design space by

DM,D = {M ′ |candidateModel(M’,M,D)}

.

Note that the unconstrained design space includes invalid candidate models, too.

An architectural candidate model can be identified by a vector of values that the primary
changed elements of the DoFI in D take, because there is only one candidate model for
each value assignment for the primary changed elements. We call such a vector a candidate
vector. Candidate vectors correspond to decision vectors (cf. Section 3.1), and thus the
set of all candidate vectors is the decision space:

Definition 6.14 Decision Space and candidate vector

The decision space OM,D for a set of DoFI D and an initial architecture model M is the
Cartesian product of the design option sets of the DoFI:

OM,D := designOptions(d1)× ...× designOptions(d|D|)

A candidate vector or decision vector is a vector x ∈ OM,D.
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In the following, we show that the decision space represents the design space, because each
candidate model in DM,D can be represented by a candidate vector x ∈ OM,D. To show
this, we show two aspects:

• Each candidate vector x ∈ OM,D uniquely represents a candidate model a ∈ DM,D,
i.e. there is a function that maps each x ∈ OM,D to one unique candidate model in
DM,D.

• Every candidate model in DM,D can be represented by a candidate vector x ∈ OM,D,
i.e. this function is surjective.

Theorem 6.2. Each x ∈ OM,D represents one candidate model a ∈ DM,D. This means
we can define a function from OM,D to DM,D.

Proof. We can define the following function from a candidate vector x in the decision space
OM,D to a software architecture candidate model in the design space DM,D:

TM,D : OM,D → DM,D

with

(v1, ..., v|D|) 7→M(primaryChanged(d1)← v1, ..., primaryChanged(d|D|)← v|D|)

We call T the candidate transformation function. Because the assignment of a value to
a primary changed element designOptions(d) describes a unique change, there is only one
possible result model M(designOptions(d1)← v1, ..., designOptions(d|D|). Thus, TM,D is a
function and every candidate vector represents one candidate model.

T can be defined generically for a meta-metamodel used to described CBA metamodels.
For example, an implementation of T for Java and EMF models is shown in Appendix B.3.

Next, we show that the function is surjective, i.e. that every architectural candidate model
a can be produced by a vector from OM,D with this function.

Theorem 6.3. The function TM,D is surjective, i.e. every architectural candidate model
can be produced by a vector from OM,D:

∀a ∈ DM,D : ∃x ∈ OM,D : a = M(designOptions(d1)← v1, ...,designOptions(d|D|)← v|D|)

The idea is that for each d ∈ D that produced one of the changes of a, the value to which
the primary changed element of d has been changed is used in the vector. For each d′ ∈ D
that does not produce one of the changes of a, the value of the initial model is used. The
complete proof of TM,D being surjective is given in the appendix B.2.

Because TM,D is is a function and is surjective, an additional representation of the uncons-
trained design space is DM,D = {a |∃x ∈ OM,D : a = TM,D(x)}.

In our example from Section 6.2, the initial candidate model can be expressed as (S1,
S2, S3, P4, P5, P3, BookingSystem) with the ordering of degrees of freedom as given in
Table 6.1.

Note that some of the candidate vectors in OM,D may map to the same architectural can-
didate model, because some of the degree of freedom have no effect if they are opened up
only for certain values of the other degrees. For example, the allocation of the inner com-
ponents of a PCM subsystem are only relevant if the subsystem is used in the system (i.e.

131



132 6. Formalization of the Design Space

if there is not a Subsystem Selection Degree for it that has selected a different Subsystem
in the current candidate model). Thus, two vectors in the design option space OMe,De for
this example model Me with example degrees De map to the same candidate model if their
subsystem selection degree selects subsystem A and they are equal in all values except for
the allocation of the inner components of a subsystem B that is an alternative for A. As
a result, the function TM,D is not injective in general.

In addition, some of the architectural candidate models may be equivalent in terms of qua-
lity properties: They have the same quality properties, even though they are not identical.
For example, the processing speed of a hardware node is only relevant if components are
actually deployed to it. Otherwise, the configuration of that server has no effect on the
quality attributes.

Not all candidate models in the unconstrained design space are valid candidate models.
In the next subsection, we discuss how to constrain the set DM,D to get a representation
of the feasible design space that only contains candidate models which are feasible options
to improve the architecture.

6.4.3. Constraints

As discussed in the previous sections, some candidate models produced by the degree of
freedoms are not valid instances of the metamodel. To describe the feasible design space
for the automated improvement, we have to exclude the invalid candidate models from the
unconstrained design space. One way of filtering out the invalid candidate models is to
check every candidate model for conformance to the metamodel. However, the metamodel
may contain many constraints, and only a few of them may be violated by our produced
candidate models. For a more efficient filtering the design space, we make use of the
interaction constraints which define additional conditions for the changed elements of a
DoF (e.g. as described for the PCM and component allocation in presence of partially
connected servers in Section 6.3.2.1, with an example model in Figure 6.5, page 116). For
the PCM, most DoF do not have any interaction constraints and very few checks must be
made. For metamodels with a lot of interaction constraints, it may be more efficient to
check the validity of models with the metamodel constraints directly.

In addition to these interaction constraints derived from the metamodel, there may exist
additional restrictions on combinations of design options for the system at hand, because
the metamodel does not capture some aspects that lead to incompatibility of choices in
the system itself. Such system-specific constraints cannot be reflected in the metamodel,
but can be manually added by the software architect for an initial model M as the set
systemSpecificConstraints(M). An example for a constraint on combinations is that Busi-
nessTripMgmt and BookingSystem must not be deployed on the same server because of
e.g. conflicting system library version requirements. Like the interaction constraints, this
does not limit the design options for each degree of freedom separately, but does constrain
the set of all candidate models DM,D. Combinations could also be invalid because of other
non-functional properties that cannot be automatically quantitatively evaluated for the
system under study, such as maintainability. Also, the software architect may predict
unforeseen side effects of certain combinations that are not covered by the quality models
(if rather abstract quality models are used).

Combination constraints result in a set of candidate models being infeasible. Recall
that interactionConstraints(g) denotes the set of interaction constraints from a DoF g.
Let gd denote the DoF that produced a DoFI d. Then, modelConstraints(M,D) :=⋃

d∈D interactionConstraints(gd) ∪ systemSpecificConstraints(M) denotes the set of all
constraints on DM,D. Formally, we can consider the constraints in the sets as predicates
that have to hold and define the feasible design space as follows:
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Definition 6.15 Feasible Design Space

The feasible design space FM,D is the subset of the unconstrained design space DM,D

that contains all candidate models that are conforming model instances and that fulfil
additional system-specific constraints:

FM,D = {a |a ∈ DM,D ∧ ∀P ∈ modelConstraints(M,D) : P (a)}

where P denotes a predicate from modelConstraints(M,D). For a given design space, we
have a fixed set of constraints (predicates) and thus can transform this formula into first-
order logic by connecting all predicates with a conjunction.

The constraints need to be formalized in a constraint language. For some modelling
languages and meta-(meta-)models, specialized constraint languages already exist. As
we use EMOF in this work, we use the Object Constraint Language (Object Management
Group (OMG), 2006b) (OCL) for constraint specification. An interesting alternative for
future work could be the recently suggested, more specialized Constraint Specification
Language (Saxena and Karsai, 2010a).

6.4.4. Discussion of Other Representations of the Design Space

In this subsection, we discuss an alternative representation of the design space and argue
why we have not chosen it. For this argumentation, we have to anticipate some details of
later chapters to cover the whole range of arguments.

Alternatively to the presented definition of the design space as a spaced spanned by the
degrees of freedom, an alternative representation could be modelling of changes as first
class entities. Starting from an initial software architecture, each possible change of the
architecture could be represented. The set of all possible change sequences would define
the design space. Then, improving the architecture means finding a sequence of changes
that leads to a superior software architecture model.

As discussed in Chapter 4, deterministic rules to improve the architecture cannot cover
the complete search space without fully enumerating it and interesting global optima may
be unreachable by them. Thus, in this work, we apply stochastic elements to overcome
local optima (more detail on this choice in the next Chapter 8). When using stochastic
elements, a change-based approach has several disadvantages compared to the degree of
freedom approach.

First, a change-based search is biased towards architectures that are similar to the initial
architecture, because they are represented by a shorter sequence of changes and thus
more probably created by a stochastic search. While this can be beneficial if the software
architect happens to create a good initial system, there is no reason to assume that the
initial system is better than other candidate models in general. Thus, an unnecessary bias
is introduced.

Second, a change-based search may create identical candidate models in one search path
by applying changes that revert previous changes. Thus, detection mechanisms need to be
added that complicate the search procedure. It may be difficult to capture which changes
revert each other under which conditions.

Third, the representation using degrees of freedom is more flexible and allows to use and
compare various search strategies. For example, the change-based search can be mimicked
by using hill-climbing with a neighbourhood definition of one change in the genome.

For dependent degrees of freedom, such as component selection within a replaceable sub-
system, the change-based approach does not offer advantages in terms of reducing the
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possible candidate models to consider. The amount of possible candidate models could
only be reduced by a top-down search where the search first starts applying selection
changes to components on top of the component hierarchies (e.g. subsystems) and then
descends to the inner child components. However, as it is in general impossible to predict
the effect of choosing a subsystem before deciding which inner components to use, this
restriction would limit the search space and may lead to getting stuck in local optima.

An advantage of a change-based approach would be the more simple representation of
domain knowledge during the search: Tactics can simply be included by choosing promi-
sing changes with a higher probability. However, this advantage does not outweigh the
previously discussed disadvantages, especially because it is possibly to successfully include
tactics into a degree-of-freedom-based search as well (see Section 8.3.1).

6.5. Assumptions and Limitations

This section discusses the assumptions and limitations of the design space formalization.

6.5.1. Assumptions

Primary Element: For the DoF definition, we assume that for each relevant type of
change, a primary changeable element is available as described in Section 6.3.1.8. We
assume that this condition is fulfilled in real-world metamodels, however, we cannot prove
this assumption. In general, there may be additional cases where several model element
are changed without one being the primary element as defined above. As metamodels may
be arbitrary, a metamodel could require to change any number of model elements in order
to realize one conceptual change (e.g. the allocation of a component) that does affect the
functionality of the system. Still, the assumption is not vital for the method presented in
this work: To remove this assumption, the notion of degrees of freedom in the following
could be extended to support virtual model elements that reflect the conceptual changes
of an indivisible change type and are equipped with additional rules that map a change of
this single virtual model element to a set of model elements.

Connected Model Elements: As already mentioned in Section 2.3.2, a technical as-
sumption of our approach is that all model elements are connected to each other, i.e. that
we can navigate between any two model elements m1 and m2, either from m1 to m2 or
m2 to m1. Thus, the presentation of the concepts could be simplified. Dropping this
assumption would require to add additional reverse lookup capabilities.

Finite Number of DoFI is Opened up: We assume that the number of DoFI opened
up by DoF is finite in practice, i.e. that the finite initial set of DoFI for the initial model
only (transitively) opens up a finite number of new DoFI. For the currently identified DoF
for CBA (cf. Chapter 7), the number of added DoFI is finite because new degrees are
only opened up for component selection degrees and the number of available components
is finite. We do not expect that meaningful DoF will produce an infinite set of DoFI
for a given model. Still, we cannot exclude this case in general. To account for possibly
infinite number of potentially opened DoFIs, a counter could be introduced in the DoFI
instantiation algorithm to stop instantiation after a maximum number of DoFIs is reached.

6.5.2. Limitations

Partial Design Space: With our method, we can only help the software architect to
consider design decisions that are expressible in the models. The most support is provided
for degrees of freedom that are known to fulfil our constraints based on the metamodel
alone. For these, the design space can be automatically instantiated. System-specific
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degrees of freedom can be expressed by modelling them on the metamodel level and then
reviewing their instantiation on the model level, or instantiating them manually on the
model level (cf. Section 6.3.2.5). Design decisions that cannot be expressed with the
given metamodel or model cannot be considered in this work. Thus, the explored design
space is usually a strict subset of the true design space the software architect is faced
with. Still, automated exploration of this partial design space can reduce effort for the
software architect. Additionally, they can compare more high-level design decisions by
automatically exploring the partial design space of each high-level alternative, as described
in Section 5.4.

One metamodel for CBA: Our approach assumes that one metamodel exists that
describes a CBA and all relevant information to determine the quality attributes of interest.
If several models are used to study a single software architecture, e.g. an UML model for
the static structure, a loosely coupled LQN model for performance and a Markov Chain
for reliability, the approach cannot be applied as is. As a solution, an artificial super-
metamodel could be created that joins and references the used metamodels in one and
links the different model elements. This metamodel could also support several modelling
techniques for one aspect, e.g. LQN and Queueing Petri Nets for performance.

6.6. Summary

The leading question of this chapter is how software architecture models can be changed
automatically. The main requirements that are identified for to realize automated variation
of the model are

• C1 Changes must capture relevant influence factors on quality properties.

• C2 After changing the architecture model, the result must be a model conforming
to the architecture metamodel.

• C3 The functional behaviour described by the software architecture model must
remain unchanged and the system must be realisable.

• C4 Which changes fulfil constraint C3 must be described on the metamodel level. If
a change may affect functionality, it is excluded.

The changes that fulfil these requirements and thus can be used in automated improvement
are defined in this chapter. The main concept is a degree of freedom, which describes
independent ways a given software architecture model can be varied. Using the degrees of
freedom, the space of possible architectural candidate models to which a given architecture
model can be changed to improve quality is spanned.

In the next Chapter 7, we present a set of DoF that are typical for CBA metamodels and
can be used to improve CBA architecture automatically. Then, Chapter 8 describes our
optimization method used to find the optimal trade-off candidates in the feasible design
space.
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7. Degrees of Freedom in
Component-based Software
Architecture Models

The following presents the DoF that we have identified in software architecture models and
that can be automatically searched. As described in the previous chapter, DoF are required
include changes which are known to affect a certain quality effect. Here, we have focussed
on DoF that affect performance, costs, or reliability. For these degrees, some anticipated
effects for other quality attributes are additionally listed. For the use of other quality
prediction techniques, for example for security (cf. Section 2.4.3), additional degrees of
freedom could be identified. In the following, we describe the DoF generically, referring
only to the concepts found in CBA as described in Section 2.1 (such as components or
component allocation) and concepts of software systems in general (such as scheduling
priorities or semaphores). Then, the DoF is applicable for every CBA metamodel that
supports to explicitly model these properties.

Together with the presentation of each degree of freedom, we discuss impacts on quality
properties. If applicable, we show how the degree of freedom is modelled for the PCM,
including the list changeable metamodel elements and the rules to created valid changes
in OCL, and give an example. Additionally, we sketch how the degree is modelled in one
other CBA model, namely CBML or ROBOCOP.

In terms of the component-based developer roles, these degrees of freedom belong to the
modelling domain of the software architect and system deployer. Table 7.1 shows an
overview of the different degrees of freedom presented in this chapter.

Section 7.2 presents degrees of freedom found in the application layer software. Section 7.3
describes degrees of freedom in the deployment. Finally, we discuss how additional degrees
of freedom, which are not generic for CBA, might be available in specific metamodels or
specific systems in Section 7.4. Section 7.5 discusses the limitations of our method, and
Section 7.6 concludes the chapter.

7.1. Degree of Freedom Description Schema

We use the following schema to describe each degree:

Rationale: A concise rationale of the degree of freedom motivating its presence in
component-based software architecture models.
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Degree of Primary Changeable Element Section
Freedom (in Example Metamodel)

Software-related degrees of freedom

Selection of components Binding of component in system 7.2.1
(AssemblyContext.encapsulatedComponent)

Non-functional Configuration parameter of a component 7.2.2
Component (AssemblyContext.configParameterUsages)
Configuration Param

Passive resource Multiplicity of Passive Resource 7.2.3
multiplicity (PassiveResource.capacity)

Priorities Model elements that represent priority 7.2.4
((CBML) TaskType.priority)

Deployment-related degrees of freedom

Allocation Mapping of component allocation instances to ser-
vers

7.3.1

(AllocationContext.resourceContainer)

Allocation with Mapping of component allocation instances to ser-
vers

7.3.2

replication (AllocationContext.resourceContainer)

Server replication Server multiplicity 7.3.3
((extended PCM) ResourceContainer.multiplicity)

Resource selection Resources of a server 7.3.4
(ResourceContainer.activeResourceSpecifications)

Resource Property
Change

Properties of resources 7.3.5

(ProcessingResourceSpecification.processingRate)

Further configuration of depends on MM 7.3.6
the SW stack (Feature Configurations)

Quality completion
configuration

7.3.7

Custom degrees of freedom

Metamodel-specific any 7.4.1
degrees of freedom

For PCM: which components are allocated 7.4.1
Subsystem selection Allocation.allocationContexts

System-specific NA 7.4.2
degrees of freedom

Table 7.1.: Degrees of Freedom for CBA Overview, with Examples for Primary Changeable
Elements in the PCM (Default) or Another Metamodel (Indicated)
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Description: A description of the degree of freedom, independent of any metamodel. The
description includes a definition, which is informal because a formal definition could
only be achieved by referencing a concrete software architecture metamodel.

(Primary) Changeable elements: A description of the changeable model elements and
the primary changeable model element, based on the component concepts described
in Section 2.1.1 and shown in Figure 2.1 if applicable. If only one model element is
named, it is the primary changeable element.

Quality Effects: The quality attributes that are affected by this degree of freedom, and
a description of how they are affected. The quality effects anticipated here are not
necessarily the final list of effects, because additional quality attributes may be spe-
cified in the future. Here, I discuss the effects on the quality attributes performance,
reliability, maintainability, and costs.

Metamodel-specific definitions: The formal definition of this degree of freedom in the
PCM, which names the changeable metamodel elements (Properties) and the OCL
constraints for selection rules, value rules, and interaction constraints. In addition
to the formal definition in the PCM, we sketch the degree of freedom definition for
CBML or ROBOCOP. If the degree of freedom is not available in the PCM (such as
the change of priorities degree of freedom), only another software-architecture meta-
model are used. For space reasons, we provide the formal definition in Appendix C.

Example: If the degree of freedom is available in the PCM, we describe it based on an
example PCM model visualized in UML instance diagrams. Otherwise, we describe
an informal example.

For a better readability of the PCM-specific OCL rules for selecting valid values, we assume
that the set of available Repositories of a PCM instance can be selected by the variable
repositories, the System can be selected by the variable system, and the Allocation
can be selected by the variable allocation. This replaces the sometimes complicated
navigation from a given metamodel element to these concepts. These short cuts can be
used in each PCM sub-model (e.g. Assembly model) to reach elements in the same sub-
model (e.g. Assembly model) or in any referenced sub-model (e.g. Repository model, but
not Allocation model), because it is always possible to navigate from any model element to
any other one within a sub-model and sub-models are linked as described in in Section 2.5.2.

7.2. Software-related Degrees of Freedom

The degrees of freedom from the software architect’s modelling domain are concerned
with the components on the application layer, their wiring, and their configuration. This
subsection presents four software-related degrees of freedom shown in table 7.1, using the
schemata presented in the introduction of this section.

7.2.1. Selection of Components

Rationale: Component-based architecture models encapsulate the functionality of the
system into components with well-defined provided and required interface. Thus, other
components that provide the same functionality, but have different quality properties, can
replace the given components in the architecture.

Description: In the following, we assume that an interface describes what functionality
is offered. Thus, if two components provide the same interface, this means that they
provide the same functionality and that they can both be used in the architecture to
provide this interfaces.
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Let A be a component instance (cf. Figure 2.1), i.e. the mapping of an instantiation of
a component to a place in the architecture. Let the set C = {C1, ..., Cn} be the set of
connectors that connect the interfaces of the component to other components in the system.
Note that usually, in component models, all interfaces required by the component have to
be bound to other components in the system that provide the functionality, whereas not
all interfaces provided by the component need to be bound and used. Some component
models tolerate unbound required interfaces (e.g. (Reussner, 2003)), in those cases, a more
fine-grained metamodel-specific definition of what a component requires needs to be used
by first determining the “active” required interfaces. Without loss of generality, we will
proceed with the notion that all required (active) interfaces need to be bound.

Additionally, let R be the set of available components. This set can, for example, be the
union of components from all referenced component repositories.

Then, a component B ∈ R can be selected for this place in the architecture A (replacing
the component used there before), iff (1) B provides at least all the interfaces required by
the rest of the system at this place in the architecture, and (2) B requires at most the
interfaces provided by the rest of the system to this place in the architecture.

Let S ⊂ R be the available set of components that can be selected for the place A.

If at least two components exist in the models that can be selected for the place A, i.e.
if |S| ≥ 2, then there is a component selection degree of freedom at A with the possible
values S.

Components selection according to this definition ensures that functionality is retained.
Component selection may open up new component selection degrees of freedom if a com-
ponent is replaced by a composed component that internally allows for additional choices.

(Primary) Changeable elements: The model elements that instantiate components in
the system, i.e. ComponentInstance.component (primary element) and potentially Connec-
tors.

Quality Effects: Component selection can affect all quality properties depending on the
implementation characteristics of the chosen components. Additionally, component selec-
tion options can have different costs for development, maintenance, procurement and/or
operation.

Metamodel-specific definitions: PCM and ROBOCOP definitions are provided in
Appendix C.1

Example: Consider the PCM model in Figure 2.13 and the alternative component
QuickBooking in Figure 6.1. Because QuickBooking offers the same interface as Booking-
System (Interface IBooking), and because QuickBooking does not require more functiona-
lity than BookingSystem (both require none), QuickBooking can replace BookingSystem.
Figure 7.1(a) shows the relevant excerpts of an UML object diagram of the PCM example
model, and highlights the Properties that are updated when QuickBooking is inserted
in the architecture model. Figure 7.1(b) shows the resulting model after inserting Quick-

Booking for BookingSystem.

While the initial candidate model using BookingSystem had a POFOD of 0.0011, costs of
1079 units and response time of 7.3 sec, the new candidate model using QuickBooking has
POFOD 0.0013, costs of 1279 units and mean response time of 6.2 sec: The new candidate
model is faster, but at the same time less reliable and more expensive than the initial
candidate model.
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Figure 7.1.: Component Selection Example for Example Model from Figures 2.13 and 6.1.
The bold properties in part (a) show the Properties to be updated. The
bold Properties in part (b) show the updated values. Note that the figures
only show the necessary parts from the model, all other Properties have been
omitted.
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7.2.2. Non-functional Component Configuration Parameters

Rationale: If components provide configuration parameters that only affect the com-
ponent’s delivered quality, but not the functionality, their values can be varied during the
search. For example, a component can have a parameter to choose from several available
compression algorithms, to choose from different security levels (such as encryption key
lengths), or to choose from different fault handling strategies, e.g. number of retries.

Description: A component configuration parameter (also configuration parameter in the
following) is a parameter of a component that allows to configure the component when
instantiating it, affecting its behaviour.

We assume that configuration parameters always take primitive data types such as integers,
doubles, or Strings. Properties with other types, e.g. other metamodel elements, cannot be
considered configuration parameters of a component because they express more complex
relations in the architecture, e.g. define communication partners, and do not represent a
local configuration of a component. Often, only a subset of the domain of the parameter’s
data type is valid. For example, the component may have a certain internal cache size
as an integer parameter with implementation-dependent minimal and maximal allowed
values. In this example, not every integer value is valid for the configuration parameters,
but only values between the minimal and maximal value. In general, the valid values are
specific to the modelled component and cannot be predefined on the metamodel level.

A non-functional component configuration parameter is a configuration parameter that
does affect not the provided functionality. Let C be a component instance in the architec-
ture and let P be a property of this component that represents a non-functional component
parameter. Let V be the subset of valid values of this configuration parameter, identifiable
on the instance level. Then, there is a component configuration parameter degree of freedom
at P with the valid values V.

Note that a component configuration parameter with primitive data type is not necessa-
rily a non-functional component configuration parameter. For example, a parameter of an
accounting component could determine which taxation system is used to calculate value-
added taxes. The information whether a parameter is a non-functional component confi-
guration parameter could either be available from the metamodel (if e.g. the metamodel
provides different model elements for non-functional configuration parameters and other
parameters) or from annotations that the software architect uses to mark non-functional
configuration parameters in model instances.

If component configuration parameters have interdependencies and are hierarchically struc-
tured, feature models (cf. Section 2.4.4) can be used to describe the possible configuration
options, and a set of configuration options can be considered as one degree of freedom (cf.
Section 7.3.7).

(Primary) Changeable elements: The model elements that represent non-functional
component configuration parameters, or model elements that represent component para-
meters in general together with annotations that mark the parameter instances as not
affecting functionality.

Quality Effects: Non-functional component configuration parameters can affect all qua-
lity properties except component costs and maintainability, because they might lead to
any change of behaviour inside the component (as illustrated by the examples above).
Component costs are not affected, because the implementation of the components remains
fixed. Other costs could be affected: For example, if energy costs are considered, then a
configuration that puts more load on the used resources can lead to higher energy costs.
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Figure 7.2.: Extended Example System with Component Parameter and Passive Resource

Metamodel-specific definitions: PCM and CBML definitions are provided in Appen-
dix C.2

Example: Assume that the component PaymentSystem from running example system
additionally has a component parameter to configure the length of the used encryption key
and that this parameter affects the resource demand of this component has when making
a credit card payment, as shown in figure 7.2. The allowed values of this component
parameters are 128 bit or 256 bit. Changing this component parameter does not affect the
functionality of the system, but does affect performance and security.

7.2.3. Passive Resources Multiplicity

Rationale: The multiplicity of passive resources, such as thread pools or database connec-
tion pools, can be varied to find a good balance for the utilization of underlying resources.
Multiplicity of mutual-exclusion locks for critical regions (which can also be modelled with
passive resources with capacity of 1) must not be varied.

Description: A passive resource is a software resource that limits the concurrency in parts
of the system. The basic form of a passive resource is a semaphore. Passive resources can
also be used to model more complex constructs such as thread pools, database connections,
or file handles. In any case, a passive resource protects some region (which can be a
resource) and limits access to it. The capacity of a passive resource specifies how many
concurrent threads or processes may enter the protected region.

As a degree of freedom for automated quality improvement, passive resource capacity can
be varied. However, only passive resources that do not affect functionality may be changed,
such as the above-mentioned thread pools, database connections, or file handles. Passive
resources that protect regions for functional reasons, e.g. to ensure data integrity, must not
be changed. Usually, passive resources with functional effect have a capacity of just one,
i.e. only one thread or process is allowed to enter the protected region. Passive resources
with higher capacity are, in contrast, used to reuse software resources in pools or to avoid
over-utilization. Thus, while such passive resources may have a maximum number (e.g.
the number of file handles to a file is limited), they can be varied.

Let P be a passive resource in the architecture model with a capacity c. If c > 1 then there
is a passive resource multiplicity degree of freedom at P with the value range R = N+. R
can be restricted on the instance level.
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(Primary) Changeable elements: Passive resources can be defined in several places
depending on the metamodel, e.g. as part of a component, of the infrastructure, or of
the resource environment. In any case, the changeable element is the model element that
defines the capacity of the passive resource.

Quality Effects: This degree of freedom can affect performance, as it might increase
or decrease parallelism. Performance can improve if the underlying hardware resources
are well utilized, but it can also deteriorate if too much contention on load-dependent
resources leads to additional overhead (e.g. context switches). Costs may be affected in
special cases where the capacity of passive resources is covered by licenses. Reliability
may be affected in cases where the reliability of components is dependent on the degree
of parallelism inside the component (e.g. more parallel executing threads may be more
susceptible to faults caused by race conditions).

Metamodel-specific definitions: PCM and CBML definitions are provided in Appen-
dix C.3

Example: Consider the extended example system shown in figure 7.2. Let us assume
that for the authorization of credit card payments, a handle for the internal credit card
library is required that can only be used by one process at a time. Then, the number of
available handles can be increased to allow more concurrent credit card authorizations.
At the same time, more handles might lead to higher licensing cost, e.g. 30 units per
handle. In the example, the AuthoriseCreditCardPayment InternalAction is protected
by the PassiveResource creditCardHandle that limits how many processes can simulta-
neously authorize credit card payments, including the required encryption. The number
of creditCardHandles is initially set to two.

Increasing the number of handles allows more concurrent transactions, which can be bene-
ficial if the component is deployed to a multi core server. On the other hand, more handles
lead to higher licensing cost. With the given system load, the number of handles could as
well be reduced to one to save licensing cost, because only few requests access the credit
card authorization at the same time.

7.2.4. Priorities

Rationale: If a system offers several services simultaneously, the response times, failure
probabilities, and throughputs of each service can be considered independent objectives
for the automated improvement. Then, a degree of freedom of the architecture can be
to prioritize requests to certain services. For example, business-relevant transactions can
be assigned a higher priority than maintenance functions. Similarly, different components
could be assigned priorities.

Description: Different entities of the software model (usage scenarios or components) can
be assigned a priority. If a resource (both active resources or passive resources) is reques-
ted, requests from higher prioritized software entities are favoured. Different scheduling
strategies to handle priorities are imaginable: Either high priority requests are directly put
to the top of the queue, which may lead to starvation, or more complex scheduling schemes
are used, e.g. also increasing the priority of long-waiting jobs with initial low priority to
ensure liveliness.

Let S be a software entity in the architecture model with priority p and a range of possible
priority levels p1, ..., pn. Then there is a priority degree of freedom at S with the value
range R = p1, ..., pn.

(Primary) Changeable elements: Different software entities could support priorities
in the architecture metamodel. The changeable elements of this degree are the model
elements that represent a software entity’s priority.
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Quality Effects: Prioritization improves performance for the higher prioritized software
entities, while deteriorating it for others. Thus, prioritization is beneficial if critical ser-
vices of the system are assigned a high priority. Reliability might decrease in general if
the prioritization mechanism introduces additional potential for faults. Possibly, the ef-
fort to realize prioritization can lead to additional development or procurement costs for
the components or the middleware as well as to decreased maintainability due to higher
complexity.

Metamodel-specific definitions: PCM and CBML definitions are provided in Appen-
dix C.4

Example: As priority optimization is not supported in the PCM, we consider an example
for a software architecture modelled using LQNs in the following. (El-Sayed et al., 2001)
present a protection switching software for a BLSR (Bidirectional Line Switching Ring,
an optical ring configuration) from Nortel Networks. In the example, several processing
nodes are connected in a ring communication with a bi-directional traffic flow between
neighbouring nodes. Requests are routed for the shortest path. If a connection between
two nodes is destroyed, some requests need to be rerouted the other way around the ring.
When such failure occurs, all nodes should react within 50 ms and reroute traffic.

The protection software is composed of 16 software tasks that are allocated to the two
processors of each node. The method presented in El-Sayed et al. (2001) then finds the
optimal allocation of the node’s tasks to the two processors as well as optimal priorities of
each task on its processor. While the used ring topology is no longer state-of-the-art, this
example nonetheless illustrates the use of priorities to influence performance.

7.3. Deployment-related Degrees of Freedom

In addition to the pure software-level view of the software architect, more degrees of
freedom are available when considering the deployment of the system to hardware and
infrastructure, such as application servers or virtual machines. Deployment aspects include
hardware choices, mapping of components to hardware and the configuration of lower levels
of the software stack. This subsection presents five deployment-related degrees of freedom
shown in table 7.1, using the schemata presented in the introduction of this section.

7.3.1. Allocation

Rationale: Large systems may be distributed to several servers, each providing hardware
resources such as CPU and hard disc. In component-based architectures, the allocation of
components to servers can be varied.

The simple case is that one component is always allocated to a single server; this case
is discussed in the following. The next degree of freedom (“Allocation with Replication”)
describes the more case that a component can be replicated and allocated to several servers.

Description: The allocation defines how many servers are used and which component is
executed by which server by defining component allocation instances (cf. Figure 2.1), i.e.
a mapping of each component instance of the architecture to a server.

Let A be the component allocation instance mapping a component instance C to a server
S. An architecture model is only valid if S provides resources for all the resource types
that C requires, e.g. CPU and hard disc drive. Thus, C can only be allocated to other
servers that provide the required resources. Let RTC be the set of resource types that C
requires and let RTS be the set of resource types that S provides.
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Additionally, the linking resources connecting the servers, such as LAN connections, must
be considered: C can only be allocated to servers that are connected to all of C’s communi-
cation partners (i.e., component allocation instances that are linked to C in the architecture
model) by linking resources. In particular, a linking resource must be available for the di-
rection(s) in which the C and its communication partners send messages. Additionally,
if the architecture model restricts the type of linking resource used by a communication
of a component, e.g. that certain communication has to use a wireless LAN connection,
then the linking resource between the two components also has to be of the correct type tl.
Because the allocation of the communication partners can change as well, this restriction
cannot be statically defined for one system at hand, but must be handled with interaction
constraints.

The allocation degree of freedom can be defined as follows for the mapping A allocating
C to S: Let RE be the set of all available servers. Then, the subset of servers REC ⊂ RE
to which C could potentially be allocated can be identified as follows:

REC =
{
S∗ ∈ RE

∣∣(∀t ∈ RTC ∃t′ ∈ RTS : t = t′)
}

If |REC | > 1, there is an allocation degree of freedom at A with the possible values REC .

If linking resources are considered, different allocation changes for different components
may be in conflict with each other. An interaction constraint must exclude candidate
models where communication partners cannot communicate with each other.

Let Components be the set of all component allocation instances in the system. Let
Sender ⊆ Components be the set of all components that send messages to C (both locally
or remotely) and let Receiver ⊆ Components be the set of all components that receive
messages from C (both sets may overlap). Let LTp be the set of linking resource types
that each communication partner (sender or receiver) p ∈ Sender ∪ Receiver requires.
Recall that for a component allocation instance c, c.server denotes the server to which c
is allocated.

Let the linked(l,S1,S2) express that a linking resource l connects the two server S1 and S2

so that components allocated to S1 can send messages to components allocated to S2.

In the result model after applying all changes, the following interaction constraint must
hold for the chosen server S∗: The server must be connected to the servers of all commu-
nication partners with the appropriate linking resources.

(∀c ∈ Sender ∀t ∈ LTc ∃l : linked(l,c.server,S∗) ∧ tl = t)

∧(∀c ∈ Receiver ∀t ∈ LTc ∃l : linked(l,S∗,c.server) ∧ tl = t)

This interaction constraint (or a similar constraint expressing the same concepts) should
be defined in the CBA metamodel to describe valid instances of the metamodel.

(Primary) Changeable elements: The model element that maps a component instance
to a server, i.e. ComponentAllocationInstance.server.

Quality Effects: Allocation is crucial for performance of distributed systems, as the
distribution of components to servers determines how well the system load is distributed
among the available resources. However, distribution of components also leads to commu-
nication overhead, because local communication of components allocated to a single server
is much faster that remote communication of components allocated to different servers.

For performance, the effects of allocation can be well anticipated for simple systems where
one type of resource usage determines the result (e.g. CPU-bound applications). If in
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such cases, the single components contribute similarly to the overall quality (e.g. for per-
formance: that have a similar load in the given usage scenario), the effect of allocation
depends on the number of components: the less components are available in the system,
the more a single allocation change can affect performance. If more factors contribute
to the overall performance of the system (e.g. communication overhead, multiple resource
types (CPU, HDD), and software locks), the effects of allocation changes are harder to
anticipate and require a full analysis of the system’s quality (e.g. by simulation).

In addition, allocation influences reliability, because components deployed on one server
fail together if the server itself fails. Depending on the number of used servers, the costs
of the system changes. In contrast, different allocation options are cost-neutral for a fixed
number of servers. Finally, security threats can arise if sensitive components are allocated
to servers that are easier to access.

Allocation also affects costs if the number of servers to allocate the components to is
changed. If components are re-allocated to more expensive servers (expensive in terms
of procurement costs, of operating costs, or pay-per-use costs), the costs of the system
is increased, and vice versa. Finally, allocating a system to many servers can decrease
maintainability, because providing updates of components becomes more complex.

Metamodel-specific definitions: PCM and ROBOCOP definitions are provided in
Appendix C.5

Example: Consider the PCM example from Figure 2.13, page 35. As described in the
overview section 6.2, three instances of the allocation degree of freedom can be identified,
because each of the three components can be allocated to a different server. Because all
components in this example only use one resource type (CPU) and all three servers are
connected with a linking resource (a LAN), we do not have to consider the resource types
and linking resources in the following.

Figure 7.3 shows an example where–compared to the initial system configuration–the al-
location of PaymentSystem has been changed to server S2. This single allocation change
has high impact on performance and cost: The mean response time increases from 7.3 sec
to 17.8 sec. While the utilizations of server 1 to 3 were 0.57, 0.5, and 0.58, respectively,
in the initial system, the utilization of server 2 has now increased to 0.93, while server
3 is not used. The costs have decreased from 1078.55 units to 923.87, because the costs
for server 3 can be saved. Reliability improved from 1.14E-3 to 8.04E-04 due to fewer
hardware failure options (the system is only subject to two servers failing) and less remote
communication. To conclude, the allocation strongly affects the quality properties in this
example.

7.3.2. Allocation with Replication

Rationale: A component instance can as well be replicated on the deployment layer, i.e.
this component instance on the software level is mapped to several servers by defining
several component allocation instances for it (cf. Figure 2.1, page 16 in Section 2.1).

There are two purposes for having multiple component allocation instance of one com-
ponent instance: Replication and Load Balancing. The goal of replication is to prevent
failures of a single server to cause a system failure. Either all redundant servers process
each request (active replication), or the requests are directed only to a single replica, and
the other servers act as fail-over (passive replication). In load balancing, a load mana-
ger distributes incoming requests to several server instances to achieve a higher system
capacity. A mixture of both types is a setting in which the free capacities of a passive
replication are at the same time used for load balancing. For both types, a manager com-
ponent has to be added that distributes requests to the different servers. Allocation with
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Figure 7.3.: Example for Changed Allocation

replication is not available in all components models, and thus is discussed separately from
the Allocation degree in the following.

Description: The server multiplicity is defined in the allocation, which specifies the map-
ping from components to servers. For a metamodel to support allocation with replication,
it has to allow an n:m mapping of components in the system (i.e. component instances) to
servers. While we allocated each component instance to only a single server in all previous
examples, here, a component instance can be allocated to multiple servers, resulting in
several component allocation instances for one component instance on the system level.

For the definition, let us assume that the metamodel under study distinguishes component
instances assembled in the system from component allocation instances deployed to re-
source containers, as shown in Figure 2.1, page 16.

Let A be the component allocation instance mapping a component instance C to a set of
servers S = {S1, ...Sn}. As with the allocation degree, an architecture model is only valid if
the servers in S offer all the resources that C needs. The definition of this degree of freedom
is analogous to the allocation degree. Let us reuse the variables from the allocation degree
of freedom so that RE denotes the set of all available servers and REC ⊂ RE denotes
the set of servers that C could be allocated to based on the resource types and linking
resources. Then, for the allocation with replication degree, the set of possible values for A
is the power set of REC excluding the empty set:

P\∅(REC) = {U |U ⊆ REC ∧ U 6= ∅}

If
∣∣P\∅(REC)

∣∣ > 1, there is an allocation degree of freedom at A with the possible values
P\∅(REC).

As for the simple allocation degree, different allocation with replication degrees may inter-
act. The same interaction constraint as for the simple allocation degree must hold for all
chosen servers after all changes have been applied. We reuse the variables from the “Allo-
cation” Degree so that Components is the set of all component allocation instances in the
system, Sender ⊆ Components is the set of all components that send messages to C (both
locally or remotely) and Receiver ⊆ Components is the set of all components that receive
messages from C (both sets may overlap). Additionally, LTp denotes the set of linking
resource types that each communication partner (sender or receiver) p ∈ Sender∪Receiver
requires. Then, the interaction constraint to hold is:
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(∀c ∈ Sender ∀t ∈ LTc ∃l : linked(l,c.server,S∗) ∧ tl = t)

∧(∀c ∈ Receiver ∀t ∈ LTc ∃l : linked(l,S∗,c.server) ∧ tl = t)

In addition to the number of servers that a component is replicated to, the replication
strategies such as load balancing strategies (e.g. random or based on utilization of the
servers) can be varied if the metamodel supports more than one strategy. This is considered
a separate degree here and discussed below as a “Further configuration of the software
stack” parameter.

In metamodels where the above distinction of component instances in the assembly and
component allocation instances in the allocation is not explicitly modelled, the component
instances in the assembly could be copied and thus explicitly replicated as a degree of
freedom. However, with this technique, we cannot distinguish between two instances
of a component that have been deliberately introduced in the architecture model and
play different roles, e.g. due to different configuration, and replicated components. This
inaccuracy may lead to invalid models if in the first case, components are replicated and
the load is spread to all instances of this component. Thus, this technique is not further
discussed here.

Another option how to model a restricted form of allocation with replication is described
as the “Server replication degree” in the next Section 7.3.3.

(Primary) Changeable elements: The model element that maps a component instance
to a server, i.e. ComponentAllocationInstance.server.

Quality Effects: The quality effects of the “Allocation with replication” degree includes
all quality effects of the simple “Allocation” degree. Additional effects stem from the
replication of components, i.e. if A defines a mapping to more than one server. Depending
on the type of replication, this degree of freedom affects performance or reliability, but
always costs. Pure replication can improve reliability while also increasing costs. Pure
load-balancing can improve performance while also increasing costs. With the mixture of
the types, both performance and reliability can be improved. Additionally, maintainability
may be decreased due to higher complexity of the replication mechanisms.

Metamodel-specific definitions: PCM definitions are provided in Appendix C.6.

Example: Let us assume that we have a forth server S4 available in our running example
from figure 2.13, page 35 with the server configuration shown in Figure 7.4. Then, we can
allocate the BusinessTripMgmt component to both server S1 and S4 as shown in the figure.
In the PCM model, there is one assembled component instance of BusinessTripMgmt in
the architecture model, but there are now two AllocationContexts that allocate this
AssemblyContext to one server each. The arriving requests are randomly distributed to
one of both (see description of simplified PCM extension above). Note that the simplified
graphical syntax used in the other examples assumed a 1:1 mapping of AssemblyContext
and AllocationContext and is thus not applicable here any more. This is why we have
split the system view from the allocation view in figure 7.4. The AllocationContexts are
represented by the arrows marked with <<allocatedTo>>, while the component symbols
represent the AssemblyContexts.

This candidate model has an improved response time of 6.34 sec (vs 7.30 sec), higher
costs of 1248.93 (vs 1078.55) and an unchanged reliability. The load that was previously
assigned to server S1 and caused a utilization of 0.57 in the initial candidate model is now
spread to two server, resulting in a utilization of 0.285 for both.1.

1The model does not contain an overhead for the load distribution to both servers. This implementation
detail could for example be included by using completions (cf. Section 2.4.4)
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Figure 7.4.: Example for Changed Allocation with Replication

7.3.3. Server Replication

Rationale: The above definition of “Allocation with Replication” potentially describes
a huge number of possible allocations for a single component, because the number of
elements in the power set is

∣∣2REC
∣∣. For systems that have a more restricted allocation

of components, the set can be reduced and expressed differently. For example, we could
require for a system that servers are replicated homogeneously (i.e., together with all
components on it, leading to identical server replicas) to make the system more manageable
and the overview easier. For example, if a server is replicated, system administrators know
that one replica server can provide all the functionality of the second replica server, so one
server may be turned off for maintenance if the load allows it. In the general allocation
described above, each server might host one component that is uniquely deployed to that
server. The advantage of such a restricted allocation with replication is that the number
of possible allocations is reduced to possibly more sensible candidate models.

Description: In this degree of freedom, servers are replicated together with all compo-
nents allocated to them. It can be combined with the simple allocation degree above. We
can express this replication as a single multiplicity parameter of a server, denoted Ser-

ver.multiplicity, independent of the components allocated to it. Such a multiplicity
parameter could already be included in the metamodel. Alternatively, a server can be
copied in the model and the allocation of components to it can be adjusted accordingly.

The metamodel has to support multiplicity of servers for this degree of freedom to be
applicable. In particular, a semantics of the multiplicity for the analyses needs to be
provided. For example, requests could be randomly assigned to one of the servers, the
additional servers serve as passive or active replicas, or mixed forms of both. Note that
if the metamodel supports several replication schemes here and allows to configure them
on the model level, the choice of a replication scheme is an additional degree of freedom
discussed below with the “Further configuration of the software stack” degree of freedom.

(Primary) Changeable elements: The model element that describes the multiplicity
of a server: Server.multiplicity.

150



7.3. Deployment-related Degrees of Freedom 151

Server S1

 

BookingSystem

[Cost = 200 Units]

Server S2

Payment 

System

[Cost = 200 Units]

Server S3

Business 

TripMgmt

[Cost = 150 Units] <<LinkingResource>>

multiplicity = 2

Figure 7.5.: Example for Server Replication

Quality Effects: The effects of the server replication degree are the same that are added
to the simple “allocation” degree by the “Allocation with replication” degree: Depending
on the type of replication, this degree of freedom affects performance or reliability, but
always costs. Pure replication can improve reliability while also increasing costs. Pure
load-balancing can improve performance while also increasing costs. With the mixture of
the types, both performance and reliability can be improved. Additionally, maintainability
may be decreased due to higher complexity of the replication mechanisms.

Metamodel-specific definitions: PCM and CBML definitions are provided in Appen-
dix C.7.

Example: Consider the PCM example from Figure 2.13, page 35. As an example, we
replicate server S1 with all its components (here only BusinessTripMgmt). The resulting
candidate model is shown in figure 7.5. We use the newly introduced ResourceContai-

ner.multiplicity to model that the server is replicated, i.e., that we get two instances
of the server.

This candidate model is expressing the same system than modelled in the example for the
“Allocation with replication” degree. Thus, the results of this candidate model are the
same as for that example. The candidate model has an improved response time of 6.34
sec (vs. 7.30 sec), higher costs of 1248.93 (vs. 1078.55)and an unchanged reliability. The
load that was previously assigned to server S1 and caused a utilisation of 0.57 in the initial
candidate model is now spread to two servers, resulting in a utilisation of 0.285 for both.

7.3.4. Resource Selection

Rationale: The functionality of the system is independent of the properties of the used
resources. Resources are mainly hardware resources such as CPU and HDD in most
metamodels, but they can represent software resources such as application servers or virtual
machines. Components in the system require a certain resource type to function, such as
CPU, HDD, or specific resources like special-purpose chips. The concrete choice of the
resource to use for this type can be varied.

Description: In general, the degree of freedom here is to select a resource from a prede-
fined repository of available resources with different quality characteristics and costs. For
example, CPUs with different processing rates can be used or hard drives with different
availability characteristics.

Let RR be a resource repository that contains available resources r ∈ RR for the system
under study, such as an Intel Pentium XY 3GHz CPU. Each resource has a resource type
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tr, e.g. CPU. Each server S ∈ RE of the system offers resources for a set of resource types
RTS .

For each resource type t ∈ RTS offered by a server S, the set of resources from the
repository that may be used in server S for type t is given as:

Rt = {r |r ∈ RR ∧ tr = t}

Let r(S,t) be the property that defines which resource is used in server S for resource type
t. Then, if there is more than one resource available for type t, i.e. if |Rt| > 1, there is a
resource degree of freedom at r(S,t) with the possible values Rt.

(Primary) Changeable elements: The model element that describes a resource of a
server, i.e. Server.resources.

Quality Effects: The choice of hardware resources may have influence on performance,
reliability, security, and costs. Resources with higher processing rate or lower latency may
lead to better performance of the overall system. Resources with higher availability may
help the system to fail less often. Built-in security mechanisms such as encryption could
improve security. Finally, different hardware resource options lead to different costs for
procurement and/or operation.

Metamodel-specific definitions: PCM and Robocop definitions are provided in Ap-
pendix C.8.

Example: Consider the PCM example from Figure 2.13, page 35. As described in the
overview section 6.2, three instances of the resource degree of freedom can be identified,
because each of the three servers has one resource of type CPU.

In the example, we assume that 13 different CPU speeds between 1GHz and 4GHz are
available. Let us further assume that the MTTF linearly depends on the processing speed:
The faster the CPU, the more reliable it is, too. This relation is certainly not generally
true, but is assumed for this example. Then, processor type P1 with speed 1GHz has a
MTTF of 200000h, and the other processor types have a higher MTTF linearly to their
increased processor speed. For example, processor type P13 with speed 4GHz has a MTTF
of 4 · 200000h = 800000h. The MTTR is the same for all available resources.

We determined the costs in this example based on the Intel CPU price list of Fe-
bruary 2010 (Intel Corporation, 2010). From the data for the Xeon Server/Workstation
(LGA1366 / LGA771) CPU with 45 nm and 4 Threads, we extracted a power func-
tion cost = 0.7665 procRate6.2539 + 145 which describes the relation between processor
speed procRate and costs and which fits the data with a high coefficient of determina-
tion R2 = 0.965. Thus, to give some examples, the processor configuration P1 costs
0.7665 · 16.2539 + 145 = 145.7665 dollars, while the processor configuration P7 with speed
2GHz costs 0.7665 · 26.2539 + 145 = 203.49566 dollars.

As an example, we can change the processing rate of all servers to 1GHz (candidate model
1), to 2GHz (candidate model 2), to 3 GHz (candidate model 3), or to 4 GHz (candidate
model 4). Additionally, we look at two candidate models with mixed processing rates
(candidate model 5 and candidate model 6). The results of the analyses are shown in
table 7.2. The candidate model with the lowest processing rate is overloaded and cannot
cope with the workload, thus, an infinite response time was determined. With increasing
processing rate, the POFOD and response time decrease; however, the costs increase
rapidly due to the power function. The two candidate models with mixed processing
speeds (candidate model 5 and candidate model 6) give intermediate results. In these
cases, the utilisation of the servers varies more, because the load in the example system in
the initial allocation is quite evenly spread over the system. If the allocation is changed,
too, the effect of the processing rate changes can change significantly.
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P. speed Quality Utilisation
S1 S2 S3 POFOD Costs Mean RT of S1 of S2 of S3

Cand. 1 1 1 1 0.001168 987.30 ∞
Cand. 2 2 2 2 0.001132 1160.49 5.49789 0.4999 0.4998 0.4348
Cand. 3 3 3 3 0.001120 3200.65 2.84986 0.3327 0.3324 0.2891
Cand. 4 4 4 4 0.001114 14377.34 1.93253 0.2497 0.2496 0.2172

Cand. 5 3 3 2 0.001123 2520.60 3.55571 0.3324 0.3320 0.4330
Cand. 6 2 3 2 0.001129 1840.54 4.5164 0.4997 0.3329 0.4342

Table 7.2.: Evaluation of the PCM Example with Changed Processing Rates (Columns “P.
speed”) (Costs in units, mean response time (column “Mean RT”) in seconds.

7.3.5. Resource Property Change

Rationale: For systems that contain many resource selection choices, enumerating all
options may become cumbersome. Instead of selecting a resource from the repository RR
which enumerates all options, the available resource can also be specified as a function of
how to change resource properties. However, the effects on all server properties must be
well-defined.

Description: A high number of different choices for a resource type, e.g. CPUs with
speed varying from 1.5GHz to 4GHz in small steps or CPUs with varying number of cores,
can also be modelled as a changeable property of the server. However, the effect of the
changeable property (e.g. CPU speed, or both speed and availability) on the remaining
properties of the resource (such as costs) need to be modelled because the properties are
usually not independently changeable. A mathematical function for example can express
the costs in relation to the processor speed. Overall, for each choice of the resource, the
resource properties need to be well-defined.

For example, let us assume that for a system under study, the CPU speed can be varied
between 1.5GHz and 3GHz (G = [1.5, 3] ⊂ R) and mean time to failure (MTTF) of a CPU
can be varied between 200000 hours and 300000 hours (M = [200000, 300000] ⊂ R). Let
us further assume that the costs of CPUs can be defined as a function C : G ×M → R
on speed and MTTF. Then, the set of available resources RR is spanned by a function
F : G ×M → RR creating a resource r with speed r.speed = x, MTTF r.MTTF = y
and costs r.costs = C(x, y). As we see in this example, the set RR is highly problem
specific and depends on the available resources for the specific system at hand as well as
on the properties a resource has in the metamodel. Software architects have to decide for
a system at hand to model RR in an abbreviated way using functions or to enumerate all
options.

In cases where more than one property of the resources can be varied independently of
each other and functions to the remaining properties of the resource can be specified, the
resource degree of freedom can also be split into independent subordinate resource property
degrees which separately modify a resource property. Such a distinction can be beneficial
in the later exploitation of the degrees of freedom by optimization techniques, because it
brings additional structure to the problem. However, in cases where the available resources
cannot be expressed as such as combination of properties, all elements in RR have to be
enumerated.

(Primary) Changeable elements: Any set of properties of a resource, for example the
processing rate and the costs.
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Host Operating System

...

(b) Software Stack with Virtualisation

Figure 7.6.: Examples for Software Stacks

Quality Effects: Depending on which properties are changes, this degree can have in-
fluence on performance, reliability, security, and costs like the “Resource Selection Degree”
described above.

Metamodel-specific definitions: PCM and Robocop definitions are provided in Ap-
pendix C.9.

Example: As an example, consider the PCM example from Figure 2.13, page 35 and the
example for the “Resource Selection Degree” in the previous Section.

Let us assume that we are interested in any processing rate in the interval [1GHz, 4GHz].
Then, we can as well model the example with this degree.

7.3.6. Further Configuration of the Software Stack

Rationale: A system may comprise more than the components that realise the business
logic. Components are deployed into application servers that provide the required execu-
tion environment, which again runs in an operating system. To communicate, components
may use message-oriented middleware. Altogether, these software elements make up the
software stack of the system. Two examples of software stacks are shown in figure 7.6. The
topmost layer of application components is often conceived to be “the system”, because it
contains the business logic of the system and realises the system’s functional requirements,
while the lower layers of the stack provide standard functionality. Nonetheless, the lower
layers affect quality attributes, and decisions have to be made on these levels, too.

Configuration of the software stack may be available in the architecture model, so that their
effect on quality attributes can be evaluated. Models have been proposed for operating
system (OS) scheduler configuration (Happe, 2008), middleware in general (Woodside
et al., 2002), or message-oriented-middleware configuration (Happe et al., 2010); and can
be envisioned for other configurable properties of operating systems, virtual machines, or
middleware. In addition, software stack elements can be exchanged by other products if
models for the quality impact are available: for example, different Java Virtual Machines
(JVMs) could be used (Sun’s JVM, Oracle’s JRockit JVM, ...), different operating systems
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could be selected (Windows, Linux, ...), or different application servers can be used (IBM’s
Websphere, Apache Geronimo).

Description: Because the software stack is often not central when modelling a component-
based software architecture like the components themselves are, the way how the software
stack is modelled in a given software architecture metamodel may vary.

We distinguish two main types of software stack representation: The software stack can ei-
ther be explicitly modelled as an infrastructure model as suggested by (Hauck et al., 2009),
or its effects can be added to the quality model as completions, as suggested by (Wood-
side et al., 2002) and realised in e.g. (Happe et al., 2010; Kapova and Reussner, 2010)
(cf. Section 2.4.4). In general, all configuration and selection options that are concerned
with elements of the software stack below the application component level are considered
configuration of the software stack options in the following.

For the first type, the infrastructure is modelled using specialised model elements (e.g.
software layers), or using the same model elements as found on the application level (e.g.
software components). In both cases, different degrees of freedom described in this chapter
may also be applied to the infrastructure models.

If the metamodel contains different elements of the software stack as separate components,
the previously introduced software-related degrees of freedom (Section 7.2) and the allo-
cation degrees of freedom (Section 7.3.1 and 7.3.2) may be applied to these infrastructure
components as well.

More complex infrastructure models may open up new types of degree of freedoms that
are not inherent to component-based software architectures and thus not covered here
(e.g. whether to use virtualisation and how many layers of virtual machines to use). They
can be added as custom degrees of freedom (see below). They all can be flattened and
expressed by component configuration and completions, however, it might be more useful
to introduce a new degree of freedom type for easier modelling and understanding.

Thus, the configuration of explicitly modelled infrastructure is covered by the previously
described degrees of freedom and potentially additional metamodel-specific degrees.

The second option of software stack representation as model completions is covered by a
more general degree of freedom “Completion Configuration” described in Section 7.3.7.

(Primary) Changeable elements: See respective degrees of freedom from Section 7.2,
Section 7.3.1 or Section 7.3.2.

Quality Effects: All quality effects described in sections 7.2, 7.3.1 and 7.3.2 may occur.
Performance and reliability are influenced by the lower levels of the software stack just as
by the application components. Maintainability may also be affected if the operation of
the software stack requires effort, in particular if complex manual configuration or even
extensions of the implemented functionality are required.

Metamodel-specific definitions: See respective degrees of freedom from Section 7.2,
Section 7.3.1 or Section 7.3.2. CBML and ROBOCOP model all relevant components in
one model and do not distinguish between application components and further software
stack components. Thus, no specific software stack degree of freedom is needed. If software
stack elements are modelled as normal components, all previously discussed degrees of
freedom can be directly applied to them.

Example: As an example, consider the software stack illustrated in Figure 7.7 by Hauck
et al. (2009), which shows a example with a business layer component, an application
server component, and a JVM component.
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Figure 7.7.: Example of an Explicit Modelling of Infrastructure Components by Hauck
et al. (2009)

In this example, different JVM implementations may be available and expressed as com-
ponent selection. Additonally, the allocation of virtual machines to lower layer virtual
machines in a virtualised environment with several virtualisation layers can be expressed
as the allocation degree of freedom.

7.3.7. Quality Completion Configuration

Rationale: Quality completions (cf. Section 2.4.4) have been suggested to include low-
level detail required for accurate predictions into a software architecture model in a non-
intrusive way. The modelled low-level aspects, such as performance aspects of commu-
nication middleware, may offer configuration options, which also have an effect on the
quality properties of the system. Thus, when when evaluating an improving the quality
attributes of an architecture, it is useful to also consider the configuration options provided
by completions.

Description: As described in Section 2.4.4, quality completions can be modelled using
feature models (annotated with model transformation fragments which capture the qua-
lity effect of each configuration option) and feature configurations (used to annotate the
software architecture and describe the chosen configuration). Each feature model can
describe a tree of features, i.e. some features may only be selected if a parent feature is
selected. Additional constraints between features may be added as well (cf. (Czarnecki
and Eisenecker, 2000)).

Two options exist to consider quality completion configuration as an degree of freedom.
First, the configuration of one quality completion (e.g. communication middleware confi-
guration) can be considered one degree of freedom. In this case, the set of all possible confi-
gurations form the design option set. For example, consider the “message channel confi-
guration” in the feature model for communication middleware configuration Figure 2.10,
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Section 2.4.4: Here, a “point-to-point channel” or a “publish subscribe channel” can be
selected (exclusive or). If the “publish subscribe channel” is chosen, an additional option is
to choose “durable subscribers”. Thus, the three overall design options of “message chan-
nel configuration”are {point-to-point channel}, {publish subscribe channel }, and {publish
subscribe channel, durable subscribers}. If we include the rest of the communication midd-
leware configuration feature model, the design option set grows large, as many features
can be combined.

The second option is to consider each feature as one degree of freedom. Thus, to continue
our example, we could have two degrees of freedom for the “message channel configura-
tion”: The first degree of freedom is whether to use “point-to-point channel” or a “publish
subscribe channel”, as we have an exclusive or choice here. The second degree of freedom
is whether to use “durable subscribers” or not, as this is an optional feature. The choice
made for this degree of freedom is only relevant if the “publish subscribe channel” feature
has been selected in the parent degree of freedom (similar to degrees of freedoms that are
opened up by adding model elements, cf. Section 6.4.1). The advantage of this approach is
that the relation of choices described by the feature model are better reflected. However,
many degrees of freedom are introduced.

An intermediate approach is to split the feature model into several degrees of freedom,
but not necessarily one per feature. For the communication middleware configuration
example, three separate degrees of freedom could describe the three features on the upper
level of the tree, while each such degree describes all design options of its child features.
Heuristics could be devised to automatically derive a set of degrees of freedom for a given
feature model, e.g. based on the used constructs (exclusive or, optional features), based
on the depth of the tree, or based on the design option set size (e.g. a maximum size of
6). Alternatively, the splitting of each feature model could be defined manually to better
reflect the different inner aspects of a quality completion.

Changeable (Primary) Elements: The model elements that describe the completion
configuration. If feature models are used, the primary changeable element is the annotated
feature configuration.

Quality Effects:

Metamodel-specific definitions: PCM and CBML definitions are provided in Appen-
dix C.10.

Example: An example for the PCM is the above-described messaging middleware confi-
guration, described in more detail by (Happe et al., 2010), (Kapova and Becker, 2010),
and (Kapova, 2011).

7.4. Custom Degrees of Freedom

In the two previous subsections, we discussed degrees of freedom that are inherent to
component-based software architectures. Depending on the used software architecture
metamodel and the concrete software system under study, additional degrees of freedom
may be available. If such additional degrees of freedom affect a common quality attribute,
these degrees should be considered as well, because an isolated improvement of e.g. first the
general CBA degrees and then next the metamodel-specific degrees or the system-specific
degrees may lead to suboptimal solutions. In contrast, additional degrees of freedom that
do not have effects on quality attributes in common with the degrees of freedom presented
in the previous sections can and thus should be considered separately to reduce decision
complexity.

The two types of additional degrees of freedom are described in the following:
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7.4.1. Metamodel-specific Degrees of Freedom

Rationale: The used software architecture metamodel may offer additional degrees of
freedom because the metamodel covers more than the aspects of component-based software
architectures described in this work (see Section 2.1).

For example, the metamodel could support to assign developers to components to plan
the development schedule, estimate development costs, or the predict reliability based
on developer experience. In some development contexts, such decisions may affect the
software architecture design2.

Description: Metamodel-specific value rules need to be defined when instantiating a
metamodel-specific degree of freedom. Selection rules, interaction constraints, and added
elements are optional.

(Primary) Changeable elements: Custom defined.

Quality Effects: Any

Example in the PCM: Subsystem Selection A set of components together can form
an delimited part of the system, called a subsystem, which itself is not a component (e.g.
because it is no unit of allocation, or due to other reasons) but which can still be considered
a a unit in terms of replacing it. Other subsystems that provide the same functionality,
but have different quality properties, can be used to replace the given subsystem in the
architecture.

The definition of a subsystem replacement is similar to the component selection degree.
The difference is that the contents of a subsystem may be allocated separately. Thus,
when replacing a subsystem in a PCM model, the allocation model has to be adjusted,
too. Thus, when replacing a subsystem Sub1 with the inner allocated components Sub11,
Sub12, and Sub13 with a SubSystem Sub2 with the inner allocated components Sub21,
Sub22, and Sub23, we need to delete the AllocationContexts of Sub11, Sub12, and Sub13
and create new AllocationContexts for Sub21, Sub22, and Sub23.

Note that we deliberately do not allow to replace subsystems by components and vice
versa. Components and Subsystems are different in their meaning, so that an automated
replacement amongst both does not seem appropriate. However, the two degrees of freedom
Component Selection and Subsystem Selection could be as well merged into one that also
supports the replacement among both types. The quality effects of the Subsystem selection
degree are the same as already described for the Component Selection and the Allocation
Degree.

See Appendix C.11 for the formal PCM definition.

7.4.2. System-specific Degrees of Freedom

Rationale: The software architect may identify additional design decisions that are still
undecided for the concrete system under study, that do not affect functionality or only
affect it in an insignificant way, and that affect the quality attributes of interest. In that
case, the software architect can manually specify system-specific degrees of freedom.

For example, the software architect may specify that a set of three connected components
together with the interfaces connecting them could be replaced by an alternative design of
two other components connected by different interfaces. Such a decision does not fall in

2Personal communication with Clemens Szyperski, who said that one main driver of how a system is
divided into components has been the number of available developer teams in his projects at Microsoft.
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the component selection degree of freedom, because the interfaces are not matching, but
can be specified manually.

Another example are internal decisions inside components. Potentially, the software ar-
chitect may know about internal design decisions that the developers have to make when
implementing a component, and can model these in advance to predict the effects on the
overall quality and instruct the developers how to realise the component. For example, a
specialised algorithm could be tuned for performance, but the tuning leads to additional
costs and worse maintainability. If the software architect can estimate the local quality
effects of different tuning levels in advance (e.g. what are the resource demands), he can
model the tuning level as a degree of freedom and then let the automated improvement
find out how much performance tuning is useful in the overall system context or whether
other measures to improve performance are more cost effective.

Description: A system-specific degree of freedom can change a single primary model
element in the model or be defined more broadly so that it can be instantiated for several
model elements.

Software architects can manually model the system-specific DoF on the metamodel level,
have the tool instantiate them automatically, and then select the instantiations of the DoF
that are feasible in the design space review step.

A simpler way of specifying a system-specific degree of freedom would be that the software
architect only annotates a model element with a range of possible values (or several model
elements with a tuples of values) and possibly the related performance, reliability and cost
effects. In our tuning example, the software architect would annotate the internal action
to be tuned with resource demand and maintainability and development costs, and would
define several estimated tuples for the anticipated tuning levels. Alternatively, he could
define a function that expresses the relation of resource demand (as the modifiable variable)
to maintainability and costs (as outputs of the function), similarly to the continuous
definition of resource degrees of freedom (see Section 7.3.4). However, for such simplified
specification, a language for specifying custom degrees of freedom on the model level would
be required, which is subject to future work.

More complex degrees of freedom can be modelled by manually specifying a model trans-
formation that applies a certain change to the model. For example, one could model the
addition of a cache component for parts of the system where the cache hit probability
can be estimated. Again, a language for simplified modelling on the model level would be
required.

Apart from the possible simplifications, the DoF metamodel already provides the expres-
siveness to define any degree of freedom that has a primary changeable element on the
metamodel level. Software architects can also deliberately decide to model degrees that
violate teh degree of freedom constraints presented in Section 6.1, and then select the
applicable degree of freedom instances in the design space review step.

(Primary) Changeable elements: Any metamodel element.

For the simplified specification on the model level, the changeable elements are determined
for a specific system at hand (i.e. for a specific software architecture model at hand).

Quality Effects: Any

Metamodel-specific definitions: As this type of degree of freedom is defined for a
specific system, we do not discuss a generic example on the metamodel level here.

Example: For our simple example, a system-specific additional degree of freedom could
be to add a QuickConfirm component between BusinessTripMgmt and BookingSystem
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Figure 7.8.: QuickConfirm Cache for the Example of a System-Specific Degree of Freedom
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Figure 7.9.: System Using the QuickConfirm Cache for the Example of a System-Specific
Degree of Freedom

that checks a requested booking whether it is one of the standard bookings and if yes, it
asynchronously calls BookingSystem and then returns the control flow to the Business-

TripMgmt with a confirmation of the booking, without waiting for the response. Figure 7.8
shows the QuickConfirm component.

Figure 7.9 shows the resulting model if this change is applied to the initial model. This
degree opens up a new Allocation Degree, here the allocation to S2 has been chosen.
Figure 7.9 is just one example of how to apply this change. Like every degree of freedom,
this degree can be combined with other degrees instantiated for the example system.

7.5. Limitations

For a system whose design does not follow the component-based paradigm (cf. Section 2.1),
our method can only be applied with limitations. First, as a precondition, a component-
based model has to be created for the system. A number of components need to be
identified, as no degrees of freedom will be available for a monolithic system. Reenginee-
ring tools like presented by (Krogmann et al., 2010) may be used to extract component
models from the system. Still, if the implementation does not follow the component-based
principles such as communication via defined interfaces, the software architect has to re-
view the found degrees of freedom carefully and decide whether they can be applied to the
system at hand. Possibly, he needs to define additional design space constraints.
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7.6. Summary

This chapter presents the degrees of freedom that are available in CBA in general.
Software-related degrees change the application-layer software of the system. Deployment-
related change the mapping of the application-layer software to hardware, the configuration
of hardware, and further options in the software stack. For most of the presented degrees,
the formal definition for the degree in the PCM is given.
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8. Optimization

This section describes our optimization method for efficiently finding good architectural
models in the design space defined in the previous section. The optimization method
is metamodel-agnostic and thus can be applied to any CBA model for which degrees
of freedom have been defined. Furthermore, even the realization as a software tool can
be implemented without knowledge on the CBA metamodel. To solve the optimization,
multi-objective evolutionary optimization is applied.

Section 8.1 describes the optimization problem and discusses the applicable optimization
techniques. Section 8.2 presents how we apply evolutionary optimization to the problem.
In Section 8.3, we present our extension to evolutionary optimization that allows to include
more domain-specific knowledge as tactics operators.

Section 8.4 presents the architecture for a CBA optimization framework that automates
the described optimization method while being independent of the used CBA metamodel.
Finally, Section 8.5 discusses additional aspects and concludes the chapter.

8.1. Optimization Problem

In this section, we present the optimization problem to find the optimal software archi-
tecture models in the design space described in the previous chapter. Having defined the
optimization problem, we can apply optimization techniques to automatically solve it and
thus automatically improve the given initial software architecture model.

Section 8.1.1 formally describes the optimization problem that results from the degree
of freedom definitions of the previous chapter. To select an appropriate optimization
technique, Section 8.1.2 discusses the properties of the optimization problem. Finally,
Section 8.1.3 explains why we choose metaheuristics to solve the optimization problem.

8.1.1. Formalization of the Optimization Problem

An optimization problem is defined for a specific architectural model M , a set of DoFI D
derived for M , and a set of quality criteria (cf. Section 2.2.2) of interest, which we denote as
set of objectives O. To define the optimization problem, we discuss the objective function
to evaluate candidates and the decision variables to represent candidates in the following.
To improve the readability, we drop the indices M and D from the unconstrained design
space D, the feasible design space F , and the function T .

163



164 8. Optimization

The quality evaluation function Φ∗q (cf. Section 2.4) defines the quality evaluation with
respect to quality criterion q of an architecture model. However, Φ∗q is not defined on the
unconstrained design space D, because D may contain models that do not conform to the
metamodel, e.g. because they violate static semantics. Thus the quality prediction may
be undefined. To enable reasoning on the unconstrained design space, let us define a more
robust evaluation function on top of Φ∗q . To do so, we add a value undef to the domain of
the quality criterion q: Vq := V∗q ∪ undef. Then, we define the robust candidate evaluation
function as:

Definition 8.1 Candidate Evaluation Function
The candidate evaluation function for a quality criterion q for the unconstrained design
space D is defined as

Φq : D → Vq
with

Φq(a) :=

{
Φ∗q(a) if a JMM

undef else

To define an optimization problem, we require an order ≤i on the quality metric’s domains
which defines preferable values (cf. Section 3.2.2).

Definition 8.2 Order on a Quality Metric Domain

An order on a quality metric domain describes which quality values are preferable in this
domain and is denoted as ≤qm for a quality metric qm. The order ≤qm is defined as the
total order on the quality criterion domain Vqm so that

a ≤qm b⇔ a is better than or equal to b in terms of qm

with a, b ∈ Vqm. We define undef to be the worst value in Vqm under ≤qm.

For example, a response time of 2 seconds is better than a response time of 5 seconds. For
probability of expected service delivery on demand, 0.9 is better than 0.8. The order >qm

is defined as the opposite, but in this case strict order: a >qm b ⇔ a is worse than b in
terms of the quality metric qm (1).

We assume in the following that every quality metric’s domain has such a total order. Note
that there are quality metric domains in which such an order does not come naturally, for
example the quality metric “response time distributions”. These quality metric cannot be
used directly but have to be refined to result in a quality metric with an order. To continue
the example, we could refine the metric“response time distribution”by applying a function
for percentiles, e.g. what response time 90% of the requests fulfil. Quality metrics that
cannot be ordered in this way have to be split into multiple metrics, each reflecting an
aspect that is not comparable with the others.

In the following, we furthermore assume that a distance metric dqm is defined for each Vqm
so that we can quantify the distance of two values in Vqm. This assumption is later used
to assess candidates within a Pareto front. Many quality domains already have a metric:
For example, for mean response time, the time difference of two candidates can be used.
Some quality criteria, however, do not have an inherent metric. For example, if we assess
the security of a system by different levels low, medium, high, we do not have a metric.
In such cases, we define a default metric that assign natural numbers to each value in

1Formally, >qm is the complement of ≤qm.
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the quality domain based on their position in the total order ≤q. For security, we might
assign the numbers low = 1, medium = 2 and high = 3, so that the distance d(high,low)
is |1− 3|.

The optimization problem for a single quality criterion q then is to find the best candidate
a with respect to Φq(c). The best candidate is a candidate a∗ for that

∀a ∈ F : Φq(a) ≤m(q) Φq(a
∗) =⇒ Φq(a) = Φq(a

∗)

As we use the symbol ≤m(q) here, we also say that a is the minimal candidate.

As described in the previous chapter, the design space of candidates can be expressed
with a set of decision variables. The function T maps a decision vector to an architecture
candidate. Thus, we can define the optimization problem on the decision vectors instead
directly on the candidates. Applying the function T on a decision vector x ∈ O represents
a candidate T (x).

Thus, we can write the optimization problem classically as:

Optq : min
x∈O

Φq(T (x)) subject to c ∈ F

For the multi-criteria optimization problem, we can combine the set Q = q1, . . . , qn of
n considered quality criteria in a vector-valued objective function called multi-objective
candidate evaluation function

ΦQ : D → Vm(q1) × · · · × Vm(qn)

ΦQ(a) 7→ (Φq1(a), . . . ,Φqn(a))

Let
≺

min denote minimisation for Pareto optimality with respect to all ≤m(q), q ∈ Q as
described in Section 3.2.2. Then, the multi-criteria optimization problem can be defined
as follows

OptQ :
≺

min
x∈O

ΦQ(T (x)) subject to c ∈ F

The solution to this optimization problem is a set of Pareto-optimal candidates, which we
denote with P (D,Q).

8.1.2. Properties of the Optimization Problem

For the optimization problem defined in the previous section, we can apply optimization
techniques to automate the search for optimal candidates in the design space. A large num-
ber of optimization techniques for different types of problems have been proposed. The
choice of an applicable optimization technique depends on the properties of the optimiza-
tion problem. Thus, in this section, we discuss the properties of the optimization problem
defined in the previous section, before selecting an appropriate optimization technique in
the next section.

The problem is multi-objective, i.e. the objective function maps one candidate to a set of
quality criteria. The different quality criteria can be in conflict with each other, but not
necessarily. For example, if in a model where more expensive processors are also more re-
liable, and where no other degrees of freedom that affect reliability are given, performance
and reliability are not in conflict. Often, however, performance, cost, and reliability are
mutually in conflict. For example, distributing the system to several servers can improve
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performance, but can worsen reliability as more points of failures are introduces. Ad-
ditionally, costs are increased. At the same time, more reliable resources may be more
expensive. Formally, the objective function ΦQ does not introduce a total order on F , but
only a partial order (Pareto, 1896; Zitzler, 1999).

For complex quality attributes such as performance and reliability, the quality effect of
design option depends on other chosen design options. For example, selecting a component
that has fewer CPU demand but higher HDD load may be beneficial for performance in
a candidate where the component’s server has high CPU utilisation already but low HDD
utilisation. However, for a candidate where this component is deployed to a server with
low CPU utilisation and high HDD utilisation, it worsens performance. Even if we know
for some degrees of freedom that a design option will always have a positive effect on
the quality criterion, we cannot quantify it in advance without solving the model. For
example, although we can predict that increasing the server speed in an open workload2

will improve response time, we do not know how much, as this depends on the utilisation
of all servers. Thus, we have no isolated quality effect of a design option in general.

The problem usually has discrete decision variables. While some DoFI might be modelled
with a continuous variable (e.g. “Non-functional Component Configuration Parameters”
or “Resource Selection” modelled by a continuously changing variable), most DoFI have a
discrete set of design options (all other DoFI from Chapter 7). Some design option sets
are unordered (for example the available servers in the Allocation Degree).

The range of values is constrained by practical reasons (for example, no arbitrarily fast
CPU or arbitrarily large thread pool is possible in practice). Thus the discrete design
option sets are finite and every discrete decision variable can only take a limited number
of values. There is no infinite number of threads possible, for example, but there is a
current maximum over all possible operating systems and environments. For continuous
decision variables, an approximation with floating point values, which is a finite set, is
used in computing anyway. Thus, continuous decision variables can only take a limited,
but potentially large, number of values.

The size of the decision space depends on the instantiated DoFI in D. For a set of DoFI
D with discrete design option sets only, the size is |O| = Πd∈D |designOptions(d)|. Thus,
already with a few DoFI, each having a number of design options, the decision space
becomes large. For example, the decision space of the example in Section 6.2 with its 7
DoFI (three with design option set size three, three with size 13, and one with size 2) is
33 · 133 · 2 = 118638. If DoFI with infinite design option sets are present, the decision
space is infinite in theory. However, considering approximations with float values again,
the design space is finite, but very large, too.

We want to support expressive quality prediction techniques such as LQN solution using
mean value analysis (cf. Section 2.4). Additionally, the improvement method should be
extendable to other any quantitative quality prediction techniques for any quality criteria.
Thus, we cannot assume any properties of the quality criterion evaluation functions Φq

and thus cannot assume any properties such as linearity, continuity, or differentiability for
the combined objective function ΦQ. We say that ΦQ is a black-box function.

Additionally, the evaluation of the quality properties is computationally expensive. Even
if the approximate analytic LQNS analysis for PCM models is used, the evaluation of
a candidate can take several seconds or minutes, depending on the requested accuracy.
Similarly, the reliability prediction for the PCM may take long for complex models and
high prediction accuracy. While the accuracy of the predictions is not required to be very
high for candidate evaluation, the quality evaluation is still orders of magnitude longer than

2In a system with a closed workload, this example is not even right in general
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the logic of e.g. an evolutionary algorithm (selection, mutation, and reproduction steps as
described in Section 8.2). Thus, an exhaustive enumeration of all possible solutions is not
feasible for a large decision space.

To summarise, our optimization problem has the following properties

• Multi-objective: The objective-function ΦQ objective function maps one candidate
to a set of quality criteria.

• No isolated quality effect: The effect of single design option cannot be predicted in
isolation in general, but only together with chosen values for the other degrees of
freedom.

• Discrete decision variables: A subset of the decision variables is discrete.

• Finite design space: The set of design options is finite (or can be simplified to be
finite) and the set of DoFI is finite.

• Black-box function: No assumptions possible for properties of the objective function
ΦQ.

• Computationally expensive: As we use expressive quality models, determining ΦQ

for a candidate is computationally expensive.

Simple instantiations of the optimization problem do not have all these properties. For
example, if only costs in the PCM are considered, the quality effect of design decisions can
be determined in isolation, because our cost model only sums up the costs of components
and servers. Additionally, the problem is then not multi-objective. However, we will not
consider such simple versions of the problem further, because they are of limited practical
use.

8.1.3. Applicable Optimization Techniques

For the optimization problem characterised in the previous section, we cannot apply classic
techniques such as Branch-And-Bound (Dakin, 1965) (see Section 3.3), because we cannot
make any assumptions about the objective function. A common class of optimization
techniques that does not make any assumptions about the problem, but allows any black-
box function as objective function are metaheuristics (cf. Section 3.4). Metaheuristics have
been successfully applied to similar problems in software engineering (Harman, 2007).

We chose not to use a rule-based approach (which employ local search techniques). Rule-
based methods (Xu, 2008; Cortellessa and Frittella, 2007; Parsons and Murphy, 2008;
McGregor et al., 2007) target to find designs that satisfy a set of predefined quality re-
quirements. As discussed in Section 5.1, we expect that software architects cannot specify
meaningful quality requirements in advance, but need an approximation of the Pareto-front
in order to understand the design problem and trade-off the available quality criteria.

Additionally, rules target to improve a single quality criterion. Applying only rules for
one criterion may thus result in a candidate that is optimal with respect to this criterion,
but exhibits bad values for other quality criteria. Mixing rules for all criteria could result
in an undirected exploring of the search, e.g. if a rule for one criterion reverts a rule
of another criterion. Thus, to use such rules for multi-objective problems with multiple
quality criteria, an additional high-level search algorithm is required that decides what
rules to apply, possibly based on Pareto-dominance. Thus, single-objective rules alone
cannot solve the multi-objective problem efficiently.

Finally, the rule-based methods are restricted to limited degrees of freedom each. No
a-priori knowledge about the effects of many of the degrees of freedom is available. For

167



168 8. Optimization

example, in the PCM, rules for the exchange of components would require a numerical
solution for optimal component composition, which is not possible in general because of
the parametrisation of the component SEFFs. For other degrees of freedom, such as
allocation, rules can give guidance, but cannot foresee the complexity of performance
metrics introduced by software resources and contention effects. For example, if passive
resources such as thread pools are involved, allocation of components to servers cannot be
solved based on the resource demand of components only. Additionally, network utilisation
had to be taken into account.

Metaheuristic can search regions of the search space for which no prior knowledge about
the relation between choices and resulting quality properties exists. They only require a
quantitative evaluation function for each quality criterion based on an architecture model
and make no more assumptions on the function’s properties or the model’s properties
(black-box function).

Still, the existing knowledge about the design space is not ignored by our method, but
integrated as tactic operators described in Section 8.3.

Methods that do not require any a-priori preference articulation, but target to provide a
well-spread Pareto-front are beneficial to provide the software architect with a set of solu-
tions to assess the trade-offs and decide for one candidate (cf. Section 3.2.1). Here, methods
that explore the Pareto-front using Pareto dominance seem promising because they are
independent of weighting the objective functions and can find a well-spread Pareto-front
(cf. (Deb, 2001, p.172 et seq.) and (Veldhuizen and Lamont, 1998)). Methods that use
objective function weighting during the exploration may result in a not uniformly-spread
Pareto front (cf. example in (Deb, 2001, p.173)).

As described in Section 3.4, population-based metaheuristics are useful for multi-objective
problems because they generate multiple solutions in one run (Deb, 2001, p.7). In our
problem, the evaluation of a candidate (especially for performance) is computationally
expensive (e.g. simulation or LQN solution), which makes the possible parallel evaluation
of population-based methods desirable.

To summarise, we identify three properties for an optimization technique to be promising
for our optimization problem:

Metaheuristic to allow for any black-box objective function and multiple objective func-
tions

Pareto-based because no weighting of objectives is required

Population-based because the fitness evaluation can be parallelised

In this work, we use evolutionary algorithms (as for example described by Deb (2001)),
which are a popular type of population-based metaheuristics. Evolutionary algorithms
have been found useful for multi-objective problems (Coello Coello, 1999). Several evolu-
tionary methods that target to find a well-spread front have been suggested (Deb, 2001,
p.172–176). The optimization problem presented in Section 8.1.1 can be directly handled
by an evolutionary algorithm with a fixed genome length, with each gene representing one
DoFI.

We do not use Ant Colony Optimization (cf. (Blum and Roli, 2003, p.289 et seqq.))
because partial solutions cannot be evaluated with the quality prediction techniques. One
would require a heuristic that evaluates the attractiveness of partial solutions, i.e. solutions
where only some choices have been made while for others no values have been chosen. Thus,
the constructive approach of Ant Colony Optimization does not seem well applicable in
this problem.
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Most multi-objective simulated annealing (MOSA) (Suman and Kumar, 2006) are not
population-based or use weights to combine the objective functions and thus are not used.
Hybrid methods that combine MOSA with evolutionary methods have been suggested and
could be used here as well.

Simple Estimation of Distribution Algorithms (EDAs, cf. (Blum and Roli, 2003, p.288
et seq.)) that assume no interactions of decision variables are not promising because
such independence of the decision variables is not given in our problems. For quality
optimization, especially performance, the decision variables may highly depend on each
other. For example, the effect of the processor speed of a server on the mean response
time highly depends on what components are allocated to it. Thus, the effect of single
genes to the objective function cannot readily be estimated by a distribution function.
Other types of optimization approaches that build probabilistic models during the search
and consider interaction of decision variables could be promising (survey in (Pelikan et al.,
2002)), however, and could be studied in future work.

More multi-objective population-based metaheuristics that use Pareto-dominance have
been suggested and could be evaluated further to be used in this work as well. An example
is particle swarm optimization (Parsopoulos and Vrahatis, 2002; Coello Coello and Salazar
Lechuga, 2002).

Evolutionary methods are the most commonly used multi-objective population-based me-
taheuristics. Here, it has been shown for several case studies that elitist algorithms are
superior (Deb, 2001, p.375 et seqq.,p.379) (Coello Coello et al., 2007, p.304). In this work,
we adopted the elitist evolutionary optimization technique NSGA-II (Deb et al., 2000). We
chose NSGA-II because it has been very commonly used in optimization literature (Coello
Coello et al., 2010). It has performed better than another popular algorithm SPEA-2
(Zitzler et al., 2002a) on a number of test problems when two objectives are optimized
while at the same time having a lower computational complexity than SPEA-2 (Deb et al.,
2003).

Note, however, that SPEA-2 is expected to produce better distribution in three and more
dimensions, while having higher computational costs (Deb et al., 2003). A clustering-based
crowding measure has been suggested for NSGA-II (Deb et al., 2003) that could be used
in our method for optimization problem instances where the number of objectives is 3 or
higher.

Another interesting algorithm that particularly focusses on problems with expensive eva-
luation functions is ParEGO (Knowles, 2006). ParEGO builds an approximated model of
the search landscape while optimizing with the goal to converge to promising solutions qui-
ckly, without too many function evaluations. However, ParEGO targets problems where
the candidate evaluation takes minutes or hours so that only up to 250 candidate evalua-
tions can be performed. Evaluations in our work are faster, so that more evaluations can
be performed. The current ParEGO implementation is reported to deteriorate in speed
for more than 200 evaluations 3, so it could not be used as-is.

In future work, it could be beneficial to adopt more recent results in the field of evolutionary
algorithms with respect to dominance relations, other preference relation, or archiving
strategies, as sketched in Section 3.5.3. However, it is difficult to assess which technique
is best in general because the optimization techniques’ performance depends on search
problem at hand. Comparisons of evolutionary optimization techniques in the literature
depend on the evaluated case study. Furthermore, Wolpert and Macready (Wolpert and
Macready, 1997) have stated that all optimization techniques perform the same on average
when being applied to all possible optimization problems. Thus, from reports that an

3Documentation in main class in http://dbkgroup.org/knowles/parego/ParEGO.tar.gz
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algorithm has performed better than NSGA-II on a test problem, we cannot conclude that
it will perform better for our software architecture optimization problem. An experimental
evaluation of numerous optimization techniques for our type of optimization problem is a
large effort and outside the focus of this work.

As a consequence, in this work, we focussed more on how to adapt the NSGA-II algorithm
to our problem at hand using domain-specific knowledge (Section 8.3) and considering
potentially available quality bounds (Section 8.2.5.2) instead of experimentally evaluating
which existing evolutionary optimization techniques to use as a basis. Our extensions can
as well be applied to any other evolutionary optimization technique used as a basis.

In the following, we describe our an evolutionary optimization technique based on the
NSGA-II evolutionary algorithm.

8.2. Evolutionary Optimization

This section describes how we apply evolutionary optimization to the described optimiza-
tion problem. Our technique is based on the NSGA-II evolutionary algorithm (Deb et al.,
2000). The following subsections describe how the steps of an evolutionary optimization
are realised in this work, and discuss the decisions made.

Section 8.2.1 gives an outline on our evolutionary optimization technique. The following
sections discuss details of the optimization technique, namely the representation of can-
didates (Section 8.2.2), the evaluation of candidates (Section 8.2.3), the reproduction of
candidates, considering constraints (Section 8.2.4), and the strategies for candidate se-
lection (Section 8.2.5). Finally, Section 8.2.6 briefly discusses stopping criteria for the
algorithm.

Section 8.3 then describes our extension to evolutionary optimization that allows to include
more domain-specific knowledge as tactics to guide the search.

8.2.1. Outline

Figure 8.1 shows the process model of our method and puts the evolutionary optimization
step into context. The optimization is described here exemplary for our current reali-
sation with the PCM and the NSGA-II evolutionary algorithm (Deb et al., 2000) (cf.
Section 3.5.3) as implemented in the Opt4J framework (Lukasiewycz et al., 2010). It can
as well be used for other software architecture modelling languages and other population-
based metaheuristic search techniques, because the process is generic.

The process starts with an initial model of a component-based software architecture (initial
candidate) and modifies it along the degree of freedom instances. As the software model
contains all required annotations, all steps of the search can be completely automated.

In step 1 Search Problem Formulation, the DoFI are instantiated automatically based on
the DoF description and the initial model (cf. Section 6.4.1). After this step, the software
architect may review the found DoFI and adjust them, e.g. by removing unwanted options
or adding additional system-specific degrees.

Step 2 is the Evolutionary Optimization. To better convey the optimization step, the first
two iterations of an exemplary run for the Business Trip Booking System example (cf.
Figure 2.13) is shown in Figure 8.2 and is used to explain the steps in the following. To
better convey the concepts, we simplify the steps here. More detail is provided in the
following sections. The run starts with the initial given candidate c1.

The evolutionary algorithm is configured with population size n and additional parameters,
explained in the next sections. After the search problem formulation, n−1 random decision
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vectors are generated to form the initial population. Then, the following optimization steps
a–c are repeated until a stop condition (see below) is fulfilled:

a© Evaluation: In the first step, each newly derived candidate is evaluated for each
quality criterion of interest. To do so, every decision vector is translated to a soft-
ware architecture model and this model is evaluated using standard techniques (e.g.
LQN) as described in Section 2.4. As a result, each candidate is annotated with the
determined quality properties. In our example, candidates c1 to c4 are evaluated in
the first iteration, and candidates c5 to c8 are evaluated in the second iteration. The
results for each candidate are depicted in Figure 8.3.

b© Selection: The selection step removes unfit candidates and selects candidates for
reproductions.

After the first iteration, the population grows after each reproduction step. In the
selection phase, the population is again reduced by removing less promising candi-
dates. The selection strategy must balance between exploitation and diversity: It
must prefer better candidates so that the quality of the population increases over
times. On the other hand, it should keep a variety of different candidates, even
if some are inferior, so that the search does not prematurely converge to a local
optimum. For our example, let us assume that we simply filter Pareto-dominated
candidates and only keep Pareto-optimal ones. Then, candidates c2 and c4 are re-
moved in the selection phase of iteration 1, and candidates c5 and c7 are removed in
the selection phase of iteration 2.

Furthermore, µ candidates are selected for reproduction. In this example, all candi-
dates except the removed ones are selected. Details on the selection can be found in
Section 8.2.5.

c© Reproduction: Based on the µ selected candidates, λ new candidate solutions are
derived by “mutation” or “cross-over” or they are randomly created. With mutation,
one or several design options are varied. In our exemplary run, based on the initial
candidate c1, a new candidate c5 with changed processor speed for server 1 is derived
in the first iteration. Candidate c7 derives from c3 in the first iteration by reallocating
QuickBooking to S1. With cross-over, the genotypes of two good candidate solutions
are merged into one, by taking some of each candidates design option values for the
cross-over. For example, candidate c1 and candidate c3 are combined by cross-over
in the second iteration to produce c6.
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If a candidate is created that is infeasible due to model constraints (cf. Section 6.4.3),
or that is already in the population, it is discarded and a random candidate is genera-
ted instead. More details on the reproduction step can be found in Section 8.2.4. In
Section 8.3, we discuss how performance domain specific tactics are integrated here
to guide the search. For example, a tactic moves a component from an over-utilised
server to a lightly utilised server.

Over several iterations, the combination of reproduction and selection lets the population
converge towards the front of globally Pareto-optimal solutions. If the search also keeps
a good diversity of candidates, we can find solutions near to the global optima. In our
example, a resulting solution with a good trade-off is c6, shown in Figure 8.4. It is superior
to the initial candidate in average response time (3.23 sec) and cost (43), and has just as
slightly higher probability of failure on demand (74E-04).

The most common stop criterion is a predefined maximum number of iterations, after
which the algorithm stops and outputs the front of Pareto-optimal candidates obtained
so far. More sophisticated stop criteria use convergence detection to estimate whether a
continuation of the search would improve the current results, and stop the search if this is
not expected. Such criteria are discussed in Section 8.2.6.

In a final Intensification step (step 3), the neighbourhood of the found Pareto-optimal
candidates is searched for even better candidates. For each candidates found by the pre-
vious step, it is checked whether any tactic can be applied to further improve it. This step
is described in more detail in Section 8.3.3.

Finally, in the forth step Present Results, the resulting Pareto-optimal candidates are
presented to the software architect who can make well-informed trade-off decisions.

8.2.2. Candidate Representation

The candidate representation is straightforward with our formulation of the design space
(cf. Section 6.4) and evolutionary algorithms. A candidate model is represented by a
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candidate vector in the decision space. This representation can directly be used as the
genome of the evolutionary algorithm. For each DoFI, one gene captures the chosen value
for the design option set. The genes are typed based on which DoF the DoFI belongs to.
Then, the genetic operators can determine the possible values directly from the DoFI’s
design option set and can even handle genes of different DoF differently. The decision
space in our problem formulation has fixed dimensions, so the genome has a fixed length.

A DoFI d′ may depend on the chosen values for another DoFI d, as discussed in Sec-
tion 6.4.1. Only if a subset of values for d is chosen, the choices for d′ have an effect on
the quality properties. Thus, varying d′ as long as other values are chosen for d does not
progress the search. This knowledge is reflected in this work by introducing non-coding
regions in the genome. Each gene has a flag whether it is currently active or not in a
candidate. This flag expresses that the gene will certainly have no effect if it is inactive
and thus should be ignored by genetic operators. Thus, genetic drift (i.e. the filling of the
population with quasi-equal candidates that bring to benefit to the search) due to inactive
regions (Aguirre and Tanaka, 2005, Sec.6.2) is prevented. Note that the flag does not
ensure that a gene will certainly have effect on a quality attribute if it is active.

Inactive genes are determined in two ways: First, if a DoFI d opens up new DoFI d′ in
the automated DoFI instantiation by adding new model elements (cf. 6.4.1), we know that
d′ is active only for values of d’s primary changeable element that lead to the addition
of this model element. We can keep track of the opened DoFI in the automated DoFI
instantiation algorithm (page 128 in Section 6.4.1) in lines 57–68.

Second, the DoF description is enriched by additional constraints if applicable. For
example, the speed of a processor is only relevant for performance if at least one com-
ponent is deployed to the server containing the processor. This condition can be expressed
by an OCL constraint that describes the conditions under which instances of this DoF
are inactive. To continue the example, the OCL constraint for the Allocation DoF in the
PCM is given below, with the variable allocation denoting the unique allocation model.

context ResourceContainer
de f : i s A c t i v e : Boolean =
a l l o c a t i o n . a l l oca t i onContext−>e x i s t s ( ac | ac . r e sourceConta ine r = s e l f )

Third, software architects might manually specify conditions when genes are active for
their system-specific degrees of freedom.

The resulting metamodel for candidate vectors in EMOF is shown in Figure 8.5. Corres-
ponding to the metamodel for DoFIs (Figure 6.9), which has specialised classes for design
option sets with different value types, candidate vectors are modelled depending on the
data type of their values. For each DoFI, a Choice defined the chosen values and thus
represents a gene. For integer and real values, the classes ContinuousRangeChoice and
DiscreteRangeChoice are used to select one value from the design option set of the cor-
responding range degree of freedom. For design option sets where metamodel elements are
referenced, the ClassChoice refers to the chosen Entity.

OCL constraints (not shown here) ensure that a choice matches the type of referenced
degree of freedom, so that a ClassChoice can only be used if the referenced DoFI is a
ClassDegree.

With our candidates representation, not every candidate encoded by a genome is a feasible
candidate, because the decision vectors only describe the unconstrained design space, not
the feasible design space. However, we assume that few candidates in the design space
are infeasible compared to the total number of candidates, because degrees of freedom
usually describe independent choices. One of the core ideas of component-based software
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Figure 8.5.: Metamodel for Candidate Vectors in EMOF

design is the encapsulation of concepts, so this assumptions seems valid. In the CBSE
degree of freedom we have discussed so far, only the allocation degrees require interaction
constraints. Here we may assume, at least for business information systems, that servers
are pairwise connected (e.g. if they all reside in a computing centre), and that they offer
similar resources. The optimization of arbitrary configurations (cf. Section 7.3.6), however,
may lead to more constraints if the feature model is highly constrained.

For systems and CBA metamodels this assumption does not apply to, more sophisticated
constraint handling strategies or even a different candidate representation may be required.
If the infeasible candidates are limited to interactions of few DoFI, these degrees could
also be joined to form one composed DoFI that enumerates all feasible combinations of
the inner DoFIs design option sets. However, such a composite degree cannot be exploited
by crossover operators any more, and thus might lead to worse optimization performance.

8.2.3. Candidate Evaluation

This section presents the candidate evaluation. First, Section 8.2.3.1 discusses how the
quality function formally presented in Section 8.1.1 is modelled and realised in the evo-
lutionary optimization technique. Then, Section 8.2.3.2 describes the candidate vector
evaluation during the optimization.

8.2.3.1. Quality Function Definition

The evaluation function ΦQ is conceptually described in Section 8.1.1. However, concrete
quality prediction techniques, such as LQNS and SimuCom, are metamodel-specific: they
require an input model in a certain format (e.g. LQN or Palladio). In this section, we
discuss how to bridge the gap between the metamodel-specific prediction technique and a
metamodel-agnostic optimization method.

The main tool to close the gap is a common CBA-metamodel-agnostic quality metamodel
for describing quality criteria and quality properties. This metamodel serves as an interface
between the prediction technique and the optimization. An adaptor for each prediction
technique declares which quality criteria the technique supports. Additionally, it offers

175



176 8. Optimization

QML::QMLContract::Criterion
QualityProperty

«eReference» /value : EJavaObject

NumericQualityProperty ElementQualityProperty

QML::QMLContractType::Element
IntegerQualityProperty

value : EIntegerObject

DoubleQualityProperty

value : EDouble

* 1

+ criterion

*

1

+ value
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to evaluate a passed candidate model for a set of quality criteria. The results are stored
in the common quality property model. In the optimization technique, the optimization
problem is defined using terms of the common quality metamodel.

For the quality model in EMOF, we adopted the Quality of service Modelling Language
(QML) (Frølund and Koistinen, 1998), which has been originally proposed to model quality
requirements for a system. The relevant concepts in QML are the following: In a Contract
Type in QML, a quality Dimension describes the domain and order of a quality criterion.
For example, a Dimension can be response time with real-numbered values and a decrea-
sing order (i.e. a smaller value is beneficial). A Contract in QML defines Constraints

for these dimensions. A Constraint defines an Evaluation Aspect for a Dimension and
a worst acceptable value. An Evaluation Aspect defines how the Dimension is interpre-
ted, e.g. what point estimator such as mean or percentiles should be considered. Here,
as we are interested in Pareto-fronts to study trade-offs, we added the possibility to spe-
cify Objectives. Objectives only define the Evaluation Aspect, without defining a
worst acceptable value. The new common superclass of Constraint and Objective is
Criterion, as it corresponds to the definition of a quality criterion (cf. Section 2.2.1).

We metamodelled QML in EMOF and extended it so that it can be annotated to CBA
models specified in EMOF. Appendix D presents QML, shows the resulting EMOF meta-
model, and discusses the adoptions in more detail.

To express the results of a quality prediction, we model quality properties as shown in
Figure 8.6. The quality property specification refers to the QML criterion definition used
to defined the optimization problem (cf. Appendix D). Values of quality properties can be
integer values (IntegerQualityProperty), double values (DoubleQualityProperty), or
other values defined in the QML definition of their respective dimension. OCL constraints
(not shown here) ensure that the QualityProperties match the domain of the referenced
QML Criterion. In some cases, a quality property for a quality criterion cannot be
determined for a candidate vector, because the candidate model is invalid or because the
quality prediction could not provide a meaningful value. In that case, no QualityProperty

is defined for this criterion and this candidate vector, which corresponds to an undefined
value.

An adaptor for a quality prediction technique then has to provide the following interface.

Declare Dimensions: The quality prediction adaptor declares a set of quality Dimensions

it supports (for example, response time or POFOD), referring to a repository of QML
dimensions.

Name supported Evaluation Aspects: For a given dimension, a quality prediction adap-
tor lists the supported Evaluation Aspects, such as mean, variance, percentiles,
etc.
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Figure 8.7.: Candidate Evaluation Steps

Evaluate model and return Quality Properties: Finally, when a candidate model is pas-
sed to the quality prediction adaptor, it evaluates the model using the underlying
quality prediction technique, determines the result values for the requested dimension
and evaluation aspect, and returns the resulting QualityProperty element.

8.2.3.2. Candidate Evaluation during the Search

Candidate evaluation consists of three steps, informally shown in Figure 8.7. First, the
genome, i.e. in our case the candidate vector, is translated to the so-called phenotype,
which in our case is a candidate model. Second, the quality prediction for the quality
attributes of interest is executed for the candidate model, e.g. with SimuCom or LQNS
for Palladio. Third, the quality property of interest, e.g. the mean response time of one
service of the system, is extracted from the results.

In the candidate translation step, a candidate vector (i.e. a genome) uniquely identifies
a candidate model. The candidate transformation function T , which creates a candidate
model from a candidate vector based on the initial candidate model, is discussed in Sec-
tion 6.4.2. The function can be defined generically for a metametamodel.

If the metametamodel supports reflection, such as EMOF and Ecore in EMF do, these
capabilities can be used and a single generic transformation can represent T , as shown in
Appendix B.3 for EMF.

Otherwise, a higher-order transformation T needs to be created for the metamodel, that
automatically creates a transformation Ti for each DoF gi. A straightforward option would
be to write a generic model-to-text transformation (e.g. with the XPand language (Efftinge
et al., 2008, chapter II.5)) that creates the DoF-specific transformations Ti, which can then
be used during optimization.

In the candidate model evaluation step, the created candidate model, conforming to the
CBA metamodel at hand, is fed into the quality prediction (cf. Section 2.4). For example,
for performance quality criteria, the candidate model can be transformed into a queueing
network model and solved with e.g. Layered Queueing Network Solver (LQNS) (Franks
et al., 2009). The result of this step is a prediction-model-specific output. For example,
LQNS annotates the predictions results, i.e. response times of all LQN entries and utilisa-
tion of all LQN processors, to the input LQN model.

If the accuracy of quality evaluations can be configured, it could be increased in this phase.
For example, the LQNS tool allows to configure a convergence value that defines what
accuracy is required in the analysis of a candidate. The larger the convergence value, the
faster the candidate can be evaluated, but the more inaccurate are the results. While it it
useful to have quick candidate evaluation at the beginning of the evolutionary algorithm, it
is more important to have accurate results in later phases and in the intensification phase.
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Figure 8.8.: Metamodel for Evaluated Candidate Vectors in EMOF

Furthermore, different candidate evaluation techniques could be used depending on the
phase of the optimization, as for example suggested by (Buchholz and Kemper, 2006).

In the last step of result interpretation, the quality properties of interest must be retrieved
from the quality prediction results and stored with the candidate vectors. For our EMOF
model, we attach the quality property of interest presented in the previous subsection to
the candidate vector as shown in Figure 8.8. For performance, additional quality properties
such as utilisation of servers are stored in a result decorator model (Krogmann et al., 2009)
so that tactics can interpret them (cf. Section 8.3). Similarly, more detailed result models
can be added for other quality properties to make use of domain-specific knowledge.

8.2.4. Candidate Reproduction

We use the two standard operators crossover and mutation (cf. Section 3.5.2) and our
tactics operators. The use of tactics operators is described in Section 8.3.2.

The following briefly describes how the two standard genetic operator types mutation
and crossover are used in this work (Section 8.2.4.1). Then, we discuss how produced
candidates that are infeasible due to design space constraints are handled in Section 8.2.4.2.

8.2.4.1. Reproduction Operators

If no tactics are used, we randomly choose whether to apply the crossover operator based
on the configurable crossover probability. Additionally, each candidate (resulting from the
crossover or unchanged) is mutated.

To increases the diversity of the population, we check the outcome of the reproduction
step for duplicates (i.e. whether a generated candidate has been considered before), and if
yes, we replace them with random candidates.

In the context of quality optimization of CBA, there are some degrees of freedoms that do
not have an order (e.g. component reallocation). Thus, a hybrid mutation operator that
applies different mutation strategies to different types of degrees of freedom has been cho-
sen, as suggested by (Deb and Goyal, 1996). When the hybrid mutation operator is applied,
it changes each gene in the genome as follows: For the part of the genome representing
degrees of freedom with an order and a meaningful distance (i.e. ContinuousRangeDe-
grees), the gene is varied by a small random amount using a polynomial distribution (cf.
(Deb and Goyal, 1996)). For genes representing choices of DiscreteRangeDegreess or
EnumerationDegrees, a new value is randomly chosen from all allowed values following a
uniform distribution.

We use probabilistic mutation with a mutation rate in this work (cf. Section 3.5.2.1). To
be able to steer the intensity of mutation, we added an additional mutation intensity factor
that can be used to increase or decrease the mutation probability. Our mutation rate is

mutation rate = min(
mutation intensity

number of genes
, 1)

An mutation intensity of 1 leads to the often used mutation rate of mutation intensity
number of genes , while

a higher mutation intensity increases the rate up to one, and a lower intensity decreases
the rate.
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An extension to the optimization presented in this work could be the use of adaptive
mutations that vary the mutation rate, mutation intensity, and/or mutation strategy over
time. A recent review on different mutation strategies can be found by Deep and Thakur
(2007).

Concerning the crossover operator, the genome in this work has with fixed length, so we
use same crossover point in both genomes. Because the location of a gene in the genome
is arbitrary in this quality optimization of CBA problem (see 8.2.2), we expect crossover
operators that do not respect the gene location to result in better solutions. Thus, we use
the uniform crossover operator (cf. Section 3.5.2.2).

8.2.4.2. Design Space Constraints

In our problem formulation, different types of constraints in the design space need to
be considered (cf. Section 6.4.3). First, the unconstrained design space spanned by our
candidate representation contains infeasible candidates (cf. Section 8.2.2). Second, the
software architect may decide to add additional system-specific constraints to the problem
that are not covered by the degrees of freedom but rather caused by aspects of the CBS
not captured in the CBS model.

As mentioned in Section 8.2.2, we assume infeasible candidates are rare in the unconstrai-
ned design space. Thus, we can apply a simple constraint handling technique and discard
new candidates that are infeasible (also called death-penalty method) (Coello Coello, 2002)
in the reproduction step. Instead, a new random candidate is generated. To exclude the
case that the new random candidate is infeasible, too, we repeat the random creation until
a feasible candidate is found or a maximum number of tries has been reached.

More sophisticated constraint handling approaches have been suggested (see (Deb, 2001,
p.126 et sqq.)), but we expect that a more efficient approach does not lead to significantly
better optimization performance due to our assumption that infeasible candidates are rare.
If this assumption is found to be wrong for specific systems or in general in the future, other
constraint handling methods could be integrated. However, because infeasible candidates
possibly cannot be evaluated for their quality attributes, fitness penalty-based methods
are not suitable. Constructive methods could be used to repair a infeasible candidate by
analysing the violated OCL constraints and varying the candidate until all constraints are
satisfied. This approach can become computationally complex.

8.2.5. Candidate Selection

In this section, we discuss the strategy used for candidate selection. Section 8.2.5.1 briefly
discusses why we chose the NSGA-II selection as the baseline for our approach. Sec-
tion 8.2.5.2 presents an addition to the selection strategy that can be used if upper bounds
for acceptable quality are known, e.g. budgets for costs or maximum response times ac-
cepted by users.

8.2.5.1. Basic Selection Strategy

As described in Section 3.5.3, multiple selection strategies have been proposed. Tourna-
ment operators have been shown to perform well (Deb, 2001, p.89), as has elitism in the
search (Deb, 2001, p.240). Additionally, Pareto-based fitness assignments are useful if no
weights for the objectives are known, because they enable a well spread of candidates ap-
proximating the true Pareto front (Deb, 2001, p.173). Thus, we decided to use a selection
strategies with these properties in this work.

To assess the fitness of candidates in the selection process, we use the NSGA-II fitness
scheme based on Pareto rank and crowding distance as described in Section 3.5.3, as this
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strategy has lead to good results in many problems. The tournament selection operator
selects the candidate with the higher fitness in a tournament. The number of tournament
rounds can be configured.

Newer and promising fitness schemes exist, such as (Zitzler and Künzli, 2004), but their
performance has not been studied on as many problems as NSGA-II’s performance yet.
Recently, Zitzler et al. (Zitzler et al., 2010) suggested to make the fitness assignment and
thus the specification what type of Pareto front approximation is sought more configurable.
It would be interesting to integrate such configurable algorithms in our work and study
the effects of different selection strategies in more detail.

8.2.5.2. Considering Quality Requirements in Selection

As discussed in Section 5.1, the goal of an quality improvement process is to find the
Pareto front of candidates optimal under a number of quality properties of interest. As
we usually cannot model the user preference in advance, the optimization problem cannot
be reduced to a single-criteria problem.

Still, as discussed in Section 5.1, there may be information on the worst acceptable value of
a quality criterion. For example, a cost budget could be given. Such a quality requirement
can both be defined for a quality criterion to be optimized (e.g. we are interested in low
cost but at the same time there is an upper cost limit) or for a quality criterion that is
not considered in the optimization (e.g. there is a cost budget, but there is no reason to
spend less than the budget).

We consider quality requirements in the selection step of the optimization. A candidate
that does not fulfil one or more quality requirements is quality-infeasible and a candidate
that fulfils all quality requirements is quality-feasible. We use QML (cf. Appendix D)
to model the worst acceptable values for quality criteria independently of the objectives
defined for the optimization problem. Basically, a quality requirement defines a worst
acceptable value rq for a quality criterion q.

Definition 8.3 Quality-infeasible Candidate

A candidate c is quality-infeasible with respect to a set of quality requirements R defined
for a set of quality criteria Q, if at least one of its quality properties Φq(c) is larger than
the worst acceptable value for q:

quality-infeasible(c,R)⇔ ∃q ∈ Q : rq ≤q Φq(c)

A candidate that is not quality-infeasible is called quality-feasible.

With this definition, note that the quality properties of the system in different situations
can be considered. For example, we may want to optimize the mean response time of a
system for the most common usage scenario A, while also fulfilling that 90% of requests
in a rare peak load usage scenario P should have a response time of 10 second or less. In
this case, we define the quality criterion “mean response time of A” to be an objective and
we define a quality requirement on the quality criterion “90% quantile response time of P”
with the upper limit 10 second.

The quality requirements are constraints in the objective space for the optimization pro-
blem. We consider this type of constraints during the selection step instead of discarding
them right after evaluation, because (1) at least one quality function evaluation is required
to detect a violation, so computational effort has already been spent, and, more impor-
tantly, because (2) we cannot assume that the constraints only exclude some candidates
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from the set of feasible candidates as we can assume for the design space constraints (cf.
Section 8.2.4.2) so we may need to consider quality-infeasible candidates, too, when optimi-
zing in highly quality-constrained problems (cf. discussion of ignoring infeasible solutions
in (Deb, 2001, p.291)).

We modified the fitness in the selection step to prefer any feasible candidates over quality-
infeasible candidates and to discriminate between quality-feasible candidates. Two main
approaches how to consider constraint violations have been suggested. In the penalty
function approach, a penalty is added to the fitness candidates with violated constraints.
The disadvantage is that this approach is sensitive to the parameter of how much penalty
is assigned (Coello Coello, 2002). Several methods have been proposed that modify the
fitness without requiring parameters. Two of them are the constraint domination method
of Deb et al. (Deb, 2001, p.301 et seqq.) and the goal attainment method of Fonseca et al.
(Fonseca and Fleming, 1993). We included both methods in our optimization approach so
that the user can choose one.

In both methods, feasible candidates are preferred over quality-infeasible candidates in the
selection. The difference lies in the comparison of quality-infeasible candidates.

The constraint-domination approach d discriminates between quality-infeasible candidates
based on the amount of quality criterion violation. How the constraint violation is calcula-
ted is not defined by Deb (2001) but only illustrated with an example. To be independent
of the absolute values of the objectives, we normalize the difference between the quality
requirement and the quality property of c with the current range of values for this quality
criterion in the population. Let q be the quality criterion to consider, let rq be the required
value, let minq be the minimum value of q in the current population and let maxq be the
maximum value of q in the population. Then, the constraint violation for q is

vq(c) :=


|Φq(c)−rq |

maxq −minq
if rq <q Φq(c) ∧maxq > minq

|Φq(c)− rq| if rq <q Φq(c) ∧maxq = minq

0 if rq ≥q Φq(c)

The overall constraint violation v(c) of a candidate is v(c) =
∑

q∈Q vq(c).

For example, if a candidate violates a mean response time requirement of 5 seconds because
it has a mean response time of 6 seconds, we first determine the minimum and maximum
mean response times in the current population (let use assume these are 3 seconds and 7
seconds). Then, we normalise the violation of 6−5 = 1 with this range of 7−3 = 4. Thus,
the constraint violation is 1

4 in this example.

The consideration of quality-infeasibility and constraint violation is added to the fitness
assignment scheme with higher priority than the Pareto rank and the crowding distance.
The resulting fitness scheme fd in the presence of quality requirements is determined so
that fd(c) > fd(c′) iff:

• c is quality-feasible and c′ is quality-infeasible, or

• c and c′ are quality-infeasible and v(c) < v(c′), or

• c and c′ are quality-feasible and f(c) > f(c′)

The goal attainment approach g discriminates between quality-infeasible candidates based
on the Pareto dominance of unsatisfied quality criteria. If a candidate c is quality-feasible
and c′ is not, c is preferred. Otherwise, Pareto dominance only considering the quality
criteria of the violated quality criteria of c, denoted Vc ⊆ Q, is determined. We denote
this Pareto dominance as ≺Vc . If c dominates c′ under ≺Vc , c is preferred. Otherwise,
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if the quality properties of the violated requirements of c of both candidates are equal, c
is preferred to c′ if c fulfils more quality requirements or if c dominates c′ in its fulfilled
requirements Fc = Q/Vc, denoted as ≺Fc . Thus, the resulting fitness scheme fg(c) is
determined so that fg(c) > fg(c′) iff:

• c is quality-feasible and c′ is quality-infeasible, or

• c and c′ are quality-infeasible and c ≺Vc c
′, or

• c and c′ are quality-infeasible and ∀q ∈ Vc : Φq(c) = Φq(c
′) and ∃q ∈ Fc : q ∈ Vc′ , or

• c and c′ are quality-infeasible and ∀q ∈ Vc : Φq(c) = Φq(c
′) and c ≺Fc c

′′, or

• c and c′ are quality-feasible and f(c) > f(c′)

This method is only defined for quality requirements on quality criteria that are objectives,
too. The detailed definitions of the methods are found by Noorshams (2010).

The evaluation of the optimization performance gain due to quality requirements conside-
ration with both methods is presented in Section 9.5.4.

We also studied the option to provide a quality criterion value at which the quality cri-
terion is satisfied, so that we are not willing to trade other quality criterion for further
improvement of this quality criterion. For example, a mean response time of 1 second may
be considered to be enough, and we do not want to sacrifice other quality criteria (such
as POFOD or costs) for further improvement of response time beyond 1 second. However,
by Noorshams (2010), we found that this information does not help to focus the search
and to improve the optimization performance in the studied examples. Although these
observations are not necessarily transferrable to the general case, we do not discuss this
possibility further in this work.

8.2.6. Stop Criteria

Stop criteria for multi-objective evolutionary optimization are an open problem (Harman,
2007, Sec.6.1). In the context of this work, Dimitrov (2010) has devised and implemented
a set of stop criteria. Simple stop criteria stop after a number of iterations or after a
certain time is elapsed. Pareto-front based criteria compare the current Pareto front with
the Pareto front found n iterations earlier (where n is configurable) and stop the search
of no new candidates or few new candidates (relative to the size of the front) are found.
Finally, indicator-based criteria stop the search if a quality indicator value (cf. Sectin 3.5.5)
does not change significantly (e.g. more than a configurable threshold) over a number of
iterations n. Here, a stop criterion based on the coverage indicator has been implemented.

More sophisticated stop criteria taking into account the stochastic nature of evolutionary
algorithms such as described by Trautmann et al. (2009) and later works could be used to
stop the optimization as early as possible.

8.3. Informed Quality Improvement

As discussed in Section 4.2, problem-specific knowledge can be integrated into a meta-
heuristic in several ways (Cheng et al., 1999). First, the problem representation itself
contains knowledge about the domain. In this work, the genetic encoding only expresses
valid architectures, i.e. feasible solutions are constructed. Second, the initial population
may be constructed instead of being randomly generated by considering domain-specific
knowledge (Grefenstette, 1987).

Third, the performance of the search can be enhanced by problem-specific knowledge. In
evolutionary methods, heuristic operators can be defined that contain problem-specific
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knowledge. In this work, we suggest use detailed domain-specific rules (as used in the
rule-based methods) in a new type of heuristic operator.

This section is organized as follows. First, several domain-specific tactics for performance,
reliability and costs are described in Section 8.3.1. In particular, we focus on performance
tactics. Then, Section 8.3.2 describes how the tactics are integrated in the optimization
approach as tactics operators in detail. Finally, we discuss two approaches to create a
starting population in Section 8.3.4.

8.3.1. Improvement Tactics

Architectural tactics for quality attribute improvement of software architectures encode
design knowledge and rules of thumb (Bass et al., 2003). They are intuitively applied
by experienced architects when designing an architecture. In this section, we present
how to encode these informal rules of thumb into processable modification rules for a CBA
metamodel (e.g. for on the PCM). These encoded rules can then speed up the optimization,
as they can be used to modify CBA models in an effective way in the reproduction step,
instead of simply applying random operators such as crossover and mutation, which can
yield many suboptimal solutions.

This section describes the incorporation of tactics into our optimization approach. We
briefly explain the considered scope of tactics (Section 8.3.1.1). Then, the following sec-
tions provide a list of generic tactics for performance (Section 8.3.1.2), reliability (Sec-
tion 8.3.1.3), and costs (Section 8.3.1.4). The codification of these tactics as rules is CBA-
metamodel specific. Thus, to illustrate the tactics, we sketch in each of these sections how
the tactics can be mapped to the PCM.

8.3.1.1. Scope

This work consider tactics on the level of the software architecture at design time, par-
ticularly in the domain of component-based distributed systems. Some of these tactics
may also be applicable on embedded or mobile systems. As this work targets improving
an architecture model instead of an implementation, code-level tactics are excluded here.
Rules are only applied on a CBA model instance, which describes a system as an assem-
bly of component and connectors, component behaviour, and component deployment to
hardware nodes.

We assume a component-based development process, where possibly black-box components
from third party vendors are assembled. In such a process, it might be complicated to
change the implementation of individual components as the code may not be accessible.
Therefore, we have marked tactics that require to alter component implementations as
“Change component” in the following tables. These tactics may therefore not always be
automatically applicable. Depending on the expressiveness of the CBA metamodel, user
interaction may be required to determine how the component can be changed to realize
the tactic.

The following tables 8.1 and 8.2 provide an overview of well-established tactics. The listings
try to be comprehensive, but we do not claim completeness. The tactics are grouped into
software, hardware, and network heuristics. The third column in each table describes how
the rules can be applied to PCM instances as one example of a CBA metamodel.

The tactics may not be applicable for every CBA metamodel, as the metamodels have a
varying level of abstraction. Additionally, the tactics require a different level of quality
prediction results. Thus, they can also only be used with quality prediction techniques with
sufficiently expressive results. At the same time, specific CBA metamodels and specific
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quality prediction techniques and methods may offer additional tactics that are not covered
here. Bachmann et al. (Bachmann et al., 2003) discuss how architectural tactics can be
derived for a given architecture model and quality prediction technique.

8.3.1.2. Performance Tactics

The list of performance tactics in Table 8.1 has been aggregated from multiple sources
about performance improvement on the architectural level. The SPE book (Smith and
Williams, 2002b) highlights technology-independent performance principles, patterns and
anti-patterns. Further rules have been integrated from Microsoft’s performance impro-
vement guide (Microsoft Cooperation, 2004) and literature on architectural tactics (Bass
et al., 2003; Bachmann et al., 2005; Rozanski and Woods, 2005; Taylor et al., 2009).

Classical performance analysis guides (Jain, 1991; Menascé et al., 2004) focus on queueing
models and simulation, but provide only limited hints on how to improve performance on
an architectural level. Contrary to other methods (e.g., (Xu, 2010; Parsons and Murphy,
2008)) our list of performance heuristics is not tied to a specific performance model, such
as LQN, or technology, such as EJB, but more generically applicable.

The PCM-specific short rule descriptions in column three of Table 8.1 can be implemen-
ted to manipulate PCM models. Notice that despite of their brevity some of the rules
encapsulate complex relationships. For example, different kind of database performance
improvements, such as query optimizations or different schema layouts are summed up in
the heuristic ”Data structure and Algorithms”, because in an architecture model such as
the PCM these changes are reflected only in changes to the resource demands of services
of the database component. The large number of known concurrency patterns (Schmidt
et al., 2000) is summed up in the heuristic ”Concurrency”. The rules marked with “change
component” require additional annotation or user interaction, because the PCM models
are not expressive enough to automatically apply these rules.

In the following, we discuss several tactics and their realisation for the PCM in more detail.
For each tactic, we detail rationale, precondition, action, additional effects and extensions
below, if available. Note that we assume in the tactics that all servers are connected by
linking resources. If this is not the case, rules to exclude invalid tactic applications have
to be added analogously to the “Allocation degree” presented in Section 7.3.1.

Figure 8.9 shows an example system that we use to convey the tactics in the following.
The performance of this example system is analysed using LQNS. The tools calculate an
expected mean user response time of 8.8 seconds, a CPU utilization U(S1) of 17% for
server S1, a CPU utilization U(S2) of 88% for server S2, a POFOD of 0.016, and costs of
407 monetary units.

Spread the Load In distributed systems, components can be allocated to different servers.
To improve performance, the overall load should be spread evenly across the system.
Thus, some components should be reallocated from highly utilised servers to servers
with low utilisation. If the right components are reallocated, this tactic can improve
performance, while being cost-neutral. This tactic realises the “spread the load”
principle (Smith and Williams, 2002b) and thus solves the performance antipattern
“unbalanced processing in concurrent processing system” as described by Smith and
Williams (2002a) and in (Trubiani and A. Koziolek, 2011).

Precondition: The utilization difference between the highest utilised resource rh of
resource type t (e.g. CPU) and the lowest utilized resource rl of the same type t is
above a threshold Uspread:

U(rh)− U(rl) ≥ Uspread
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 Name Rule [Principle] Modelling in Palladio CM 

S
o

ft
w

ar
e 

Asynchronous 

Communication 

Let components exchange data 

asynchronously to avoid 
synchronization delays. 

[“Parallel Processing Principle”] 

Change components: change 

interfaces and RDSEFFs of 
blocked components to support 

asynch. comm., add cost. 

Caching Keep the most frequently used 
data in a cache in main memory 

to allow quick access. 

[“Centering Principle”] 

Create a cache component either 
immediately serving a request 

with a cache hit probability or 

delegating the request, add costs. 

Concurrency  / 
Parallelisation 

Introduce parallelism using 
multithreading or multiple 

processes. 

[“Parallel Processing Principle”] 

Change components: use fork 
actions in RDSEFFs and reduce 

resource demand per thread, add 

costs. 

Coupling  

and Cohesion 

Ensure a loosely coupled design 

that exhibits an appropriate 

degree of cohesion. 
[“Locality Principle”] 

Change components: Merge 

components with a high 

interaction rate. Build 
subsystems, add costs. 

Internal Data 

Structures and 
Algorithms 

Use appropriate data structures 

and algorithms within the 
components. 

[“Centering Principle”] 

Identify component with highest 

resource demand and exchange 
them with different component 

implementations. 

Fast Pathing Find long processing paths and 

reduce the number of processing 
steps. 

[“Centering Principle”] 

Introduce additional components 

to serve the most frequently used 
functionality in a dedicated way, 

add costs. 

Locking 
Granularity 

Acquire passive resources late 
and release early, minimize 

locking. 

[“Shared Resources Principle”] 

Change components: change 
RDSEFFs and minimize the 

time between Acquire and 

Release Actions, add costs. 

Priorisation Partition the workload and 
prioritize the partitions so that 

they can be efficiently queued. 

[“Centering Principle”] 

Not yet supported. 

Resource 

Pooling 

Ensure effective use of pooling 

mechanisms (Objects, Threads, 

Database connections, etc.). 
[“Fixing-Point Principle”] 

Identify passive resources with 

the highest waiting delay and 

adjust their capacity. 

State 

Management 

 
 

Use stateless components where 

possible to keep them decoupled 

and allow scalability. 
[“Shared Resources Principle”] 

Not yet supported. 

H
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w
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Component 

Reallocation 

Allocate software components 

from saturated resources to 
underutilized resources.  

[“Centering Principle”] 

Identify resources with 

U>=maxThreshold & reallocate 
components to resources with 

U<=minThreshold 

Component 
Replication 

Start multiple instances of the 
same component and spread the 

load on multiple servers. 

[“Spread-the-load Principle”] 

Identify components accessed by 
many users, create multiple 

component instances and intro-

duce load balancer component. 

Faster 
Hardware 

 

 

Buy faster hardware to decrease 
the node utilization and response 

times. 

[“Centering Principle”] 

Increase processing rate of 
bottleneck processing resources, 

increase hardware costs 

More  

Hardware 

Buy additional servers and 

spread the load among them. 

 
[“Spread-the-load Principle”] 

Increase the number of 

processing resources, introduce 

load balancer (incl. costs),  
increase hardware costs 

N
et

w
o

rk
 

Batching Avoid network accesses by 

bundling remote requests. 

[“Processing vs. Frequency 
Principle”] 

Insert messaging components 

that bundle remote requests to 

batches and unpack them at the 
receiver side, add costs. 

Localization Allocate frequently interacting 

components on the same 
hardware devices. 

[“Locality Principle”] 

Identify components with a high 

interaction rate and reallocate 
them to the same resources. 

Remote Data 
Exchange 

Streamlining 

Decrease the amount of data to 
be send across networks (e.g., 

using compression). 

[“Centering Principle”] 

Create a compression 
component that shrinks the size 

of the data transferred, but adds 

a resource demand to the CPU. 

 

  
Table 8.1.: Performance Improvement Tactics (Koziolek et al. (2011a))
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Server S1

 

Component  `

C2

Server S2

Component  `

C3PR = 3.0 GHz

HC = 10 

Action

Action

Component  ` 

C1

<<implements>> <<implements>> <<implements>>

Demand = 5

Demand = 7

Users 

= 20

Think time 
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PR = 3.0 GHz
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Action Action
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Action
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Figure 8.9.: Example System for Tactics
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Additionally, the server Sh that contains rh hosts several components.

Action: One of the components allocated to server Sh is randomly chosen and real-
located to server Sl. In the PCM, component reallocation is realised by changing
the allocation model. For the chosen component, the allocation mapping is updated
to point to the newly chosen server Sl.

Additional effects: The reallocation is cost-neutral. However, it may introduce addi-
tional network processing overheads if components are separated that communicate
intensely. Reallocation can impact reliability both positively or negatively depending
on the involved servers and components (cf. reallocation tactics in table 8.2).

Example: In the running example, component C3 could be reallocated from server
S2 (CPU utilisation 88%) to server S1 (CPU utilisation 17%).

Extensions: Communication frequencies could be taken into account when choosing
a component to reallocate (i.e. this tactic could be combined with the“reduce remote
communication tactic” below). Similarly, the demand of a component could be taken
into account, both for the chosen resource type as well as fr other resource types (such
as HDD), to achieve a balanced load more quickly. An elaborate version of this tactic
could use the Multifit-COM algorithm suggested by Woodside et al. (Woodside and
Monforton, 1993) that uses the bin-packing algorithm Multifit (Coffman et al., 1978)
to allocated components to servers considering resource demand and communication
demand in a simplified performance model. The accuracy of the found solution will
depend on the appropriateness of the used performance model, and cannot consider
additional degrees of freedom.

Scale-up Bottleneck Resources: Highly utilised bottleneck resources (CPU, HDD, net-
work) that slow down the system should be made faster by buying faster resources
(scaling up). This tactic improves performance most likely, however, it is limited by
the maximally available resource speed.

Precondition: The highest utilised resource rh is utilised above a threshold (U(rh) ≥
Uscale-up).

Action: Increase the processing rate of resource rh by an increase factor f which
can be configured by the user and is set to 1.25 as a default. If the result is higher
than the maximum processing rate, choose that maximum. If the resources are
chosen from a discrete set, choose the cheapest resource r′ with a processing rate
PR(r′) > PR(rh) · f . In the PCM, the resource environment model is modified.

Additional effects: Hardware costs are increased. If hardware reliability changes due
to faster hardware, this tactic also affects reliability.

Example: The processing rate of the bottleneck CPU in server S2 could be increased
by 25%.

Scale-out Bottleneck Server: As processing rates of resources cannot be increased un-
limitedly, at some point, additional servers and hardware need to be added (scale
out) to relieve highly utilised servers and cope with high load. However, scaling out
is limited by the software design. Currently, we consider the maximum number of
servers to be the number of components (i.e. the maximum scale-out is that each
component is deployed to one dedicated server). This tactic is not effective if a single
component causes most of the load in the system.

Precondition: The highest utilised resource rh is utilised above a threshold (U(rh) ≥
Uscale-out) and the maximum number of servers has not yet been reached.
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Action: Reallocate one component from the server Sh with the bottleneck resource
rh to a new server. In the PCM, the allocation model is changed (cf. “spread the
load” tactic).

Additional effects: Hardware costs are increased. Possible, a performance overhead
for the additional network communication is introduced.

Example: A third server S3 could be added and component C3 could be reallocated
to it.

Extension: The extensions of the “spread the load’ tactic also apply here. Addi-
tionally, a single component could also be deployed to multiple servers using load
balancing techniques and possibly synchronisation strategies (both not yet supported
by the PCM).

Reduce Remote Communication If components that frequently communicate with each
other are deployed on different servers, the remote communication can be an exten-
sive overhead to the overall response time of the system and the linking resource can
become a bottleneck resource.

Precondition: The highest utilised linking resource lh is utilised above a threshold
(U(lh) ≥ Uremote). Then, we determine whether the reallocation of one of the com-
ponents using lh could be beneficial by checking the ratio of local calls versus remote
calls over this linking resource for all components deployed to servers connected by
this linking resource as follows:

Let S = {S1, ..., Sn} denote the set of servers connected by the linking resource lh.
Let Cs denote the set of components allocated to s ∈ S. Let local(c) denote the
number of local calls sent or received by a component c and let remote(c,s) denote
the number of remote calls that c sends to or receives from server s. These values
are determined in relation to a usage scenario using an extended version of the PCM
dependency solver (H. Koziolek et al., 2007).

Then, we can check whether there is a component c∗ on any of the servers connected
by lh (i.e. c∗ ∈

⋃
s∈S Cs) which has more remote calls to one of the other connected

servers than local calls (i.e. ∃s ∈ S : remote(c∗,s) > local(c∗)). If there are several

such components, we choose the component with the highest ratio remote(c∗,s)
remote(c∗,s)+local(c∗) .

Then, it may be beneficial to reallocate component c∗ to server s.

Action: If such a component c∗ can be found, reallocate c∗ to server s.

Additional effects: The reallocation is cost-neutral. However, it may introduce more
unbalanced load on the adjacent servers. Reallocation can impact reliability both
positively or negatively depending on the involved servers and components (cf. real-
location tactics in table 8.2).

Example: Let us consider a variation of the example system. Assume that compo-
nents C1 and C2 communicate frequently in our example (e.g. C1 calls C2 seven
times per request on average) while C1 and C3 communicate less often (only 0.2
times on average per request). Additionally, let us assume that the linking resource
connecting the two servers is utilized above a threshold, e.g. 85%. Then, we can
reallocate C2 to server S1 to reduce the usage of the linking resource.

Extension: Another approach to reduce remote communication could be to compare
the time each request spends on the network. If the time spend on the network
exceeds a certain ration of the overall response time of the request (e.g. 25%), we can
try whether a better allocation of components leading to less remote communication
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is possible. Note that in this case, the linking resource is not necessarily highly
utilised, but rather leads to a too high latency.

Remove One-lane bridge “One-lane bridge” is a performance antipattern (Smith and
Williams, 2000) which describes a situation where requests compete for too few
shared passive resources (e.g. database connections, file handles, or thread pools).
To solve the antipattern, the number of available passive resources should be in-
creased. Note that for passive resource with an initial capacity of one, increasing
the capacity is usually not possible because the passive resource models a region of
mutual exclusion. We have described this tactic in (Trubiani and A. Koziolek, 2011).

Precondition: There is a passive resource p that has a long queue length q (i.e. lon-
ger than a threshold qolb) and that has a capacity c larger than one. Additionally,
requests for this passive resource p are delayed, i.e. the time h they hold p is si-
gnificantly shorter than the time w they wait for p (again, significantly shorter is
determined by a threshold value wolb, i.e. h

h+w < wolb).

Action: Increase the capacity of passive resource p by an increase factor, but at least
by one. The default values for the increase factor is 0.5.

Additional effects: In the PCM, this tactic has no additional effects. However,
one may want to consider increased costs for more passive resources, or decreased
reliability due to more internal parallelism in the respective quality models.

Example: Let us consider a variant of the example model. Assume that requests to
component C2 and C3 access a passive resource, e.g. a thread pool of fixed size on
server S2. Additionally, assume that server S2 has four processing cores available
and that C2 and C3 also access the hard drive of S3. Then, in a scenario with high
load and a thread pool size of 2(4), it could happen that the hold time of the passive
resource is only 3 seconds on average, while the waiting time is 4 seconds. Then, the
thread pool size of server S2 could be increased.

Extension: This tactic could additionally take the resource demand of the underlying
active resources into account and only be applied if the underlying active resource
are partially idle while requests are blocked by the passive resources, as sketched in
the example above. This can especially happen in layered systems tasks of a given
layer have to wait for requests to a lower layer while at the same time blocking new
requests of the given layer. This observation has been one reason to introduce layered
queueing networks (Franks et al., 2009).

Concerning the optimal size of thread pools, Chen et al. (Chen et al., 2002) have sug-
gested a benchmarking approach to determine the performance properties of J2EE
middleware with varying number of threads. Such models could be considered here
as well to improve the performance prediction for varying number of threads and the
application of tactics.

We have presented more tactics derived from known performance antipatterns (Smith and
Williams, 2000, 2002b,a, 2003) in (Trubiani and A. Koziolek, 2011): “Blob” (or God class
(Smith and Williams, 2000)), “Unbalanced Processing in Pipe-and-Filter Architectures”
(Smith and Williams, 2002a), “Circuitous Treasure Hunt” (Smith and Williams, 2000)
(requires an annotation that identifies the components acting as databases (Trubiani and
A. Koziolek, 2011)), “Empty Semi Trucks” (Smith and Williams, 2003), and “Traffic Jam”
(Smith and Williams, 2002b). Their preconditions are described in (Trubiani and A.
Koziolek, 2011, Sec.4.1) for the PCM. However, the action of these tactics cannot be

4In this simple example, we have to use such an unrealistic value for the thread pool size to be able to
explain the problem.
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 Name Rule Modelling in Palladio CM 

S
o

ft
w

ar
e 

Design 

Diversity 

Realize one algorithm in n 

different ways. Apply a voting 
algorithm that chooses a result 

(e.g., majority voting). 

Change components: Decrease 

internal action failure 
probability, increase costs, 

increase resource demands.  

Heartbeat / Ping Periodically test the availability 
of components, initiate 

immediate repair upon failures. 

Decrease MTTR of resources, 
add monitoring costs, resource 

demands. 

High reliable 
software 

components 

Apply a high-quality 
development process to software 

components for high reliability. 

Change components: Decrease 
internal action failure 

probability, increase costs 

Rejuvenation Automatically restart 

components, after failures or 
periodically. 

 

Change components: Decrease 

internal action failure prob., 
increase resource demands & 

cost for restarts / monitoring 

H
ar

d
w

ar
e 

Dependency-
Aware  

Reallocation  

Allocate components together 
that depend on each other, so 

that hardware failures impact a 

smaller set of components 

Reallocate components based on 
the execution paths, allocate 

components together that fail 

together anyway. 

High available 
hardware 

Operate the system on hardware 
with low failure rates and low 

service times in case of failure. 

Increase resource MTTF, 
decrease MTTR. Increase 

hardware costs, servicing costs. 

Redundant 
hardware 

Buy additional servers and 
replicate components to them. 

Increase resource MTTF, 
decrease MTTR. Increase 

hardw. costs, resource demands. 

Add overhead for fail-over. 

Sensitive 

Component 

Reallocation 

Allocate reliability-sensitive 

software components to high 

availability resources. 
 

Identify processing resources 

with A>=maxThreshold & 

reallocate critical components to 
them. 

N
et

w
o

rk
 High reliable 

network  

 
 

Use network links with high 

capacity and reliability (e.g. 

TCP). 

Decrease communication link 

failure probabilities, increase 

network costs. 

 

 

 

 

 

 

Table 8.2.: Reliability Improvement Tactics (Brosch et al. (2011b))

automated in the PCM without additional annotations, thus, we do not discuss them here
in more detail. The antipattern “Extensive processing” (Smith and Williams, 2002a) is
not discussed here, too, because only a small aspect of it can be automatically solved
in the PCM. Possibly, the application of some of these antipatterns could be completely
automated for other CBA metamodels or with additional annotations to the PCM as
future work.

PCM instances can be improved for performance with these tactics, as demonstrated in
Section 9.5.2 and by Trubiani and A. Koziolek, 2011.

8.3.1.3. Reliability Tactics

Numerous publications focus on reliability analysis (Musa et al., 1987) and software fault
tolerance techniques (Pullum, 2001; Kienzle, 2003). Additionally, several authors have
described architectural tactics for reliability (Bass et al., 2003; Rozanski and Woods, 2005;
Taylor et al., 2009). From these sources, Table 8.2 aggregates several reliability tactics, as
compiled by Brosch et al. (2011b). The terms Mean time to failure (MTTF) and Mean
time to Repair (MTTR) are properties of hardware resources, which are often specified
by hardware vendors and which can be used to calculate the overall system’s reliability
(Brosch et al., 2010).

In practice, a common tactic for reliability-critical systems is to introduce redundant hard-
ware (e.g., stand-by nodes, RAID discs, etc.). Some safety-critical systems use design
diversity to increase reliability, which however introduces high development costs.

While the table shows in the PCM-specific column three how the the reliability tactics can
be applied on PCM instances, most of them require the identification of reliability-critical
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components. This identification can be done by a sensitivity analysis, where component
failure probabilities are varied in the model to find out there influence on the system
reliability. This step is not yet automated for the reliability analysis of the PCM. Thus,
we do not discuss reliability tactics in more detail here.

8.3.1.4. Cost Tactics

Although costs are usually not considered a quality property of software architectures,
their minimisation is of high business interest. Here, we only consider costs that can be
predicted based on the software architecture model as presented in Section 2.5.5. First of
all, costs can be minimised by choosing a less expensive option for a degree of freedom.
For example, the cheaper components can be selected or cheaper hardware can be chosen.
Additionally, all tactics that improve one of the other quality properties and increase costs
can be inverted. In this work, we consider two costs tactics of this type:

Scale-Down Idle Resource: Inversely to the“scale-up bottleneck resource”tactic, this tac-
tic decreases resource speeds of infrequently used resources, because we expect that
performance is only slightly degraded, while costs are saved. This tactic is only
applicable if faster resources are also more expensive.

Precondition: The resource with the lowest utilisation (rl) is utilised less that a
threshold (U(rl) ≥ Uscale-down).

Action: Decrease the processing rate PR of rl by an decrease factor d which can be
configured by the user and is set to 0.75 as a default. If the result is lower than the
minimum processing rate of the resource, choose that minimum. If the resources are
chosen from a discrete set, choose the fastest resource r′ with PR(r′) < PR(rl) · d.
In the PCM, the resource environment model is modified.

Additional effects: Performance is degraded. If hardware reliability changes due to
slower hardware, this tactic also affects reliability.

Example: The processing rate of the CPU of S1 (U(CPUS1) = 17%) could be de-
creased by 25% in the example.

Consolidate Servers: Inversely to the “scale-out bottleneck server” tactic, lowly utilised
servers can also be consolidated and their components can be joined one server to
save cost. For simplicity, we only consider one resoure type at a time for this tactic.

Precondition: The utilisation of a resource rl in a server Sl is lower than a threshold:
U(r) ≤ Ucons. Additionally, the other servers are estimated to have enough space
capacity for the resource type t of rl to host the components from server Sl. This is
estimated by assigning each component on Sl an equal share of the utilisation: Let
n be the number of components allocated to Sl, then each component is assumed to
cause a load of U(rl)/n.

Then, we try to find an assignment of the n components to other servers so that
the resource rS,t of these servers are expected to not have a higher utilisation than
a threshold Umaxcons. We execute a greedy assignment that (1) orders the servers
based on their spared capacity for the resource type t (i.e. based on the utilisation
values for the resources rS,t, in ascending order) and (2) iterates through the servers
and assigns the largest possible number x of components to each server S so that
the utilisation is expected to be lower than the threshold Umaxcons, i.e. the largest x
that satisfies

x · U(rl)

n
+ U(r(S, t)) ≤ Umaxcons
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The search stops as soon as all components have been assigned or if all servers have
been considered and space components could not be allocated. In the first case, a
tactic candidate is created.

Action: Reallocate all components from Sl2 to the other servers as determined by
the greedy assignment, so that Sl2 is no longer used.

Additional effects: Performance is degraded. Also see “spread the load” tactic in
Section 8.3.1.2.

Example: Assume that the load of the running example was lower and the CPUs of
both servers had a utilisation of lower that 25%. Then, all three components could
be allocated to server S1, and the cost of S2 could be saved. Extension: First of
all, the real demands of the components for the resource type in question could be
used to determine whether other servers could host them, and a more sophisticated
algorithm than the greedy approach described above could be used. Furthermore,
the tactic could be extended to account for all resource types used in the system
at once and determine a server to remove where all resources have low utilisation.
Additionally, the processing rates of the servers could be taken into account when
estimating the capacity. Finally, even communication could be taken into account.
Overall, the extensions of the “spread the load” tactic are applicable here as well.

8.3.2. Tactics Operators

The architectural tactics are integrated in the optimization approach in the reproduction
step for three reasons. First, applying a tactic means to generate a new candidate from an
existing one, so the reproduction step is a natural choice. Second, the quality properties
must be already predicted for the candidates, so tactics can only be applied on evaluated
candidates. Third, we want to focus on promising candidates and improve these even
further. Thus, the tactics are applied after the selection step.

The tactics are integrated as new operators in the reproduction step (step 2c) of PerOpte-
ryx. In the reproduction step, the precedence of crossover, mutation, and tactics needs to
be defined. Figure 8.10 shows the control flow of the reproduction step as an UML activity
diagram. In addition to conditions for decision nodes, we added probabilistic choices by
defining the probability of taking each decision (see key).

The input of the step are two candidates c1 and c2 selected for reproduction. First,
it is randomly decided whether to apply tactics or not based on a configurable tactics
probability. If no tactics are applied, it is randomly decided whether to perform a crossover
based on the crossover rate. Afterwards, the two (resulting) candidates are mutated.

If tactics are applied, both candidates are handled separately. For each candidate ci and
tactic, the preconditions are evaluated. If the precondition of a tactic is fulfilled, a new
candidate is generated based on the tactic, and added to the set of result candidates Ci. If
no tactic precondition matches, the result candidate set Ci remains empty and a mutation
is performed for ci. If tactics have been applied, one candidate is selected from the result
candidate set for each parent candidate ci based on weights described below. The result
of the reproduction step are two new candidates.

If the preconditions of multiple tactics match, multiple candidates are generated in the
tactics step. To decide for one candidate, we assign weights between 0 and 1 to both
the tactic (weights W ) and the candidate (weights V ). Tactic weights Wt are configured
for each tactic t and define how promising this tactic is in general. Candidate weights
Vt(ct) are functions that assign weights to a generated candidate ct based on the input
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Generate set of tactic 

result candidates C1 

for candidate c1

p2 = crossover rate p’2 = 1 - 
crossover rate

[|C1| = 0][|C1| > 0]

p1 = tactics probabilityp’1 = 1 - tactics probability

Generate set of tactic 

result candidates C2 

for candidate c2
Crossover

Mutate both candidates

Mutate c1 Mutate c2

[|C2| = 0][|C2| > 0]

Key for decisions: 

[  ] : Condition

p = : Randomly chosen 

based on probability

Input: selected pair of candidates c1 and c2

Output: Two new candidates

Choose candidate 

from C1 randomly

Choose candidate 

from C2 randomly

Figure 8.10.: Integration of Tactics in the Reproduction Step. Cf. Fig 8.1 for an Overview
of the Complete Process.

candidate’s applicability for tactic t. Then, one candidate is chosen from candidate set C.
Each candidate ct∗ is chosen with probability

Prob(ct∗) =
Wt · Vt(ct∗)∑
ct∈C Wt · Vt(ct)

We chose the following candidate weight function Vt for our current tactics. Let c be
the input candidate, rh be the resource with the highest utilisation, rl1 be the resource
with the lowest utilisation, and rl2 be the server with the second lowest utilisation. U(r)
denotes a resources r’s utilisation. The weights are only calculated if the preconditions of
the tactics match, so the values always range between 0 and 1.

Spread the Load: Vspread(c) = U(rh)−U(rl). In our running example, we get a weight of
0.88− 0.17 = 0.69 for reallocating C3 to S1.

Scale-Up Bottleneck Resource: Vscale-up(c) =
U(rh)−Uscale-up

1−Uscale-up
. In our running example, if

Uscale-up is 80% we get a weight of 0.88−0.8
1−0.8 = 0.4 for the tactic candidate with a

higher processing rate of the CPU in server S2.

Scale-Out Bottleneck Server: Vscale-out(c) = U(rh)−Uscale-out

1−Uscale-out
. In our example, if Uscale-out

is 80% we get a weight of 0.88−0.8
1−0.8 = 0.4 for adding a third server.

Reduce Remote Communication: Vremote(c) = remote(c∗,s)
remote(c∗,s)+local(c∗) ·

U(lh)−Uremote

1−Uremote
. In our

varied example for this tactic, if Uremote is 80%, we get 7
7+0 ·

0.85−0.8
1−0.8 = 0.25.

Remove One-Lane Bridge: Volb(c) =
wolb− h

h+w

wolb
. In our example, we get

0.5 3
3+4

1−0.5 = 0.14.

Scale-Down Idle Resource: Vscale-down(c) = Uscale-down−U(rl1)
Uscale-down

. In our example, if Uscale-down

was 25%, we get a weight of 0.25−0.17
0.25 = 0.32 for decreasing S1’s CPU processing rate.

Consolidate Servers: Vcons(c) = Ucons−U(rl)
Ucons

. Assume a variant of the example where all
three components are deployed to dedicated servers, and the CPUs r2 and r3 of server
S2 and the new server S3, respectively, have utilisation values of U(r2) = 65% and
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U(r3) = 13%. Then, servers S1 and S3 can be consolidated by moving component
C3 to server S1.

This approach allows us to take both the expected impact of a tactic and its applicability
to a concrete input candidate into account.

In (Cortellessa et al., 2010b), we have furthermore presented an approach how to dynami-
cally determine the tactics weights for the antipattern-based tactics based on the violation
of quality requirements or quality bounds. However, this approach is only applicable if
preferences for quality requirements or bounds are available.

Several extensions of these tactic operators approach are possible: An interesting exten-
sion would be to monitor their performance over the course of an optimization run and
adjust the probability of their execution based on how successful they have been. Their
performance could be assessed by determining how many candidates are produced that (1)
dominate their parent, or (2) become a new Pareto-optimal candidate, or (3) improve the
current population by other metrics, such as coverage or hypervolume (cf. Section 3.5.5
for these metrics) compared to the previous population.

Furthermore, some degrees of freedom could be restricted to only be changed by tactics.
For example, the software architect may decide that the replication of servers (cf. Sec-
tion 7.3.3) is unwanted and only should be considered if servers are overloaded. Thus,
we could add the configuration option that the software architect may choose for every
degree of freedom whether it should be varied by all operators or only by tactic operators.
Possibly, after a tactic operator has changed a candidate vector, the other operators could
be allowed to revert this decision on all degrees of freedom, too.

Finally, we could add an option that the software architects themselves can specify know-
ledge about the search for the given system at hand. Software architects may already have
knowledge about the interactions of several degrees of freedom. For example, they may
expect that a system can either be hosted on a single powerful machine, or be distribu-
ted on several smaller machines. They may want to exclude other combinations of server
configuration and component allocation explicitly to reduce the size of the design space,
so that search can become more efficient. However, if such knowledge is only heuristic
(i.e., it is not necessarily true for all possible candidates), it could be integrate it in the
optimization approach as tactics instead of formulating it as constraints the design space.
In this case, software architects can implement a new tactic operator and add it to the
optimization approach.

8.3.3. Intensification using Tactics

It has been recognised that evolutionary algorithms have good diversification properties
(cf. Section 3.5), but that they may miss better solutions that are close to the evaluated
solutions (Grefenstette, 1987)(Blum and Roli, 2003, p.300). Thus, they do not necessarily
terminate with local optima at the end of a search. Better solutions may be reachable
by a local search around the final candidates determined by the evolutionary algorithm
(Miettinen et al., 2008a, p.441),(Deb, 2001, p.466 et seqq.) in an additional intensification
step (cf. Figure 8.1 on page 171).

In this work, we apply our tactics in the intensification step, i.e. the application of tactics
defines the neighbourhood to explore in this step. Alternatively, a local search based on
the degrees of freedom could be used here as well; however, as many degrees do not have
an order, each candidate has a large number of neighbours in the design space. Thus,
evaluating all neighbours could be too computationally expensive, so that we focus on
neighbours created by tactics.
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Optimisation
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Optimisation

Figure 8.11.: Hybrid Optimization Analytically Providing a Starting Population (Martens
et al., 2010)

Possibly, the thresholds in the preconditions of the tactics can be reduced in this phase
to get a larger neighbourhood to be explored. Section 9.5.3 shows how the final results of
evolutionary search can be further improved by this approach.

Similarly, other methods such as path relinking (described by Ehrgott and Gandibleux
(2004)) which creates a candidate in between two parent candidates in the decision space,
could be used to refine the Pareto-front after the evolutionary optimization.

8.3.4. Starting Population Heuristics

Generating starting populations based on domain-specific knowledge has potential to im-
prove optimization performance (Grefenstette, 1987). If a good starting population is
provided, the optimization can save initial iterations. However, the starting population
must be diverse to enable exploration.

In the context of this work, we have developed two alternatives to generate starting po-
pulations. First, an analytic analysis of those parts of the optimization problem that are
analytically tractable with simplified quality evaluation functions (hybrid optimization) is
presented in Section 8.3.4.1. Second, as component allocation is crucial for performance,
we devised a starting population heuristic that creates a diverse set of allocation schemes
in Section 8.3.4.2. Which of the two approaches is applicable for a concrete problem at
hand depends on the considered degrees of freedom.

8.3.4.1. Hybrid Optimization

Figure 8.11 shows the combination of analytic and evolutionary optimization as presented
in (Martens et al., 2010). To generate a starting population, an analytically tractable
simplified version of the optimization problem is explored. Two simplifications are made
(1) the considered DoFi are reduced and (2) a simplified quality prediction is used.

The set of degrees of freedom is reduced and mapped to a set of binary decision variables
and constraints. Two degrees of freedom that overlap in their effect, i.e. their combination
does not result in a linear combination of effects (e.g. a component can be exchanged and
at the same time reallocated) are problematic: Additional decision variables have to be
introduced to represent the combination of the two degrees. Thus, the approach suffers
from combinatorial explosion already in the problem formulation. As a result, usually a
subset of the degrees of freedom of interest can be explored by the analytical approach.

So far, we considered selection of components, server processing rates, and the allocation
of some of the components. An extension for more degrees of freedoms is planned.

Furthermore, this approach uses a simplified quality evaluation function for each quality
criterion. For performance, we used product form solutions for queueing networks (Jain,
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Figure 8.12.: Allocation Scheme Starting Population (by Beyer (2010))

1991), which assumes exponential distribution of all parameters and do not support aspects
such as e.g. passive resources. Additionally, reliability and costs can be considered.

The resulting linear optimization problem is solved using the ε constraint method (cf.
Section 3.3) and linear programming for the sub-problems. More details can be found in
(Martens et al., 2010).

8.3.4.2. Allocation Schemes Starting Population

Component allocation is a crucial influence factor on performance. Thus, we expect a
diverse population with respect to allocation to be beneficial for the optimization of systems
with allocation degrees of freedom.

The allocation scheme starting population (Beyer, 2010) systematically generates a number
of allocation for the system, varies the processing rates of the used servers, and then selects
the best ones as the starting population. Figure 8.12 schematically shows the algorithm
and its motivation.

As an input, a minimum number of servers and a maximum number of servers. The number
of servers is called resource level in the following. An additional input is the number of
allocations to consider per resource level. Then, per resource level, the algorithm generates
a number of random allocations. Because all candidates of one level use the same servers,
they all have the same costs. Each candidate is evaluated for performance. Then, the
best candidate per resource level is chosen (circled in Figure 8.12), and the processing
rate of its resources is systematically varied (in the figure, two additional processing rate
configurations are generated per candidate, using the maximum and minimum processing
rate, respectively).

As a result, the optimization starts already with the number of servers that seems appro-
priate for the overall workload. However, such a starting population can also be deceptive,
because it only considers the initial choices for other degrees of freedom. If, for example
a system is strongly influenced by a component selection choice, the allocation scheme
starting population only explores the best options for the initially used component.

Initial experiments are reported in (Beyer, 2010) and had promising results. However, to
fully understand the impact of this starting population generation, more experiments with
varying degrees of freedom should be conducted in future work.
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Figure 8.13.: Architecture of Generic CBA Optimization Framework

8.4. CBA Optimization Framework

Figure 8.13 shows the architecture of the generic CBA optimization framework. The
CBA optimization framework defines the DoF metamodel (cf. Section 6.3) including the
candidate representation (cf. Section 8.2.2). It wraps the candidate representation so
that the general-purpose optimization framework can handle it. Additionally, the CBA
optimization framework defines the quality metamodel (cf. Section 8.2.3.1). The DoF
metamodel, the quality metamodel, and the CBA metamodel have to defined in the same
meta-meta-modelling language such as EMOF.

Operators and quality prediction techniques can be added dynamically as plugins (e.g.
using Eclipse’s extension point mechanism). Operators provide the Operators interface
that is specific to the DoF metamodel. They declare which genetic operator they support
(i.e. mating of two or more candidates or mutation). Tactics operators (see Chapter 8.3)
are additionally specific to a CBA metamodel and one or several quality properties. If
applicable, a software architect can provide additional custom tactics for the given system
at hand.

Quality prediction techniques (e.g. SimuCom, PCM2LQN) are connected to the framework
using the Quality Prediction Adaptor interface that is specific to the quality metamo-
del. Quality Prediction Adaptors declare which quality property their quality prediciton
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techniques can determine, what evaluation aspects (such as mean, median, etc.) they
support and for which CBA metamodel they are specific.

The input CBA models and the derived DoFI define the design space. DoFI are defined
using the DoF metamodel, so that all framework parts can handle them. The CBA model
conforms to the CBA metamodel which again conforms to the chosen metametamodelling
language such as EMOF. The generic framework handles the model only based on the cho-
sen metamteamodel, so it supports any CBA metamodel. However, the quality prediciton
adaptors and tactics operators are limited to one CBA metamodel.

The framework can use a general-purpose multi-objective optimization framework such as
Opt4J (Lukasiewycz et al., 2010) or PISA (Bleuler et al., 2003) for the generic optimization
tasks. This general-purpose framework defines the interfaces Problem and Optimization

Strategy. The exact design of Problem interface is different in different general purpose
frameworks. For example, an Opt4J problem is defined by implementing several interfaces.
These interfaces are the genotype and phenotype of the problem as well as a creator, a
decoder and an evaluator that handle candidates (Lukasiewycz et al., 2010). Additionally,
problem-specific operators can be defined. In PISA, the problem is defined by implemen-
ting a Variator module (Bleuler et al., 2003, p.5), which has the same responsibilities.
Thus, the CBA optimization framework is specific for the chosen general-purpose frame-
work when implementing its Problem interface. At the same time, the CBA optimization
framework could implement the Problem interface of several general-purpose frameworks.

The interplay of the different framework parts can be configured. The user can configure
which of the available quality prediction adaptors and operators should be used to evaluate
and vary, respectively, candidates. Only quality prediction adaptors and tactics operators
that match the metamodel of the input CBA model can be selected. Together, this defines
the optimization problem.

Additionally, general optimization parameters, such as which available optimization stra-
tegy (which can also be dynamically added via plugins) is used, the population size, and
further parameters of the optimization strategy, can be configured.

Figure 8.14 shows an example configuration of the CBA Optimization Framework for the
PCM and using Opt4J. The models outside the generic framework core are PCM specific,
and the Problem interface is defined by Opt4J.

Our currently implemented tool PerOpteryx partially realises this framework and is des-
cribed in Section 9.2. Additionally, we have studied the feasibility of the framework by
implementing a CBA-metamodel-agnostic transformation that reads in a DoF model for
component selection in the PCM, a candidate vector, and an initial PCM model, and
applies the chosen values to produce a changed CBA model. This transformation is inde-
pendent of the used CBA metamodel (in our case PCM), as the transformation handles
the model only using EMF (the Eclipse version of EMOF) reflection capabilities.

8.5. Discussion

In this section, we discuss the influences of optimization problem properties on the expec-
ted performance of the optimization approach. Additionally, the optimization approach
presented in this chapter relies on a number of assumptions (Section 8.5.2) and has several
limitations (Section 8.5.3).

8.5.1. Influences on Optimization Performance

For different software architectures under study and the respective degrees of freedom
and quality properties of interest, an optimization problem is formulated and solved as
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Figure 8.14.: CBA Optimization Framework using PCM and Opt4J

described in this chapter. In this section, we discuss the influence of the parameters of
such problems on the optimization approach’s performance. Optimization performance
combines the search duration and the quality of the found results.

In our optimization problems, the evaluation of the candidate evaluation function is time-
consuming for performance and reliability (cf. Section 8.1.2 and Section 9.4.3.1) and is
high compared to the overhead of the evolutionary algorithm for candidate selection and
candidate reproduction. Thus, the search duration in work can be considered to be the
product of the time needed to evaluate all quality properties of a candidate and the number
of candidate evaluations:

Search duration =
average candidate evaluation duration * number of candidate evaluations

The time needed to evaluate a candidate depends on the used quality prediction technique.
Results for scalability of these techniques can be directly applied here. For example, the
duration until an LQNS analysis converges depends on the level of contention in the
modelled system: If only few users use the modelled system, the performance results can
be quickly obtained in few iterations of the LQNS algorithms, while the analysis of highly
utilized systems requires more iterations. Franks (Franks, 1999) discusses more run time
influences for LQNS and LQSim. The time needed for analysis can be influenced by
requiring a certain accuracy (e.g. for LQNS, a convergence value to achieve can be set,
while performance simulations with e.g. SimuCom can be configured with a number of
measurements or confidence levels). Thus, we do not empirically study this aspect further
in this work and focus on the number of candidate evaluations in the following.

The number of candidate evaluation required before the algorithm converges reflects the
hardness of the optimization problem excluding the quality evaluation function. For evolu-
tionary optimization, several influence factors on the optimization algorithm’s performance
have been observed. Before discussing these in the context of software architecture quality
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optimization in Section 8.5.1.2, we fist summarize some general insights from the literature
in Section 8.5.1.1.

8.5.1.1. Complexity of Optimization Problems

First of all, the number of objectives is a major influence factor. The more objectives
are considered, the larger usually the number of optimal solutions is (as the Pareto front
becomes larger, from a curve in two-objective problems to a surface in three-objective
problems to any hypersurface in n-objective problems. It has been recognised that high
dimensional problems are problematic for most multi-objective evolutionary optimization
techniques (Deb, 2008). Extensions to e.g. NSGA-II have been proposed (Saxena et al.,
2009) that improve the convergence of NSGA-II and thus are a research direction towards
solving high-dimensional problems (Saxena et al., 2009, p.551), although they do not
provide an final and mature solution.

Apart from that, additional optimization properties have been discussed and studied in the
context of finding appropriate test problems for multi-objective evolutionary algorithms
(Coello Coello et al., 2007, Chapter 4). We can use these results here to reason on possible
properties of the software architecture optimization problem for different studied soft-
ware systems and how the expected performance of our approach depends on the problem
properties. Because the following discussion is not specific for software architecture opti-
mization problems, we use use the general terms of gene, genome, and objective instead of
our specific terms of design options, candidate vector, and quality property, respectively.

Many aspects of problem complexity can be described with the notion of a search land-
scape or fitness landscape. The search landscape describes the relation between genes,
their neighbourhood relation, and objective function in evolutionary optimization. In
single-objective optimization with few genes, the search landscape can be visualised easily:
Figure 8.15 shows a search landscape for an optimization problem with two genes g1 and
g2 with values ranging from -3 to 3 each, and a resulting objective o with values ranging
from -5 to 5. Assuming that the problem is an maximisation problem, the global optimum
lies at value 1.5 for g1 and value 0 for g2, resulting in an objective function value of 5.

Based on this notion of a search landscape, we can reason on properties of an optimization
problem. Although little work has been done on the landscape analysis for multi-objective
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problems so far (Coello Coello et al., 2007), observations have been made, some of which we
present in the following. In the simple example in Figure 8.15, two additional local maxima
are present, thus, the landscape is multi-modal. Multi-modality makes an optimization
problem more complex because the search will spend time or get stuck in the local optima
(Deb, 2001, p.347).

In this example, the landscape is smooth: Each small change of a chosen value of a gene
results in a small change in the quality property. The opposite of a smooth landscape
is a rugged landscape where a small change in the genes may result in a large change
of objective, possible even non-continuous jumps. Rugged search landscapes are more
difficult for optimization techniques (Deb, 2001, p.347), although this can be somewhat
mitigated by larger population sizes (Deb, 2001, p.101).

For evolutionary optimization techniques, the reproduction operators have to be taken into
account when reasoning in the search space, because they impose the actual neighbourhood
structure of the problem. The problem becomes simpler if “points in the objective space
are also nearby in the permutation space” (Knowles and Corne, 2002, Sec.5), i.e. nearby in
the decision space with respect to the used reproduction operators. This property is also
called locality (Coello Coello, 2002).

More genes that deactivate others are likely to increase the complexity of the problem. This
phenomenon is called epistasis in the context of evolutionary algorithms (Coello Coello
et al., 2007, p.301): Epistasis means that genes in the genome interact, i.e. that the
contribution of a gene to the fitness function depends on the values of other genes5. A
high epistasis makes a problem difficult (Aguirre and Tanaka, 2005, p.355). In contrast,
low or no epistasis makes the problem trivial as simple hill climbing can solve it. Still,
epistasis is said to have a lower influence on the problem complexity than the number of
objectives.

Finally, the size of the search space, i.e. the number of genes and the number of possible
value per gene is another influence factor: More options result in a larger search space.
If the optimization problem is complex due to the reasons mentioned above, the size of
the space makes it even more difficult. In contrast, a simple optimization problem is less
sensitive to the size of the search space: For example, if only a single optimum is present
in the search landscape (i.e. no multi-modality), then the problem can be solved easily
with hill climbing and the size of the search space has little influence.

8.5.1.2. Complexity of Software Architecture Optimization Problems

Based on the general observations recounted above, we can reason on the complexity of
software architecture optimization problems. First of all, the number quality properties
influences the optimization problem complexity as each quality property is an objective.

The search landscape depends on the considered degrees of freedom. In the following, we
will discuss the influence of the degrees of freedom presented in Chapter 7.

Usually, the problem will be multi-modal. For example, when considering the allocation
of components to servers in our simple example in Figure 2.13 (page 35, Section 2.5),
moving the BusinessTripMgmt component to server 2 will deteriorate the performance if
the system is under high load. If we additionally move component BookingSystem back
to server 1, the performance will be similar to the initial value again (assuming similar
configuration of the two servers). Other degrees of freedom can also result in multiple

5Some researchers (e.g. (Weise et al., 2008)) have a more strict definition: In their view, epistasis means
that one gene has effect on several properties of the phenotype. We follow the more general definition
here that epistasis denotes any interaction of genes that lead to different contribution to the fitness.
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modes, especially if performance is considered, because the performance of the overall
system depends on many aspects.

The search space can also be rugged, again depending on the degrees of freedom. Allocation
can lead to high ruggedness, but this depends on the number and load of the components
under study: If the demand of components is unevenly distributed in the system, i.e.
there are some components that pose a high load to their servers, a single change can
have major impact on performance (i.e. solutions that are close in design space are not
close in the objective space). Furthermore, the neighbourhood of each candidate when
considering allocation is large, as every single component reallocation to a different server
is a neighbouring solution. Thus, problems with many allocation degrees probably take
more time to find a good approximated Pareto front.

The selection of components and the change component parameters can have a similar
rugged effect, because the alternative components can have an arbitrary effect on the
quality properties in general, and the change of component parameters can lead to a
completely different behaviour of the component. Usually, however, we can expect that
component alternatives will not be too different from the replaced component as they have
to provide the same functionality; we can also expect that component parameters will only
change certain aspects of a component’s behaviour and thus their change leads to small
changes in the quality properties, too.

Other degrees of freedom are less problematic with respect to ruggedness, because their
change has usually a local effect. Still, in special cases changes of their values can also
lead to huge change in the quality properties.

Finally, the allocation degrees are additionally problematic because of epistasis. If no
component is deployed to a server, the server configuration is irrelevant. Still, the optimal
server configuration of the unused server is not evolved while it is not in use, so that if a
component is allocated to it later during the search, the configuration can only then be
evolved which requires additional search iterations. Component selection degrees also have
epistasis if composite components are introduced or removed that open up new component
selection degrees.

To summarize, the optimization problem complexity depends on the number of considered
quality properties and the considered degrees of freedom, with allocation degrees and
component selection degrees expected to lead to more complexity than the other degrees
of freedom.

8.5.2. Assumptions

The assumptions of the approach are summarised in the following. Some have been men-
tioned in more detail in other parts of this chapter, too.

Accurate quality models: We assume that the used quality models accurately reflect
the quality properties of the system under study. As a principle of quality prediction for
CBA, component quality models should be valid for different contexts the component is
used in (Szyperski et al., 2002, p.55–57). However, such models are not always available for
components. If, for example, the performance of a component has been measured to create
the performance annotations of the CBA model, the observed properties may be specific
to the used resource environment or middleware. More effort is needed to create reusable
quality specification of components. We assume that such reusable specifications are used
and that their portability to other platforms and contexts is assured. For specifications
with limited portability (i.e. that are specific for certain properties of the environement
such as a specific processor or middleware), the degrees of freedom that changes these
properties of the environment cannot be explored.
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In Section 9.4.1.1, we present a number of previous studies that show the portability
of PCM models for a number of degrees of freedom. Additionally, we have studied the
portability of quality models concerning allocation for an example system ans present the
results in Section 9.4.1.2.

Few infeasible candidates: We assume that only few interactions between degrees
of freedom exist so that only few candidates in the design space are infeasible. The
main principle of CBSE is to build reusable building blocks (Szyperski et al., 2002) that
encapsulate complexity and can be reused in different contexts, which at the same time
means that they can be reused in different combinations (cf. Section 8.2.2). As a result, we
use a simple constraint handling strategy that discards candidates that violate design space
constraints in the reproduction step (cf. Section 8.2.4.2). If this assumption is violated
in certain settings, more elaborate constraints handling techniques (Coello Coello, 2002)
could be integrated in our approach.

Combined optimization of all degrees is required: We assume that the optimiza-
tion problem cannot be split into several independent simpler optimization problem that
could be subsequently solved. First, especially performance is a cross-cutting properties
that emerges from all factors of a performance model (Woodside et al., 2007). The per-
formance properties of a system thus can only be vaguely approximated with simpler
sub-optimization problems. Although some systems may allow splitting different concerns
into separate optimization problems, this is difficult to decide for a software architect. Ad-
ditionally, if such separation comes with simplified performance model, a software architect
who is not an expert on performance analysis may not know whether the assumptions of
an underlying performance model are fulfilled. Here, an expressive performance model is
beneficial.

Order and metric for each quality criterion: We assume an order and a distance
metric for each quality metric, as described in Section 8.1.1.

8.5.3. Limitations

In the following, we distinguish between limitations of the optimization approach in gene-
ral (Section 8.5.3.1) and additional current limitations of the tactics incorporation (Sec-
tion 8.5.3.2).

8.5.3.1. General Limitations

The first limitation listed here is a principle limitations of the approach. The other two
limitations could be overcome in future work.

No guaranteed optimality: The optimization approach itself is a best-effort approach
and does not guarantee to find the real Pareto-front, i.e. the globally optimal solutions,
because metaheuristics are used.

Considerable time consumption: As the evaluation of each candidate solution, mainly
due to the performance evaluation, takes several seconds, the overall approach is conside-
rably time consuming, even if tactics operators are used. A distribution of the analyses on
a cluster of workstations could lead to significant improvements. For certain systems, it
could also be possible to split the optimization problem into several independent parts that
are solved separately and thus quicker. However, an automated approach that can detect
this possibility for a system at hand would be required. As a result, software architects
should run the architecture exploration in parallel to other activities or over night. The
application of our approach for runtime (semi-)autonomous adaptation that is supposed
to react quickly to changes (e.g. in the workload) is thus limited (but at the same time,
this is not the goal of our approach, cf. Section 5.1).
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No regard for uncertainties: For the results, uncertainty of estimations, uncertainty
of the workload, and the resulting risks are not taken into account. Here, sensitivity
metrics could be an additional quality criterion and we could integrate robust optimization
techniques such as discussed in (Miettinen et al., 2008a, p.450 et seqq.) into our approach.

8.5.3.2. Current Limitations of Tactics

The tactics proposed in Section 8.3 currently have a number of limitations that could be
addressed by future work.

Restricted number of tactics: No reliability tactics are formalised yet. More perfor-
mance and costs tactics could be formalised.

No sequencing of tactics: The current tactics approach applies one tactic at a time and
then evaluates the quality properties again. In future work, it could be studied whether
a good sequence of tactics can already be found when evaluating a candidate, so that the
search converges even faster. For example, spreading the load could be combined with
scaling up or scaling down resources to balance the load more effectively.

Limited rationale for tactic parameters: More systematic methods to determine the
thresholds and weights used by the tactics need to be developed.

One resource per server: Currently, the tactics can handle only one processing resource
per server, so that we can easily define a server’s utilisation. This can easily be extended
to consider multiple resources in one server, e.g. CPU and HDD.

8.6. Summary

This chapter presents an optimization approach based on the formulation of the design
space from the previous chapter 6. Based on the discussion of the resulting optimiza-
tion problem and its characteristics, we chose evolutionary optimization to improve the
initial CBA candidate and find the Pareto-front of optimal candidates. The candidate
representation is derived from the design space formulation.

Our realised optimization approach is based on the NSGA-II algorithm. We discuss in
this chapter how the steps of candidate evaluation, candidate selection, and candidate
reproduction are realised for the optimization problem.

To improve the performance of the optimization, we incorporate domain-specific knowledge
from architectural tactics in form of tactics operators. Finally, we present the resulting
CBA framework, which can optimize CBA models independent of the used metamodel
and the used quality prediction technique, and which allows to plug in additional quality
predictions and tactics operators.

In the next chapter, we present the evaluation of our approach.
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9. Validation

This chapter describes the validation of the automated improvement approach as a step
in the CBSE development process as presented in Chapter 5 based on two case study
systems. We claim that our approach supports the software architect in improving a CBA
based on model-based quality predictions, assuming that a software architecture model
with quality annotations is available. The validation is structured into two main goals:
(1) To assess the validity of the automated improvement method in terms of the accuracy
of the results and the applicability of the method and (2) to evaluate the performance of
the optimization step quantitatively.

Regarding the first goal, our claim has to be evaluated based on different levels of validation
of prediction models suggested by (Böhme and Reussner, 2008b). In this work, we address
several aspects: First, we validate the accuracy of model predictions for the example
quality attribute performance, and we validate the accuracy of the improvement method
in terms of capability to find an approximation of the true Pareto-optimal candidates.
Second, we validate the applicability of our method by evaluating the appropriateness of
the design space formed by the combination of degrees of freedom, and we discuss further
applicability aspects of our approach. Additionally, we sketch future further validation
studies, e.g. for cost/benefit evaluation.

Regarding the second goal, we evaluate the performance our optimization step quantitati-
vely. In particular, we study the effects of our enhancements (tactics, quality requirements,
starting population) of the standard evolutionary optimization as described in Section 8.3
in several experiments, comparing the quality of the found solutions and the time to find
equivalent solutions.

This chapter is structured as follows. First, Section 9.1 describes the evaluation goals in
more detail and derives questions for both goals. In Section 9.2, we present the imple-
mentation of the optimization framework used in this chapter. Section 9.3 presents the
two case study systems. Then, Section 9.4 described the results for the validity of our
automated improvement approach and Section 9.5 describes the quantitative evaluation
of the optimization step’s performance.

9.1. Validation Goals and Derived Evaluation Questions

The validation goals for the two validation aspects are presented below in Section 9.1.1
and Section 9.1.2, respectively. For both goals, we derive validation questions and also
describe questions that are out of scope of this work.
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9.1.1. Validity of the Automated Improvement Method

The goal of this work is to provide an automated approach that supports software architects
in improving a CBA based on model-based quality predictions. The validity of model-based
prediction approaches in general can be studied on several levels (Böhme and Reussner,
2008b), ranging from the accuracy of the predictions to the benefits of the approaches in
software development projects. Similarly, the validation of our approach, which extends
and supports model-based predictions, needs to be validated on these levels.

In the following, we first present the three levels of validation for model-based prediction
approaches and extend them to consider the improvement support in Section 9.1.1.1. We
derive validation questions addressed in this work in Sections 9.1.1.2 and 9.1.1.3. Finally,
we discuss what validation aspects are out of scope of this work in Section 9.1.1.4, and
sketch how to validate these aspects in future work.

9.1.1.1. Validation Levels for Model-based Quality Improvement Approaches

Böhme and Reussner (2008b) have introduced validation levels for model-based prediction
approaches. Alternative terms for these levels have been described by (H. Koziolek, 2008).
We combine both views below.

The validation levels have been suggested to assess prediction approaches. We extend the
validation level description below to explicitly cover the improvement step, either manual
or automated, as well.

Level I: Accuracy Validation

The first level of validation studies the accuracy of the prediction approach by comparing
prediction results to the observed properties of the studied subject. For example, predicted
response times can be compared to measured response time of an implementation. On
this level, the assumption is that an accurate input model is given as required by the
prediction approach. Böhme and Reussner call this level of validation “metric validation”.
For (automated) improvement support, two additional aspects are of importance.

Accurate Predictions: The prediction model must deliver accurate predictions also when
it is varied: Every candidate model that is automatically derived from the given
accurate input model need to result in accurate predictions. For manual improvement
support, this aspect is less relevant if the candidate models are manually created
based on suggestions of the improvement support.

Optimal Results: Additionally, it should be validated whether the approach can indeed
find model candidates with improved quality properties, or even optimal quality pro-
perties. For an automated search-based improvement approach, this aspect implies
that the automated search finds the optimal candidates or an approximation thereof.
For manual improvement support (e.g. (Cortellessa and Frittella, 2007)), it has to be
validated whether better candidates are reachable assuming perfect user behaviour.

If both these aspects are fulfilled, the result models are accurate, i.e. they reflect systems
with approximately optimal quality properties with respect to the explored design space,
cf. Figure 5.5, page 93 from Chapter 5.

Level II: Applicability Validation

The second level of validating model-based prediction approach is concerned with applica-
bility: The question is whether users of the approach can obtain the necessary information,
create the prediction models, execute the prediction, and interpret the prediction results.
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For an automated improvement approach, some of these properties are inherited, others
become irrelevant, and more are added, as described in the following.

First, an automated improvement approach inherits the applicability regarding required
information and model creation from the used model prediction methods. If the automated
improvement requires further input models, the ability to create these needs to be studied.

Furthermore, an automated improvement approach targets to conduct the design space
exploration of a subset of the true design space for the software architect. Thus, with
respect to applicability, it needs to be studied whether the subset is a relevant subset
of the true design space, i.e. whether the exploration provides useful information to the
software architect.

Then, in an automated improvement approach, the predictions are executed automatically
and the prediction results are automatically analysed to find the best candidates. Then,
the only remaining applicability aspect to validate is whether the user can understand the
results and make decisions based on them.

To summarize, the applicability aspects to validate for an automate improvement method
is whether a user can provide the input models, whether the method explores a relevant
subset of the design space, and whether the user can understand the approaches’ results
and make decisions based on them.

Level III: Cost/Benefit Validation

Finally, the third level is concerned with the cost/benefit evaluation of a prediction ap-
proach. The use of an approach usually comes at a certain cost, e.g. the cost and effort to
create the input models and the time to make predictions and interpret the results. These
costs need to be compared to the expected benefit of prediction approaches. An example
benefit is the improvement of the modelled subject based on insights from the predictions.
For performance predictions of CBA, an expected benefit is, for example, reduced late
life-cycle effort to fix performance problems.

The validation of costs and benefits is the most expensive level of validation. For a control-
led study, the same software project has to be executed twice, once using the prediction
approach, once without using it or using competing approaches. Thus, this form of vali-
dation is rarely executed by researchers. Böhme and Reussner call this level of validation
“benefit validation”.

Due to its comprehensiveness, the third level is unchanged for improvement support ap-
proaches. However, due to the high effort, we cannot conduct a level III validation in this
work. We discuss future work validation studies for level III in Section 9.1.1.4.

9.1.1.2. Derived Validation Questions for Accuracy

In the following, we derive the accuracy validation questions from the discussion above.

Model Accuracy: Level I

Because our approach supports any quality evaluation function, the validation of any such
function is out of scope of this work and accuracy of predictions must be separately shown
for different quality prediction approaches in general.

Accuracy of other performance prediction approaches have been studies in several case
studies, cf. (H. Koziolek, 2010). Accuracy of reliability predictions is difficult to validate,
because system failures in real systems are rare events and difficult to measure. Thus, only
some reliability prediction approaches have been validated empirically (Gokhale, 2007;
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Immonen and Niemelä, 2008). Accuracy of costs estimation have been validated in other
works. Costs for hardware and for bought third-party components can be collected from
vendors. Costs for in-house development can be estimated, e.g. using the COCOMO tool
suite (Boehm et al., 2000), although only with limited accuracy.

However, our approach assumes in particular that quality predictions for models are ac-
curate for changes along the degrees of freedom. To achieve this, the quality annota-
tions of a component must result in accurate predictions in different contexts (Becker
et al., 2006),(Reussner et al., 2011, Sec.2.4). Thus, the goal in CBA quality prediction
approaches is to specify parametrized component quality annotations independently of the
later context. Due to complex interactions of the component and its environment, this is
difficult to achieve. At the same time, this accuracy of models along changes in the CBA
model is crucial for the optimization.

We thus pose the first evaluation question:

Q1.1 Can models that were automatically modified according to the specified degrees of
freedom still result in accurate performance predictions?

Because this work focusses on performance as a quality attribute, we focus on performance
predictions with the PCM here. To answer this question, we first review and evaluate the
existing studies of PCM model accuracy with respect to model parametrization and model
accuracy in the presence of changes. We observe that although many parametrization
aspects have been covered elsewhere, the accuracy of models when the allocation is changed
has not been studied before. Thus, we add an additional validation for this aspect to the
body of work. To validate the accuracy in this study, we compare the results of an
optimization run with performance measurements of the realized candidates.

The detailed review of existing studies, the set-up of the allocation experimental evaluation,
and the results are presented in Section 9.4.1.

Approximating the True Pareto Front: Level I

In addition to finding any improved architecture candidates based on accurate
predictions—which is, nonetheless, already a viable support for the software architect
itself—another aspect of an automated improvement support is whether it can find an
approximation of the optimal candidates in the considered design space. The resulting
question is:

Q1.2 Can the search find an approximation of the true Pareto front?

The true Pareto front of the design spaces and optimization problems considered in this
work could only be determined by exhaustive search. However, the search space in our
case studies is too large and prohibits enumerating and evaluating all possible candidates.
We can, however, get an insight into the properties of the design space by considering the
results of many searches. Here, only considering the results of evolutionary optimization
runs may be misleading, because all runs may mistakenly converge to the same local
optimum if the considered search space happens to be deceptive (Deb, 2001, p.347). Thus,
we additionally consider the results of random search, which is not prone to premature
convergence to local optima. From the results of all these searches, we calculate the overall
Pareto-optimal front, and assess the quality of approximation manually. To do so, we
can analyse the found optimal candidates and try to manually find additional candidates
dominating the found front.
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9.1.1.3. Derived Validation Questions for Applicability

The applicability aspects to validate for an automate improvement method are whether
a user can provide the input models, whether the method explores a relevant subset of
the design space, and whether the user can understand the approaches’ results and make
decisions based on them.

On top of the input CBA model, our approach does not require further information from
the user. The approach automatically instantiates the degrees of freedom based on the
DoF, i.e. based on a description on the metamodel level. These DoF are created once
per metamodel by experts (for example, we have presented the DoF for the PCM in this
work).

Software architects may review the found degrees of freedom and possibly delete some. This
is less effort than the manual task of first coming up with possible design alternatives and
then assessing their usefulness. Then, the optimization step of our approach is automated
and thus requires no manual effort.

Thus, the remaining aspects are the relevant design space and the decision making, dis-
cussed in the following.

Relevant Design Space: Level II

In an automated improvement approach, we are by definition limited to the information
contained in the CBA model and CBA metamodel, so that the complete design space that
the software architect considers when designing an architecture cannot be covered. Thus,
the design space that can be searched by our tool to support the software architect is a
strict subset of the true design space.

The question to validate here is whether the design space considered in this work is a
relevant subset so that the found optimal solutions provide relevant information to the
software architect:

Q1.3 Does our design space represent a relevant subset of the complete design space soft-
ware architects are faced with?

To answer this question, we first study whether the discussed degrees of freedom actually
occur in example systems. Additionally, we analyse the impact of the degrees of freedom
on the quality of the example system. We do not study all proposed DoF because the
existence of some meaningful DoF already justifies our approach.

Furthermore, as discussed in Chapter 5, quality criteria often conflict, especially when
considering costs as one quality criterion. Whether an optimization of CBA is multi-
objective depends on the considered quality criteria. We assume that two or more conflic-
ting quality criteria are considered. Then, the question to validate is whether our formu-
lation of the design space, which is an incomplete subset of the true design space, actually
reflects the conflict in the quality criteria.

Note that we do not claim that every instance of the optimization problem is multi-
objective, because some combinations of degrees of freedom, especially when combining
few of them, may lead to correlating quality properties, even though the quality attributes
are known to usually conflict. We show that the optimization of performance, reliability,
and costs as an example of quality optimization is indeed a multi-objective problem and
that the Pareto-front contains meaningful trade-offs from which the software architect can
choose.

We present the detailed validation plan and the results for this question in Section 9.4.3.
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In all cases, we can only show that it is possible to create meaningful models and meaningful
degrees of freedom. At the same time, there are certainly software systems that are hard
to model because of complicated performance effects or other quality property effects and
there are software systems where the described degrees of freedom have only little effect
and other design decisions (that possibly cannot be automatically studied) are relevant.
Thus, we do not claim that our observations for the case study systems in the following
are transferable to all other software system.

Understanding and Decision Making: Level II

As we exclude the applicability of the separate model-based quality prediction approaches,
the remaining aspect concerning the applicability of our automated improvement approach
is the whether a user can understand the approaches’ results and make decisions based on
them.

A validation of this aspect can be derived from the preliminary study in Rohrberg (2010).
An empirical study with 8 participants was conducted, who were trained in making quality
predictions with the PCM and had a background software engineering knowledge. The
participants were asked to analyse the results of our automated improvement approach
and choose one candidate based on their own preferences. They were asked to state any
insight they got into the trade-off problem at hand during the analysis. Most participants
were confident in the decision they made, indicating that they were able to understand
the results. Additionally, they were mostly able to answer a questionnaire on the quality
properties of the available candidates and the conflicts among them. Thus, this initial
study indicates that the results of the automated improvement can be understood by a
trained user.

We do not include the details of this study into this work because of its preliminary nature
and space restrictions, thus, we do not pose any questions here. More details on the
study, including the posed questions, a detailed discussion of the results, and the threats
to validity, can be found in Rohrberg (2010). Still, the study is preliminary and a more
thorough evaluation is subject to future work.

9.1.1.4. Out of Scope Validation Activities

We do not conduct additional applicability validations of model-based prediction ap-
proaches, because any prediction approach for CBA can be used in our approach. For
the PCM, the applicability of creating such models has been evaluated with a series of em-
pirical studies (Martens et al., 2011), leading to the conclusion that parametrized, reusable
models can indeed be created by users.

A cost/benefit evaluation (level III) of our approach is subject to future work because of
its high effort. The most expressive form of study, as described above, would be to execute
the same software project twice, once using our improvement approach, once by a control
group not using our approach.

We could compare the quality of their final software system, their insight into the problem,
and the time they needed for their evaluations and decisions. For valid results regarding
analysis and decision making, the studied system would have to be realistic and the soft-
ware architect would have to have much insight into the context and stakeholder desires
of the system. Thus, an evaluation in a lab setting with students, which would have a
moderate effort, would lead to high threats to validity. However, such an experimental
evaluation in a practical setting is too expensive and time consuming to be realized in this
work, and remains subject to future work.
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Different levels of control groups could be used: An evaluation of our approach compared
to the manual result interpretation of model-based prediction results would require the
control group to work with model-based quality prediction approaches, too, so that all
effects can be attributed to the automated improvement approaches.

However, because there have been no published cost-benefit studies for any model-based
quality prediction approach (a single preliminary study in Williams and Smith (2003)
investigates the required refactorings and performance fixes, comparing two releases of a
software where the second had used performance prediction), a study that compares using
our improvement approach to using no model-based predictions at all could result in even
more interesting results. Such a study would combine the effects of model-based quality
prediction and our approach.

Ultimately, alternative improvement support should be compared to our approach. Ho-
wever, this type of study is beneficial only after the above sketched studies have been
evaluated.

9.1.2. Validation of the Optimization Step

As a second aspect, we validate our suggested extensions to evolutionary optimization
quantitatively. We first discuss how the optimization method can be validated in Sec-
tion 9.1.2.1 before presenting the posed questions in Section 9.1.2.2. Finally, we describe
validation activities that are out of scope in Section 9.1.2.3.

9.1.2.1. Performance Assessment for Multi-objective Optimization

Metaheuristic optimization approaches such as evolutionary optimization do not guarantee
to find the true global Pareto optimum (Blum and Roli, 2003, p.271). The result of
an optimization run is usually an approximation of the true Pareto front with unknown
quality (Zitzler et al., 2002b, p.117). As discussed in Section 3.5.4, convergence properties
have been shown for elitist multi-objective evolutionary algorithms that do not discard
any optimal solutions. However, this property does not apply to evolutionary algorithms
that limit the size of the population for practical reasons. For example, in NSGA-II
and SPEA-2, optimal candidates may be discarded by the crowding selection operator
(NSGA-II) (Deb, 2001, p.252) or the clustering algorithm (SPEA-2) (Deb, 2001, p.268).
Furthermore, this theoretical property does not allow to make conclusions about the quality
of the achieved front after a number of iterations.

Thus, we compare our proposed extensions of the evolutionary optimization (tactics, qua-
lity bounds, and starting population heuristic) to the baseline methods of (1) unchanged
evolutionary algorithm and (2) random search.

To compare any two approaches (e.g. random search and evolutionary search), we compare
the outcome of optimization runs after a number of iterations using metrics to assess the
quality of the Pareto-fronts. This is the standard technique when assessing multi-objective
optimization approaches (Deb, 2001). Additionally, we study the development of the
metrics over the course of the optimization to assess how quickly the search finds good
solutions. Together, we can assess the achieved quality of the solutions after a number of
iterations as well as the time needed for the optimization and the time to find equivalent
results. We call both aspects together the performance of an approach in the following 1.

1The terms quality and performance are thus overloaded in this work due to the connection to different
research communities: When referring to software systems and software architectures, the term“quality”
denotes the quality attributes of software system (as predicted based on a model of the architecture), and
the term “performance” denotes the time behaviour and resource efficiency properties of the modelled
system as described in Section 2.2.1. When referring to the optimization approach validation, we use
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An analytic comparison of multi-objective metaheuristics (in particular evolutionary algo-
rithms) is difficult in general (Deb, 2001, p.375). Especially together with the stochastic
and complex nature of performance and reliability evaluation, an analysis of the perfor-
mance in general is infeasible. Thus, multi-objective evolutionary algorithms (and other
metaheuristics) are commonly compared based on test problems (Deb, 2001, p.375). Here,
the performance of metaheuristic optimization approaches depend on the chosen test pro-
blem (Coello Coello et al., 2007, Chapter 4), so that to assess the suitability of an op-
timization approach for a certain domain, a test problem from that domain should be
chosen. Naturally, we select test problems from the domain of CBA to compare different
optimization approaches. Still, even within this domain, the performance of optimization
approaches may depend on the concrete CBA at hand. Thus, we can only study the per-
formance of our approach for test problems, without being able to show the validity of the
results for all possible CBA optimization problems as defined in this work.

9.1.2.2. Derived Validation Questions

In this work, we suggest three extensions of the baseline evolutionary optimization.

1. The use of tactics operators to include domain-specific knowledge as presented in
Section 8.3.2

2. The use of tactics in a final intensification phase, as presented in Section 8.3.3

3. The use of quality bounds to focus the search on interesting regions as presented in
Section 8.2.5.2

4. The use of domain-specific knowledge to generate starting populations, as presented
in Section 8.3.4

The benefit of the starting population generation has been evaluated elsewhere, as descri-
bed below. Thus, based on the discussion in the previous section, we pose the following
three questions:

Q2.1 How much is the optimization’s performance improved by using tactics in a case
study?

Q2.2 How much is the optimization’s performance improved by an intensification phase
at the end of the search in a case study?

Q2.3 How much is the optimization’s performance improved by using quality bounds in a
case study?

The benefits of analytically generating an initial starting population based on simplified
quality prediction and limited degrees of freedom (hybrid optimization, cf. Section 8.3.4.1)
has been investigated by us in (Martens et al., 2010). We observed that the analytic star-
ting population provided valuable input to the evolutionary optimization in the considered
case study, while the evolutionary algorithm was able to refine the results. The benefits
of generating a diverse starting population based on different allocation schemes (cf. Sec-
tion 8.3.4.2) has been investigated by Beyer (2010) for one case study, resulting in the
observation that the optimization performs better in all phases of the optimization. In
both cases, however, the results as-is are limited to case studies actually considering the

the common wording in metaheuristic optimization research (Deb, 2001; Zitzler et al., 2002b): The term
“quality” denotes the quality of the found Pareto-front (as assessed with quality indicators and using
the Pareto dominance relation, cf. Section3.5.5) and the term “performance” denotes the combined
examination of quality and needed time. The terms are related: the former is concerned with the
assessment of software systems and architectures in general, while the latter is concerned with the
assessment of our optimization approach, which is also a software system.
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selection of degrees of freedom. The allocation scheme only considers the allocation degree
of freedom. The hybrid optimization only considers component selection and limited allo-
cation degrees of freedom, and may suffer from combinatorial explosion if more degrees of
freedom are selected.

We first discuss the metrics to assess the performance of optimization approaches in Sec-
tion 3.5.5. Then, in Sections 9.5.2 to 9.5.4, we study the effect of our extensions to consider
tactics, quality requirements, and starting population heuristics.

9.1.2.3. Out of Scope Validation Activities

The following aspects are not validated empirically in this work.

• We do not evaluate the choice of metaheuristic with experiments because the choice is
not fixed in our approach. As described in Section 8.4, other metaheuristic search ap-
proaches could be plugged into the optimization framework as well. In Section 8.1.3,
we discuss why evolutionary optimization and in particular the chosen NSGA-II
based method seem beneficial.

• We do not compare our approach to rule-based approaches because the assumptions
of both are different. Rule-based approaches such as (Xu, 2010) assume one quality
criterion to be optimized with potentially others (here: costs) as constraints. In
this assumed setting and for systems where all optimal solutions to this model (like
the case studies in Xu (2010)) are reachable by the rules, a rule-based approach
is superior to our approach, as it is tailored to the problem. However, for our
problem formulation that multiple conflicting quality criteria should be optimized,
the rule-based approaches cannot be applied as is. Thus, no meaningful setting for
a comparison is available.

• We do not experimentally validate the influence of problem parameters (e.g. number
of degrees of freedom, number of design options per degree, and used types of degrees
of freedom) on the optimization performance, because software architecture optimi-
zation problems have a large number of properties influencing the performance. In
general, evolutionary optimization has been recognized as a flexible optimization
technique (Deb, 2001, p.164), and thus should result in useful (even though always
approximate) results for most types of problems except isolated special cases. At
the same time, a limited number of experimental evaluations can only give a limi-
ted insight into the interactions of properties in general. See Section 8.5.1 for the
discussion of influences on the optimization performance.

9.2. Tool Implementation

This section presents the current implementation of the optimization tool, called PerOp-
teryx. It is used in the following experiments to validate our approach. The tool does not
yet support the generic optimization framework described in Section 8.4 because it is yet
specific to the PCM metamodel. The validation questions posed above and the experi-
mental evaluation in the next sections, however, do not require this generality, so we can
use the PerOpteryx tool for evaluation here.

Section 9.2.1 describes the architecture of the current implementation, and Section 9.2.2
provides more detail on the used PCM-specific DoFI metamodel used in PerOpteryx.

9.2.1. PerOpteryx Architecture

The current architecture of the PerOpteryx tool is shown in Figure 9.1. The tool uses
Opt4J (Lukasiewycz et al., 2010) as an general-purpose optimization framework. Five
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Figure 9.1.: PerOpteryx Tool

quality prediction adaptors (two for performance (LQNS or SimuCom), one for reliability
(PCM2Markov) and one for costs (PCM2Costs)) have been implemented. Currently, the
evaluation of candidates is sequential, but it could as well be parallelized to λ parallel
evaluations, i.e. every newly generated candidate is evaluated in parallel.

Two standard operators (cf. Section 8.2.4) and a number of tactics operators (cf. Chap-
ter 8.3) have been implemented. See Section 8.4 for a description of the framework parts.

The PerOpteryx implementation is yet specific to the PCM metamodel, i.e. it does not
conform to the CBA optimization framework presented in Section 8.4 with that respect.
The DoF metamodel is partially used and is discussed in the next section.

The following degrees of freedom in the PCM are supported by the tool at this time

• Component Selection (Section 7.2.1)

• Passive Resource Multiplicity (Section 7.2.3)

• Allocation (Section 7.3.1)

• Resource Property Change for changing the processing rate (Section 7.3.5)

Like the PCM, PerOpteryx uses Ecore instead of EMOF. As described in Section 2.5.2,
Ecore and EMOF are effectively equivalent, so we do not distinguish them further.

Constraint checking is not yet implemented, as the currently supported DoF in Palladio
have not required this so far.

If not mentioned explicitly in the following sections, the following default configuration
for PerOpteryx was used. The maximum number of iterations is the default stop criterion
with the maximum number of iterations set to 200. The default population size is 20 and
the default crossover rate is 0.9. Tactics and starting population heuristic are disabled by
default. If tactics are enabled, the default probability to apply tactics is 0.6. The order
and probability of the applied operators is described in Section 8.3.2.

The tournament level for the NSGA-II selector is set to 3 (cf. (Deb, 2001). For crowding
distance assignment, the objective values are scaled by the current minimum value and
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Figure 9.2.: Degrees of Freedom in PerOpteryx

maximum value in the population (like presented in Deb (2001), this was not present in
the initial presentation of NSGA-II in Deb et al. (2000)).

Additionally, we have studied the feasibility of our approach by implementing a prototype
CBS-metamodel-agnostic transformation that reads in a DoF model for component selec-
tion in Palladio, a candidate vector, and an initial Palladio model, and applies the chosen
values to produce a changed CBS model. This transformation is independent of the used
CBS metamodel (in our case PCM), as the transformation handles the model only using
EMF (the Eclipse version of EMOF) reflection capabilities.

9.2.2. Degree of Freedom Instances in PerOpteryx

The PerOpteryx degree of freedom model adds one (or several) meta-classes per concep-
tual degree of freedom (as described in Section 6.3.3) to the generic model of Figure 6.9.
These meta-classes are annotated by OCL constraints to constrain the primary changed
elements and the design option set. The constraints for the annotated model elements
have been omitted in this figure to save space. As described in Section 6.3.3, because
Properties cannot be referenced in EMOF, the primary changed element is usually res-
tricted to the model element that contains the primary changeable element property. For
example, the Component Selection Degree has the primary changeable element Assembly-
Context.encapsulatedComponent, so the referenced primary changed element is restricted
to be an AssemblyContext.

An exception are degrees where a single element from a property with multiplicity
larger than one is changed, such as the Resource Selection Degree. To identify the
changed element here, there are several option. Because the property ResourceContai-
ner.activeResourceSpecifications is a composite property (see discussion in Section 6.3.3),
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we can refer to ProcessingResourceSpecification here because one instance of Processin-
gResourceSpecification uniquely defines the place in the system to change. When applying
a change produced by the degree of freedom, we then have copy the attributes values from
the template ProcessingResourceSpecification, which is in the resource repository, to the
changed ProcessingResourceSpecification to keep the correct reference.

Alternatively, we can add additional information to the degree to identify the Processin-
gResourceSpecification from the ResourceContainer.activeResourceSpecifications list. For
the Resource Selection Degree, we chose the latter option and add the ResourceType of
the ProcessingResourceSpecification to the degree, so that the Resource Selection Degree
references the ResourceContainer and the ResourceType to uniquely identify a Proces-
singResourceSpecification. This option is suitable because a ResourceContainer may only
contain one ProcessingResourceSpecification per ResourceType, and it makes the exchange
of ProcessingResourceSpecifications technically easier, because we can copy a Processin-
gResourceSpecification from the repository and do not have to copy the values of all
attributes separately.

For the configuration parameter degree, several meta-classes are added to the PerOpteryx
degree of freedom model. A configuration parameter degree can be modelled by either
a continuous range or a discrete range or a set of strings, thus, there are three different
classes in the degree of freedom model: DiscreteComponentParamDegree, Continuous-
ComponentParamDegree, and StringComponentEnumDegree.

9.3. Case Study Systems

This section presents the two case study systems our method was applied to: These are
a business reporting system (BRS) (Section 9.3.1) and an industrial control system (ICS)
from ABB (Section 9.3.2), which shows the industrial applicability of our approach.

9.3.1. Business Reporting System

In this section, we first introduce the architecture and the Palladio model of our first
system under study, the so-called business reporting system. Then, we describe the degrees
of freedom in this system and formulate the search problem.

The system under study is the so-called business reporting system (BRS), which lets users
retrieve reports and statistical data about running business processes from a data base. It
is loosely based on a real system (Wu and Woodside, 2004b). Fig. 9.3 shows some parts
of the PCM instance of the BRS visualized using annotated UML diagrams. It is a 4-tier
system consisting of several software components.

The WebServer component handles user requests for generating reports or viewing the
plain data logged by the system. It delegates the requests to a Scheduler component,
which in turn distributes the requests to the GraphicalReporting component or the
OnlineReporting component, depending on the type of request. These components ge-
nerate the reports using data retrieved from the respective core reporting engine (Core-
GraphicEngine or CoreOnlineEngine). The core reporting engines query the Database,
for some requests directly, for others using a Cache component. The Scheduler also com-
municates with the UserManagement for user login and logout requests as well as to log
the user requests over time.

Besides the static view of the system, Fig. 9.3 also contains a behavioural view of the Core-
OnlineEngine.getReport service in form of an RD-SEFF in the lower half of the figure.
The RD-SEFF contain the resource demands, failure probabilities, and call propagations
later predictions will be based on. The components are allocated on four different servers
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Figure 9.3.: Business Reporting System: PCM Instance of the Case Study System

connected by a network. Each server has a CPU with a processing rate of 1.5 GHz. Our
case study analyses a usage scenario in which all six services of the system are used, shown
in Figure 9.4. The inter-arrival time of the open workload is exponentially distributed
with a mean value of 1.

For the performance prediction, we transform the model into a LQN using PCM2LQN
(H. Koziolek and Reussner, 2008) and solve it with the LQNS tool. The performance
prediction with the LQNS tool shows that the system is overloaded, i.e. its queue lengths
grow over time and operational equilibrium is not reached (Jain, 1991). Even though the
model does not converge because of the overload situation, the LQNS tool still outputs a
predicted mean response time that can be used by the optimization as a measure of the
quality of the candidate. In this case, the predicted value is 25.3 seconds. The utilization
of server 2 is reported to be 100.9%, thus, server 2 is the bottleneck in this system.

The reliability prediction includes software, network and server hardware failures. Some
internal actions of components were annotated with failure probabilities. We assumed that
the servers have a mean time to failure (MTTF) of 43800 hours and a mean time to repair
(MTTR) of 3 hours. The network has a failure probability of 10−6. For the reliability
prediction, we use the PCM Markov translator (Brosch et al., 2010), which predicts a
probability of failure on demand for the system of 8.07 · 10−4. This means that each user
request will be successful with a probability of 99.92 percent.

The BRS server costs depend on the chosen CPU processing rate pr in GHz. For the costs
model, we analysed Intel’s CPU price list (Intel Corporation, 2010). We fitted a power
function to this data, so that the resulting costs of one server s is costs = 0.7665 pr6.2539

s +
145 with coefficient of determination R2 = 0.965. The overall server costs of one candidate
is the sum of the costs of all used servers plus the costs of the components. The costs of
the initial system are 718.7 units.
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Figure 9.4.: Usage Scenario for the BRS System
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Component demand failure
prob.

demand failure
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demand failure
prob.

demand failure
prob.

costs

WebServer 0.5 2.8E-6 0.5 5.4E-6 0.05 3.5E-6 0.05 3.0E-6 100
WebServer2 0.3 2.8E-6 0.3 5.4E-6 0.05 3.5E-6 0.05 2.0E-6 150
WebServer3 0.5 6.0E-6 0.5 7.0E-6 0.04 3.5E-6 0.04 3.2E-6 80

Table 9.1.: Component Selection in BRS: Changes to Initially Used Component

To formulate the search problem for the business reporting system, first the system specific
degrees of freedom have to be determined. For our case study, we consider the following
degrees of freedom: component selection, server processing rates, and component alloca-
tion.

Component selection is possible in this system as it contains several replaceable standard
components. The WebServer can be realized using third party components. The software
architect can choose among multiple functional equivalent components with different non-
functional properties and cost. For the BRS, we have modelled two additional web servers
which have different performance and reliability properties, but also higher or lower cost
than the components in the initial system. The demands and probability of failure of the
internal actions are shown in table 9.1.

Server processing rates can be adjusted at multiple locations in the model as it contains up
to nine servers. It is expected that the overall performance of the system increases most
significantly when using faster processing rates for highly utilized components. We assume
here that the bounds for the processing rate are 1/2 of the initial rate (lower bound) and
2 times the initial rate (upper bound). The processing rate is modelled as a continuous
variable.

Component allocation can be crucial for the non-functional properties and cost of the
system. It could be possible to allocate multiple components on the same server without
affecting the performance or reliability significantly. This could allow to remove some
servers to save cost. In this problem, we allowed the components to be allocated to up to
four servers.

The genome of the initial candidate is [1.5, 1.5, 1.5, 1.5, WebServer, server1, server2,
server2, server2, server4, server4, server4, server3, server2]. It reflects the processing rates
in GHz, the selected web server component as well as the component allocation to different
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servers (in the order they are described above, e.g., WebServer is deployed on server 1,
Scheduler is deployed on server 2, and the UserManagement (last entry) is deployed to
server 2).

If we only consider 4 steps to vary the processing rate of servers, which is actually a
continuous variable, the resulting optimization problem has the following size (we denote
the number of components, servers, etc., using the cardinality symbol):

number of candidates = |servers||components| · |web server components| · |rate steps||servers|

= 49 · 3 · 44

= 201326592

As the evaluation of each candidate takes about 50 seconds (for the business reporting
case study using the fast LQN solver, cf. Section 9.5.2), the time needed for the full
exploration of the design space would be 319.2 years. Some of the candidates in the
design space are equivalent, though: If we exchange S1 and S3 in the example, i.e. if we
deploy the WebServer component to S3 and the Database component to S1, the resulting
candidate has the same quality properties than the initial candidate, and does not have
to be evaluated anew. If we exclude all permutations of servers that lead to equivalent
candidates, the number of allocation option to evaluate is 11051 (cf. (Beyer, 2010)) and
the number of required evaluations is 11051 · 3 · 44 = 8487168. Still, the time needed for
the evaluations would be 13.5 years.

9.3.2. ABB Process Control System

The second case study shows the applicability of the method in an industrial context
on a large scale system. In this case, we analysed an industrial process control system
(PCS) from ABB, which is used in many domains, such as power generation, pulp and
paper handling, and oil and gas processing. The PCS manages industrial processes by
periodically collecting sensor data like temperature, flow, or pressure, processing the data
and visualizing the data for human operators. Operators may use the system to control
actuators in the process such as pumps, valves, and heaters. Additionally, the system may
execute predefined action on its own.

Our case study focusses on the server-side part of an ABB PCS. We do not consider
the embedded field devices in this work. The server-side application comprises of several
million lines of C++ code. Due to the proprietary nature of this system, the author of
this work could not access and study the system herself, but worked together with ABB
researchers who created the models and run the optimization. Thus, no in-depth detail of
the system can be provided.

Fig. 9.5 shows a part of the PCM model of the system. Researchers at ABB have modelled
28 components of the system, each one having at least one resource demand, which were
determined from performance measurements on a running instance of the system. The
resource environment is adaptable to customer requirements and consists of three servers
in the initial configuration. For the hardware resources, we used a costs model similar to
the former case study. One behaviour model for component C13 is shown in Fig. 9.5 at the
lower part. Additionally, four of the most important usage scenarios of the system were
modelled.

More details on the model creation for the ABB PCS have been published in H. Ko-
ziolek et al., 2011c. Reliability annotations are not available for this system; thus, only
performance and costs are considered here.
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Figure 9.5.: PCM Model of the Industrial Control System (by H. Koziolek et al., 2011c

Component HDD demand CPU demand costs Probability to call C2

C1-2 N/A -7.3% +200% N/A
C13-2 + 33% - 50% +20% lower
C13-3 - 17% - 19% +200% lower

Table 9.2.: Component Selection in ABB PCS: Relative Changes to Initially Used
Component

The quality properties of interest for our optimization are performance (in terms of mean
response time of the described usage scenario) and costs as modelled with the PCM costs
model.

As degrees of freedoms, it is possible to replace component C1 and C13 by alternative im-
plementations with different performance and costs. Table 9.2 shows the different options.
For C1, there is one alternative component C1-2 that has less CPU demand (in relation to
C1) but higher costs. For C13, there are two different alternatives. Component C13-2 has
less CPU demand, but more HDD demand and higher costs. Component C13-3 has lower
CPU and HDD demand, but much higher costs.

Furthermore, the allocation of the components to hardware resources can be adjusted. Up
to five servers are available. The composed structures C4 and C28 are subsystems, thus
their content may be allocated independently. Component C12 is a composite component
and can only be allocated as one. Thus, we get 24 allocation degrees of freedom for C12

and all basic components except C13 and C14.

Additionally, the processing rates of the servers can be lowered to save costs or increased.
For each CPU, we assume a possible range from -50% to +100%.
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9.4. Improving CBA based on Model-based Quality Predic-
tion

In this section we present the validation settings and results for Goal 1, the validation of
the architecture improvement support in the context of the CBSE development process.
Section 9.4.1 is concerned with question Q1.1, i.e. the accuracy of the models. Section 9.4.2
discusses question Q1.2 of whether an approximation of the true optimum can be found.
Finally, Section 9.4.3 presents the set-ups and results for question Q1.3 of whether the
considered design space is relevant.

9.4.1. Model Accuracy

In this section, we address the first question regarding the optimization problem:

Q1.1 Can models that were automatically modified according to the specified degrees of
freedom indeed be used for valid performance predictions?

The question of model accuracy is independent of the optimization approach of this thesis,
but applies to any model-based quality prediction approach. Additionally, it depends on
the used meta-modelling language. Thus, to study the validity of the software architecture
models in general is out of scope of this thesis, but is of importance for any proposed quality
prediction approach.

However, the optimization relies in particular on the accuracy of the models even if the
model is changed. This means that a model must be accurate not only for the system confi-
guration it has been created and calibrated for, but also for changed system configuration
(i.e., for different candidates). Thus, the single component models must be parametrized
to account for a varying environment. Our optimization approach assumes that the mo-
dels are parametrized and that they are accurate for all candidates without calibrating the
model for each possible candidate.

In the following, we discuss the existing work on accuracy of parametrized models achie-
vable with the PCM in Section 9.4.1.1 and identify a gap concerning component allocation.
Our additional study closes this gap and is presented in Section 9.4.1.2.

9.4.1.1. Existing Model Accuracy Studies for the PCM

For the PCM, numerous case studies validated that accurate models can be created (H.
Koziolek and Firus, 2006; H. Koziolek et al., 2006; H. Koziolek, 2008, Happe et al. (2006);
Becker (2008a); Becker et al. (2009); Happe et al. (2010); Hauck et al. (2009); Kuperberg
et al. (2008); Huber et al. (2010); Krogmann (2010)). Thus, in this work, we do not further
study that accurate models can be created.

In some of the previously mentioned studies (H. Koziolek and Firus, 2006, Happe et al.
(2006); Hauck et al. (2009); Huber et al. (2010)), PCM models for a system under study
have been created and calibrated using measurements of the system. Then, the predicted
performance properties are compared to measurements of the system. While these studies
validated the accuracy of the given model at hand, they do not allow conclusions on the
model accuracy in the presence of model changes without new calibration of the models.

In most of the above studies ((H. Koziolek et al., 2006; H. Koziolek, 2008), Becker (2008a);
Becker et al. (2009); Kuperberg et al. (2008); Krogmann (2010)), the accuracy of models
in a changed system has been studied already, though:
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Design alternatives: Two studies (H. Koziolek et al., 2006, Becker (2008a)) validated the
accuracy of the models across design alternatives. The model is calibrated for an
initial system design. Then, a design alternative (in this case the addition of a
compression component) is modelled. The performance properties of the new com-
ponent are measured in isolation. Then, the predictions for the design alternative are
successfully compared to measurements of an analogously changed system. These
studies show that PCM performance predictions can be accurate across component
selection if the components are properly parametrized. In these studies, the impor-
tant parameter to model was the size of the processed data.

Usage: Two studies (H. Koziolek, 2008, Krogmann (2010)) are concerned with the accu-
racy of models for changing usage profiles. Although this is not directly a degree
of freedom in this work, usage changes are also relevant if component selection and
component allocation changes, because such changes may lead to different internal
usage profiles at internal interfaces.

Configuration: Two studies (Becker et al., 2009; Happe et al., 2010) evaluated the accuracy
of messaging completions across different configuration. In both cases, the effects
of messaging configuration such as message size, messaging protocol, and use of
security measures (encryption or authentication) were measured in isolation. Then,
the performance effects are weaved into to PCM model and compared with overall
system measurements. These studies show that the configuration of middleware can
be parametrized.

Resource Environment: One study (Kuperberg et al., 2008) evaluated the accuracy of
models across different platforms, and even created the component models indepen-
dently of the target platform. The component’s resource demands were characterized
in terms of executed Java byte-code instructions, and the processing speed of the
target platform was characterized using micro benchmarks of single Java byte-code
instructions on the target platforms. Measurements of the component on a test plat-
form were required to estimate the impact of just-in-time compilation. Component
models, just-in-time estimation and resource environment model were combined and
provided accurate predictions of the systems on the target platform with a prediction
error of less than 10% in most cases.

These studies show that indeed parametrized models can be created which are reusable for
different execution contexts. However, these studies focus on changed components, addi-
tional components or other changes of the component topology. Changes of the execution
environment are so far limited to changes to middleware configuration. As the accuracy of
models across different component allocation is a crucial degree of freedom in this work,
we add a further study to the above body of work. The study and its results are presented
in the next section.

In other CBA metamodels, the parametrization is less pronounced, but also available. In
CBML, a component can be configured with parameters (Wu and Woodside, 2004a) (simi-
lar to component parameters in the PCM). Using these parameters, different environments
in which a component is used can be reflected. as well as varying input parameters can be
reflected. ROBOCOP (Bondarev et al., 2005) also supports such component configuration
parameters, and additionally allows to specify resource demands, control flow constructs,
and input parameters to other called services that depend on input parameter values (si-
milar to the usage profile modelling and propagation in the PCM). Thus, the usage profile
can be propagated through a system.

Both CBML and ROBOCOP also distinguish between the resource requirements of a
component (tasks using replaceable processors in CBML, component resource model in
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ROBOCOP) and the provided resource environment (processor bindings to actual proces-
sors in CBML, performance models for hardware blocks in ROBOCOP), see Section 2.6 for
more details on the models. Thus, they support the separated specification of components
and used resources and thus account for the allocation degree of freedom.

9.4.1.2. Allocation Validation Study

While numerous studies have validated that accurate PCM models can be built (cf. Sec-
tion 9.4.1.1), the validity of the models when the allocation of components is changed
has not been published yet. Therefore, in this section, we present a case study validating
the accuracy of models when changing allocation. To better connect to our optimization
approach, we used the optimization to determine optimal candidates for the case study
set-up.

Then, we measure two optimal candidates and one suboptimal candidate. To assess the ac-
curacy, we determine the relative prediction error e based on the predicted mean response
time mrtpred and the measured mean response time mrtmeas as e =

mrtmeas−mrtpred
mrtmeas

. Additio-
nally, we compare whether the optimal candidates are indeed better than the suboptimal
candidates.

In the following, we first describe the measurement set-up. Based on this measurement
set-up, we ran an optimization to determine optimal and suboptimal candidates. The
optimization set-up is described below. Then, we compare the measurement results for
the three selected candidates to the predicted values.

Measurement Set-up

We use the Business Reporting System described in Section 9.3.1 in this study. The
assumed workload for this study was an open workload with an constant inter-arrival rate
of 1.5 seconds, i.e. every 1.5 seconds a user arrives at the system and executed the usage
scenario shown in Figure 9.4. Both loop iterations within the usage scenario were set to 5
repetitions.

The available hardware environment are a PC with an Intel Core2 Quad CPU Q6600,
with 2.4 GHz per core, and a IBM Think Pad T60 with an Intel Core2 T7200 processor
with two 2 GHz cores, connected by PowerLAN2, a router and wireless to reflect a more
complex network environment. We installed three application servers on the two physical
machines, two on the quad core and one on the Think Pad. To exclude influences of the
multiple cores on the measurements, we restricted each application server to use only one
core of the machine. Thus, we have a resulting three virtual machines with one core each.

For the implementation of the Business Reporting System, we use the PCM to ProtoCom
transformation (Becker, 2008b). This transformation generates an executable prototype
system which is a set of EJB components. While this prototype does not provide any
functionality, it can be deployed in an application server, uses processing resources, and
thus can be used to measure the system. In particular, when measuring the prototype, the
effects of the application server and the remaining software stack can be captured, as well
as the network influence. The amount of processing can be parametrized so that varying
processing rates can be emulated. Thus, this prototype allows to study allocation degrees
of freedom and resource property change degree of freedom.

Using this prototype of the BRS system, the resource environment model was created
and calibrated. We measured the delay of the network communication and the inter-
application server communication in a single-user and a multi-user scenario, using different

2technology to set up a local area network over power line, also called dLAN (direct LAN) or Powerline
Communication (PLC)
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configuration of the system than used later in the validation measurements. Then, we
modelled the resulting distribution as network latency distribution in the PCM.

For measurements, we used the built-in instrumentation capability of ProtoCom, which
has only negligible overhead. As load driver, a ProtoCom usage scenario can be started
from a web browser and the user requests as described above.

Optimization Set-up and Selected Candidates

The goal of the optimization step is to find candidates with optimal cost and response
time trade-offs. The initial system model was an arbitrary allocation of the components to
the three servers (shown in table 9.4 below), where each server was configured with a low
processing rate. This initial candidate has low costs, but is overloaded by the workload
described above, so that no meaningful response time values can be predicted or measured
(the LQN solver predicted a mean response time of 2390 seconds, while the measurement
fails due to to many started threads). Because an overloaded system is unacceptable, any
found candidate that is not overloaded is better than this initial candidate.

The degrees of freedom of our prototype system are the following. Each of the nine
components can be allocated to any of the three servers, leading different network com-
munication. Thus, we get nine allocation degrees of freedom. Additionally, the effective
processing rates of the servers can be varied by varying the amount of processing of the
prototype components, which is reflected by three resource property degrees of freedom.
Finally, the three alternative web server components described in Section 9.3.1 have been
considered, resulting in one component selection degree of freedom.

We configured the PerOpteryx tool with a population size of 20 and 310 iterations. All
tactics described in Section 8.3.1 except the “Remove One-lane Bridge” tactic were enabled
with the configuration shown in table 9.3. The “Remove One-lane Bridge” has been disa-
bled because the model does not contain any passive resources, so the tactic’s condition
is never fulfilled. The probability to apply tactics in the reproduction step was 0.6 (cf.
Section 8.3.1). After the optimization, tactics with lower thresholds were again applied to
the Pareto-optimal candidates, if applicable, in the intensification phase.

For quality analyses, we use the LQNS tool and the costs analysis. The LQNS tool
was configured to continue analysis even if the system seems to be overloaded (“Stop on
message loss pragma” has been set to false, cf (Franks et al., 2008, p.45)). If the “stop on
message loss pragma” is enabled (which is the default configuration), the LQNS tool aborts
analysis if the system is overloaded and reports and the quality analysis reports infinite
response time. If the pragma is set to false, the LQNS tool predicts a mean response
time value for each candidate, even though it is know to be inaccurate. This allows
the algorithm to distinguish better between candidates: For example, two overloaded
candidates have predicted response times of 250 and 1000 seconds. Then, even though
both systems are overloaded, the first candidate is more promising. With the enables
pragma, both candidates would be assigned an infinite value for response time, so that no
distinction is possible. Additionally, we configured an upper quality bound for response
time of 15 seconds, so that the algorithm does not focus on searching such uninteresting
overloaded candidates.

From the resulting set of Pareto-optimal candidates, we choose two optimal candidates
(no. 1 and 2) and a suboptimal candidate (no. 3) shown in table 9.4. MRT stands for
mean response time, W stands for WebServer, W3 for WebServer3, and s1 to s3 stand for
servers 1 to 3.

When comparing these candidates with other candidates and investigating the models, we
observe that the optimization algorithm has deployed components together that commu-
nicate much, and thus splits the system into several physical tiers. The amount of remote
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Tactic threshold additional
configura-
tion

tactic weight

Spread the load Uspread = 0.5 Wspread = 1
Scale-up bottleneck resources Uscale-up = 0.8 f = 0.25 Wscale-up = 0.1
Scale-out bottleneck server Uscale-out = 0.9 Wscale-out = 0.5
Reduce remote communication Uremote = 0.8 Wremote = 1
Scale-down idle resource Uscale-down = 0.2 f = 0.25 Wscale-down = 0.1
Consolidate servers Ucons = 0.3 Wcons = 1

Table 9.3.: Configuration of Tactics in Allocation Study
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1 734.3 9.15 12.3 12.1 15.5 W3 s3 s3 s3 s2 s3 s3 s2 s2 s1
2 1147.7 6.24 16.4 15.3 16.9 W s3 s2 s2 s2 s3 s3 s2 s2 s1
3 1005.5 10.6 18.8 15 15 W s1 s1 s1 s1 s1 s1 s1 s1 s3

Table 9.4.: Allocation Validation Study: Initial Candidate no. 0 and Chosen Candidates
no. 1–3

227



228 9. Validation

Cand. No Predicted MRT mrtpred Measured MRT mrtmeas Relative error e

1 9.15 9.84 -0.070
2 6.24 5.81 0.074
3 10.56 9.97 0.060

Table 9.5.: Measurement vs Predictions for Selected Candidates

communication has been reduced as much as possible by the algorithm. Other candidates
that allocate the candidates so that the communicate more remotely lead to an overloaded
network resource.

Measurement Results

We measure the system for the selected three candidates and compare the measurement
results to the predictions. Table 9.5 shows the results. We observe that the prediction is
close to the measurement results and that the relative prediction error is low.

The predictions report moderate utilization values for the servers (between 25% and 70%),
thus, the candidates are not overloaded. The measurement results also show a steady
behaviour and indicate that the candidates are not overloaded.

As a result, we observe that the response time for candidates with changed allocation can
be accurately predicted, even if the models are created and calibrated without knowledge
of the final allocation. Thus, the PCM models can be parametrized for allocation. The
candidate that is predicted to be suboptimal is indeed suboptimal, assuming a realistic
costs model.

Still, it should be noted that the creation of such parametrized models is difficult. Thus, se-
veral works have been suggested to support the component developer or software architect
in the task of creating parametrized models for their components or black-box subsystems
(Wu and Woodside, 2008; Krogmann et al., 2010; Westermann and Happe, 2010; Hauck
et al., 2011).

At the same time, we observe that the optimization did not find the possibility to allocate
all components on servers 2 and 3, which can communicate faster than with server 1. The
server consolidation tactic fails here (e.g. when applied to candidate 1 or candidate 2),
because the CPUs of the two remaining servers 2 and 3 are too slow to host the Graphi-

calReporting in these configurations. The optimization did not generate a candidate with
allocation to two servers and at the same time increased CPU processing rate of servers 2
and 3. As a result, we have created a new tactic that increases the processing rate of the
servers to which components of the removed server are reallocated. This is an example of
how insight in the problem domain can lead to new performance tactics.

9.4.1.3. Results for Question Q1.1

We conclude that accurate models for performance predictions can be built. Having sur-
veyed existing studies on parametrization conducted for the PCM, we conclude that accu-
rate parametrized models for varying component environment such as design alternatives
(i.e. component selection), usage profile changes, middleware configuration changes, and
resource environment changes can be created. The remaining gap of allocation changes
has been successfully closed by a new study.

However, even though we have validated that accurate models can be build, the remaining
question is whether software architects in practice can actually do so. Here, (more) level II
validations are required for all model prediction techniques are required. Our method has
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Figure 9.6.: Scatter-plots for the Overall Pareto Front

an additional problem in that software architects may use degrees of freedom for which
their models are not accurately parametrized, e.g. because a third party has provided the
model. However, this mistake could as well be made in a manual improvement approach
and is a general problem of model-based prediction approaches.

9.4.2. Approximating the True Pareto Front

In this section, we study the question :

Q1.2 Can the search find an approximation of the true Pareto front?

for the business reporting system. As discussed above, we assess the approximation found
by a combination of search runs. Section 9.4.2.1 refers to the set-ups for this evaluation,
and Section 9.4.2.2 describes the results and answers the validation question.

9.4.2.1. Experiment Set-up

We use the results of 33 optimization runs conducted for the validation of the optimization
step in Section 9.5 with different search strategies (evolutionary search with different popu-
lation size and crossover configuration, tactics-enhanced search, and random search). The
optimization runs together evaluated 83921 candidates which we denote by allC (possibly
including duplicates).

9.4.2.2. Results for Question Q1.2

Figure 9.6 shows the combined Pareto front calculated over all candidates, i.e. P (allC).
Two dimensions are pairwise compared to each other. The diagonal define the axes of the
plots. Each field in the figure shows the quality property defined in its column on the x
axis and the quality property defined in its row on the y axis. For example, the plot in
row 2 column 1 compares POFOD and costs, with POFOD on the x axis and costs on
the y axis. While Figure 9.6(a) shows the unfiltered results, we have omitted the three
candidates with mean response time larger than 15 seconds in the second Figure 9.6(b) to
better show the interesting knee region.
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Figure 9.7.: Costs-performance-trade-off in the Overall Pareto Front for Varying Number
of Servers

We observe that the main trade-off exists between costs and response time. The Pareto
front for these two criteria is smooth, suggesting that the searches have indeed converged to
a (local) optimum an this point, possibly the global optimum. Interestingly, the searches
have found two bands of candidates: An outer band with many candidates that have
optimal cost and performance trade off, and an inner band with better reliability values
at the cost of both cost and response time.

Analysing the choices of the optimal candidates, we observe that the bands reflect different
number of used servers. Figure 9.7 shows the costs performance trade-off of P (allC) with
the number of servers used by each candidates. We observe that all candidates of the inner
band are deployed to a single server with high processing rates. The shape of the band
reflects different processing rate configuration of the single chosen server. No network
communication is needed, so no network-indices failures can happen, which leads to the
improved reliability.

In the outer band, candidates are deployed to two or three servers. The three most
expensive candidates are deployed to three servers, as the processing rate of two servers
cannot be increased beyond 3 GHz in our problem. In the costs range of 750–1600, there
is both: While the candidates with two servers achieve a higher utilization of each server
and thus use the available processing capacity efficiently, the candidates with three servers
have more total processing power due to our exponential processor cost model, and thus
achieve the same response time for the same price.

No candidates with four servers was found to be Pareto-optimal. We manually analysed
whether a candidate with four servers could be optimal as well, and present the results
in the following. Due to our exponential costs model, one might expect that a candidate
with low processing rate configuration and four servers is more cost-efficient than a solu-
tion with three servers while providing the same response time. However, the components
of the business reporting system have different resource demands. Table 9.6 shows the
relative resource demand of each component, analysed using the usage scenario presented
in Section 9.3.1 with a single user only. We observe that a the GraphicalReporting com-
ponent alone causes 32% of the CPU resource demand in this scenario, and the Database

component 21%. If these component are deployed to a dedicated server each with minimal
processing rate, the servers are overloaded in the studied multi-user scenario as described
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Component Relative CPU load

WebServer 0.13
Scheduler 0.13
Database 0.21
CoreOnlineEngine 0.03
Cache 0.04
GraphicalReporting 0.32
OnlineReporting 0.08
UserManagement 0.06
CoreGraphicEngine 0.00

Table 9.6.: CPU Resource Demand in BRS System

in Section 9.3.1. Thus, the deployment of four servers with minimal processing rates is not
possible. Manually gradually increasing the resource speeds until the system is feasible
leads to suboptimal candidate. Thus, the optimization result that no candidate with four
servers is optimal is correct.

All three web server components are used in the candidates of the found front. Most
candidates in the high-reliability band use WebServer2. While WebServer2 has the same
probability of failure than the WebServer component, it has less resource demand and
higher costs. This combination is beneficial in the one-server setting: The server already
has a high load and needs fast processing resources, and due to the exponential costs model,
the increase of processing speed to host the WebServer component is more expensive than
using WebServer2. Note that while we can understand these effects when analysing the
found Pareto-front, they are not be intuitively clear and thus are difficult to find in a
manual approach.

In the costs-performance trade-off band, the two-server candidates in the costs range up
to 435 use the cheaper WebServer3 component, while the more expensive candidates in
the costs range starting from 890 all use WebServer2. This is sensible because in the
more expensive candidates, the use of WebServer2 saves more resource costs due to the
exponential costs model. Candidates in the intermediate range and candidates with three
servers use all three web server components. Overall, the use of the WebServer component
is rare.

The processing rate choices result in the shape of the two bands. The continuous processing
rate has comparably straightforward impact on the response time. Note that the true
Pareto front, in theory, has infinitely many candidates, because we consider a continuous
processing rate range. A search based approach can only find an approximation, and we
deduce that intermediate solutions are also available in both bands. A higher number of
candidates in the front, however, does not necessarily provide additional benefit to the
software architect, because more candidates have to be considered after the search.

Having analysed the different types of choices in detail, we deduce that the found Pareto
front probably is very close to true Pareto front, The true Pareto front probably has a
similar shape with the two bands, although the number of candidates on each band is
likely to be much higher due to the continuous processing rate.

Thus, we conclude that the P (allC) is a good approximation of the true Pareto front.

9.4.3. Design Space

In this section, we study the question:
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Q1.3 Does our design space represent a relevant subset of the complete design space soft-
ware architects are faced with?

To evaluate this question, we apply the optimization approach to both case study systems
presented in Sections 9.3.1 and 9.3.2. From one optimization run per case study system,
we can answer the question.

The available degrees of freedom of the example systems have already been described in
Section 9.3. Thus, here we check whether the candidates found by the optimization using
these degrees differ in their quality properties. We report the distribution of values for
each objective for (1) all candidates evaluated during the optimization run and (2) for the
finally determined optimal candidates.

Second, we report the found Pareto-optimal candidates. A set of multiple candidates
shows that a trade-off is present between the optimal candidates. If the problem was no
multi-objective one, only a single optimal candidate would be reported.

Section 9.4.3.1 presents the results for the Business Reporting System and Section 9.4.3.2
for the ABB system. The question is first answered separately for each case study system
and then Section 9.4.3.3 summarizes the findings.

9.4.3.1. Business Reporting System

Before reporting the results, we describe details on an optimization run performed on the
Business Reporting System model below. Then, the results for question 3 are presented.

Experiment Set-up

For the evolutionary optimization of the model, we configured Opt4J to run for 200 ite-
rations and to produce 20 candidates per iteration. The LQN solver was configured with
a convergence value of 0.001 and an iteration limit of 20 (see (Franks et al., 2008) for de-
tails). The PCM Markov model solver was configured to determine the reliability with an
accuracy of 5 decimal places, the remaining configuration was the standard configuration
so that both software and hardware failures were taken into account.

The automatic improvement process took 21 hours, produced 2110 valid architectural
candidates and made performance, reliability, and cost predictions for them. Thus, the
average creation, transformation, and prediction time per candidate was 36 seconds. The
overhead of the evolutionary algorithm (Pareto front calculation, crowding distance cal-
culations, etc.) is negligible. Most of the time is spent for the LQN analysis, while the
reliability analysis only requires less than half a second and the costs analysis only a few
milliseconds. 43 of the candidates were deemed Pareto-optimal by the evolutionary algo-
rithm. Note that the optimization run might not be finished yet after this time. In this
section, we do not study whether the found solutions are close to the true Pareto optimum.

The arrival rate for the BRS usage scenario was configured to be exponentially distributed
with a mean value of 1 second. The servers were assumed to be connected by a fast network
connection with 1.5 milliseconds latency.

The current implementation evaluated candidates sequentially, so the optimization effecti-
vely used only one core in this set-up. The evolution process run time could be shortened
significantly by executing the candidate analyses per candidate concurrently (e.g., on multi-
core processors or in a distributed environment). We consider this enhancement—which
is straightforward, as candidates of one iteration can be analysed independently of each
other—to our tool as future work.
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Quality criterion minimum in
all evaluated
candidates

maximum in
all evaluated
candidates

mean of all
evaluated can-
didates

mean of
optimal can-
didates

POFOD 0.00052 0.00099 0.00077 0.00065
Costs 410 2844 1136 1041
Mean response time 1.4 313.51 38.83 10.99

Table 9.7.: Descriptive Statistics for Quality Properties in BRS Run
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Figure 9.8.: Response Time Histogram for BRS Run (light grey histogram: all evaluated
candidates, dark blue histogram: optimal candidates)

Results

Figures 9.8 to 9.10 compare the quality properties of all evaluated candidates (light grey
histogram) with the optimal candidates’ values (dark blue histogram). Table 9.7 shows
the minimum and maximum values of all evaluated candidates, showing that there is a
considerable effect on each quality property. Additionally, we observe that the optimal
candidates have better mean values for all three objectives, as shown in table 9.7.

Figures 9.11 and 9.12 show two of the optimal candidates with their quality properties.
The candidate in Figure 9.11 is a comparably fast candidate with higher costs, but also
good POFOD. The candidate in Figure 9.12 is slower, but only half as expensive while
having even better POFOD (due to the allocation to two servers, the hardware reliability
is better). Both candidates use WebServer2, but there are candidates in the Pareto front
that use WebServer and WebServer3, too.

We see that the degrees of freedom are indeed meaningful in the BRS and lead to candidates
with varying response time, costs, and reliability properties as shown in Figures 9.8 to 9.10.
Additionally, we showed that the Pareto-optimal BRS candidates indeed represent different
options of how to configure the system, as demonstrated by the two example candidates
in Figures 9.11 and 9.12.
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Figure 9.9.: Costs Histogram for BRS Run (light grey histogram: all evaluated candidates,
dark blue histogram: optimal candidates)
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Figure 9.13.: Scatter-plots for the Resulting Pareto Front

Regarding the conflict of quality criteria, Figure 9.13 shows the resulting Pareto front in
a scatter-plot, pairwise comparing two dimensions to each other. The diagonal define the
axes of the plots. Each field in the figure shows the quality property defined in its column
on the x axis and the quality property defined in its row on the y axis. For example, the
plot in row 2 column 1 compares POFOD and costs, with POFOD on the x axis and costs
on the y axis. While Figure 9.13(a) shows the unfiltered results, we have omitted the three
candidates with mean response time larger than 50 seconds in the second Figure 9.13(b)
to better show the interesting knee region.

We observe that the qualities costs and response time have a string conflict as shown by
the curve in these two dimensions. For the other combination of quality, no strong conflict
is observed: the candidates are distributed over the scatter-plots. Still, we observe that an
improved POFOD may come with worse costs and response time, because the candidates
in the inward side of the costs-response time curve are optimal due to their better POFOD
values.

Figure 9.14 shows connects the points of the resulting Pareto front with a surface to better
visualize the front. The two sub-figures show the front from different angles, see the figure
captions for an an explanation of the axes. Again, the values are filtered so that candidates
with mean response time larger than 50 are not shown.

As a result, we observe that the studies problem for the BRS is indeed a multi-objective
problem.

9.4.3.2. ABB System

Experiment Set-up

For the ABB PCS, we configured the optimization to run for 200 iterations with a popu-
lation size of 20. The use of tactics was enabled (the influence of tactics is discussed in
Section 9.5.2 in more detail). For the performance prediction, we configured the LQNSol-
ver with convergence value 0.001, iteration limit 50 and under-relaxation coefficient 0.5
(cf. (Franks et al., 2008)).

Figure 9.15 shows the resulting Pareto front generated by the optimization run at iteration
200. PerOpteryx found 36 Pareto-optimal candidates. We also observe that the initial
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candidate is dominated by the found front, even though it is close to the front of optimal
candidates.

Results

Concerning the design space, we observe that the DoFIs have an influence on both response
time and costs. Even though we cannot provide the predicted costs and performance
values in Figure 9.15 because they must not be disclosed, we observe that there is a trade-
off. Additionally, as the point of origin in the figure marks the value 0 for both quality
properties, we can observe that the response time ranges from some non-disclosed value r
for the most expensive candidate in the lower right corner to 6.7r for the slowest candidate
in the upper right corner. Costs range from a non-disclosed value c to 22.3c. We observe
that the quality effect of the DoF is substantial.

The initial candidate is already a near-optimal configuration in this setting, which is to
be expected because it is a recommended configuration of the system. The results of our
optimization identify other possible configurations with different cost and performance
trade-offs: One example candidate had its costs reduced by 23.1%, while the response time
increased by 19.4% which is tolerable within customer requirements. For this candidate
PerOpteryx suggested to use the standard variants of components C1 and C13, to purchase
a slightly more powerful CPU for server 1, and then to deploy all components on this server,
so that the others servers can be removed to save costs. Indeed this candidate reflects a
realistic configuration of the system that is sold to smaller customers (A. Koziolek et al.,
2011a).

Concerning conflicting quality criteria, we see that the resulting Pareto-optimal set consist
of multiple candidates that reflect a trade-off situation with many intermediate solutions
between the two extremes (c, 6.7r) and (22.3c, r). For example, two intermediate solutions
are (1.34c, 3.71r) and (1.69c, 2.5r) shown in the Figure.

9.4.3.3. Results for Question Q1.3

For both case study systems, we observe that the design space is relevant and lead to
different candidate systems with varying quality properties. Furthermore, we observe that
the optimization problem is indeed a multi-objective problem. Finally, we see that the
design space in our case studies contains many candidates, so that a manual exploration
would be time-consuming. Altogether, we conclude that the information provided by the
automated approach is useful for the software architect. Because achieving the results
has almost no manual effort, we thus expect a positive costs/benefit for the automated
improvement given accurate prediction models. Still, the evaluation of costs/benefit for
model-based quality prediction is subject to future work, as discussed in Section 9.1.1.4.

9.5. Validation of the Optimization Step

In this section we present the validation settings and results for Goal 2. We evaluate our
extensions to evolutionary algorithms for improving software architectures by comparing
them to the baseline approaches of standard evolutionary algorithms and random search.
First, in Section 9.5.1, we discuss how two optimization techniques can be compared and
define the metrics used in this section. In sections 9.5.2 to 9.5.3, we study the effect of
our extensions to consider tactics, quality requirements, and starting population heuris-
tics by comparing the optimization performance to the baseline techniques of a standard
evolutionary algorithm and random search. Section 9.6 concludes.
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9.5.1. Comparing Optimization Techniques

The performance of an optimization approach is typically measured by assessing the qua-
lity of the solutions and the time needed to generate the solutions (Zitzler et al., 2008).
Section 3.5.5 described comparison techniques for multi-objective evolutionary algorithms.
In this section, we describe how the comparison methods have been adopted and used in
this work.

First, to account for the stochastic nature of evolutionary algorithms, all experiments are
replicated several times. For each experiment setting S (e.g. running the evolutionary
optimization with tactics in a certain configuration), a set of runs {Sr |r = 0, . . . , n} is
performed. At each iteration i, a run Sr has produced a Pareto front, i.e. a sample,
which we denote with P (Si

r). To compare optimization approaches, we do not require a
complete characterization of the random variable P (Si), but we are only interested in the
distribution of the quality metrics (see below). Statistical tests are performed for a chosen
iteration to assess the results.

To assess the quality of the results, Pareto dominance ranking (cf. Section 3.5.5.1) provides
an objective comparison of optimization results. In cases where fronts are incomparable,
we additionally chose to use two quality indicators, namely a modified coverage indicator
(Section 9.5.1.1) and the hyper-volume indicator (Section 9.5.1.2) as described below in
this work.

Section 9.5.1.3 describes how all three methods are used together in this work to assess an
optimization approach’s quality.

9.5.1.1. Coverage Indicator

The standard coverage indicator (cf. Section 3.5.5.2) may be misleading if the Pareto
fronts overlap each other with varying distances to the true optimal Pareto front, and if
the fronts contain a different number of solutions. Additionally, both directions C(P1, P2)
and C(P1, P2) have to be considered to assess the difference of the fronts.

To overcome both problems, we (1) additionally measure the size of the dominated space
using the hyper-volume indicator S(P ) (Zitzler and Thiele, 1999) to assess the quality of
each Pareto front P separately and (2) modify the coverage metric C(P1, P2) to make it
symmetric.

For the consideration of quality requirements (cf. Section 8.2.5.2), we additionally include
the quality requirements and the concept of quality-feasible candidates in the coverage me-
tric, resulting in the following definition: Let P1 and P2 be quality-feasible, non-dominated
sets3 and Q ⊆ P1∪P2 be the quality-feasible, non-dominated set of P1∪P2. Our coverage
metric C∗ is defined as

C∗(P1, P2) :=
|P1 ∩Q|
|Q|

∈ [0, 1]

If C∗(P1, P2) > 0.5 then P1 is considered better than P2 because P1 has a higher contribu-
tion to Q than P2. Note that if no quality requirements have been defined, all elements in
a non-dominated set are quality-feasible by definition.

We use our own implementation to calculate the coverage indicator and perform statistical
tests with the R tool (R Development Core Team, 2007).

3In a non-dominated set, the elements are pairwise non-dominated (cf. (Deb, 2001)). In a quality-feasible
set all candidates are quality-feasible.
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9.5.1.2. Hyper-volume Indicator

To measure the size of the dominated space, we use the hyper-volume measure (cf. Sec-
tion 3.5.5.3). We define the reference point and an indicator based on the hyper-volume
as follows.

If no quality requirement is given for an objective, we use the maximum values in all
Pareto-optimal candidates of all runs as the reference point. If quality requirements are
defined for an objective, the quality requirement value is the coordinate of the reference
point for this objective, so that the indicator measures the size of the feasible space covered
by a Pareto front.

We define the reference point zF,Q,R for a set of Pareto fronts F to be compared (e.g. all
fronts generated by 10 runs of two optimization approach each), a set of quality criteria
Q and a set of quality requirements R (possibly empty) as

zF,Q,R = (z0, . . . , z|Q|) with, for i ∈ 0, . . . , |Q| ,

zi =

{
rqi if there is a requirement rqi ∈ R for criterion qi ∈ Q
max({Φqi(c)

∣∣c ∈ ⋃P∈F P }) else

Based on the hyper-volume measure hvolume(P,z), we define the hyper-volume indicator
for two Pareto fronts P1 and P2 to be compared, a set of quality criteria Q, a set of quality
requirements R (possibly empty) and a reference point z as

S∗z (P1, P2) = hvolume(P1, z)− hvolume(P2, z)

If the hyper-volume indicator S∗z (P1, P2) is positive, P1 covers more of the (feasible) design
space and is better with respect to this indicator. If S∗z (P1, P2) is negative, P2 is better
with respect to this indicator. Note that one cannot deduce that P1 or P2 is objectively
better.

We use a Java implementation of the hyper-volume indicator provided with the jMetal
framework (Durillo et al., 2010). The implementation is based on the original indicator
definition of (Zitzler and Thiele, 1999) and is called with the normalized objective values.
Statistical tests are performed with the R tool (R Development Core Team, 2007).

9.5.1.3. Combination of Quality Metrics

The three metrics described above result in a differentiated comparison of Pareto fronts.
The Pareto dominance ranking is consistent with the principle of Pareto dominance, so it
is tested first and if one optimization approach has significantly better results with respect
to this metric than another one, it can be deemed at better for the studied problem and
setting. If the Pareto Dominance Ranking does not provide significant results, the two
chosen quality indicators complement each other well.

The coverage indicator compares two fronts based on Pareto dominance, so it does not
require additional preferences. However, the indicator does not take the distance of the
Pareto fronts to the origin into account. An example is shown in Figure 9.16 for a maximi-
zation problem: The coverage indicator is 0.5. However, the area between the fronts (grey
areas) is different in size, so one might want to prefer front 2. Additionally, if one front
P1 contains an area of solutions that are very close to each other and not dominated by
front P2, the coverage of P2 is positively influenced even though such a cluster of similar
solutions is not useful for the user.
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Figure 9.16.: Potential Problem of the Coverage indicator (by Noorshams (2010), Original
Source (Zitzler, 1999)) in a Maximization Problem

The hyper-volume indicator can detect this discrepancy between coverage indicator va-
lue and preferences and is considered a useful indicator (Fonseca et al., 2006). Another
advantage of the hyper-volume is its compatibility with the Pareto Dominance Ranking
(i.e. if a front is better w.r.t. dominance ranking it is also better w.r.t. the hyper-volume
indicator). This property is known as monotonicity (Zitzler et al., 2008, p.382). The main
weakness of the hyper-volume indicator is the required reference point, as the indicator is
susceptible to the choice of reference point (Zitzler et al., 2008, p.382), but all monotonic
unary indicators have this limitation.

9.5.1.4. Time Metrics

Based on the metrics to compare the quality two Pareto fronts described in the previous
section, we define a speed-up metric to compare the time efficiency of two optimization
techniques.

The time savings metric T determines how many iteration steps earlier one optimization
run has found a solution with equivalent quality. Because each iteration has a similar du-
ration, this measures the computational effort of a run while is is independent of execution
time measurement errors such as additional load on the executing machine. To compare
a run A with another run B, we determine the smallest iteration step x in which run A
has a Pareto front P (Ax) that is superior or equivalent to the results of run B at the
final iteration imax (front P (Bimax)). For the coverage, we determine the smallest x so
that: C∗(P (Ax), P (Bimax)) > 0.5. For a fair comparison, we also determine the smallest
iteration y in which run B has already found a front P (By) that is equivalent to the front
P (Bimax): C(P (By), P (Bimax)) ≥ 0.5. Then, run A has found an equivalent solution y−x
iterations earlier. T is defined as the relative runtime improvement of run A over run B
with respect to quality metric q ∈ {C∗,S∗}:

Tq(A,B) =
(y − x)

y
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For the hyper-volume, the definition is analogous with the smallest x so that
S∗(P (Ax), P (Bimax)) > 0.0 and y so that S∗(P (By), P (Bimax)) ≥ 0.0. We denote the
metric using the coverage as TC∗ , and the metric using the hyper-volume as TS∗ .

9.5.1.5. Summary

To summarize, we use the following quality and time metrics to compare optimization runs
of two settings S and T .

M.1 Pareto dominance ranking rank(P (Si
r)) and rank(P (T i

r)) over all considered iterations
i

M.2 Coverage indicator C∗(P (Si
r), P (T i

r)) over all considered iterations i

M.3 Hyper-volume indicator S∗z (P (Si
r), P (T i

r)) over all considered iterations i

M.4 Time savings with respect to coverage TC∗

M.5 Time savings with respect to hyper-volume TS∗

9.5.2. Tactics

In this section, we study the effects of our tactics operators on the optimization perfor-
mance.

Q2.1 How much is the optimization’s performance improved by using tactics in a case
study?

To answer the question, we study optimization runs for the two case studies describe in Sec-
tion 9.3. We use the metric defined in the previous section to compare the performance of
the tactics operator extension as described in Section 8.3.2 to a standard evolutionary algo-
rithm (i.e. the evolutionary optimization as described in Chapter 8 without the extensions
described in Section 8.3 and without quality requirements as described in Section 8.2.5.2).
The intensification phase is not used (to evaluate its effect separately). For the Business
Reporting Case study, we also compare the results to random search. Additionally, the
effect of the antipattern-inspired tactics have been evaluated in isolation in Trubiani and
A. Koziolek, 2011.

Section 9.5.2.1 presents the set-up and results for the Business Reporting System case
study, and Section 9.5.2.2 for the ABB case study. Finally, Section 9.5.2.3 concludes and
answers question Q2.1.

9.5.2.1. Business Reporting System

For the Business Reporting System, we compare our tactics extension to the baseline
evolutionary algorithm and to random search.

Experiment Set-up

We analysed 10 tactics-guided optimization runs Tr, 0 ≤ r ≤ 9, each starting with the
initial candidate and 19 random candidates (different for each run) as population pr.
PerOpteryx was configured with imax = 200 iterations, population size 20, number of
offspring λ = 10, mutation rate 1, crossover rate 0.95, and tactics probability 0.6.

Then, each optimization run evaluated around 2000 candidates and ran for about 20 hours
on one 2.4 GHz core of Intel Core2 Quad CPU Q6600 of a PC (which hosted up to three
optimization runs in parallel).
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To compare the quality and duration of tactic-guided optimization (T ) with unguided op-
timization (B), we ran another 10 unguided optimization runs Br and 10 random searches
Rr, 0 < r < 9, each starting with the same population pr as its guided counterpart Tr.
The random search is a simple procedure that generates a configurable number of random
candidates in each iteration as defined by the number of offspring parameter λ. Thus, the
random search evaluates as many candidates as the evolutionary searches.

Then, we can compare P (T i
r), and P (Bi

r) pairwise for each r and thus exclude influence
of the starting population pr on the results. We also compare P (Ri

r) pairwise with the
respective runs. Although the random search is not influenced by the starting population,
the found Pareto front may contain the initial population still after a number of iterations.
A pairwise comparison ensures that all searches use the same starting point.

For this case study, we considered the five tactics presented in Section 8.3.2 with the
following weights and thresholds:

• Spread the Load: The threshold for high utilization is Uspread = 0.4. The weight
Wspread is 0.8.

• Scale-up Bottleneck Server: The threshold for high utilization is Uscale-up = 0.8.
The increase factor f is 20%. The weight Wscale-up is 0.1.

• Scale-out Bottleneck Server: The threshold for high utilization is Uscale-out = 0.8.
The weight Wscale-out is 0.5.

• Reduce Remote CommunicationThe threshold for high utilization is Uremote =
0.8. The weight Wremote is 0.1.

• Scale-down Idle Server: The threshold for low utilization is Uscale-down = 0.2.
The decrease factor is 20%. The weight Wscale-down is 1.

• Consolidate Server: The threshold for low utilization is Ucons = 0.3. The weight
Wcons is 1.

The “Remove One-lane Bridge” tactic has not been used because the model does not
contain any passive resources.

For the performance prediction, we configured the LQN-Solver with convergence value
0.001, iteration limit 50 and underrelaxation coefficient 0.5 (cf. (Franks et al., 2009)).

In additional exploratory experiments, we also varied the crossover rate (other values 0.9
and 0.8), the mutation rate(values 1, 2/n, 1/n), and the population size (values 40, 60,
and 100). However, no discernible effect on the results was achieved.

Results

With respect to Pareto Dominance ranking, the resulting fronts P (T i
r), P (Bi

r), P (Ri
r) are

incomparable. Thus, we refer to the quality indicator for assessing the benefits of the
tactics extension.

Figures 9.17 to 9.20 show the evolution of the coverage metric C∗ and the hyper-volume
metric S∗ over time. We observe that the tactics runs quickly gains an advantage over the
comparison runs.

Statistical tests using Wilcoxon signed-rank test (Siegel and Castellan, 1988, p.87) (as
implemented in the R tool (R Development Core Team, 2007)) confirm that the difference
between the tactics runs and the base runs are significant. We tested the null hypothesis
that the mean is ≤ 0.5 (for the coverage metric C∗) or ≤ 0 (for the hyper-volume metric
S∗) in a one-sided test over runs 0 ≤ r ≤ 9. For all iterations later than iteration 7,
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Figure 9.17.: Results for M.1: Pareto Front Coverage C∗(P (T i
r), P (Ri

r)) of Runs Using
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Figure 9.18.: Results for M.1: Pareto Front Coverage C∗(P (T i
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r)) of Runs Using
Tactics T over Standard Evolutionary Optimization B for r ∈ 0, ..., 9 (Busi-
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Figure 9.19.: Results for M.1: Hyper-volume Indicator S∗(P (T i
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System)
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Figure 9.20.: Results for M.1: Hyper-volume Indicator S∗(P (T i
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r)) of Runs Using
Tactics T over Standard Evolutionary Optimization B for r ∈ 0, ..., 9 (Busi-
ness Reporting System)

Comparison Statistically signifi-
cant (p = 0.01) at
iteration i

p value at iteration i Average time saving
Tq, q ∈ {C∗, S∗}

C∗(P (T i
r), P (Ri

r)) i = 7 0.00098 0.59
C∗(P (T i

r), P (Bi
r)) i = 3 0.0029 0.90

S∗(P (T i
r), P (Ri

r)) i = 3 0.0029 0.80
S∗(P (T i

r), P (Bi
r)) i = 3 0.00098 0.87

Table 9.8.: Statistical Significance and Time Savings Average

the null hypotheses can be rejected with 99% confidence. We can conclude that the true
mean of the coverage metric C∗(P (T i

r), P (Ri
r)) or C∗(P (T i

r), P (Bi
r)) over runs 0 ≤ r ≤ 9

is larger than 0.5 and the true mean of the hyper-volume metric S∗(P (T i
r), P (Ri

r)) or
S∗(P (T i

r), P (Bi
r)) over runs 0 ≤ r ≤ 9 is larger than 0 for iteration i ≥ 7. Table 9.8 shows

the test statistics and lists the smallest iteration i for each test and quality metric at which
the difference becomes significant.

To assess the duration of the runs, we consider the time savings with metric Tq, again
for the pairs of runs with the same starting population. The considered final iteration is
iteration 200. As described above, for each run r, we determine the smallest x so that the
tactics run Tr is better than the compared run Br or Rr at the final iteration with respect
to a quality metric. Then, we compare the smallest y at which the compared run Br or Rr

already has equivalent results to its final iteration with respect to the considered quality
metric.

Figure 9.21 shows the resulting relative time savings Tq. We observe that in most cases,
the time saving is larger than 0.5, which means that the tactics run only need half the time
to achieve solutions of the same quality than runs with standard evolutionary algorithms
or random search. None of the tactics runs was slower than a comparison run. The average
time savings metric Tq results are shown in the last column of table 9.8.

Here, statistical tests with the Wilcoxon signed rank test again confirm that the increase of
speed is significant. We tested the null hypothesis that the relative time saving T is equal
or smaller than 0, which is rejected with a confidence level of 99% for all combinations of
comparison and quality metric (as shown in Figure 9.21).
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Figure 9.21.: Time Savings for BRS. The Label TSc Denotes the Time Savings Metric Tc.

Interestingly, the standard evolutionary algorithm has not performed better than random
search in our Business Reporting System experiments. This indicates that the optimiza-
tion problem is indeed difficult. Arns et al. (2009) have also found that the optimization of
complex qualities such as performance is difficult using standard evolutionary algorithms.
(Deb, 2001, p.353 et seq.) has described that parameter interactions make a problem dif-
ficult. In our case, the effect of a single allocation gene change may dramatically influence
the results, at least on the performance dimension. Furthermore, the allocation choices
and processing rate choices have strong interactions: Processing rate choices for highly
utilized servers can have a large effect, while processing rate choices for lowly utilized ser-
vers have almost no effect. In such cases, it may be difficult for the evolutionary algorithm
to identify good building blocks, because the recombination of many building blocks leads
to suboptimal candidates. Possibly, the standard evolutionary algorithm could perform
better for other configuration parameters. We have, however, not noticed an effect when
changing the configuration parameters as described for the Business reporting System.

9.5.2.2. ABB System

For the ABB system, we compare our tactics extension to the baseline evolutionary algo-
rithm only.

Experiment Set-up

Again, we analysed 10 tactics-guided optimization runs Tr, 0 ≤ r ≤ 9, each starting with
the initial candidate and 19 random candidates (different for each run) as population pr.
PerOpteryx was configured with imax = 200 iterations, as initial experiments showed that
the Pareto fronts do not change much afterwards, population size 20, number of offspring
λ = 10, mutation rate 1, and crossover rate 0.75. In these experiments, tactics were only
applied if the algorithm did not choose to perform a crossover (as described in more detail
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r)) of Runs Using
Tactics T over Unguided Runs B for r ∈ 0, ..., 9 (ABB system)

in (A. Koziolek et al., 2011a)). Each optimization run evaluated around 2000 candidates
and ran for 5 to 6 hours on one 2.4 GHz core of a standard PC.

For comparison, we ran another 10 standard optimization runs Br, 0 < r < 9, each starting
with the same population pr as its guided counterpart Tr. Then, we can compare P (T i

r)
and P (Bi

r) pairwise for each r and thus exclude influence of the starting population pr on
the results.

For this case study, we considered the five tactics presented in Section 8.3.2 with the
following weights and thresholds:

• Spread the Load: The threshold for high utilization is Uspread = 0.4. The weight
Wspread is 1.0.

• Scale-up Bottleneck Server: The threshold for high utilization is Uscale-up = 0.75.
The increase factor f is 25%. The weight Wscale-up is 0.1.

• Scale-out Bottleneck Server: The threshold for high utilization is Uscale-out = 0.8.
The weight Wscale-out is 0.5.

• Scale-down Idle Server: The threshold for low utilization is Uscale-down = 0.25.
The decrease factor is 25%. The weight Wscale-down is 0.1.

• Consolidate Server: The threshold for low utilization is Ucons = 0.3. The weight
Wcons is 1.

The “Reduce Remote Communication” tactic and the “Remove One-lane Bridge” tactic
have not been used because the network influence was not considered in this case study
and the model does not contain any passive resources.

For the performance prediction, we configured the LQN-Solver with convergence value
0.001, iteration limit 50 and underrelaxation coefficient 0.5 (cf. (Franks et al., 2009)).

Results

The optimization runs found on average 33 Pareto-optimal candidates per run. Again,
we study the development of coverage metric C∗ as the search advances in Fig. 9.22. We
observe that the average coverage is again larger than 0.5 starting from few iterations
and increases to a value of around 0.67 at iteration 142, and then stays at that level
until iteration 200. This time, the worst-performing run using tactics, i.e. the minimum
coverage, is inferior to its unguided counterpart until iteration 117, but then also improves
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Figure 9.23.: Results for M.1: Hyper-volume Indicator S∗(P (T i
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to values larger than 0.5. The Wilcoxon signed-rank test confirms that the average coverage
C∗(P (T i

r), P (Bi
r)) is significantly larger than 0.5 for all i > 62 (α = 0.99).

The largest coverage advantage is reached around iteration step i = 160. Where 175 ≤
i ≤ 200, saturation effects yield a smaller advantage. At this stage, the heuristic search
cannot improve its Pareto-set by a large extend, possibly because the found candidates are
located near the global optimum. Thus, the unguided search, finding more Pareto-optimal
candidates by chance now, can reduce the gap.

The hyper-volume indicator evolution is shown in Figure 9.23. Here, the tactics-guided
run has a disadvantage in the first 12 iterations, but then quickly catches up to a difference
of almost 0.01. In the remainder of the runs, the hyper-volume indicator remains almost
stable with a slight decrease. Statistical tests using the Wilcoxon signed-rank test show
that the hyper-volume indicator is significantly larger than 0 for all i > 62 (α = 0.99).

With respect to the coverage metric, the optimization runs with tactics were able to find
an equivalent front 107 iterations earlier than their counterpart without tactics on average.
Thus, for our formerly defined metric TC∗ , we get an average 56% savings of runtime. The
time saving is statistically significant in a Wilcoxon signed-rank test (α = 0.99). We also
noted that all optimization runs with tactics found more Pareto-optimal candidates than
their counterpart without tactics. With respect to the hyper-volume metric, the time
savings metric is TS∗ = 0.85, i.e. 162.3 iterations earlier on average. The speed up is
statistically significant (α = 0.99), too.

The implemented tactics inserted 457.4 candidates into the population on average during
each 200-iteration run. The “Spread the Load” tactic (229.0) generated most candidates,
followed by “Consolidate Server” (186.6), “Scale-out Bottleneck Server” (40.5), and “Scale-
up/Scale-down Bottleneck Server” 4 (1.3).

9.5.2.3. Results for Question Q2.1

As a result, we observe that the tactics operators are able to improve the search and lead
to a speed up of between 56% in average for the ABB system with respect to coverage C∗

and 90% in average for the BRS system with respect to the size metric S∗ for our test
problems.

Due to the observed limitations of the standard evolutionary algorithm for the Business
Reporting System (cf. Section 9.5.2.1), the use of tactics to guide the search is important.

4Both tactics have been implemented by one tactics operator, so that it could not be distinguished from
the optimization logs which direction was applied.
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Indicator mean std min max significant? p-value

Coverage indicator C∗ 0.676 0.0429 0.625 0.767 yes 0.00098
Hyper-volume indicator S∗ 0.0139 0.0241 -0.012 0.0642 no 0.01855

Table 9.9.: Intensification Phase Results

9.5.3. Intensification Phase

In this section, we study the effects of the intensification phase (as described in Sec-
tion 8.3.3) using the Business Reporting case study.

Q2.2 How much is the optimization’s performance improved by an intensification phase
at the end of the search in a case study?

Section 9.5.3.1 describes the set-up for this evaluation, and Section 9.5.3.2 describes the
results and answers the validation question.

9.5.3.1. Experiment Set-up

We study the effect of an intensification phase after the tactics runs Tr from Section 9.5.2.
The intensification phase was configured to apply tactics to each candidate of Tr’s final
result P (T 200

r ) after 200 iterations. The thresholds for the tactics used as defined in Sec-
tion 9.5.2. The weights are irrelevant, because all tactics are applied if their precondition
matches (as described in Section 8.3.3). We refer to these intensification runs as Ir in
the following. The intensification runs stop as soon as no more preconditions match. Let
P (I∗t ) denote the resulting Pareto front after the intensification phase.

For comparison, we continued the tactics runs Tr for at least an equal number of evalua-
tions, as defined in the following. Let eval(Si

r) denote the number of candidate evaluations
performed by a optimization run Sr until iteration i. We continued each Tr for the mi-
nimum number of iterations j so that eval(T i+j

r ) ≥ eval(I∗r ). Then, we compare P (T i+j
r )

and I∗r using the hyper-volume indicator and the coverage indicator.

The comparison is rather biased towards the continued tactics run T i+j
r : First, it poten-

tially considers more candidates from that run. Second, we study the intensification of
a tactics-enabled run T 200

r , not a pure evolutionary run. Thus, the runs have previously
benefited from the same domain-specific knowledge (see Section 9.5.2).

9.5.3.2. Results for Question Q2.2

The intensification phase explored between 36 and 133 additional candidates, with 71.2
evaluations on average. This corresponds to 4 to 14 iterations of the continued tactics run.

The Pareto dominance ranking method does not result in any statistically significant re-
sults, thus we proceed to the quality indicators.

Table 9.9 shows descriptive statistics (std denoting standard deviation) and the results of
a Wilcoxon signed-rank test with significance level α = 0.05. Regarding the coverage, the
intensification run produced significantly better results. All runs were superior. Regarding
the hyper-volume indicator, one intensification run I5 was inferior to its tactics counterpart
T5. While the mean hyper-volume indicator is still positive, the results are not significant.

Thus, in run 5, the randomness of the continued tactics run was able to find a better
candidate with respect to hyper-volume that the intensification phase, applying tactics
rules only. In all other runs, and also in all runs with respect to coverage, the intensification
phase was more efficient.
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Scenario costs POFOD mean response time

(W ) Weak requirements 3000 0.00175 5.0 sec
(M) Medium requirements 2000 0.0015 3.0 sec
(S) Strict requirements 1500 0.0015 2.5 sec
(O) Only costs requirements 1000 ∞ ∞

Table 9.10.: Quality Bound Scenarios

Based on this single case study, a generalization is difficult. However, as the setting
was rather biased towards the continued tactics run, our claim is rather supported than
rejected. As a result, we conclude that the intensification phase seems to be beneficial.

The results also indicate that the amount of tactics knowledge used during the evolutionary
optimization could be increased, e.g. by increasing the tactics probability, possibly even
setting it to the value 1. However, as parameter settings is an open issue in evolutionary
algorithms in general (Nannen et al., 2008), we do not further pursue this questions in this
work, leaving it as an issue for future work.

9.5.4. Quality Requirements Effect

In this section, we study the effects of the quality bounds extension presented in Sec-
tion 8.2.5.2 on the optimization performance.

Q2.3 How much is the optimization’s performance improved by using quality bounds in a
case study?

Section 9.5.4.1 describes the set-up for this evaluation, Section 9.5.4.2 describes the results
and Section 9.5.4.3 answers the validation question.

9.5.4.1. Experiment Set-up

The validation of the quality requirements effects has been conducted earlier than the other
validation aspects and thus uses a different version of the BRS model. The validation is
also described at (A. Koziolek et al., 2011b).

To study the effects of different quality requirement values on the results, we ran the
optimization for four different levels of requirements (weak, i.e., only few candidates are
excluded from the Pareto front, to strict, i.e., many candidates are excluded). Table 9.10
shows the four different scenarios. The requirements are modelled with our metamodel of
QML (Noorshams et al., 2010). For each scenario scen ∈ {W,M,S,O}, we optimized the
system once for each constraint handling technique c ∈ {C,G}, resulting in 8 optimization
settings WC,WG, ..., OC, OG, i.e. the set of optimization settings {W,M,S,O}×{C,G} =
OptSettings. As a baseline, we optimized the system without constraint handling (setting
B). For each optimization setting s ∈ OptSettings, 10 runs sr, 0 ≤ r ≤ 9 have been
conducted.

9.5.4.2. Results

The Pareto dominance ranking method does not result in any statistically significant re-
sults, thus we proceed to the quality indicators.

Figure 9.24 illustrates the result of the optimization run MC0 with medium constraints
using the constrained tournament method C. 7 Pareto-optimal candidates that satisfy all
three bounds were found and are marked with triangles.
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Figure 9.24.: Result of an Optimization Run MC0 with medium requirements scen = M
and the Constrained Tournament Method c = C.

In the following, we present the results by scenario. As the differences of the studied
scenarios are small, no statistically significant results were obtained. More runs of each
setting could be conducted to achieve more conclusive results.

Figures 9.25 and 9.26 show the coverage measure and the size measure for scenario W . The
coverage measure is around 0.5 in average over most of the iterations for both constraint
handling methods C and G. With both measures, thus, no improvement towards the
basic approach is visible. The size of the dominated feasible space grows similarly for all
approaches, too.

Figures 9.27 and 9.28 show the coverage measure and the size measure for scenario M .
For both the coverage measure and the size measure, the runs with constraint handling
start well (coverage > 0.5 and size larger than size of basic approach). However, the
basic approach catches up: At iteration 200, all approaches perform equally well (G has
a slightly better coverage, C a slightly larger dominated space, so none performs better
than the other).

Figures 9.29 and 9.30 show the coverage measure and the size measure for scenario S with
strict quality requirements. Here, we see an improvement of the search: The coverage
measure of method C is higher that 0.5 during all iterations, and the size measure is
significantly larger than for the basic approach, too. Method G does not perform as well,
even has a coverage < 0.5 at the beginning while still having a better size measure than
the basic approach.

Finally, figures 9.31 and 9.32 show the results for the common case of a budget-only
limitation. While both constraint handling method do not perform well in the first 75
iterations, they catch up and provide better results in the last iterations, both regarding
coverage and size measure.

To assess the duration of the runs, we consider the time savings with metric T . Figure 9.33
shows the relative time savings for scenarios W , M , and O. In scenario S, too few solutions
were feasible and Pareto-optimal at the end, so that a sensible assessment of the time saving
is not possible.
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Figure 9.33.: Time Savings

We observe that for all scenarios, the constraint handling methods was able to find an
equivalent front faster than the basic approach. The average time saving is 11.1% with
respect to C∗ and 11.8% with respect to S∗, and with the most time saving in scenario O
with the constrained tournament method (30.3% for C∗ and 21.0% for S∗, average 25.6%).
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In further experiments (Noorshams, 2010), we have also studied to add lower bounds
indicating that a quality values is good enough so that further improvement does not
bring additional benefit, i.e. that other quality properties should not be traded off for
more improvement of this value. However, we found that including such lower bounds
does not significantly improve the optimization performance, neither in isolation nor in
combination with upper bounds as presented in this work.

9.5.4.3. Results for Question Q2.3

As a result, we observe that the quality bounds slightly improve the search performance in
our case study scenarios. However, the results are not statistically significant. The effect
of the quality bounds seems to depend on the size of the feasible and infeasible design
space: The quality bounds have almost no effect in lowly constrained scenarios W and
M . In scenario S, the constrained tournament method C performs well in both coverage
and even more so regarding the size of the dominated feasible space. The goal attainment
method is less successful. In scenario O, both constraint handling methods perform well.

From these observations, we suppose that using quality bounds to focus the search is only
effective if a large portion of the search space are excluded by the quality bounds, such as
given in scenarios S and O. In the two first scenarios, fewer solutions on the Pareto-front
are infeasible, so that the constraint handling is seldom used and thus cannot steer the
search well. Because it is not necessarily known in advance whether given requirements
are strict or lax, the constraint handling methods should always be used, as they do not
worsen the performance of the search. More runs of each setting could be conducted to
achieve more conclusive results.

As future work, a combination of quality bounds with tactics operators is promising: If
a quality bound is violated, tactics operator that strive to improve the violated quality
criterion can be favoured or even deterministically chosen to“repair”the current candidate.

9.6. Summary

This chapter presents the validation of our automated improvement method according to
two main goals: First, we study the validity of our automated improvement approach in
context of the CBSE development process. Second, our extensions to standard evolutio-
nary optimization, namely tactics operators, quality bounds in selection step, and starting
populations, are experimentally evaluated.

With respect to the first goal, we found that

• Candidate models can deliver accurate performance prediction based on a manually
created initial model: The optimization relies in particular on the accuracy of the
models even if the model is changed. We have reviewed the existing validation
for changes along different degrees of freedom. A gap concerning the validity of
allocation change has been closed by our new allocation validation case study.

• An approximation of the true Pareto front can be found, and provides meaningful
insights into the design space.

• The spanned design space contains considerable potential for improving quality at-
tributes, and thus represents a relevant subset of the complete design space software
architects have to consider.

With respect to the second goal of validating our extensions to standard evolutionary
optimization, we found that
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• Tactics operators are able to find better solutions or are able to find equivalent
solutions in less time. Thus, they improve the optimization step.

• An intensification phase seems to further improve the optimization, even after opti-
mization runs with tactics.

• Quality bounds seem to improve the optimization for highly constrained problems.
However, no statistically significant results could be achieved yet. Because the quality
bounds do not seem to worsen the search performance, they can be used also in
cases where the level of constrainedness is unknown. More experimental evaluation
is needed to better assess the quality bounds effect.

In addition to the possible topics for future work mentioned throughout this chapter, a
possible further research direction is the learning of parameter relations during the search.
For example, in the Business Reporting System case study, we observe after a number of
iterations that most Pareto-optimal candidates use 3 or less servers. Thus, the number
of servers can be reduced in the problem, so that the search can focus more effectively
on the promising parts. Such learning could also be achieved by interaction of users and
optimization during the search: If intermediate search results are reviewed by the users,
they can identify such relations and modify the optimization problem during the search.
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This chapter concludes the thesis, summarizing the main contributions and validation
results in Section 10.1. Section 10.2 describes the benefits of this work for the software
architect and software development in general. Section 10.3 provides a brief summary of
the assumptions and limitations discussed throughout the thesis, and discusses the main
assumption of having quality-annotated architecture models available as input. Finally,
Section 10.4 describes issues and questions for short-term and long-term future work.

10.1. Summary

This thesis provides an automated method to improve component-based software archi-
tectures based on model-based quality prediction, thus providing support for trade-off
decisions in the requirements analysis phase.

The main contributions of this work are summarized in the following (they are discussed
in more detail in Section 1.4).

Process: We have identified the information needs of software architects and stakehol-
ders that can be filled with an automated method based on model-based quality
prediction. Based on this, we extend a process model for the development of new
component-based systems with our method and include a more solid process for
determining appropriate quality requirements. The method provides quantitative
feedback from model-based quality predictions for software architects, requirements
engineers, and stakeholders to be used in architecture design and requirements analy-
sis. Furthermore, we embed the method in other scenarios such as software evolution
scenarios or capacity planning.

Framework: We have provided a framework for multi-objective optimization of software
architectures based on quality predictions. This framework is independent of the
used CBA metamodel and quality analysed due to its flexible and extendible degree
of freedom model. Additionally, it allows to include domain-specific knowledge in
form of architectural tactics operators known from literature and operationalized in
this work.

Framework Instantiation: To instantiate this framework, we have provided concrete de-
grees of freedom for CBA affecting performance, reliability, and costs as well as
performance and costs tactics for the Palladio Component Model.
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To validate the proposed method, we have (1) validated the accuracy and applicability
of our method and (2) evaluated the performance of our extensions to the optimization
step. Two case study system have been considered, the first being a business reporting
system (BRS), which is loosely based on a real system (Wu and Woodside, 2004b); the
second being an industrial control system (ICS) from ABB, which shows the industrial
applicability of our approach.

To validate the accuracy of the predictions when the models are changed, we surveyed exis-
ting accuracy validation for the PCM and provide an additional study showing the models
can deliver accurate performance prediction even if the original allocation is changed. Fur-
thermore, to assess the accuracy of the optimization in terms of finding an approximation
of the true Pareto front, we discuss the optimality of results for a case study, and conclude
that a close approximation of the true optimum has been provided by our method.

To validate the applicability of our method, we study whether the design space considered
by our method in two case studies is a relevant subset of the complete design space. Here,
we have studies whether the degrees of freedom actually occur in the case study system,
how large their influence on the quality criteria is, and whether they indeed conflict in these
scenarios. We found that the design space indeed contains a large number of candidates
with varying quality properties, and that in both case study systems, a trade-off situa-
tion among the quality criteria was given. Altogether, we conclude that the information
provided by the automated approach is useful for the software architect.

With respect to the second goal of validating our extensions to standard evolutionary
optimization, we found that tactics operators were able to find better solutions or are
able to find equivalent solutions in less time in both case studies. Thus, they improve the
optimization step.

Furthermore, the intensification phase seems to further improve the optimization, even
after an optimization runs with tactics has been conducted before. Quality bounds seem to
improve the optimization for highly constrained problems. For less constrained problems,
no improvement was observed. More experimental evaluation is needed to better assess
the quality bounds effect.

10.2. Benefits

The results of this thesis support the software architect in improving component-based
software architectures based on model-based quality prediction. They thus provide quan-
titative support for trade-off decisions in the requirements analysis phase. As a distinctive
feature of our method compared to existing solutions, we elaborate on the connection to
requirements engineering, provide a flexible and extendible formulation of the design space,
and include domain-specific knowledge in the form of architectural tactics.

The benefits of our work are the following.

Automated Design Space Exploration: Our method automates feedback and inter-
pretation of results of model-based quality analysis that the software architect had to
carry out manually with high effort before. As the considered design space is potentially
large, the effort for manual exploration is unreasonably high, or even prohibitive so that
good solutions would remain undetected in many typical scenarios in current software
development.

The benefit of such assistance is reduced effort due to the partial automation of the design
space exploration task. As our proposed approach does not require additional input in-
formation, the human user saves time. Thus, costs are saved in the development process.
Additionally, it has been recognized that automated, search-based approaches can help to
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produce unexpected, but valuable solutions that humans would have overlooked because
of bias (Harman, 2007, Sec.7.3), time constraints, or limited insight into the problem.

Input for Trade-Off Decisions in Requirements Analysis and Architecture De-
sign: As our method uses multi-objective optimization, it provides a set of Pareto-optimal
candidates to the software architect and stakeholders, thus providing a quantitative basis
for well-informed trade-off decisions.

The information can be used in the requirements analysis phase to clarify, negotiate,
and agree on quality requirements and the expected costs. Thus, our methods enables
a stronger interaction of architecture design and analysis, potentially leading to a better
fulfilment of stakeholder needs.

The method does not require the stakeholders to specify fixed quality requirements at the
beginning of a development process, which are later endangered to be dismissed if they
prove to be infeasible. Instead, defining only quality criteria and then negotiating based
on quantitative data allows stakeholders to focus on the most relevant quality criteria, to
consider the feasibility and incurred costs, and to realize them at low costs.

Flexible and Extendible Design Space Formulation: Our degree of freedom meta-
model allows to specify quality-relevant degrees of freedom for a given CBA metamodel. A
tool then explores the spanned design space automatically. Our method is generic as it can
be applied for any CBA metamodel: thus, it does not force the software architect to use
a specific CBA modelling language, and can be applied for any project with model-based
quality prediction based on an architecture model.

Furthermore, the design space formulation is flexible and extendible because software
architects can select generic CBA degrees of freedom to consider and model additional
degrees of freedom, if required. Additional degrees can be modelled either for the given
CBA in general, or specifically for the system at hand. For modelling system-specific
degrees of freedom, any design decision that can be expressed in the architectural model
by changing a primary model element can be considered. Thus, the method is not restricted
to certain degree of freedom types.

This benefit is not provided by existing approaches, as they do not support the modelling
of the optimization problem (cf. Section 4.1.5).

Automated Design Space Instantiation: Our tool PerOpteryx automatically instan-
tiates the design space (by detecting and instantiating degrees of freedom in an input CBA
model) and, together with the available and selected quality analyses, instantiates the op-
timization problem for the user. Thus, the software architect does not have the manual
effort of defining the optimization problem. Existing other approaches do not support
this task (cf. Section 4.1.5). For example, ArcheOpterix (Aleti et al., 2009a) requires the
implementation of Java classes for any new optimization problem.

Flexible Combination of Quality Criteria: Furthermore, our method allows to add
additional quality analyses by providing quality prediction adaptors. Here, software archi-
tects may also define project-specific quality criteria, for example related to the organiza-
tion of the project in terms of developer assignment.

Efficient Optimization: Existing solutions are divided into rule-based approaches, which
apply domain-specific knowledge to improve a single quality attribute, and metaheuristic
approaches, which can (in principle) handle any quality criteria, but do not make use of
domain-specific knowledge. Our method is the first to combine both approaches by using
tactics operators, which benefits the design space exploration as it reduces the time to find
solutions (by 50% to 90% on average in our case studies).
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Summary: To summarize, the method proposed in this thesis helps software architects
(1) by saving significant costs for manually exploring the design space, (2) by providing a
more solid process for determining appropriate quality requirements, and (3) by supporting
an extensible analysis framework applicable in a large class of practical scenarios.

Furthermore it advances state-of-the-art and benefits researchers in architecture optimiza-
tion (1) by clarifying the role of model-based quality predictions in the process of quality
requirements engineering, (2) by being the first method to offer a flexible and exten-
dible design space formulation, and (3) by being the first method to demonstrate how
domain-specific knowledge can be combined with metaheuristic, multi-objective software
architecture optimization.

10.3. Assumptions and Limitations

This section (1) points to assumptions and limitations discussed throughout this thesis,
and additionally (2) discusses and justifies the main underlying assumption of having
quality-annotated software architecture models available as an input.

Pointers to Assumptions and Limitations Discussion: Assumption and limitations
of our approach are discussed in the separate chapters in detail. Here, we only point to
the relevant sections for different aspects. Section 5.5 describes the assumptions and li-
mitations of the component-based development process with quality exploration and the
application of our method in other scenarios. Section 6.5 discusses assumptions and limita-
tions of our design space formulation, covering the assumed properties of CBA metamodels
and the limitations of the resulting design space. Section 7.5 discusses the limitation of
our method to software architecture models that have component-based properties. Finally,
Section 8.5 describes the assumptions and limitations of the evolutionary optimization step
and the tactics operators.

Available Quality-annotated Software Architecture Models: The main underlying
assumption of our method is that it requires the use of software architecture models an-
notated with quality information. The models require quality attribute annotations that
reflect the quality properties of the system under study well, as discussed and validated in
Section 9.1.1.1. Because creating such models requires considerable effort (e.g., 1-3 per-
sons months in recent large-scale studies Huber et al. (2010); Koziolek et al. (2011c)), we
discuss the expected conditions under which the creation of such models is beneficial and
under which the application of our proposed method is most useful.

Model-based prediction is especially beneficial for large software projects, where the in-
fluence of design decisions on the quality attributes is not yet well understood. For example,
for simple development projects in well-understood domains or for small projects, model-
based quality prediction might not be required. Performance prediction may be less im-
portant for simple desktop applications where the application only has to serve a single
user while running on more powerful hardware.

However, as soon as scalability of the system to a large number of concurrent users is
required and high workloads are expected, model-based performance predictions are an
important means to avoid overloaded servers and dissatisfied users during system runtime.
The performance effects of decisions are often unknown based on experience and intuition,
as shown by an empirical study by H. Koziolek and Firus, 2005, where even for a rather
small system (ca 1 KLOC) the benefits of a structured performance evaluation method
has been shown beneficial compared to an ad-hoc approach. Even for existing systems
that should be used in new environments (i.e. new usage contexts or new deployment),
the quality effects of decisions or changes are hard to predict intuitively, and should be
supported by quantitative analyses.
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Empirical investigation for the costs and benefits of architecture analysis in general, com-
paring several projects over eight years at AT&T, report costs savings for large projects
(Bass et al., 2003, p.263). More example are discussed by Bass et al. (2003, p.263). Concer-
ning model-based quality prediction, initial empirical studies indicate a benefit for early
design time performance prediction, i.e. that the costs for creating the models pays off
(Williams and Smith, 2003). Furthermore, we discussed three examples of losses due to a
lack of quality consideration in Section 1.1; many more examples have been reported by
Glass (1998); Schmietendorf and Scholz (2001) and others.

Nonetheless, more studies in industrial contexts need to be conducted to better understand
the costs and benefits of model-based prediction approaches. Additionally, we a deeper
understanding and more empirical research on the conditions under which the use of model-
based prediction is beneficial.

Here, risk analysis should be a foundation for deciding to adopt prediction techniques. For
example, Fairbanks (2010, p.8) suggests a risk-driven approach to software architecture
in general, arguing to put just enough effort into modelling and documenting software
architecture to reduce risks (i.e. the perceived probability of problems occurring multiplied
by the expected losses in case of problems) to an acceptable level. The spent effort of any
architecting activity should be smaller than the expected risk reduction. Similarly, effort
for quality prediction model creation should be lower than the expected risk reduction
regarding quality problems. We expect this risk analysis to be positive for large projects
with high business value. Furthermore, the method presented in this thesis is expected to
decrease the effort of applying model-based prediction, as it automates the feedback tasks.
Thus, our method supports the applicability of model-based quality prediction.

10.4. Future Work

This section discusses ideas and open issues for short term future work (Section 10.4.1) and
long term future work (Section 10.4.2). Short term future work requires smaller conceptual
contributions and implementation work, while long-term future work requires in-depths
new concepts and may for example be tackled in future PhD theses or industry projects.

10.4.1. Short Term Future Work

Modelling Language for System-specific Degrees of Freedom: As described in
Sections 6.3.2.5 and 7.4.2, the definition of system-specific degrees of freedom could be
simplified by providing a modelling language to describe design options on the model level.
Here, model elements need to be annotated with the possible design options. Additionally,
the quality effects of the design options must be well-defined.

For system-specific degrees of freedom that require to change several model elements at
once, the consistency of all model elements must be retained. In the context of model
evolution (e.g. the approach by Gray et al. (2006)), several approaches have been sug-
gested to capture changes of models and make them repeatable and analysable as model
transformations. Such descriptions of model changes could be used for defining complex
design alternatives.

A sketch of such a language is provided in Section 7.4.2. The benefit of such a language
would be the simplified inclusion of any design alternative the software architect wants to
consider in the design space exploration process, without the need to define the change on
the metamodel level (as required in our current model).

Add Project-Specific Quality Metrics: In addition to existing quality prediction
techniques, project-specific quality metrics could be defined by the software architect,
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especially for quality attributes for which no or only few quantitative prediction approaches
are available. Such quality metrics could be defined as any aggregation function on model
properties, similar to OPEDo (Arns et al., 2009) or GDSE (Saxena and Karsai, 2010a).
For example, software architects may define security of components on a scale from low
to high, and define the security of each service provided by the system as the minimum
security of all involved components. Then, a coarse security measure can be included in
the optimization and trade-off decisions. Rohrberg (2010) has described an example of
such a simplified security analysis, which nonetheless can have the ability to highlight and
quantify trade-offs and thus be a basis for decisions.

In addition to simplified, project-specific quality metrics, the connection of other quantita-
tive quality prediction techniques (e.g. (Grunske and Joyce, 2008) for security) is desirable.

Learning DoF Effects and Interactions: Optimization approaches that learn proper-
ties of a given optimization problem during the search have been proposed (Blum and
Roli, 2003, p.288). In the context of this work, algorithms that learn the interactions of
degrees of freedom could be beneficial. For example, if one component in the system has a
high resource demand, the server it is deployed to should have a high processing rate, and
it possibly should be deployed to a dedicated server. However, not all types of learning
algorithms seem appropriate: Some approaches, such as simple Estimation of Distribution
Algorithms (cf. e.g. (Blum and Roli, 2003, p.288 et seq.), assume no or only limited depen-
dencies between variables, while for our problem, the most promising learning is to detect
these interactions. Algorithms that consider multivariate interactions (survey in (Pelikan
et al., 2002)) are more promising. Additionally, domain-specific learning could be devised.
Such learning would use the available information at its best and possible further reduce
the number of needed and expensive candidate evaluations.

More Tactics and Hybridization: More tactics can be devised to encode more domain-
specific knowledge. The reliability tactics informally described in Section 8.3.1.3 could be
formalized.

Furthermore, specialized efficient optimization approaches could be used within tactics.
For example, a linear integer programming formulation of the deployment problem, using
simplified quality models, could be solved as part of the reallocation tactic to estimate
an optimal deployment of components within one reproduction step. While we have al-
ready combined the metaheuristic optimization with a simplified analytic optimization
that generates a starting population (cf. Section 8.3.4.1), one could employ similar sim-
plified calculations as part of tactics operators. However, it must be ensured that such a
combination does not bias the search too strongly towards possibly only locally optimal
solutions due to the inaccuracy of the simplified predictions. Here, learning capabilities
should be employed (see below)

Degrees of Freedom for other CBA Metamodels: As described in Chapter 6, the
degree of freedom metamodel is CBA metamodel independent. In Chapter 7 we have
described degrees of freedom for ROBOCOP and CBML. In future work, the described
degrees of freedom could be modelled for these CBA metamodels, and the quality analyses
available for these metamodels could be connected to our optimization framework, so that
design space exploration for these models becomes possible.

Moreover, the definition of degrees of freedom for UML models could be studied. Be-
cause the semantics of UML is not as well-defined for e.g. performance prediction as other
component-based architecture models (Becker et al., 2009), additional interpretations may
have to be assumed. Furthermore, the definition of behaviour as sequence diagrams is a
challenge for defining the exchange of components and the possibly resulting change of the
system behaviour. Still, defining degrees of freedom for UML models could increase the
applicability for the method presented in this thesis.
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Compare Performance of Metaheuristics: Although we expect evolutionary algo-
rithms to be a good choice for our optimization problem (cf. Section 8.1.3), other meta-
heuristics and in particular other, more recent types of evolutionary algorithms could be
employed and their performance could be compared for case studies.

As a further extension in context of long-term future work, the performance of optimization
techniques could be compared for different types of problems: For example, architectures
where the component allocation has a large influence on the quality properties of candi-
dates, a different algorithm could exhibit the best performance than in architectures where
allocation choices are limited, but server configuration is more relevant. On top of this, the
choice of metaheuristic or evolutionary algorithm for a problem at hand could be adapted
during the search based on insights of the problem (e.g. whether the unordered selection
degrees such as component allocation or component selection are the main influencing
factor for a problem, or whether possibly continuous, ordered degrees are more relevant).
For parameter settings of a single algorithm, similar control during the search has been
implemented in several works. A survey is provided by Eiben et al. (1999).

Quality bounds and tactics: In our validation, we observed that quality bounds are
helpful in highly constrained optimization problems (i.e. the scenario with tight costs
constraints), cf. Section 9.5.4. Here, the efficiency of quality bounds could be potentially
increased by combining them with tactics operators: For candidates which lie outside the
quality bounds, tactics operators can be executed that improve the violated quality, if the
candidate fulfils the conditions of the tactics.

10.4.2. Long Term Future Work

Large Scale Validation and Empirical Studies: More validation evaluating the sup-
port of decision making and the applicability of our method in industry contexts is de-
sirable. Furthermore, exploratory studies to better understand decision situations could
be conducted to drive result presentation and decision support techniques based on the
available Pareto-optimal candidates. More validation aspects subject to future work are
discussed in Sections 9.1.1.4 and 9.1.2.3.

Costs / Benefit of Model-based Prediction: Instead of validating the costs and
benefits of our method in isolation (i.e. comparing it to model-based prediction without
feedback mechanisms), it seems more promising and to result in more insight to conduct a
combined costs/ benefits study of model-based prediction including automated exploration,
preferably in an industrial context.

Smaller studies could be useful to accompany use of prediction techniques in practice and
measure the actual effort to create such models in practice. While several studies already
have considered this question (e.g. (Williams and Smith, 2003), (H. Koziolek et al., 2011c)),
more independent studies are required to achieve a generalizable result. Such costs studies
could be accompanied by qualitative analysis of what problems could be avoided, and an
estimation of the mitigated late costs, as done by Williams and Smith (2003). Possibly,
the results could be compared to historical data where no prediction has been used, to
quantify the costs of late quality fixes. A fully controlled study where the same project
is conducted twice, once using model-based prediction and exploration, one without such
support, may be too costly to be feasible.

Consider Uncertainty of Model Parameters: The quality annotations of software
architecture, i.e. the input information to quality predictions, are usually uncertain, es-
pecially if their are based on estimations instead of measurements. Here, the uncertainty
could be explicitly considered by the optimization, so that solutions that are likely to be
optimal even if the estimations vary (i.e. more robust solutions) are preferred to solutions
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that are sensitive to estimation errors. Jin and Branke (2005) provides a survey on methods
that could be applied to consider uncertainty. Recently, Meedeniya et al. (2011b) proposed
such an approach for software architecture optimization in the context of ArcheOpterix.

Furthermore, Schmidt (2007) specifically targets problems in which uncertainty arises due
to the stochastic nature of the problem (as encountered e.g. for performance simulations),
and the proposed methods could be adopted for our work as well. For example, adaptive
allocation adapts the number of samples for candidates depending on the uncertainty of
their quality properties. Similarly, for candidates that are obviously suboptimal after a
short simulation, the simulation can be aborted as the candidate is useless anyway.

Systematic Use of Pareto-optimal Candidates in Requirements Engineering:
Our method results in a set of Pareto-optimal candidates which can be used for trade-off
decisions in the requirements analysis phase. Here, a method how to systematically use
this trade-off in existing requirements engineering processes should be devised to ensure
the optimal use of the information. Visualization of the results and decision support (as
initially developed by Rohrberg (2010) in the context of this thesis should be developed
and studied further.

Furthermore, as observed by Berntsson Svensson et al. (2011), the management of quality
criteria is insufficient in many development projects, thus, systematic methods are required.
Studies need to accompany new methods to validate their assumptions, and exploratory
studies could precede to better understand the decision situation and method needs.

Support Several Metamodels: Our method is currently limited to one input CBA
model which is modelled using any, but only one CBA metamodel. If several models are
used to describe a system (e.g. a UML model for the static structure and coarse grained
behaviour, an SPE model (in form of a software execution graph Smith and Williams
(2002b)) for performance analysis, and a Markov Chain-based model for reliability), our
method cannot be applied as is.

Here, a general precondition for applying any model-based automated improvement is
that changes performed by the design space exploration tool in one of the models can
be propagated to the other models, so that the models are consistent. To do so, the
used models must be connected to each other by some formalism, ranging form the use of
common identifiers to a trace model that captures the relations of model elements in all
used models.

An example technique to achieve connection of different metamodels is Dually Malavolta
et al. (2010). To use Dually, links between concepts in different metamodels are modelled
manually. Then, Dually provides model transformations to transform any instance of one
metamodel into the other.

Based on such links, the open question is how to synchronize the models when the models
are changed along degrees of freedom. If one of the models contains all relevant infor-
mation, this model can be manipulated along the specified degrees of freedom and other
models can be synchronized using e.g. Dually. However, if the information is distributed
among several models (e.g. one model defines the allocation of components to servers, while
another one contains fault tolerance mechanisms), degrees of freedom have to operate on
several models at once. Thus, more research is required to put this approach into practice.

Combined Consideration of Functional requirements and Quality Criteria: Qua-
lity criteria (or quality requirements) are not only subject to trade-off against each other,
but may also be traded off against functional requirements. For example, Berntsson Svens-
son et al. (2011) reports that quality requirements are often dismissed in practice to allocate
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limited development resources to achieving functional requirements. Here, as both the rea-
lization of functional requirements and the improvement of quality criteria may lead to
increased costs, both aspects compete with each other.

This approach fits the ISO/IEC 9126-1:2001(E) (2001) standard, where functionality is
considered a quality attribute, too, capturing the “capability of the software product to
provide functions which meet stated and implied needs” (ISO/IEC 9126-1:2001(E), 2001,
p.7).

Thus, the choice to implement certain functionality should also be expressed as a degree
of freedom, which incurs costs but provides some functionality value to the stakeholders.
The functionality value can be traded-off against costs and other quality criteria. A simi-
lar problem has been considered in search-based software engineering as the Next Release
Problem (cf. (Harman, 2007, Sec.4.3)), where the goal is to select an optimal set of (func-
tional) requirements to implement in the next release, with respect to customer requests,
development resource constraints, and requirements interdependencies. The treatment of
functionality value and costs could be adopted from such approaches.

Combine Optimization on Different Levels of Design: Opportunities for optimiza-
tion can be found on different levels of software design and development. For example, on
the highest level, business strategies and business processes are subject to improvement
and optimization. A roadmap to combining business process management and software
architecture has been suggested by Paech et al. (2009). Another high-level perspective is
to consider systems-of-systems or architectural landscapes and their quality attributes.

Furthermore, low level optimization of design and implementation could be combined
with this work. For example, Schaefer et al. (2010) suggest a method to optimize the
use of parallel programming patters such as pipe-lining, producer-consumer or fork-join.
Here, the optimal selection of parallel programming patterns within a software component
depends on which other components are allocated on the same server (i.e. the component
allocation degree of freedom), because all resulting threads will compete for the server’s
resources. Thus, the optimization of parallel programming patterns is not independent of
the software architecture optimization presented in this work.

To cope with optimization problems on different levels, one approach could be to encode all
of them into one large optimization problem. However, due to the high number of degrees
of freedom, such a problem might become too difficult to efficiently find approximations
of the optimal solutions. Instead, a meaningful hierarchization of optimization problems
at different levels could be reasonable. Here, a challenge is to devise a mechanism to feed
back and feed forward the results from one optimization problem into the other.

Support of Runtime Adaptation: As described in Section 5.4, our method as is does
not target fast runtime adaptation, i.e. the optimization of systems at runtime to adapt
to changed environment. The current, detailed optimization is too expensive in terms of
needed computation to provide results quickly and adapt within minutes or even hours.
Additionally, the output of our method are Pareto-optimal candidates to provide input
for human trade-off decisions. If software systems are to judge autonomously based on
optimization, however, the preferences must be defined beforehand.

Still, the concept of degrees of freedom and the spanned design space could be used for
runtime adaptation as well. Here, different optimization techniques need to be applied:
More approximate, but faster quality predictions than used in this work need to be used.
Furthermore, a focus in the neighbourhood of the current candidate could be useful to
decrease the costs of reconfiguration at runtime (in terms of incurred resource demand).

Final Remark: To conclude, this thesis is a step towards adopting engineering principles
in software engineering. It builds upon component-based software engineering principles,
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266 10. Conclusion

upon parametric contracts, and upon quantitative quality prediction techniques. Based
on this, our method supports the software architect to explore the design space of a given
software architect by automatically finding the optimal trade-off candidate architectures.
Thus, in the requirements analysis phase, stakeholders can negotiate and agree upon rele-
vant quality criteria and preferences based on quantitative information about the system,
allowing them to make well-informed decisions whose effects are known.
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Dobrica, L. and Niemelä, E. (2002). A survey on software architecture analysis methods.
IEEE Trans. Software Eng, 28(7):638–653.

Doerner, K., Gutjahr, W. J., Hartl, R. F., Strauss, C., and Stummer, C. (2004). Pareto Ant
Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection.
Annals of Operations Research, 131(1–4):79–99.

Durillo, J. J., Nebro, A. J., and Alba, E. (2010). The jMetal framework for multi-objective
optimization: Design and architecture. In IEEE Congress on Evolutionary Computation,
pages 1–8. IEEE.

Efftinge, S., Friese, P., Haase, A., Hübner, D., Kadura, C., Kolb,
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Appendix

A. Palladio Component Model

All diagrams in Sections A.3 to A.4 are taken from the PCM metamodel defini-
tion (revision 8988 of https://svnserver.informatik.kit.edu/i43/svn/code/Palladio.RSA-
Models/trunk/pcm.emx) as presented by Reussner et al. (2011, chapter 4).

A.1. Key for PCM Diagrams

Figure A.1 shows the key for RDSEFF diagrams used throughout the thesis. Figure A.2
shows the key for the diagram parts showing system and allocation.

Plan 

Journey

Resource Demand 

= 2E+9 CPU Instr.

Failure Probability 

= 0.0001

Call

IBooking.book

Call

IEmployee 

Payment. 
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requestType 

== book request Type 

== reimburse

<<RDSEFF>> IBusinessTrip.plan

InternalAction 

with performance 

and reliability 

annotation

BranchAction 

start and end

StartAction

Branch condition

StopAction

ExternalCall-

Actions

Figure A.1.: Key for RDSEFF Diagram
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Figure A.2.: Key for Combined System and Allocation Diagram
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A.2. Mapping of PCM Concepts to General Concepts

Table A.1 shows the mapping of PCM elements to general CBA concepts. To distinguish
PCM from general concepts, only PCM elements are used with upper-case in the table.
General CBA concepts are referred to by their name without upper-case letters, such as
component or component instance. See the PCM technical report (Reussner et al., 2011)
for detailed rationale of the PCM metamodel.

PCM Concept General CBA Concept(s) and Explanation

AllocationContext component allocation instance
AssemblyConnector a connector to connect a required interface with a

provided interface within one component assembly.
AssemblyContext component instance
BasicComponent primitive components, i.e. components that are not

composed.
CompositeComponent composed structures that are components
ComposedPREntity Full name “ComposedProvidingRequiringEntity”, an

abstract superclass of composed structures
InterfacePREntity Full name “InterfaceProvidingRequiringEntity”, an

abstract superclass of components.
LinkingResource Link
ProcessingResourceSpecification Resource
ProvidedDelegationConnector a connector to connect the outer provided interface of

a composed structure to an inner provided interface
of an inner component.

ProvidedRole association class for referencing interfaces, needed
because the PCM has no interface instances.

RepositoryComponent a component
RequiredDelegationConnector a connector to connect the outer required interface of

a composed structure to an inner required interface
of an inner component.

RequiredRole association class for referencing interfaces, needed
because the PCM has no interface instances.

ResourceContainer Server
System the component assembly that forms the system mo-

del in the CBA model, i.e. the component assembly
that is directly referenced by the root node.

Table A.1.: Mapping of PCM Concepts to General CBA Concepts

A.3. Inheritance Hierarchy of Components

Figure A.3 shows the composition hierarchy in the PCM. Figure A.4 shows the so-called
core entities, and Figure A.5 shows the delegation concepts.
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Figure A.3.: PCM Composition
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Figure A.4.: PCM Core Entity Overview
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ComposedStructure
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+ assemblyContext_RequiredDelegationConnector

Figure A.5.: PCM Delegation

A.4. RDSEFF Metamodel Elements

Figures A.6 and A.7 show the RDSEFF metamodell, namely the integration of the available
behaviour models into the components (Figure A.6), and the actions to model behaviour
(Figure A.7).

ServiceEffectSpecification

seffTypeID : EString

ResourceDemandingSEFF

ResourceDemandingBehaviour

Signature

serviceName : String

BasicComponent

ExactlyOneStartAction

{self.steps_Behaviour->select(s|s.oclIsTypeOf(StartAction))->size() = 1}

ExactlyOneStopAction

{self.steps_Behaviour->select(s|s.oclIsTypeOf(StopAction))->size() = 1}

ResourceDemandingInternalBehaviour

AbstractAction

*

11

+ basicComponent_ServiceEffectSpecification

*

1

+ resourceDemandingSEFF_ResourceDemandingInternalBehaviour

*

+ resourceDemandingInternalBehaviours

0..1+ resourceDemandingBehaviour_AbstractAction

*+ steps_Behaviour

0..1

+ successor_AbstractAction

0..1+ predecessor_AbstractAction

Figure A.6.: PCM Behaviour Overview

AcquireAction BranchAction ForkAction InternalAction ReleaseAction StartAction StopAction

AbstractInternalControlFlowAction

AbstractLoopAction

LoopAction CollectionIteratorAction

Figure A.7.: PCM Action Hierarchy

A.5. Resource Repository

To specify the possible resources that a server can have, a repository of resources has been
created as an extension to the PCM metamodel. Figure A.8 shows the metamodel of the
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resource repository. The ResourceDescriptionRepository is the model root and specifies
possible resources. A possible resource is described by a ResourceDescription, which
combines the ProcessingRateSpecification information and the costs of the resource
as FixedProcessingResourceCost.

ProcessingResourceSpecification
(from resourceenvironment)

ResourceDescriptionRepository
(from resourcerepository)

ResourceDescription
(from resourcerepository)

FixedProcessingResourceCost
(from CostModel)

ProcessingResourceType
(from resourcetype)

1

*
- availableProcessingResources_ResourceRepository

1

1
- fixedProcessingResourceCost_ResourceDescription

1

1

- processingResourceSpecification_ResourceDescription

*
- resourcespecification

1
+ activeResourceType_ActiveResourceSpecification

Figure A.8.: Resource Repository

A.6. OCL Constraint for Valid AllocationContexts

The constraint below exclude servers that are not linked to the communication partners.
Components cannot define the linking resource they use for communication in the PCM;
it is assumed here that the components use higher level communication mechanisms such
as remote procedure calls that are unaware of the used communication link, e.g. Ether-
net. Additionally, linking resources are always bidirectional in the PCM. Thus, if two
components C1 and C2 are allocated to two different servers and communicate with each
other, it is sufficient that a linking resource connects two servers. The direction of the
communication can be neglected.

It is complex to determine the AllocationContexts of all communication partners, because
the components in the PCM can be hierarchically composed and several types of composi-
tion exist (ComposedComponents and SubSystems, see Figures A.3 and A.4). A number
of helper methods are required to navigate through the system.

The interaction constraint below checks whether the chosen server
self.resourceContainer is connected to the servers of all communication part-
ners (retrieved by getSenders and getReceivers) server with a linking resource. The
rule is applied to the changed resource container after applying the change. Candidates
this rule evaluates to false for are invalid.

context Al locat ionContext
de f : i sConnectedToAllSendersAndReceivers : Boolean =
−− i s connected to a l l s e r v e r s t ha t t h i s component communicates wi th
s e l f . assemblyContext . getSenders (

s e l f . assemblyContext . encapsulatedComponent . providedRoles ,
a l l o c a t i o n )
−>union ( s e l f . assemblyContext . g e tRece iv e r s (
s e l f . assemblyContext . encapsulatedComponent . requ i redRoles ,
a l l o c a t i o n ) )

. r e sourceConta ine r
−>f o r A l l ( s r c | s e l f . a l l o c a t i o n . targetResourceEnvironment

. l ink ingResource s−>e x i s t s ( l |
l . connectedResourceContainers−>i n c l u d e s ( s r c )
and l . connectedResourceContainers
−>i n c l u d e s ( s e l f . r e sourceConta ine r ) ) )
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Sender Receiver

<<AssemblyConnector>>

(a) Case 1: Simple case to Determine Communication
Partners

Sender
SubSystem
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<<AssemblyConnector>>

<<ProvidedDelegationConnector>>

<<ProvidedRole>>
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hierarchy along 

ProvidedDelegatio

n Connector
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(b) Case 2: Current Component is Contained in SubSystem and Connected to SubSys-
tem Roles

SubSystem

Sender

Receiver

<<AssemblyConnector>>

<<RequiredDelegationConnector>>

<<RequiredRole>>

1.) determine sender

2.) descend into SubSystem and 

find inner communication partners

(c) Case 3: The Communication Partner is Contained in a SubSystem which is not
Allocated as a Whole

Figure A.9.: Three Cases of Navigation when Determining Communication Partners. Here:
Current Component is the Receiver (Situation in getSenders() method)

To determine the AllocationContexts of the communication partners, the following me-
thods getSenders and getReceivers are used. Three possible cases need to be consi-
dered when querying the communication partners and are visualised in figure A.9. The
simplest case (case 1 in figure 11.9(a)) is that the current component is connected to the
communication partner with an AssemblyConnector. Then, the AssemblyContext at the
other end of the connector is the communication partner.

The other two cases concern SubSystems, which are composed structures whose contents
can be allocated separately. If the current component is encapsulated in a SubSystem and
is connected to ProvidedRoles or RequiredRoles of that SubSystem (case 2), it is required
to first move up the hierarchy and then determine the communication partner of the parent
structure that match the roles to which the current component is connected.

If a SubSystem is found to be the communication partner and if that SubSystem is not
deployed as one (case 3), the query needs to descend into the SubSystem to find the
AllocationContexts of the inner components that communicate with the current component
from inside the SubSystem. The helper methods to descend into a SubSystem are explained
below, starting with getSenders. The three cases an also be mixed and occur more than
once: for example, a component can be encapsulated in a SubSystem which is again
encapsulated in a SubSystem, and the communication partners of this component can at
the same time be encapsulated in a different third SubSystem.

context AssemblyContext
−− component in s t ance s t ha t r e qu i r e t h i s component
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de f : getSenders ( prs : Set ( ProvidedRole ) , a l l o c a t i o n : A l l o ca t i on )
: Set ( Al locat ionContext ) =

s e l f . parentSt ructure . assemblyConnectors−>s e l e c t ( conn |
conn . providingAssemblyContext = s e l f and
prs−>s e l e c t ( pr | pr =conn . providedRole ) )
−> i t e r a t e ( conn : AssemblyConnector , r e s u l t : Set ( AssemblyContext ) = Set {} ,

i f (not conn . requir ingAssemblyContext . encapsulatedComponent
. oc l IsKindOf ( SubSystem ) )

then
−− Simple case 1 : nav i ga t e across AssemblyConnector
r e s u l t−>i n c l u d i n g ( a l l o c a t i o n . ge tAl locat ionContext (

conn . requir ingAssemblyContext ) )
else

i f ( a l l o c a t i o n . i s A l l o c a t e d ( conn . requir ingAssemblyContext ) )
then
−− SubSystem i s d i r e c t l y a l l o c a t e d
−− Also s imple case 1 : nav i ga t e across AssemblyConnector
r e s u l t−>i n c l u d i n g ( a l l o c a t i o n . ge tAl locat ionContext (

conn . requir ingAssemblyContext ) )
else
−− SubSystem i s not d i r e c t l y a l l o c a t e d , descend in t o i t
−− Case 2 : Communication par tner i s a SubSystem
r e s u l t−>i n c l u d i n g ( conn . requir ingAssemblyContext

. encapsulatedComponent . oclAsType ( SubSystem )
. getAllocationContextsForRR (

conn . requiredRole , a l l o c a t i o n ) )
endif

endif
)
−− a l s o nav i ga t e across composed s t ruc tu r e s ,
−− i f t h i s method i s c a l l e d on an a l l o c a t e d component ,
−− composed s t r u c t u r e s can only be SubSystems and
−− thus are on ly assembled once in the system .
−− Case 3 : The current component i s conta ined in a SubSystem
−>union ( system . getAssemblyContextsFor ( s e l f . parentSt ructure ) . getSenders (

s e l f . assemblyContext . parentSt ructure . prov idedDelegat ionConnectors
−>s e l e c t ( conn | conn . providingAssemblyContext = s e l f

and prs−>s e l e c t ( pr | pr =conn . providedRole ) ) . outerProvidedRole ,
a l l o c a t i o n ) )

Analogously, the method getReceivers handles receivers.

context AssemblyContext
−− component in s t ance s r e qu i r ed by t h i s component , f i n d the assemblyContexts
−− t h a t are a l l o c a t e d
de f : g e tRece i v e r s ( r r s : Set ( RequiredRole ) , a l l o c a t i o n : A l l o ca t i on )

: Set ( Al locat ionContext ) =
s e l f . parentSt ructure . assemblyConnectors−>s e l e c t ( conn |

conn . requir ingAssemblyContext = s e l f
and r r s−>s e l e c t ( r r | r r =conn . r equ i r edRo le ) )
−> i t e r a t e ( conn : AssemblyConnector , r e s u l t : Set ( AssemblyContext)= Set {} ,
−− i f t he p rov i d ing AssemblyContext i s a SubSystem , then we may have
−− to l ook f o r the inner components i f i t i s not a l l o c a t e d as one
i f ( conn . providingAssemblyContext . encapsulatedComponent

. oc l IsKindOf ( SubSystem ) )
then

i f ( a l l o c a t i o n . i s A l l o c a t e d ( conn . providingAssemblyContext ) )
then
−− SubSystem i s d i r e c t l y a l l o c a t e d
r e s u l t−>i n c l u d i n g ( a l l o c a t i o n . ge tAl locat ionContext (

conn . providingAssemblyContext ) )
else
−− SubSystem i s not d i r e c t l y a l l o c a t e d , descend in t o i t
r e s u l t−>i n c l u d i n g ( conn . providingAssemblyContext

. encapsulatedComponent . oclAsType ( SubSystem )
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. getAl locat ionContextsForPR ( conn . providedRole , a l l o c a t i o n ) )
endif

else
r e s u l t−>i n c l u d i n g ( a l l o c a t i o n . ge tAl locat ionContext (

conn . providingAssemblyContext ) )
endif

)
−− a l s o nav i ga t e across composed s t r u c t u r e s
−− i f t h i s method i s c a l l e d on an a l l o c a t e d component ,
−− composed s t r u c t u r e s can only be SubSystems and
−− thus are on ly assembled once in the system .
−>union ( system . getAssemblyContextsFor ( s e l f . parentSt ructure )

. g e tRece i v e r s ( s e l f . parentSt ructure . r equ i redDe legat ionConnector s
−>s e l e c t ( conn | conn . requir ingAssemblyContext = s e l f

and r r s−>s e l e c t ( r r | r r =conn . r equ i r edRo le ) ) . outerRequiredRole ,
a l l o c a t i o n ) )

To find the communication partners inside a SubSystem that is not allocated as a whole,
the query follows the delegation connectors inside the SubSystem. The roles the current
component is connected to are passed as an argument to the helper methods, so that the
matching delegation connectors connecting these roles with the internals can be retrieved.
Then, the communication partners are the components on the inner side of the delegation
connector. If an inner component found like this is again a SubSystem and not allocated as
one, the query descends further into it. The method getAllocationContextsForPR below
handles receivers.

context SubSystem
−− handle r e c e i v e r s ( SubSystems t ha t prov ide f u n c t i o n a l i t y to the
−− curren t component )
de f : getAl locat ionContextsForPR ( prs : Set ( ProvidedRole ) , a l l o c a t i o n : A l l o ca t i on )

: Set ( Al locat ionContext ) =

−− the d e l e g a t i on connectors t ha t are connected to the r o l e s prs
l e t prov idedDelegat ionConnectors : Set ( ProvidedDelegat ionConnector ) =

s e l f . providedDelegat ionConnectors−>s e l e c t ( conn | prs−>e x i s t s ( pr |
pr = conn . outerProvidedRole ) ) in

−− f i n d inner a l l o c a t e d component f o r each d e l e g a t i on connector
providedDelegat ionConnectors−>i t e r a t e (

conn : ProvidedDelegat ionConnector , r e s u l t : Set ( ) = Set {} ,
l e t a l l o c a t i o n C o n t e x t s : Set ( Al locat ionContext ) =

a l l o c a t i o n . ge tAl locat ionContext ( conn . assemblyContext ) in
−− i f t he inner component i s a l l o c a t e d d i r e c t l y , re turn i t .
i f (not a l l o ca t i onContex t s−>isEmpty )
then

r e s u l t−>i n c l u d i n g ( a l l o c a t i o nC o n t e x t s )
else
−− otherwise , i f inner i s SubSystem , descend in t o i t r e c u r s i v e l y
i f ( conn . assemblyContext . encapsulatedComponent . oc l I sKindOf ( SubSystem ) )
then

r e s u l t−>i n c l u d i n g (
conn . assemblyContext . encapsulatedComponent . oclAsType ( SubSystem )

. getAl locat ionContextsForPR ( conn . innerProvidedRole ) , a l l o c a t i o n )
)

else
−− I f inner i s not a SubSystem , re turn nu l l . This can only happen i f
−− t h i s SubSystem i s not used at a l l in the system , so t ha t no
−− a l l o c a t i o n e x i s t , because otherwise , non−SubSystems have to be
−− a l l o c a t e d by con s t r a i n t .
OclVoid

endif
endif

)
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Analogously, the method getAllocationContextsForRR handles senders.

context SubSystem
−− handle senders ( SubSystems t ha t r e qu i r e f u n c t i o n a l i t y o f the
−− curren t component )
de f : getAl locationContextsForRR ( r r s : Set ( RequiredRole ) , a l l o c a t i o n : A l l o ca t i on )

: Set ( Al locat ionContext ) =

−− the d e l e g a t i on connectors t ha t are connected to the r o l e s r r s
l e t r equ i r edDe legat ionConnector s : Set ( RequiredDelegat ionConnector ) =

s e l f . r equ i redDelegat ionConnectors−>s e l e c t ( conn | r r s−>e x i s t s ( r r |
r r = conn . outerRequiredRole ) ) in

−− f i n d inner a l l o c a t e d component f o r each d e l e g a t i on connector
requ i redDelegat ionConnectors−>i t e r a t e (

conn : RequiredDelegat ionConnector , r e s u l t : Set ( ) = Set {} ,
l e t a l l o c a t i o n C o n t e x t s : Set ( Al locat ionContext ) =

a l l o c a t i o n . ge tAl locat ionContext ( conn . assemblyContext ) in
−− i f t he inner component i s a l l o c a t e d d i r e c t l y , re turn i t .
i f ( a l l o ca t i onContex t s−>isEmpty )
then

r e s u l t−>i n c l u d i n g ( a l l o c a t i o nC o n t e x t s )
else
−− otherwise , i f inner i s SubSystem , descend in t o i t r e c u r s i v e l y
i f ( conn . assemblyContext . encapsulatedComponent . oc l I sKindOf ( SubSystem ) )
then

r e s u l t−>i n c l u d i n g (
conn . assemblyContext . encapsulatedComponent . oclAsType ( SubSystem )

. getAllocationContextsForRR ( conn . innerRequiredRole , a l l o c a t i o n )
)

else
−− I f inner i s not a SubSystem , re turn nu l l . This can only happen i f
−− the SubSystem s e l f i s not used at a l l in the system , so t ha t no
−− a l l o c a t i o n e x s i s t , because otherwise , non−SubSystems have to be
−− a l l o c a t e d by con s t r a i n t .
OclVoid

endif
endif

)

The method below is responsible for backward navigation from a repository component rc
to the AssemblyContexts that instantiate rc. This is needed to navigate across composed
structures: If the contents of composed structures are allocated separately, as it may be
the case in SubSystems, one may have to navigate up the composition hierachy to the
SubSystem to determine the communication partner of the inner component. The method
below can be used to determine the AssemblyContext(s) of the SubSystem itself, so that
the communication partners can be determined.

context ComposedProvidingRequir ingEntity
−− ge t a l l AssemblyContexts in t h i s composed e n t i t y t ha t r e f e r to the
−− passed RepositoryComponent
de f : getAssemblyContextsFor ( rc : RepositoryComponent )

: Set ( AssemblyContext ) =
s e l f . assemblyContexts−>s e l e c t ( ac | ac . encapsulatedComponent = rc )
−>union ( s e l f . assemblyContexts−>s e l e c t ( ac |

ac . oc l I sKindOf ( ComposedProvidingRequir ingEntity ) )
. getAssemblyContextsFor ( rc ) )

Finally, the helper method getAllocationContext retrieves the AllocationContext for a
given AssemblyContext. An OCL constraint in the metamodel ensures that at most one
exists in a conformant model. If the passed AssemblyContext is not allocated, null (i.e.
OclVoid) is returned.
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−− ge t a l l o c a t i o n f o r an assembly con t ex t
context Al l o c a t i on

de f : ge tAl locat ionContext ( a : AssemblyContext ) : Al locat ionContext =
l e t matchingAl locat ionContext : Set ( Al locat ionContext ) =

s e l f −>s e l e c t ( a l l c | a l l c . assemblyContext = a ) in
i f ( matchingAl locat ionContext . s i z e > 0)

matchingAl locat ionContext . f i r s t
else

i f (not a . parentSt ructure . oc l I sUnde f ined )
then

s e l f . ge tAl locat ionContext (
system . getAssemblyContextsFor ( a . parentSt ructure ) )

else
OclVoid

endif
endif

B. Degrees of Freedom and Design Space Appendix

B.1. Notes on Changes

B.1.1. Why all Model Changes can be Considered Updates

In general, there are three types of primitive model changes which can be combined to
form more complex changes:

1. Update: An existing element e of a model is assigned a new value. For example,
the processing rate of a server (modelled as a parameter of the server) is changed
to a higher value. Update changes can also refer to associations of the model. For
example, moving component BookingSystem to server S3 in a PCM model means to
change the AllocationContext of the BookingSystem instance. In particular, the at-
tribute AllocationContext.resourceContainer is changed to point to server S3, which
already exists in the model.

2. Add: New model elements can be created and added to the model. For example, a
cache component could be added between BusinessTripMgmt and BookingSystem

to quickly reply to common trips.

3. Delete: Existing model elements can be deleted and thus be removed from the model.
In the initial example model, nothing can be deleted without violating one of the
constraints. After adding a cache component, however, this cache can be deleted
again.

In this work, we assume that all model elements are connected to each other (at least by
a common root model element). Then, both additions and deletions imply an update of
other model elements that have an association to the added or deleted model elements.

Consider the examples for addition and deletion above: Adding a cache component
between BusinessTripMgmt and BookingSystem in our example PCM model means
to (1) update the Repository’s property Repository.components to contain an addi-
tional BasicComponent that provides the IBooking interface, (2) update the System’s
property System.assemblyContexts to contain an additional AssemblyContext referen-
cing the new BasicComponent, (3) updating the Allocation model’s property Alloca-

tion.allocationContexts to contain an additional AllocationContext referencing the
new AssemblyContext, (4) updating the System’s property System.assemblyConnectors

to contain an additional AssemblyConnector to connect the cache and BookingSystem,
and (5) updating the AssemblyConnector that previously connected BusinessTripMgmt

and BookingSystem to now connect BusinessTripMgmt and the cache.
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We can unambiguously express the additions of a BasicComponent, an AssemblyContext,
an AllocationContext and an AssemblyConnector by describing these 5 model element
updates. To do so, we name the updated model element (e.g. Repository.components),
its old value (e.g. Repository.components = {BusinessTripMgmt, BookingSystem, Pay-
mentSystem }), and its new value (e.g. Repository.components = {BusinessTripMgmt,
BookingSystem, PaymentSystem, Cache })1.

As a result, we can simplify the notion of a change and treat all three types of primitive
model changes the same. To describe a change, we only need to describe how elements are
updated.

B.2. Proof for Design Space Definition

Recall:

TM,D : OM,D → DM,D

with

(v1, ..., v|D|) 7→M(designOptions(d1)← v1, ..., designOptions(d|D|)← v|D|)

Theorem 6.3: The function TM,D is surjective, i.e. every architectural candidate model
can be produced by a vector from OM,D:

∀a ∈ DM,D : ∃v ∈ OM,D : a = M(designOptions(d1)← v1, ...,designOptions(d|D|)← v|D|)

Proof. Let a be a architectural candidate model with respect to a set of DoFI D and an
initial architecture model M . Then by definition

candidateModel(a,M,D)⇒ ∃c1, ..., cn ∈ {c |c ∈ changes(d), d ∈ D} : M
c1◦...◦cn−→ a

Each ci ∈ {c1, ..., cn} is produced by a DoFI d ∈ D. Let us denote the DoFI that produces
ci by di. Let pi denote the primary changed element of di.

Then, we can construct the vector in OM,D as follows:

We start with the vector describing the initial candidate model ia0 = (vp1(M), ..., vp|P |(M)).

Each di has a position ji in the index set J = {1, ..., |D|} that spans OM,D. For a vector
of values z, let z(j ← v) denote that the value at position j is replaces by value v. For a
change c, let Mc denote the result model of c.

We exchange the value of d1’s primary changed element in c1 in ia and produce a new
vector of values ia1. Then, we exchange the value of c2 in ia1 and so forth. Formally, for
each di, we exchange the value in iai−1 to produce the iai := iai−1(j ← vp1(Mc1)).

Then, ian is the vector that represents a.

Note that a DoFI d ∈ D can be used several times in the set of changes that produce
a. For the vector, only the last application of d defines the values of a, as every previous
value assignment to the primary changed elements of d is overwritten.

1While we only listed the components’ names here, the actual value of Repository.components is the set
of model objects describing the components. The complete serialisation of the objects is too long to be
represented here.
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B.3. Candidate Transformation Function T

This section presents the generic transformation T to derive a candidate model from a
candidate vector and an initial model for the DoFI metamodel described in Section 6.3.3.
This Java transformation uses model elements as provided by the Eclipse Modelling Fra-
mework (EMF) (Steinberg et al., 2008), which can be used to read in and manipulate a
serialised EMOF model. The inputs are a model root element model from which all model
elements can be reached, and a candidate vector candidate as described in Section 8.2.2.
Then, the transformation T for Ecore is:

/∗∗
∗ The gener i c t rans format ion method
∗ @param rootElements The i n i t i a l a r c h i t e c t u r e model or the a r c h i t e c t u r e

model o f any o ther candidate .
∗ @param candidate The candidate v ec t o r to app ly .
∗/
public void trans form ( List<EObject> rootElements , Candidate candidate ) {

List<Choice> c h o i c e s = candidate . getChoice ( ) ;

for ( Choice cho i c e : c h o i c e s ) {
// i s cho ice a c t i v e ?
i f ( cho i c e . i s A c t i v e ( ) ) {

DegreeOfFreedom d o f i = cho i c e . getDegreeOfFreedom ( ) ;
DegreeOfFreedom dof = d o f i . getDof ( ) ;

// Store f o r each CED which in s t ance s have been s e l e c t e d
Map<ChangeableElementDescription , Co l l e c t i on<EObject>>

se lectedModelElements = new HashMap<
ChangeableElementDescription , Co l l e c t i on<EObject>>() ;

// s e t primary element
Entity modelElement = d o f i . getPrimaryChanged ( ) ;

EStructura lFeature property = dof . getPrimaryChangeable ( ) .
getChangeable ( ) ;

s e tProper ty ( modelElement , property , cho i c e . getValue ( ) ) ;

L i s t<EObject> modelElementList = new ArrayList<EObject >(1) ;
modelElementList . add ( modelElement ) ;
se lectedModelElements . put ( dof . getPrimaryChangeable ( ) ,

modelElementList ) ;

for ( ChangeableElementDescr ipt ion ced : dof .
getChangeableElementDescr ipt ion ( ) ) {

i f ( ced == dof . getPrimaryChangeable ( ) )
continue ;

Co l l e c t i on<EObject> changeableElements = s e l e c t i o n R u l e ( ced ,
rootElements , se lectedModelElements ) ;

se lectedModelElements . put ( ced , changeableElements ) ;

EStructura lFeature changeableProperty = ced . getChangeable ( ) ;

for ( EObject changeableElement : changeableElements ) {

Object newValue = valueRule ( ced , changeableElement ,
rootElements ) ;

s e tProper ty ( changeableElement , changeableProperty , newValue ) ;

}
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}
}

}

}

This transformation varies the input model and may result in an invalid model, i.e. a model
that only structurally conform to the metamodel, but does not conform to the metamodel
with respect to the static semantics. Thus, the input model has to be copied before if it
is to be preserved.

Currently, for manually determined DoFI, a custom DoF has to be defined as well for
this transformation to handle them. Alternatively, a new type of DoFI could be added
to the DoF metamodel that does not refer to a DoF, but lets the user define and model
the transformation-relevant information directly for the concrete metamodel or system at
hand.

C. Degree of Freedom Definitions for PCM

This section provides the formal definitions of the degrees of freedom identified in Chap-
ter 7 for the PCM and either Robocop or CBML. We use OCL 2.0 (Object Management
Group (OMG), 2006b) for the definitions because the latest version of EMOF (2.0, (Ob-
ject Management Group (OMG), 2009)) refers to UML 2.0 (Object Management Group
(OMG), 2005) and OCL 2.0.

C.1. Component Selection

C.1.1. PCM Definition:

In the PCM, the composition of components to form a system is modelled in the System

model. Components are instantiated in the system using AssemblyContexts. Assembly-

Connectors connect the RequiredRoles and ProvidedRoles of the instantiated compo-
nents. DelegationConnectors connect the outer roles of a composed structure to roles of
the contained components.

To replace a component is used in a System, the AssemblyContext needs to be upda-
ted: The Property AssemblyContext.encapsulatedComponent references the component
to instantiate from the Repository. Additionally, to keep the model consistent, the As-

semblyConnectors need to be updated to refer to the RequiredRoles and ProvidedRoles

of the new component. For all AssemblyConnectors that connect a ProvidedRole of the
replaced component to other components that require this functionality, the property As-

semblyConnector.providedRole needs to be updated. For all AssemblyConnectors that
connect a RequiredRole of the replaced component to other components that provide the
requested functionality, the property AssemblyConnector.requiredRole needs to be up-
dated. If the component instance resides at the border of a composed structure, i.e. if its
roles are directly connected to the outer roles of the composed structure, also the delega-
tion connectors (ProvidedDelegationConnector, RequiredDelegationConnector) need
to be updated analogously to the AssemblyConnectors.

If the new component requires less functionality than the previous component, some As-

semblyConnectors or DelegationConnectors become superfluous and need to be remo-
ved by deleting them from the list of connectors of their parent ComposedStructure.

Thus, the set of properties whose instances can be changed is changeable(g) =
{AssemblyContext.encapsulatedComponent, AssemblyConnector.providedRole,
AssemblyConnector.requiredRole, ComposedStructure.assemblyConnectors,
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ProvidedDelegationConnector.innerProvidedRole, RequiredDelegationConnec-

tor.innerRequiredRole, ComposedStructure.requiredDelegationConnectors}, while
AssemblyContext.encapsulatedComponent is the primary changeable element.

To describe the replacement of one component, all changeable model elements have to
refer to the same place in the architecture, which is expressed by the following selection
rules. First, only components can be exchanged. SubSystems, which may also be refe-
renced by AssemblyContext.encapsulatedComponent, cannot be replaced because the
allocation of the inner components requires additional adjustment. For SubSystems in
the PCM, a separate degree of freedom is defined in Section 7.4.2. Additionally, rules
describe how to get the matching instances that contain the changeable elements As-

semblyConnector.providedRole, AssemblyConnector.requiredRole, ComposedStruc-
ture.assemblyConnectors for the selected AssemblyContext.

Rule selectionRule(AssemblyContext.encapsulatedComponent) to select the components
that might be replaced, which are all components that are reachable from the architecture
model and that are not SubSystems:

context System
def : getReplaceableComponents : Set ( AssemblyContext ) =

s e l f . getAllInnerComponents

context ComposedStructure
de f : getAllInnerComponents : Set ( AssemblyContext ) =

s e l f . assemblyContexts
−>s e l e c t ( c | not c . encapsulatedComponents . oc l I sKindOf ( SubSystem ) )

−>union ( s e l f . assemblyContexts . encapsulatedComponents
−>s e l e c t ( c | c . oc l IsKindOf ( ComposedStructure ) )

. oclAsType (Set ( ComposedStructure ) ) . getAllInnerComponents )

Rule selectionRule(AssemblyConnector.providedRole) to select the AssemblyCon-

nectors where AssemblyConnector.providedRole needs to be updated, given
the AssemblyContext self that contains the chosen instance of AssemblyCon-

text.encapsulatedComponent:

context AssemblyContext
de f : getConnectorsToUpdateProvidedSide : Set ( AssemblyConnector ) =

s e l f . parentSt ructure . assemblyConnectors
−>s e l e c t ( conn | conn . providingAssemblyContext = s e l f )

Rule selectionRule(AssemblyConnector.requiredRole) to select the AssemblyCon-

nectors where AssemblyConnector.requiredRole needs to be updated, given
the AssemblyContext self that contains the chosen instance of AssemblyCon-

text.encapsulatedComponent:

context AssemblyContext
de f : getConnectorsToUpdateRequiredSide : Set ( AssemblyConnector ) =

s e l f . parentSt ructure . assemblyConnectors
−>s e l e c t ( conn | conn . requir ingAssemblyContext = s e l f )

Rule selectionRule(ComposedStructure.assemblyConnectors) to select the Composed-

Structure where ComposedStructure.assemblyConnectors may have to be updated,
given the AssemblyContext self that contains the chosen instance of AssemblyCon-

text.encapsulatedComponent:

context AssemblyContext
de f : getComposedStructureToUpdateConnectors : ComposedStructure =

s e l f . parentSt ructure

The value rules are the following: The valueRule(AssemblyContext.encapsulatedComponent)
is:
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context AssemblyContext
de f : getCompatibleComponents : Set ( RepositoryComponent ) =

r e p o s i t o r i e s . components−>s e l e c t ( c |
c . o f f e r s A l l I n t e r f a c e s ( s e l f . a l lNeededProv ided In t e r f a c e s ( ) )
&& c . r equ i r e sAtMos t In t e r f a c e s ( s e l f . a l l A l l o w e d R e q u i r e d I n t e r f a c e s ( ) ) )

−− ge t a l l I n t e r f a c e s t ha t t h i s AssemblyContext needs to prov ide
−− ( because the connected components r e qu i r e them)
de f : a l lNeededProv ided In t e r f a c e s : Set ( I n t e r f a c e ) =

s e l f . parentSt ructure . assemblyConnectors−>s e l e c t ( a |
a . providingAssemblyContext = s e l f ) . r equ i r edRo le . r e q u i r e d I n t e r f a c e

−− ge t a l l I n t e r f a c e s t ha t t h i s AssemblyContext can r e qu i r e
−− ( because the connected components prov ide them)
de f : a l l A l l ow e d R e q u i r e d I n t e r f a c e s : Set ( I n t e r f a c e ) =

s e l f . parentSt ructure . assemblyConnectors−>s e l e c t ( a |
a . requir ingAssemblyContext = s e l f ) . providedRole . p r o v i d e d I n t e r f a c e

context RepositoryComponent
−− check whether the component p rov ide s a l l the passed I n t e r f a c e s
de f : o f f e r s A l l I n t e r f a c e s ( i : Set ( I n t e r f a c e ) ) : Boolean =

i−>f o r A l l ( i : I n t e r f a c e | s e l f . prov idedRoles . p r o v i d e d I n t e r f a c e
−>e x i s t s ( p i | pi . isEqualOrDescendantOf ( i ) ) )

−− check whether the component r e qu i r e s at most the passed I n t e r f a c e s
de f : r equ i r e sAtMos t In t e r f a c e s ( i : Set ( I n t e r f a c e ) ) : Boolean =

s e l f . r equ i r edRo l e s . r e q u i r e d I n t e r f a c e s−> f o r a l l ( r i |
i−>e x i s t s ( i | i . isEqualOrDescendantOf ( r i ) ) )

context I n t e r f a c e
−− check whether t h i s i n t e r f a c e can r ep l a c e the parameter i n t e r f a c e
−− because they are the same or t h i s i n t e r f a c e i s a descendant o f
−− the parameter i n t e r f a c e .
de f : isEqualOrDescendantOf ( i : I n t e r f a c e ) : Boolean =

( s e l f = i or s e l f . p a r e n t I n t e r f a c e s . isEqualOrDescendantOf ( i ) )

valueRule(AssemblyConnector.providedRole) is:

context AssemblyConnector
de f : getProvidedRoleForNewComponent : ProvidedRole =
−− any prov ided r o l e o f the new encapsu la t ed component t ha t o f f e r s
−− the i n t e r f a c e r e qu i r ed by the AssemblyContext on the o ther s i d e
s e l f . providingAssemblyContext . encapsulatedComponent . prov idedRoles
−>s e l e c t ( pr | pr . p r o v i d e d I n t e r f a c e

. isEqualOrDescendantOf ( s e l f . r equ i r edRo le . r e q u i r e d I n t e r f a c e ) )
−>asOrderedSet()−> s e l e c t ( r | r = f i r s t ( ) )

Remark: The statement ->select(r | r = first()) is used here and in the following
to get a result set with one element, if available, or an empty result set. The value rule for
ProvidedDelegationConnector.innerProvidedRole is almost identical, only that the
new encapsulated component is reached by “self.assemblyContext”.

valueRule(AssemblyConnector.requiredRole) is:

context AssemblyConnector
−− a requ i r ed r o l e o f the new encapsu la t ed component t ha t o f f e r s
−− the i n t e r f a c e r e qu i r ed by the AssemblyContext on the o ther s i d e
−− so t ha t each requ i r ed Roles i s on ly bound once .
de f : getMatchingRequiredRole : Set ( RequiredRole )
s e l f . requir ingAssemblyContext . encapsulatedComponent . r equ i r edRo l e s
−>s e l e c t ( r r | s e l f . providedRole . p r o v i d e d I n t e r f a c e

. isEqualOrDescendantOf ( r r . r e q u i r e d I n t e r f a c e )
and
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−− t h e r e i s not a l r eady another AssemblyConnector t ha t
−− connects t h i s r o l e in t h i s AssemblyContext
not s e l f . parentSt ructure . assemblyConnector−>e x i s t s ( c |

c . requir ingAssemblyContext = s e l f . requir ingAssemblyContext
and c . r equ i r edRo le = r r )

)−>asSequence()−> s e l e c t ( r | r = f i r s t ( ) )

Here, it is assumed that the value rules are executed sequentially, and not at the same time.
For example, if there are three AssemblyConnectors that connect three RequiredRoles

of a component to be replaced and the three roles refer to the same Interface, the
first execution of the above rule for the first AssemblyConnector selects any of these
roles, the second execution for the second AssemblyConnector selects one of the two
remaining roles, and the third execution for the third AssemblyConnector selects the
last RequiredRole. Thus, all three roles are bound: Because the roles refer to the same
interface, it does not matter which one is bound in which AssemblyConnector. The
value rule for RequiredDelegationConnector.innerRequiredRole is almost identical,
only that the new encapsulated component is reached by “self.assemblyContext”.

The AssemblyConnectors and RequiredDelegationConnectors that cannot be bound
by the above rule, i.e. where the value rule results in an empty set (because either the
respective Interface is not required any more, or because the Interface is required fewer
times) have to be deleted. The ComposedStructure may only contain AssemblyConnec-

tors with complete provided role links and required role links, as selected by the following
valueRule(ComposedStructure.assemblyConnectors):

context ComposedStructure
s e l f . assemblyConnectors−>s e l e c t ( conn |

conn . getMatchingRequiredRole()−>notEmpty ( ) )

The value rule to delete superfluous RequiredDelegationConnectors is al-
most identical, only that the list of conectors to delete from is reached by
“self.requiredDelegationConnectors”.

Component selection in the PCM may open up new component selection degree of freedom
instances, if the new component is a composite component that has inner components that
can be replaced, i.e. that introduces new AssemblyContexts to consider. Thus, the added
element is AssemblyContext. No additional interaction constraints are required.

Note that we assume in this example that components that provide the same functionality
also require the same resources. For example, a storage component requires hard drive,
while most business-logic components only need a CPU. If resource requirements were to
be considered in more detail and if component allocation (cf. Section 7.3) is considered
as a degree of freedom, an interaction constraint would have to be added which checks
whether the server teh component instance is currently deployed to also offers the required
resources.

C.1.2. ROBOCOP Definition:

The component selection in ROBOCOP is realised with the Binding in the Scenario-

Model. To exchange a component, all Bindings that bind the ServiceInstances of
the component needs to be updated. Thus, the changeable metamodel elements are
changeable(g) = {Binding.from, Binding.to, Binding.fromPort, Binding.toPort}.
The primary changeable elements is Binding.from. When a new ServiceInstance is
selected there, all other properties have to be updated accordingly to refer to the Ports of
the new ServiceInstance, thus the selection rules are similar to the PCM case.
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For a component in the initial system, alternative components are Components that offer
the same Interfaces via their Services and Ports. Thus, the value rules are similar to
the PCM.

No interaction constraints are required. In contrast to the PCM, no new DoF are opened
up because ROBOCOP does not support composite components (H. Koziolek, 2010).

C.2. Non-functional Component Configuration Parameters

C.2.1. PCM Definition:

Component configuration parameters are modelled on the type level by the Implemen-

tationComponentType.componentParameterUsage property, which references a Varia-

bleUsage containing the specification of a parameter as a PCMRandomVariable, and pos-
sibly a default value. On the instance level, component configuration parameter values
can be redefined by attaching a VariableUsage to an AssemblyContext as AssemblyCon-
text.configParameterUsages. Thus, the metamodel element to be updated in a degree
of freedom is the AssemblyContext.configParameterUsages property:

changeable(g) = {AssemblyContext.configParameterUsages}

The valid values depend on the concrete component that is parametrised, thus they can
only be determined on the instance level and need to be annotated to the component
instance. No interaction constraints are required.

The PCM does not distinguish yet between non-functional component configuration pa-
rameters and other component configuration parameters that affect functionality. Thus,
the information whether a component configuration parameter has no functional effect has
to be annotated manually. Alternatively, all component configuration parameters can be
assumed to have no functional effect.

C.2.2. CBML Definition:

In CBML, components can be parametrised using the Parameter metamodel element.
To change the value of a component parameter, the Parameter.value is updated, so
changeable(g) = {Parameter.value}. The possible values have to be defined manually
for a system at hand. No selection rules and interaction constraints are needed and no
elements are added.

C.3. Passive Resources Multiplicity

C.3.1. PCM Definition:

In the PCM, PassiveResources are entities referenced by BasicComponents. The capacity
of a PassiveResource is determined by the property PassiveResource.capacity, which
is a PCMRandomVariable. Only integer values are allowed. Thus, the set of properties
whose instances can be changed is changeable(g) = {PassiveResource.capacity} and
the value range is R = N+. R can be restricted on the instance level. No interaction
constraints are required.

C.3.2. CBML Definition:

For each Task within a component (i.e. within an LQNSubmodel), the allowed number of
parallel executions may be specified in the property Task.multiplicity. Thus, every
Task within a component can be interpreted to be passive resource. If the multiplicity is
larger than 1 in the initial model, we can instantiate the degree.

The value range is R = N+. No additional information is needed.
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C.4. Priorities

C.4.1. CBML Definition:

Because priorities are not supported in the PCM metamodel and the PCM analyses, we
describe this degree of freedom only for CBML.

For each Task within a component (i.e. within an LQNSubmodel), the priority can be
specified in the property Task.priority as a non-negative integer priority value with a
priority of zero being the highest. Thus, for every Task within a component, a separate
degree can be instantiated.

Thus, the metamodel property whose instances can be changed is changeable(g) =
{Task.priority} with a value range of R = N0. No interaction constraints are requi-
red.

Additionally, processors can be configured to use preemptive scheduling (i.e. as soon as a
task with higher priority arrives, other executing task with lower priority are stopped and
put back in the queue) or to use head of queue scheduling (i.e. the queue is reordered based
on incoming request priorities, but tasks that have started execution are not preempted),
which could be instantiated as an additional, CBML-specific degree of freedom.

C.5. Allocation

C.5.1. PCM Definition:

AllocationContexts map component instances (i.e. AssemblyContexts) to servers
(i.e. ResourceContainers). The metamodel property responsible for the mapping is
changeable(g) = {AllocationContext.resourceContainer}.

Thus, to determine the value rules, we need to determine the servers that provide the
required resources. The required resource types of a component can be determined by
collecting the resource types (ProcessingResourceType in the PCM) of all internal resource
demands.

Value Rules: The valueRule(AllocationContext.resourceContainer) to select the avai-
lable servers C may be allocated to is shown below. It is checked whether the required
resources are provided by the candidate server using the helper method getResourceTypes

defined on a component.

context Al locat ionContext
de f : g e t P o s s i b l e S e r v e r s : Set ( ResourceContainer ) =
s e l f . a l l o c a t i o n . targetResourceEnvironment . resourceConta iner−>s e l e c t ( rc |
−− has the r equ i r ed re source s
s e l f . assemblyContext . encapsulatedComponent . getResourceTypes
−>f o r A l l ( r t | rc . a c t i v e R e s o u r c e S p e c i f i c a t i o n s −> i n c l u d e s ( r t ) )

)

The following OCL queries are helper methods to determine the resource types required by
a component. If a component is a BasicComponent, the required resources can be queried
from the component’s RDSEFF (by calling the helper method getResourceTypes defined
for ResourceDemandingBehaviours). If a component is a composed structure, all its child
components are queried recursively.

−− c o l l e c t a l l r e source t ype s used by a Repos i tory component .
−− Main two op t i ons :
−− Component i s a BasicComponent , descend in to behav iour d e s c r i p t i o n
−− Component i s a ComposedStructure , descend in t o par t s
context RepositoryComponent

de f : getResourceTypes : Set ( Process ingResourceType ) =
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i f s e l f . oc l I sKindOf ( BasicComponent )
then

s e l f . oclAsType ( BasicComponent ) . s e r v i c e E f f e c t S p e c i f i c a t i o n s
−>s e l e c t ( r d s e f f | r d s e f f . oc l I sKindOf ( ResourceDemandingSEFF ) )

. getResourceTypes ( )

−− an RDSEFF can conta in In t e rna lBehav iour s t ha t can be c a l l e d in
−− mu l t i p l e p l a c e s o f t h i s SEFF
−>union ( s e l f . oclAsType ( BasicComponent ) . s e r v i c e E f f e c t S p e c i f i c a t i o n s
−>s e l e c t ( r d s e f f | r d s e f f . oc l I sKindOf ( ResourceDemandingSEFF ) )

. resourceDemandingInternalBehaviours . getResourceTypes ( ) )

else i f s e l f . oc l I sKindOf ( ComposedProvidingRequiringEntity )
−− both Subystems and ComposedComponents
then
−− r e c u r s i v e l y c a l l t h i s method on a l l inner RepositoryComponents
s e l f . oclAsType ( ComposedProvidingRequiringEntity ) . assemblyContexts

. encapsulatedComponent . getResourceTypes ( )
else
−− Other component t ype s ( ProvidesComponentType or
−− CompleteComponentType ) t ha t have no resource demands
−− OclVoid i s the OCL nu l l e lement t ha t i s a l s o t r e a t e d as an empty
−− Bag{} (OCL s p e c i f i c a t i o n , p . 140 sec 11 . 2 . 3 )
OclVoid−>asSet ( )

endif
endif

To retrieve the required resource types from an RDSEFF, all actions that may contain
resource demands need to be checked. If an action is a control flow action, such as a
loop or a branch, that contains inner behaviour (e.g. the loop body or the branches), the
following method is called recursively on these inner behaviours.

−− handle a l l the d i f f e r e n t t yp s o f a c t i on s in a RDSEFF tha t have
−− resource demands .
context ResourceDemandingBehaviour

de f : getResourceTypes : Set ( Process ingResourceType ) =
s e l f . s teps−>s e l e c t ( i c f a |

i c f a . oc l I sKindOf ( Abstract Interna lContro lF lowAct ion ) )
. f l a t t e n ( ) . oclAsType (Set ( Abstract Interna lContro lF lowAct ion ) )

. resourceDemand . requ i redResource
−>union (
−− asynchronous fo rked behav iours
s e l f . s teps−>s e l e c t ( f o rk | f o rk . oc l I sKindOf ( ForkAction ) )

. f l a t t e n ( ) . oclAsType (Set ( Abstract Interna lContro lF lowAct ion ) )
. asynchronousForkedBehaviours . getResourceTypes ( )

)−>union (
−− synchronous fo rked behav iours
s e l f . s teps−>s e l e c t ( f o rk | f o rk . oc l I sKindOf ( ForkAction ) )

. f l a t t e n ( ) . oclAsType (Set ( Abstract Interna lContro lF lowAct ion ) )
. synchron i s ingBehav iours . synchronousForkedBehaviours

. getResourceTypes ( )
)−>union (
−− l oop behav iours
s e l f . s teps−>s e l e c t ( loop | loop . oc l I sKindOf ( AbstractLoopAction ) )

. f l a t t e n ( ) . oclAsType (Set ( AbstractLoopAction ) )
. bodyBehaviour . getResourceTypes ( )

)−>union (
−− branched behav iours
s e l f . s teps−>s e l e c t ( branch | branch . oc l IsKindOf ( BranchAction ) )

. f l a t t e n ( ) . oclAsType (Set ( BranchAction ) )
. branches . branchBehaviour . getResourceTypes ( )

)−>union (
−− recovery b l o c k s
s e l f . s teps−>s e l e c t ( r e cove r |
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r e cove r . oc l IsKindOf ( RecoveryBlockAction ) )
. f l a t t e n ( ) . oclAsType (Set ( RecoveryBlockAction ) )

. r e cove ryB locka l t e rna t i v eBehav iour s . getResourceTypes ( )
)

As interaction constraints, the constraint isConnectedToAllSendersAndReceivers of Al-
locationContexts (see appendix A.6) additionally restricts the design option sets of com-
binations of Allocation DoF. Models generated by instances of this DoF may violate this
constraint. If the component selection also considered components requiring different re-
sources, another interaction constraint would be added that would ensure that all required
resources are provided by a server.

C.5.2. ROBOCOP Definition:

The allocation of components to servers in ROBOCOP uses the Mapping element. Here,
the property Mapping.toServer can be varied to allocate the referenced Component to
another ProcessingNode. So, changeable(g) = {Mapping.toServer}.

Components can be allocated to servers that offer the required resource types. CPU and
memory are the only resource types in ROBOCOP. Thus, we statically check that (1) if
the component requires CPU, the server offers a CPU resource and (2) if the component
requires memory, whether the server offers a memory resource. Thus, in OCL, the following
valueRule(Mapping.toServer) describes the allowed servers (c.resources.ior stands for
an implemented operation resource usage of a component c and n.blocks refers to the
hardware resources, called IP blocks, of a server node n cf. Section 2.6.2 and (Bondarev
and Chaudron, 2006)):

context Mapping
de f : g e t P o s s i b l e S e r v e r s : Set ( Process ingNode ) =
s e l f . t oServe r . resEnv . nodes−>s e l e c t ( n |

s e l f . component . r e s o u r c e s . i o r−>e x i s t s ( i o r | i o r . cpu <> OclVoid )
implies n . blocks−>e x i s t s (b | b . isOclTypeOf ( CPUPerfModel ) )

and
s e l f . component . r e s o u r c e s . i o r−>e x i s t s ( i o r | i o r . memory <> OclVoid )

implies n . blocks−>e x i s t s (b | b . isOclTypeOf ( MemoryPerfModel ) )
)

No additional interaction constraints are required and no elements are added.

C.6. Allocation with Replication

C.6.1. PCM Definition:

Currently, the PCM only supports the allocation of a component to one server, because
the semantics of a 1:n mapping of AssemblyContexts to AllocationContexts which would
allow component replication on the allocation level have not been defined yet because
several sensible but conflicting semantics exist (e.g. load balancing or replication). Addi-
tional metamodel elements to configure an 1:n mapping and define the semantics would
be required. Thus, this degree of freedom is not supported yet.

To nonetheless illustrate the degree of freedom, let us consider the following small extension
to the PCM with simple semantics, illustrated in Figure C.10: We enable component repli-
cations by allowing several AllocationContexts per AssemblyContext. Let the semantics
be that the load is balanced to the multiple AllocationContexts of one AssemblyContext
and that for every request to the replicated component instance, the AllocationContext

to load a server is chosen randomly.
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Figure C.10.: Extended PCM to Enable Replication of Components

Then, the metamodel property responsible for the mapping is again

changeable(g) = {AllocationContext.resourceContainer}

The valueRule(AllocationContext.resourceContainer) builds the power set of available
servers by using the OCL definitions of the simple “allocation” degree. The value rule uses
all queries of the simple “allocation” degree.

context Al locat ionContext
de f : getPoss ib leServersAsPower : Set ( ResourceContainer ) =

s e l f . powerSet ( s e l f . g e t P o s s i b l e S e r v e r s )−>exc lud ing (Set{})

To calculate the power set, we implemented the following recursive algorithm in OCL
based on the recursive algorithm presented in (Cameron, 1994, p.40). The power set for
a set {1, ..., n} is the empty set of ”n = 0 and is determined with the following recursive
algorithm for n > 0: P({1, ..., n}) =

• generate the power set P({1, ..., n− 1}) and store the result in the set P

• make a new copy of each subset in P resulting in the set P ′

• add the element n to every subset in P ′

• return the set of all sets created P ∪ P ′.

In OCL, this is implemented in the following query:

context Al locat ionContext
de f : powerSet ( input : Set ( ResourceContainer ) )

: Set ( Set ( ResourceContainer ) ) =
i f input−>isEmpty
then

l e t i n i t i a l P o w e r S e t : Set ( Set ( ) ) = Set{} in
i n i t i a lPowerSe t−>i n c lude (Set{})

else
l e t element : ResourceContainer = input−>asOrderedSet−> f i r s t in
powerSet ( input−>exc lud ing ( element ) )
−>union ( addElementToEachSet ( powerSet ( input−>exc lud ing ( element ) ) ) )

endif

de f : addElementToEachSet ( powerSet : Set ( Set ( ResourceContainer ) ) ,
e lement : ResourceContainer ) : Set ( Set ( ResourceContainer ) ) =

powerSet−>i t e r a t e ( conta inedSet : Set ( ResourceContainer ) ,
r e s u l t : Set ( Set ( ResourceContainer ) ) = Set{}

r e s u l t−>i n c lude ( containedSet−>union ( element ) )
)
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Additionally, the interaction constraint isConnectedToAllSendersAndReceivers defined
in Section 7.3.1 needs to be fulfilled for all selected servers in the result model after having
applied all changes.

C.6.2. Other Metamodel Definition:

Definition in other CBA models: Allocation with replication is neither supported in
CBML nor in ROBOCOP. Thus, we do not give an example here.

C.7. Server Replication

C.7.1. PCM Definition:

This degree of freedom is currently not supported in the PCM, because no metamodel
element describes the multiplicity of servers. To nonetheless illustrate the degree of free-
dom, let us consider to add such a multiplicity element to a PCM resource container as
an extension: We model the multiplicity as the metamodel element ResourceContai-

ner.multiplicity of type integer. Let the semantics be that the load is balanced to
the multiple server instances and that for every request to the replicated component ins-
tance, the server to load is chosen randomly. Then, the set of metamodel properties whose
instances are changed is changeable(g) = {ResourceContainer.multiplicity}.

The value range of ResourceContainer.multiplicity is any integer larger than zero on
the metamodel level: R = N+. This set has to be restricted on the model level to account
for system-specific restrictions here: There is always a maximum number of servers allowed
for a given setting. No interaction constraints are required.

C.7.2. CBML Definition:

Each Processor in CBML can be assigned a multiplicity, which corresponds to the
server replication described in this degree. The multiplicity is described with the pro-
pertyProcessor.replication, which can take any positive integer value. Thus, for every
Processor in the assembly model (the main LQNModel), a separate degree can be instan-
tiated. For the Processors inside components, the degree cannot be instantiated, because
these processors will be mapped to Processor in the assembly model when transforming
the model to LQNs.

Thus, changeable(g) = {Processor.replication}. The selection rule selects instances of
Processor from the main LQNModel only:

context LQNModel
de f : g e t r e p l i c a t a b l e S e r v e r s : Set ( Proces sor ) =

s e l f . p r o c e s s o r s

The value range is R = N+. No interaction constraints are required and no elements are
added.

C.8. Resource Selection

C.8.1. PCM Definition:

Resources are contained in servers, i.e., ResourceContainers. A ResourceContainer may
contain one or several ProcessingResourceSpecifications, referred to by the property Re-

sourceContainer.activeResourceSpecifications.

ProcessingResourceSpecification are not first class entities in the PCM; they are contained
in a server and do not have their own identifier. Thus, they are considered a data type here,
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and the primary changeable element is ResourceContainer.activeResourceSpecifications. A
concrete ProcessingResourceSpecification to be changed is identified by its ResourceType
(cf. discussion in Section 6.3.3). Then, when appliying a change, the template Processin-
gResourceSpecification can be copied from the ResourceRepository to the ResourceCon-
tainer.activeResourceSpecification list.

ProcessingResourceSpecification can be annotated with costs in the PCM costs model. A
cost model element FixedProcessingResourceCost defines the cost of ProcessingResourceS-
pecifications in the ResourceEnvironment and in the ResourceRepository. If no costs are
defined for a ProcessingResourceSpecification, it is assumed to be free. When a Proces-
singResourceSpecification is replaced by a copy of another template ProcessingResourceS-
pecification, its costs need to updated as well: The FixedProcessingResourceCost of the
template ProcessingResourceSpecification needs to be copied and the old FixedProcessin-
gResourceCost needs to be removed. Thus, CostModel.cost is a changeable element. Its
value can be derived from the primary change.

Together, we get changeable(g) = {ResourceContainer.activeResourceSpecifications,
CostModel.cost}.

The available resources to use are located in a ResourceDescriptionRepository mo-
del. An available resource is described by a ResourceDescription, which combines the
ProcessingRateSpecification information and the costs of the resource as FixedPro-

cessingResourceCost (cf. Figure A.8 in Section A.5).

When changing a resource along this degree of freedom, the resource instances in the
repository cannot be referenced directly in the system, because one instance of Proces-

singRateSpecification can only be contained in one server (or resource description) at
a time due to the containment relationship. Thus, the ProcessingRateSpecifications

need to be copied when assigned to servers. This is similar to the handling of primitive
data types, which are also not referenced, but newly instantiated.

A second particularity of the resource degree is that the ResourceContai-

ner.activeResourceSpecifications property contains one ProcessingRateSpeci-

fication per used resource type and that the single specifications are chan-
ged independently. This means that for each instance of ResourceContai-

ner.activeResourceSpecifications, there may be several degree of freedom instances,
one for each resource type in the set of ProcessingRateSpecification (this number is
equal to the number of ProcessingRateSpecifications in the list, as only one Proces-

singRateSpecification per resource type is allowed in the PCM).

Let the variable resourceRepository denote the available resource repository in the fol-
lowing OCL queries. For simplicity, we assume one resource repository in the following.
The repository could be split into several resource repository models as well. One Pro-

cessingResourceSpecification is chosen to be varied. Then, the cost of the resource
to vary with the resource is selected with the following selectionRule(CostModel.cost),
assuming that the variable costModel allows to navigate to the cost model.

−− s e l e c t the r i g h t co s t e lement to change wi th t h i s
−− Proce s s ingResourceSpec i f i c a t i on
context P r o c e s s i n g R e s o u r c e S p e c i f i c a t i o n

costModel . cost−>s e l e c t ( c | c . oc l I sKindOf ( FixedProcess ingResourceCost ) and
c . oclAsType ( FixedProcess ingResourceCost )

. p r o c e s s i n g r e s o u r c e s p e c i f i c a t i o n = s e l f )

Then, assuming that a software architect has specified the available resources in the re-
source repository, the valueRule(ResourceContainer.activeResourceSpecifications)
is:
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Figure C.11.: Resource Repository for ROBOCOP

Rule to select the available ProcessingResourceSpecification from the resource repository:

−− s e l e c t a v a i l a b l e o ther Proce s s ingResourceSpec i f i c a t i on
context P r o c e s s i n g R e s o u r c e S p e c i f i c a t i o n

re sourceRepos i to ry . ava i l ab l eProce s s ingResour c e s−>s e l e c t ( rd |
rd . p r o c e s s i n g R e s o u r c e S p e c i f i c a t i o n . r e s o u r c e s p e c i f i c a t i o n

= s e l f . r e s o u r c e s p e c i f i c a t i o n )

As described above, the ProcessingResourceSpecifications have no identity and are
contained in their server, thus, they need to be copied here like primitive data types.

The new value of the cost element is determined by valueRule(CostModel.cost). In the
value rule, we refer to the changed instance of ProcessingResourceSpecifications in
the resource repository by the variable prs:

context CostModel
s e l f . cost−>s e l e c t ( c | c . oc l IsKindOf ( FixedProcess ingResourceCost ) and

c . oclAsType ( FixedProcess ingResourceCost )
. p r o c e s s i n g r e s o u r c e s p e c i f i c a t i o n = prs )

Again, this selected cost element has to be copied and is used to replace the cost element
selected above in the cost model.

No interaction constraints and added elements are required.

C.8.2. ROBOCOP Definition:

In ROBOCOP, the properties of resource can be varied by defining alternative HWIP-

BlockPerfModels, which can be CPU, memory, or bus models. Similarly to the PCM, an
additional resource repository is required for this degree to define the possible available
resources. Figure C.11 shows the resource repository.

Then, any resource used in the system (i.e. referenced by a Mapping) can be varied. The
metamodel element to change is changeable(g) = {ProcessingNode.blocks}. Similarly to
the PCM, HW IP block performance models in ProcessingNode.blocks can be replaced
by copies of the blocks from the resource repository.

The allowed HWIPBlockPerfModels to be copied to ProcessingNode.blocks are selected
by the following value rule valueRule(ProcessingNode.blocks), which is executed in the
context of the HWIPBlockPerfModels to be replaced. The value rule selects all HWIP-

BlockPerfModels that have the same type (i.e. CPU or memory) than the currently used
HWIPBlockPerfModels. In the query, let the variable resourceRepository denote the
available resource repository.

context HWIPBlockPerfModels
r e sourceRepos i to ry . avai lableHardware−>s e l e c t (h |

h . oc l I sKindOf ( s e l f . oclType ) )

No interaction rules are required and no elements are added.
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C.9. Resource Property Change

C.9.1. PCM Definition:

In the PCM, we have included a continuous change of the processing rate as one realisation
of this degree. The cost of a resource can be defined as a function of the processing rate (cf.
Section 2.5.5) and thus are adjusted automatically when changing the processing rate. We
chose to model the MTTF of a server as scaling linearly with the processing rate so that
faster servers are also more reliable, because we assume that the more expensive servers
are more reliable. The opposite interpretation is just as well justified, so that it would be
beneficial to make the relation of MTTF and processing rate configurable in this degree
in future work.

The processing rate of a resource is modelled by the property ProcessingResourceSpe-

cification.processingRate, while the MTTF of a resource is modelled by the property
ProcessingResourceSpecification.MTTF.

Together, we get changeable(g) = {ProcessingResourceSpecification.processingRate,
ProcessingResourceSpecification.MTTF}.

Like in the “Resource Selection Degree”, one ProcessingResourceSpecification is chosen to
be varied. No additional selection rules are required. Any positive value of the data type
of the processing rate specification is allowed, so the value rules return the positive values
of the data type’s domain. This range should be limited for a specific system at hand
because usually, the optimization should not explore arbitrarily fast servers.

To scale the MTTF, we need the initial processing rate and the initial MTTF. Let the
variables initialProcRate and initialMTTF denote these values for this ProcessingResour-
ceSpecification. Then, the value rule for the MTTF (in our current interpretation that the
MTTF scales linearly with the rate) is

−− ge t the va lue f o r the MTTF of t h i s Proce s s ingResourceSpec i f i c a t i on
context P r o c e s s i n g R e s o u r c e S p e c i f i c a t i o n

initialMTTF ∗ s e l f . p roces s ingRate / i n i t i a l P r o c R a t e

No interaction constraints and added elements are needed.

C.9.2. ROBOCOP Definition:

In ROBOCOP, the frequency of CPUs can be varied. It is modelled with the property
frequency of a CPUPerfModel that is defined for a server. Thus, the metamodel element
to change is changeable(g) = {CPUPerfModel.frequency}. The other rules are analogous
to the PCM rules.

C.10. Quality Completion Configuration

C.10.1. PCM Definition:

In the PCM, feature models and feature configuration are used to model completion confi-
guration, as described in Section 2.4.4. To do so, feature models and feature configuration
have been described using EMOF. All valid feature combinations are described by the res-
pective feature model, which may contain constraints among features of different subtrees.

For the combined modelling of all features of a feature tree, the design option set is the
set of all possible feature configurations. Then, the changeable element is the complete
feature configuration, which is references by the root element FeatureConfig.configNode
for the PCM. Thus, changeable(g) = {FeatureConfig.configNode}.
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Figure C.12.: Performance Completions for a Web Server from (Woodside et al., 2002),
Shown as a Use Case Map

For the separate modelling of each feature as a degree of freedom, the choice for each
feature configuration is changed. For optional features, each ConfigNode has a configu-
ration state, which is either selected or not selected. Thus, the changeable element is
changeable(g) = {ConfigNode.configState}. For exclusive-or choices, the configuration
state of all included features have to be considered as one degree of freedom. However,
although only one feature of an exclusive-or can be selected at a time, the current feature
model in the PCM considers the selection of each contained feature separately. Thus, no
primary changeable element can be identified at the moment and a virtual configuration
(cf. Section 6.3.1.8) has to be introduced. At the same time, the model is difficult to use
by human modellers, because they may easily produce invalid models by selecting several
options of an exclusive-or. Here, a more concise metamodel would capture the exclusive-or
choice in a dedicated metamodel element.

For the modelling of feature model subtrees as separate degrees of freedom, the feature
model has to be extended to mark such feature groups of features that belong together.
Then, the degrees of freedom can refer to this feature group model.

C.10.2. CBML Definition:

(Woodside et al., 2002) present an example for a video server system. Here, the system
model in LQN (i.e. in CBML) abstractly models that a web server accesses a database (see
Figure 11.12(a)). However, in the system implementation, the database access is realised
using an object request broker (ORB) and accesses one of two available database server
choices, either an Oracle database or a MySQL database (see Figure 11.12(b), both options
are modelled in the figure). The choice of database server selection and its configuration
can be varied here and explored by the automated improvement.

C.11. Subsystem Selection in the PCM

In addition to the changeable elements of the component selection degree, we additionally
need to change Allocation.allocationContexts. Allocation.allocationContexts is
at the same time the primary changeable element, as there is only one possible value
for the AssemblyContexts and the connectors resulting in a complete valid SubSystem

replacement.

318



C. Degree of Freedom Definitions for PCM 319

Thus, the changeable elements here is changeable(g) =
{Allocation.allocationContexts, AssemblyContext.encapsulatedComponent,
AssemblyConnector.providedRole, AssemblyConnector.requiredRole, Composed-

Structure.assemblyConnectors}.

By adding AllocationContexts, the SubSystem Selection degree may open up new Allo-
cation Degrees. We can instantiate Allocation Degrees for each added AllocationContext,
and deactivate existing Allocation Degrees for the removed Allocation Contexts. Thus,
the values of AllocationContext.resourceContainer of the newly added AllocationContexts
does not have to be defined in the value rules for this degree.

The degree of freedom can be instantiated once per subsystem whose inner com-
ponents are separately allocated. Thus, we create a selection rule that selects
sets of AllocationContexts, one set for each SubSystem that can be replaced. To
simplify identifying the SubSystem to replace, we add it to the selection rule
selectionRule(Allocation.allocationContexts) below and define a new Tuple with the
SubSystem and all its AllocationContexts.

context Al l o c a t i o n
de f : ge tChangeab l eAl locat ionSet s

: Set ( TupleType{ subsystem : AssemblyContext ,
a l l o c a t i o n c o n t e x t s : Set ( Al locat ionContext ) ) =

s e l f . system . getAl l InnerSubsystems−>c o l l e c t ( s |
Tuple {
subsystem : AssemblyContext = s ,
−− the a l l o c a t i o n con t e x t s o f the cu r r en t l y used subsystem
a l l o c a t i o n c o n t e x t s : Set ( Al locat ionContext ) =

s . ge t InnerAl locat i onContext ( s e l f )
})

context ComposedStructure
de f : getAl l InnerSubsystems : Set ( AssemblyContext ) =

s e l f . assemblyContexts
−>s e l e c t ( c | c . encapsulatedComponent . oc l I sKindOf ( SubSystem ) )

−>union ( s e l f . assemblyContexts
−>s e l e c t ( c | c . encapsulatedComponents . oc l I sKindOf ( SubSystem ) )

. oclAsType (Set ( AssemblyContext ) ) . getAl l InnerSubsystems)−> f l a t t e n ( )

context AssemblyContext
de f : ge t InnerAl locat i onContext ( a l l o c a t i o n : A l l o ca t i on ) : Set ( A l l o c a t i on ) =

i f a l l o c a t i o n . a l l o ca t i onContex t s−>i n c l u d e s ( s e l f )
then

a l l o c a t i o n . a l l o ca t i onContex t s−>s e l e c t ( a | a = s e l f )
else
−− otherwise , i f inner i s SubSystem , descend in t o i t r e c u r s i v e l y
i f ( s e l f . encapsulatedComponent . oc l IsKindOf ( SubSystem ) )
then

r e s u l t−>i n c l u d i n g (
s e l f . encapsulatedComponent . oclAsType ( SubSystem ) . assemblyContexts .

. g e t InnerAl locat i onContext ( a l l o c a t i o n )
)

else
−− I f inner i s not a SubSystem , re turn nu l l . This can only happen i f
−− t h i s SubSystem i s not used at a l l in the system , so t ha t no
−− a l l o c a t i o n e x i s t , because otherwise , non−SubSystems have to be
−− a l l o c a t e d by con s t r a i n t .
OclVoid

endif
endif

The remaining selection rules are the same as for the component selection degree, just that
they need to be called on self.subsystem for the chosen result tuple.
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Additionally, the values are defined as follows. Let tuple denote the chosen tuple of the
subsystem to change. The following query reuses the query getCompatibleComponents

defined for AssemblyContexts in Section 7.2.1. As described above, the values of Alloca-
tionContext.resourceContainer of the newly added AllocationContexts do not have to be
defined in the value rules for this degree, because new Allocation Degrees are instantiated
for them.

valueRule(Allocation.allocationContexts) is:

context Al l o c a t i o n
de f : g e t P o s s i b l e A l l o c a t i o n s : Set ( Set ( Al locat ionContext ) ) =

−− determine the a l t e r n a t i v e subsystems , i n c l ud i n g the current one
−− c o l l e c tNe s t e d does not f l a t t e n the r e s u l t
tup l e . subsystem . getAl locat ionContextsForSubSystemAlternat ives ( s e l f , tup l e . a l l o c a t i o n c o n t e x t s )

context SubSystem
def : getAl locat ionContextsForSubSystemAlternat ives ( a l l o c a t i o n : Al locat ion ,

a l l o ca t i onContex tSe t : Set ( Al locat ionContext ) )
: Set ( Set ( Al locat ionContext ) ) =

s e l f . getCompatibleComponents−>s e l e c t ( oc l I sKindOf ( SubSystem ) )
−− s i s an a l t e r n a t i v e subsystem to the changed subsystem
−>c o l l e c t N e s t e d ( s |
−− c r ea t e new Al l o ca t i onCon tex t s f o r a l l b a s i c components in s
s . getAllComponentsToAllocate−>c o l l e c t ( component |
−− t ake the e x i s t i n g a l l o c a t i o n i f the component i s from the i n i t i a l subsystem .
l e t e x i s t i n g A l l o c a t i o n C o n t e x t s : Set ( Al locat ionContext )

= a l l o c a t i o n . a l l o ca t i onContex t s−>s e l e c t ( a | a l l oca t i onContextSe t−>i n c l u d e s ( a ) )
i f ( ex i s t i ngA l l o ca t i onContex t−>s i z e > 0)

then
−− can only be one as every component in a subsystem can
−− only be a l l o c a t e d once
e x i s t i n g A l l o c a t i o n C o n t e x t

else
−− c r ea t e new a l l o c a t i o n con t ex t
Al locat ionContext {

assemblyContext : AssemblyContext = component ;
r e sourceConta ine r : ResourceContainer = OclVoid ;

}
endif

)−>union (
−− a l l A l l o ca t i onCon t ex t s t h a t are not f o r the o ld SubSystem s tay the same
a l l o c a t i o n . a l l o ca t i onContex t s−>s e l e c t ( a | not a l l oca t i onContextSe t−>i n c l u d e s ( a ) ) )

)

context SubSystem
−− g e t s a l l inner components o f the subsystem tha t need to be a l l o c a t e d .
−− Descends in t o inner subsys tems .
de f : getAllComponentsToAllocate : Set ( AssemblyContext ) =

s e l f . assemblyContexts . encapsulatedComponent−>s e l e c t ( c |
c . oc l IsKindOf ( SubSystem ) ) . oclAsType ( SubSystem ) . getAllComponentsToAllocate
−>union ( s e l f . assemblyContexts−>s e l e c t ( a |

not a . encapsulatedComponent . oc l IsKindOf ( SubSystem ) ) )

valueRule(AssemblyContext.encapsulatedComponent) is:

context AssemblyContext
de f : getNewSubSystemValue ( a l l o c a t i o n : A l l o ca t i on ) : SubSystem =

tup l e . subsystem . getCompatibleComponents−>s e l e c t ( s |
s . oc l I sKindOf ( SubSystem ) and
−− i f a l l inner components are a l l o c a t e d , then t h i s i s the r i g h t one
s . getAllComponentsToAllocate−> f o r a l l ( c | a l l o c a t i o n . a l l o c a t i o n C o nt e x t s

. assemblyContexts . encapsulatedComponents−>i n c l u d e s ( c ) ) )
−− only one such Subsystem i s found because each subsystem can only be
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−− used once in the system .

The value rules for the connectors are the same as for the component selection degree.

As the component selection degree, Subsystem selection may open up additional com-
ponent selection degrees of freedom. Additionally, it may open up additional Subsystem
degrees.

The added and removed elements are as follows. These queries can be executed on the
initial architecture model to determine the AllocationContexts that could be added, or
on every other candidate model to determine the AllocationContexts that could be added
relative to it. Added elements:

context Al l o c a t i on
tup l e . subsystem . getAl locat ionContextsForSubSystemAlternat ives ( s e l f ,

tup l e . a l l o c a t i o nC o n t e x t s)−> f l a t t e n ( )
−>r e j e c t ( a | s e l f . a l l o c a t i o n C on t e x t s . i n c l u d e s ( a ) )

Removed elements are all AllocationContexts that are in the set of AllocationContexts to
be varied with an instance of this degree of freedom and at the same time are currently
used in the system:

context Al l o c a t i o n
−− s e l e c t a l l a l l o c a t i o n con t e x t s t ha t a l l o c a t e any content o f the
−− cu r r en t l y used subsystem
s e l f . a l l o ca t i onContex t s−>s e l e c t ( a |

tup l e . subsystem . getAl lAl locatableComponents−>i n c l u d e s ( a . assemblyContext )
)

context SubSystem
−− g e t s a l l inner components o f the subsystem tha t cou ld be a l l o c a t e d ,
−− i n c l ud i n g inner subsystem .
de f : getAl lAl locatableComponents : Set ( AssemblyContext ) =

s e l f . assemblyContexts . encapsulatedComponent−>s e l e c t ( c |
c . oc l IsKindOf ( SubSystem ) ) . oclAsType ( SubSystem ) . getAl lAl locatableComponents
−>union ( s e l f . assemblyContexts )

D. Quality of Service Modelling Language QML

This section introduces the Quality of Service Modelling Language QML (Frølund and
Koistinen, 1998) and presents our extended EMOF model for it. QMl is a language to
express quality of service requirements. The original language has been defined using an
Extended Backus-Naur Form grammar in Frølund and Koistinen (1998). For the use in
our model-based approach, we migrated the language to EMOF. The resulting models are
shown in Figure D.13 to D.16. Our extensions to be able to express objectives are marked
with ?©.

QML is structured in three levels. The first two levels of contract types and contract
define quality metrics. Contract types (Figure D.16) define observations that can be made
for a system as dimensions, for example that the response time of a service call can
be observed. Dimensions can be grouped into categories, which correspond to quality
attributes. Optionally, an order on the dimension can be defined as relation semantics.
While the original QML already allowed to define numeric dimensions, we extended these
and added the possibility to define numeric ranges. For example, POFOD values can only
range between 0 and 1.

QML contracts (Figure D.14) define how a dimension is evaluated as evaluation aspects.
For example, when measuring the response time, it can be defined whether the mean res-
ponse time or other point estimators are considered as the quality metric. Thus, evaluation
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Figure D.13.: QML Contract Type Metamodel with our Extensions (marked ?), from
(Noorshams, 2010) based on (Frølund and Koistinen, 1998)

aspects define the domain V∗qm of a quality metric qm. The order ≤qm of a quality metric
is defined on the contract type level as relation semantics (see above). We extended the
metamodel to be able to distinguish between constraints (i.e. quality requirements, which
additionally define a value to achieve) and objectives (i.e. quality criteria that are to be op-
timized). This distinction is currently made at the contract level, however, in accordance
with our quality terms, in should be made at the profile level.

QML thus modularizes the quality metric definition: If two metrics “mean response time”
and“90% quantile response time”are to be defined, they can both refer to a shared response
time dimension.

QML profiles (Figure D.15 finally bind quality metrics to artefacts in the system, thus
defining quality criteria. To bind the concepts to a concrete CBA metamodel, the Requi-

rements class has to be extended by CBA-metamodel-specific classes, in our case for the
PCM UsageScenarioRequirement and EntryLevelSystemRequirement, which define the
place in the system where the metric is collected. Addtionally, the scenario is defined by
referencing a UsageModel and an Allocation for the PCM.

discuss additions to metamodel: attach a requirement to an EMOF::Element (before, it
was just named entity and referenced by name).

Finally, QML declarations (Figure D.16) define the root elements to create QML models.

E. OCL in EMOF

EMOF does not provide model elements to specify constraints. UML (and so CMOF) have
a specific class Constraint to model such (Object Management Group (OMG), 2006d, p.40
Sec.9.6). Thus, we assume that a constraint is modelled as an EMOF::Operation where
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Figure D.14.: QML Contract Metamodel with our Extensions (marked ?), from (Noor-
shams, 2010) based on (Frølund and Koistinen, 1998)
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Figure D.15.: QML Profile Metamodel with our Extensions (marked ?), from (Noorshams,
2010) based on (Frølund and Koistinen, 1998)

Figure D.16.: QML Declaration Metamodel, from (Noorshams, 2010) based on (Frølund
and Koistinen, 1998)
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the OCL rule is written as an annotation using EMOF::Tag. The name is fixed to be OCL,
the value contains the OCL query including one or several context statement (several for
the helper methods) as defined by the grammar rule 12.12.1 packageDeclarationCS in the
OCL specification (Object Management Group (OMG), 2006b, p.167). The first context
statement is the main statement, the others are used for helper OCL statements (cf. OCL
queries for the Allocation Degree in Section 7.3.1, for example).

Example: The value of the tag for the value rule
valueRule(AllocationContext.resourceContainer) to select the available servers
(from the Allocation Degree in Section 7.3.1) is the following String:

context Al locat ionContext
de f : g e t P o s s i b l e S e r v e r s : Set ( ResourceContainer ) =
s e l f . a l l o c a t i o n . targetResourceEnvironment . resourceConta iner−>s e l e c t ( rc |
−− has the r equ i r ed re source s
s e l f . assemblyContext . encapsulatedComponent . getResourceTypes
−>f o r A l l ( r t | rc . a c t i v e R e s o u r c e S p e c i f i c a t i o n s −> i n c l u d e s ( r t ) )

)

−− c o l l e c t a l l r e source t ype s used by a Repos i tory component .
−− Main two op t i ons :
−− Component i s a BasicComponent , descend in to behav iour d e s c r i p t i o n
−− Component i s a ComposedStructure , descend in t o par t s
context RepositoryComponent

de f : getResourceTypes : Set ( Process ingResourceType ) =
i f s e l f . oc l I sKindOf ( BasicComponent )
then

s e l f . oclAsType ( BasicComponent ) . s e r v i c e E f f e c t S p e c i f i c a t i o n s
−>s e l e c t ( r d s e f f | r d s e f f . oc l I sKindOf ( ResourceDemandingSEFF ) )

. getResourceTypes ( )

−− an RDSEFF can conta in In t e rna lBehav iour s t ha t can be c a l l e d in
−− mu l t i p l e p l a c e s o f t h i s SEFF
−>union ( s e l f . oclAsType ( BasicComponent ) . s e r v i c e E f f e c t S p e c i f i c a t i o n s
−>s e l e c t ( r d s e f f | r d s e f f . oc l I sKindOf ( ResourceDemandingSEFF ) )

. resourceDemandingInternalBehaviours . getResourceTypes ( ) )

else i f s e l f . oc l I sKindOf ( ComposedProvidingRequiringEntity )
−− both Subystems and ComposedComponents
then
−− r e c u r s i v e l y c a l l t h i s method on a l l inner RepositoryComponents
s e l f . oclAsType ( ComposedProvidingRequiringEntity ) . assemblyContexts

. encapsulatedComponent . getResourceTypes ( )
else
−− Other component t ype s ( ProvidesComponentType or
−− CompleteComponentType ) t ha t have no resource demands
−− OclVoid i s the OCL nu l l e lement t ha t i s a l s o t r e a t e d as an empty
−− Bag{} (OCL s p e c i f i c a t i o n , p . 140 sec 11 . 2 . 3 )
OclVoid−>asSet ( )

endif
endif

−− handle a l l the d i f f e r e n t t yp s o f a c t i on s in a RDSEFF tha t have
−− resource demands .
context ResourceDemandingBehaviour

de f : getResourceTypes : Set ( Process ingResourceType ) =
s e l f . s teps−>s e l e c t ( i c f a |

i c f a . oc l I sKindOf ( Abstract Interna lContro lF lowAct ion ) )
. f l a t t e n ( ) . oclAsType (Set ( Abstract Interna lContro lF lowAct ion ) )

. resourceDemand . requ i redResource
−>union (
−− asynchronous fo rked behav iours
s e l f . s teps−>s e l e c t ( f o rk | f o rk . oc l I sKindOf ( ForkAction ) )
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. f l a t t e n ( ) . oclAsType (Set ( Abstract Interna lContro lF lowAct ion ) )
. asynchronousForkedBehaviours . getResourceTypes ( )

)−>union (
−− synchronous fo rked behav iours
s e l f . s teps−>s e l e c t ( f o rk | f o rk . oc l I sKindOf ( ForkAction ) )

. f l a t t e n ( ) . oclAsType (Set ( Abstract Interna lContro lF lowAct ion ) )
. synchron i s ingBehav iours . synchronousForkedBehaviours

. getResourceTypes ( )
)−>union (
−− l oop behav iours
s e l f . s teps−>s e l e c t ( loop | loop . oc l I sKindOf ( AbstractLoopAction ) )

. f l a t t e n ( ) . oclAsType (Set ( AbstractLoopAction ) )
. bodyBehaviour . getResourceTypes ( )

)−>union (
−− branched behav iours
s e l f . s teps−>s e l e c t ( branch | branch . oc l IsKindOf ( BranchAction ) )

. f l a t t e n ( ) . oclAsType (Set ( BranchAction ) )
. branches . branchBehaviour . getResourceTypes ( )

)−>union (
−− recovery b l o c k s
s e l f . s teps−>s e l e c t ( r e cove r |

r e cove r . oc l IsKindOf ( RecoveryBlockAction ) )
. f l a t t e n ( ) . oclAsType (Set ( RecoveryBlockAction ) )

. r e cove ryB locka l t e rna t i v eBehav iour s . getResourceTypes ( )
)

The parameters of the operation are ignored, so this matches EMF model objects where
the parameters are used to pass the diagnostic chain to evaluate OCL statements.

F. Notational Conventions

For logic, I use the following convention to avoid the use of parentheses:

• ¬ is evaluated first

• ∧ is evaluated next

• ∨ is evaluated next

• Quantifiers are evaluated next

• → is evaluated last.

Thus, ∀x : A∧B is equivalent to ∀x : (A∧B), whereas (∀x : A)∧B needs to be bracketed
explicitly.

]

A ⊂ B means A ( B. If A = B is allowed, I write A ⊆ B. This notation fits the common
notation of < and ≤.
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M(p← v), see Change value of property
T , see Candidate transformation function
Φ, see Candidate evaluation function
Φ∗, see Quality evaluation function
ΦQ, see Multi-objective candidate evalua-

tion function
M J MM, see Conforms-to relationship
M C MM, see Structurally-conforms-to

relationship
changeable(ct), see Changeable element
ct, see Change Type
designOptions(d), see Design option set
hvolume(P,z), see Hyper-volume
primaryChangeable(ct), see Primary

changeable element
primaryChanged(d), see Primary changed

model element
updated(c), see Change
e instanceOf mc, see Instance-of relation-

ship for model elements
≤qm, see Order on a quality metric do-

main
C∗, see Coverage indicator
D, see Unconstrained Design Space
F , see Feasible Design Space
O, see Decision space
S∗, see Hyper-volume indicator
Tq, see Time savings metric
≺, see Pareto dominance
�, see Weak Pareto dominance
c1 ◦ c2, see Sequence of changes
d, see Degree of Freedom Instance
e ∈M , see Model element
g, see Degree of Freedom
q, see Quality criterion
qm, see Quality metric
x, see Candidate vector or decision vector
zF,Q,R, see Reference point for hyper-

volume indicator
m(q), see Quality metric

Allocation, 145
Architectural Candidate Model, 130

Architecture Trade-off Analysis Method,
20

ATAM, see Architecture Trade-off Ana-
lysis Method

Business quality attributes, 20

Candidate evaluation, 175

Candidate evaluation function, 164

Candidate Model, see Architectural Can-
didate Model

Candidate representation, 173

Candidate reproduction, 178

Candidate selection, 179

Candidate transformation function, 131

Candidate vector, 130

CBA, see Component-based software ar-
chitecture

CBA model, see Component-based archi-
tecture model

CBAM, see Costs Benefit Analysis Me-
thod

CBML, see Component-Based Modeling
Language

Change, 107

Change with conforming models, 107

Valid Change, 108

Change Group, 113

Change Type, 108

Change Type that Affects a Quality
Attribute, 109

Functionally Equivalent Change
Type, 109

Indivisible Change Type, 111

Change value of property, 120

Changeable element, 108, 117

Component, see Software component

Component allocation, see Allocation

Component assembly, 15

Component composition, 15

Component selection, see Selection of
components
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Component-based architecture, see
Component-based software
architecture

Component-based architecture model, 16
Component-Based Modeling Language,

40
Component-based software architecture,

3, 15
Composed structure, 15
Conforms-to relationship, 25
Costs, 20, 22
Costs Benefit Analysis Method, 20
Coverage indicator, 239
Crossover operator, 53, 179

Decision space, 45, 130
Decision vector, 45
Degree of Freedom, 117
Degree of Freedom Instance, 119
Degrees of freedom for CBA, 138
Design option set, 119
Design Space

Feasible Design Space, 133
Unconstrained Design Space, 130

Design space constraints, 132, 179
DoF, see Degree of Freedom
DoFI, see Degree of freedom instance

EMOF, see Essential Meta Object Faci-
lity

Essential Meta Object Facility, 26

Formal model, 24

Hyper-volume, 59
Hyper-volume indicator, 240

Instance-of relationship for model ele-
ments, 25

Instance-of relationship for models, 24
Intensification, 194
Interaction constraints, 116
Interaction of changes, 116

Layered Queueing Network, 40
LQN, see Layered Queueing Network

Metamodel, 24
Model, 24
Model element, 25
Model-based quality prediction, 28
Modifiability, 19
Monetary benefit, 20
Multi-criteria optimization, 46

Multi-objective candidate evaluation
function, 165

Multi-objective optimization, 45, 46
Mutation operator, 52, 178

Objective space, 46
Optimization, 45
Optimization framework, 197
Optimization problem, 45, 165
Order on a quality metric domain, 164

Palladio Component Model, 33
Pareto dominance, 49
Pareto dominance ranking, 57
Pareto optimality, 49
Pareto-optimal candidates, 165
PCM, see Palladio Component Model
Performance, 19
Performance of an optimization tech-

nique, 213
POFOD, see Probability of failure on de-

mand
Primary Changeable Element, 112
Primary changeable element, 117
Primary changed model element, 119
Probability of failure on demand, 22

Quality attribute, 20
Quality bound, 23
Quality criterion, 22
Quality effects, 139
Quality evaluation function, 29
Quality metric, 22
Quality of an optimization technique, 213
Quality property, 24
Quality requirement, 23

Reference point for hyper-volume indica-
tor, 240

Reliability, 19
Resource selection, 151
Response time, 22

Security, 19
Selection of components, 139
Selection rules, 115
Sequence of changes, 111
Single-objective optimization, 45
Software component, 14
Software quality attrributes, 19
Starting population, 195
Stop criteria, 182
Structurally-conforms-to relationship, 24,

25
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Tactics, 183
Tactics operators, 192
Testability, 19
Time savings metric, 241
Time-to-market, 20

Valid model instance, 25
Value rules, 116

Weak Pareto dominance, 49
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