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Summary: Deformation and failure mechanisms in ABS materials are investigated on various

length scales utilizing continuum-micromechanical models and numerical (finite element) simu-

lations.

Introduction

ABS (acrylonitrile-butadiene-styrene) is a prominent member of the class of so-called

rubber-toughened thermoplastics, and it is widely used in technical products. Its most

advantageous property, compared to neat thermoplastics, is the enhanced fracture tough-

ness. The latter results from the heterogeneous composition and microstructure of ABS

which consists of a glassy thermoplastic matrix (SAN, styrene-acrylonitrile) and fine dis-

persed sub-micron sized rubber (butadiene) particles (e.g. Bucknall, 1977). Generally

speaking, the rubber particles serve to initiate inelastic (dissipative) micromechanisms

at many sites throughout the material, such as void growth (upon rubber cavitation),

shear yielding, and crazing. Despite numerous experimental studies, many details of

these micromechanisms, their individual contribution to the overall toughness, and their

dependence on microstructural parameters (e.g. size and volume fraction of the rubber

particles) are still not very well understood. Theoretical models and numerical simula-

tions are believed to provide a deeper insight into these issues. In the present work, several

such modeling approaches – focusing on different length scales, yet all in the framework

of continuum mechanics – are presented and discussed.

Figure 1: Microstructure and damage mechanisms in ABS; foto from (Grellmann & Sei-
dler, 2001)



Constitutive model for amorphous thermoplastic polymers

The continuum-micromechanical models considered in the following sections require a

proper description of the elastic-viscoplastic deformation behavior of the thermoplastic

matrix material. The rheological model sketched in Fig. 2a illustrades such a description

accounting for an elastic behavior at small strains, coupled with nonlinearly viscous flow

counteracted by an internal (back) stress b due to progressive alignment of the molecular

network at large strains (Haward & Thackray, 1968). The uniaxial response of the con-

stitutive model, which here is used in the three-dimensional formulation by (Boyce et al.,

1988), is sketched in Fig. 2b.
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Figure 2: a) Rheological model for the elastic-viscoplastic deformation behavior of ther-
moplastic polymers, b) uniaxial stress-strain response

Micromechanical study of fibrillation

The damage mechanism on the perhaps finest length scale accessible to continuum me-

chanical modeling is the fibrillation of thermoplastic polymers under tensile loading.

Fibrillation of a polymer material is found in various situations such as the failure of

adhesive layers (Fig. 3a) or during crazing (Fig. 1). It is preceded by the growth and

coalescence of microvoids (originating from microscale heterogeneities) and takes place by

drawing of the polymer material between the voids. This drawing into fibrils is enabled

by the progressive hardening (see Fig. 2b) that results from stretching of the molecular

network. The mechanical effect of a network of polymer chains is essentially characterized

by the number N of molecular units between entanglements points; the limit extensibility

and hence maximum continuum stretch possible is then given by
√

N .

A numerical analysis of the fibrillation process in amorphous thermoplastic polymers

has been performed in (Helbig & Seelig, 2011), based on micromechanical (cell) models

which account for void coalescence, controlled by a local failure strain εfail, and the sub-

sequent stretching of the matrix material into fibrils (Fig. 3b,c). The overall stress-strain

response of such a cell model is shown in Fig. 4 for various values of the network parameter

N .
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Figure 3: a) Fibrillation in adhesive layer (Fraunhofer IFAM), b) schematic of change
of topology from isolated voids in continuous matrix to interconnected void space with
isolated fibrils, c) deformed finite element model of a layer with initially irregular void
arrangement
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Figure 4: Overall response showing effect of network parameter N

Cohesive zone modeling of crazing

On a larger length scale, the formation and growth of crazes is of interest. Crazes are lo-

calized zones of fibrillated polymer material which transfer stress due to the load-carrying

capacity of the numerous fibrils they consist of. They form normal to the direction of

maximum principal tensile stress once a critical (tensile or hydrostatic) stress in the bulk

thermoplastic polymer is reached. Under continued loading their growth and widening

proceeds until at a critical craze thickness (fibril length), typically of the order of a mi-

cron, rupture of the fibrils takes place and a craze turns into a microcrack. Owing to their

appearance as thin crack-like defects, crazes can be modeled as cohesive zones (Tijssens

et al., 2000). Their mechanical behavior is then described by a traction-separation law

which represents the “smeared” behavior of the fibrillated craze matter (Fig. 5). Different

variations of the craze stress σc with the craze widening ∆c are possible concerning the

level of craze initiation stress as well as the craze hardening behavior (Fig. 5b).
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Figure 5: a) Cohesive zone modeling of crazing in a continuum mechanical setting,
b) different cohesive (traction-separation) laws considered

Competition between void growth and crazing

Crazes preferentially initiate at stress concentrators such as rubber particles, and their

interaction with (shear) yielding of the surrounding matrix is an interesting issue on the

length scale of the particle-matrix microstructure of ABS. For instance, it is up to date not

clear under which circumstances crazing or matrix yielding (enabled by void growth from

cavitated rubber particles) are the dominant micromechanisms for the enhanced ductility

and fracture toughness of ABS. Simulations therefore have been performed, considering a

representative volume of the microstructure with several voids (cavitated rubber particles)

interconnected by cohesive zones as potential locations for crazing.

Figure 6 shows results from 2D plane strain simulations for different crazing models

in terms of the cohesive laws depicted in Fig. 5b. Findings from this study are as follows:

When the craze initiation stress is high (#1), the dissipative micromechanisms occur
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Figure 6: a) High craze initiation stress (#1 in Fig. 5b) leads to small amount of crazing
and only localized matrix yielding, b) low craze initiation stress and craze hardening (#2
in Fig. 5b) leads to large amount of crazing, c) overall response in uniaxial straining



rather localized (see Fig. 6a) and lead to an early overall failure of the material (Fig. 6c). In

contrast, a low craze initiation stress (#2) in conjunction with a craze hardening behavior

at increasing ∆c (as in model #1) results in a delocalized occurence of crazing (Fig. 6b)

and a larger overall failure strain, i.e. an enhanced overall failure strain (Fig. 6c). Also

shown in Fig. 6c is the response of the model in the extreme case when no crazing takes

place and the imposed macroscopic strain is solely accommodated by void growth and

matrix shear yielding. The softening overall response obtained in this case is contradictory

to the behavior of real ABS.

A macroscopic model for distributed crazing

Motivated by the finding of the micromechanical study in the previous section that crazing

plays a key role in the inelastic deformation behavior of ABS, a macroscopic constitutive

model for the effect of distributed crazing has been set up. The contribution of crazing

to the inelastic part of the strain rate tensor is given by

D
c = ε̇c

n ⊗ n with ε̇c = ε̇0 exp

(

φ

A

)

and φ = n · σ · n − σc (1)

where n is the unit vector in the direction of the maximum princial stress at the instant of

craze initiation (i.e. normal to the evolving crazes), and ε̇0 and A are material constants.

Distributed crazing hence is described in a homogenized manner as an anisotropic flow

process (“craze yielding”). In analogy to the traction-separation relation of an individual

craze (Fig. 5b), the overall yield strength in the homogenized model is taken to vary with

the inelastic crazing strain: σc = σc(ε
c).

Plastic zone at crack tip in rubber-toughended polymers

On the macroscopic scale of crack growth in a testing specimen or a technical component,

the formation of the plastic zone at a crack tip is of interest with regard to the fracture

resistance. Numerical simulations on that scale require a homogenized description of the

material. With respect to ABS, different approaches have been investigated in a previous

work (Pijnenburg et al., 2005), for instance a porous plasticity model that assumes void

growth and matrix shear yielding as the dominant micromechanism. However, the key

finding from that work was that the model overrated the effect of void growth and led to

unrealistically narrow plastic zones.

Here, we alternatively focus on the effect of distributed crazing in the inelastic deforma-

tion of ABS and study the performance of the model described in the previous section.

Figure 7a shows the computational model of a single edge notch tensile (SENT) specimen

considered in the analysis of the plastic zone shape. Results are shown in Figs. 7b and

c. In contrast to the homogeneous material description underlying Fig. 7b, a fine-scale

spatial scatter of the craze yield strength is considered in Fig. 7c reflecting a nonuniform



distribution of the microstructure (e.g. rubber particles in ABS). The total plastic zone

obtained from this model contains numerous small finger-like localization zones (Fig. 7c)

as are observed in experiments on amorphous (e.g. Ni et al., 1991; Ramaswamy & Lesser,

2002) as well as semi-crystalline (e.g. Kotter, 2003) rubber-roughened thermoplastics.
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Figure 7: a) SENT specimen and finite element mesh at blunt crack tip; plastic zones
at crack tip according to model for distributed crazing: a) material considered as homo-
geneous, b) with random variation of craze yield stress
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