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Zusammenfassung 

 
Die Forschung in den Lebenswissenschaften hat in den letzten Jahrzehnten zu einem 

enormen Wissensgewinns bezüglich der Abläufe zellulärer Prozesse und ihrer Steuerung 
geführt. Die Steuerung biologischer Prozesse wird vielfach über Kontaktwechselwirkungen 
der daran beteiligten Biomoleküle bewältigt. Mit dieser Arbeit möchte ich zu einem besseren 
Verständnis biomolekularer Interaktionen beitragen.  

Ein Teil dieser Arbeit beschäftigt sich mit der Untersuchung von Proteininteraktionen, 
wobei als Methoden für die Modellierung von Protein-Protein-Wechselwirkungen (POEM) 
und für die Protein-Liganden-Wechselwirkung (FLEXSCREEN) eingesetzt wurden. Es 
wurden die Interaktionen der Chemokinrezeptoren CCR3 und CXCR1 mit für den 
Entzündungsverlauf wichtigen Steuerungsmolekülen (Chemokinen) untersucht. Dazu wurde 
ein in silico Alanin-Scanning-Protokoll entwickelt, welches experimentelle Verfahren zur 
Untersuchung wichtiger Interaktionen in der Protein-Protein-Kontaktfläche ergänzt. Die 
Untersuchungen zielen auf die Entwicklung neuer Inhibitoren für Chemokinrezeptoren ab, um 
inflammatorische Krankheiten besser behandeln zu können.  

In einer weiteren Untersuchung wurde versucht, neue Wirkstoffmoleküle  für die 
Cannabinoidrezeptoren CB1 und CB2 zu entwickeln, die in den Huntington und Alzheimer 
Krankheiten eine wichtige Rolle spielen. Dazu wurden Strukturmodelle für die 
Proteinrezeptoren erstellt und das Bindungsverhalten von Cumarinderivaten untersucht. In 
enger Zusammenarbeit mit dem Experiment wurde eine Reihe neuer Liganden synthetisiert 
und experimentell validiert, wobei sich eine erhöhte Affinität verglichen mit dem 
Referenzmolekül und eine gute, quantitative Übereinstimmung zwischen Simulation und 
Experiment zeigte. In einer letzten Anwendung im Bereich der rechnergestützten 
Medikamentenentwicklung wurde eine grosse Datenbank einem virtuellen Screening 
unterzogen, um neune Substanzen zu finden die regulierend in die Blutgerinnung 
einzugreifen.  

Ein weiteres wichtiges Anwendungsfeld ist die Identifizierung genetischer Ursachen für 
Entwicklungsstörungen, die von patientenspezifischen Mutationen herrühren. Darüber hinaus 
habe ich Methoden der Protein-Strukturvorhersage angewandt, um die Relevanz von 
Mutationen, die an Patienten, die an Kallmann-Syndrom (KS), sowie normosmic 
hypogonadotropen hypogonadismus (nHH) leiden für den Krankheitsverlauf aufzuklären.  

Diese Ergebnisse zeigen, dass rechnergestützte Verfahren zur Modellierung der Struktur von 
Biomolekülen und deren Wechselwirkungen heute dazu beitragen können, die komplexen 
zellulären Steuerungsmechanismen zu verstehen und gegebenenfalls auch zu beeinflussen. 
Damit erwächst aus den rechnergestützten Verfahren ein neues wichtiges Instrument um 
biologische Prozesse zu verstehen und die pharmazeutische Forschung voranzutreiben. 
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1. Overview  

The completion of the human and the other genome projects has further accelerated the rapid 

growth of the available biological data. Efficient methods now exist to characterize the 

components of biological systems at the genetic, molecular, cellular and whole organism 

level, for example, the enzymes and metabolites in a metabolic pathway (Jeong, Tombor et al. 

2000; Snoep, Bruggeman et al. 2006). All of these developments bring us closer to the 

tantalizing prospect to understand, control and ultimately design biological function. The 

recent progress of the genome sequence projects and of other molecular biology projects has 

increased the opportunities to seriously look into the possibility of system-level 

understanding.  

One new promising branch is systems biology which has the potential to generate many new 

insights for biomedical research, industry and agriculture. Its primary goal is to understand 

life processes. Systems biology explores the dynamic life of processes at all levels, from the 

organization of cell organelles up to the complete cell, the genome via the proteome and to the 

entire organism. Methods from different fields are combined to explore these processes. 

Quantitative methods are now used in molecular biology incorporating knowledge from the 

fields of mathematics, informatics, and chemistry and physics. Systems biology focuses on 

the interplay of the molecular components that play an indispensable role forming symbiotic 

state of the system as a whole. Many areas are actively investigated, such as robustness of 

biological systems, network structures and dynamics, and applications to drug discovery 

(Kitano 2002; Kitano 2002; Kitano 2003). 

One of the most important aspects to understand and control biological processes is the 

molecular level, where biological control is mediated by the interactions of specific 

biomolecules. Examples of such interactions are gene regulation (heat shock response, Fig. 

1.1), protein-protein interaction (chemokine receptors in inflammation, Fig. 1.2) and small 

drug molecules (e.g. Cannabinoid receptor antagonists, Fig. 1.3). The heat-shock (HS) 

response is a good illustration of gene regulation where the heat-shock (HS) network ensures 

the survival of various organisms at different temperatures. Regulatory systems initiate a 

response that increases the resistance of cells to damage and aids in its repair, because they 

have evolved to detect the damage associated with stressors. HS response (Gross 1996) is one 

of the most important example of these systems. The HS response comprises elaborate 

mechanisms for detecting the presence of heat or other stressor-related protein damage (Ang, 



Application of Models for Biomolecular Structure and Interactions to Understand and Influence Biological Function 

8 

 

Liberek et al. 1991) and for initiating a response through the synthesis of new heat-shock 

proteins (HSPs) whose main function is to refold denatured cellular proteins. 

 

Figure 1.1: example of the recognition of an Escherichia coli heat shock gene by the σ32 subunit (Brown 
2002). (A) The sequence of the heat-shock promoter is different from that of the normal E. coli promoter. 
(B) The heat-shock promoter is not recognized by the normal E. coli RNA polymerase containing the σ70 
subunit, but is recognized by the σ32 RNA polymerase that is active during heat shock. 

In this thesis I have focused the theoretical investigation of biomolecular interactions with 

applications in drug discovery and the modulation of protein-protein interactions. Because 

such studies rely on the existence of a model for the protein receptor, I have also applied 

methods of protein structure prediction. Identification, quantification, and control over 

biological complexes are a key to research in drug-discovery, cell signaling, and elucidation 

of biosynthetic pathways and understanding of enzyme catalysis. Many of the projects 

discussed below combine experimental and computational approaches to better understand the 

nature of biomolecular interactions. 

Protein-protein interactions are important in many biological networks, e.g. chemokine 

receptors play an important role in inflammation. One example is the leukocyte activation in 
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acute inflammation. To reach sites of inflammation or injury, circulating leukocytes must exit 

the bloodstream by traversing the endothelium. The first step in the process of leukocyte 

recruitment at sites of inflammation is to bind and roll leukocytes on the endothelial cell 

surface by the generation of transient selecting-mediated interactions (Lawrence and Springer 

1991). The slow velocity of rolling leukocytes allow a easier encounter with chemokines that 

are presented on the apical surface of the endothelium by glycosaminoglycans (Tanaka, 

Adams et al. 1993). Chemokines, which are discussed in detail in chapters 4.3-4.5 bind to 

their respective chemokine receptors expressed on the leukocyte cell surface, leading to the 

alteration of β2 integrin ambition on the leukocyte cell surface (Springer 1994). Then β2 

integrins bind to their Ig counterligands, such as ICAM-1, ICAM-2, and ICAM-3, which have 

been up-regulated on the endothelial cell surface by proinflammatory cytokines. These 

interactions contribute a solid attachment of leukocytes to the endothelium and facilitate 

leukocyte migration (Rot 1993). The start of series of cellular events initiate by the binding of 

chemokines to their respective leukocyte receptors, such as changes in cell shape leading to 

enhanced locomotion, secretion of lysosomal enzymes, and production of superoxide anions.  

 

Figure 1.2: example of inflammation process. (A) Process of inflammation  induce vasodilation , where 
mediator molecules alter the blood vessels to permit the migration of leukocytes, mainly neutrophils, 
outside of the blood vessels into the tissue. (B) neutrophils migrate along a chemotactic gradient created 
by the local cells to reach the site of injury. (C) binding of chemokines to their respective leukocyte 
receptors (taken from http://pocketstudy.blogspot.com/2007/04/infiammazione.html). 

In this thesis I have cooperated with Dr. Katja Schmitz, the team leader of an experimental 

group to design molecules that influence the interaction between chemokines and their 

receptors CXCR1 and CCR3 (Meliciani, Klenin et al. 2009). This work was extended to 

predict the effect of all possible mutations on the previously identified hotspots of the 

extracellular domain of receptor CCR3 and CXCR1 that are crucial for chemokine binding. 

Elucidating the full binding motifs and locating their position on a three-dimensional model 
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of the receptor reduces the experimental effort to investigate chemokine receptor recognition 

and activation.  

This work was further extended to study small molecule binding to chemokine Interleukin-8. 

I performed in silico mutations, as for CCR3, on the N-terminal of the CXCR1 receptor, and 

investigated the binding energy of a set of 19 small molecules, which were active in a chip 

assay against chemokine interleukin-8 using receptor-ligand binding simulations. From the 

assay data it remained uncertain, whether the molecules would bind specifically or non-

specifically to IL8. Only molecules binding at or near the receptor binding site IL8 are likely 

to interfere with chemokine receptor binding. The aims of this study was therefore to identify 

possible binding sites of the molecules with IL8 and to rank the small-molecule interactions 

for the different candidate binding sites. I found that four molecules had a significantly better 

binding energy than the average of all molecules and could be tested experimentally with one 

of the predicted binding site that is near the position where interleukin-8 interacts with his 

receptor. 

One important application of investigations targeting biomolecular interactions is drug 

design, which we later address in the development of CB1 receptor antagonists (chapter 5.4) 

and other applications (chapters 5.3 and 5.5). The first antagonist for cannabinoid receptor 

was rimonabant (Rinaldi-Carmona, Barth et al. 1994; Barth and Rinaldi-Carmona 1999). 

Rimonabant is a selective cannabinoid CB1 receptor antagonist that has undergone extensive 

testing in the treatment of obesity, as well as for treating nicotine dependence in humans. The 

endocannabinoid system interacts with several neuropeptides that modulate hunger and satiety 

signals, resulting is the stimulation of appetite (Di Marzo and Matias 2005). The cannabinoid 

receptor, CB1, was found extensively in the brain (Matsuda, Lolait et al. 1990). CB1 

receptors appear to regulate the activity of mesolimbic dopamine neurons, (Spanagel and 

Weiss 1999) and to interact with neuropeptides such as the melanocortins and gut peptides 

such as ghrelin in regulating food intake (Tucci, Rogers et al. 2004; Verty, McFarlane et al. 

2004). This discovery led to the development of numerous CB1 antagonists, of which 

rimonabant is having the most success in human treatment. 
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Figure 1.3: Contact between ligand and receptor activate a secondary messenger (taken from 
http://www.galenotech.org/farmcodin2bis.htm). 

In this direction I have participated in an investigation and optimization of coumarin-

derivatives to cannabinoid receptor CB1 and CB2. The cannabinoid receptors belong to 

membrane-bound G protein-coupled receptor superfamily and are predominantly coupled via 

Gi/o proteins. Many factors, including receptor conformational change, differences in long-

range interactions and local factors contribute to receptor selectivity. 

The CB1 receptor subtype is known to play an essential role in analgesia, memory-

impairment, spasmolysis and regulation of appetite. Selective agonists for CB2 receptors 

show antiinflammatory and analgesic properties in animal models. 

Because no crystal structures are available I developed homology models and performed 

small-molecule docking studies for cannabinoid receptors in cooperation with the group of 

Prof Bräse at KIT and the group of Prof. Müller from PharmaCenter Bonn. I succeeded in 

predicting modifications of previously known small-molecule ligands for the CB1/CB2 

receptor pair, which not only exhibited higher affinity in subsequent experiments, but which 

also demonstrated the receptor selectivity between CB1/CB2, as observed in the simulations 

(Congress 2011). The primary goal of the simulations was to understand changes in the 

binding mode and the binding energy between the new compounds and structurally related 

compounds with a known affinity. This work resulted in the discovery of new ligands with 

aliphatic sidegroups and is also a successful example using an homology modeling for the 

investigation of protein-ligand interactions. 

In a related project I have participated in an extended cooperation to develop new molecules 

that modulate thrombin activation by antithrombin. The goal of the project is the development 
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of a structure-based model for AT-II regulation to develop new anticoagulation drugs. We 

performed docking simulations for the complex Antithrombin/Heparin using FlexScreen, 

which reproduced the known binding mode very well. In the second part of the project we 

performed a large-scale in silico screen and compared the binding scores with those of 

heparin. The compounds with the best energy values have been tested in vitro by our 

collaborating group in Murcia (Spain), where we found out that one of the compounds 

increases heparin binding with antithrombin and thrombin activation (patent pending). 

In February 2008 my group and I were approached by the groups of L. Layman and J. 

Gusella from Massachusetts General Hospital/Harvard Medical School to assist their 

investigation to identify the genetic causes of human disease, involving a series of genes 

causing Kallmann syndromes (KS) and Normosmic hypogonadotropic hypogonadism (nHH). 

To support this work I have applied techniques to generate the models for the three-

dimensional structure protein, for which no experimental structure could be determined to 

date, from the amino acid sequence. I have mainly used techniques in comparative structure 

prediction (also called homology modeling), which is based on the assumption that two 

homologous proteins will share very similar structures. Because a protein's fold is more 

evolutionarily conserved than its amino acid sequence, a target sequence can be modeled with 

reasonable accuracy even on only distantly related templates, provided that the relationship 

between target and template can be discerned through sequence alignment. I performed 

studies on protein structure prediction for CHD7, WDR11 and NELF to analyze possible 

functional effects of the mutations in the patients exhibiting the syndrome (Kim, Kurth et al. 

2008; Kim, Ahn et al. 2010; Xu, Kim et al. 2011). 

This thesis is structured as follows: 

- chapter 2 gives a general introduction to the state of the art related to this thesis; 

- chapter 3 is focused on the application of protein structure prediction to identify genetic 

causes for human disease; 

- chapter 4 reports the work on protein-protein interactions, specifically chemokine-receptor 

interactions; 

- chapter 5 reports the work on protein-ligand interactions, specifically coumarin 

derivatives-CB1/CB2 receptor interactions, and the discovery of new molecules affecting 

blood coagulation; 

- chapter 6 gives a short summary and an outlook to future developments. 
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2. Introduction 

2.1. Introduction 

Life science research in the last decades has lead to an enormous increase in the amount of 

available data, encompassing all levels of biological organization, starting at the genome and 

ending at the whole organism (Rogers 2000). Much of this data is hard won in experimental 

efforts that shed light on specific biological mechanisms, generating islands of knowledge in a 

sea of the unknown. Bioinformatics is an integrating effort that attempts to link biological 

data using methods of computer science generating computational methods that are used as a 

support for biology studies. In addition to modeling and simulation, bioinformatics attempts 

to describe biological events from a numerical and statistical point of view. The term 

bioinformatics was used for the first time by Paulien Hogeweg in 1979 (Hogeweg 1978), at 

first for using bioinformatics in genomics for studies in DNA sequencing and much effort has 

since been invested to develop methods for many fields, including systems biology. 

Bioinformatics is now also covering other areas of investigation, including sequence 

alignment, gene prediction, protein structure prediction, biomolecular interactions, drug 

design, drug discovery, protein structure alignment and many others.  

The goal of bioinformatics is the development of approaches to collect, link and structure 

biological data, e.g. in specific databases, such as the Protein Data Bank that ‘contains 

information about experimentally-determined structures of proteins, nucleic acids, and 

complex assemblies’ (Rose, Beran et al. 2011) or creating algorithms with the objective to 

contribute to the comprehension of molecular mechanism in biology. The recent expansion of 

the internet allowed globalization of a much biological data leading to development of many 

databases and different bioinformatics programs, such as Phyre (Kelley and Sternberg 2009) 

for protein structure prediction.  

Bioinformatics is destined to continue to grow and support more and more experimental 

lines of research and discovery, possibly aiding in the discovery of the causes of diseases or 

the change of organisms to the environment, for example by exhibiting specific traits using 

single point mutations (Ng and Henikoff 2003; Flanagan 2010). Such development could, for 

example, help prevent and treat diseases, improve food production, and preserve of the 

environment. 
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In this chapter, I will first give a brief overview of protein structure (section 2.2), followed 

by a synopsis of the most important biophysical/biochemical interaction mechanisms that 

govern protein conformational change and function (section 2.3). In section 2.4 I will give an 

overview of the general state-of-the-art of methods for protein structure prediction, which is 

the basis of the theoretical work reported in chapter 3. This is followed by a summary of 

methods treating protein-small-molecule interactions in section 2.5. Within this wide field 

special emphasis is given to docking methods, as these have been applied for the studies in 

chapter 4 and 5. I conclude this chapter with a summary of extensions of these methods 

studying protein-protein interactions, which is the background for the work reported in 

chapter 4. Given the wide range of topics covered the review of methodology cannot be 

comprehensive but is focused to provide the background material for the studies reported in 

subsequent chapters. Details of the methodology applied in the specific protocols are given in 

the methods section of the corresponding chapters.  

2.2. Protein Structure  

Proteins among the most important biological macromolecules in all cells, comprising of one 

or more polypeptide chains, composed of a sequence of the twenty amino acids occurring in 

nature. Understanding protein function, control and interactions is therefore one of the most 

important goals in biology. Proteins often fold into unique three dimensional structures and 

knowledge of these structures is often essential to understand protein function. The building 

blocks of proteins are amino acids, which comprise an amino and a carboxylic acid group and 

are interlinked by peptide bonds in the polypeptide chain. The individual amino acids differ 

by their sidechain (designated R in the Fig. 2.1). The sidechains of the naturally occurring 

proteins are listed in figure 2.1. Protein synthesis takes place in the ribosome, to form very 

complex structures. The structure of proteins has traditionally been classified into four 

categories: 

Primary Structure: Primary structure labels the sequence of amino acids linked by a 

peptide bond that starts always from the amino (N) terminus to carbonyl (C) terminus in one 

polypeptide chain. It labels the logical, rather than the physical organization of the 

polypeptide chain. The sequence of the chain is written in either one-letter code or three-letter 

code, representing the 20 naturally occurring amino acids (Fig. 2.1). 
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Figure 2.1: List of the 20 amino acids (taken from http://medchrome.com, Amino acids: Memorizing 
names and classifying made easy). 

Secondary Structure: Secondary structure labels recurring local conformations that the 

chains can assume based on the amino acids sequence and formation of hydrogen bonds 

between the main peptide chain. These bonds result in a specific geometry due to the 

constraints of the dihedral angles ψ and φ as illustrated by the Ramachandran plot (Fig. 2.2). 

In fact not all the values of angles ψ and φ are possible, because many (ψ / φ) combinations 

produce too close contacts between the atoms. The Ramachandran plot (Ramachandran, 

Ramakrishnan et al. 1963) shows three main areas that are energetically favorable, which 

correspond to the most widely observed secondary structure elements identified by L. Pauling 
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in 1951 (Pauling and Corey 1951), e.g. α-helix and β-sheet. All secondary structure elements 

feature hydrogen bonds between the NH and CO groups of the main chain (Fig. 2.3). 

 

Figure 2.2: (A) Schematic representation of an amino acid in a polypeptide chain, indicating the dihedral 
angles which are the only low-energy degrees of freedom of the backbone of a protein and (B) 
ramachandran plot indicating permitted values of the dihedral angles and the corresponding secondary 
structure due to the constrains of the dihedral angles (Ramachandran, Ramakrishnan et al. 1963). 

The α-helix is the most common conformation adopted by the polypeptide chain, which 

forms a spring-like structure where the tightly coiled backbone forms the inner part of the 

helix and the side chains project outwards in a helical array. In the α-helix the CO group of 

each amino acid forms a hydrogen bond with the NH group of the amino acid which is 

situated four residues ahead in sequence; except for the terminal residues in the helix, all the 

carbonyl and amine groups are hydrogen bonded. 

In an α-helix axis amino acids are spaced 1.5 Å along the helix direction, which results in 

3.6 amino acids per turn of the helix. Both right-handed and left-handed helices can occur, but 

most of the observed α-helices in naturally occurring proteins are right-handed. There are also 

other types of helices such as 310-helix, pi-helix, polyproline II helix and collagen helix. All 
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these helices are classified by their hydrogen bonding pattern. The polyproline II and collagen 

helix are left-handed, while other helices are right-handed.  

 

Figure 2.3: Structure and ribbon diagram of a protein alpha helix. The backbone atoms form a coil (black 
bonds) while the carbonyl groups (red) form hydrogen bonds with the amide groups (blue) 
(taken from http://en.citizendium.org/wiki/Protein_structure). 

The structure of β-sheets differs remarkably from the spring-like structure of the α-helix. β-

sheets, see (Fig. 2.4), consist of two extended chains, called β strands. A β sheet is formed by 

linking two or more β strands by hydrogen bonds (Kabsch and Sander 1983; Richards and 

Kundrot 1988; Frishman and Argos 1995). 

The strands are spaced with 3.5 Å distance between adjacent amino acids (this is in contrast 

to the 1.5 Å of the α-helix), where adjacent amino acids have the side chains pointing in 

opposite directions. Parallel, anti-parallel or mixed β-sheets occur in nature: In the anti-

parallel β-sheet adjacent chains run in opposite direction, the NH group and the CO group of 

each amino acid are bonded to the CO and NH group of a partner on the adjacent chain, 

respectively. In the parallel β-sheet adjacent chains run in the same direction, the NH group is 

hydrogen bonded to the CO group of one amino acid on the adjacent strand, whereas the CO 

group is hydrogen bonded to the NH group on the amino acid two residues further along the 

chain.  
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Figure 2.4: Structure and ribbon diagram of a protein beta sheet. Note the oscillating positions of the 
carboxyl (red) and amide (blue) groups which form hydrogen bonds between the two beta strands 
(taken from http://en.citizendium.org/wiki/Protein_structure). 

Tertiary Structure: The tertiary structure of a protein refers to the three-dimensional 

arrangement of the secondary structure elements in space (Fig. 2.5). It is formed by the 

folding of secondary structural elements such as α-helix, β-sheets, loops and turns. The 

overall arrangement of the atoms in space, also called the native structure, is responsible for 

the biological function of the protein. Many proteins fold spontaneously into this native 

structure, driven by a number of biophysical/biochemical interactions. In addition to hydrogen 

bonding the hydrophobic effect is important determining the structure of globular proteins, 

many of which are characterized by a hydrophobic core and surface charged/polar residues. 

 

Figure 2.5: example of tertiary structure, Endothelial PAS domain protein 1 (PDB code 1P97). 
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Quaternary Structure: The term quaternary protein structure refers to the association 

of two or more polypeptide chains to form a complex (Fig. 2.6). Multimeric complexes are 

important for various biological activities, as for example enzyme activity when residues from 

more than one polypeptide subunit are forming the active site, or when adjacent active sites 

may be involved sequentially in catalysis of a complex reaction. 

 

Figure 2.6: example of a dimer the simplest possible quaternary structure.  
Glutathione-dependent formaldehyde dehydrogenase (PDB code 1M6H). 

2.3. Protein Structure Prediction 

The 3-D structure of proteins aids in clarifying their properties, behavior and almost all 

biological phenomena mediated by proteins, including protein-ligand, protein-protein 

interactions, drug function and protein design. Experimental efforts have led to deposition of 

more than 53,000 experimentally solved structures in the Protein Data Bank (PDB), but there 

are far more protein sequences reported, with >400,000 in Swiss-Prot and >7,500,000 in 

TrEMBL (Jain, Bairoch et al. 2009) (Fig. 2.7). Protein structure prediction remains a 

significant challenge because the rapidly increasing number of reported protein sequences is 

not matched by experimental techniques to solve all the associated structures. 

Structure prediction methods (Ginalski 2006; Xiang 2006) represent one promising route to 

bridge the gap between sequence and structure. This objective is realistic considering that 

sequences with 50% or more identity can often be modeled within experimental accuracy 

(Kryshtafovych, Fidelis et al. 2007). Structure prediction methods are classified into 

homology modeling (HM), also called template-based modeling (TBM) or comparative 
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modeling (CM), and free modeling (FM) (Zhang 2008). Proteins with similar sequence fold 

into similar 3-D structures. In HM, the 3-D structure of the protein is built from a template 

structure, but this works only if a protein with sufficiently high homology and solved 

structure is available. In the absence of this information FM are used, which do not depend on 

a priori structural information. The success rate of FM methods is presently low (Peng and Xu 

2010). 

 
Figure 2.7: Growth of Biological Databases. Black line: protein sequences deposited in TrEMBL (protein 
sequence database) Red line: proteins whose 3-D structure has been solved 75,594 (PDB) protein 
structures (30/08/2011). 

2.3.1. Comparative Modeling 

Many different methods for structure prediction have been proposed (Zaki and Bystroff 

2008), but the most widely used methodology is comparative structure prediction (also called 

homology modeling), where the model of the “target” protein is constructed from the amino 

acid primary structure and from an experimental three-dimensional structure of a related 

homologous protein called “template” (Fig. 2.8). Homology modeling capitalizes on the fact 

that in nature there is a limited number of folding conformations (Chothia 1992), as a result 

the three-dimensional protein structure is evolutionarily more conserved.  

In homology modeling we have to find one or more known structures that are similar to the 

structure of the query sequence and then produce an alignment between the residues of the 

query sequence and the residues in the template sequence (Honig, Tang et al. 2003; Elofsson, 

Ohlson et al. 2004; Marti-Renom, Madhusudhan et al. 2004). The target model is created 

from the sequence alignment and the template structure. The higher the quality of the 
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alignment between the sequence and the template is, the better the model that is produced. 

Gaps in the sequence alignment or gaps in the template structure can decrease the quality of 

the model. Loops region are normally the most involved in this kind of errors, where the 

target and template proteins may be completely different. 

When there is no high-homology template for the whole sequence, we have to use loop 

modeling techniques to fill the gaps in the structure, which typically result in less accurate 

model structures. Low quality models can typically not be used for studies such as drug 

design and protein-protein interaction prediction; but sometimes they can still be used to 

obtain some interesting information of the biochemistry of the query sequence, for example 

by making hypotheses about the conservation of certain residues, information that could also 

be useful for experimentalist.  

 

 

Figure 2.8: Homology modeling procedure, from the query sequence we have to find one or more known 
structures called template to generate the model.  

2.3.2. Model Building  

Given an alignment there are four principal methods for model construction, including the 

spatial restraint method (SSR) (Sali and Blundell 1993), the segment matching method 

(SMM) (Levitt 1992), the multiple template method (MTM) (Chothia, Lesk et al. 1986; 

Blundell, Sibanda et al. 1987) and artificial evolution (AE) (Petrey, Xiang et al. 2003). SSR 

assumes that several geometrical features such as distances and angles are conserved in 

homologous proteins, when comparing equivalent positions. Two main steps are involved, 

extraction of spatial restraints based on alignment and construction of the target 3-D model by 

fulfilling the spatial restraints (Sali 1995). One of the most used frequently homology 

modeling programs is MODELLER that uses SMM to divide the target into a series of short 

segments, each matched to its own template fitted from the PDB. The alignment of the 

sequence is done over segments rather than over the entire protein. There are different steps in 

this method including the construction of a segment database, a model construction via 

iterative randomization to get an average model and a minimization to get the final model. An 
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extension to the SMM program SegMod/ ENCAD called Pfrag was proposed by Larsson et 

al. which can use multiple templates (Larsson, Wallner et al. 2008). 

In MTM, several solved protein 3-D structures are used to build the target protein model. 

Based on sequences and structures the multiple templates are aligned with each other and the 

target is optimally aligned with the multiple templates. Loops are present between the 

conserved regions where they are usually exposed at the surface of the proteins. MTM has 

been implemented in several packages such as SWISS-MODEL (Schwede, Kopp et al. 2003) 

and MOE (Boyd 2005), 3D-JIGSAW (Bates, Kelley et al. 2001). 

In AE, the alignment of the sequences of the template and target is achieved using 

evolutionary concepts like mutations, insertions and deletions. The model of the target protein 

is built by editing the template structure based on the alignment. The aligned residues are 

mutated and this causes changes in scoring function (energy) which is minimized in the 

procedure. Algorithms for modeling mutations are followed by procedures modeling deletions 

and then insertions. When there is no a significant energy penalty the operation is considered 

successful (Petrey, Xiang et al. 2003).  

Some automated web servers such as I-TASSER (Skolnick, Zhou et al. 2009), ROBETTA 

(Baker, Raman et al. 2009), Pmodeller-6 (Wallner, Larsson et al. 2007) are implemented in 

consensus servers, such as Pcons (Wallner, Larsson et al. 2007), and HHPred3 (Soding 2005), 

which have been very successful in accurate prediction of the protein target structures. I-

TASSER searches the whole PDB library to find appropriate protein fragments from which 

the global structure is assembled by combining aligned fragments. For portions for which no 

alignment matches are found, the 3-D structure is built using de novo simulations. The final 

refinement of the model is made with a search of the lowest energy conformation (Zhang 

2007; Zhang 2008). 

Model building in Pcons is carried out using Pfrag (Larsson, Wallner et al. 2008), a modified 

SegMod homology modeling program, and final refinement is performed using the ENCAD 

forcefield (Wallner, Larsson et al. 2007). Model prediction by ROBETTA makes use of 

extensive and computationally expensive conformational sampling and all-atom energy 

refinement (Chivian, Kim et al. 2003). Others web servers are M4T (Multiple Mapping 

Method with Multiple Templates) (Fernandez-Fuentes, Madrid-Aliste et al. 2007) and 

PROTEUS2 (Montgomerie, Cruz et al. 2008). 
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2.3.3. Loop Modeling  

Loop modeling methods can be classified into two major approaches: (i) knowledge based 

and (ii) energy based methods. A few methods have also been reported which combine the 

two approaches. Knowledge based methods are limited by the availability of relevant loop 

structures from known protein structures (Peng and Yang 2007) because it is difficult to find a 

suitable loop segment that fits between the two stem regions of the loop from a database of 

structures. A database of structural motifs, ArchDB, was developed (Espadaler, Fernandez-

Fuentes et al. 2004) and evaluated using two different sequence profiles. Other methods use 

Monte-Carlo simulation of the loop, ranking the fragment database for the loop prediction 

using the DFIRE potential (Lee, Seok et al. 2008). Energy based methods use a de novo 

energy function for conformational search of the loops to test their quality (Soto, Fasnacht et 

al. 2008). De novo loop modeling is a good method for loops not longer than seven residues 

(Jacobson, Pincus et al. 2004). Loop conformational search can be carried out using tools such 

as local move Monte-Carlo (LMMC) (Cui, Mezei et al. 2008), torsion angle conformational 

search (Felts, Gallicchio et al. 2008), LoopBuilder (Xiang, Soto et al. 2002), replica exchange 

(Olson, Feig et al. 2008) or a dihedral angle-based buildup procedure in hierarchical loop 

prediction (HLP) (Jacobson, Pincus et al. 2004). The conformers generated are scored using a 

forcefield or other physics-based energy calculations (Zhu, Pincus et al. 2006) usually 

including solvation effects. LOOPER allows a systematic and efficient sampling strategy, 

searching for loop conformers with optimal interactions of the loop backbone with the rest of 

the protein atoms. For the final ranking the CHARMm energy scoring function with a 

generalized Born solvation term is used (Spassov, Flook et al. 2008).  

2.3.4. Side Chain Modeling  

Regarding side chain prediction most of the methods use rotamer libraries which are 

constructed using statistical knowledge of protein 3-D structures such as the Grow-to-Fit 

molecular dynamics method (G2FMD) (Zhang and Duan 2006), statistical machine learning 

methods (Yan, Kloczkowski et al. 2007) and IRECS that selects more than one rotamer in 

order to have a representation of the conformational space flexibility of the side-chain. The 

ranking is calculated by a knowledge based statistical potential, ROTA (Hartmann, Antes et 

al. 2007).  

To improve side-chain modeling modifications to the ROSETTA energy functions with 

softer van der Waals terms and extended rotamer libraries have been implemented (Dantas, 

Corrent et al. 2007). A novel search method and novel energy function were proposed to 
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predict global minimum more reliably (Yanover, Schueler-Furman et al. 2008), based on tree 

reweighted belief propagation. Another method, OPUS-Rota, combines the recently OPUS-

PSP potential with a Monte-Carlo conformational search (Lu, Dousis et al. 2008). 

2.3.5. Quality Assessment 

Quality assessment (QA) methods attempt to rate the quality of the model based on 

statistical evidence. There are statistical as well as physico-chemical methods, which are 

based on alignment to a single template or multiple templates or on meta server results. The 

QA method gives a local score as a function of residue or residue window (Wallner and 

Elofsson 2006; Gao, Bu et al. 2007; Wiederstein and Sippl 2007; McGuffin 2008; Mereghetti, 

Ganadu et al. 2008) or a global score (Eramian, Shen et al. 2006; Benkert, Tosatto et al. 2008; 

Qiu, Sheffler et al. 2008; Randall and Baldi 2008) which may be based on single or multiple 

assessment criteria. Some programs for quality assessment are ModFOLD (McGuffin 2008) 

server that combines ModSSEA (McGuffin 2007), MODCHECK (Pettitt, McGuffin et al. 

2005) and ProQ (Wallner, Fang et al. 2003), AIDE (Mereghetti, Ganadu et al. 2008) scores 

with secondary structure information. The local quality of a structure can be quantified using 

ProQres, which relies on 3-D information, or ProQprof, using a model generated from 

sequence alignment (Wallner and Elofsson 2006). ProQres quantifies structural qualities such 

as secondary structure, solvent accessibility, and atom-atom and residue-residue contacts to 

have a measure of local quality. ProQprof uses profiles both for target and template (the sum 

of the two scores is arranged as ProQlocal). ModelEvaluator quantifies the absolute quality of 

a protein model using support vector regression (SVR) (Wang, Tegge et al. 2009), and was 

trained using only structural characteristics such as secondary structure, contact map, relative 

solvent accessibility and β-sheet structure.  

2.3.6. State of the Art 

Advancements in these efforts are monitored in the CASP (Critical Assessment of 

Techniques for Protein Structure Prediction) experiment. CASP is a series of protein structure 

prediction community experiments conducted every two years since 1994. Many groups 

working on methods in structure prediction submit the results of their predictions for a set of 

targets whose experimental structures are available but not yet revealed. CASP has over the 

years become a good indicator of the progress of protein based structure prediction 

methodologies. From CASP 6 to 7 improvements have been made mainly for medium or high 

difficulty targets (Kryshtafovych, Fidelis et al. 2007), a trend that continued in CASP8. 

Accuracy and modeling of regions not available from the template (Battey, Kopp et al. 2007; 
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Kryshtafovych, Fidelis et al. 2007; Kryshtafovych, Fidelis et al. 2009) showed improvements 

throughout the CASP experiments in particular have been improvements in the performance 

of fully automated servers. Best predictions were those that used human expertise (Battey, 

Kopp et al. 2007; Kryshtafovych, Fidelis et al. 2007) where the best six predicted structures 

by humans or automated servers in CASP7 and CASP8, ~29% were from the servers. This is 

a clear improvement over CASP5 and CASP6, in which the number was ~15%. In addition 

for 90% of the CASP8 targets at least one of the top six predictions was from an automated 

server (Battey, Kopp et al. 2007; Kryshtafovych, Fidelis et al. 2007; Kryshtafovych, Fidelis et 

al. 2009). This is a success particularly for large scale modeling approaches, where 

confidence on human expertise can be very expensive. 

Many methods are available via web-services, a non-comprehensive summary is given in 

Table 2.I. 

Name Method Website 

3D-JIGSAW Fragment assembly http://bmm.cancerresearchuk.org/~3djigsaw/ 

Biskit 

wraps external programs 
into automated workflow http://biskit.pasteur.fr/ 

CABS Reduced modeling tool http://www.biocomp.chem.uw.edu.pl/services.php 

CPHModel Fragment assembly http://www.cbs.dtu.dk/services/CPHmodels/ 

EasyModeller GUI to MODELLER http://sites.google.com/site/bioinformatikz/ 

ESyPred3D 

Template detection, 
alignment, 3D modeling 

http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo
/esypred/ 

FoldX  

Energy calculations and 
protein design https://genesilico.pl/meta2/ 

GeneSilico 

Consensus template 
search/fragment assembly https://genesilico.pl/meta2/ 

Geno3D 

Satisfaction of spatial 
restraints 

http://geno3d-pbil.ibcp.fr/cgi-
bin/geno3d_automat.pl?page=/GENO3D/geno3d_home.

html 

HHpred 

Template detection, 
alignment, 3D modeling http://toolkit.tuebingen.mpg.de/hhpred 

LOMETS Local Meta threading server http://zhanglab.ccmb.med.umich.edu/LOMETS/ 

MODELLER 

Satisfaction of spatial 
restraints http://salilab.org/modeller/ 

Phyre and Phyre2 

Remote template detection, 
alignment, 3D modeling, 
multi-templates, ab initio 

http://www.sbg.bio.ic.ac.uk/~phyre/ 

Protinfo CM  

Comparative modeling of 
protein structure using 
minimum perturbation and 
loop building 

http://protinfo.compbio.washington.edu/abcm/ 

ROBETTA Rosetta homology modeling 
and ab initio fragment http://robetta.org/ 
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assembly with Ginzu domain 
prediction 

Selvita Protein 
Modeling Platform 

Package of tools for protein 
modeling http://www.selvita.com/ 

SWISS-MODEL 

Local similarity/fragment 
assembly http://swissmodel.expasy.org/ 

TIP-
STRUCTFAST 

Automated Comparative 
Modeling https://tip.eidogen-sertanty.com/Login.po 

WHAT IF Position specific rotamers http://swift.cmbi.kun.nl/whatif/ 

Table 2.I: list of protein structure prediction software,  
(taken from http://en.wikipedia.org/wiki/List_of_protein_structure_prediction_software). 

2.4. Protein Ligand Interactions  

Protein-ligand interactions have a central role in all processes in living systems. 

Understanding of protein interactions with small molecules is of great interest as it allows to 

understand and influence protein function, also for therapeutic applications. Protein 

conformational changes, including folding, as well as many biological functions are mediated 

by intra- and intermolecular interactions. Models for such interactions are required to predict 

preferred orientation of the molecules and the strength of association or binding affinity 

between two molecules. 

Among the most important non-covalent inter-atomic interactions mediating the binding of 

small molecules with protein are, electrostatic and van der Waals interactions (Fig. 2.9). Other 

important factors that contribute to protein-ligand affinity, include entropy changes in the 

solvent and intramolecular contributions arising from the flexibility of the receptor in the 

binding site (Gohlke and Klebe 2002; Bissantz, Kuhn et al. 2010). Hydrogen bonding, salt 

bridge and metal interactions (Gohlke and Klebe 2002) are often treated in the framework of 

the electrostatic model, but in particular for hydrogen bonding, one of the most important 

interactions in biological macromolecules, this may not be fully justified. Hydrophobic 

interactions involve contacts between non-polar parts of the molecule and have been shown to 

play a crucial role in ligand binding (Bissantz, Kuhn et al. 2010). 

Such models may be used to model the process of receptor ligand binding in order to 

determine the binding pose and the binding affinity. However, due to computational 

constraints, is presently not possible to model the binding/unbinding process in unbiased 

molecular dynamics simulations, which would be a direct in silico equivalent of the 

experiment. Instead two families of methods have emerged that address different aspects of 

the problem: Docking methods, reviewed in section 2.4.1 aim the rapid prediction of binding 

modes and relative affinities for a set of potentially interesting compounds. Because many of 
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these methods aim at high-throughput screening they use often simplified models, e.g. 

excluding receptor flexibility. These methods are complemented by methods for affinity 

prediction, which aim at estimation of either absolute or relative binding free energies, usually 

using more sophisticated biophysical models. These methods are briefly reviewed in section 

2.4.2. The FlexScreen approach developed in our group (Merlitz and Wenzel 2004; Fischer, 

Merlitz et al. 2005; Wenzel, Fischer et al. 2007; Wenzel, Fischer et al. 2008), which 

interpolates between these two families by using biophysical forcefields and partial receptor 

flexibility in a docking context, is discussed in section 5.2 of the applications chapter.  

 

 

Figure 2.9: Example of salt bridge between amino acids glutamic acid and lysine demonstrating 
electrostatic interaction and hydrogen bonding,  
(taken from http://en.wikipedia.org/wiki/Salt_bridge_%28protein_and_supramolecular%29). 

2.4.1. Docking Methods 

Docking is a computational method which predicts the preferred orientation of one molecule 

to a second (Lengauer and Rarey 1996). Such methods have been applied in a number of 

contexts: e.g. protein-protein, protein-DNA and protein-ligand docking. Here we focus on 

protein-ligand docking, where a small molecule binds to a protein receptor.  

In the past, two complementary approaches have been investigated: one, where the protein 

and the ligand are describe as complementary surfaces (Jorgensen 1991; Kitchen, Decornez et 

al. 2004); while the second approach evaluates an approximation of the binding energy 
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(scoring function) for every conformation of the complex (Wei, Weaver et al. 2004). In the 

second approach, which we discuss in the following, the protein and the ligand 

conformational spaces are explored with a search algorithm to optimize the scoring function. 

Typical moves in such algorithms include translations and rotations (rigid body 

transformations), and torsion angle rotations (internal changes of the ligand). Finally the 

scoring function for the predicted complex is calculated, yielding an estimate of the affinity. 

This method has some advantages, as for example that the process is very similar to the 

docking process in reality, but the scoring functions used today often give poor 

approximations of the affinity (Warren, Andrews et al. 2004). Depending on the docking 

speed the method can be employed for screening large compound databases in the search for 

drug compounds. One major complication in docking methods are treatment of the 

conformational flexibility of the receptor and treatment of induced fit effects (Matthews, Wei 

et al. 2004; Wenzel and Kokh 2008). 

Generally docking methods involve generation of a set of poses for a ligand that can fit the 

binding site. The poses are ranked based on a scoring function (Mobley and Dill 2009). There 

are different scoring functions that can be used depending on the desired approach. There are 

regression-based or interaction-based scoring functions. Interaction-based scoring functions 

are similar to molecular mechanics forcefields, for example the CHARMm (Brooks, Brooks 

et al. 2009) and AMBER (Cornell, Cieplak et al. 1995), which have been used to calculate the 

enthalpy of binding. Normally the values of non-bonded energy terms (van der Waals, 

electrostatic and internal energy related to bond angles, bond lengths, torsional angles) are 

precalculated on a grid which is used to compute the energy contributions for atoms placed in 

the receptor pocket. Moreover an approximation of solvent effects can be added. Using such 

scoring functions or forcefields the ligand deformation is treated in the same way as the 

interaction between the ligand to the protein.  

Knowledge-based potentials improve modeling of protein complexes by taking advantage of 

the rapidly increasing amount of experimentally derived information on protein-protein 

association. An essential element of knowledge-based potentials is defining the reference state 

for the optimal description of residue-residue pairs in the non-interaction state. 

Studies in scoring functions showed that XSCORE (Obiol-Pardo and Rubio-Martinez 2007) 

performs better than the other empirical scoring functions (Wang, Lu et al. 2003) and is one 

of the most used programs to assess ligand-binding affinity. This program is a consensus 

scoring function, resulted from the arithmetical average of three empirical scoring functions. 
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In addition, the use of the cross-term empirical scoring function implemented in the program 

POLSCORE (Dias, Timmers et al. 2008) was able to predict the orientation of ligands for 

complexed structures with results better than XSCORE (Obiol-Pardo and Rubio-Martinez 

2007; Kulharia, Goody et al. 2008) and DrugScore (Dias, Timmers et al. 2008). 

Many efforts have been made to develop techniques to speed up the search for the best 

conformation. For example, Monte-Carlo methods (Goodsell, Huey et al. 2007) or its 

generalizations (Wenzel and Hamacher 1999) are often used, while other methods use genetic 

algorithms, as for example in the program Gold (Jones, Willett et al. 1997). Fragment based 

approaches use a different approach to sample the large conformational space of a protein-

ligand complex. Different fragments of the ligand are created and then independently docked 

to the protein to be finally assembled again (Taylor, Jewsbury et al. 2002).  

Glide uses a series of hierarchical filters to search for possible locations of the ligand in the 

active-site region of the receptor (Friesner, Banks et al. 2004). 

For the reconnection of the broken bonds the most popular approach is the incremental 

construction algorithm implemented in FlexX (Rarey, Kramer et al. 1996). The de novo 

ligand design methodology is linked to this approach where a totally new ligand is 

constructed by docking fragments of a database to the protein instead of screening a database 

of ligands (Sandor, Kiss et al. 2010). 

2.4.2. Estimates of the Affinity  

Evaluate the affinity of protein-ligand interactions with reliable methodologies has become 

very important view the big impact of drug discovery to detect new lead compounds, and 

chemical genomics to search for inhibitors to elucidate gene function (Gilson and Zhou 2007). 

To increase the impact for these computational methodologies one needs experimental 

determined affinities to correlate with the predicted affinities. The experimental determined 

affinities are used as guidelines to calibrate these empirical scoring functions. Free energy 

studies in the last years have been conducted using relative or absolute binding free energy 

calculations (Guimaraes, Boger et al. 2005), explicit or implicit solvent models (Fujitani, 

Tanida et al. 2005; Michel, Verdonk et al. 2006), etc… 

A challenging task is to calculate the absolute binding free-energies. There are different 

options available such as the free energy perturbation (FEP) (Zwanzig 1954). This approach is 

at least formally rigorous and capable of considering relaxation process in the protein/solvent 

system. On the other hand this method often remains computationally prohibitive because the 

FEP require calculations on large macromolecular assemblies surrounded by explicit water 
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molecules. Moreover, the available computer power does not allow one to use the FEP 

approaches in effective docking studies where different binding sites should be explored.  

An alternative to the FEP calculations can be obtained by using the microscopic all-atom 

linear response approximation (LRA) (Lee, Chu et al. 1992) for the electrostatic part of the 

thermodynamics cycle and approximating the non-electrostatic part by different strategies. 

Another related approach is the widely used linear interaction energy (LIE) method (Hansson, 

Marelius et al. 1998), which adopts the LRA approximation for the electrostatic contribution 

while estimating the non-electrostatic term by scaling the average van der Waals (vdW) 

interaction. A significantly faster option is offered by the semi-macroscopic protein dipoles 

langevin dipoles (PDLD/S) in its LRA form (PDLD/S-LRA) (Sham, Chu et al. 2000). 

Another commonly used semi-macroscopic method is the molecular mechanics Poisson-

Boltzmann/surface area (MM/PBSA) (Cheatham, Srinivasan et al. 1998). This approach 

combines molecular mechanics (MM) energy, solvation free energies with Poisson 

Boltzmann calculations, and entropy estimates from quasiharmonic (QH) or normal mode 

(NMODE) analysis to predict the absolute binding free energy. Because of its unclear 

theoretical foundation this method has drawn some criticism (Pearlman 2005). MM/PBSA 

and the MM/GBSA methods are an apparent adaptation of the PDLD/S-LRA idea of MD 

generation of conformations for implicit solvent calculations, but these methods only 

calculate the average over the configurations generated with the charged solute while ignoring 

the uncharged term. In the MM/PBSA approach, attention has been focused to adjusting 

model parameters, such as atomic radii and solute dielectric constant, to reproduce 

experimental observations, rather than looking for more physical implicit solvent 

representations.  

Accurate estimation of the free energy changes still remains a challenge despite the recent 

developments in computing power and methodology. The level of description included in 

different computational models allows a compromise between the simplicity, accuracy and 

the performance of the calculations. The main concern that remains is how to accommodate 

the number of degrees of freedom to accurately describe the protein/ligand system. 

2.5. Protein Protein Interactions 

Similar to methods studying protein-ligand interactions for small molecule ligands, much 

work has been invested to develop models to predict conformation and affinity of protein-

protein complexes (Stoddard and Koshland 1992; Smith and Sternberg 2002; Wiehe, Peterson 

et al. 2008), which are important regulators of biological function. Such methods are either 
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based on empirical bioinformatics approaches, such as functional matrices, (Marrero-Ponce, 

Medina-Marrero et al. 2005) or on molecular modeling techniques, such as molecular 

mechanics MM Generalized Born/Surface Area GBSA (Massova and Kollman 1999), similar 

to those discussed already in the previous section. 

Protein-protein interactions are essential to understanding the function of biological systems, 

and their characterization has become an important task for both experimental and 

computational approaches in systems biology. Experimental methods include yeast two-

hybrid systems (Uetz, Giot et al. 2000; Ito, Chiba et al. 2001), mass spectrometry (Ewing, 

Chu et al. 2007) and protein chips. 

Computational methods are based on simple sequence and genomic features intuitively 

related to interactions and functional relationships. In the following I will focus on protein-

protein docking and alanine scanning mutagenesis, which are of direct relevance to the work 

reported in this thesis.  

2.5.1. Protein Protein docking 

Protein docking is generally applied to individual pairs of proteins that are known to interact 

(Fig. 2.10). Two principal issues must be addressed to solve this problem; a scoring 

function/energy function must be developed that can discriminate correctly or near-correctly 

docked orientations from incorrectly docked ones, and a search method must be implemented 

to ‘find’ a near-correctly docked orientation. The net problem is much more complicated than 

small-molecule ligand docking simulations, because in protein-protein docking the docking 

site is generally not known. Therefore all respective orientations of the molecules with respect 

to each other must be sampled, which is difficult with a standard dynamic and methods. 

Instead methods exploiting surface shape complementarity (simplest scoring function) are 

used as an initial step, which is defined later. This may be done by discretising the molecule 

into a grid in space and considering which cells are occupied, or by using some sort of 

‘surfacing algorithm’, which calculates the solvent-accessible or solvent-excluded surface, 

and a point set that triangulates.  

Most docking programs comprise two standard steps: generation of thousands of alternative 

poses to sample all possible interaction modes, followed by scoring these poses using an 

energy function. In many cased conformations very similar to the natural one are generated by 

the first step, but scoring functions often fail to rank them properly (Lensink, Mendez et al. 

2007). The fast Fourier transform (FFT) method is the most used technique for the first stage 

of docking. This approach is used in the programs GRAMM (Vakser 1995), FTDock (Gabb, 
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Jackson et al. 1997), ZDOCK, 3D-Dock (Sternberg, Aloy et al. 1998) and DOT (Mandell, 

Roberts et al. 2001) (Table 2.II).  

The rigid-body approximation is abandoned after the two first steps to introduce flexibility. 

Flexibility is introduced, at least in the protein sidechains and possibly also in the backbone. 

In most methods a molecular mechanics forcefield is used to minimize the energy of the 

complex. This part of the simulation is very similar to the simulations used for small-

molecule docking, because here the overall shape of the complex is already known and 

changes little during the simulation. In the following I have compiled a brief overview of 

some of the methods most used in this field. 

 

 

Program Algorithm URL 

3D-Dock 
Global: FFT; rescoring: 
residue potentials; refinement: 
mean-field sidechain multicopy 

www.bmm.icnet.uk/ docking/ 

HEX Global: Fourier correlation of spherical 
harmonics www.biochem.abdn.ac.uk/hex/ 

GRAMM Global: FFT clustering and rescoring reco3.ams.sunysb.edu/gramm/ 

DOT 
Global: FFT for shape 
complementarity and approximate 
Poisson-Boltzmann electrostatics 

www.sdsc.edu/CCMS/DOT 

BIGGER 
(chemera) 

Global: bit mapping; rescoring: multiple 
filters www.dq.fct.unl.pt/bioin/chemera/ 

DOCK 
Global: grid-based energy function; 

flexible docking: random search plus 
incremental construction 

www.cmpharm.ucsf.edu/ 
kuntz/dock.html 

AutoDock 
Grid-based empirical potential Scripps 

Institute flexible docking via Monte Carlo 
search and incremental construction 

http://mgl.scripps.edu/ 

FlexX Fragment assembly energy function: 
(Boehm potential) cartan.gmd.de/flexx/ 

Table 2.II: Programs for protein-protein docking. 
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Figure 2.10: example of docking, (A) and (B) (Receptor-Ligand) are 2 separated structures.  
(AB), Docking predict preferred orientation of one molecule to another. 

2.5.2. Alanine scanning mutagenesis 
Knowledge about affinity and specificity in protein interfaces can be used to inhibit protein 

interactions. Experimental alanine scanning mutagenesis is a powerful tool for analyzing 

interactions in protein interfaces (De Genst, Areskoug et al. 2002) and helps to identify 

hotspots of protein-protein interactions. Scanning all amino acids of a protein-protein 

interface can allows to create a map of which interactions are critical for protein binding and 

which ones are not. As well known, protein-protein complex formation depends, in most 

cases, on only a few interface residues, called ‘hotspots’ (Bogan and Thorn 1998) that account 

for the highest contribution to the binding free energy (Clackson and Wells 1995; Ofran and 

Rost 2007). Alanine scanning still represents a very important experimental effort, even 

though it cannot be applied easily to high-throughput screening of protein-protein interfaces.  

For this reason also computational alanine scanning methods have been developed, which 

calculate the change in binding free energy (ΔΔG) of a protein-protein complex after mutation 
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of an amino acid residue with alanine. Computational prediction methods are used to 

complement experiments and to enhance the understanding of protein stability. Alanine 

scanning methods such as Robetta (Kortemme and Baker 2002), FoldEF (Guerois, Nielsen et 

al. 2002) and knowledge-based methods (K-FADE, K-CON) (Darnell, Page et al. 2007; 

Darnell, LeGault et al. 2008) have been proposed.  

Thermodynamic simulations are mostly used to estimate the free energy of association. 

Although these methods include energy terms, which are important for protein stability, there 

is still a large discrepancy between predicted values and experimentally measured free energy 

changes. Recently, a knowledge-based model was introduced to predict binding ‘hot spots’ 

(Darnell, Page et al. 2007; Darnell, LeGault et al. 2008), but the prediction accuracy was 

relatively low. The Rosetta fragment-based approach has also been extended to study protein-

protein interactions based on sequence information and homology to proteins of known 

structure combined with a de novo protocol for non-homologous portions of the protein. 

Rosetta creates protein structures as well as energies for wild-type proteins and alanine 

screens of protein complexes with available sequence information (Simons, Kooperberg et al. 

1997; Chivian, Kim et al. 2003). The empirical algorithm FoldEF carries out free-energy 

calculations based on three-dimensional structural data using experimental terms for 

interactions and weighting factors for energy terms derived from experimental data sets. It can 

be used for computational alanine screening (CAS) by comparing interaction energies of 

wild-type and mutated complexes (Guerois, Nielsen et al. 2002; Schymkowitz, Borg et al. 

2005). 

In the MM-GBSA approach interaction free energies of individual residues in a protein-

protein complex are estimated by calculating gas-phase energies, solvation free energies, and 

entropic contributions for the free proteins and the complex derived from selected snap shots 

of the trajectories (Huo, Massova et al. 2002; Simonson, Archontis et al. 2002; Gohlke, Kiel 

et al. 2003; Benedix, Becker et al. 2009). Molecular dynamics simulations have also been 

used to detect and characterize hot spots as conserved residues have generally restricted 

flexibility in the unbound state (Rajamani, Thiel et al. 2004; Yogurtcu, Erdemli et al. 2008). 

Many efforts have been made to identify correlations between binding hot spots and protein 

structure and sequence information (Hu, Ma et al. 2000; Ma, Elkayam et al. 2003; Halperin, 

Wolfson et al. 2004). These methods assume that structurally conserved residues are strongly 

correlated with interaction hot spots and that hot spots are not compactly clustered but 

distributed over the interface. Moreover, the identification of similar residues in hot spots in 

various protein families may suggest that affinity and specificity are not necessarily coupled 
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(Ma, Elkayam et al. 2003). Several studies have examined hot spots where systematic analysis 

of the structural features is limited to the solvent accessibility and surface area between the 

unbound and bound states (ΔASA). Qualitative analyses have been performed, but not 

statistical analysis has yet been applied (Cho, Kim et al. 2009). The qualitative nature of the 

analyses performed to date mainly derives from the difficulty of identifying features that 

distinguish hot spots from other residues in interaction interfaces. 
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3. Application of protein structure prediction to identify genetic 

causes for human disease 

3.1. Introduction 

The Human Genome Project (HGP) was a collaborative research program between 

international groups. The human genome project formally begun in October 1990 and 

completed in 2003, it succeeded to sequence all the estimated 20,000-25,000 human genes 

and make them accessible for further biological study (Luria 1989; Collins 1997; Rowen, 

Mahairas et al. 1997). The complete genome is a resource of detailed information about the 

structure, organization and function of the complete set of human genes. This information can 

be thought of as the basic set of inheritable “instructions” for the development and function of 

a human being. Sequencing the human genome raised high hopes to identify causes for many 

diseases and developmental disorders at the genetic level. Ten years after the end of the 

human genome project, these hopes are much more subdued (Barnhart 1988; Roach, Boysen 

et al. 1995; Venter 2010; Venter 2011). However, there have been notable exceptions, such as 

regulatory sequences, non-coding DNA (Carroll, Prud'homme et al. 2008) and the mapping of 

a personal genome (Roukos 2009), motivating a continued search for single gene defects that 

may be involved in specific diseases. Because the cost of sequencing has been reduced 

significantly, it is now possible to sequence significant fractions of the genome of individual 

patients that are afflicted by a particular disease.  

In this chapter I report on a joint experimental/theoretical, effort to investigate possible 

causes for one human developmental disorder, Idiopathic hypogonadotropic hypogonadism 

(IHH) or Kallmann syndrome (KS). Idiopathic hypogonadotropic hypogonadism (IHH), or 

normosmic IHH (nHH) constitutes one of the most common forms of congenital 

hypogonadism (Layman, Cohen et al. 1998). Humans with nHH suffer from absent pubertal 

development due to impaired GnRH secretion and/or action, low serum testosterone (males) 

or estradiol (females), and low FSH and LH without other pituitary pathology (Dode, 

Levilliers et al. 2003; Kim, Herrick et al. 2005; Pitteloud, Acierno et al. 2006). Kallmann 

syndrome (KS) consists of the combination of nHH with anosmia due to impaired migration 

of GnRH and olfactory neurons. Associated anomalies may include synkinesia (mirror 

movements), ataxia, visual abnormalities, hearing loss, mental retardation, dental agenesis, 
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midfacial defects, and renal agenesis (de Roux, Young et al. 1997; Kim, Bhagavath et al. 

2008). Inheritance patterns may be autosomal dominant, autosomal recessive, and X-linked 

recessive, or it may be sporadic. In addition, several cases of digenic disease have been 

reported (Layman, Cohen et al. 1998; Seminara, Messager et al. 2003). 

Human genetic studies of nHH and KS have yielded important insights into the 

identification of causative genes. At least one mutation has been reported in a number of 

human genes. In this chapter I report work on three genes possibly involved in the disorder, 

which encode the proteins CHD7, WDR11 and NELF. Given the genetic information on those 

three proteins, I have investigated the observed mutations with respect to their tendency to be 

detrimental to protein function using bioinformatics based methods and protein structure 

prediction to support the experimental work. All work reported in this chapter was performed 

in a collaboration involving groups at: Molecular Neurogenetics Unit, Center for Human 

Genetic Research, Massachusetts General Hospital; Department of Genetics, Harvard Medical 

School; Institut für Humangenetik, Universitätsklinikum Hamburg; Department of Pathology, 

Harvard Medical School; Department of Life Science, Cell Dynamics Research Center, 

Gwangju, South Korea; Division of Clinical Molecular Pathology and Genetics, Department 

of Pediatrics, Ankara; The Medical College of Georgia; Neuroscience Neurobiology 

Programs in the Institute of Molecular Medicine and Genetics; and Neuroscience Program, 

Medical College of Georgia; Department of Human Molecular Genetics, Max Planck Institute 

for Molecular Genetics,Berlin; Department of Biology and Graduate Division of Basic 

Medical Sciences, St. George’s Medical School, University of London; Division of 

Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles; 

Reproductive Endocrinology and Infertility, Women and Infants Hospital, Medical College of 

Georgia, coordinated by the experimental groups of L. Layman (U. Georgia) and J. Gusella 

(Massachusetts General Hospital/Harvard Medical School) and has been reported in part in 

the following publications: (Kim, Kurth et al. 2008; Kim, Ahn et al. 2010; Xu, Kim et al. 

2011). I have performed all the modeling work for these studies, but report also key 

experimental findings in the subsequent sections to put these into the perspective of the 

overall study. 

In the following I will first summarize the methods I have used (section 3.2) and then devote 

one section each to CHD7 (section 3.3), WDR11 (section 3.4), NELF (section 3.5). In section 
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3.6 I summarize all findings and provide an assessment of the state-of-the-art and an outlook 

for further work.  

3.2. Methods 

An overview of the general principles of computational methods for protein structure 

prediction has been given in section 2.3.1. To support the experimental work reported in this 

chapter I have applied methods of homology based protein structure prediction, the specific 

protocols were similar for all studies in this chapter and are summarized here. For each target, 

templates were selected using PHYRE (Kelley and Sternberg 2009), FUGUE (Shi, Blundell et 

al. 2001) and 3DJURY (Ginalski, Elofsson et al. 2003). The structural model of the sequence 

is built based on the alignment with the chosen template using ClustalW (Higgins, Thompson 

et al. 1996) and EXPRESSO (Armougom, Moretti et al. 2006). ClustalW calculates the best 

match for the selected sequences, and lines them up so that the identities, similarities and 

differences can be seen (Higgins and Sharp 1988; Thompson, Higgins et al. 1994; Aiyar 

2000). The methods are based on protein threading, which exploits the fact that the number of 

different folds observed in nature is quite small (1000); and that almost all the new structures 

submitted to the PDB in the past three years are similar in structural folding to the ones 

already in the PDB (Wang, Fang et al. 2004; Berman, Henrick et al. 2007). I then used MOE 

(Vilar, Cozza et al. 2008) to generate a model on the basis of the alignment. 

In a second set of analysis, we investigated whether specific mutations have a tendency to be 

detrimental to protein function using bioinformatics based methods, specifically we used 

POLYPHEN (Flanagan, Patch et al. 2010), SIFT (Ng and Henikoff 2003). In addition we 

have used SPPIDER (Porollo and Meller 2007) to identify possible binding sites in the 

sequence. SIFT (Sorting Intolerant From Tolerant) predicts whether substitution of an amino 

acid can affects protein function based on sequence homology and on the physical properties 

of amino acids. SIFT can be used to non-synonymous polymorphisms and to missense 

mutations tested in laboratory. The program presumes that important amino acids will be 

conserved in the protein family, and so changes at well-conserved positions tend to be 

predicted as deleterious. For example, if a position in an alignment of a protein family only 

contains the amino acid isoleucine, it is presumed that substitution to any other amino acid is 

selected against and that isoleucine is necessary for protein function. Therefore, a change to 

any other amino acid will be predicted to be deleterious to protein function. The SPPIDER 

protein method consider the single chain of protein resolved 3-D structure to predict the 

residues that could be find at the protein interface. SPPIDER is able to determine the residues 
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that are potentially involved in protein-protein interactions (based on consensus classifier) 

where the predicted interacting sites may belong to the different protein interfaces. 

The POLYPHEN (=Polymorphism Phenotyping) algorithm, uses a set of empirical rules 

based on sequence, phylogenetic, and structural information predicts how damaging a 

particular variant could be. POLYPHEN utilizes not only sequence alignment, but also 

protein structure databases, such as PDB (Protein Data Bank) or PQS (Protein Quaternary 

Structure), DSSP (Dictionary of Secondary Structure in Proteins), and three-dimensional 

structure databases to determine if a variant may have an effect on the protein's secondary 

structure, interchain contacts, functional sites, and binding sites. POLYPHEN assign as 

“probably damaging”, a high confidence score where the nsSNP should affect protein 

structure and/or function; “possibly damaging”, where it may affect protein function and/or 

structure; and “benign”, as most likely having no phenotypic effect. The determination of the 

score is due to the position-specific independent count difference of the two allelic variants in 

the polymorphic position and to the degree of damaging effect a variant may have on 

structural parameters of a protein. The position-specific independent count is a logarithmic 

ratio of the likelihood of a given amino acid occurring at a particular position to the likelihood 

of the same amino acid occurring at any position in the sequence. 

3.3. Investigation of Mutations in CHD7  

Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene have been 

identified in patients with CHARGE syndrome, a multisystem, autosomal dominant disorder 

(Vissers, van Ravenswaaij et al. 2004). Our experimental colleagues identified seven 

heterozygous CHD7 mutations, two splice and five missense mutations, in three sporadic KS 

and four sporadic normosmic IHH patients. Three mutations affect the chromodomain, critical 

for proper CHD7 function in chromatin remodeling and transcriptional regulation of genes, 

suggesting they are deleterious and causative. CHD7’s role is further corroborated by specific 

expression in IHH/KS-relevant tissues, gonadotropin releasing hormone (GnRH) cell lines, 

and appropriate developmental expression. CHD7 represents the first chromatin remodeling 

protein found to have a role in human puberty and the second gene identified to cause both 

normosmic IHH and KS in humans, but no structure for the protein is available.  

In mammals, chromodomain proteins appear to be either structural components of large 

macromolecular chromatin complexes or proteins involved in remodeling chromatin structure. 

Recent work has suggested that apart from a role in regulating gene activity, chromodomain 

proteins may also play roles in genome organization (Jones, Cowell et al. 2000). 
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Transcriptional regulation in an eukaryotic nucleus requires cellular activities that recognize 

and act on chromatin (Orlando and Jones 2002; Steger, Haswell et al. 2003), hence 

chromodomain 1 could be critical for protein function. 

The CHD7 structure with functional domains and the positions of five missense mutations 

and two splice-donor site mutations identified in IHH and KS patients are shown in figure 3.1. 

The function of CR1-CR3 and BRK domains are unknown. Three of the observed mutations 

affect chromodomains.  

 

 

Figure 3.1: CHD7 Domains and Positions of Mutations. The following abbreviations are used: chrom1, 
chromodomain 1; chrom2, chromodomain 2; SANT, SANT DNA binding domain; and LZD, leucine 
zipper domain. Relative sizes and locations of domains are to scale. 

3.3.1. Sequence Based Analysis of Mutations  

We performed a SIFT analysis for CHD7 to investigate potentially deleterious effects of 

point mutations, in frame deletion and a truncation mutations. The SIFT approach uses 

homology to predict whether an amino acid substitution will affect protein function and 

hence, potentially alter phenotype. Among the five point mutations investigated (Fig. 3.1) 

four were predicted to be deleterious (Ser834Phe, Lys2948Glu, Pro2880Leu, His55Arg), 

while not effect was predicted for Ala2789Thr. The prediction of the effect of Ser834Phe, 

located in chromodomain 1 DNA-binding (UniProtKB/Swiss-Prot entry Q9P2D1) (Wu, 

Apweiler et al. 2006), had the highest confidence measure (see methods). The chromodomain 

1 (INTERPRO IPR000953 (Mulder, Apweiler et al. 2003; Mulder and Apweiler 2008)) is a 

highly conserved sequence motif that has been identified in a variety of animal and plant 

species. Analyses of structural models for the relevant domains suggest that Ala2789Thr and 

Pro2880Leu, located in the spacer sequence between the BRK2 and leucine-zipper regions, as 

well as Lys2948Glu, are also detrimental. 
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SIFT was also used to characterize the functional significance of a 22 amino acid (residues: 

ESVDAEGPVVEKIMSSRSVKKQ) in-frame deletion in exon 6 (from 793 to position 814), 

by predicting deleterious effects for all possible amino acid substitutions in this region (Table 

3.I). Deleterious effects were predicted for essentially all point mutations in this region, thus 

deleterious effects will be observed with high likelihood for the deletion of the whole domain. 

The truncation mutation (starting from amino acid 810 with the following domains deleted) 

eliminates the region from amino acid 920-1490, which are highly homologous to the 

chromatin remodeling domain in SWI2/SNF2 chromatin remodeling domain of eukaryotic 

Rad54 (PDB code: 1Z3I) (Thoma, Czyzewski et al. 2005) and thus the essential DNA-binding 

portion of the protein. 

3.3.2. Structural Models of CHD7 Domains  

For most of the CHD7 protein, sequence homology is too low to generate a reliable high-

resolution model. However, combining different techniques we were able to generate a local 

structural models for the 155 AA region around Ser834Phe (795-950) and for the last 300 

amino acids of the C-terminus of CHD7 starting after the BRK domain and including the 

leucine finger. Alignments were generated by PHYRE, FUGUE and 3DJURY. For the first 

region a perfect homology (>99% confidence by PHYRE) to the yeast CHD1 tandem 

chromodomains (PDB code 2h1eA (Flanagan, Blus et al. 2007)) was found for the relevant 

region and converted into a 3-D model (Fig. 3.2). Regions of the model that were predicted 

solely on the basis of homology in 3DJURY are shown in green, but additional information 

was used to substantiate the model.  

For the second region no single approach yielded sufficient homology to build a model, but 

3DJURY found an alignment with the crystal structure of mdia1 gbd-fh3 in complex with 

rhoc (1z2c/B) a signaling protein. The sequence identity of this alignment is insufficient to 

validate the model, but with EMBOSS we found an alignment with 19% identical and 35% 

similar residues (colored sky blue in the model). To further validate the model we performed 

a secondary structure prediction using PHYRE, which computes a consensus prediction based 

on psipred, jnet, sspro. The independently predicted helical regions (colored in wheat) agree 

well with model, as does the leucine zipper domain (colored in blue). The mutations 

Lys2948Glu, Pro2880Leu and Ala2789Thr are all located in highly disordered loop regions 

most likely to affect structural and binding properties of the domains to other CHD7 domains 

or interaction partners. For the last 300 AA no single approach yielded sufficient homology to 
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build a model, so we used different approaches using again 3DJURY, PHYRE and also 

EMBOSS. 

 

 

 

Table 3.I: SIFT scores of the tolerated single point mutations for the in-frame deletion. 

Looking at the mutations, we found that all three AA residues are located in loop regions so 

that mutations of these residues will most likely affect structural and binding properties of the 

domains to their interaction partners (Fig. 3.2 A and 3.2 B). The local secondary structure of 

the region around Pro2880 is a random coil, and the Pro2880Leu mutation induces helix 

formation in this region, predicting a deleterious effect (data not shown). The Ser834 residue 

is also located in a loop region, coordinating strongly with adjacent residues in the 

neighboring helix (Tyr881, context PDYV), so Phe834 may therefore strongly affect protein 

stability.  
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Figure 3.2: CHD7 structure modeling. 
(A and B) Shown are alternate views of the model of the 300 AA C-terminal region of CHD7 based on the 
3DJURY model, which results from the alignment of this region with that of mdia1 gbd-fh3 in complex 
with rhoc (1z2c/B). (A) and (B) show the same model rotated 180 around the vertical axis though the 
center of the molecule. 

3.3.3. Conclusions 

The theoretical work performed for CHD7 is a supportive evidence that the CHD7 

experimental mutations are deleterious as predicted from SIFT analysis, which indicates that 

four of the five missense mutations (Ser834Phe, Lys2948Glu, Pro2880Leu, and His55Arg) 

involve highly conserved AA residues among known species and, therefore, are not likely to 

be tolerated by their observed substitutions (Ng and Henikoff 2003). These findings were also 

corroborated by protein structural analysis of the AA variants Ala2789Thr, Pro2880Leu, and 

Lys2948Glu, which were predicted to alter structural and binding properties of the domains. 

Taken together, both AA conservation and protein structural modeling provide additional 

support that these missense substitutions are highly likely to be deleterious mutations. 

Importantly, one IHH and one KS patient, who both lack the CHARGE phenotype, possess 

the same mutations (Ser834Phe and IVS6þ5G/C) reported in patients with CHARGE 

syndrome (Delahaye, Sznajer et al. 2007; Jongmans, Hoefsloot et al. 2008), further 

demonstrating the allelic relationship of both syndromes. The KS patient with the IVS6þ5G/C 

mutation does not fulfill Blake’s criteria for CHARGE syndrome (Blake, Salem-Hartshorne et 

al. 2005), although she does have hearing impairment and cleft lip and palate. 
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This also indicates that the effects of modifying genes may determine whether the patient 

has the more severe CHARGE phenotype rather than the milder IHH/KS phenotype. 

Interestingly, the mutations have been localized to regions around four exons - 2, 6, 8, and 

38 - suggesting the possibility of hotspots for IHH/KS mutation. Because of these findings 

and the absence of nonsense mutations, which often occur in CHARGE syndrome (Vissers, 

van Ravenswaaij et al. 2004), we provide the first convincing evidence that IHH/KS 

represents a milder allelic variant of CHARGE syndrome. Although its precise function is 

uncertain, CHD7 appears to be important in GnRH and olfactory neuron migration to their 

embryologic destination in the hypothalamus. CHD7 is the first chromatin-remodeling protein 

involved in normal puberty in humans and is the second gene (after FGFR1) identified that 

results in both normosmic IHH and KS. 

3.4. Investigation of mutations in WDR11  

In WDR11 the experimental group found six patients with a total of five different 

heterozygous WDR11 missense mutations, including three alterations (A435T, R448Q, and 

H690Q) in WD domains. WD repeats consist on a conserved protein sequence of ≈40 amino 

acids that typically ends in tryptophan-aspartate. The WD40 protein family comprises many 

regulatory or adaptor proteins involved in signal transduction, and its members may have one 

or several WD40 repeats. WD40 mediates protein-protein interaction, such as the β subunits 

of trimeric G-proteins (Fong, Hurley et al. 1986). WD-containing proteins have 4 to 16 

repeating units, which form a circular structure the β propeller (Li and Roberts 2001). 

In addition, interactions of WDR11 with EMX1 were discovered; EMX1 is a homeodomain 

transcription factor involved in the development of olfactory neurons, and missense 

alterations reduce or abolish this interaction. The experimental findings suggest that impaired 

pubertal development in these patients results from a deficiency of productive WDR11 protein 

interaction. 

3.4.1. Protein Modeling 

Since no structure for WDR11 is available, a model of WDR11 was constructed based on 

homology to an A C. elegans Homologue Of Yeast Actin Interacting Protein 1 (AIP1) (PDB 

code 1NR0) (Mohri, Vorobiev et al. 2004), using the multiple sequence alignment ClustalW. 

The model was constructed on the region from 70 to 739 and used to investigate the four 

observed mutations (R395W, A435T, R448Q, H690Q) with respect to their tendency to be 

detrimental to protein function.  
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The close structural similarity of the model of WDR11, which features two β propeller 

structures in each protein chain (Voegtli, Madrona et al. 2003) (Fig. 3.3A), with the AIP1 

dimer (PDB code 1PGU), indicates that WDR11 will also be an actin-binding protein (Franke 

2004) (Fig. 3.4). WDR11 contains twelve WD domains, nine (second to tenth repeats) that are 

confirmed on the basis of direct comparison with the template structure of AIP1 (Fig. 3.3A 

and 3.3B) and three additional repeats (first, 11th, and 12th) detected by sequence comparison 

outside the region of the structural model. Like AIP1, WDR11 is predicted to exhibit two β 

propellers; WD domains 2–6 are predicted to constitute the first, and WD domains 7–10 are 

predicted to constitute the second (Fig. 3.3A). The structural model for WDR11 overlaps well 

with the known AIP1 structure (Fig. 3.4). This model predicts that WDR11 has twelve WD 

domains and that nine of them (second through tenth) participate in the genesis of two 

consecutive β propellers. 

It is known that proteins with repeated WD domains, each of which consists of four 

antiparallel β strands, form β propeller structures to support interactions with protein-binding 

partners and to organize and stabilize multiprotein complexes (Higa and Zhang 2007). A β 

propeller is characterized by 4–8 bladeshaped β sheets arranged around a central axis; each 

sheet of four antiparallel β strands is twisted so that the first and fourth sheets are close to 

perpendicular. The last β strand of one WD repeat and the first three β strands of the WD 

repeat form a blade of the β propeller (Fig. 3.3A). 

3.4.2. Analysis of Mutations  

Three of the WDR11 missense mutations leading to R395W, H690Q, and F1150L alter 

amino acid residues that are completely conserved in all 13 available mammalian and avian 

orthologs (human, chimpanzee, cow, horse, panda, pig, dog, rat, mouse, rabbit, opossum, 

chicken, and finch), and a fourth change, A435T, is shared in 11 out of 13 species, suggesting 

that these substitutions in six independent sporadic patients are very likely to be detrimental. 

Three of the missense alterations are located directly in the predicted propeller regions of 

WDR11: A435T and R448Q are in the sixth WD domain, and H690Q is in the ninth WD 

domain (Fig. 3.3B).  

In addition we have used SPPIDER to identify possible binding sites in the sequence, as 

such sites are most likely to affect protein function and signaling. For R395W both 

POLYPHEN and SIFT predict a possible damaging effect of the mutation. SPPIDER doesn´t 

identifies this location as a protein interaction site. For A435T all programs give neutral 
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predictions. For R448Q all programs give neutral predictions. For H690Q only POLYPHEN 

predicts a possible detrimental effect, while both other programs give neutral predictions. 

These three mutations are predicted by SPPIDER to alter protein-protein binding domains 

defined by protein modeling and therefore are likely to disrupt normal protein function (Fig. 

3.5). The figure 3.5 shows two prominent external interaction regions (labeled inner and outer 

surface), where WDR11 may interact with multiple other proteins, such as EMX1 or actin, as 

well as an intramolecular interaction region at the interface of the two propeller units.  

3.4.3. Discussion  

The similarity in structure between WDR11 and the known structure of AIP1 suggests that 

WDR11, like AIP1, may form a dimer stabilized by interaction with two zinc ions (Fig. 3.6).  

The two units, each of which has two β propeller elements, are stabilized by two zinc ions 

(shown in orange) (Voegtli, Madrona et al. 2003). Zinc ions in proteins are coordinated by a 

highly conserved set of amino acids, most commonly His, Glu, Asp and Cys (Auld 2001). 

The experimental structure of 1PGU shows the interaction between zinc and amino acids Asp, 

His and Glu. Both Zn ions are stabilized by residues coming from different molecules in the 

dimer and they therefore act as tethers that hold the dimer together.  

Because the two protein structures are not identical, deviations arising from their alignment 

make the position of the Zn ion uncertain to a few angstroms (Fig. 3.4). However, WDR11 has 

the required residues (Asp377, Glu384, His501, His508, and Glu510) for zinc binding in the 

vicinity of the putative zinc position (Fig. 3.7). The R448Q mutation is less than 5 Å from the 

predicted zinc binding site. Arg residues near Zn coordination sites do not directly interact 

with the Zn, but they stabilize their environment because Arg is highly positively charged. 

Replacing Arg with the much smaller Gln residue could influence the zinc-binding propensity 

of WDR11 and affect its dimer formation and interactions, including a potential actin 

interaction predicted by analogy with AIP1 (Kudryashov, Sawaya et al. 2005). 
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Figure 3.3: WDR11 Structural Model Indicating the Mutation Sites (A) Model spanning amino acids 70-
739 of WDR11. WDR11 forms a double propeller structure, in which the WD domains indicated in (B) 
form the main structural constituent. Colors correspond to picture B and the sites of the mutations are 
indicated in orange. (B) Positions of five missense mutations in WDR11; WD domains are depicted as 
ovals. The WD domains predicted on the basis of the model and by SMART are depicted in green and 
pink, respectively. 
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Figure 3.4: Overlay of 1PGU and WDR11. 
WDR11 is colored in red and 1PGU in blue, zinc ions correspond to the orange spheres. 
The sites of mutations in WDR11 are indicated with yellow spheres.  

 

Figure 3.5: Protein-protein interaction region of WDR11.  
We used SPPIDER to detect protein-protein interaction regions are colored in bright cyan, in the model 
for WDR11 non-interacting regions are in dark blue, here shown in a view obtained by rotating panel A 90 
degrees out of the plane on a horizontal axis.  
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Figure 3.6: Two zinc ion binding sites of 1PGU.  

 

Figure 3.7: Glu, His and Asp residues in the model of WDR11 in the vicinity of the proposed zinc position 
based upon 1PGU.  
A single unit of the proposed dimer is shown.  

Taken together, the genetic and functional data work performed for WDR11 provide strong 

evidence for missense sequence variants of WDR11 as a cause of IHH and KS in a proportion 

of cases of this genetically heterogeneous condition. This adds to the growing list of genes 
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known to be mutated in IHH and KS and will open new investigative routes for understanding 

the development of normal human puberty and reproduction.  

3.5. Investigation of mutations in Nasal Embryonic LHRH Factor (NELF)  

Recently, nasal embryonic LHRH factor (NELF) was identified from a differential screen in 

migratory GnRH neurons, suggesting a potential role in KS (Kramer and Wray 2000; Kramer 

and Wray 2001). Only two NELF mutations have been previously reported in humans with 

nHH/KS. One heterozygous NELF mutation was identified in a nHH patient, but neither in 

vitro analysis or mutation screening of additional nHH/KS genes was performed (Miura, 

Acierno et al. 2004). Another KS male had both heterozygous NELF and FGFR1 mutations, 

suggesting a digenic pattern (Pitteloud, Quinton et al. 2007). Additionally, multiplex ligation 

dependent amplification (MLPA) analysis in 100 nHH/KS patients did not reveal any 

heterozygous NELF deletions (Pedersen-White, Chorich et al. 2008). To date, no NELF 

mutations, backed by functional analysis, have been reported in monogenic nHH or KS. 

Therefore, the purpose of the present study was to determine whether NELF mutations occur 

in monogenic nHH/KS or if they are involved in a new digenic pattern.  

In this investigation one heterozygous missense mutation in NELF at position 253 changing 

from Ala to Thr was investigated. This mutation affects a completely conserved Ala253 

residue in frog, chicken, mouse, rat, dog, and human illustrating its structural and functional 

importance. Three of 168 well-characterized nHH/KS patients (Bhagavath, Podolsky et al. 

2006) demonstrated NELF mutations. One is the first identified human NELF mutation, 

supported by in vitro analysis (protein reduction), in a nHH patient without mutations in 11 

other known nHH/KS genes. In addition, two different mutations are involved in new digenic 

patterns of NELF/KAL1 and NELF/TACR3 in two unrelated KS patients. The NELF 

mutations showed in vitro evidence as reduced protein expression, splicing defects, or altered 

nuclear localization. Findings from the experimental group suggest that NELF is associated 

with both nIHH, in which no additional known nIHH/KS gene mutations are identified, and 

KS when mutations in additional genes are present. No NELF mutations have been reported 

in monogenic nHH or KS. Therefore, the purpose of the present study was to determine 

whether NELF mutations occur in monogenic nHH/KS or if they are involved in a new 

digenic pattern. 
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3.5.1. Protein Modeling  

A model for the N-terminal region (209-508) of the protein was constructed based on 

homology to an acetylated Rsc4 tandem bromodomain Histone Chimera (PDB code 2R10) 

(VanDemark, Kasten et al. 2007), using multiple sequence alignment ESPRESSO 

(Armougom, Moretti et al. 2006). Another model was constructed for the extended N-terminal 

region of NELF model from amino acid 209 to 528 (including the mutation A253T) shown in 

figure 3.9B. 

I then used MOE to generate a model on the basis of the alignment, which has low 

confidence for the C-terminal region of the sequence modeled, but high confidence (Fig. 3.8) 

in the vicinity of the region.  

 

Figure 3.8: Quality assessment of the degree of homology in the 70 amino acid N-terminal region of NELF. 
Red regions indicate regions of high homology, while yellow and green regions indicate low homology. 
Dashes indicate insertions in the NELF sequence not present in the template. 

While the homology in the 70 amino acid N-terminal region demonstrated in figure 3.9A 

permits the construction of a detailed model, the resolution of the C-terminal region of the 

fragment is likely to be lower as a consequence of lower homology. However, the overall 

model is sufficient to demonstrate that the C-terminal region of the structure has no 

intramolecular contacts with the N-terminal region where the mutation Ala253Thr 

(highlighted in magenta) occurs, such that the effects and exposure of the mutation can be 

investigated on the basis of the model for the 70 amino acid model shown in figure 3.9A. 
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Figure 3.9: (A) Model of N-terminal region of NELF spanning amino acids 209-331 obtained by 
alignment to 2R10. Blue regions in the model correspond to high-confidence regions based on the 
quality alignment to the template, while red regions correspond to low-confidence regions. The site 
of the mutation, which is located at the outside of the protein withing a high-confidence region, is 
indicated in yellow. (B) Model for the extended N-terminal region of NELF model from amino 
acid 209 to 528. A253T mutation is highlighted in magenta. 

3.5.2. Conclusions  

We have investigated the observed mutation A273T with respect to its tendency to be 

detrimental to protein function using bioinformatics based methods (POLYPHEN and SIFT). 

In addition we have used SPPIDER to identify possible binding sites in the sequence, as such 

sites are most likely to affect protein function and signaling. SIFT predict a possible 

damaging effect of the mutation, while POLYPHEN gives a neutral prediction. In addition 

SPPIDER identify this location as a protein interaction site (Fig. 3.10). 

 

Figure 3.10: The observed mutation (shown in magenta) occurs in the central region of an extended 
protein-protein interaction region highlighted in green on the model of the 209-528 amino acid N-terminal 
of NELF.  
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Experimental and theoretical data indicate that NELF is highly likely to be causative in nHH 

and KS. The heterozygous c.757G>A (p.Ala253Thr) NELF missense mutation in the patient 

resulted in a drastic amino acid substitution from a hydrophobic to a hydrophilic residue. 

Since this variant was not identified in 372 controls and protein expression was markedly 

reduced in vitro, this is highly likely to represent a mutation. Further support comes from 

complete conservation of the Ala253 residue in all seven species identified (Fig. 3.11), as well 

as findings from both SIFT (sorting intolerant from tolerant) and protein modeling.  

 

Figure 3.11: Ala253 in NELF is evolutionarily fully conserved in seven available orthologs. Thus the 
change of this hydrophobic residue to a hydrophilic Thr is likely to be deleterious. This has also been 
shown by SIFT. 

3.5.3. Discussion  

In summary, a large number of nHH/KS patients were screened to determine the prevalence 

of NELF mutations. Three novel human NELF mutations were identified in three unrelated 

nHH/KS patients, as well as three unreported NELF rare sequence variants of undetermined 

significance. The prevalence of 1.8% (3/168) suggests that mutations of NELF are involved in 

the pathogenesis of a subset of nHH and KS cases. We believe that the compound 

heterozygous sequence variants are the first reported NELF mutations, confirmed by reduced 

protein expression in vitro, in a nHH patient who does not possess mutations in any of the 

other common nHH/KS genes.  

In addition, the previously unreported digenic association of NELF/KAL1 and 

NELF/TACR3 was identified in two unrelated KS patients. These findings suggest that 

mutation of one NELF allele may not be sufficient to result in disease unless there is an 

additional NELF allele or coexistent mutation in another gene, such as KAL1 or TACR3. 

These results, along with two previous reports of NELF/FGFR1 (Pitteloud, Quinton et al. 

2007) and PROKR2/KAL1 (Dode, Teixeira et al. 2006), highlight the importance of biallelic 
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mutations in nHH and KS and warrant consideration of mutation screening of known genes to 

add to the growing list of digenic patterns in nHH and KS. 

The human NELF gene has been localized to chromosome 9q34.3. A 9q34.3 deletion 

syndrome has been described, in which two males had abnormal genitalia and a female 

displayed anosmia (Yatsenko, Cheung et al. 2005). The deletion encompasses NELF, thereby 

implicating NELF in the partial KS phenotypes of these individuals. Two NELF mutations 

identified in this study showed reduced protein expression and one demonstrated a splicing 

defect leading to protein truncation. Based upon our findings, as well as the whole NELF 

deletion contained within the 9q34.3 contiguous gene deletion syndrome, we propose that 

haploinsufficiency of NELF is associated with both monogenic nHH and digenic KS.  

3.6. Summary 

Advances in the sequencing of the DNA resulted in an explosion of sequence information 

(Linnarsson 2010), but much of this information cannot be directly related to biological 

function. One important avenue to elucidate the biological function of a protein, or the 

relevance of specific mutations, is the study of its three dimensional structure. Today, 

however, there is still an enormous gap between the number of sequences and the number of 

protein structures. There are still thousands of biologically important proteins waiting to be 

crystallized an effort much more involved that the state-of-the-art for sequencing. For these 

reason computational methods, such as homology modeling, docking, molecular dynamics, to 

name a few, are important to help experimentalist in their work.  

Advances in computational power and innovation have led to the development of novel and 

accurate methods for the 3-D modeling of proteins (DiMaio, Terwilliger et al. 2011). Some of 

the new methods have been proven to be accurate and rapid. However, the capability to be 

able to build a protein model very close to the native structure of the protein reliably is a 

challenging assignment and is still under development (Floudas, Fung et al. 2006). When 

homology to known proteins is high, accurate predictions of protein modeling assist in 

understanding the mechanism of action of proteins and even aid in drug design. Considering 

all the developments in the field, the task seems to be achievable in the near future. 

For proteins with little homology to structurally resolved protein, the situation is more 

complex. Presently available methods only result in low resolution models which can be used 

only indirectly for others applications. Nevertheless even such models help experimentalist on 

the basis of a low resolution model to formulate hypothesis regarding protein function that 

may be experimentally verified. Protein structure prediction can guide mutagenesis 
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experiments, or make hypothesis on relations about structure-function; the conserved regions 

of the protein could be used to identify putative active sites and binding pockets. 

In this chapter I have reported work of the identification causes for Kallman 

syndrome/idiopathic hypogonadotropic hypogonadis, where the identification of mutations in 

candidate genes assumes particular importance toward understanding the molecular basis of 

both nHH and KS. For CHD7 we hypothesized that the gene would be involved in the 

pathogenesis of IHH and KS (IHH/KS) without the CHARGE phenotype and that IHH/KS 

represents a milder allelic variant of CHARGE syndrome. CHD7 represents the first identified 

chromatin-remodeling protein with a role in human puberty and the second gene to cause both 

normosmic IHH and KS in humans. We were able to generate a model for the 3-D structure, 

for which no experimental structure was available, to observe possible functional effects of 

the mutations in the patients exhibiting the syndrome. Our findings indicate that both 

normosmic IHH and KS are mild allelic variants of CHARGE syndrome and are caused by 

CHD7 mutations. For WDR11 six patients where found with a total of five different 

heterozygous WDR11 missense mutations, including three alterations (A435T, R448Q, and 

H690Q) in WD domains important for β propeller formation and protein-protein interaction. I 

have also generate a model for WDR11 where our findings suggest that impaired pubertal 

development in these patients results from a deficiency of productive WDR11 protein 

interaction. Finally for NELF we wanted to determine if mutations in NELF, a gene isolated 

from migratory GnRH neurons, cause normosmic idiopathic hypogonadotropic 

hypogonadism (IHH) and Kallmann syndrome (KS). Studies on patients with NELF 

mutations where confirmed. In vitro evidence of these NELF mutations included reduced 

protein expression and splicing defects. Our findings suggest that NELF is associated with 

normosmic IHH and KS, either singly or in combination with a mutation in another gene. 

The results obtained in this chapter demonstrate that methods of protein structure prediction 

are increasingly able to contribute to and complement experimental efforts to elucidate the 

function of genes for which structural information for the corresponding proteins is 

unavailable. Due to the rise of the number of structures in the PDB data base there is an 

increasing likelihood that at least some regions of the protein in question have high homology 

with a known protein which helps in classifying the function and generates a structural 

template that may be used by other, bioinformatics-based methods to elucidate the role of the 

protein and the relevance of mutations observed in specific patients. In addition prediction of 

protein structure is of growing importance even in absence of high homology, as it can offer 
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some insights into function. The models generated by present-day methods in the case of low 

homology are overall of low quality, such that an analysis based on such models may be used 

to motivate additional experiments or motivate further modeling efforts, but cannot generate 

sound conclusions on their own. In this context the development of methods for absolute 

quality assessment, which would tell us to which degree we can rely on low-resolution 

models, would be a significant step to increase the usefulness of methods for protein structure 

prediction. 
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4. Protein Protein Interactions 

4.1. Introduction 

Biomolecular interactions have an important role in controlling biological processes at the 

protein-protein, protein-DNA, DNA-small molecule and protein-small molecule level. Their 

identification, quantification, and control are key to areas such as drug-discovery, cell 

signaling, elucidation of biosynthetic pathways and understanding of enzyme catalysis. 

Strategies to modulate protein-protein binding by rationally designed, competitive small 

molecules (including peptides) have emerged as a promising avenue for drug discovery 

(Wells and McClendon 2007).  

Recent studies discovered small molecules that bind to ‘hotspots’ on the contact surfaces 

involved in protein-protein interactions. For example: Bcl-XL binders are members of the B-

cell lymphoma 2 (Bcl-2) families and are important regulators of apoptotic cell death (Sattler, 

Liang et al. 1997; Adams and Cory 1998). The binding of Bcl-2 and Bcl-XL with BAK and 

BAD (important in the treatment of cancer) inhibits apoptosis. Recently, compounds that bind 

to the hydrophobic helical domain of Bcl-XL, Bcl-2 and another anti-apoptotic molecule, Bcl-

W were synthetized, where the most potent compound was found to be ABT-737 (Oltersdorf, 

Elmore et al. 2005). These small molecules do not bind well to other anti-apoptotic members 

of the Bcl-2 family such as MCL1 (myeloid cell leukaemia sequence 1) and Bcl-B46. ABT-

737 binds to the same region of Bcl-XL, but not closely mimics the atomic details of the 

peptide. Instead, the small molecule traps a slightly different conformation of Bcl-XL, binding 

in deeper cavities with more folded grooves. 

Another example are TNF disruptors (cytokine tumour-necrosis factor), which are key 

factors in inflammatory responses. Because there is also an important role of TNF in treating 

arthritis it is not surprising that there is considerable interest in developing small molecules or 

peptides that can disrupt the interaction between TNF and its receptors, TNFR1 and TNFR2. 

A class of small molecule that targets TNF was discovered, by using fragment screening (He, 

Smith et al. 2005). These molecules disrupt TNF by binding and displacing one of the three 

monomers that constitute TNF. Because of their moderate affinities, small molecules of this 

class are not seriously considered as drug candidates; however, their discovery shows that 

even interfaces in oligomeric proteins can bind to small molecules. Many progresses have 
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been made in the past years, however for the regulary discovery of inhibitors many more 

promising targets exist. 

As a final example IL-2 binders (cytokine interleukin-2) have a key role in the activation of 

T cells and in the rejection of tissue grafts. A series of small molecules that bind to IL-2 were 

synthetically produced and by testing them showed that the binding surface on IL-2 is 

adaptive and can bind to a small molecule with high affinity using the same main hotspot 

residues. In collaboration with the experimental group of Dr. Katja Schmitz at the KIT 

(Karlsruhe Institute of Technology) I have investigated chemokine interactions with their 

receptors in order to develop peptides that may interfere with this interaction mechanism. 

Chemokines, or chemotactic cytokines, are small signalling proteins that guide the migration 

of cells along a concentration gradient. As such, they are involved in a number of important 

pharmaceutically relevant processes, including inflammation and angiogenesis (Graves and 

Jiang 1995). Chemokines perform their biological function through interaction with 

chemokine receptors, which belong to the family of intensely studied G-protein coupled 

receptors (GPCRs). GPCR’s, which have been notoriously difficult to characterize 

structurally (rhodopsin and human B2-adrenergic GPCR (Rasmussen, Choi et al. 2007) are 

two of the few examples of characterized structures), have been one of the main targets of 

drug discovery over the last 15-20 years: over 30% of the drugs available on the market today 

interfere with GPCR function (Hill 2006). 

In this chapter I have used a biophysical simulation approach, described in section 4.2, to 

investigate the binding hot-spots and affinity of peptides mimicking the unknown receptor for 

several structurally resolved chemokines. Specifically we have first used an all atom free-

energy approach to model the binding of the chemokine CXCL8 (inteleukin-8) to the N-

terminal peptide of its cognate receptor CXCR1 based on existing NMR data. Individual 

amino acid residues have been substituted by alanine and the resulting change in binding 

energy was analyzed to find out which residues of the N-terminus of the receptor make the 

largest contribution to the binding energy. These results increase our understanding of the 

dominant contributions to the free energy of protein-protein interactions and can guide 

experiments aimed at the design of protein interaction inhibitors. 

We then performed a computational alanine screen investigating mutations for a fragment of 

membrane protein ERBIN in complex with the cytosolic domain of ERBB2, a receptor 

tyrosine kinase present on the basolateral membrane of polarized epithelia with important 
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functions in organ development and tumorigenesis (Section 4.4). Finally I extend the work on 

CXCL8 and its receptor CXCR1 to the CCR3 receptor to predict the effect of all possible 

mutations on the previously identified hotspots of the extracellular domain that are crucial for 

eotaxin binding (Section 4.5). We found out by these studies which residues of the receptor 

make the largest contribution to the binding energy. 

Based the atomistic analysis of the protein-protein interaction profiles and the findings from 

binding experiments we will design novel peptides that bind competitively to the chemokines. 

Elucidating the binding motifs and locating their position on a three-dimensional model of the 

receptor reduces the experimental effort to investigate chemokine receptor recognition and 

activation.  

4.2. Methods 

In the investigations reported in this chapter we have used a biophysical simulation 

methodology that combines Monte-Carlo simulations for the conformational space with 

configuration based estimates of the binding affinity, similar to the methods discussed in 

section 2.5. The POEM (protein optimization with energy methods) (Anfinsen 1973; Herges 

and Wenzel 2004; Verma, Gopal et al. 2007; Verma and Wenzel 2009) method is based on 

Anfinsen´s hypothesis, which states that most proteins are in thermodynamic equilibrium with 

their environment in their native state (Anfinsen 1973). For most proteins the native 

conformation corresponds to the global optimum of the free energy of the protein. This global 

optimum of a complex energy landscape can be obtained with high efficiency using stochastic 

optimization methods mapping the folding process found in nature onto a non-equilibrium 

dynamical process that explores the free-energy surface of the protein. Using this method we 

locate not only the native conformation (Schug and Wenzel 2004; Gopal and Wenzel 2006; 

Schug and Wenzel 2006; Verma, Gopal et al. 2007; Verma, Gopal et al. 2008) but typically 

characterize the entire low-energy ensemble of competing metastable states. Based on the 

underlying atomistic biophysical forcefield, these methods can be used to decompose the 

interaction energy of protein complexes into the contribution of individual residues and 

account for structural relaxation of the binding partners after mutation (Herges and Wenzel 

2004; Verma, Patil et al. 2008). 

4.2.1. The forcefield PFF02 

PFF02 is an all-atom (with exception of apolar CHN groups) free-energy forcefield, which 

was initially developed to describe protein folding and large scale conformational change 

(Verma and Wenzel 2009) and thus is intended for simulations in which bond-length and 
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chemically defined bond angles do not change. Similar to other biomolecular forcefields 

PFF02 implements the following non-bonded interactions. Since hydrogen bonding and 

solvent interaction are the two major contributions to protein folding, these interactions are 

specially emphasized and modeled by two contributions specifically adapted to protein data in 

PFF01/02. 

 

• Lennard-Jones: the van der Waals interactions and a repulsive terms are included in the 

forcefield as a Lennard-Jones 6-12 potential.  

 
where i, j represent the atoms included in the forcefield, rij is the distance between these 

atoms and Rij are the Lennard-Jones radii (Rij = Rii Rjj ). The parameters for the Lennard-Jones 

potential were derived as a potential of mean force from experimental data by fitting short-

range (2 Å-5 Å) radial distributions of a set of 138 different proteins which are believed to 

span a wide range of different folds (Avbelj and Moult 1995). 

• Electrostatics: The electrostatic interaction is modeled using a columbic potential 

augmented by group specific dielectric constants accounting for local polarizibility. This term 

is split into main chain and side chain contributions. 

 
where i, j represent the atoms included in the forcefield, qi and qj are the corresponding 

partial charges, rij is the distance between these atoms and εg(i)g(j) are group-specific dielectric 

constants. 

• Hydrogen bonding: Generally hydrogen bonding is not explicitly modeled, but its 

contributions are embedded partly in the electrostatics and Lennard-Jones. PFF02 differs from 

other biomolecular forcefields in recognizing that the angle dependence of hydrogen bonds is 

not well described using only such terms an additional term to describe hydrogen bonding 

was added. The electrostatic interaction between the dipoles of the amino and carboxylgroups 

of the mainchain is given by  

 
(where i, j counts the amino acids with i belonging to the carboxyl- and j the amino group, e 

equals one elementary charge, rXiYj gives the distance of the atoms X from amino acid i and Y 
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from amino acid j). An additional short-ranged term which corrects the hydrogen bonding by 

considering the alignment of the hydrogen bond with respect to the donor and acceptor groups 

(Sipple 1984). 

 
where V0 = −2.12 kcal/(mol A), α is the NHO angle, β the angle between the CO and NH- 

dipoles, R(r) gives the radial and Λ(α) the angular dependence to the correction potential. R(r) 

and Λ(α, β ) are defined as 

 
The hydrogen bonding term in PFF02 interpolates by these contributions. 

 
where λ gives the strength of correction between [0, 1] with λ = 1 meaning that the hydrogen 

bonding is modeled by pure dipole-dipole interaction. In PFF01/02 the value of λ is 0.75. 

• Solvation: The solvent energy and entropy influences the conformational changes and 

binding of proteins and contributes to the free-energy of the system. On the surface of a 

protein there are important solvent effects: the hydrophobic effect, i.e. changes in entropy of 

water molecules depending on the exposition to apolar groups, changes in the conformational 

entropy of the protein sidechains and the modulation of the solvation of charged side groups. 

The solvation effects are modeled in PFF02 via an implicit solvent model based on the 

Solvent Accessible Surface Area (SASA) of the protein (Lee and Richards 1971). The SASA 

is calculated by rolling a water sphere of radius 1.4 Å over the protein surface which is 

defined by the Lennard-Jones radii. The solvation term is given by the relation 

 
where PT(i) is the potential type of atom i, σPT(i) describes the Atomic Solvent Parameter 

(ASP) according to the potential type and A(i) is the SASA of the atom i. The parameters are 

derived by fitting first a SASA model (Eisenberg, Wilcox et al. 1986) to reproduce the 

enthalpies of solvation of the tripeptides Gly-X-Gly (Sharp, Nicholls et al. 1991) and then 

adjusting these parameters to stabilize the native structure of the villin headpiece (Herges and 

Wenzel 2004). 
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• Local electrostatics correction: Amino acids have a preference for secondary structure 

elements. For example tryptophan, threonine occurs mostly in β sheet regions of the 

Ramachandran plot, whereas alanine prefers α-helical region. These preferences are 

influenced by different electrostatic interactions of the main chain dipoles in their local 

environment (Avbelj and Moult 1995). The interaction Elocal is defined as the electrostatic 

energy of the mainchain CO and NH groups of a residue arising from interactions with the 

main chain CO and NH groups within that residue and with the adjoining peptide groups. So 

NHi interacts with COi−2, NHi−1, COi & NHi+1 and COi−1, NHi, COi+1 & NHi+2 interact with 

COi. 

 
where qi is the charge on the atom and rij is distance between the atoms. The parameter ζ is 

an amino acid specific parameter. 

• Torsional energy: A weak dihedral angle dependent energy term is introduced to stabilize 

the residues in the β sheet regions of the Ramachandran plot. The interaction has a favorable 

energy contribution of 0.8 kcal/mol (maximum) for the residues forming β sheet. 

 

4.2.2. Simulation Protocol  

Much of the work in the following chapter focuses on the study of the effect of mutations on 

the binding of proteins and peptides. Mutations were modeled by removing all side chain 

atoms beyond the carbon and attaching a hydrogen atom in their place. In docking simulations 

we generated 5000 random structures by moving the peptide center of mass at least 15 Å 

away from the docking site. In none of these starting conformations the peptide was in contact 

with the chemokine. For each of these decoys we then performed Monte-Carlo simulations 

(Binder 1996). This stochastic approach explores the energy landscape by random changes in 

the geometry of the molecule. In this way, a large area of the configurational space is 

searched. By using an appropriate acceptance criterion thermodynamic properties of the 

system can be evaluated. Monte-Carlo is not a deterministic method and does not describe 

time evolution of the system in a form suitable for viewing, but is well suited to rapidly 

converge thermodynamic properties because its individual step is much large than that of 

molecular dynamics simulations (Leach 2001). The simulations performed here comprised 

center-of-mass moves with a random displacement of 0.5 Å and a rigid body rotation around 
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the center of mass of the peptide by at most 3°. Variations of the dihedral angles of the 

backbone and side chains are considered in the simulation, while intramolecular degrees of 

freedom (i.e. all other angles and bond lengths) are kept constant. For subsequent analysis we 

then decomposed the interaction energy of the two protein complexes into the contribution of 

individual residues.  

4.3. Elucidating specificity for interleukin-8 and its receptor CXCR1 

The first part of this set of investigations centered on the complex of the chemokine 

interleukin-8 (CXCL8) and the N-terminal peptide of its cognate receptor CXCR1 (Fig. 4.1) 

were used (PDB code 1ILP). The aim of this study in collaboration with Dr. Katja Schmitz is 

to find small molecules that bind to chemokines and thus prevent the activation of the 

receptors. In the long run therapies for chronic inflammations, autoimmune diseases and 

allergies may be developed based on these inhibitors. For CXCL8/CXCR1 we performed a 

computational alanine scans based on existing structural data.  

Interleukin(IL)-8 is a member of the C-X-C family of chemokines produced by macrophages 

and other cell types such as epithelial cells. Apart from neutrophils and monocytes (Gerszten, 

Garcia-Zepeda et al. 1999), numerous sessile cell types have been shown to express IL-8 

receptors. These cell types include neurons (Horuk, Martin et al. 1997), various cancer cells 

(Norgauer, Metzner et al. 1996; Miller, Kurtzman et al. 1998; Metzner, Hofmann et al. 1999), 

and endothelial cells (Murdoch, Monk et al. 1999). CXCL-8 shows high-affinity binding to 

the CXCR1 (IL-8 receptor type 1) and the CXCR2 (IL-8 receptor type 2). Although the 

CXCR1 is selectively activated by IL-8 only, the CXCR2 responds to several additional 

chemokines including growth-related protein-α (GROα), neutrophil-activating peptide-2, and 

epithelial-derived neutrophil attractant-78. This chemokine is one of the major mediators of 

the inflammatory response such as for example gingivitis (Huang, Haake et al. 1998) and 

psoriasis (Utgaard, Jahnsen et al. 1998). 

We used the all-atom free-energy modeling approach described in section 4.2 to calculate 

the binding energy of the complex and to decompose the interaction energy into the 

contributions of individual amino acids. To identify amino acids with important contributions 

to the total binding energy we conducted an in silico alanine mutation screen of the receptor-

peptide (Table 4.I).  
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Residue No. Aminoacid Solvation Side chain 
electrostatics

Main chain 
electrostatics

Backbone 
torsion

Lennard-Jones Total

1 Met 0,90 -2,82 -0,30 0,09 0,48 -1,65
2 Trp 0,85 -1,21 -0,29 0,09 0,50 -0,06
3 Asp 0,90 6,14 -0,30 0,09 0,48 7,31
4 Phe 7,79 -0,05 -0,24 0,09 0,84 8,43
5 Asp 1,02 6,95 -0,54 0,03 0,59 8,05
6 Asp -1,01 6,11 -0,30 0,09 0,62 5,51
7 Gly -0,52 0,29 -0,30 0,09 0,45 0,01
8 Met 3,07 0,29 -0,30 0,09 0,59 3,74
9 Pro 2,09 0,25 -0,31 0,09 0,67 2,79

10 Pro 2,07 0,20 -0,23 0,09 0,78 2,91
11 Asp 1,09 9,42 -0,30 0,09 0,53 10,83
12 Glu 1,29 6,23 -0,30 0,09 0,72 8,03
13 Asp 0,90 7,14 -0,30 0,09 0,48 8,31
14 Tyr 4,15 -0,07 -0,30 0,09 0,59 4,46
15 Ser 1,28 0,29 -0,30 0,09 0,50 1,86
16 Pro 2,99 0,25 -0,26 0,09 0,69 3,76  

Table 4.I: Energy contributions (in Kcal/mol) of alanine substitutions of individual amino acids in the N-
terminal peptide of CXCR1. The total energy is split into contributions by solvation effects, electrostatics 
side and main chain, backbone torsion, and Lennard-Jones potential. Large changes in interaction energy 
can be attributed to either solvation effects in case of polar and nonpolar residues or to electrostatic effects 
for charged side chains. Bold typeface indicates stronger interactions. 

 

 

Figure 4.1: Annotated crystal structure of the CXCL8 ligand (surface) and its receptor peptide CXCR1 
(stick) The color-coded representation of the receptor peptide left panel [oxygen (red), carbon (green), 
nitrogen (blue), hydrogen (white), and sulfur (yellow)] illustrates the close fit to the ligand protein. 
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Figure 4.2: The histogram reports the energy differences (in Kcal/mol) for all 17 residues of the N-
terminal peptide of CXCR1 in complex with chemokine CXCL8. Colours of the columns identify different 
kinds of amino acids: Red for AA with a polar acidic side chain; green for AA with a non polar side chain 
and orange for AA with a polar side chain. 

We applied this analysis to a total of 17 residues from the N-terminal of CXCR1 receptor 

peptide mimic, which were individually mutated to alanine. The results are summarized in 

figure 4.2. As expected, mutations in the first two residues, which hardly interact with the 

chemokine, have little effect on the binding energy. The strongest effect arises from mutations 

of charged residues to apolar alanine, which indicates strong electrostatic components for the 

stabilization of this complex, followed by the polar amino acids. Not surprisingly, the 

substitution of non-polar amino acids with alanine results in smaller changes in the 

stabilization energy in general. In total, a significant jump of energy was observed for 7 of the 

17 N-terminal amino acids of CXCR1. These findings are in agreement with experimental 

observations, which found strong effects for mutations on Pro9, Tyr15, Pro17, Asp12, Glu13, 

and Asp14 (Skelton, Quan et al. 1999) and substitution of Asp3 (Baggiolini and Moser 1997). 

4.4. Elucidating specificity for ERBIN and its receptor ERBB2 

In the second part of the study we investigated the ERBIN/ERBB2 complex, which is 

involved in the sorting of tyrosine kinase ERBB2 to the basolateral membrane of epithelial 

cells (Jaulin-Bastard, Saito et al. 2001; Dillon, Creer et al. 2002). ERBIN, binds to ERBB2 
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via its PDZ domain, a peptide sequence which acts as a dominant basolateral targeting signal 

in epithelial cells (Borg, Marchetto et al. 2000; Jaulin-Bastard, Saito et al. 2001). The ERBB2 

C-terminus contains two motifs corresponding to the consensus sequence of tyrosine-based 

basolateral targeting signals, N-P-X-Y and Y-X-X, where represents a hydrophobic residue. 

Dillon et al. (Dillon, Creer et al. 2002) mutated the critical tyrosine residue to alanine and 

confirmed that the mutation of tyrosine causes a significant redirection of the mutant protein 

to the apical membrane. 

Since the structure of the ERBIN-PDZ domain bound to the C-terminal tail of the ERBB2 

receptor has been elucidated (PDB code 1MFG), we chose this protein complex as another 

model for a computational alanine screen (Fig. 4.3). We have applied the simulation protocols 

described above to ERBIN in complex with the cytosolic domain of ERBB2, a receptor 

tyrosine kinase present on the basolateral membrane of polarized epithelia with important 

functions in organ development and tumorigenesis. 

Of the 9 mutated amino acid residues only the alanine substitution of Tyr2 corresponding to 

tyrosine Tyr1248 of the full receptor protein sequence leads to a significant change in 

interaction energy. This agrees well with experimental observations and an analysis of the 

crystal structure in which the phenyl ring of Tyr1248 is accommodated in a pocket formed by 

Ser1296, Gly1301, Asn1304, and Pro1305 stabilized by hydrophobic effects and hydrogen 

bonds to asparagine Asn1304 via ordered water molecules. These stabilizing interactions are 

lost upon alanine substitution leading to the observed change in interaction energy. 

Phosphorylation of Tyr1248 similarly disturbs the interaction of ERBB2 and the ERBIN-PDZ 

domain which is likely to be the mechanism by which phosphorylation modulates in ERBB2 

signaling (Birrane, Chung et al. 2003). Considering the decomposition of the energy 

contributions (Table 4.II) we find a pattern mirroring the results of the previous complex, 

where essentially all of the energy change is either due to electrostatic or solvent 

contributions. 
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Residue No. Aminoacid Solvation Side chain 
electrostatics

Main chain 
electrostatics

Backbone 
torsion Lennard-Jones Total

1 Glu 0,53 -0,11 -0,05 0,05 0,12 0,54
2 Tyr 5,42 -0,23 -0,05 0,05 0,66 5,85
3 Leu 0,77 0,1 -0,06 0,05 0,28 1,14
4 Gly 0,53 0,1 -0,05 0,05 0,1 0,73
5 Leu 3,21 -0,36 -0,05 0,05 0,28 3,13
6 Asp -0,46 0,44 -0,05 0,05 0,27 0,25
7 Val 2,72 0,1 -0,05 0,05 0,17 2,99
8 Pro 0,54 0,13 -0,12 0,05 0,15 0,75
9 Val 2,42 0,1 -0,06 0,05 0,48 2,99

 
Table 4.II: Energy contributions (in Kcal/mol) of alanine substitutions of individual amino acids in the N-
terminal peptide of ERBIN. The total energy is split into contributions by solvation effects, electrostatics 
side and main chain, backbone torsion, and Lennard-Jones potential. Large changes in interaction energy 
can be attributed to either solvation effects in case of polar and nonpolar residues or to electrostatic effects 
for charged side chains. Bold typeface indicates stronger interactions. 

 

Figure 4.3: The histogram reports the energy differences (in Kcal/mol) for all 9 residues of the receptor 
peptide of ERBIN in complex with ERBB2. Colours of the columns identify different kinds of amino 
acids: Red for AA with a polar acidic side chain; green for AA with a non polar side chain and orange for 
AA with a polar side chain. 

On the basis of the structure of the peptide ligand and parts of the receptor domain we were 

able to identify the most important interaction hot spot in agreement with experimental data 

(Dillon, Creer et al. 2002; Fan, Wong et al. 2005). 

4.5. Elucidating specificity for eotaxin and its receptor CCR3 

We extended this work to predict the effect of all possible mutations on the previously 

identified hotspots of the extracellular domain of receptor CCR3 that are crucial for eotaxin 
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binding. The CC chemokine eotaxin plays a predominant role in eosinophil trafficking in vivo 

by specifically activating the chemokine receptor CCR3. CCR3 is a seven-helix 

transmembrane protein, and it is suggested that the binding site consists of a complex of 

several domains (Efremov, Truong et al. 1999; Ma, Bryce et al. 2002). This β chemokine 

receptor can be found on eosinophils, subsets of TH2 cells, basophils, mast cells, neural tissue, 

and some epithelia cells (Tang and Powell 2001; Humbles, Lu et al. 2002). The first four cells 

types are crucial in allergy response (Humbles, Lu et al. 2002). 

CCR3 is expressed on these cells why activation of CCR3 by eotaxin is believed to play a 

role in allergic diseases (e.g. asthma, dermatitis, and sinusitis) (Nickel, Beck et al. 1999) and 

in responses to parasitic infections (Jose, Adcock et al. 1994; Baggiolini 1996; Rankin, 

Conroy et al. 2000). CCR3 is specific for eotaxin and its analogs eotaxin-2/MIPF2 

(Forssmann, Uguccioni et al. 1997) and eotaxin-3 (Kitaura, Suzuki et al. 1999) although 

CCR3 can also be activated by the chemokines RANTES, MCP-2, MCP-3, and HCC-2, 

which have lower receptor specificity (Ponath, Qin et al. 1996; Heath, Qin et al. 1997). 

Elucidating the full binding motifs and locating their position on a three-dimensional model 

of the receptor CCR3 may help reduce the experimental effort to investigate chemokine 

receptor recognition and activation, but presently no crystal structure for these receptors is 

available. For this reason we have initiated our study by constructing an homology model for 

the CCR3 receptor. An initial template selection was made based on homology to the crystal 

structure of bovine rhodopsin (PDB code 1F88) (Palczewski, Kumasaka et al. 2000) and 

existing homology models of CCR5 and CCR2 (Shi, Liu et al. 2002; Liu, Hwangbo et al. 

2004), the template selection was made using the 3DJURY (Ginalski, Elofsson et al. 2003), 

PHYRE (Kelley and Sternberg 2009). Based on these data, a model for Eotaxin receptor 

CCR3 was constructed on the region from 1 to 355 using as a template CCR2 chemokine 

receptor (PDB code 1KAD) (Singh and Somvanshi 2009). The two receptors CCR3 and 

CCR2 are very similar in structure and function so we used ClustalW (Thompson, Higgins et 

al. 1994) to generate an alignment between CCR3 and CCR2 (Fig.4.4). We used MOE to 

generate a final model on the basis of the alignment (Fig.4.5). 
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Figure 4.4: Alignment between CCR3 and CCR2, performed using ClustalW. 
Color corresponds: red, AVFPMILW Small (small+ hydrophobic (incl.aromatic -Y)); Blue, DE Acidic; 
Magenta, RHK Basic;Green, STYHCNGQ Hydroxyl + Amine + Basic – Q. 
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Figure 4.5: Model for complex of the CCR3 receptor (red) with eotaxin ligand (yellow). 

We applied this analysis to a total of 35 residues from the N-terminal of CCR3 receptor, 

which were individually mutated all the possible 20 amino acids. The results are summarized 

in figure 4.6. The result matrix colored each mutation on a red-green gradient depending on 

the lower (red) or stronger (green) binding energy interaction compared with the native 

structure. Mostly all residues showed little change on the binding energy compared to the 

WT. 15 residues showed a stronger binding energy interaction compared to the native 

structure, in particular the amino acids ILE and LEU for the first residue of the N-terminal of 

the receptor. To demonstrate our findings peptide sequences from chemokine receptors 

containing the most promising hot spot amino acids from the list will be synthetized and 

tested in a set of binding experiments by the group of Dr. Katja Schmitz. 
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Figure 4.6: Results of all the possible mutations of the Receptor CCR3, where green spots mean stronger 
interaction compared to the original structure and red spots mean fewer interaction compared to the 
original structure. 
X-axis on top shows all the 20 amino acid; X-axis on bottom shows the energy values (Kcal/mol); Y-axis 
shows all the 35 residue mutated of the CCR3 receptor. 

4.6. Summary 

Because protein-protein interactions are so important in regulating biological pathways and 

increasing information about key molecules involved in various different regulatory pathways 

continuous to become available, modulation of protein-protein interactions has become an 

important goal to affect biological function (Wells and McClendon 2007).  

The experimental study of hot spots in protein-protein interfaces has generated a large 

amount of structural and functional data, which has been compiled in hot spot databases 

(Thorn and Bogan 2001; Fischer, Arunachalam et al. 2003). Collections of experimental data 
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have, in turn, been used to develop and test computational methods for the detection of hot 

spot residues (Guerois, Nielsen et al. 2002; Kortemme and Baker 2002; Darnell, Page et al. 

2007; Ofran and Rost 2007) and to derive common characteristics of hot spots, such as their 

clustering in densely packed regions with an abundance of conserved polar residues and 

cooperativity of hot spot regions (Bogan and Thorn 1998; Hu, Ma et al. 2000; Ma, Elkayam et 

al. 2003; Keskin, Ma et al. 2005). 

Different approaches have been used to predict hot spots: in a physical and knowledge-based 

approach neural networks have been trained to recognize specific features of interface 

residues leading to the KFC model for the rapid prediction of hot spot residues from structural 

data (Darnell, Page et al. 2007; Darnell, LeGault et al. 2008). 

Training of a network on sequence environment, environmental trace, and accessible surface 

area permits the prediction of hot spots with high positive accuracy from sequence data alone 

(Ofran and Rost 2007). Although methods based on large amounts of empirical data provide 

reliable predictions with a minimum of computational resources, the role of individual 

features in the decision making of the neural network may not be straightforward to interpret. 

Clustering of conserved residues within “hot regions” and their preorganization in the 

unbound state were found to be characteristic of hot spots in studies employing molecular 

dynamics for conformational analysis of individual residues after multiple structure alignment 

of complexes obtained from PDB (Ma, Elkayam et al. 2003; Keskin, Ma et al. 2005; 

Yogurtcu, Erdemli et al. 2008). 

Modeling protein-protein interactions can aid our understanding of fundamental biological 

processes and help to design lead structures in drug development. Free-energy methods, as the 

one pursued here, are similar in spirit to MM-GBSA, but model conformational change 

solvent accessible surface area SASA based solvation model of a given backbone 

conformation. Our approach has been used to predict the native conformation of a number of 

small proteins up to 60 amino acids in size, which documents its use in describing intra-

molecular interactions, but was not previously applied to problems of protein-protein 

interactions.  

With the studies reported in this chapter I have first done an alanine scanning of the first 17 

residues of the N-terminal of the chemokine receptor CXCR1 and for the 9 residues of the C-

terminal of the ERBB2 receptor. 

For CXCR1 a significant change in energy was observed for 7 of the 17 N-terminal amino 

acids and for ERBB2 only one amino acid led to a significant change in interaction energy.  
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To complete the investigation 35 residues from the N-terminal of CCR3 receptor, were 

individually mutated with all the possible 20 amino acids. Some residues showed a stronger 

binding energy interaction compared to the native structure. 
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5. Protein Ligand Interactions 

5.1. Introduction 

Protein-ligand interactions are essential for almost all biological processes. For many 

proteins involved in diseases the biophysical mechanisms that activate potential binding 

partners to associate remains poorly understood. New developments in protein-ligand 

interactions are the studies in chemogenomics which are among the key challenges for drug 

discovery. Chemogenomics use the comprehensive genomic data available after the 

elucidation of the human genome and others in order to identify effective new medicines 

(Agrafiotis, Lobanov et al. 2002; Zheng and Chan 2002; Klabunde 2007). For example 

numerous chemogenomic approaches apply the classification of target families (such as ion 

channels, kinases, GPCRs) or protein subfamilies (such as purinergic GPCRs) without taking 

into account similarities of the assumed ligand-binding sites (Rognan 2007). 

In collaboration with the experimental groups of Dr. Katja Schmitz at KIT (Karlsruhe 

Institute of Technology) (section 5.3), Prof. Stefan Bräse (KIT) (section 5.4) and Dr. Pérez-

Sánchez with Prof. J. Corral at the University of Murcia (section 5.5), we have investigated 

the interactions of small molecule binding protein receptors and performed virtual screening 

for drug discovery. Specifically we have first performed a binding study of small molecules 

synthetized by the group of Dr. Katja Schmitz with the chemokine receptor CXCR1 to further 

extend the work reported in the previous chapter (see section 4.1 for general information on 

chemokines). The aims of this study were to identify possible binding sites of the molecules 

with IL8 and to rank the small-molecule IL8 interactions for the different candidate binding 

sites. 

In a second study we have constructed an homology model for CB1 and CB2 receptors and 

performed docking simulations for a set of compounds that have been investigated 

experimentally in the group of Prof. Stefan Bräse and Prof. Christa Müller. To guide further 

synthesis efforts we studied a set of derivatives of the coumarine scaffold, which was 

functionalized at a specific position with aliphatic sidegroups in order to increase the affinity. 

The primary goal of our simulations was to understand changes in the binding mode and the 

binding energy and to develop structurally related novel compounds with a better affinity. 

Finally in collaboration with the University of Murcia (Spain), we developed a structure-

based model for AT-II regulation to develop new anticoagulation drugs. We performed 
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docking simulations for the complex antithrombin/heparin, which were followed by a large-

scale in silico screen comprising over 800.000 ligands that resulted in a new promising 

compound to regulate blood coagulation in humans. Before reporting in detail in these studies 

in sections 5.5.1-5.5.2 I review the methods used in section 5.2. and conclude with a general 

overview in section 5.6.  

5.2. Methods 

FlexScreen (Fischer, Basili et al. 2007) performs fully automated in silico screening of a 

large 3D database of ligands against a structurally resolved protein receptor. Each ligand of 

the database is docked against the receptor with the stochastic tunneling method (Wenzel and 

Hamacher 1999) using an all-atom representation of both ligand and receptor. The scoring 

function contains a sum of the van der Waals, electrostatic, hydrogen-bond and solvation 

energies. The VdW and hydrogen-bond parameters are taken from OPLSAA (Jorgensen and 

N.A. 1997) and AutoDock (Goodsell, Morris et al. 1996), respectively, the partial charges of 

the receptors are computed with MOE, and the atomic solvation parameters where solvation 

energy is described as a sum of energies for the individual atoms that are assumed to be 

proportional to the solvent accessible surface area and atomic solvation parameter, ASP. All 

atoms are divided into two groups: hydrophobic and hydrophilic effects, so that only two 

ASPs have to be optimized.  

The docking simulations use a cascadic approach: the total number of simulation steps is 

divided into several partitions of similar computational effort. In the first partition 100 

simulations with 7500 computational steps, in the second partition 5 simulations with 30000 

computational steps and in the third partition 2 simulations with 75000 computational steps 

are performed. In partition 2 and 3 only the best energetic trajectories of the former partition 

are continued. To avoid in partition 2 a simulation of nearly identical conformations, we 

divide the final 100 conformations in stage 1 into three different clusters: cluster 1 includes 

the best-scoring conformation and all others with a similar binding pose (RMSD less than 0.8 

Å), cluster 2 includes the best-scoring ligand outside cluster 1 and all conformations with a 

RMSD of 0.8 Å and cluster three contains all other conformations. We start stage 2 with the 

two top-scorers of clusters 1 and 2 and the top-scorer of cluster 3. For partition 1 we use three 

different starting conformations which are randomly selected for each of the 100 simulations: 

a relaxed conformation, a conformation with largest atom-to-atom distance and a 

conformation with smallest radius of gyration. 
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The cascadic approach balances diversity and computational effort and invests the largest 

computational effort into the most promising candidates. The difference in the scoring 

function for the final results of partition 3 can be used to estimate the error and may indicate if 

the binding mode is unique. For statistical reasons we repeated each docking run ten times. To 

limit the effect of outliers, we use the median of the 10 results for correlation analysis. 

Each of the simulations in the cascade employs the stochastic tunneling method (STUN) as 

the global optimization technique (Wenzel and Hamacher 1999). This method allows an all-

atom minimization process to “tunnel” through forbidden regions of the potential energy 

surface, which is subject to a non-linear energy transformation: 

 
Here, x = γ (E(r) − E0). E0 is the lowest minimum encountered by the dynamical process so 

far, and γ is a problem-dependent parameter, which controls the steepness of the 

transformation.  

Scoring performance of the FlexScreen approach was benchmarked by using of the ASTEX 

database based on over 80 target proteins of different classes with available ligand-bound X-

ray crystal structures (Fischer, Basili et al. 2007). The ASTEX/CCDC receptor-ligand 

database was also used to study the accurancy of the binding modes performance where over 

80% of the ligands dock within 2 Å of the experimental binding mode and for 60 complexes 

the docking protocol locates the correct binding mode in all of ten independent simulations. 

Selectivity was investigated in an analysis of 12 dataset of the DUD database (Kokh and 

Wenzel 2008). For each protein the database includes: 1) crystal structures of the receptor and 

its native ligand; 2) a set of the annotated ligands that should in principle dock well (15-450 

molecules); 3) a set of the decoys (about 36 molecules for each annotated ligand) that 

resemble the particular ligand in physical properties, but differ from the ligand topologically, 

so that they are likely to be nonbinders (Huang, Shoichet et al. 2006).  

Investigation on the enrichment rates of rigid-, soft- and flexible-receptor models was also 

performed for 12 diverse receptors using libraries containing up to 13000 molecules (Kokh 

and Wenzel 2008). For the rigid-receptor model, a high enrichment (EF1 > 20) was observed, 

but only for four target proteins. For the soft-receptor model improved docking rates were 

observed, but showed a reduced enrichment rates. Finally for the flexible side-chain model 

with flexible dihedral angles for up to 12 amino acids (3−8 flexible side chains), showed an 

increasement of both binding propensity and enrichment rates. 
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5.3. Small Molecule Ligands for Binding Chemokines 

A promising avenue for drug discovery would be the rational design of peptides or small 

molecules that bind strongly to the chemokine to prevent the chemokine from binding to its 

receptor. After the complete scanning mutation for the two chemokine receptors CXCR1 and 

CCR3 reported in section 4.5, we performed in collaboration with Dr. Katja Schmitz a study 

on small molecules that could bind to the chemokine receptor CXCR1. The binding energy of 

a set of 19 small molecules, which were active in a chip assay against chemokine interleukin-

8, was investigated by receptor-ligand binding simulations. From the assay data it remained 

uncertain, whether the molecules would bind specifically or non-specifically to IL8. Only 

molecules binding at or near the receptor binding site IL8 are likely to interfere with 

chemokine receptor binding.  

The aims of this study were therefore to identify possible binding sites of the molecules with 

IL8 and to rank the small-molecule-IL8 interactions for the different candidate binding sites. I 

have used Qsitefinder (a method of ligand binding site prediction) (Laurie and Jackson 2005) 

to identify 10 possible binding sites (Fig. 5.1), which cover essentially the whole protein 

surface, including the receptor binding site of IL8 (binding site 1 and 9, Fig. 5.2). Each ligand 

was docked independently at each of the 10 docking site. 

The energies of the lowest energy binding pose for each ligand and site are summarized in 

Table 5.I and figure 5.3. The data demonstrate that there are a few sites, where the molecules 

may weakly bind. Molecule 3, 4, 17 and 19 have the best energy at binding sites 7, 8, 9, 

respectively, while binding site 6 shows a very low binding energy compared to the others for 

all ligands. Binding site 9 (Fig. 5.2) is near the position where interleukin-8 interacts with his 

receptor. In view of these results binding site 9 poses a good candidate to be tested 

experimentally with the 4 small molecules found to interact strongest with this binding site.  
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Figure 5.1: Illustration of the 10 binding sites predicted for Inteleukin-8 using Q-SiteFinder.  

 

 

Figure 5.2: Binding site 9 between CXCR1 (blue) and one of the 19 small molecules (magenta) after 
prediction with Qsitefinder. 
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PEPTIDE 
RECEPTORS

BINDING 
ENERGY          

1

BINDING 
ENERGY               

2

BINDING 
ENERGY               

3

BINDING 
ENERGY                 

4

BINDING 
ENERGY                  

5

BINDING 
ENERGY                  

6

BINDING 
ENERGY                  

7

BINDING 
ENERGY                  

8

BINDING 
ENERGY                        

9

BINDING 
ENERGY                     

10

Molecule 1 -128,28 -136,91 -153,92 -113,84 -120,56 -97,58 -127,06 -149,29 -136,69 -150,85
Molecule 2 -224,35 -201,46 -235,15 -173,46 -172,00 355,21 -224,63 -225,29 -234,34 -223,77
Molecule 3 -255,12 -266,04 -282,73 -294,18 -267,36 0,00 -372,61 -387,64 -416,29 -326,21
Molecule 4 -242,4573 -226,11 -269,31 -177,58 -200,10 -143,81 -266,35 -272,59 -307,03 -277,36
Molecule 5 -126,45 -130,35 -135,24 -106,88 -110,75 -63,78 -141,49 -119,20 -140,22 -129,00
Molecule 6 -71,18 -80,82 -100,31 -73,53 -72,51 -73,43 -113,47 -89,52 -116,84 -89,58
Molecule 7 -85,36 -58,92 -86,22 -63,99 -63,73 -44,40 -97,89 -75,99 -83,08 -77,27
Molecule 8 -105,73 -102,77 -137,66 -101,04 -85,96 1897,69 -110,06 -117,11 -112,06 -117,84
Molecule 9 -138,13 -118,35 -156,16 -110,86 -104,78 35,00 -135,17 -144,52 -148,18 -134,07

Molecule 10 -143,93 -129,45 -150,25 -120,87 -116,51 178,81 -135,05 -107,81 -161,24 -174,27
Molecule 11 -90,43 -78,21 -100,52 -75,97 -80,16 -92,45 -89,44 -95,48 -104,12 -95,04
Molecule 12 -104,53 -109,19 -122,25 -114,25 -92,56 7308,75 -142,01 -141,23 -141,90 -152,29
Molecule 13 -83,66 -126,16 -105,59 -106,94 -89,48 1179,04 -142,86 -133,79 -130,63 -136,56
Molecule 14 -128,59 -146,23 -150,29 -110,22 -102,39 388,59 -127,87 -141,85 -138,02 -134,54
Molecule 15 -88,40 -79,54 -97,61 -73,90 -60,26 -65,35 -80,99 -79,09 -77,19 -79,96
Molecule 16 -96,88 -106,99 -108,26 -98,58 -81,55 -74,12 -109,31 -114,69 -125,93 -119,46
Molecule 17 -198,43 -216,60 -248,83 -188,75 -140,81 0,00 -258,49 -289,23 -288,31 -239,82
Molecule 18 -102,53 -78,71 -82,39 -82,31 -76,89 -31,88 -67,36 -90,30 -75,99 -90,32
Molecule 19 -239,28 -187,79 -237,06 -167,76 -175,02 -146,29 -229,68 -234,22 -244,15 -231,33  

Table 5.I: Summary of the binding energies of the peptides receptor for every binding site 
(name of the compounds are in the APPENDIX). 

 
Figure 5.3: Histogram summary of all small molecules binding with the 10 differents binding site. 
Molecule 3, 4, 17 and 19 have the best energy at binding sites 7, 8, 9, respectively, while binding site 6 
shows a very low binding energy compared to the others for all ligands. 
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5.4. Selective high-affinity inhibitors of cannabinoid receptors CB1/CB2 

Cannabinoid receptors, which are members of the membrane-bound G protein-coupled 

receptor superfamily, are involved in neuroinflammatory and neurodegenerative disorders, 

such as Huntington and Alzheimer disease (Bisogno and Di Marzo 2010; Van Laere, Casteels 

et al. 2010). Cannabinoid receptors are activated by three major groups of ligands, 

mammalian endocannabinoids, plant and synthetic cannabinoids (e.g. THC from the cannabis 

plant). In collaboration with the group of Prof. Bräse at KIT and Prof. Müller at 

PharmaCenter Bonn, I have investigated the interaction between the Cannabinoid receptors 

1/2 (CB1/CB2) with a novel set of coumarin derivatives. Rational improvement of known 

compounds to inhibit these receptors is complicated by the lack of available crystal structures, 

which is a general problem for GPCRs, which nevertheless constitute about 30% of all 

presently known drug targets. In addition such investigations are complicated by the fact, that 

selectivity between the receptor classes is desired, because, molecules can recognize two or 

more receptors and display a different affinity for them. I have therefore generated homology 

models for the two receptors (section 5.4.1) and then performed docking simulations for a set 

of small molecules that were experimentally validated (section 5.4.2). In particular for the 

CB1 receptor a good correlation between the experimental and theoretical results could be 

observed, comparison between the CB1 and CB2 receptor models also helped to rationalize 

the selectivity of some compounds, as discussed in section 5.4.3. 

The primary goal of our simulations was to understand changes in the binding mode and the 

binding energy between the new compounds and structurally related compounds with a 

known affinity. 

The compounds used were coumarin derivatives, where coumarin is specifically a 

benzopyrone found in many plants, and is used in the pharmaceutical industry as a precursor 

molecule in the synthesis of several synthetic anticoagulants similar to dicoumarol and some 

even more potent rodenticides, that work by the same anticoagulant mechanism. 

5.4.1. Model Building and Validation 

All-atom models for the CB1 and CB2 receptors were constructed using the crystal structure 

of bovine rhodopsin (PDB code 1U19) (Okada, Sugihara et al. 2004) as structural template, to 

which both CB-receptors have a strong similarity in sequence. We constructed a model on the 

region from 80 to 439 for CB1 and from 1 to 349 for CB2 (Fig. 5.4). Template selection was 

performed using PHYRE (Kelley and Sternberg 2009) using the default protocol and the 

alignment between the receptors and the template was assessed using ClustalW (Thompson, 
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Higgins et al. 1994). On the basis of the resulting alignment ten different models were built 

using MOE of which the model with the lowest energy profile was chosen for this 

investigation. As the template used (bovine rhodopsin), the two receptors CB1/CB2 show the 

typical structure of the G-protein coupled receptor family. GPCRs are characterized by an 

extracellular N-terminus, followed by seven transmembrane (7-TM) α-helices (TM-1 to TM-

7) connected by three intracellular and three extracellular loops, and finally an intracellular C-

terminus. The seven transmembrane helices are forming a cavity within the plasma membrane 

that serves as ligand-binding domain. 

For the docking simulations we used FlexScreen (Merlitz, Burghardt et al. 2003; Fischer, 

Basili et al. 2007) receptor-ligand docking software with a SASA based implicit solvation 

model (Lee and Richards 1971). All simulations were performed using the homology models 

described above. In this study we used two different protocols: in the automatic docking 

protocol: - each ligand was docked against the receptor with the stochastic tunneling method 

using an all-atom representation of both ligand and receptor using a cascadic docking 

protocol. Both ligand and receptor can change their conformation in the docking process. 

SASA, the accessible surface area (ASA) is the surface area of a protein that is accessible to a 

solvent - in the relaxation protocol we started from the known binding mode of one ligand, 

superimposed, as closely as possible to related ligands synthetically derived by altering one or 

more substituents from the original ligand and performed only one long relaxation simulation. 

At the end of each simulation a binding energy for the ligand is computed as the difference 

between the unbound and bound complex using the biophysical scoring function of 

FlexScreen. 

Site-specific mutation studies (Shim, Welsh et al. 2003; Tuccinardi, Ferrarini et al. 2006; 

Tuccinardi, Cascio et al. 2007) on the rhodopsin subfamily of receptors, including CB1/CB2, 

suggest that many ligands bind CB1/CB2 within the TM core region in the crevice formed by 

TM3, TM4, TM5, and TM6. Initial docking studies using AM281, CP55940 and win55, also 

investigated in Behrenswerth et al. (Behrenswerth, Volz et al. 2009), demonstrated that these 

reference ligands are well accommodated within the transmembrane region.  

In the binding poses we observe a close geometric proximity of these ligands with amino 

acids PHE191(TM3), LYS192(TM3), VAL196(TM3), THR197(TM3), PHE200(TM3), 

TRP241 (TM4), ALA244(TM4), PHE278(TM5), TRP279(TM5), ARG340(TM6), 

CYS355(TM6), TRP356(TM6), LEU359(TM6), LEU360(TM6), MET363(TM6), 

CYS386(TM7), LEU387(TM7),  LEU388(TM7), as illustrated in the pose of MAK15 in 
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figure 5.6. This is in agreement with studies that reported alanine substitution of LYS192 to 

results in a significant loss of affinity for CP55940 (Tuccinardi, Ferrarini et al. 2006). On the 

other hand, mutation of PHE191, TRP279 and TRP356 to ALA showed a loss of affinity for 

win55. In addition, it was suggested that TRP356 might be important for win55 binding in 

CB1. 

When we analyze the binding modes of AM281 as a reference ligand, we find a large 

hydrophobic pocket in vicinity of the docking pose that is formed by the sidechains (ALA198, 

CYS264, TRP279, TRP356, LEU359, MET363, PHE379, CYS386) (Fig. 5.5A), but which is 

not occupied by the ligand. Modifications of the ligand that fill this hydrophobic pocket with 

apolar substituents should dramatically improve the binding energy by exploitation of the 

hydrophobic effect. This observation is supported by that fact that in the binding pose of 

CP55940 we find its aliphatic sidechain to fill exactly this pocket (Fig. 5.5B). 

A                                                                      B 

Figure 5.4: (A) Model for complex of the CB1 receptor with MAK15, illustrating the binding pocket and 
key interactions residues in the vicinity of the binding pocket. The ligand is stabilized by interactions with 
the marked residues (see text). (B) Overlay of the CB1(green) and CB2 (blue) receptor where a number of 
amino acids with relatively small sidechains (CB1: ALA200, ASP268, THR285, VAL293) are replaced by 
amino acids with relatively large sidechains (CB2: MET, GLU, ILE, ILE). 



Application of Models for Biomolecular Structure and Interactions to Understand and Influence Biological Function 

86 

 

 
 

A      B  

Figure 5.5: Hydrophobic pocket formed by ALA198, CYS264, TRP279, TRP356, LEU359, MET363, 
PHE379, CYS386 (in blue) of the CB1 receptor interacting with the reference ligands (A) AM281 and (B)  
CP55,940. We note that the aliphatic sidechain in CP55,940 (shown in magenta), occupies the hydrophobic 
pocket thereby improving the affinity.  

5.4.2. Design of novel ligands  

We have therefore docked a proposed set of new ligands with various aliphatic substitutions 

into the same binding pocket using the automated docking protocol and observed that the new 

ligands assume binding poses where the coumarine and aliphatic parts of the ligands overlap. 

Prediction of absolute affinities is difficult with state-of-the-art techniques even when a high 

quality crystal structure of at least one representative complex is available. Such a prediction 

is thus unlikely to succeed when only an homology model of the receptor is available. We 

therefore used the relaxation protocol (see methods of this section) in simulations of all 39 

coumarine derivatives investigated by Behrenswerth et al., each of which showed a lower 

affinity than the reference compounds (see Table 5.II). We then applied the same simulation 

protocol to the new compounds, which were functionalized at position R7 with aliphatic 

sidegroups.  

To rationalize the relative binding energies/affinities we concentrate on those compounds 

that are related by a single substitution of a side-group: ligands 25, 27, 24, 30 each differ from 

MAK10, MAK15, MAK17 and NAV478, respectively, by the aliphatic substitution at the R7 

position, respectively. In addition MAK11 and MAK13 are similar to ligand 27 and 25, but 

here the position of the chlorine and the methyl group are also changed. 

Comparison of the binding poses between the new compounds and the structurally related 

compounds demonstrate that the substitution of the aliphatic sidegroup at the R7 position has 

little effect on the overall ligand orientation (as shown for MAK15 and ligand 27 in Fig. 5.6). 
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When we now compute the changes in binding energy between associated pairs of ligands, we 

find that the R7 substitution with a aliphatic sidegroup improves the binding energy by 

60kJ/mol on average. 

For NAV478 the methyl to C9H19 substitution results in an improved binding energy by 89 

kJ/mol. This supports an additive model of sidegroup contributions for the R7 group. Such an 

additive model for the contributions of the substituents is appropriate when (a) the 

substitution does not significantly affect the binding mode and (b) differences in the 

interactions are local. For the substitutions investigated here, the difference in binding energy 

arises mainly from changes in the solvent exposed surface of ligand and receptor, which 

results from changes in the entropy of the water displaced by the aliphatic sidegroup. On the 

basis of this model, one may postulate that all novel ligands should bind with a higher affinity 

than their structural analogues, with a similar order of the relative binding energy. In 

particular N478, which is derived from the compound with the best affinity from the set of 

Behrenswerth and has the strongest improvement of relative biding energy, should bind very 

strongly to CB1. Fig. 5.7 shows an excellent correlation of the observed affinities and the 

computed binding energies for this set of compounds, which demonstrates that this 

observation is in quantitative agreement with the experimental findings.  

 

Figure 5.6: Binding poses between ligand 27 and MAK 15. The substitution of the aliphatic sidegroup at 
the R7 position has little effect on the overall binding pose. 
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Figure 5.7: Plot correlating the results of the new ligands with the experimental one. 
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COMPOUND BINDING ENERGY rigid with 
SASA Rat CB1a versus [3H]CP55,940

CP55,940 -210,34  0.00124 ± 0.00058 (0.00137)  
 WIN55,212-2  -247,10  0.00606 ± 0.00062 (0.0044, 0.00994)

 AM281  -176,20  0.0124 ± 0.0038 0.012  

9 -165,32  >10 (18 ± 7%)

10 -171,49  4.19 ± 2.00  

11 -195,23  >10 (41 ± 3%)  

12 -161,61  >10 (10 ± 4%) 

13 -166,36  19.1 ± 4.0  

14 -161,02 >> 10 (8 ± 2%)

15 -119,76 >10 (15 ± 10%)
16 -216,48  >10 (31 ± 7%)
17 -143,01  >10 (12 ± 10%)

18 -108,53 >> 10 (8 ± 5%) 

19 -120,68 >10 (32 ± 15%)  
20 -162,89  >10 (31 ± 13%)

21 -132,36  >>10 (1 ± 6%) 

22 -169,74  >>10 (6 ± 9%) 
23 -130,79 >>10 (6 ± 3%) 
24 -168,26 3.46 ± 1.14  
25 -192,62  1.17 ± 0.32  

26 -203,65  9.14 ± 1.87  

27 -173,53  0.978 ± 0.264  

28 -183,21  2.08 ± 0.40  

29 -186,46  1.10 ± 0.12  

30 -169,26  0.738 ± 0.414  

31 -210,52  4.11 ± 1.38  

32 -213,83  6.14 ± 0.69  

33 -188,90  9.57 ± 2.00  

34 -227,29  6.23 ± 1.43  

35 -236,25  12.3 ± 3.2  

36 -219,40  6.18 ± 0.96  

37 -123,97  >10 (39 ± 6%)  

38 -200,34  2.76 ± 0.66  

39 -148,66  >10 (26 ± 11%)

40 -93,50 >10 (17 ± 6%)
41 -97,05 >>10 (46 ± 7%)
42 -152,66  >10 (34 ± 8%)
43 -170,33 4.90 ± 1.11  
44 -184,69  1.37 ± 0.27   

Table 5.II: Results for the docking simulations for CB1 compared with the experimental results 
(name of the compounds are in the APPENDIX). 

5.4.3. Origins of CB1/CB2 selectivity 

Receptor selectivity, which arises from minute differences in the interactions of different 

receptors with a given ligand, is difficult to understand even when high quality crystal 

structures are available. Many factors, including receptor conformational change, differences 
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in long-range interactions and local factors contribute to receptor selectivity. Since our models 

for CB1/CB2 were built from alignments to the same template, the overall folds of the 

receptor models are very similar. We therefore investigated, whether selectivity could be 

explained on the basis of local effects alone and chose MAK15 and NV88 as the two most 

selective ligands in the test set as examples.  

To investigate the importance of specific residues which differ between CB1 and CB2 and 

their contribution to receptor selectivity we have identified the set of residues (numbering 24 

and illustrated in Fig 5.4A) of CB1 that are interacting with the ligands MAK15 and NV88 

using Pymol (DeLano 2004). We then used ClustalW for sequence alignment of the CB1 to 

the CB2 (Fig 5.8) receptor to identify all 11 amino acids that differ in the interaction region 

between the two receptors, thereby narrowing the analysis to the local effects directly 

affecting the binding pocket (Fig 5.9). 

For each of these 11 amino acids (Table 5.III) we prepared a model, where one specific 

amino acid in the CB1 structure was mutated to its corresponding amino acid in the CB2 

receptor and one additional model (labeled model ALL), in which all 11 amino acids in the 

CB1 receptor were replaced by the corresponding amino acids in the CB2 receptor. The ALL 

model thus has replaces all interacting sidechains in the CB1 receptor with those found in 

CB2, while leaving the backbone conformation and all non-local differences between CB1 

and CB2 unaltered. When we performed docking simulation of the selected ligands using the 

relaxation protocol described above with the ligands we find for NV88 that the single 

mutation in the CB1 receptor leave the binding energy (Table 5.IV) nearly unaffected. When 

we performed the relaxation in the ALL model we actually find an improvement of the 

binding energy, which is commensurate with the experimental finding (Table 5.IV). For the 

ligand MAK15 we find that most substitutions induce only small changes in the binding 

energy, but VAL293 and LEU361 induce a reduced affinity which is due to steric repulsion 

between the ligands and the increase of the size of the sidechain. Analyzing all mutations in 

the ALL model we find a significant reduction in the binding energy that agrees with the 

experimental result. These data suggest that for the class of ligands investigated here, receptor 

selectivity can be explained qualitatively by the specifics of the interactions of the different 

ligands with the amino acids in the direct vicinity of the binding pocket. 
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Figure 5.8: Alignment between CB1 and CB2, in yellow we label the residues interacting with the ligands 
and in red those residues in the interaction region where CB1 and CB2 differ. 
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CB1 AA CB1 mutated 
with CB2 AA 

GLY 
(pos 197) SER 

ALA 
(pos 200) MET 

SER 
(pos 201) THR 

PHE 
(pos 210) LEU 

ILE 
(pos 245) LEU 

ILE 
(pos 249) VAL 

ASP 
(pos 268) GLU 

THR 
(pos 285) ILE 

LEU 
(pos 289) PHE 

VAL 
(pos 293) ILE 

LEU 
(pos 261) VAL 

Table 5.III: List of the 11 amino acids in the interaction region where CB1 differs from CB2.  

 

Figure 5.9: Local effects between MAK15 (magenta) and the mutated G197S (red) is directly affecting the 
binding pocket.  
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NV88 BINDING 
ENERGY

ENERGY 
DIFFERENCE 

Kj/mol
MAK15 BINDING 

ENERGY

ENERGY 
DIFFERENCE 

Kj/mol
WT -234,71 0,00 WT -211,47 0

ALL MODELL -239,07 4,36 ALL MODELL -208,59 -2,88

G197S -236,49 1,78 G197S -214,45 2,98

A200M -235,24 0,53 A200M -219,38 7,91

S201T -243,15 8,44 S201T -220,35 8,88

F210L -234,98 0,27 F210L -223,31 11,84

I245L -234,81 0,10 I245L -223,31 11,84

I249V -234,47 -0,24 I249V -221,27 9,8

D268E -234,09 -0,62 D268E -223,31 11,84

T285I -234,97 0,26 T285I -225,96 14,49

L289F -234,24 -0,47 L289F -223,13 11,66

V293I -234,51 -0,20 V293I -209,9 -1,57

L361V -234,92 0,21 L361V -206,69 -4,78

human CB1 Ki 

(µM)
human CB1 Ki 

(µM)

 human CB2 Ki 

(µM)
 human CB2 Ki 

(µM)

EXPERIMENTAL RESULTS

2,63 ± 1,23

0,465 ± 0,024

0,033 ± 0,012

0,185 ± 0,026

BINDING ENERGY rigid with SASA CB1
M

U
TA

TE
D

 A
A

 

Table 5.IV: Binding energy for the eleven single substitution models and the ALL model for the ligands 
MAK 15 and NV88. 

5.4.4. Conclusions 

In this study we wanted to contribute to an understanding of small-molecule binding to 

cannabinoid receptors, which have important roles in many diseases such as Huntington 

disorder and Alzheimer (Bisogno and Di Marzo 2010; Van Laere, Casteels et al. 2010). 

Rational design of novel inhibitors for these receptors is complicated by the fact that no 

crystal structures are available. I have therefore constructed models for the CB1 and CB2 

receptors and then performed ligand-binding simulations for a family of 39 coumarine 

derivatives. We rationally designed, synthetized and tested a novel set of ligands to exploit a 

hydrophobic cavity in the vicinity of the docking pose of known ligands. All novel ligands 

showed improved, partially nanomolar, affinities with respect to their reference compounds, 

in good quantitative agreement between experiment and simulation, some of them reaching 

nanomolar affinities. Studying a series of site-specific mutations, we could computationally 
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rationalize the receptor selectivity of specific compounds to either preferentially bind CB1 or 

CB2, respectively. 

We used a special approach, by “walking” the CB1 receptor to its “CB2” counterpart by a 

series of single-point mutations of the interacting residues to understand the specificity for 

two important ligands.  

5.5. Modulating activation of antithrombin in presence of heparin 

In collaboration with Dr. Pérez-Sánchez and Prof. J. Corral at the University of Murcia we 

undertook a project trying to identify new molecules that may activate antithrombin using an 

in silico screening approach. Antithrombin is a member of the serpin superfamily of protease 

inhibitors. As other serpins, antithrombin inhibits its proteases by an unusual branched 

pathway suicide substrate mechanism in which the reactive centre loop of the inhibitor is 

cleaved by the protease as a normal substrate but is trapped as an acyl-intermediate covalent 

complex (Stratikos and Gettins 1999; Huntington, Read et al. 2000). However, antithrombin 

circulates in blood in a metastable conformation in which the reactive centre loop is partially 

inserted and is only activated by heparin and heparan sulfate glycosaminoglycans on the 

injured subendothelium (de Agostini, Watkins et al. 1990; Olson and Bjork 1994). 

Accordingly, sulfated polysaccharide heparin chains with different size, from unfractionated 

to the essential pentasaccharide, have been used successfully in anticoagulant therapy and 

thromboprophilaxis (Harenberg and Wehling 2008).  

Heparin is probably one of the most widely used drugs in developed societies to prevent or 

treat thromboembolic diseases. Unfortunately, because of its highly anionic nature, heparin is 

involved in many interactions with blood proteins other than antithrombin and with vessel 

wall components (Conrad 1998), that can be involved in an appreciable individual variability 

in optimal dosage and an associated risk for bleeding complications. Moreover, such 

interactions may also associate with side effects like thrombocytopenia and osteoporosis 

(Devlin, Einhorn et al. 1988; Warkentin, Chong et al. 1998). These problems have inspired 

efforts to design safer and more specific therapeutic agents that would not be associated with 

such complications. 

Since the discovery of the anticoagulant activity of heparins new molecules able to bind 

antithrombin have been identified. The strategies used in this search have been based mainly 

on the synthesis or chemical modification of existing drugs, or in the application of natural 

compounds with similar properties to the currently used compounds (Henry, Connell et al. 

2009). That is the case of lignins and flavonoids (Gunnarsson and Desai 2004; Henry, Connell 
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et al. 2009), highly sulfated small organic ligands which seem to have similar properties to 

heparins. An alternative approach is to screen a large database in silico and use affinity-

ranking to identify some at least weakly-binding molecules for further refinement. Aided by 

ever-increasing computational power (Guerrero, Perez-Sanchez et al. 2011; Perez-Sanchez 

and Wenzel 2011), virtual screening is an appealing and cost-effective approach to tap into 

the wealth of available structural information (Ghosh, Nie et al. 2006). However, despite 

several success stories, limitations in current in silico screening approaches restrict their 

accuracy and general applicability (Klebe 2006; Warren, Andrews et al. 2006).  

I contributed to this theoretical/experimental work, by performing an alanine scan of the 

Antithrombin/Heparin complex in order to provide an understanding of the interaction hot 

spots. With other members of our group I then screened a chemical library containing more 

than 13 millions of compounds in silico with the objective of seeking those capable of 

inducing a conformational change in antithrombin leading to its activation. Several ligands 

with high predictive affinity were subsequently validated experimentally, leading to a 

discovery of a compound with nanomolar affinity that acts as a cofactor to heparin to activate 

antithrombin in vitro, in mice and in human blood plasma (patent pending).  

5.5.1. In-Silico Alanine Screen  

Docking was performed against the crystal structure of antithrombin taken from the 

Antithrombin/Heparin pentasaccharide complex with PDB code 1AZX using FlexScreen 

protocol. We first validated the docking protocol by docking heparin to AT using the standard 

FlexScreen protocol. The simulation was divided into several partitions. In the first partition 

500 simulations with 50000 computational steps, in the second partition 100 simulations with 

30000 computational steps and in the third partition 10 simulations with 75000 computational 

steps were performed. The resulting structure of the complex (Fig. 5.11) showed very good 

similarity (RMSD 0.2 Å) with the native structure. Because heparin is a polysaccharide with 5 

sugar rings, 149 atoms and 441 degrees of freedom it is a difficult ligand for in silico 

screening protocols.  

This simulation was repeated by substituting all amino acid residues in the interaction region 

between antithrombin and heparin by alanine and the resulting binding energy was calculated 

to find out which residues of the receptor make the largest contribution to the binding energy 

(Fig. 5.10).  
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Figure 5.10: Top panel: annotated crystal structure of  heparin (stick) and antithrombin (surface). Color-
coded representation of antithrombin: oxygen  (red), carbon (green), nitrogen (blue), hydrogen (white), 
and sulfur (yellow). The interface with heparin is hilighted in yellow in the antithrombin surface. Bottom 
panel: residues of antithrombin substituted with Alanine are highlighted in magenta (name of residues in 
blue). 
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Identification of such hotspots may help to define optimal docking pockets which may be 

target my small molecule ligands with a much lower molecular weight than heparin.  

A total of 17 residues from Antithrombin were analyzed, among these eight mutations cause 

a significant difference of energy (Fig. 5.12 and Table 5.V). 

These eight mutations are all charged residues, as LYS11, ARG46, ARG47, LYS114 and 

LYS125 which indicates strong electrostatic components for the stabilization of this complex. 

The substitution with non-polar amino acids with alanine show very small changes in energy 

compared to the native structure. 

The dominant contribution of some residues for the interaction Antithrombin/Heparin 

guided our next experiments for developing new potential ligands. 

 

 

 

 

Figure 5.11: The predicted (yellow) and the experimental (blue) conformation of heparin in the complex 
between heparin and antithrombin (red). 
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Figure 5.12: Histogram of the energy differences (in Kcal/mol) for all 17 residues of antithrombin complex 
with heparin. Colours of the columns identify different kinds of amino acids: red for AA with a polar 
acidic side chain; green for AA with a non polar side chain and orange for AA with a polar side chain. 

Residue No. Aminoacid Ligand internal 
energy Atom number Number flex 

bonds Binding Energy External Energy RMSD

WT 1326,35 149,00 43,00 -2761,07 -2855,26 0,17
11 LYS 1326,35 149,00 43,00 -2426,27 -2530,61 0,13
12 PRO 1326,35 149,00 43,00 -2769,76 -2902,75 0,15
13 ARG 1326,35 149,00 43,00 -2544,32 -2649,12 0,17
14 ASP 1326,35 149,00 43,00 -2869,73 -3127,99 0,15
42 GLU 1326,35 149,00 43,00 -2889,99 -2973,20 0,14
44 THR 1326,35 149,00 43,00 -2758,51 -2945,04 0,12
45 ASN 1326,35 149,00 43,00 -2687,14 -2913,66 0,15
46 ARG 1326,35 149,00 43,00 -2399,51 -2520,01 0,14
47 ARG 1326,35 149,00 43,00 -2297,77 -2375,59 0,13
48 VAL 1326,35 149,00 43,00 -2742,01 -2969,62 0,15
112 SER 1326,35 149,00 43,00 -2745,89 -2897,87 0,15
113 GLU 1326,35 149,00 43,00 -2880,27 -2990,52 0,15
114 LYS 1326,35 149,00 43,00 -2282,62 -2392,42 0,19
117 ASP 1326,35 149,00 43,00 -2888,41 -3014,66 0,14
122 PHE 1326,35 149,00 43,00 -2741,70 -2841,97 0,14
125 LYS 1326,35 149,00 43,00 -2418,71 -2543,46 0,14
129 ARG 1326,35 149,00 43,00 -2617,40 -2800,15 0,16

 
Table 5.V: Energy contributions in (Kcal/mol) of alanine substitutions of individual amino acids in 
antithrombin.  
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5.5.2. In-Silico Screening  

Motivated by these results, we developed an in silico screening protocol with the objective 

of seeking those capable of inducing a conformational change in antithrombin leading to its 

activation in a similar fashion to the one performed by heparin. We have therefore docked a 

large subset of chemical library containing more than 13 million of compounds.  

We selected 8 ligands (Table 5.VI) with activating potential effect of antithrombin in silico. 

From the 8 selected ligands only six could be experimentally validated, since the other two 

were insoluble or were spontaneously hydrolyzed. From the six ligands tested, none showed a 

strong activation of anti-FXa and anti-FIIa activity of antithrombin. However, in presence of 

heparin, one of the tested compounds, D-myo-inositol 3,4,5,6-tetrakisphosphate (TMI), 

increased the heparin affinity of antithrombin in 2.3 fold, reducing its Kd to 45.35 nM. This 

increase in the affinity for heparin was correlated with higher anti-FXa and anti-FIIa activity 

of antithrombin in presence of this compound. Moreover, the selected compound together 

with heparin let to an activation of antithrombin in the plasma of patients with a type-II 

antithrombin deficiency in homozygosis (L99F) by 1.7 fold over the effect of heparin alone. 

This effect was not observed in the plasma of patients with type-II deficiency but with a 

different mutation (R47C) in the heparin binding site. 

TMI could be used in activating antithrombin in patient as well as a part of a pharmaceutical 

composition for use in recovery of antithrombin activity in patients with antithrombin 

deficiency or in prophylaxis for a disease associated with increased blood clotting.   

TMI activates antithrombin activity of thrombin inhibition by increasing the affinity of 

antithrombin to heparin. The affinity of heparin to antithrombin was measured using any 

standard fluorescence spectroscopic apparatus. Antithrombin contains four tryptophanes that 

are excited at 280 nm and produce the emission of fluorescence at 340 nm (W49, 189, 225, 

and 307). When heparin binds to antithrombin, antithrombin changes its conformation and is 

activated, which causes an increase in the intrinsic fluorescence of antithrombin. Since the 

fluorescence intensity of antithrombin increases proportionally to the amount of heparin 

bound, the affinity of antithrombin for the heparin can be calculated indirectly by measuring 

the emission of fluorescence in the presence of different concentrations of heparin until the 

affinity reaches saturation.  
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Compounds Name of compound 

Compound 1 4,5-dihidroxinaphatalene-2,7-disulfonic acid 
Compound 2 1,2,4-benzeniltricarboxilic acid 

Compound 3 Tetrapotassium 2,5-bis[(4-sulfonaftophenyl) diazenyl] benzene-1,3-
disulfonate 

Compound 4 D-myo-inositol 3,4,5,6-tetrakisphosphate 
Compound 5 Disodium 4-hydroxy-5-sulfo-2,7-naphthalenedisulfonate 
Compound 6 Cyclobutane-l,2,3,4-tetracarboxylic acid 
Compound 7 4-[(4-carbpxyphenyl)carbamoyl]benzene-l,2-dicarboxylic acid 
Compound 8 5-amino-4-hydroxy-8-sulphonaphthalene-2-sulfonat 

Table 5.VI: 8 ligands selcted from in silico screening of 13 milion compounds that show an activating 
potential effect of antithrombin.  

5.5.3. Conclusions 

In this study we have pursued an in silico discovery strategy in order to find non-

polysaccharide scaffolding molecules from the ZINC-database with strong interactions with 

the heparin binding domain of antithrombin. The ligand with highest score D-myo-inositol 

3,4,5,6-tetrakisphosphate (TMI), was experimentally validated confirming that this compound 

binds to antithrombin with nanomolar affinity, where TMI, interacts with even higher affinity 

than heparin. However, the identification of such interaction does not guarantee the same 

biochemical and functional consequences. Thus, TMI does not fully activate antithrombin as 

heparin does, and accordingly only slightly increases the rates of inhibition of thrombin and 

FXa. Interestingly, TMI increases the heparin affinity of antithrombin 2.3-15.2 fold. Finally, 

this molecule also expose the P1 residue of antithrombin (Arg393) allowing its citrullination 

at similar rates than heparin (Ordonez, Martinez-Martinez et al. 2009). All these data, suggest 

that TMI might induce a partially activated conformation (Johnson, Langdown et al. 2006). 

Actually, a partial activation of antithrombin should generate a conformational change that 

might facilitate the first step of the heparin binding (Olson, Schedin-Weiss et al. 2010) 

resulting in a higher affinity.  

The increased activation of antithrombin together with the higher heparin affinity induced by 

TMI, and the absence of conformational side effects or negligible consequences on thrombin, 

sustain potential clinical usefulness for this molecule as a new anticoagulant drug. Indeed, this 

molecule might not significantly increase the risk of bleeding but it could allow higher or 

more efficient antithrombin activation by low affinity heparins, which are more abundant than 

high affinity heparins on vascular endothelium. 
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5.6. Summary 

Protein-ligands interactions have an important role in processes in living systems. Studying 

of these interactions is of great interest, as it provides opportunities to understand protein 

function and therapeutic intervention. The accurate prediction of the binding modes between 

the ligand and protein, is of fundamental importance in modern structure-based drug design. 

With the studies reported in this chapter I presented examples of protein-ligand docking and a 

virtual screening of the ZINC-database using FlexScreen. 

I have first performed a binding study of 19 small molecules synthetized by the group of Dr. 

Katja Schmitz with the chemokine receptor CXCR1. Results demonstrate that there are a few 

sites, where the molecules may weakly bind. One of the binding sites is near the position 

where interleukin-8 interacts with his receptor and could be a good candidate to be tested 

experimentally with the 4 small molecules found to interact strongest with this binding site. 

In a second study I have constructed an homology model for CB1 and CB2 receptors and 

performed docking simulations for a set of compounds that have been investigated 

experimentally in the group of Prof. Stefan Bräse and Prof. Christa Müller. In this study I 

have constructed models for the CB1 and CB2 receptors demonstrating a successful approach 

of protein-ligand interaction using an homology modeling. I have performed ligand-binding 

simulations for a family of 39 coumarine derivatives, to finally design a novel set of ligands 

functionalized at position R7 of the coumarine scaffold with aliphatic sidegroups, which we 

also synthetized and tested experimentally. All novel ligands showed improved, partially 

nanomolar, affinities with respect to their reference compounds. 

Finally in collaboration with the University of Murcia, we developed a structure-based 

model for AT-II regulation to develop new anticoagulation drugs. We used an in silico 

strategy to screen the ZINC-database, to identify molecules able to bind to the heparin binding 

site of antithrombin. D-myo-inositol 3,4,5,6-tetrakisphosphate (TMI), which was identified in 

this screen, emerged as a promising candidate for experimental testing. The conformational 

change induced by TMI facilitated the interaction with heparin and more importantly with low 

affinity heparins. Thus, incubation of TMI with plasma of homozygous patients with 

antithrombin deficiency with heparin binding defect significantly improved the antithrombin 

inhibitory function. In conclusion, our in silico screening identified a new molecule able to 

interact with the heparin binding domain of antithrombin. The functional consequences of this 
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interaction were experimentally characterized sustaining potential anticoagulant therapeutic 

applications. 
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6. Summary 

Accelerating research in the life-sciences and adjacent fields, such as chemistry, physics and 

bioinformatics has led to a flood of data about biological systems, including humans, that for 

many perspectives help to better understand and influence them, and has led to the 

development of novel therapeutic strategies. One of the hallmarks of this development was 

the completion of the human genome project as the blueprint of our organism. Yet ten years 

after the completion of this project it has become evident that there are few diseases, or 

biological functions, that depend on the regulation of a single isolated gene. Indeed a picture 

has emerged in which proteins as the machines of the cell interact among each other and with 

specific other molecules, such as DNA, RNA and small-molecule ligands to form a network 

of regulatory circuits that control cell behavior. 

In this context the study of biomolecular interactions has emerged as a key component of 

life-science research, as it connects the individual nodes of this network and permits their 

regulation. This raises the challenge to go beyond investigation of the individual components 

of cells and organisms in order to understand the network as a whole. Such knowledge is 

important to treat diseases and disorders that have no single cause and that involve multiple 

metabolic pathways. It is also important for novel life-science challenges, such as the design 

of new organisms, which is the goal of synthetic biology. 

Fueled by both method development and an ever increasing availability of computational 

power, modeling techniques have increasingly complemented experiment in order to 

understand and modulate biological function. While the state-of-the-art of protein simulation 

studies in the mid-80s allowed modeling a single small protein with less than 5000 atoms for 

a few picoseconds it is now possible to model, with atomistic resolution, the structures of 

proteins and protein-complexes comprising hundreds of thousands of atoms for microseconds. 

Nevertheless these technologies are not yet mature enough to model protein behavior and 

protein-ligand interaction de novo, i.e. without recourse to experimental information. This has 

led to an increased and profitable cooperation between experiment and theory to speed-up 

biological discovery. The research field has also benefited tremendously from bioinformatics-

based techniques that often operate at the sequence level, thereby exploiting directly the 

progress in gene-sequencing, to provide information about proteins and their interaction 

partners for which presently no structural information exists. 
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In this thesis I have reported studies that contributed in this exciting endeavor, modeling the 

interactions of proteins with other proteins and small-molecule ligands, in particular with 

applications in drug-discovery. It must be stressed that none of this work would have been 

possible without the support of experimental teams, and the vast set of bioinformatics-based 

resources that is now available in the internet. In addition to these resources I have used 

specific methods for protein-modeling and protein-ligand interaction that were developed in 

my group.  

In the following I briefly summarize the results of the work reported:  

Chemokine-receptor interactions  

In this project I have studied the interaction of chemokines, regulatory proteins involved in 

inflammation, with their receptor in order to develop novel ligands that may influence 

chemokine-receptor interactions and thereby affect inflammatory disease (Meliciani, Klenin 

et al. 2009). For CXCL8/CXCR1 our method predicted seven important interaction hot spots 

in a small peptide derived from the N-terminus of CXCR1 that had been discovered 

experimentally (Baggiolini and Moser 1997; Skelton, Quan et al. 1999) and for the complex 

of the basolateral protein ERBB2 and the PDZ domain of its binding partner ERBIN, where 

we could recapitulate significant changes in interaction energy upon alanine substitution of a 

decisive tyrosine residue. Our simulation methodology yielded results that are in good 

agreement with experimental data showing that the prediction of hot spots from structural data 

is possible with a fraction of the computational effort needed for explicit molecular dynamics 

simulations of the protein-protein complex. 

Cannabinoides 

I have investigated the interaction between the Cannabinoid receptors 1/2 (CB1/CB2) that 

are members of the GCPR superfamily involved in neuroinflammatory and neurodegenerative 

disorders, with a novel set of coumarin derivatives. In cooperation with experimental partners 

we rationally designed, synthetized and tested a novel set of ligands to exploit a hydrophobic 

cavity in the vicinity of the docking pose of known ligands (Congress 2011). All novel 

ligands showed improved affinities with respect to their reference compounds in good 

quantitative agreement between experiment and simulation, some of them reaching nanomolar 

affinities. Studying a series of site-specific mutations, we could rationalize computationally 

the receptor selectivity of specific compounds to bind preferentially either CB1 or CB2. 

Together with our experimental colleagues we discovered new ligands with improved affinity 

to the CB1 receptor. Benchmarking our data with experiments we observed good agreement 



Summary 

105 

 

of the results and moreover this is a succesfull example of study using an homology modeling 

for protein/ligands interactions. 

Antithrombin 

Regulating blood coagulation is a very important challenge (other than a significant 

pharmaceutical market) relevant to many diseases, including coronary diseases, thrombosis 

and hemorrhage. In this project we aimed at developping new compounds able to activate 

antithrombin, a regulator of the blood coagulation cascade produced by the liver, using a new 

strategy structural docking. A chemical library containing more than 13 million compounds 

was screened with the objective of seeking those capable of inducing a conformational change 

in antithrombin leading to its activation in a similar fashion to the one performed by heparin. 

The results from this study revealed that structural docking could be a useful approach for 

searching new compounds with anticoagulant activity, since a new compound has been 

identified, TMI, with enhanced capacity for the activation of antithrombin in presence of its 

cofactor heparin. The TMI compound has potential application in the treatment of some 

antithrombin deficiencies (patent pending). 

Existing compounds that can activate antithrombin are based on sugars, mainly heparin. 

Heparin may cause heparin-induced thrombocytopenia (HIT) in patients. Since heparin is 

only effective in the presence of antithrombin, the efficacy of heparin can be low if a patient 

has a low level of antithrombin activity. Other sugar-based antithrombin activators such as 

low molecular weight heparin (LMWH) and fondaparinux are mainly excreted in kidneys, and 

thus they can cause bleeding complications when administered to patients having kidney 

deficiency. The sugar-based antithrombin activators have also undesirable side effects, and in 

some cases they cannot be administrated to patients with sensitivity to sugars. In addition, 

sugars are usually very difficult to synthetize and therefore expensive, which limit their 

applicability as drugs. Other haemostatic elements have been also targets of common 

treatments for thrombosis and thromboembolism. Known drugs include antiplatelets (aspirin, 

clopidogrel, or anti-IIb/IIIa), anticoagulants (acenocoumarol, warfarin, anti-ll, or anti-FXa) 

and fibrinolytic drugs. 

Application of structural docking as a tool for the discovery of new compounds with 

anticoagulant effects has the main advantage that it is possible to screen virtually million of 

compounds as a first filter, reducing considerably the experimental work. Our functional 

screening allowed us to identify a ligand acting as a promising coactivator of heparin, which 

has proven to be active in vitro, in mouse models and even in human blood plasma.  
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Protein structure prediction to identify causes for human developmental 
disease 
One of the direct consequences of the success of the genome project is the availability of 

methods to rapidly sequence the genome of patients presenting a particular disease or 

disorder. Sometimes mutations are observed in a patient population afflicted with a particular 

disease. In order to translate these findings into therapeutic strategies is important to develop 

methods that can predict whether the observed mutations are causative for the observed 

phenotype. Despite all our efforts we are far from being able to make such predictions, as 

often the function of the proteins encoded by the afflicted genes is not known. Since protein 

structure determination is still very complex and costly, computational methods can be useful 

to head in such investigations. 

This thesis reports work in a series of studies dealing with identification causes for Kallman 

syndrome/idiopathic hypogonadotropic hypogonadism, the identification of mutations in 

candidate genes assumes particular importance toward understanding the molecular basis of 

both nHH and KS. Given the genetic information on CHD7, WDR11 and NELF we were able 

to investigate the possible functional effects of the mutations observed in the patients 

exhibiting the syndrome, using bioinformatics based methods and protein structure prediction 

to support the experimental work. CHD7 represents the first identified chromatin-remodeling 

protein with a role in human puberty and the second gene to cause both normosmic IHH and 

KS in humans (Kim, Kurth et al. 2008). We were able to generate a model for the 3-D 

structure protein, for which no experimental structure was available. Our findings indicate 

that both normosmic IHH and KS are mild allelic variants of CHARGE syndrome and are 

caused by CHD7 mutations. For WDR11 I have also generated a model where our findings 

suggested that impaired pubertal development in patients results from a deficiency of 

productive WDR11 protein interaction (Kim, Ahn et al. 2010). Finally for NELF our findings 

suggest that is associated with normosmic IHH and KS, either singly or in combination with a 

mutation in another gene (Xu, Kim et al. 2011). 

With the work reported in this thesis I have attempted to contribute with computational 

techniques to the study of biomolecular interactions as one of the important regulators of 

setting a behavior. I hope that the results reported here demonstrate that bioinformatics and 

modeling techniques are mature enough to contribute to the elucidation of important 

biological phenomena. Presently none of these techniques work as a black-box, but the 

development of protocols requires careful choice, calibration and assessment of the available 
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methods. The fraction of presently addressable problems constitutes only the tip of an iceberg 

of interesting biological questions awaiting further investigations. Much further method 

development and validation will be required to make more of these problems accessible. In 

the meantime some questions can be answered without close collaboration and input from 

experiment, requiring coordination among experimental and modeling groups to combine 

techniques from various fields in order to solve challenging problems. In addition the ever 

growing set of data available in the Internet emerges as an enormous resource to help 

researchers to address those questions.  

With the growth of interdisciplinary collaborative projects and continuing investment in 

method development it is foreseeable that many questions that are difficult to approach today 

will become accessible in the future. The work presented here shows that by active 

collaborations experimentalists and theoreticians really do complement each other. As a 

matter of fact this thesis can be the starting point for further investigations focusing on 

modeling protein-protein and protein-ligand interactions. By also studying “hot spots” that 

can improve our understanding of fundamental biological processes and help to design lead 

structures in drug development, combining techniques such as docking, molecular dynamics, 

drug design, more detailed homology modeling and experimental work.  
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APPENDIX Compound Names 

 
Compound Names referred to Table 5.I chapter 5.3 “Small Molecule Ligands for Binding 

Chemokines”, for the 19 small molecules 

The IUPAC names are reported below: 

COMPOUNDS IUPAC name 
Molecule 1 1-[dihydroxy(methyl)-λ8-sulfanyl]-4- methylbenzene 

Molecule 2 8-[(4-{[(4-chlorophenyl)dihydroxy-λ9- sulfanylidene]amino}-1-oxidonaphthalen-2- yl)sulfanyl]-
1λ1-quinolin-1-uide 

Molecule 3 2,6-bis({[(2E)-3-(furan-2-yl)-1-hydroxyprop-2-en-1- ylidene]amino})-1λ1-pyridin-1-uide 

Molecule 4 {[(5E)-1-hydroxyoctadec-5-en-7,9-diyn-1-yl]oxo}hydrogen 

Molecule 5 3-(prop-2-en-1-yl)-1λ4,3-diazaspiro[4.5]decane-2,4-bis(ylium)-1-ide-2,4-bis(olate) 

Molecule 6 (2R)-2-[(1E,3E)-penta-1,3-dien-1-yl]-2,3-dihydro-1-benzofuran-5,7-bis(olate) 

Molecule 7 
(2R,3S,4S,5R,6S)-2-{[3-(hydrogenylideneoxo)-1,3-dihydroxypropoxy]methyl}-6-{[(2S)-8-(3-
methylbut-2-en-1-yl)-4,5-dioxido-2-(4-oxidophenyl)-3,4-dihydro-2H-1-benzopyran-7-yl]oxy}-
1$l3-oxan-1-ide-3,4,5-tris(olate) 

Molecule 8 3-(furan-3-ylmethylidene)-1,5-dioxaspiro[5.5]undecane-2,4,6-tris(ylium)-2,4-bis(olate) 

Molecule 9 (2S,3R,4S,5S,6R)-2-{[(2S)-8-(3-methylbut-2-en-1- yl)-4,5-dioxido-2-(4-oxidophenyl)-3,4-
dihydro-2H-1- benzopyran-7-yl]oxy}-6-(oxidomethyl)-1λ3-oxan-1- ide-3,4,5-tris(olate) 

Molecule 10 3-[(2E,6E)-8-(hydrogenylideneoxo)-8-hydroxy-4,4,7-trimethylocta-2,6-dien-1-yl]furan 

Molecule 11 (2R,3R,4S,5S,6R)-2-{[(2S)-8-(3-methylbut-2-en-1-yl)-4,5-dioxido-2-phenyl-3,4-dihydro-2H-1-
benzopyran-7-yl]oxy}-6-(oxidomethyl)oxan-1-uide-3,4,5-tris(olate) 

Molecule 12 

(2R,3S,4R,5R,6S)-2-O-[(3S,4R,5R,6S)-6-{[(2R,3R,4R,5R,6S)-6-
{[(4aR,6aS,6bR,8aR,10S,12aR,12bR,14bS)-2,2,6a,6b,9,9,12a-heptamethyl-10-
{[(2R,3R,4R,5S,6R)-6-methyl-3,4-dioxido-5-{[(2R,3S,4R,5S)-3,4,5-trioxido-1λ3-oxan-1-id-2-
yl]oxido}-1λ3-oxan-1-id-2-yl]oxido}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12, 12a,12b,13,14b-
icosahydropicen-4a-yl](hydroxy)methoxy}-4,5-dioxido-2-(oxidomethyl)-1$l3-oxan-1-id-3-
yl]oxido}-5-oxido-4-{[(2R,3S,4R,5S)-3,4,5-trioxido-1$l3-oxan-1-id-2-yl]oxido}-1$l3-oxan-1-id-
3-yl]-6-(oxidomethyl)-1$l3-oxan-1-ide-2,3,4,5-tetrakis(olate) 

Molecule 13 (2S,3R,4S,5R,6R)-6-(oxidomethyl)-2-O-[(2R,3S)-4,5,7-trioxido-2-(3,4,5-trioxidophenyl)-3,4-
dihydro-2H-1-benzopyran-3-yl]-1λ3-oxan-1-ide- 2,3,4,5-tetrakis(olate) 

Molecule 14 (2S)-6-methyl-2-(4-oxidophenyl)-3,4-dihydro-2H-1-benzopyran-4,5,7-tris(olate) 

Molecule 15 {[(2,6-dimethylphenyl)imino](sulfanylidene)methylidene}(ethyl)amine 

Molecule 16 3-(4-chlorophenyl)-5,5-dimethyl-4-methylidene-1,3-oxazolidin-2-ylium-2-olate 

Molecule 17 (1S,3S,8S,9S,10S,13R)-8-[(1-hydroxy-2-methylprop-2- en-1-yl)oxy]-6,9,10-trimethyl-4,14-
dioxatetracyclo [7.5.0.01,13.03,7]tetradec-6-en-3-ium-5-ylium-3,5-bis(olate) 

Molecule 18 2-[(4bR,8S,8aS)-8-[(hydrogenylideneoxo)(hydroxy)methyl]-4b,8-dimethyl-4b,5,6,7,8,8a,9,10-
octahydrophenanthren-2-yl]propan-2-olate 

Molecule 19 (4S,8S)-4,8-dibenzyl-2,10-diphenyl- 1λ3,6,11λ3-trioxa-3,9-diazaundeca-2,9-dien- 1,10-diyn-5-ol 
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Compound Names referred to Table 5.II chapter 5.4 “Selective high-affinity inhibitors of 

cannabinoid receptors CB1/CB2”, for the 3 reference compounds and the coumarine 

derivative. The IUPAC names are reported below: 

COMPOUNDS IUPAC name 
CP55,940 (1S,3S,4S)-3-[2-hydroxy-4-2-methyloctan-2-yl)phenyl]-4-(3-oxidopropyl)cyclohexan-1-olate 

WIN55,212-2 (11S)-2-methyl-11-(morpholin-4-ylmethyl)-3- [(naphthalen-1-yl)carbonyl]-9-oxa-1azatricyclo 
[6.3.1.04,12]dodeca-2,4(12),5,7- tetraene 

AM281 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(morpholin-4-yl)-1H-pyrazole-3-
carboxamide 

9 3-benzyl-2H-chromen-2-one 
10 2-benzyl-3H-benzo[f]chromen-3-one 
11 2-[(2-methoxyphenyl)methyl]-3H-benzo[f]chromen-3-one 
12 2-methyl-3H-benzo[f]chromen-3-one 
13 3-benzyl-5-methoxy-2H-chromen-2-one 
14 3-benzyl-6-methoxy-2H-chromen-2-one 
15 6-methoxy-3-methyl-2H-chromen-2-ylium-2-olate 
16 3-benzyl-6-iodo-2H-chromen-2-one 
17 6-iodo-3-methyl-2H-chromen-2-one 
18 8-bromo-6-chloro-3-methyl-2H-chromen-2-one 
19 3-benzyl-6-nitro-2H-chromen-2-one 
20 3-benzyl-7-methoxy-2H-chromen-2-one 
21 7-methoxy-3-methyl-2H-chromen-2-one 
22 3-benzyl-8-methoxy-2H-chromen-2-ylium-2-olate 
23 8-methoxy-3-methyl-2H-chromen-2-one 
24 3-benzyl-5-methoxy-7-methyl-2H-chromen-2-one 
25 5-methoxy-7-methyl-3-[(2-methylphenyl)methyl]-2H-chromen-2-one 
26 5-methoxy-7-methyl-3-[(4-methylphenyl)methyl]-2H-chromen-2-one 
27 3-[(2-chlorophenyl)methyl]-5-methoxy-7-methyl-2H-chromen-2-one 
28 3-[(4-chlorophenyl)methyl]-5-methoxy-7-methyl-2H-chromen-2-one 
29 3-[(2-hydroxyphenyl)methyl]-5-methoxy-7-methyl-2H-chromen-2-one 
30 5-methoxy-3-[(2-methoxyphenyl)methyl]-7-methyl-2H-chromen-2-one 
31 5-methoxy-3-[(3-methoxyphenyl)methyl]-7-methyl-2H-chromen-2-one 
32 5-methoxy-3-[(4-methoxyphenyl)methyl]-7-methyl-2H-chromen-2-one 
33 5-methoxy-3-[(2-methoxyphenyl)methyl]-2H-chromen-2-ylium-2-olate 
34 3-[(2,4-dimethoxyphenyl)methyl]-5-methoxy-7-methyl-2H-chromen-2-one 
35 5-methoxy-3-[(2-methoxyphenyl)methyl]-8-methyl-2H-chromen-2-one 
36 3-[(2-methoxyphenyl)methyl]-8-methyl-5-(propan-2-yl)-2H-chromen-2-one 
37 3-benzyl-8-bromo-5-methoxy-2H-chromen-2-one 
38 3-benzyl-8-methyl-5-(propan-2-yl)-2H-chromen-2-one 
39 3,8-dimethyl-5-(propan-2-yl)-2H-chromen-2-one 
40 6-bromo-8-methoxy-3-methyl-2H-chromen-2-one 
41 8-phosphanyl-2H-chromene-3-carbaldehyde 
42 1-(8-bromo-5-methoxy-2-methyl-2H-chromen-3-yl)ethan-1-one 
43 (2E,4aS)-2-[(2-oxidophenyl)methylidene]-2,3,4,4a-tetrahydro-1H-xanthen-1-ylium-3-id-1-olate 

44 6-(1,3-dithiolan-2-yl)-2H-chromen-5-yl 1-ethyl(2Z)-2-[(2E)-3-phosphanylprop-2-en-1-
ylidene]propanedioate 
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