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ABSTRACT

Recent multi-paradigm programming languages combine func-
tional and imperative programming styles to make software
development easier. Given today’s proliferation of multi-
core processors, parallel programmers are supposed to benefit
from this combination, as many difficult problems can be ex-
pressed more easily in a functional style while others match
an imperative style. However, due to a lack of empirical evi-
dence from controlled studies, important software engineering
questions are largely unanswered. Our paper is the first to
provide thorough empirical results by using Scala and Java
as a vehicle in a controlled comparative study on multicore
software development. Scala combines functional and imper-
ative programming while Java focuses on imperative shared-
memory programming. We study thirteen programmers who
worked on three projects, including an industrial application,
in both Scala and Java. In addition to the resulting 39 Scala
programs and 39 Java programs, we obtain data from an in-
dustry software engineer who worked on the same project in
Scala. We analyze key issues such as effort, code, language us-
age, performance, and programmer satisfaction. Contrary to
popular belief, the functional style does not lead to bad per-
formance. Average Scala run-times are comparable to Java,
lowest run-times are sometimes better, but Java scales better
on parallel hardware. We confirm with statistical significance
Scala’s claim that Scala code is more compact than Java code,
but clearly refute other claims of Scala on lower programming
effort and lower debugging effort. Our study also provides ex-
planations for these observations and shows directions on how
to improve multi-paradigm languages in the future.

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques|: Concurrent Programming — Parallel
programming. General Terms: Human Factors, Experi-
mentation.
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1. INTRODUCTION

Multi-paradigm programming languages conjecture that no
single paradigm is suited to solve all possible problems in
practice. In particular, recent proposals such as [1, 2, 3]
fueled the development of languages that unify the best of
functional programming and imperative programming. This
direction is motivated by the need to produce more reliable
software despite the growing complexity that programmers
face in today’s environments. Programming languages thus
aim to offer a better cognitive match between their constructs
and the problems that developers need to solve, while map-
ping constructs more effectively to computational resources.
The goals of multi-paradigm languages are to increase pro-
ductivity, ensure quality, and take advantage of more sophis-
ticated performance optimizations available in modern hard-
ware.

The proliferation of multicore processors has created addi-
tional pressure to improve parallel programming. Multicore is
here to stay because of stagnating clock rates and saturated
power budgets [4]. Standard desktop PCs are truly paral-
lel machines with 4-core or 8-core processors, while servers
have processors with 12, 32, or more general-purpose cores.
Embedded devices and mobile phones are becoming paral-
lel machines, too. Programmers now need to deal with the
additional complexity of parallel programming or miss oppor-
tunities for performance on modern hardware.

Advocates of the functional style [5] argue that it is less
error-prone and more productive, compared to an imperative
style, so it should be used to make parallel programming eas-
ier. Advocates of imperative style, by contrast, favor more
control to achieve better performance [5]. Earlier empirical
studies set up to assess these tradeoffs typically assumed a
context that differs from the one today; for example, some
studies assume that programmers have to use one style ex-
clusively, others focus on sequential programs, and still others
look at highly specific parallel constructs in imperative lan-
guages [6, 7, 8,9, 10, 11, 12, 13].

Today, languages such as Scala [1] and C# [2] allow the
combination of functional and imperative programming in
the same language, so developers don’t need to make an ex-
clusive choice. However, new problems arise as it is largely
unclear how programmers apply mixed programming styles
in larger projects. We lack empirical evidence from controlled
studies to quantify the software engineering benefits, to iden-
tify potential problems, to evaluate which language features
are most promising to extend, and how to build tools. As
Scala compiles to Java bytecode, program performance can
now easily be compared on the same programming task and
multicore environment while measuring relevant software en-



gineering metrics in both languages; such comparisons were
difficult to set up in the past.

To our knowledge, this is the first paper to answer key
questions in a multicore context with Scala and Java, such as:
Who needs more effort? How do programmers make progress
in parallelization? Whose code is more compact? How are
functional and imperative styles used? Who has the best per-
formance? How satisfied are programmers? To provide an-
swers, we study thirteen subjects, each of whom wrote three
programs in each of Scala and Java, resulting in 39 Scala pro-
grams and 39 Java programs. The main object of study was
the parallelization of real-world VLSI CAD tool used in chip
design. Our study is based on a counter-balanced within-
subjects design (see Section 4.2.2 and [14]), but also applies
case study and interview techniques [15, 16] to generate in-
sights that explain phenomena observed in the aggregated
statistics. In addition, an Oracle software engineer worked on
the same project in Scala and provided reference data. The
measured effects are very strong and confirm with statistical
significance that Scala code is more compact than Java code.
However, our data clearly refutes other claims of Scala on
lower project effort and testing and debugging effort. The
lessons learned for the improvement of Scala and Java are
nevertheless invaluable and show that multi-paradigm lan-
guages are worth pursuing.

The paper is organized as follows. Section 2 outlines mul-
ticore programming in Scala versus Java. Section 3 presents
claims from the literature that form the hypotheses on how
Scala’s approach aims to improve Java imperative parallel
programming. Section 4 details our study design. Sections 5-
11 elaborate critical questions addressed in this study, such as
effort, parallelization progress, code compactness, program-
ming style, performance, and programmer feedback. Section
12 discusses threats to validity. Section 13 contrasts related
work. Section 14 provides a conclusion.

2. MULTICORE PROGRAMMING IN
SCALA VS. JAVA

Scala [1] (scalable language) is a statically typed, multi-
paradigm language that compiles to bytecode on the regular
Java virtual machine. A complete overview of Scala is beyond
the scope of this paper. We therefore outline some key princi-
ples to set the discussion in this paper. To facilitate reading,
key principles are described via examples. For further details
we refer to [1, 17, 18].

2.1 Parallel Programming Example

Consider the well-known producer-consumer pattern [19]
that is frequently used in pipelined computations [20]. List-
ing 1 shows what programmers would typically have to do in
Java: create a shared queue, create threads that access the
queue, synchronize accesses to the queue, and use wait and
notify signals to let waiting producers or consumers know
about an empty or full queue. Advanced programmers who
alm to achieve better performance would also use explicit
locks instead of shown synchronized blocks.

By contrast, Listing 2 shows a Scala outline with actors
that run concurrently. Actors communicate based on mes-
sage passing, and each actor implements send and receive
operations. In Listing 2, the case class construct allows
automatic matches of received items based on their type and
values. Scala’s actor model is implemented on top of Java’s
shared memory model. Scala therefore exposes programmers
to different concurrent abstractions but eventually the com-
piler translates them into Java bytecode.

2.2 Functional and Imperative Programming
Example

Scala integrates functional programming with object-
oriented imperative programming. It supports higher-order
functions, currying, algebraic data types, and native support
of sequences, such as lists or sets. For example, everything is
an object, and even “1+2” would be treated as two Int objects
1 and 2, where the addition is a call to a method of object 1
named “+”. As another example, consider the expression [1]:

Int) => x>0)

The expression uses the function (x: Int) with the body
x>0 to obtain all number objects of numbersList that are
greater than zero, taking advantage of the filter method
that is provided for all collection object types. Note that it is
not necessary to write a for loop that iterates over all objects
to check each one for the desired property.

Native frameworks provide frequently used data structures
as mutable or immutable types. In addition, Scala offers
automatic type inference which aims to make coding faster.

In Scala, programmers do not have to make an exclusive
choice for functional programming but can program in an
imperative style as well. For example, developers can use
explicit object definitions, while loops, shared state, and
reusing Java code from existing packages, such as the
java.util.concurrent package.

Today, companies such as Twitter [21] employ Scala. Scala’s
unique features promise to make parallel software develop-
ment easier. As Scala’s usage continues to increase, pro-
gramming effort and other aspects merit a thorough empirical
analysis such as the one in this paper.

numbersList.filter ((x:

3. HYPOTHESES ON SCALA IN THE
LITERATURE

Scala’s combination of functional and imperative program-
ming is claimed to have advantages in comparison to Java [1,
17, 18], but there is little evidence from controlled studies.
We summarize important propositions as a motivation for a
more thorough empirical examination.

Effort.

“Scala’s functional programming constructs make it easy to
build interesting things quickly from simple parts” [1, p. 3].
“Scala is easy to get into” [1, p. 3]. The language constructs
help programmers get started quickly [1, p. 5]. The combina-
tion of functional and object-oriented constructs have “com-
plementary strengths” which lead to “a legible and concise
programming style” [1, p. 3]. Programmers require less effort
for reading and understanding Scala programs [1, p. 13]. For
parallel programs, programmers tend to find Scala’s shared-
nothing message passing model “much easier to reason about”
than Java’s shared-memory model with locks [1, p. 584].

Code Compactness.

“Scala programs tend to be short”; in conservative cases
“a typical Scala program should have about half the number
of lines of the same program written in Java” [1, p. 13].
In extreme cases Scala programs may have one tenth of the
lines of code (LOC) of corresponding Java program [1, p. 13].
Scala programs are more concise due to type inference [1, p.
17], optional semicolons. [1, p. 14], control abstractions that
avoid duplication [1, p.16]. High-level data structures can be
queried through predicates [1, p. 15]. “Scala’s syntax avoids
some of the boilerplate that burdens Java programs” [1, p.
14].



Queue<Item> sharedQueue = ...;
// Thread 1: consumer thread
synchronized (sharedQueue) {

while (sharedQueue. size () = 0) { sharedQueue.wait (); }

Item item = sharedQueue.get ();
// handle item

}
// Thread 2: producer thread

for (...){Item item=createltem ();//continuously create items

synchronized (sharedQueue) {

sharedQueue . put (item ); sharedQueue.notifyAll ();

H

Listing 1: Producer consumer pattern in Java

case class Item (...)

// Actor 1: consumer actor

val consumer = actor { react {
case Item (...) => // handle item

// Actor 2: producer actor

val producer = actor { for(...)
val item = createltem () // continuously produce items
consumer ! item // send item to consumer

1

Listing 2: Producer consumer pattern in Scala

Parallel Programming.

Actors are easier to work with than Java’s native style with
locks [1, p. 583]. Java’s concurrency support is sufficient, but
“difficult to get right in practice as programs get larger and
more complex” [1, p. 583].

Debugging.

Scala is less error prone than Java, as Scala programs with
fewer lines of code are assumed to have fewer possibilities for
defects [1, p. 13-14]. Actors help avoid deadlocks and race
conditions [1, p. 584, 616].

4. DESIGN OF THE EMPIRICAL STUDY

To validate the aforementioned claims, we study thirteen
subjects who worked individually on two Scala and two Java
projects during a training phase and afterwards on the actual
object of study, which consists of one Scala project and one
Java project extending a real-world application. All projects
require subjects to create bug-free and well-performing paral-
lel applications. Additional data was provided by an Oracle
software engineer who agreed to work on the same project in
Scala, and who was already familiar with the algorithms.

4.1 Preparations

The subjects are thirteen Master’s students close to their
graduation who are on average in their fourth year of Com-
puter Science studies. Subjects had appropriate previous
knowledge from prerequisite courses in software engineering
(e.g., programming languages, patterns, development envi-
ronments) and parallel programming (e.g., programming with
shared-memory and message-passing).

Prior to the study, we conducted a feasibility study to en-
sure that the assignments have a solution, i.e., there are work-
ing parallelization strategies that are feasible to complete in
the given period of time. In addition, the Oracle software
engineer created a parallel Scala program based on the re-
quirements of our project.

4.2 A Two-Phase Approach

The approach applied in this study consists of two phases
where the subjects were asked to program in Java and Scala.

4.2.1 Phase One: Training

Initially, all subjects received the same training in program-
ming with Java and Scala, which took four weeks. The Java
training covered parallel programming with shared-memory.
The Scala training included functional programming and par-
allel programing with actors ([1, 17, 18] were required read-
ing). In addition, everyone was trained and tested on how
to use development environments, how to debug, and how to
conduct performance analyses for parallel programs. Every
subject successfully delivered a working parallel implementa-
tion of the Dining Philosophers [22] and mergesort [23] al-
gorithm both in Java and Scala (i.e., we obtained 13*2=26
Java programs and 26 Scala programs). The delivered code
was used to assess how subjects understood and employed
the programming concepts of Java and Scala. At the end of
phase 1, everyone passed and was ready to work on a larger
project. In addition, we measured the level of proficiency; a
Java pretest classified seven subjects as experts and six as be-
ginners. A Scala pretest classified seven subjects as experts,
and six as beginners.

4.2.2 Phase Two: Industry Project

This phase focuses on the actual object of study, which is
how programmers use Scala and Java in a larger and more
complex parallel application. We employ a counter-balanced
within-subjects design in which six randomly chosen sub-
jects are tasked to complete a four-week project in Java first
whereas the other seven have to do it in Scala (phase 2a).
In another four weeks, the subjects have to deliver another
parallel program for the same specification, but this time the
seven subjects who started with Scala switch to Java and
vice-versa (phase 2b). The subjects were unaware and were
initially told that they would work on two different projects.



This approach is frequently employed to offset learning and
ordering effects when aggregating results [14, 24, 25].

A competition was set up among the Java teams and Scala
teams in both phases 2a and 2b, with the goal of achieving
the best-performing parallel program for the given specifica-
tion, input benchmark, and multicore machine. The compe-
tition not only motivated subjects to achieve their best in-
dividual result, but also reduced the incentive to collaborate
(which was not allowed anyway). We also disallowed direct
code reuse from the previous project and allowed using just
the standard libraries and parallel constructs that come with
Scala and Java (e.g., java.util.concurrent).

The requirements for the project were designed in collab-
oration with Oracle as an industrial partner. The setting
provides a realistic and representative object of study that
goes beyond a toy program. In particular, the Electric VLSI
Design System [26] developed at Oracle Labs was used. Elec-
tric is an Open Source VLSI CAD application for the custom
VLSI designs completely written in Java. Among all possible
CAD tools available in Electric, the analysis tool known as
DRC (Design Rules Checker) was chosen as a performance-
critical parallelizable task. A design rule specifies certain
geometric and connectivity restrictions to ensure sufficient
margins to account for variability in the fabrication process.
Basic design rules range from one layer, e.g., width, area or
spacing, to multiple layer rules, such as enclosure. Due to
time constraints and the complexity of dealing with all DRC
rules involved in modern technologies, subjects were asked
to parallelize the minimum area checking algorithm. This
algorithm ensures that manufacturers do not print circuits
in resolutions that are too small for a given technology and
minimum rules might need to be satisfied for each layer of a
chip. To facilitate the study, Electric developers offered stan-
dardized APIs for Java and Scala to create extensions for the
DRC tool already available in Electric.

General literature on design rules checking (e.g., [27]) was
handed out to subjects in the first week of the study, to give
subjects enough time to familiarize themselves with the prob-
lem. At the start of phase 2, subjects were given a seven-
teen page document with more precise project and algorithm
specifications. This was accompanied by a tutorial that de-
scribed the problem, examples, APIs, coding guidelines, and
instructions about data structures to use. Everyone received
support to set up the working environment, understand boil-
erplate code, and compile dummy projects. Questions were
answered by instructors and Oracle employees. No one had
problems understanding the assignment or working in the
programming environment.

The compulsory project specifications channel potential so-
lutions into a certain range, as assessed in our feasibility
study. They ensure that the submitted programs and re-
sults do not differ because subjects employ widely diversified
algorithmic strategies and data structures. Briefly, our algo-
rithm uses a list of bit sets to merge adjacent boundaries of
polygons of a metal layer and to ensure that the areas of all
flattened polygons satisfy the minimum area rule.

4.3 Sources of Evidence and Evaluation

Throughout the study, we collect evidence from several
sources: (1) Weekly code submissions. (2) Weekly semi-
structured interviews with every subject. (3) Student di-
aries and final project reports (delivered after the study).
(4) Time report sheets on a daily basis on which students
tracked the hours spent on various software engineering task
categories (e.g., design, implementation, testing). The sheets
were cross-checked with our interviews and code inspections

for validity. (5) Questionnaires after the completion of each
programming project (phase 1, 2a, 2b) captured feedback.

We employ statistics, case study techniques, survey tech-
niques, and interview techniques [14, 15, 16, 24, 25] to extract
the lessons learned from this study. For presentation, we ag-
gregate most of the quantitative data into box-and-whiskers
plots: lower and upper box boundaries denote lower and up-
per quartiles of data (visualizing variability), a horizontal line
within the box marks the median, whiskers mark 1.5 times
the interquartile range on both box ends, and data exceed-
ing the whisker range is marked as outliers (depicted as cir-
cles). To gain further support beyond what is visible in the
plots, we also apply where possible Wilcoxon’s rank sum test
[28] paired on subject results. Informally speaking, this non-
parametric test evaluates whether two populations differ with
statistical significance (see [28] for details). We also apply
other tests for cross-checks (non-parametric and parametric,
if data distributions allow it), but typically omit their pre-
sentation to avoid overload. The obtained p-values appear
in the respective graphs. Low p-values mean that there is a
low probability that the observed differences are accidental.
As in other similar studies (e.g., [6]) we interpret p < 0.05 as
a strong indication for a difference, which degrades as p in-
creases; p > 0.1 is the threshold where the difference becomes
insignificant.

S. WHO NEEDS MORE EFFORT?

Our data reveals that completing the project in Scala re-
quired more effort than in Java. As an overview, Figure 1
shows the person hours required for the Scala and Java
projects, each sorted in descending order of effort.

Figure 2 illustrates the aggregated statistics. The median
effort is 56 hours for Scala and 43 hours for Java (13 hours
difference). The mean effort is 72 hours for Scala and 52 hours
for Java, which means that on average it takes 20 hours (38%)
longer to complete the Scala project. The populations differ
significantly with p = 0.059.

As the data collection assigned person hours to particular
categories, we are able to provide additional details in Fig-
ure 3, which shows how much of the implementation time
subjects spent working mostly on sequential code or paral-
lel code. In Figure 3(a), the median time for parallel coding
in Scala is 14 hours (mean 18 hours) and 11 hours in Java
(mean 12 hours), and there is weak statistical support for the
difference with p = 0.08. For time spent on sequential code
in Figure 3(b), the median in Scala is 8 hours (mean 8 hours)
and 4 hours in Java (mean 6 hours), however, the difference
is insignificant (p = 0.45). The most significant difference is
due to testing and debugging effort in Figure 3(c): the me-
dian in Scala is 20 hours (mean 23 hours), the median in Java
is 10 hours (mean 14 hours), a clear difference supported by
p = 0.041.

As a comparison for the project effort in Scala, the Oracle
software engineer spent about 18 hours to create a sequential
Scala program on the same specification. He spent about
72 hours (which happens to be the mean effort of our Scala
subjects) to create a parallel version; out of this time, he
spent 10 hours on testing and debugging (13 hours less than
our subjects’ mean).

Programmer skills (as determined in our pretest, see Sec-
tion 4.2) influence how each subject ranks in terms of effort,
but the aggregated statistics balance out this effect because
there are roughly equally many experts and beginners in both
Scala and Java. We conducted a multivariate analysis of vari-
ance (MANOVA [29]) that analyzes the impact of Java and
Scala skills (beginner/expert) on the Java and Scala effort of
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Figure 2: Aggregated effort statistics show a significant difference between Scala and Java.

each subject (the analysis was applicable in our case because
the Box-test on equality of covariance matrices was insignifi-
cant [29]). Results show that expert skills lead to lower effort
in comparison to beginners (p=0.05 for Java expertise and
p=0.02 for Scala expertise). The analysis on how skills affect
parallel implementation time also reveals a combined influ-
ence, i.e., that the interaction of Java skills and Scala skills
together affects the parallel implementation time (p = 0.08).
By contrast, it is remarkable to observe that Java and Scala
skills do not have a significant influence on testing and debug-
ging time (p > 0.1), which suggests that this big difference
has nothing to do with skills.

Explanations for the difference in testing and debugging
effort come from our interviews and code inspections. One of
the main reasons why such effort is higher in Scala is because
type system features that actually aim to make programming
more productive turn out to make debugging more difficult.
In particular, subjects complained that the automated type
inference required them to spend more time to understand

which actual type each object has when errors are encoun-
tered, and they were unsatisfied with tool support on this
issue. In addition, automatic object creation and copying
was another feature that required more time to track errors
and optimize performance.

6. WHO HAS THE FIRST PARALLEL
PROGRAM?

Java programmers were the first to have a working paral-
lel program. As a measurement of parallelization progress,
we tracked the week when each subject had the first working
parallel program, based on code inspections and interviews.
Figure 4 illustrates that all subjects submitted a parallel ver-
sion by the deadline of the project. In the week before the
deadline, an equal number of parallel Scala and Java pro-
grams (69%) worked.

The chart also reveals, however, that no one had working
parallel Scala programs until the third project week, even
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though 23% of parallel Java programs were already working
in the second week. Interview data suggests that subjects
needed time to figure out exactly how to take advantage of
the functional style in their particular program. The results
also match the effort observations in Section 5. As soon the
problems were overcome, increases in working parallel Scala
programs were much steeper than for Java. This observation
suggests that Scala is powerful because everyone was still able
to make the deadline, but it takes time to understand how to
exploit its power.

7. WHOSE CODE IS MORE COMPACT?

One of Scala’s claims is that a Scala program needs fewer
lines of code compared to a similar Java program. Our results
support this claim in our project context.

Figure 5 summarizes the lines of code (LOC) of all Scala
and Java programs as well as their number of characters,
excluding comments and blank lines. Scala has 533 median
LOC (mean 536) and Java 547 median LOC (mean 632),
but the overall box and whiskers of Scala tend towards lower

values. Also, no Scala program is longer than 730 LOC. The
paired Wilcoxon rank sum test on each subject’s solution
shows support (p = 0.078) that Scala code is more compact.

Quantitative claims of the literature [1], however, seem
overgeneralized and are not supported. In this experiment,
Scala programs do not have 50% fewer lines of code com-
pared with their Java counterparts. Figure 5 (a) refutes this
claim, revealing only a median difference of 14 LOC (2.6%)
and mean difference of 96 LOC (15.2%). Also, the claim that
in extreme cases Scala has 10 times less code than Java does
not hold for our application. The difference between extremes
is 1086 LOC in Java versus 284 LOC in Scala, which is just
3.8 times less.

An additional analysis on the number of characters shows
similar trends that Scala programs are more compact than
Java programs, but the statistical support is weaker (p =
0.094). However, the medians of Scala and Java programs
are farther apart for characters than for lines of code.

A final comparison baseline is a sequential and a parallel
Scala program that were developed under the same specifica-



(a) Lines of Code

(b) Cumulative Distribution Function

J—
o '
8 - p-value =0.078 |
- 1
'
|
o '
S
©
(6] -
(e}
-
o
8
©
8 - ' ]
< : —_
- .
T T T T T T
Scala Java 400 600 800 1000

LOC

#Characters

(c) Number of Characters

(d) Cumulative Distribution Function

S -
&8 | p-value = 0.094 ,
° |
=3 1
S ] '
wn '
'

o 1
o
8
T
o
o
S
o
@

. T
o 1
S ' '
o - '
o ' '
o ' 1

— — d
T T T T T T T
Scala Java 20000 40000 60000
#Characters

Figure 5: Code compactness analysis of Scala versus Java.

tions by the Oracle software engineer. His sequential program
has 185 LOC and 3756 characters. His parallel program has
472 LOC (11% less than our subjects’ median LOC), which
shows that his program is comparable to our subjects’ pro-
grams. However, his program has 10,186 characters (25% less
than our best subject) showing that even more compactness
is possible in Scala.

8. HOW ARE FUNCTIONAL AND IMPER-
ATIVE STYLES USED?

In a multi-paradigm language like Scala, a question of in-
terest is how subjects actually employ the functional style
and imperative style in practice.

We answer this question by analyzing the code of each sub-
ject’s Scala project. We also provide a comparison with the
parallel projects delivered during the training phase (parallel
mergesort and parallel dining philosophers).

In particular, we start by classifying key language con-
structs as belonging to either a typical imperative style or a
functional style, according to [1]. For example, var, object,
array, while, for, abstract, import java, etc. indicate an
imperative style. By contrast, constructs such as val, list,
map, filter, flatmap, foreach, ::: (list concatenation), ::
(list cons operator), etc. indicate a functional style. We count
the occurrences of all such constructs in each project and cal-
culate the percentage of how many belong to the imperative
class and how many belong to the functional class. Figure 6
summarizes the results of this analysis for each subject in the
study.

In the DRC project code, Figure 6(a) shows that 8 sub-
jects use more than 50% imperative style (right half of the
diagram) and 5 use more than 50% functional style. At the
extremes, one subject uses 98% imperative style and one sub-
ject 78% functional style.

The project outcomes are roughly similar for the projects
of the training phase. For parallel mergesort in Figure 6(b),
5 subjects use more than 50% imperative style. At the ex-
tremes, one program uses 88% imperative style and one with
89% functional style. Using functional style in this context
is natural because of the algorithm design. For the Dining
Philosophers in Figure 6(c), 8 subjects use more than 50%
imperative style. At the extremes, one program uses 94%
imperative style and one 73% functional style.

By contrast, the sequential DRC project program created
by the Oracle software engineer uses 49% imperative style

and 51% functional style. His parallel version shifts towards
40% imperative style and 60% functional style.

An interesting insight to note is that many subjects use
functional and imperative style in a quite balanced way. How-
ever, certain individuals heavily prefer either the functional or
imperative style. This preference can be observed quite con-
sistently for both the training projects and the parallel DRC
project. However, no subject entirely rejects either style. The
data shows that functional programming is indeed useful for
realistic parallel programming projects.

9. WHO HAS THE BEST PERFORMANCE?

In our study, sequentially executed Scala programs are
faster than their Java counterparts. In the parallel case,
however, Java programs have better scalability with higher
speedups. The fastest run-times are similar for both Scala
and Java.

9.1 Setup

All DRC project programs are evaluated on a represen-
tative input, which consists of a real chip layout that has
been successfully taped out in the past. The input file has
2,260,627 rectangles that are distributed over 74,137 sub-
cells with a maximum hierarchy depth of 14. The bounding
box of the entire chip is 166, 946 x 208, 594 units. We ensured
that every program worked correctly on this input (program-
mers were given the opportunity to fix problems after the
deadline, which caused just minimal code changes). All ap-
plications are benchmarked on the following machines:

e 4-core machine: Intel Xeon X5677. This machine has
a single-chip architecture with 4 cores, 2 hardware
threads per core, 48 GB main memory, and runs Red-
Hat Enterprise Linux 6.0.

e 32-core machine: Sun SPARC T3-4. This machine has
a 4-chip NUMA architecture with 8 cores per chip and 8
hardware threads per core, 256 GB main memory, and
runs Solaris 10.

The Scala projects are compiled with Scala 2.8.1 and the
Java projects with Java 7. Compiling all Scala projects takes
8 times longer than compiling all Java projects (e.g., on the
4-core machine it took 85 seconds for Scala and 11 seconds
for Java).
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Figure 6: Percentage of functional and imperative programming styles used by each subject in Scala.

9.2 Measurements

All developers made the number of parallel threads config-
urable from the command line. Figure 7(a)—(d) summarizes
execution times and speedups. Speedup calculations use the
execution time with one thread on each machine as a base-
line. All parallel Java and Scala programs are executed with
1, 2, 4, 8, 16, 32 threads to test scalability. On the 32-core
machine, we added 64 and 128 threads because the hardware
offers more parallelism. To avoid bias, each performance data
point is an average of 10 runs on each configuration (we re-
mark that the input size is large enough so speedups do not
come from data that remains in the cache between runs).
Each box plot summarizes thirteen performance data points
(omne for every subject) for each thread configuration and lan-
guage.

9.3 Results

The measurements in Figures 7(a) and (b) reveal on the
4-core machine that the median execution time of all Scala
programs with one thread is 87% better than Java median
(see boxes S.1 and J.1 with median difference is 82 seconds).
On the 32-core machine, the median execution time of Scala
programs with one thread is 22% better than Java (median
difference of S.1 and J.1 is 190 seconds). With increased
thread count, however, Java programs exhibit better scala-
bility and higher median speedups than the Scala programs.

On the 4-core machine, Figure 7(a) shows that the best
Scala runtime is 7 seconds at 4 threads. The best Java run-
time is 4 seconds at 8 threads, i.e., Java is 43% faster in
the best case. However, the median runtime over all thread
counts is 83 seconds for Scala and 98 seconds for Java, which
shows that the “average” Scala program is 15% faster than
the “average” Java program.

On the 32-core machine, Figure 7(b) shows that the best
achieved Scala runtime is 34 seconds at 64 threads. The best
Java runtime is close with 37 seconds at 128 threads, so Java
is only 9% worse. The median runtime is 466 seconds for
Scala and 576 seconds for Java, so the “average” Java runtime
is 24% worse than Scala.

By contrast, the Oracle software engineer achieved the fol-
lowing results with his parallel Scala program: The best time
on the 4-core machine was 7 seconds at 8 threads (speedup
3.6), which was the same as the best result in our study. His
best Scala time on the 32-core machine was 32 seconds at
64 threads (speedup 11.3), which is 6% better than our best

result. These numbers match the performance of our top
subjects very well.

9.3.1 Does functional programming style lead to
slowdowns?

The programmers that ranked as the top three performers
on the 4-core machine used 47%, 55%, 38% functional style
in their programs. On the 32-core machine, the top three
performers used 47%, 55%, 64% functional style. The pro-
gram of the programmer that used 2% functional style (i.e.,
98% imperative style), which had the least functional style of
all Scala programs, ranked in the worst three performers on
both machines.

These empirical results show that a functional program-
ming style does not need to harm performance. At the same
time they provide support for the promise of multi-paradigm
languages by showing that it is possible to do automated
performance tuning under the hood, rather than requiring
programmers to optimize everything by hand. However, the
results also show the need for a combination of functional
style and imperative style, as no top performer used func-
tional style exclusively. Our data thus solidifies the ground
for language designers, compiler writers, and tool developers
that the multi-paradigm direction merits more investigation.

10. PROGRAMMER SURVEY FEEDBACK

Programmer feedback collected at the end of the study pro-
vides additional insight into the numbers presented so far.
The majority of the questions had a five-level Likert scale
[14] (ranging from “strongly disagree” to “strongly agree”).
We provide a summarized interpretation and mention the
percentage of subjects in favor or against a statement (aggre-
gating “agree” and “strongly agree” as “agree”; and “disagree”
and “strongly disagree” as “disagree”).

Scala type system.

Letting the compiler implicitly derive the types of variables
can become a problem during debugging. While 46% of the
subjects agreed that this feature was helpful when writing
code, 85% of the subjects agreed that it leads to programming
errors.

Learning and code understanding.
Programmers found Java programs easier to understand
than Scala programs (77% say understanding Java programs
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is easy, compared to 46% for Scala). Java syntax was per-
ceived to be easier than Scala (92% agree that Java syntax
is simple, 62% agree that Scala syntax is simple). Only 30%
say that adapting to Scala’s programming model was easy,
compared to 100% for Java. Concerning parallelism, there is
an opposite perception: 46% agree that using Java parallel
constructs is easy, compared to 92% who say that using Scala
parallel constructs is easy. Also, 62% say that Scala parallel
construct usage was easy to remember, while 54% say that
Java parallel construct usage was easy to remember. These
responses suggest that Scala in general is not perceived to
be easier than Java, but that the subjects felt like there are
advantages for the understanding of parallel programs.

Tool support.

Tool support for Scala needs further improvements. Just
one subject said that tool support for Scala is good, compared
to 77% for Java. Only 30% of subjects are satisfied with Scala
IDE support, compared to 69% for Java.

Satisfaction.

The answers show that most programmers have a positive
attitude towards Scala and Java. 54% of the subjects agree
that it is a pleasure to use Scala, compared to 69% for Java.
There are 77% who say they will use Scala again, and 92%
said they will use Java again. Concerning the programming
style, 30% agree that functional programming is frustrating,
whereas 46% disagree.

Speedup over 1 thread
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7: Performance overview of all Scala and Java project programs for a varying number of threads.

Perceived productivity.

Programmers feel productive in both languages but com-
plain about the Scala documentation. 92% of subjects feel
productive in Scala, compared to 100% in Java. Just one
programmer, however, agrees that the available Scala docu-
mentation is good, compared to 100% for Java.

Parallelism.

Scala parallel programming with actors is perceived to be
easier than shared-memory programming in Java, which is
supported by 38% of programmers in Scala versus 23% in
Java. However, most programmers said they tried to post-
pone parallelization work in both languages (77% in Scala
versus 69% in Java). Programmers also seem to have more
problems in Scala because 85% say they were afraid of break-
ing a working program by using additional Scala parallel con-
structs, compared to 69% for Java.

Errors.

Race conditions are ranked the most important encoun-
tered error in both Scala and Java. In addition, debugging a
multi-paradigm language such as Scala seems to be a major
problem. Just 23% of programmers say that debugging Scala
programs is easy, compared to 77% for Java. Consequently,
we need better techniques and tools.

Composition.

To handle complex programs, 69% of subjects say that
Scala programs are easy to compose from simpler parts, com-
pared to 54% for Java. Scala obviously offered advantages to



handle data structures, as 46% of programmers agree that
applying operations on data structures was more flexible in
Scala, compared to 15% in Java.

11. CODE INSPECTION AND INTERVIEW
INSIGHTS

We present a summary of relevant insights that we gained
from code inspections and interviews.

11.1 Performance

Causes for bad Scala performance often involved immutable
data structures, which were typically used because they are
thread-safe [30]. Subjects tended to overlook that if such data
structures require updates, an implicit copying of objects was
triggered under the hood.

11.2 Errors

Race conditions were the major cause for progress delays
for both Scala and Java. Typically there was one major defect
that caused the most effort to find. For example, one sub-
ject reported that he took 16 hours to find a race condition
involving access to a Scala collection that concatenated two
immutable data structures and 1 hour to fix it. Another Scala
programmer spent 20% of his project time on debugging to
track a race condition that broke a fork-join parallelization
pattern.

In Java, some subjects assumed that concurrent reading of
shared state does not require synchronization. Others acci-
dentally used multiple lock objects where they should have
used just one. Still others used flawed double-checked locking
patterns [31]. Even though the training phase addressed ex-
actly these issues and all subjects were able to handle them on
smaller tests, it appears that humans need more tool support
when projects get more complex in practice.

11.3 Functional style and type system issues

The functional code of some subjects was difficult to un-
derstand because they used functions with side effects that
were not obvious. Implicit type conversions were powerful
in saving code, but turned out to make code understanding
more difficult and increased errors. When reviewing code,
subjects reported that they had to spend a lot of time under-
standing return types of functions, which was not trivial for
larger functions.

12. THREATS TO VALIDITY

Every empirical study, including this one, has limitations.
In this study, all subjects developed a particular application
that was our main object of study. To construct internal va-
lidity, we have carefully chosen the application to be represen-
tative. It is possible that results such as effort or performance
differ for other applications and other hardware. Based on
our feasibility studies and experience, we are confident how-
ever, that most of the issues and problems encountered in
this study will also be encountered in similar parallel appli-
cations. The effects we measured were so strong that they
became statistically apparent for the number of subjects par-
ticipating in our study. It is possible that other subjects will
obtain different results. However, the study design aimed
to reduce bias by using randomized assignment of subjects
to projects, training everyone in the same way, and using
counter-balancing to cancel out ordering and learning effects.
The skill levels measured in our own pre-tests revealed a bal-
anced number of experts and beginners. Data collection was
done in a systematically planned and consistent way. We

used several sources of evidence to reduce potential bias. All
data, including effort, surveys, and interviews, were reported
individually at regular intervals. We cross-checked all data
for plausibility and compared student reports with the deliv-
ered code and interview statements. Student statements were
honest and matched the overall profiles and their history.

To validate our comparisons and create external validity, an
Oracle software engineer agreed to work on the same project
in Scala. As discussed throughout the paper, the results show
that our data is within similar ranges as for an industry pro-
fessional.

13. RELATED WORK

Functional and imperative languages have a long tradition.
An individual comparison is beyond the scope of this paper,
so we refer to [5] for a survey in the context of concurrency.

Empirical studies in multicore software engineering are
scarce. Recent studies compare Transactional Memory and
locks [9], Pthreads and OpenMP [10, 11], MPI and OpenMP
[12]. However, empirical studies directly comparing func-
tional versus imperative programming on today’s multicore
platforms have received little attention so far. The study of
[8] on SML versus C++ done 15 years ago was not conducted
with a multi-paradigm language on multicore and unfortu-
nately had implementations that were difficult to compare;
however, that study reports similar results to ours that sub-
jects need more effort to test functional code as opposed to
imperative code. An experience report on using the OCaml
functional object-oriented language on a server application
has been published by [7], however, it is not a controlled
study with several subjects. The study of [32] focuses on
type systems and finds a null result for the use of static type
systems on development time. Experiences about how Scala
has been recently used at Twitter appeared in [21]. In [33], a
very small benchmark (loop recognition algorithm) is loosely
compared in C++, Java, Go, and Scala in a non-controlled
study. The report focuses on code and performance compar-
isons and concludes that Java could be about 30% faster than
Scala if garbage collection inefficiencies would be fixed. Other
studies such as [13] focus on the high performance computing
domain where application requirements are largely different.
Yet other studies such as [34] analyze the impact of team-
level metrics on product-level software metrics. The work of
[6] compares programming languages based on a sequential
application with respect to general metrics like performance
or lines of code.

14. CONCLUSION

Multicore hardware is ubiquitous, and software engineer-
ing has to catch up. Multi-paradigm languages such as Scala
promise to alleviate the tough parallel programming prob-
lems that developers are facing today by combining functional
and imperative programming styles. Our data reinforces that
this direction deserves more investigation. Results show that
Scala code is indeed more compact than Java code. Scala
application performance is also comparable to Java. Re-
sults also show that a functional programming style does not
have to lead to bad performance. The top-performing pro-
grammers wrote about half their programs in a functional
style and the other half in an imperative style. As no top-
performing programmer used functional style exclusively, our
setting shows that there is a practical need to provide support
for both styles. With respect to effort, this study refutes the
claim that Scala programs are faster to develop: In compar-
ison to Java, Scala requires more effort and especially more
testing and debugging effort. Scala programmers also lagged



behind Java programmers to obtain the first working parallel
applications. Programmer feedback in this study does not
show that Scala programs are easier to understand than Java
programs, but we track the reasons down to the more com-
plex type system. The type system aims to speed up coding
and make programs more compact but significantly compli-
cates the reading and debugging process. We need to address
these issues better in the future to make programming in the
multicore era easier.
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