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Preface

The absolute Galois group Gal(Q/Q), the group of field automorphisms of an
algebraic closure of the field of rational numbers, has been a central object of
interest in many areas of mathematics for a long time. While the calculation of
absolute Galois groups of many other interesting fields can be explained to any
moderately advanced mathematics student (for example we have Gal(Fp/Fp) ∼= Ẑ

for any prime p), the group Gal(Q/Q) seems to be rather successful in eluding
the efforts of researchers to gain insight into its structure. On the other hand, a
look at the consequences that some deeper understanding of this group would
have gives rise to the assumption that any such progress must be hard work. For
example, the mere knowledge of the isomorphism types of groups that appear
as finite quotients of Gal(Q/Q) would once and for all settle the field of inverse
Galois theory.

One important line of progress in this study was the following: In 1979, Belyi
published the article [Bel79], containing what is now known as Belyi’s theorem,
which gives (depending on the point of view) a purely combinatorial or analytical
condition for a complex curve to be defined over a number field: A curve X can be
defined over Q iff there exists a nonconstant morphism β : X → P1

C that is ramified
over at most three points. Particularly, any Belyi pair (X, β) can be represented
by a topological surface of genus g(X) with an embedded bipartite graph. The
simplicity and explicit nature of this construction made a deep impression on
Grothendieck, who by that time had rather gained a reputation of proving deep
results by working in the most abstract and general settings possible. As doing
number theory seemed to be as easy as drawing stick-figures now, he coined the
term dessins d’enfants for these embedded graphs. So, there is an action of the
absolute Galois group on a set of combinatorially defined objects, which can be
shown to be faithful in a stunningly explicit way. Based on these ideas, in 1984
Grothendieck formulated a programme to reveal the absolute Galois group as the
group of automorphisms of a certain system of mapping class groups which he
called the Teichmüller tower. This text, which he titled “Esquisse d’un Programme”,
was later published in [Gro97]. In Drinfel’d’s celebrated article [Dri90], Gal(Q/Q)

is realised as a subgroup of the Grothendieck-Teichmüller group ĜT, a group that
can be defined in a purely combinatorial way. Up to the present, it is unknown
whether or not this inclusion is proper.

The idea behind the theory of dessins d’enfants can be stated as follows: Take
objects that can be defined in an explicit combinatorial way, more precisely cov-
erings, and study the action of the absolute Galois group on them. Taking a
step forward, one could, instead of considering coverings of P1, take coverings
of a genus 1 curve E. Here, one ramification point suffices to get an interesting
theory, for whose objects of interest Lochak coined the name Origamis. However,
the situation is a bit different here: While there is, up to isomorphism, only one
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complex curve of genus 0 with three punctures, and consequently the Hurwitz
spaces of coverings of this curve with some prescribed genus and degree are finite
sets of points, the moduli space of genus 1 curves is a curve itself. Though, by the
rather deep result that Hurwitz spaces of coverings of curves in characteristic 0
are, under weak conditions, defined over Q, the connected components of Hurwitz
spaces parametrising Origami coverings are curves defined over Q, so one can
study the Galois action on them. It is natural to ask if this action is faithful. In
[Möl05], Möller gave a positive answer, making use of the faithfulness of the
Galois action on dessins. In order to do so, he defined a way of constructing
certain Origamis (which we will call M-Origamis in this work) from dessins. Using
mainly algebro-geometric methods, he reveals just enough information on these
Origamis to prove the faithfulness result.

The goal of this work is to shed a light on the deeply combinatorial nature of
this construction. In doing so, we can not only reprove and enhance Möller’s
results by using mainly topological methods, but we are also able to explicitly
deduce the properties of M-Origamis—like their genus, their number of punctures,
their Veech group and their decomposition into maximal cylinders—given the
defining permutations of the dessins they are associated to. Also, we will give
some existence results and bounds for M-Origamis with certain properties. Finally
we will be able to give explicit examples of Origami curves on which the absolute
Galois group acts non-trivially. To the knowledge of the author, such examples
have not been given in the literature before.∗

A downside of Möller’s construction is the following: Despite the faithfulness of
the Galois action on the embedded Origami curves appearing in his construction,
they are, as abstract curves, all defined over Q. In Ellenberg’s and McReynolds’
more recent article [EM09], they prove, using different methods, that any subgroup
of Γ(2) of finite index can be realised as the Veech group of an Origami. Thus,
by Belyi’s theorem, every smooth projective curve over Q appears as the isomor-
phism type of the normalisation of an Origami curve, showing that the action of
Gal(Q/Q) is faithful even on abstract Origami curves, i.e. after forgetting about
their embedding in moduli space. However, it is not known to the author whether
their construction allows giving examples of reasonable sizes.

The structure of this work is as follows: In Chapter 1, we present the theory of
topological coverings in the way we will need it later on. In particular, we calculate
the monodromy of pullbacks, fibre products and compositions of coverings, given
the monodromy of the individual coverings. Since these results are essential for
our subsequent calculations, we will prove them in detail.

In Chapter 2, we give an introduction to the theory of dessins d’enfants, putting
an emphasis on the various equivalent definitions of a dessin. After defining the
various notions of moduli fields and fields of definition, we sketch parts of the
proof of Belyi’s theorem. We close the chapter by explaining why the action of
Gal(Q/Q) on dessins is faithful.

Chapter 3 is dedicated to the theory of Origamis. Our way of defining them
shall exhibit the similarities to the construction of dessins. After that, we put
Origamis into a more general context, namely the theory of translation surfaces.
These surfaces have been subject to study in the field of dynamical systems. We
follow the classical construction of Teichmüller discs and Teichmüller curves,

∗In the recent article [BM10], Bouw and Möller give a series of primitive Teichmüller curves in
M2 (so in particular not Origami curves) whose moduli fields are real quadratic extensions of Q.
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which is purely analytical. Then, we reveal the arithmetic nature of these curves.
This enables us to prove parts of a conjecture that Kremer stated in [Kre10a], and
to prove a relationship between the index of the Veech group and the degree of a
certain field extension connected to an Origami.

Chapter 4 is the central part of this work. We begin by explaining Möller’s
algebro-geometric construction of Origamis from dessins, or, in slightly greater
generality (which we will not need in this work), pillow case coverings. After that
we justify, using results from classical algebraic geometry, that we can replace
Möller’s construction by a purely topological one, i.e. we can forget about the
structures as algebraic curves and work with unramified coverings of punctured
topological surfaces. Having done so, we calculate the monodromy of an M-
Origami, given the monodromy of a dessin, using the results from Chapter 1.
As its monodromy fully describes an M-Origami, we can go on from there to
calculate its interesting properties, like the genus, the number of punctures, its
Veech group, the Origamis in its affine equivalence class (which will turn out to
be also M-Origamis) and the cylinder decomposition in its Strebel directions. This
will finally allow us to reprove Möller’s results using topological methods. Due
to our detailed examination of the properties of M-Origamis, we are able to give
finer conditions for such an Origami not to be defined over Q. Also, we can show
in a constructive way that the Galois action on Origamis is non-trivial in every
genus g ≥ 4.

In the last chapter, we exploit the explicit nature of our construction to present
some examples. First, we pick some Galois orbits of trees from the catalogue
[BZ92] and construct the associated M-Origamis and their Teichmüller curves.
Besides actually illustrating the Galois action, these examples also show that
different Veech groups can occur for M-Origamis, and that our Theorem 2 at
the end of Chapter 3 is actually a non-trivial statement. Next, we construct a
series of trees that we show not to be defined over Q, which we use to prove
the non-triviality result that appears at the end of Chapter 4. We also give an
example of Origami curves originating from an orbit of dessins in genus 1. Finally,
shifting our view away from the Galois action, we use our knowledge about the
Veech groups of M-Origamis to construct an infinite series of Origamis of growing
genus with Veech group SL2(Z) that are not characteristic. It seems like not many
examples of such Origamis are known so far.

Throughout this work, we use the following naming convention: Theorems that
we cite from other authors (or which we believe to be folklore statements) are
identified by capital letters, while for original theorems we use Arabic numerals
as usual. For minor statements, such as propositions, lemmas and remarks we
will not make that distinction. However, we make clear whether or not they are
original work by the author. We try to stick to the convention of marking a term
in italics when it appears for the first time.
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CHAPTER 1

Topological Preliminaries

The two classes of objects we will study closely in the following chapters, namely
dessins d’enfants and Origamis, both have very deep and interesting geometric and
arithmetic properties. However, they can be completely described in a topological
way: They are topological coverings of 2-dimensional manifolds. A central idea
of this work is to use topological reasoning as often as possible, which will help
us to make many situations more explicit than it would be possible using more
abstract, and seemingly more elegant techniques, such as algebraic geometry.

The goal of this chapter is to give an introduction to the classical topic of topo-
logical coverings, adapted to our needs in the forthcoming chapters. All of the
results presented here should be well-known, but nevertheless we will prove them
in detail, as we formulate them differently compared to classical textbooks on
topology.

1. Reformulating the “Main Theorem for Coverings”

The central result in the theory of topological coverings is usually stated as
follows: Given a sufficiently nice path-wise connected topological space X with
fundamental group G = π1(X, x0), the equivalence classes of path-wise connected
spaces with a covering map to X are in bijection to the conjugacy classes of
subgroups of G.
This view has two downsides: Firstly, this theorem is not helpful when we want
to work with spaces covering X that are not necessarily path-wise connected.
Secondly, the groups which describe the coverings, i.e. subgroups of G, are not
very handy objects when we want to do calculations.

Our solution to these two problems will be to work with monodromy instead:
For a covering p : Y → X, we study the natural action of G on the fibre p−1(x0).
This is possible even if Y is not path-wise connected. Indeed, the only difference
is that the action need not be transitive in this case. If d := |p−1(x0)| < ∞, we
can describe the monodromy action by a homomorphism G → Sd. In the cases
we will consider later, the fundamental group G will be free of rank n, so after
fixing generators, giving a homomorphism G → Sd simply amounts to giving
an element of the set (Sd)n. We get the equivalence classes of coverings of X of
degree d as the orbits of (Sd)n under the diagonal action of Sd by conjugation.

Let us begin by making the notion of a covering that need not be path-wise
connected:

Definition 1.1. Let X be a path-wise connected, locally path-wise connected, semi-
locally simply connected topological space. (From now on, call such a topological
space *-space.) A topological space Y together with a continuous surjective map
p : Y → X is called not necessarily path-wise connected covering (NPC) if every point
x ∈ X has an open neighbourhood Ux � x with the following property: p−1(Ux)

9



10 1. TOPOLOGICAL PRELIMINARIES

is a disjoint union �i∈I Ui such that for all i ∈ I the restriction p|Ui
: Ui → Ux is a

homeomorphism. Ux is then called admissible neighbourhood of x with respect to
p. Moreover, as it is well known for ordinary coverings, deg p := |p−1(x)| is well
defined and is called degree of the NPC.

Note that, if in the above situation Y is path-wise connected, p is just a covering in
the usual sense—see for example [Sch71, III 6.2].

We make the following agreement: If α, β ∈ π1(X, x0) are two elements of the
fundamental group of a topological space then βα shall denote the homotopy class
one gets by first passing through a representative of α and then one of β.

Definition and Remark 1.2. Let p : Y → X be a NPC of degree d < ∞.

a) If g : [0, 1] → X is a path, and if y1 ∈ p−1(g(0)) is a preimage of its
starting point, then there is a unique lift h := Lpy1(g) : [0, 1] → Y with
starting point h(0) = y1. Its end point shall be denoted by epy1(g). If g

′ is
homotopic to g then Lpy1(g

′) is homotopic to h and epy1(g
′) = epy1(g).

b) Let x0 ∈ X, p−1(x0) = {y1, . . . , yd}. The map

mp : π1(X, x0)→ Sd,γ 	→ (i 	→ j, if yj = epyi (γ))

is a group homomorphism and is called the monodromy of p.∗ It is
uniquely determined by p up to conjugation in Sd.

c) p is a covering (i.e. Y is path-wise connected) iff the action induced by
mp is transitive.

Proof. Parts a) and b) are easily reduced to the case of ordinary coverings by
restricting to the path-wise connected components of Y. In that case they are
well-known, see for example [Sch71, III 6.3]. Let us prove part c).

“⇐”: Let y, y′ ∈ Y, w.l.o.g. y = y1. Choose a path γ from p(y′) to x0. Let
γ̃ = Lpy′(γ). There is an i ∈ {1, . . . , d} with γ̃(1) = yi. mp is transitive, so choose

β ∈ π1(X, x0) with mp(β)(1) = i. Let β̃ = Lpy1(β). Then γ̃−1 β̃ is a path from y to
y′.
“⇒”: If mp is not transitive, i.e. ∃ i, j �γ : mp(γ)(i) = j, then there is no path from
yi to yj. �

Theorem A. Let X be a *-space. Then there are the following bijections:

a)

{X′/X Covering of degree d}/Fibre preserving homeomorphisms

i)↔{U ⊆ π1(X) subgroup of index d}/conjugation
ii)↔{m : π1(X)→ Sd transitive permutation representation}/conjugation in Sd

b) {X′/X NPC of degree d}/Fibre preserving homeomorphisms

↔{m : π1(X)→ Sd permutation representation }/conjugation in Sd

In particular, a NPC is uniquely determined up to fibre preserving homeomor-
phism by its monodromy.

∗This is actually the reason for the above convention to read words in the fundamental group
from the right. One wants to consider elements of Sd as maps with group composition “◦”.
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Proof. a) The equivalence i) is the well known main theorem of the theory
of coverings. For the second equivalence, we apply Lemma 1.3, which
we state below. To be able to use it, note that Sd is generated by the
permutations that fix 1, and {(1 i), i ∈ 2, . . . , d}.

b) Decompose p : X′ → X into the path connected components X1, . . . ,Xk
of X′. These are coverings of degree d1, . . . , dk,∑ di = d. Respectively, de-
compose a permutation representation into its orbits. With the following
Remark 1.4, this reduces the claim to the situation of a). �

Lemma 1.3. Let G be a group. Then there is the following bijection:

{U ⊆ G subgroup of index d} ↔ {m : G → Sd transitive}/conjugations that fix 1

U
φ	→ action of G on u1U, . . . , udU, u1 = 1†

m−1(Stab(1))
ψ← � m

Proof. ψ ◦ φ = id is obvious! To prove φ ◦ ψ = id, let m : G → Sd be like in the
above situation, m′ := (φ ◦ ψ)(m).

We claim that m and m′ are conjugate to each other. Indeed, let U = m−1(Stab(1)),
and let u1 = 1, . . . , ud be coset representatives of U. W.l.o.g. we have m(ui)(1) = i.
(This is achieved by a conjugation fixing 1.)

Let g ∈ G. Then we have:

m(g)(i) = k⇔ guiU = ukU ⇔ m′(g)(i) = k

�

For the results of the next section we need the following elementary

Remark 1.4. a) Let f : Y → X be a covering of degree d, and let g : Z → Y
be a NPC of degree e. Then, f ◦ g : Z → X is a NPC of degree d · e.

b) Let f : Y → X be a NPC of degree d. Then, for each path-wise connected
component Yi of Y, the restriction f|Yi : Yi → X is a covering of some
degree di such that we have ∑ di = d.

c) In the situation of b), denote for each path-wise connected component
the degree of the restriction f|Yi by di, and let gi : Zi → Yi be a NPC of
degree ei. Let Z := � Zi and g := � gi : Z → Y. Then, f ◦ g : Z → X is a
NPC of degree ∑ di · ei.

We omit the straightforward proof here.

2. Fibre products of NPCs

Let f : A → X, g : B → X be continuous maps of topological spaces. Then, the
fibre product A×X B is defined as

A×X B := {(a, b) ∈ A× B : f (a) = g(b)}
endowed with the subspace topology of the product. Consequently, the projections
pA : A×X B→ A, (a, b) 	→ a and pB : A×X B→ B, (a, b) 	→ b are continuous.

If now f and g are NPCs, then pA, pB and f ◦ pA = g ◦ pB are also NPCs, possibly
after restricting them such that their image is path-wise connected. We study the
situation more closely in the following

†Here, u1 = 1, . . . , ud is a system of representatives of the right cosets, and the action is multipli-
cation from the left.
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Theorem B. Let X be a *-space, f : A → X, g : B → X NPCs of degree d and d′,
respectively, with given monodromy maps mf resp. mg. Then, we have for the
fibre product A×X B:

a) For each path-wise connected component Ai ⊆ A, the restriction

pA |p−1A (Ai)
: p−1A (Ai) = Ai ×X B→ Ai

is a NPC of degree d′ with monodromy

mg ◦ ( f|Ai
)∗.

b) The map f ◦ pA = g ◦ pB : A ×X B → X is a NPC of degree dd′ with
monodromy

mf ×mg : π1(X, x0)→ Sd × Sd′ ⊆ Sdd′ ,γ 	→
(
(k, l) 	→ (mf (k), mg(l))

)
,

where (k, l) ∈ {1, . . . , d} × {1, . . . , d′}.
Proof. For part a), let A w.l.o.g. be path-wise connected, i.e. Ai = A, and let
x ∈ A. Then we have:

p−1A (x) = {(a, b) ∈ A× B : a = x ∧ f (a) = g(b)} = {x} × g−1({ f (x)}).
This shows the surjectivity of pA.
Now choose admissible neighbourhoods UA, UB of f (x) with respect to f and g,
respectively. Then, U := UA ∩UB is an admissible neighbourhood of f (x) with
respect to both f and g. Let f−1(U) = �d

i=1Ui, and w.l.o.g. let x ∈ U1.

We claim now that U1 is an admissible neighbourhood of x with respect to pA. To
see this, let g−1(U) = �d′

j=1 Vj. Then we have:

p−1A (U1) = {(a, b) ∈ A× B, a ∈ U1 : f (a) = g(b)}

=

{
(a, b) ∈ U1 ×

d′

�
i=1

Vi : f (a) = g(b)

}

=
d′

�
i=1
{(a, b) ∈ U1 ×Vi : f (a) = g(b)} =

d′

�
i=1

U1 ×U Vi

∼=
d′

�
i=1

U1

We have the rightmost homeomorphism because U,U1 and Vi are homeomorphic.
This shows that pA is a NPC of degree d′.
Let us now calculate the monodromy of pA. So, choose base points x0 ∈ X and
a0 ∈ f−1(x0). Let g−1(x0) = {b1, . . . , b′d} be the fibre over x0, and p−1A (a0) =
{c1, . . . , c′d} be the fibre over a0, the numbering on the latter chosen such that
pB(ci) = bi.
Now, take a closed path γ : [0, 1]→ A with γ(0) = γ(1) = a0. Let i ∈ {1, . . . , d′},
and let γ̃ = LpAci (γ) be the lift of γ starting in ci. Assume that γ̃(1) = cj.

Consider now the path δ = f ◦ γ. It is a closed loop starting in x0. Let δ̃ = Lgbi (δ)
be its lift starting in bi, then we have, because of the uniqueness of the lift and
the commutativity of the diagram: δ̃ = pB ◦ γ̃, so particularly, as we asserted
pB(ci) = bi for all i, we have δ̃(1) = bj.

So indeed, we have shown mpA(i) = (mg ◦ f∗)(i).
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For part b), we first note that as a consequence of Remark 1.4 b), f ◦ pA is a NPC
of degree d · d′.
Let γ ∈ π1(X, x0), cij ∈ ( f ◦ pA)−1(x0). Further let e f ◦pAcij (γ) = ckl , using the same
notation as in Definition and Remark 1.2 a).

Then we have e fai (γ) = pA(ckl) = ak and egbj(γ) = pB(ckl) = bl . This completes the
proof. �

The situation of the theorem is actually the main reason why we use NPCs instead
of ordinary coverings: Even if we consider two ordinary coverings, their fibre
product need not be connected. Indeed, take a covering p : Y → X of degree ≥ 2,
then by part b) it is easy to see that Y×X Y cannot be path-wise connected since
the monodromy action of the projection to X is not transitive.

3. Compositions of NPCs

Now, we will discuss the monodromy of the composition of NPCs which are
given in terms of their monodromy maps. Of course, the “lower” NPC has to be
path-wise connected, i.e. a covering. The considered situation is the following:

Let X be a *-space, f : Y → X a cover of degree d, and g : Z → Y a NPC of degree
d′. Furthermore, let x0 ∈ X, f−1(x0) = {y1, . . . , yd}, g−1(yi) = {zi1, . . . , zid′ }.
The fundamental group of X is denoted by Γ := π1(X, x0), the given monodromy
map by mf : Γ → Sd. Fix the notation

Γ1 := m−1f (Stab(1)) = {γ ∈ Γ : mf (γ)(1) = 1}.

So, if we choose y1 as a base point of Y and set Γ′ := π1(Y, y1), then we have
f∗(Γ′) = Γ1. Denote, as usual, the monodromy map of the NPC g by mg : Γ′ → Sd′ .

Theorem C. In the situation described above, let γi, i = 1, . . . , d, be right coset
representatives of Γ1 in Γ, with γ1 = 1, such that e fyi (γi) = y1. So, we have

Γ =
·⋃

Γ1 · γi.

Then, we have:

mf ◦g(γ)(i, j) =
(
mf (γ)(i),mg(ci(γ))(j)

)
Here, we denote ci(γ) := ( f∗)−1(γkγγ−1i ), k := mf (γ)(i)

Proof. Let γ ∈ π1(X, x0), α := L f ◦g
zij (γ), and further let α(1) = e f ◦gzij (γ) =: zi′ j′ . We

have to determine (i′, j′).

The path β := L f
yi (γ) = g ◦ α has endpoint β(1) = ymf (γ)(i). In particular, we have

i′ = mf (γ)(i).

Now, let us determine j′. So let βν := L f
yν(γν) be liftings (for ν = 1, . . . , d).

Remember that by our choice of the numbering of the γν, we have βν(1) =

e fyν(γν) = y1. Using the notation k := mf (γ)(i), we can write β = β−1k β̃βi with

unique β̃ ∈ π1(Y, y1). Indeed, we have: β̃ = βkββ−1i = L f
y1(γkγγ−1i ).

W.l.o.g. we have that the lifting αij := Lgzij(βi) has endpoint z1j, as we have chosen
γ1 = 1, and for i �= 1 we can renumber the zij, j = 1, . . . , d′.
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Denote α̃ := Lgz1j(β̃) and l := mg(β̃(j)), then we have α = α−1kl α̃αij, and because of
α̃(1) = z1mg(β̃(j)) we get:

zi′ j′ = e f ◦gzij (γ) = α(1) =
(

α−1kl α̃αij

)
(1) = zkl

So finally, j′ = l = mg(β̃)(j) = mg(βkββ−1i )(j) = mg(ci(γ))(j). �

4. A lemma about normal coverings

The following topological lemma, which the author has learnt from Stefan Kühn-
lein, diverges a bit from the previous sections of this chapter, as it does not use the
monodromy action. However, it will be very useful in the proof of one of the main
results, where it replaces an argument that uses the group structure of elliptic
curves. Thus, it also fits in our programme to use as much topological reasoning
as possible.

Let p : Y → Z be a covering (i.e. in particular Y is path-wise connected). A deck
transformation of this covering is a homeomorphism ϕ : Y → Y such that p ◦ ϕ = p.
We denote the group of deck transformations of p by Deck(p), or, when there is
no ambiguity about p, by Deck(Y/Z). For any z0 ∈ Z, the group Deck(p) acts on
the fibre p−1(z0). If this action is transitive, the covering is called normal and the
deck transformation group is in this case sometimes denoted by Gal(Y/Z). It is
well known that we have in this situation, for y0 ∈ p−1(z0):

Gal(Y/Z) ∼= π1(Z, z0)/p∗ (π1(Y, y0)) .

The lemma we are going to prove says the following: Given a normal covering
p : Y → Z and two coverings of Y such that their compositions with p are
equivalent coverings of Z, then any fibre preserving homeomorphism exhibiting
this equivalence descends to an element of Gal(Y/Z).

Lemma 1.5. Let f : X → Y, f ′ : X′ → Y be coverings and g : Y → Z be a
normal covering, where Z shall be a Hausdorff space. If g ◦ f ∼= g ◦ f ′, i.e. there
is a homeomorphism ϕ : X → X′ with g ◦ f = g ◦ f ′ ◦ ϕ, then there is a deck
transformation ψ ∈ Deck(g) such that ψ ◦ f = f ′ ◦ ϕ.

X X′

Y Y

Z

ϕ

f f ′

ψ

g g

Proof. Choose z ∈ Z, y ∈ g−1(z), x ∈ f−1(y). If we denote x′ := ϕ(x), y′ :=
f ′(x′), then by hypothesis y′ ∈ g−1(z). So by normality of g, there is a deck
transformation ψ ∈ Deck(g) such that ψ(y) = y′ (which is even unique). Of
course, ψ ◦ f (x) = f ′ ◦ ϕ(x), and we claim now that we have ψ ◦ f = f ′ ◦ ϕ
globally.

Consider the set A := {a ∈ X | ψ ◦ f (a) = f ′ ◦ ϕ(a)}. Clearly A �= ∅ because
x ∈ A. Also, it is closed in X because all the spaces are Hausdorff. We want to
show now that A is also open. Because X is connected, this implies A = X and
finishes the proof.
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So let a ∈ A, and let g( f (a)) ∈ U ⊆ Z be an admissible neighbourhood for
both g ◦ f and g ◦ f ′ (and so particularly for g). Furthermore let V ⊆ g−1(U) be
the connected component containing f (a), and W ⊆ f−1(V) the one containing
a. Denote V′ := ψ(V), and by W ′ denote the connected component of f ′−1(V′)
containing ϕ(a). As it is not clear by hypothesis that W ′ = W ′′ := ϕ(W), set
W̃ ′ := W ′ ∩W ′′, which is still an open neighbourhood of ϕ(a), and adjust the
other neighbourhoods in the following way:

W̃ := ϕ−1(W̃ ′) ⊆ W, Ṽ := f (W̃), Ṽ′ := f ′(W̃ ′).

Note that we still have a ∈ W̃, that all these sets are still open, that Ũ := g(Ṽ) =
g(Ṽ′), and that the latter is still an admissible neighbourhood for g ◦ f and
g ◦ f ′. By construction, by restricting all the maps to these neighbourhoods we
get a commutative pentagon of homeomorphisms, so in particular (ψ ◦ f )|W̃ =

( f ′ ◦ ϕ)|W̃ , which finishes the proof. �





CHAPTER 2

Dessins d’enfants and Belyi’s theorem

In this chapter, we will first introduce dessins d’enfants in the sense of Grothen-
dieck and explain the equivalence of the topological, the complex analytic and the
algebro-geometric view on a dessin.

We will go on by discussing the notions of moduli fields and fields of definition
of a dessin. In order to do so, our point of view will be a scheme-theoretic one.
This might seem unnecessarily abstract, as in terms of algebraic geometry dessins
are just nonconstant functions on complex projective curves. However, when we
restrict to subfields of C that are not algebraically closed, reasoning by classical
algebraic geometry becomes a bit cumbersome. Furthermore, describing the action
of Gal(Q/Q) on dessins is much more natural in the language of Q-schemes, i.e.
schemes together with a structure morphism to Spec(Q), in contrast to working
with explicit equations.

After that we are ready to state Belyi’s famous theorem, which allows another
point of view on dessins. We will sketch the proof, and finally state the faithfulness
result about the action of Gal(Q/Q) on dessins.

For the definitions and results stated in this chapter, we follow mainly [Wol01],
[Sch94] and [Köc04].

1. Several definitions of a dessin

Definition 2.1. a) A dessin d’enfant (or Grothendieck dessin, or children’s draw-
ing) of degree d is a tuple (B,W,G, S), consisting of:
• A compact oriented connected real 2-dimensional manifold S,
• two finite disjoint subsets B,W ⊂ S (called the black and white
vertices),

• an embedded graph G ⊂ S with vertex set V(G) = B
.∪W which is

bipartite with respect to that partition of V(G), such that S \ G is
homeomorphic to a finite disjoint union of open discs (called the
cells of the dessin, and such that |π0(G \ (B ∪W))| = d.

b) An isomorphism between two dessins D := (B,W,G, S) and D′ :=
(B′,W ′,G′, S′) is an orientation preserving homeomorphism f : S→ S′,
such that

f (B) = B′, f (W) = W ′, and f (G) = G′.

c) By Aut(D) we denote the group of automorphisms of D, i.e. the group
of isomorphisms between D and itself.

So, from a naïve point of view, a dessin is given by drawing several black and
white dots on a surface and connecting them in such a manner by edges that the
cells which are bounded by these edges are simply connected. It is not obvious that
a dessin d’enfant can be defined equally well in several other manners, revealing

17
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the rich structure of a dessin that is hidden in our first definition. We give an
overview in the following

Proposition 2.2. Giving a dessin in the above sense up to isomorphism is equiva-
lent to giving each of the following data:

a) A finite topological covering β : X∗ → P1
C \{0, 1, ∞} of degree d up to

equivalence of coverings.
b) A conjugacy class of a subgroup G ≤ π1(P

1
C \{0, 1, ∞}) of index d.

c) A pair of permutations (px, py) ∈ S2d, such that 〈px, py〉 ≤ Sd is a
transitive subgroup, up to simultaneous conjugation in Sd.

d) A non-constant holomorphic map β : X → P1
C of degree d, where X is a

compact Riemann surface and β is ramified at most over the set {0, 1, ∞},
up to the following equivalence:

(β : X → P1
C)
∼= (β′ : X′ → P1

C) :⇔ ∃ biholomorphic ϕ : X → X′ : β = β′ ◦ ϕ.

e) A non-constant morphism β : X → P1
C of degree d, where X is a nonsin-

gular connected projective curve over C and β is ramified at most over
the set {0, 1, ∞}, up to the following equivalence:

(β : X → P1
C)
∼= (β′ : X′ → P1

C) :⇔ ∃ isomorphism ϕ : X → X′ : β = β′ ◦ ϕ.

Proof. The equivalence between an isomorphism class of dessins in the sense of
the definition, and a conjugacy class of a pair of permutations as in c) is shown in
[JS78, § 3].

The equivalence of a), b) and c) is discussed in Theorem A, noting that the
fundamental group π1(P

1
C \{0, 1, ∞}) is freely generated by two paths x and y,

so giving a transitive homomorphism to Sd just amounts to picking their images
px and py in such a way that they generate a transitive subgroup.

The equivalence between a) and d) is a well-known fact from complex analy-
sis: According to [For77, Satz 1.8], we can lift the usual complex structure on
P1
C \{0, 1, ∞} to X∗ in exactly one way such that β becomes holomorphic. Then

we can complete X∗ to a compact Riemann surface X and continue β to a holomor-
phic map X → P1

C. In the other direction, we just remove the set {0, 1, ∞} from
P1
C and its finitely many preimages from X, so we end up with an unramified cov-

ering. Note that the equivalence between Definition 2.1 and d) is proven by Jones
and Singerman in [JS78], and the direction from d) to our original definition can
be understood in the following explicit way: As S, we take of course the Riemann
surface X, forgetting its complex structure, as B and W we take the preimages of
0 and 1, respectively, and for the edges of G we take the preimages of the open
interval (0, 1) ⊂ P1

C. Then, S \ G is the preimage of the set P1
C \[0, 1], which is

open and simply connected. So the connected components of S \ G are open and
simply connected proper subsets of a compact surface and thus homeomorphic to
an open disc.

Finally, the equivalence between d) and e) follows from the well-known equiva-
lence between nonsingular algebraic curves and Riemann surfaces, which we state
below. �

Theorem D. There is an equivalence of categories between compact Riemann sur-
faces together with nonconstant morphisms and connected nonsingular projective
curves over C together with nonconstant morphisms. This equivalence takes a
Riemann surface to a complex curve with isomorphic function field.
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Riemann himself already knew parts of that result, but the usual reference is
[Ser56] whose title coined the name “GAGA-principle” for its main results, which
generalise the above theorem.

For reasons that will become apparent soon, we will call the morphisms β appear-
ing in the above proposition, specifically in part e), Belyi morphisms. Also, this
proposition encourages us to slightly abuse the notation by using Belyi morphism
and dessin d’enfant as synonyms.

It might now be nice to see a first simple example of a dessin d’enfant:

Example 2.3. We draw the following graph on a topological surface E of genus 1:

The graph, which has 4 edges, is obviously bipartite, and if we remove it from the
surface, we get one connected component which is simply connected. So, what
we have drawn is indeed a dessin D of degree 4 with one black vertex, two white
vertices and one cell.

We want to understand at least the equivalent forms c) and e) from Proposition 2.2
to write down this dessin. For c), we first need to fix generators x and y of
π1(P

1
C \{0, 1, ∞}). We fix 1

2 as a base point and define

x : [0, 1]→ P1
C \{0, 1, ∞}, t 	→ e2πit

2

y : [0, 1]→ P1
C \{0, 1, ∞}, t 	→ 1− e2πit

2
.

So x and y are simple closed loops around 0 and 1, respectively. Let us fix this
choice for the rest of this work. Now we need to mark a point on each of the
dessin’s edges as the preimage of our base point and study the monodromy action
of x and y, i.e. lift the paths, beginning in each of these preimages. This amounts,
after choosing a numbering on the edges, to enumerating the edges ending in
each black vertex in counterclockwise direction (this gives the cycles of px), and
repeating the same for the white vertices, defining py. In the case of this example,
we find (with the right numbering of edges):

px = (1 2 3 4), py = (1 3)(2 4)

According to part e) of the above proposition, D also defines a structure as a
complex projective curve on E and a morphism βD : E → P1

C. In general, this
can be hard to calculate, see [Sch94, §3] for an approach using Gröbner bases.
Fortunately, the situation is relatively easy here, and we find (affine) equations in
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[AAD+07]:
E : y2 = x3 − x, βD : (x, y) 	→ x2.

In the class of dessins d’enfants of genus 0, i.e. dessins drawn on the Riemann
sphere P1

C, one is often interested in the ones whose Belyi functions are polynomi-
als. A polynomial p ∈ C[X] does not have poles, so as a function p : P1

C → P1
C

it takes the value ∞ exactly once, i.e. it is totally ramified over ∞. If p has at
most two more (finite) critical values, it can be rescaled to be a Belyi function by
postcomposing a linear function. As we will see in Definition and Remark 2.9,
Belyi polynomials are precisely the Belyi functions that correspond to trees. We
will give two series of Belyi polynomials in the following example:

Example 2.4. First, consider for n ≥ 1 the polynomial Pn(z) = zn. It is totally
ramified over 0 (and ∞), and unramified elsewhere. So it is a Belyi polynomial,
and the corresponding dessin has n edges, one black vertex and n white vertices.
This information already defines the dessin. Let us draw the dessin corresponding
to P5(z) = z5. The picture shall be thought of to be a small part of the Riemann
sphere the dessin is drawn on.

As a second series of examples, we consider the Chebyshev polynomials (Tn)n∈N.
Remember that Tn is defined to be the function solving the equation Tn(cos ϕ) =
cos(nϕ), and that the Chebyshev polynomials satisfy the recurrence relation

Tn+1(z) = 2zTn(z)− Tn−1(z),

which also recursively defines them after setting T0(z) = 1, T1(z) = z. It is an
easy exercise that T′n(z) = 0 ⇒ Tn(z) ∈ {−1, 1}, i.e. the finite critical values are
(at most) ±1. So T̃n := 1

2 (Tn + 1) is a Belyi polynomial, and a closer inspection
shows that if n is even, then T̃n has n

2 − 1 double points and two unramified points
lying over 0 and n

2 double points lying over 1. If n is odd, we have n−1
2 double

points and one unramified point lying over 0 and 1, respectively. This is again
enough information to draw the corresponding dessins. We draw the dessins
corresponding to the Belyi polynomials

T̃3(z) = 2z3 − 3
2z+

1
2 and T̃4(z) = 4z4 − 4z2 + 1 :

Before we continue, we want to mention a small warning about the intuition in the
case of genus 0 dessins, i.e. dessins where the surface S is a sphere. In the above
example, we have drawn them in the plane. This is possible in general: If such a
dessin is given, then its graph G surely misses one point P ∈ S, so we can as well
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draw G in a plane, and since G is compact, we can draw it into a bounded domain.
One usually makes use of this, because it makes it easy to draw pictures of genus
0 dessins. We only have to keep in mind that the choice of P puts a marking on
one of the cells of the dessin (namely the unbounded cell, or the outside in the
picture), that is not necessarily fixed by an isomorphism of dessins. Let us draw
an example of two isomorphic dessins with different markings of the unbounded
cell:

Let us note an easy corollary of Proposition 2.2 that may seem harmless but will
almost prove the “obvious” part of Belyi’s theorem later.

Corollary 2.5. For any d ∈ N, there are only finitely many dessins d’enfants of
degree d up to equivalence.

Proof. By Proposition 2.2, a dessin can be characterised by a pair of permutations
(px, py) ∈ (Sd)2. So, (d!)2 is an upper bound for the number of isomorphism
classes of dessins of degree d. �

Next, we will establish the notion of a weak isomorphism between dessins.

Definition 2.6. We call two Belyi morphisms β : X → P1
C and β′ : X′ → P1

C

weakly isomorphic if there are biholomorphic ϕ : X → X′ and ψ : P1
C → P1

C such
that the following square commutes:

X X′

P1
C P1

C

ϕ

β β′

ψ

Note that in the above definition, if β and β′ are ramified exactly over {0, 1, ∞},
then ψ has to be a Möbius transformation fixing this set. This subgroup W ≤
Aut(P1

C) is clearly isomorphic to S3 and generated by

s : z 	→ 1− z and t : z 	→ z−1.

In the case of two branch points, ψ can of course still be taken from that group.
The cases of exactly one and no branch point are trivial (the first one because it
does not exist). So for a dessin β, we get up to isomorphism all weakly isomorphic
dessins by postcomposing with all elements of W. Let us reformulate this on a
more abstract level:

Definition and Remark 2.7. a) The group W acts on the set∗ of dessins
from the left by w · β := w ◦ β. The orbits under that action are precisely
the weak isomorphism classes of dessins.

∗Actually we should be talking about isomorphism classes in order to get a set.
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b) For a dessin β we call Wβ := Stab(β), its stabiliser in W, the group of
nontrivial weak automorphisms.†

c) If a dessin β is given by a pair of permutation (px, py), then its images
under the action of W are described by the following table (where pz :=
p−1x p−1y ):

β s · β t · β (s ◦ t) · β (t ◦ s) · β (t ◦ s ◦ t) · β

(px, py) (py, px) (pz, py) (py, pz) (pz, px) (px, pz)

Proof. Part a) was already discussed above. Proving c) amounts to checking what
s and t do, and then composing, which has been done in [Sij06, 2.5]. �

It would be interesting to know all dessins that are fixed points under the action of
W, which seems to be a rather strong condition. To the knowledge of the author,
there is no complete classification of these dessins, but at least in Example 5.6 we
give an infinite series of such dessins.

In the theory of dessins d’enfants, one often makes use of the notion of clean
and pre-clean dessins. We define them here and introduce a class of “particularly
un-clean” dessins that will be helpful in later considerations.

Definition and Remark 2.8. Let β be a dessin defined by a pair of permutations
(px, py).

a) β is called pre-clean if p2y = 1, i.e. if all white vertices are either of valence
1 or 2.

b) β is called clean if all preimages of 1 are ramification points of order
precisely 2, i.e. if all white vertices are of valence 2.

c) If β : X → P1
C is a Belyi morphism of degree d, then if we define

a(z) := 4z(1− z) ∈ Q[z] we find that a ◦ β is a clean dessin of degree 2d.
d) We will call β filthy if it is not weakly isomorphic to a pre-clean dessin,

i.e. 1 /∈ {p2x, p2y, p2z}.

Another common class of dessins consists of the unicellular ones. We briefly
discuss them here.

Definition and Remark 2.9. a) A dessin d’enfant D is said to be unicellular
if it consists of exactly one open cell.

b) If D is represented by a pair of permutations (px, py), it is unicellular iff
pz = p−1x p−1y consists of exactly one cycle.

c) If D is represented by a Belyi morphism β : X → P1
C, it is unicellular iff

β has exactly one pole.
d) If D is a dessin in genus 0, it is unicellular iff its graph is a tree.

Proof. For b) and c), note that every cell of a dessin D contains exactly one
preimage of ∞. These are of course the poles of the associated Belyi morphism β,
and they are in bijection to the cycles of pz, which describes the monodromy of β
around ∞.

For d), note that a graph is contractible iff it is a tree. Because of the requirement for
a cell in a dessin to be simply connected, this is equivalent to D being unicellular.

�
†A maybe more precise notion of a weak automorphism would be, for a dessin β : X → P1

C, a
pair (ϕ, ψ), where ϕ ∈ Aut(X), ψ ∈W and ψ ◦ β = β ◦ ϕ. This would exhibit Wβ as the image of the
group of such pairs under the projection (ϕ, ψ) 	→ ψ.
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2. Fields of definition and moduli fields

Before we can state Belyi’s famous theorem, we have to introduce the notion of a
field of definition of a variety and of a morphism between varieties, and the closely
related notion of the moduli field. The naïve idea behind a field of definition is
the following: Let V be a variety over some field K defined by some equations
such that all the coefficients of these equations lie in some smaller field k ⊆ K.
Then it appears reasonable to say that V can be defined over k, or to call k a
field of definition of V. The same notion can be stated for morphisms between
K-varieties. We could indeed formalise these ideas for, say, projective varieties
V ⊆ Pn(K) defined by a set of equations, but the theory appears much clearer
if we use the language of K-schemes, even if the schemes we will talk about are
actually quasi-projective varieties in the sense of classical algebraic geometry. We
follow more or less the presentation of the material in [Köc04] here. Let us start
with a definition. Here, we denote as usual by

Spec : commutative rings→ affine schemes

the contravariant functor which assigns to a ring its spectrum.

Definition 2.10. Let K be a field.

a) A K-scheme is a pair (S, p), where S is a scheme, and p a morphism
p : S→ Spec(K), called the structure morphism.

b) A K-morphism ϕ : (S, p) → (S′, p′) is understood to be a scheme mor-
phism ϕ : S→ S′ such that p = p′ ◦ ϕ.

c) A K-scheme (S, p) is called K-variety if S is a reduced scheme that is
separated and of finite type over Spec(K).

d) We denote the category of K-schemes by Sch/K and the category of
K-varieties by Var/K.

Now, we can study the action of Aut(K), the group of field automorphisms of K,
on K-schemes. We introduce two versions of this action, and learn that they are
actually equivalent.

Definition and Remark 2.11. Let (S, p) be a K-scheme, and σ ∈ Aut(K).

a) Define (S, p)σ := (S, Spec(σ) ◦ p) and (S, p).σ := (S′, p′), where (S′, p′)
shall be defined by the following Cartesian diagram:

S′ S

�

Spec(K) Spec(K)

ϕ

p′ p

Spec(σ−1)

Then (S, p)σ ∼= (S, p).σ in Sch/K.
b) Mapping (S, p) 	→ (S, p)σ defines a right action of Aut(K) on Sch/K.

Proof. For part a) we first note that ϕ : S′ → S in the Cartesian diagram is
an isomorphism of schemes since Spec(σ−1) ∈ Aut(Spec(K)). Furthermore, by
the commutativity of the diagram, we have p′ = Spec(σ) ◦ Spec(σ−1) ◦ p′ =
Spec(σ) ◦ p ◦ ϕ, so ϕ is a K-isomorphism between (S, Spec(σ) ◦ p) and (S′, p′).
Part b) is a direct consequence of the fact that Spec is a contravariant functor, so
indeed (S, p)(στ) = ((S, p)σ)τ .
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For a reader more familiar with classical algebraic geometry, it might now be
unintuitive that if we take (S, p) to be, say, a curve over C, this action does anything
visible at all, since it leaves the underlying scheme S completely unchanged and
only changes the dubious structure morphism. So we hope to clarify the situation
a bit by citing [Köc04, Remark 1.2], which translates our definitions back to the
classical world of projective varieties:

Remark 2.12. Let K be a field, let σ ∈ Aut(K) and let X = V( f1, . . . , fm) ⊆
Pn(K) be a projective variety defined by homogeneous polynomials f1, . . . , fm ∈
K[X0, . . . ,Xn]. Then, Xσ is defined by the polynomials σ−1( f1), . . . , σ−1( fm), where
Aut(K) shall act on polynomials by acting on their coefficients.

We are now able to define the terms field of definition and moduli field.

Definition 2.13. a) A subfield k ⊆ K is called field of definition of a K-scheme
(resp. K-variety) (S, p) if there is a k-scheme (resp. k-variety) (S′, p′) such
that there is a Cartesian diagram

S S′

�

Spec(K) Spec(k)

p p′

Spec(ι)

where ι : k→ K is the inclusion. Alternatively, (S, p) is said to be defined
over k then.

b) For a K-scheme (S, p), define the following subgroup U(S, p) ≤ Aut(K):

U(S, p) := {σ ∈ Aut(K) | (S, p)σ ∼= (S, p)}

The moduli field of (S, p) is then defined to be the fixed field under that
group:

M(S, p) := KU(S,p)

We will also need to understand the action of Aut(K) on morphisms. We will start
the bad habit of omitting the structure morphisms here, which the reader should
amend mentally.

Definition 2.14. Let β : S→ T be a K-morphism (i.e. a morphism of K-schemes)
and σ ∈ Aut(K).

a) The scheme morphism β is of course also a morphism between the
K-schemes Sσ and Tσ. We denote this K-morphism by βσ : Sσ → Tσ.

b) Let β′ : S′ → T′ be another K-morphism. Then we write β ∼= β′ if there
are K-isomorphisms ϕ : S→ S′ and ψ : T → T′ such that ψ ◦ β = β′ ◦ ϕ.
Specifically we have β ∼= βσ iff there are K-morphisms ϕ,ψ such that
the following diagram (where we write down at least some structure
morphisms) commutes:
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Sσ S

Tσ T

Spec(K) Spec(K)

ϕ

βσ β

ψ

p p

Spec(σ)

Let us now restate the definitions of field of definition and moduli field for
morphisms. For that sake, note that taking the fibre product with Spec(K) via
the inclusion ι : k → K is a functor from Sch/k to Sch/K that we will denote by
×Spec(k) Spec(K): Indeed, it is just the base change to Spec(K).

Definition 2.15. a) A morphism β : S → T of K-schemes (or K-varieties,
respectively) is said to be defined over a field k ⊆ K if there is a morphism
β′ : S′ → T′ of k-schemes (k-varieties) such that β = β′ ×Spec(k) Spec(K).

b) For a morphism β : S→ T of K-schemes, define the following subgroup
U(β) ≤ Aut(K):

U(β) := {σ ∈ Aut(K) | βσ ∼= β}
The moduli field of β is then defined to be the fixed field under this group:

M(β) := KU(β)

If, now, β : X → P1
C is a Belyi morphism, the above notation gives already a

version for a moduli field of β. But this is not the one we usually want, so we
formulate a different version here:

Definition 2.16. Let β : X → P1
C be a Belyi morphism, and let Uβ ≤ Aut(C) be

the subgroup of field automorphisms σ such that there exists a C-isomorphism
fσ : Xσ → X such that the following diagram commutes:

Xσ X

(P1
C)

σ P1
C

fσ

βσ β

Proj(σ)

where Proj(σ) shall denote the scheme (not C-scheme!) automorphism of P1
C =

Proj(C[X0, X1]) associated to the ring (not C-algebra!) automorphism of C[X0, X1]
which extends σ ∈ Aut(C) by acting trivially on X0 and X1.

Then, we call Mβ := CUβ the moduli field of the dessin corresponding to β.

Note that the difference to Definition 2.15 b) is that there, we allow composing
Proj(σ) with automorphisms of P1

C, potentially making the subgroup of Aut(C)
bigger and therefore the moduli field smaller. Let us make that precise, and add
some more facts about all these fields, by citing [Wol01, Proposition 6]:

Proposition 2.17. Let K be a field, and β : S→ T a morphism of K-schemes, or
of K-varieties. Then:

a) M(S) and M(β) depend only on the K-isomorphism type of S resp. β.
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b) If furthermore β is a Belyi morphism, then the same goes for Mβ.
c) Every field of definition of S (resp. β) contains M(S) (resp. M(β)).
d) We have M(S) ⊆ M(β).
e) If β is a Belyi morphism, then we also have M(β) ⊆ Mβ.
f) In this case Mβ (and therefore also M(S) and M(β)) is a number field,

i.e. a finite extension of Q.

Proof. Parts a) to e) are direct consequences of the above definitions, and for f)
we note that surely if σ ∈ Aut(C) then deg(β) = deg(βσ). So by Corollary 2.5, we
have [Aut(C) : Uβ] = |β ·Aut(C)| < ∞ and so [Mβ : Q] < ∞. �

3. Belyi’s Theorem

In the last part of the above proposition, we have learnt that if a Riemann surface
S admits a Belyi morphism, i.e. a meromorphic function that is at most ramified
over 0, 1 and ∞, then its (or rather the associated complex curve’s) moduli field
M(S) is a number field. This is a rather surprising connection between a complex
analytic and an algebraic property of Riemann surfaces. One might hope now that
if S admits a Belyi morphism, it is even definable over a number field. Knowing
that in genus g ≥ 3 a nonsingular curve is generically definable over its moduli
field supports this hope. But not only is this claim true in general, but also the
converse statement. This is the famous Theorem of Belyi, which we state here:

Theorem E. Let C be a smooth projective complex curve. C is definable over a
number field if and only if it admits a Belyi morphism β : C → P1

C.

We should make the historical note here that for reasons that are far from being
obvious and probably even nontrivial, the “if”-direction of the theorem is often
called the “obvious part”, and the “only if”-direction the “trivial part”.

We will now sketch the proof. The gap between Proposition 2.17 f) and the
“obvious” part of the theorem can be filled by the following theorem due to H.
Hammer and F. Herrlich that can be found in [HH03]:

Theorem F. Let K be a field, and X be a curve over K. Then X can be defined over
a finite extension of M(X).

The proof to the “trivial” part of Belyi’s theorem is surprisingly explicit, giving a
method to actually construct a Belyi morphism, given a complex curve defined over
a number field. There are several versions of this construction that is sometimes
called Belyi’s algorithm. In our sketch we follow the lines of the Lemmas 3.4 to 3.6
in [Köc04] which stay quite close to Belyi’s original work [Bel79].

Proof (Theorem E, “trivial part”). Let C be a smooth projective complex curve
definable over some number field, so in particular over Q. We begin by noting that
this guarantees the existence of a nonconstant morphism f : C → P1

C such that
we have for its set of critical values: crit( f ) ⊆ Q∪{∞}. This is [Köc04, Lemma
3.4]. Define the set S to be the closure of crit( f ) \ {∞} under the action of Aut(C).
Because crit( f ) is finite and consists only of Q-rational points, S is also finite.

We claim now that there exists a nonconstant polynomial p ∈ Q[z] such that
crit(p ◦ f ) = crit(p) ∪ p(crit( f )) ⊆ Q∪{∞}. We may replace crit( f ) by S ∪ {∞}
and note that if n := |S| ≤ 1, then crit( f ) ⊆ Q∪{∞} and there is nothing to
show, as f is itself, possibly up to a Möbius transformation, a Belyi morphism.
So assume n > 1. Take p1 to be the product of the minimal polynomials of all
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elements of S over Q, then we have on the one hand p1(S) = {0}, and on the other
hand, as deg(p1) = n, we have | crit(p1) \ {∞}| ≤ n− 1, and S1 := crit(p1) \ {∞}
is closed again under the action of Aut(C). So we can conclude by induction on n.
Now that we found a morphism with a (potentially horribly large, but) finite set
of critical values T := crit(p ◦ f ) that lies in Q∪{∞}, we claim the existence of
a polynomial q ∈ Q[z] such that crit(q ◦ p ◦ f ) = crit(q) ∪ q(T) ⊆ {0, 1, ∞}. Let
r = |T| and note that if r ≤ 3 we can q just take to be a Möbius transformation. So
let r ≥ 4 and assume w.l.o.g. that we have {0, 1, m

m+n , ∞} ⊆ T for some m
m+n ∈ Q,

which we can guarantee by composing with a Möbius transformation. Now we
compose with the polynomial

q1 : z 	→ (m+ n)m+n

mmnn
zm(1− z)n

We easily check that q1(0) = q1(1) = 0 and q1( m
m+n ) = 1, so q1({0, 1, m

m+n , ∞}) ⊆
{0, 1, ∞}. Furthermore we have crit(q1) ⊆ {0, 1, ∞}, and so in total we get
| crit(q1 ◦ p ◦ f )| ≤ r − 1. So again, we can conclude by induction on r, which
finishes the proof. �

4. The action of Gal(Q/Q) on dessins

Given a Belyi morphism β : X → P1
C and an automorphism σ ∈ Aut(C), clearly

βσ : Xσ → P1
C is again a Belyi morphism, as the number of branch points is an

intrinsic property of the underlying scheme morphism β that is not changed by
changing the structure morphisms. So, Aut(C) acts on the set of Belyi morphisms,
or, due to Proposition 2.2, on the set of dessins d’enfants. As a consequence of
Belyi’s theorem, we even know that this action factors through Gal(Q/Q). So it
is natural to ask if the action factors through an even smaller group. The answer
is that indeed it already acts faithfully. From the standpoint that Gal(Q/Q)
is an intriguing group with a structure so rich that it does not allow much
understanding, and dessins d’enfants are objects that can be described by purely
combinatorial means, this is a rather astonishing fact. Let us state here a finer
version of the faithfulness result here:

Theorem G. For every g ∈ N, the action of Gal(Q/Q) on the set of dessins
d’enfants of genus g is faithful. This still holds for every g if we restrict to the
clean, unicellular dessins in genus g.

Let us sketch the proof here:

Proof. First, fix a Galois automorphism σ ∈ Gal(Q/Q).

In genus 1, take an elliptic curve defined over Q such that j(E) �= (j(E))σ = j(Eσ).
Now take any nonconstant morphism f : E→ P1

C and apply the Belyi-algorithm
to find a Belyi morphism β : E→ P1

C. Then by construction β � βσ. If we want to
restrict to unicellular dessins, we start with an f that has only one pole, whose
existence is guaranteed by the Theorem of Riemann-Roch and note that in our
version of Belyi’s algorithm we only postcompose with polynomials, ensuring that
the ramification above ∞ will stay total. In order to find a clean Belyi morphism,
we postcompose with z 	→ 4z(1− z) as usual. It was noted by F. Armknecht in
[Arm01] that this argument generalises to higher genera, by even restricting to
hyperelliptic curves only.

In genus 0, this of course does not work, as P1
C is already defined over Q. An

elegant proof is written up in [Sch94], where it is attributed to H. W. Lenstra, Jr.
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The idea is to start with an algebraic number α ∈ Q such that σ(α) �= α and choose
fα ∈ Q[z] such that

f ′α(z) = z3(z− 1)2(z− α).
Then by construction crit( f ) = {0, 1, α, ∞}, and the ramification points are dis-
tinguished by their orders. Again, we apply the Belyi algorithm to find a Belyi
polynomial β ∈ Q[z] for which we check that βσ � β. �



CHAPTER 3

Origamis and Teichmüller curves

1. Origamis as coverings

We will first introduce Origamis in a way closely related to our way of defining
dessins d’enfants, in order to point out the similarities between the two construc-
tions.

The standard intuition for constructing an Origami of degree d ∈ N is the following:
Take d copies of the unit square [0, 1]× [0, 1] and glue upper edges to lower edges
and left to right edges, respecting the orientation, until there are no free edges left,
in a way that we do not end up with more than one connected component. In this
way, we get a compact topological surface X together with a tiling into d squares.
Let us begin by noting two simple structures that such a tiling defines:

The first one is the following: If we remove all the vertices of squares from X, then
we get in a natural way a topological covering of the unique Origami E of degree
1, i.e. a genus 1 surface with one point removed, by projecting the d squares of
X to the one square of E. Note that if we are conversely given such a covering
p : X∗ → E∗ (the asterisks denoting the punctured versions of the surfaces), we get
a square tiling back on X by drawing a square on E (which amounts to choosing
two nontrivial simple closed curves on E that are not homotopic and that intersect
precisely in the puncture) and taking its preimage under p. This should remind of
the construction of a dessin by taking the preimage of the segment [0, 1] under
some covering of P1

C \{0, 1, ∞}.
For the second one, note that we glued the right edge of each square to the left
edge of exactly one square (otherwise we would not get a closed manifold). So
if we choose a numbering 1, . . . , d of the squares, this uniquely determines a
permutation pA ∈ Sd telling us that the right edge of square i is glued to the
left edge of square pA(i). In the same manner, the way of gluing upper to lower
edges determines a permutation pB ∈ Sd. If we choose another numbering on
the squares, we get a pair of permutations (p′A, p

′
B) ∈ S2d such that there is an

element c ∈ Sd with p′A = c−1pAc, p′B = c−1pBc. Conversely, given such a pair of
permutations, we can reconstruct the surface X together with the tiling, as the
orientation of the gluing of edges is determined already by the agreement that we
want to respect the orientation of the squares.

Let us now turn the first of these two notions into a rigorous definition. We fix
the standard identification C ∼= R2 by choosing {1, i} as an R-basis of C, and
furthermore we fix C/Z2 as a model for the genus 1 surface E (which fixes a
complex structure on E, and thus also a structure as a complex projective curve),
and choose the point 0+Z2 as the puncture, that we will often denote by ∞. So,
write E∗ := E \ {∞}.

29
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Definition 3.1. a) An Origami O of degree d is an unramified covering
O := (p : X∗ → E∗) of degree d, where X∗ is a (noncompact) topological
surface.

b) If O′ = (p′ : X′∗ → E∗) is another Origami, then we say that O is
equivalent to O′ (which we denote by O ∼= O′), if the defining coverings
are isomorphic, i.e. if there is a homeomorphism ϕ : X′∗ → X∗ such that
p′ = p ◦ ϕ.

c) O = (p : X∗ → E∗) is called normal if p is a normal covering.

Like in the case of dessins, this is not the only possible way to define an Origami.
We list several others here:

Proposition 3.2. Giving an Origami in the above sense up to equivalence is
equivalent to giving each of the following data:

a) A conjugacy class of a subgroup G ≤ π1(E∗) ∼= F2 of index d.
b) A pair of permutations (pA, pB) ∈ S2d, such that 〈pA, pB〉 ≤ Sd is a

transitive subgroup, up to simultaneous conjugation in Sd.
c) A non-constant holomorphic map p : X → E of degree d, where X is a

compact Riemann surface and p is ramified at most over the set {∞}, up
to the following equivalence relation:

(p : X → E) ∼= (p′ : X′ → E) :⇔ ∃ biholomorphic ϕ : X → X′ : p = p′ ◦ ϕ.

d) A non-constant morphism p : X → E of degree d, where X is a nonsingu-
lar connected projective curve over C and p is ramified at most over the
set {∞}, up to the following equivalence:

(p : X → E) ∼= (p′ : X′ → E) :⇔ ∃ isomorphism ϕ : X → X′ : p = p′ ◦ ϕ.

Proving the above equivalences uses a subset of the arguments we used in the proof
of Proposition 2.2. For a more detailed discussion that these equivalences respect
equivalence, the reader may equivalently be referred to the proof of [Kre10a,
Proposition 1.2].

2. Origamis as translation surfaces

We begin with the definition of a translation surface.

Definition 3.3. Let X be a Riemann surface with some atlas X.

a) A translation structure μ on X is an atlas compatible with X (as real
analytic atlases, i.e. their union is an atlas of a real analytic surface), such
that for any two charts f , g ∈ μ, the transition map is locally a translation,
i.e. a map

ϕ f ,g : U ⊆ C→ U′ ⊆ C, x 	→ x+ t f ,g

for some t f ,g ∈ C. We call the pair Xμ := (X, μ) a translation surface.
b) A biholomorphic map f : Xμ → Yν between translation surfaces is called

a translation, or an isomorphism of translation surfaces, if it is locally (i.e. on
the level of charts) a translation. Xμ and Yν are then called isomorphic
(as translation surfaces). If in this case X = Y, we say that the translation
structures μ and ν are equivalent.
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c) If μ is a translation structure on X, and A ∈ SL2(R), then we define the
translation structure

A · μ := {A · f | f ∈ μ}

where A shall act on C by identifying it with R2 as usual. Therefore, we
get a left action of SL2(R) on the set of translation structures on X.

Before we go on, a word of warning is advisable here. Let X be a Riemann surface
with a complex atlas X like in the definition, and let μ be a translation atlas on X.
Because translations in the complex plane are clearly biholomorphic, μ is also a
complex atlas. It should be kept in mind that generally, μ and X will be different
complex structures on the real analytic surface X! This will be the crucial point in
defining Teichmüller discs later.

Next, let us generalise the notion of translations to define affine diffeomorphisms.
We are particularly interested in affine diffeomorphisms from a translation surface
to itself. When we speak of charts here, they should be understood to belong to
the translation atlas, not necessarily to the complex atlas.

Definition and Remark 3.4. Let Xμ, Yν be translation surfaces.

a) An affine diffeomorphism f : Xμ → Yν is an orientation preserving diffeo-
morphism such that locally (i.e. when going down into the charts) it is a
map of the form

x 	→ A · x+ t, A ∈ GL2(R), t ∈ C .

We call Xμ and Yν affinely equivalent if there is such an affine diffeomor-
phism.

b) The matrix A =: Af in a) actually is a global datum of f , i.e. it is the
same for every chart. We write der( f ) := Af .

c) An affine diffeomorphism f is a translation iff Af = I.
d) If g : Yν → Zξ is another affine diffeomorphism, then der(g ◦ f ) =

der(g) · der( f ).
e) We denote the group of all affine orientation preserving diffeomorphisms

from Xμ to itself by Aff+(Xμ).
f) The map der : Aff+(Xμ)→ GL2(R), is a group homomorphism.
g) Trans(Xμ) := ker(der) is called the group of translations of Xμ.
h) Γ(Xμ) := im(der) is called the Veech group of Xμ. Its image under the

projection map GL2(R)→ PGL2(R) is called the projective Veech group of
Xμ. We denote it by PΓ(Xμ).

i) If A ∈ SL2(R), then we have A ∈ Γ(Xμ) ⇔ Xμ
∼= XA·μ as translation

surfaces.

Proof. Part b) is a consequence of the fact that we are using only translation
atlases. Parts c) and d) are immediate consequences of the definitions, and f) is a
consequence of d). Finally, i) is a consequence of c) and d) after checking the easy
but totally counter-intuitive fact that for the identity id : X → X on the Riemann
surfaces, we have, if we study it as an affine diffeomorphism between Xμ and
XA·μ:

der(id) = A.

�
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We further note that if X is a Riemann surface of finite volume then, as any
f ∈ Aff+(Xμ) has to preserve the volume, the corresponding matrix Af ∈ Γ(Xμ)
has to have determinant ±1. In fact, −1 is not possible since by our definition,
affine diffeomorphisms are orientation preserving. So in this case we have Γ(Xμ) ⊆
SL2(R).

The Riemann surface E = C/Z2 carries a natural translation structure: Indeed,
the set of all local sections to the canonical projection π : C→ C/Z2 obviously
form a translation atlas μ0, as a transition map between two such sections is locally
a translation by an element of Z2. Let us, as a first example, calculate the Veech
group of the translation surface Eμ0 : First, note that every affine diffeomorphism
of E can be lifted along π to an affine diffeomorphism of C with its natural
translation structure given by the identity map as a translation atlas, in a unique
way up to a translation. On the other hand, an affine diffeomorphism (i.e. an
affine transformation in the ordinary sense z 	→ A · z+ t) of C descends to E iff it
respects the lattice Z2, i.e. A ∈ SL2(Z). So, we get

Γ(Eμ0) = SL2(Z).

It is well known that SL2(Z) is generated by the following two matrices:

S :=
(
0 −1
1 0

)
and T :=

(
1 1
0 1

)
.

If we replace Z2 by another lattice ΛA := A ·Z2 for some A ∈ SL2(R), then we get
for EΛA := C/ΛA a translation structure μA constructed in the same way as above.
By the same arguments, we have for its Veech group: Γ(EΛA , μA) = A SL2(Z)A−1.
It is now easily seen that (E, A · μ0) ∼= (EΛA , μA) as translation surfaces. So
for B ∈ SL2(R), we have Γ(EB·μ0) = B SL2(Z)B−1. We will state this in greater
generality below.

Now consider an Origami O = (p : X∗ → E∗). From our fixed translation
structure μ0 on E (or more precisely its restriction to E∗) we get a translation
structure ν0 := p∗μ0 on X∗ by defining

p∗μ0 :=
{
f ◦ p|U′ | f : U → V ∈ μ0, U admissible for p, U′ ∈ π0(p−1(U))

}
.

It can now be shown that every two affine diffeomorphisms of (X∗, ν0) that are
lifts of the same affine diffeomorphism of Eμ0 differ only by a translation, and
on the other hand any affine diffeomorphism of (X∗, ν0) is a lift of an affine
diffeomorphism of Eμ0 .

Let us now first define the Veech group of an Origami, and then make the above
statements rigorous.

Definition 3.5. Let O = (p : X∗ → E∗) be an Origami. Then we call

Γ(O) := Γ(X∗, p∗μ0)

the Veech group of O.

Proposition 3.6. If O = (p : X∗ → E∗) is an Origami, and Γ := Γ(O) its Veech
group, then we have:

a) Γ ⊆ SL2(Z).
b) Γ(X∗, B · p∗μ0) = BΓB−1 for every B ∈ SL2(R).
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For a more detailed account than our short discussion above, the reader may refer
to [Sch05, 1.3] which closes the gaps we left.

We call two Origamis O = (p : X∗ → E∗) and O′ = (q : Y∗ → E∗) affinely
equivalent if the corresponding translation surfaces (X∗, p∗μ0) and (Y∗, q∗μ0) are
affinely equivalent. By Proposition 3.6 b), their Veech groups are then conjugate in
SL2(Z). The converse is not true: Indeed, we will construct an infinite series of
Origamis of growing genus, all having Veech group SL2(Z), in Example 5.6.

SL2(Z) acts on the set of Origamis in the following way: For an Origami O =
(p : X∗ → E∗) and A ∈ SL2(Z), we set A ·O := (ϕA ◦ p : X∗ → E∗), where
ϕA : E∗ → E∗ is the map induced by z 	→ A · z on C. It is an instructional
calculation to show that A · (p∗μ0) = (ϕA ◦ p)∗μ0, i.e. this action fits together with
the action we defined earlier on translation structures. Let us now formulate the
following

Proposition 3.7. Let O = (p : X∗ → E∗) be an Origami, then we have:

a) The isomorphism classes of Origamis that are affinely equivalent to O
are in bijection with the left cosets of Γ(O) in SL2(Z).

b) [SL2(Z) : Γ(O)] < ∞.

Proof. Let us first prove part a). Let O′ = (q : Y∗ → E∗) be an Origami that is
affinely equivalent to O. So there has to exist, with respect to the pulled back
translation structures, an affine diffeomorphism ψ : X∗ → Y∗. Let A be its
derivative. By [Sch05, Proposition 3.3], ψ descends to an affine diffeomorphism
ϕ : E∗ → E∗. As der(ϕ) = A (so in particular A ∈ SL2(Z)), and by the requirement
that ϕ shall fix the marked point, we have that ϕ = ϕA. As ψ : X∗ → Y∗ is in
particular a homeomorphism, ϕ ◦ p : X∗ → E∗ is an Origami that coincides with
A ·O, and by construction ϕA ◦ p = q ◦ ψ, we have shown that O′ ∼= A ·O.

Since O′ was an arbitrary Origami from the affine equivalence class of O, we have
shown that SL2(Z) acts transitively from the left on this equivalence class. The
stabiliser of O is precisely Γ(O). We conclude by using [Bos01, Bemerkung 5].

To prove part b), we need, by part a), to give an argument why there are only
finitely many Origamis that are affinely equivalent to O. We are going to use the
argument stated above that an affine diffeomorphism has to respect the volume.
On C, we have the standard volume form dx ∧ dy, induced by the standard
Lebesgue measure. So, for the induced volume form on E = C/Z2, we get (for
I2 := [0, 1]× [0, 1])

vol(E) =
∫
I2
1 · dx ∧ dy = 1.

Removing a single point does not change the volume, and since X∗ naturally
carries the volume form pulled back from E∗, we find that p is locally measure
preserving∗, in the sense that for a measurable neighbourhood U of some point
x ∈ X∗ that is small enough we have vol(U) = vol(p(U)). So, if O is an Origami
of degree d, we have vol(X∗) = d. If now O′ = (q : Y∗ → E∗) is an Origami that
is affinely equivalent to O, then vol(Y∗) = d, and by reversing the argument, O′ is
also an Origami of degree d. Using the same argument as in the proof of Corollary

∗This may seem a bit arbitrary. A more precise way of arguing is that the volume form on E∗

comes from the holomorphic differential dz that E∗ carries naturally, and holomorphic differentials
naturally correspond to translation structures. In that sense, the differential corresponding to p∗μ0 on
X∗ is ω := p∗dz, and this again induces a natural volume form on X∗.
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2.5, we get (d!)2 as an upper bound for the number of Origamis of degree d. This
closes the proof. �

Part b) also appears as Corollary 3.6 in [Sch05], where Schmithüsen uses different
methods from the ones used here. Yet another proof of this fact with a more
general scope can be found in [GJ00, Theorem 4.9]. Theorem 5.5 in the same
article even provides a converse statement, in some sense: Given any translation
surface such that its Veech group is a finite index subgroup of SL2(Z), it admits
a covering to some elliptic curve respecting the translation structure, i.e. it is an
Origami.

3. Moduli and Teichmüller spaces of curves

We begin by giving a somewhat rough definition of different versions of the
(coarse) moduli space of compact Riemann surfaces. A very detailed reference on
this subject is provided in [HM98].

Definition 3.8. a) Define the coarse moduli space of Riemann surfaces of genus
g with n distinguished marked points as

Mg,n :=
{
(X, p1, . . . , pn) | X compact R. s. of genus g, pi ∈ X, pi �= pj for i �= j

}
/∼

where (X, p1, . . . , pn) ∼ (Y, q1, . . . , qn) if there is a biholomorphic map
ϕ : X → Y with ϕ(pi) = qi, i = 1, . . . , n.

b) Define the coarse moduli space of Riemann surfaces of genus g with n non-
distinguished marked points as

Mg,[n] :=
{
(X, p1, . . . , pn) | X compact R. s. of genus g, pi ∈ X, pi �= pj for i �= j

}
/∼

where (X, p1, . . . , pn) ∼ (Y, q1, . . . , qn) if there is a biholomorphic func-
tion ϕ : X → Y and a permutation π ∈ Sn, such that ϕ(pi) = qπ(i), i =
1, . . . , n.

c) Finally, define the coarse moduli space of Riemann surfaces of genus g as

Mg := Mg,0 = Mg,[0].

It is far from being obvious that Mg,n and Mg,[n], which we defined just as
sets, can be turned into complex quasi-projective varieties, or complex analytic
spaces, of dimension 3g− 3+ n (whenever this expression is positive—we have
dim(M1,0) = 1, and dim(M0,n) = 0 for n ≤ 3). There are natural projections

Mg,n → Mg,[n] → Mg

by forgetting the order of the marked points, and totally forgetting the marked
points. Note that this widely generalises if we replace Riemann surfaces by
algebraic curves. Indeed, there is a scheme MZ

g,n such that we get back our moduli
space as Mg,n = MZ

g,n ×SpecZ SpecC, and for a suitable notion of projective curves
with marked points, this even works if we replace SpecC by any other base scheme
S.
These spaces have a very rich and hard to understand geometry. In particular, they
have complicated singular loci, typically coming from Riemann surfaces having
“non-generic” nontrivial automorphisms (i.e. not the identity, or the (hyper-)elliptic
involution on a surface of genus 1, 2 or 3) respecting the marked points. So in
order to get simpler versions of classifying spaces for Riemann surfaces, it seems
natural to introduce a kind of marking on Riemann surfaces that is surely not
fixed by an automorphism. This leads to the definition of Teichmüller spaces.
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Definition and Remark 3.9. Let S be a fixed compact Riemann surface of genus
g with n marked points. (Let us write shortly that S is of type (g, n).)

a) If X is another surface of this type, a marking on X is an orientation
preserving diffeomorphism ϕ : S→ X which respects the marked points.

b) We define the Teichmüller space of the surface S as

T (S) := {(X, ϕ) | X R. s. of type (g, n), ϕ : S→ X a marking} /∼
where (X, ϕ) ∼ (Y, ψ) if ψ ◦ ϕ−1 : X → Y is homotopic to a biholomor-
phism respecting the marked points (where, of course, the homotopy
shall fix the marked points).

c) If S′ is another surface of type (g, n), then any choice of a marking
on ϕ : S → S′ yields a bijection T (S′) → T (S) by precomposing all
markings with ϕ, which gives us the right to just write Tg,n.

Of course, in the same manner as above, we can also define versions Tg,[n] and
Tg of Teichmüller spaces with unordered or no marked points. Again, they are
complex analytic spaces of dimension 3g− 3+ n (again only if this expression is
a positive number) in a natural way, and they are even nonsingular, i.e. they are
actually complex manifolds. (As a reference, see Theorem 6.5.1 in [Hub06].) On
the other hand, the downside of this construction is that Teichmüller spaces are
not algebraic varieties.

It appears to be natural to consider the projections Tg,n → Mg,n that are given by
forgetting the marking. Of course this is also possible for the two other versions
of moduli and Teichmüller space. Let us exhibit this projection in another way:
By Definition and Remark 3.9 we have a left action of Diffeo+(S), the group of
orientation preserving diffeomorphisms of S fixing each of the marked points,
on T (S). By the definition of equivalence of marked surfaces, this action factors
through quotienting by Diffeo0(S), the group of diffeomorphisms of S homotopic
to the identity. Clearly, this action is transitive on the possible markings for a fixed
Riemann surface X, but it cannot change the isomorphism class of its complex
structure. Indeed, we have the following

Proposition 3.10. The group Σ(S) = Diffeo+(S)/Diffeo0(S) acts properly dis-
continuously on T (S), and the quotient space by this action is the moduli space
Mg,n.

Before sketching the proof, let us make a note on the group Σ(S). If we topologise
Diffeo+(S) with the compact open topology, we find Σ(S) ∼= π0(Diffeo+(S)) since
S is locally compact and Hausdorff. Of course for another surface of type (g, n),
we get an isomorphic group, so we can up to isomorphism study the abstract
group Σg,n, called the mapping class group in genus g with n punctures. It has been
subject to a great extent of research, a classical reference being [Bir75], a more
recent one [FM11]. Of course, it is possible to define other versions Σg,[n] and Σg
of the mapping class groups analogously. For them, we get analogous versions of
the proposition.

Let us now make some remarks on the proof of the above proposition. The first
part is Theorem 6.18 in [IT92]. However, mapping class groups are defined there
a bit different from our version, so we should maybe also cite [FM11, Theorem
12.2]. One interesting aspect is why giving Tg,n a structure as a complex manifold
endows Mg,n with a structure as a complex analytic space. With the first part of
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the proposition, this amounts to checking that the stabilisers of points are finite.
Indeed, if α ∈ Σ(S) stabilises (X, ϕ) ∈ T (S), then ϕαϕ−1 has to be homotopic
to some biholomorphism of X. But due to Hurwitz’s classical result [Hur92], a
compact Riemann surface of genus g can only have 84(g− 1) automorphisms.
Prescribing some marked points to be respected can only kill automorphisms.

Let us finish this section by making a remark on punctured Riemann surfaces, i.e.
surfaces X∗ = X \ R, where X is a compact Riemann surface and R ⊆ X is a finite
subset. These appeared naturally when defining dessins d’enfants and Origamis.
We have seen earlier that such punctured surfaces can be uniquely completed to a
compact Riemann surface, which is then of course isomorphic to X. Furthermore,
clearly a diffeomorphism f ∈ Diffeo+(X) restricts to an element of Diffeo+(X∗)
iff f (R) = R. So, it is natural to identify the moduli and Teichmüller spaces of
punctured Riemann surfaces of genus g with n punctures with Mg,[n] and Tg,[n],
respectively.

4. Teichmüller discs and Teichmüller curves

We are now able to define the Teichmüller disc arising from a translation surface.
Let (X, μ) be a translation surface of type (g, [n]), which by the considerations
at the end of the last section we can imagine as a compact Riemann surface of
genus g minus a finite set of points, endowed with a translation structure. For
B ∈ SL2(R), denote by XB the Riemann surface that we get by endowing X with
the complex structure induced by B · μ. Then the (set-theoretic) identity map
id : X = XI → XB is a marking in the sense of Definition and Remark 3.9 a). Note
that this map is in general not holomorphic! So we get a map

θ : SL2(R)→ Tg,[n], B 	→ [(XB, id : XI → XB)] .

Since for B ∈ SL2(R) we have z 	→ B · z is homotopic to a biholomorphism iff
B ∈ SO(2) we find in particular that θ(A) = [(XI , idXI )] iff A ∈ SO(2), i.e. θ
factors through SO(2)\ SL2(R) ∼= H. (For reasons we will explain below, we
want to fix this well known bijection in the following way: Define m : SL2(R)→
H, A 	→ −A−1(i), where z 	→ A(z) shall denote the usual action of SL2(R) on
H by Möbius transformations. As the stabiliser of i is SO(2), we get the desired
bijection by quotienting.) The factor map

θ : H→ Tg,[n]
is injective. It is in fact biholomorphic, and furthermore an isometry with respect
to the standard hyperbolic metric on H and the Teichmüller metric on Tg,[n] as
defined, for example, in [Hub06, 6.4]. See [Nag88, 2.6.5 and 2.6.6] for details. This
leads to the following

Definition 3.11. Let Xμ := (X, μ) be a translation surface of type (g, [n]). Then,
the isometric image

ΔXμ := θ(H) ⊆ Tg,[n]
is called the Teichmüller disc associated with Xμ.

Using the Poincaré disc model for H justifies this name, as ΔXμ ⊆ Tg,[n] is actually
isometric to an open unit disc, carrying the standard hyperbolic metric.

Now we are interested in the image of a Teichmüller disc ΔXμ under the projection
map into moduli space. In general, it will not be an algebraic subvariety, but
if the Veech group of the translation surface Xμ is a lattice in SL2(R), i.e. if
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vol(H/Γ(Xμ)) < ∞, then in fact the image of ΔXμ in the moduli space is an
algebraic curve. Indeed, we have the following

Theorem H. Let Xμ be a translation surface of type (g, [n]), and ΔXμ its Teichmüller
disc. Furthermore let p : Tg,[n] → Mg,[n] be the projection. Then we have:

a) p(ΔXμ) ⊆ Mg,[n] is an algebraic curve iff Γ(Xμ) is a lattice. It is then
called the Teichmüller curve associated to Xμ.

b) In this case, the following diagram is commutative if we define R :=( −1 0
0 1

)
:

H ΔXμ Tg,[n]

H/RΓ(Xμ)R−1 p(ΔXμ) Mg,[n]

θ

/RΓ(Xμ)R−1 p|ΔXμ p

j ι

Furthermore, the map j is the normalisation map for the algebraic curve
p(ΔXμ).

The statements of the above theorem have undergone quite some evolution until
appearing in the form stated here. As a starting point, the famous paper [Vee89]
should be named, where Veech proved that for the class of lattice surfaces, i.e.
translation surfaces whose Veech group is a lattice, the so-called Veech dichotomy
holds. At least part a) is often attributed to Smillie, who never seems to have
published it in this completeness. Maybe the first published version is due to
McMullen in [McM03]. A reader looking for a complete proof of the theorem as it
is stated above may refer to [HS07b, 2.4], or [Loc05, Proposition 3.2].

Adapting the above theorem to our situation of Origamis, we write down the
following simple

Corollary 3.12. Let O = ( f : X∗ → E∗) be an Origami, where X∗ is of type
(g, [n]). Then,

C(O) := p(ΔXf ∗μ0
) ⊆ Mg,[n]

is an algebraic curve which we call the Origami curve defined by O.

Proof. Let k := [SL2(Z) : Γ(O)]. We have k < ∞ by Proposition 3.7. Take the
standard fundamental domain Δ := {z ∈ H | − 1

2 ≤ Im z ≤ 1
2 , |z| ≥ 1} of the

action of SL2(Z) on H, then we have by Gauss-Bonnet

vol(H/ SL2(Z)) = vol(Δ) =
π

3
,

and so, because the action of SL2(Z) factors through PSL2(Z), we have

vol(H/Γ(O)) = kl
π

3
< ∞,

where l ∈ { 12 , 1}, depending on whether or not −I ∈ Γ(O). So Γ(O) is a lattice
and we can apply Theorem H a). �

Before we go on, let us make a remark on Origami curves here. One might ask
if the curve C(O) uniquely characterises the Origami O. This is in general not
true. Of course, in some sense, every point on C(O) corresponds to an Origami,
because its preimages on the Teichmüller disc define translation coverings of some
elliptic curves. But in our stricter sense, i.e. an Origami covering has to cover the
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fixed elliptic curve E = C/Z2, we have in general still more than one Origami on
C(O). As an answer to the above question, let us state the following

Proposition 3.13. Let O, O′ be Origamis. Then we have C(O) = C(O′) iff O and
O′ are affinely equivalent.

A proof can be found in [HS07a, Proposition 5 b)].

5. Cylinder decomposition

Let us give a short summary on Strebel directions and cylinders on a translation
surface Xμ here. We will not give any proofs here, for details see for example
Sections 3.2 and 3.3 in [Kre10a] and Section 4 in [HS07b].

Let Xμ be a translation surface of type (g, n), and ( f : U ⊆ X → V ⊆ R2) ∈ μ a
map contained in its translation atlas. Then the standard metric on R2 (or rather
its restriction to V) induces a metric on U. Since the transition maps of μ are
all translations, under which the standard metric on R2 is invariant, these local
metrics glue to a global one on Xμ, called the flat metric associated to μ. Due to
its construction, a path γ : (0, 1)→ Xμ is geodesic with respect to the flat metric
iff it is locally of the form t 	→ t · v+ w, where 0 �= v, w ∈ R2. Of course v is a
global datum of γ. We call it (or more precisely its equivalence class in P1(R))
the direction of γ. We call a geodesic path maximal if its image is not properly
contained in the image of another geodesic path.

Definition 3.14. Let Xμ be a translation surface of type (g, n).

a) A direction v ∈ P1(R) is called Strebel if every maximal geodesic path on
Xμ with direction v is either closed, or a saddle connection (i.e. it connects
two punctures of Xμ).

b) We call two Strebel directions v, v′ ∈ P1(R) equivalent if there is an
A ∈ PΓ(Xμ) such that A · v = v′.

Now, if v is a Strebel direction for Xμ, a cylinder in Xμ is the image of a homeo-
morphism c : (0, 1)× S1 → U ⊆ Xμ, where U is an open subset of Xμ, with the
condition that for every s ∈ (0, 1), the restriction to {s} × S1 is a closed geodesic†.
A cylinder is called maximal if it is not properly contained in another cylinder. We
have the following fact:

Remark 3.15. With the exception of the case (g, n) = (1, 0), the maximal cylinders
of Xμ in the Strebel direction v are the connected components of Xμ \ S, where S
is the union of the images of all saddle connections in direction v.

Let us restrict to Origamis now and summarise the situation in this case:

Proposition 3.16. Let O = (p : X∗ → E∗) be an Origami. Then we have:

a) There is a bijection between the following sets:
• Equivalence classes of Strebel directions of O,
• Conjugacy classes of maximal parabolic subgroups in PΓ(O),
• Punctures (called cusps) of the normalisation of the Origami curve,

H/RΓ(O)R−1.

†Note that this is a slightly different notion of a closed geodesic than above. A possibility to stay
closer to that definition is to replace c by an infinite cyclic covering c̃ : (0, 1)× (0, 1)→ U.
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b) The vector
(
1
0
)
is a Strebel direction of O, called its horizontal Strebel

direction.
c) Any maximal parabolic subgroup of PΓ(O) is generated by the equiva-

lence class of a matrix of the form gTwg−1, for some w ∈ N, g ∈ SL2(Z).
d) The Strebel direction corresponding to a maximal parabolic subgroup
〈gTwg−1〉 is vg := g ·

(
1
0
)
. The maximal cylinders of O in this Strebel

direction are the maximal horizontal cylinders of the Origami g−1 ·O.

Part a) of this proposition is discussed in Section 3.2 of [Kre10a], parts b) and d)
in Section 3.3. Specifically, part d) appears as Proposition 3.7 there. Part c) is just a
consequence from the fact that any parabolic element of SL2(Z) is conjugate to a
power of ±T.

6. The action of Gal(Q/Q) on Origami curves

As the way we constructed Teichmüller curves is clearly of analytical nature, it
may be surprising that they have interesting arithmetic properties. This kind of
connection reminds of the Theorem of Belyi, which we can indeed use to prove a
small part of the following

Proposition 3.17. Let O = (p : X∗ → E∗) be an Origami and C(O) ⊆ Mg,[n] its
Teichmüller curve.

a) Then, the normalisation map j : H/R−1Γ(O)R→ C(O) and the inclusion
ι : C(O) ↪→ Mg,[n] are defined over number fields.

b) Let σ ∈ Gal(Q/Q) be a Galois automorphism, and Oσ = (pσ : (X∗)σ →
E∗) the Galois conjugate Origami‡. Then we have§

ισ((C(O))σ) = ι(C(Oσ)) ⊆ Mg,[n],

so in particular C(Oσ) ∼= (C(O))σ.

This result is proven by Möller in [Möl05, Proposition 3.2]. Let us first sketch the
proof of part a): The main ingredient to the proof is the fact that HE , the Hurwitz
stack of coverings of elliptic curves ramified over one prescribed point of some
prescribed genus and degree, is a smooth stack defined over Q. This is a result of
Wewers that can be found in [Wew98]. Möller identifies (an orbifold version of)
C(O) as a geometric connected component of HE . The Gal(Q/Q)-orbit of C(O)
consists precisely of the geometric connected components of the Q-connected
component containing C(O). The definability of C(O) over a finite extension of Q
then follows from the fact that HE has only finitely many geometric connected
components. Showing this amounts to showing that the number or Origamis of
given degree is finite, which we did in the proof of Proposition 3.7.

As Möller’s proof of part b) is quite short, we give a more detailed proof here. It
is natural to use the language of algebraic stacks. We use the notation of [Wew98],
which is also used in [Möl05].

‡Note here that we fixed the choice of E = C/Z2. We have j(E) = 1728 ∈ Q, and thus E is
defined over Q.

§Strictly speaking, we should use a notation like ιC(O) to distinguish the embeddings of different
Origami curves. We suppress the index for reasons of simplicity and bear in mind that the following
formula has two different morphisms called ι.
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Proof. Let E →M1,1 be the universal family of elliptic curves, where we denote
by M1,1 := M1,1(Q) the fine moduli stack of elliptic curves with one puncture,
over Q. We fix d := deg(p) and g := g(X∗), and a divisor D on E encoding the
ramification over each fibre. By [Wew98, Theorem 4.1.2] this data defines a smooth
stack HE which is defined over Q, the Hurwitz stack of coverings of elliptic curves
of degree d and genus g, branched over D. As HE is a fine moduli space for the
Hurwitz problem given by the ramification data we also get a universal family
F → HE such that there is a (2-)commutative diagram of the following form:

F E

HE M1,1

p

q

This should be understood as follows: The closed points of HE parametrise the
coverings q : Y → F of the prescribed ramification data (i.e. g(Y) = g, g(F) =
1, deg(q) = d, and q is ramified precisely over the intersection of D and F, the
latter as a fibre in E ). Given a closed point P ∈ HE , we get the covering it
parametrises by specialising to the fibre over {P}, i.e. it coincides with

p× id{P} : F ×HE {P} → E ×M1,1 {q(P)}.

As stated above, the (orbifold) Origami curve C(O) is a geometric connected
component of HE . Denote the corresponding part of the universal family by FO.
Now we want to recover the Origami covering p : X → E (with the punctures
filled in) from this Hurwitz stack. As explained above, we get it by taking the
closed point P ∈ HE parametrizing p and its image in M1,1, and pulling the
vertical arrows back to it by the inclusion map. Let us draw a diagram of the
situation, where we also add one structure morphism ϕ : M1,1 → Spec(Q). The
requirement of all the arrows to be Q-morphisms defines the structure morphisms
of the other stacks. Here, the left of the two inner squares and the outer, distorted
one are Cartesian.

E X FO E

{P} C(O) M1,1

Spec(Q)

p pO

qO

ϕ

Now we change the structure morphism by σ ∈ Gal(Q/Q). As abstract stacks
and morphisms, all the objects stay the same, but as Q-stacks (resp. -morphisms)
they are changed, which we denote by decorating them with a σ. Let us redraw the
diagram. Note that E andM1,1 are defined over Q, so σ leaves them unchanged.
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E Xσ Fσ
O Eσ

{P}σ (C(O))σ M1,1

Spec(Q)

pσ pσ
O

qσ
O

Spec(σ) ◦ ϕ

Here, the curve (C(O))σ appears. We have to show that it is equal to the Origami
curve C(Oσ). The former is of course also a geometric connected component of
HE σ = HE , so it is also an (orbifold) Origami curve (see [Möl05, Corollary 3.3]).
So proving the equality amounts to checking that Oσ lies on the curve. This is
easy: Oσ is defined by pσ : Xσ → E, and as the last diagram shows, this covering
lies over the closed point Pσ ∈ (C(O))σ.

�

What is missing now is an argument that the “naïve”, non-orbifold Origami curves
C(Oσ) and (C(O))σ coincide. To see that, we use that π(C(O)) = C(O), where
π : Mg,n → Mg,n is the canonical projection map from the fine moduli stack to
the coarse moduli scheme.

If we wanted to stay outside the sinister world of stacks, we could also restate the
above proof in a different setting: If we work over the punctured moduli space

M∗
1,1 := M1,1 \ {0, 1728},

where we use the standard parametrisation of M1,1 by the j-invariant (and thus
remove exactly the two points corresponding to the isomorphism classes of elliptic
curves possessing extra automorphisms), we have the existence of a universal
family over M∗

1,1 and the corresponding punctured coarse version of the Hurwitz
space (i.e. these schemes are fine moduli spaces for the corresponding “punctured”
moduli problems). In this version of the proof, we obtain the equality of the
punctured Origami curves C∗(Oσ) and (C∗(O))σ. So C(Oσ) and (C(O))σ coincide
on an open, dense subset and are therefore equal, as they are closed in Mg,[n] and
furthermore they, and Mg,[n], are actually quasi-projective varieties over Q and
therefore very well-behaved (i.e. in particular separated over Q and reduced). The
downside of this construction is that the elliptic curve of our choice, E = C/Z2,
has j-invariant 1728, so in order to make the arguments work, we should restate
our definition of an Origami, exchanging E by another elliptic curve E′ with
j(E′) ∈ Q \{0, 1728}.¶
It is worth noting that a weaker version of part a) is accessible by using Belyi’s
theorem:

Remark 3.18. Let O = (p : X∗ → E∗) be an Origami and C(O) ⊆ Mg,[n] its
Teichmüller curve. Then its normalisation H/R−1Γ(O)R is defined over a number
field.

¶It seems like a particularly unlikely mishap has happened to us here, picking one of two bad
curves from countably infinitely many choices. This seems to be quite a common phenomenon. For a
recent account of this classical topic, see [Spa03].
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Proof. The finite index inclusion R−1Γ(O)R ⊆ R−1 SL2(Z)R gives rise to a mor-
phism of finite degree of Riemann surfaces:

π : C∗ := H/R−1Γ(O)R→ R−1 SL2(Z)R ∼= C .

if we metrically complete C∗ to C, we get a morphism π : C → P1
C that is ramified

over at most three points, as H/ SL2(Z) has one cusp and two orbifold points.
Thus, π is a Belyi morphism and therefore by Theorem E defined over a number
field. �

We end this train of thoughts by restating Proposition 3.17 in a different way:

Corollary 3.19. Let O be a set containing one Origami of each isomorphism type.
Then there is a natural right action of Gal(Q/Q) on the set

C(O) := {C(O) | O ∈ O},
where σ ∈ Gal(Q/Q) sends C(O) to C(Oσ).

7. Galois invariants and moduli fields

Let us now return to the notion of moduli fields, which we defined in Chapter 2.
We begin by defining the moduli field of an Origami, and of an Origami curve:

Definition 3.20. Let O = (p : X∗ → E∗) be an Origami, and C(O) its Origami
curve.

a) Consider the following subgroup of Aut(C):

U(O) := {σ ∈ Aut(C) | ∃C -isomorphism ϕ : Xσ → X : pσ = p ◦ ϕ}
Then, M(O) := CU(O) is called the moduli field of O.

b) Remember that Mg,[n] is defined over Q and define

U(C(O)) := {σ ∈ Aut(C) | C(O) = (C(O))σ} ,
where as usual we consider C(O) and (C(O))σ as subsets of Mg,[n]. Then,

we call M(C(O)) := CU(C(O)) the moduli field of the Origami curve C(O).

Let us first note some easy to prove properties of these moduli fields:

Remark 3.21. Let, again, O = (p : X∗ → E∗) be an Origami, and C(O) its Origami
curve. Then we have:

a) M(C(O)) ⊆ M(O).
b) [M(O) : Q] = |O ·Aut(C)| < ∞ and [M(C(O)) : Q] = |C(O) ·Aut(C)| <

∞.

Proof. Part a) is a consequence of Corollary 3.19: If σ ∈ Aut(C) fixes O, it
particularly fixes C(O).

For part b) we begin by noting that we have |O ·Aut(C)| < ∞ because the degree
of O is an invariant under the action of Aut(C), and, as we have seen before,
we can bound the number of Origamis of degree d by (d!)2. Furthermore, we
have [Aut(C) : U(O)] = |O · Aut(C)|, as U(O) is the stabiliser of O under the
action of Aut(C). From [Köc04, Lemma 1.6] follows the equality [M(O) : Q] =
[Aut(C) : U(O)], given that we can show that U(O) is a closed subgroup of
Aut(C). Remember that a subgroup G ≤ Aut(C) is closed iff there is a subfield
F ⊆ C with G = Aut(C/F). Lemma 1.5 in the same article tells us that U(O) is
closed if there is a finite extension D/M(O) such that Aut(C/D) ≤ U(O). Let us
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now give a reason for the existence of such an extension D: As E and the branch
locus {∞} are defined over Q, it follows from [GD06, Theorem 4.1] that p : X → E
can be defined over a number field. Choose such a field of definition D, which is
hence a finite extension of M(O). Obviously, any element σ ∈ Aut(C) that fixes D
lies in U(O), so we can apply Köck’s Lemma 1.5 and finally deduce the first half
of b).

Now we restate these arguments for the second equality: We use a) to deduce
[M(C(O)) : Q] < ∞. Furthermore, from Proposition 3.17 a) follows that the
embedded Origami curve C(O) can be defined over a number field, so we can use
the same chain of arguments as above. �

In [Kre10a, Conjecture 5.8], Kremer conjectures that all of the (affine) invariants of
Origamis he lists in Chapter 3 of his thesis are also invariants under the action of
Gal(Q/Q). We will now give a partial answer here:

Theorem 1. The following properties of an Origami O = (p : X∗ → E∗) are Galois
invariants:

a) The index of the Veech group [SL2(Z) : Γ(O)].
b) The index of the projective Veech group [PSL2(Z) : PΓ(O)].
c) The property whether or not −I ∈ Γ(O).
d) The isomorphism type of the group of translations, Trans(O).

Proof. We have ε · [SL2(Z) : Γ(O)] = [PSL2(Z) : PΓ(O)] with ε = 1
2 if −I /∈ Γ(O),

and else ε = 1. So a) is a consequence of b) and c).

For part b), note that the morphism qO from the proof of Proposition 3.17 fits into
a commutative diagram

H/RPΓ(O) R−1 C(O)

H/R PSL2(Z) R
−1 M1,1

/R PSL2(Z) R−1 qO

where we denote by R the image of R =
( −1 0

0 1

)
in PSL2(R). Note that this is

a (2-)commutative diagram of stacks, i.e. we have the orbifold Origami curve,
and the fine moduli stack on the right side, then we have to take the quotients
on the left side as orbifold quotients. So, the horizontal morphisms are just
isomorphisms, as the orbifold Origami curve C(O) is smooth. It should also be
possible to state the proof without using stacks, but we would have to puncture
the curves again, like in the “coarse version” of the proof of Proposition 3.17 b).
In any case the horizontal morphisms are generically one-to-one, which shows
[PSL2(Z) : PΓ(O)] = deg(qO), which is clearly a Galois invariant of C(O), and
thus also of O.

For part c), we note that −I ∈ Γ(O) iff there is an automorphism φ ∈ Aut(X)
making the following diagram commutative, where i : E→ E denotes the elliptic
involution:
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X X

E E

φ

p p

i

Assume now −I ∈ Γ(O), and take σ ∈ Gal(Q/Q). Applying it to the above
diagram yields

Xσ Xσ

E E

φσ

pσ pσ

i

as E and i are defined over Q. So −I ∈ Γ(Oσ). By symmetry we can conclude the
converse.

The proof of part d) works almost identically. Giving a translation is the same as
giving an automorphism φ ∈ Aut(X) that descends to the identity on E (which is
certainly defined over Q), i.e. that makes the following diagram commutative:

X X

E E

φ

p p

id

So, by repeating the above arguments, we get a bijection Trans(O)→ Trans(Oσ),
and the fact that the action of Gal(Q/Q) is functorial shows that this bijection is
a group isomorphism. �

Let us now apply this result to study the field extension M(O)/M(C(O)):

Theorem 2. Let O = (p : X∗ → E∗) be an Origami. Then we have

[M(O) : M(C(O))] ≤ [SL2(Z) : Γ(O)].

Proof. Let O ·Aut(C) = {O1, . . . , Ok} and C(O) ·Aut(C) = {C1, . . . , Cl}. Then
we have, as we have shown in Remark 3.21 b):

k = [M(O) : Q], l = [M(C(O)) : Q].

By Theorem 1 the Veech groups of allOi have the same index m := [SL2(Z) : Γ(O)],
and by Corollary 3.19 we also have

{C1, . . . , Cl} = {C(O1), . . . , C(Ok)}.
From Proposition 3.7 a) we know that each curve Cj can be the Origami curve of
at most m of the Oi’s, so we have

l ≥ k
m
,

or equivalently k
l ≤ m. The left hand side of the latter inequality is by the

multiplicity of degrees of field extensions equal to [M(O) : M(C(O))], and the
right hand side is by definition the index of the Veech group of O. �
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One would expect that the typical case is [M(O) : M(C(O))] = 1, as it seems
that two non-equivalent Origamis that are both Galois conjugate and affinely
equivalent are a rather strange exception. But indeed, in Example 5.3 we will
construct an Origami O such that [M(O) : M(C(O))] = 2. It is not known to the
author, on the other hand, if (except in the case of Γ(O) = SL2(Z)) the inequality
can become an equality, i.e. if it is possible to construct an Origami O such that all
Origamis affinely equivalent to O are also Galois conjugate to O.





CHAPTER 4

The Galois action on M-Origamis

In [Möl05], Möller proved that the action of Gal(Q/Q) on Origami curves is
faithful, using a special class of Origamis which he constructed in an algebro-
geometric way from dessins d’enfants. We will recover the construction of these
Origamis, which we will call M-Origamis here, in a topological way, i.e. we
will calculate their monodromy, using the techniques we introduced in Chapter
1. This will enable us to reprove the faithfulness result in an almost entirely
topological setting. Not only does this make the situation understandable with
less prerequisites, but it also enables us to generalise some of the results (along
with fixing some minor errors in Möller’s proof), and to understand the class of
M-Origamis better. In particular, we will calculate properties like the genus, the
number of punctures, the Veech group, the cylinder decompositions etc. of an
M-Origami using the monodromy of the dessin it is associated to. Furthermore,
we will shed a light on the relationship between the weak isomorphism class of a
dessin and the affine equivalence class of the associated M-Origami. Finally, our
results in this chapter will enable us to give some examples for M-Origamis on
which the absolute Galois group acts non-trivially in the last chapter.

1. Defining pillow case Origamis and M-Origamis

We will first explain a construction to obtain an Origami from a pillow case cover—
such Origamis will be called pillow case Origamis here. This construction has
appeared in the literature before, and we will specialise it to the one given in
[Möl05].

First, fix an elliptic curve E over C, and let h : E → P1
C be the quotient map

by its elliptic involution. h is a double cover three of whose ramification points
can be taken to be 0, 1 and ∞. This defines the fourth ramification point, call
it λ ∈ C \{0, 1}. Now let γ : Y → P1

C be a pillow case cover, i.e. let Y be
a nonsingular projective curve over C, and γ a nonconstant morphism with
critγ ⊆ {0, 1,λ,∞}. Let π̃ : X̃ := E ×P1

C
Y → E be its pullback by h, and

δ : X → X̃ be the desingularisation of X̃ (as X̃ will have singularities in general—
we will discuss them in Proposition 4.3 in this chapter). Finally, let [2] : E→ E be
the multiplication by 2, which is an unramified cover of degree 4 which maps the
four Weierstraß points of E, which we will, for reasons of simplicity, also denote
by 0, 1,λ and ∞, to ∞, the neutral element of the group structure on E. In order
not to get lost in all these morphisms, we draw a commutative diagram of the
situation:

47
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X X̃ Y

�

E P1
C

E

δ

π π̃ γ

h

[2]

Now, if X is connected, then [2] ◦ π : X → E is a nonconstant morphism of a
connected non-singular projective curve onto an elliptic curve, ramified over at
most one point, so by definition an Origami cover. This leads to the wanted

Definition 4.1. a) In the situation above, we call O(γ) := ([2] ◦ π : X → E)
the pillow case Origami associated to the pillow case cover γ : Y → P1

C.
b) If furthermore β := γ is unramified over λ, i.e. it is a Belyi morphism,

then we call O(β) the M-Origami associated to γ.

Before we go on, it is a good time to state the following simple

Remark 4.2. If γ : Y → P1
C is a genus 0 pillow case cover, i.e. g(Y) = 0, then the

associated pillow case Origami is hyperelliptic.

Proof. Under the assumption that we get an Origami, X is connected, and the
fibre product construction yields a morphism X → P1

C which is of degree 2. So, X
is hyperelliptic. �

2. The topological viewpoint

Let β : Y → P1
C be a Belyi morphism, and O(β) the associated M-Origami. (It is

not yet clear that the pulled back and desingularised curve X is always connected,
but at the end of the next section, we will give an argument why this is always
true in the case of dessins, and so the construction of Definition 4.1 b) never fails.)
All of the curves occurring in the construction, except X̃, are nonsingular, so they
have natural structures as Riemann surfaces.

What we want to do now is remove all the critical and ramification loci and
study the restrictions of the mappings as unramified coverings with respect to the
complex topology. This is possible since the restriction of the desingularisation δ to
the complement of the ramification locus of π is an isomorphism, as singularities
in X̃ occur precisely over points of P1

C over which β and h are both ramified. This
is shown by the following

Proposition 4.3. Let C,D be nonsingular projective curves over k, where k is an
algebraically closed field, and Φ : C → P1

k, Ψ : D → P1
k nonconstant rational

morphisms (i.e. ramified covers). Then we have for the singular locus of C×P1
k
D:

Sing(C×P1
k
D) = {(P,Q) ∈ C×P1

k
D | Φ is ramified at P ∧Ψ is ramified at Q}.

Proof. Since the property of a point of a variety to be singular can be decided
locally, we can first pass on to an affine situation and then conclude by a calculation
using the Jacobi criterion.
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So let (P,Q) ∈ F := C ×P1
k
D, and let U ⊂ P1

k be an affine neighbourhood of
Φ(P) = Ψ(Q). Further let P ∈ U′ ⊂ C, Q ∈ U′′ ⊂ D be affine neighbourhoods
such that Φ(U′) ⊆ U ⊇ Ψ(U′′). This is possible since the Zariski topology of
any variety admits a basis consisting of affine subvarieties (see [Har04] I, Prop.
4.3). Now let pC : F → C, pD : F → D be the canonical projections, then, by the
proof of [Har04, II Thm. 3.3] we have p−1C (U′) ∼= U′ ×P1

k
D, and repeating that

argument on the second factor gives

p−1C (U′) ∩ p−1D (U′′) = (pD |p−1C (U′))
−1(U′′) ∼= U′ ×P1

k
U′′ ∼= U′ ×U U′′.

The last isomorphism is due to the easy fact that in any category, a monomorphism
S → T induces an isomorphism A×S B ∼= A×T B, given that either of the two
exists. So we are, as desired, in an affine situation, as the fibre product of affine
varieties is affine.

Now, let U = A1
k , and let

I′ = ( f1, . . . , fk) ⊆ k[x1, . . . , xn] =: Rn, I′′ = (g1, . . . , gl) ⊆ k[y1, . . . , ym] =: Rm

be ideals such that U′ = V(I′) ⊆ An
k , U

′′ = V(I′′) ⊆ Am
k . Furthermore let

ϕ ∈ Rn, ψ ∈ Rm be polynomials representing the morphisms Φ and Ψ on the
affine parts U′ and U′′. We denote their images in the affine coordinate rings by
ϕ ∈ k[U′], ψ ∈ k[U′′]. So we get

F := U′ ×U U′′ = V ( f1, . . . , fk, g1, . . . , gl , ϕ(x1, . . . , xn)− ψ(y1, . . . , ym)) ⊆ Am+n.

The Jacobi matrix of F is given by

JF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

. . . ∂ f1
∂xn

...
... 0

∂ fk
∂x1

. . . ∂ fk
∂xn

∂g1
∂y1

. . . ∂g1
∂ym

0
...

...
∂gl
∂y1

. . . ∂gl
∂ym

∂ϕ
∂x1

. . . ∂ϕ
∂xn

− ∂ψ
∂y1

. . . − ∂ψ
∂ym

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and by the Jacobi criterion a point (P,Q) ∈ F is singular iff rk(JF(P,Q)) <
m+ n− 1.

For P = (p1, . . . , pn) ∈ An
k , Q = (q1, . . . , qm) ∈ Am

k , denote by

MP :=
(
(x1 − p1), . . . , (xn − pn)

)
⊆ Rn and

MQ :=
(
(y1 − q1), . . . , (ym − qm)

)
⊆ Rm

the corresponding maximal ideals, and, if P ∈ U′ and Q ∈ U′′, denote by mP ⊆
k[U′] and mQ ⊆ k[U′′] the corresponding maximal ideals in the affine coordinate
rings. Before we continue, we note that for h ∈ Rn, we have:

h ∈ M2
P ⇔ h(P) = 0∧ ∀i = 0, . . . , n :

∂h
∂xi

(P) = 0. (1)

Of course the corresponding statement is true for M2
Q ⊆ Rm.

Now let P = (p1, . . . , pn) ∈ U′, Q = (q1, . . . , qm) ∈ U′′ be ramification points of ϕ
and ψ, respectively. This is by definition equivalent to

ϕ− ϕ(P) ∈ m2
P ∧ ψ− ψ(Q) ∈ m2

Q, or,
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ϕ− ϕ(P) ∈ M2
P + I′ ∧ ψ− ψ(Q) ∈ M2

Q + I′′. (2)

So, there exist a0 ∈ M2
P, a1, . . . , ak ∈ Rn, b0 ∈ M2

Q, b1, . . . , bl ∈ Rm such that

ϕ− ϕ(P) = a0 +
k

∑
i=1

ai fi, ψ− ψ(Q) = b0 +
l

∑
i=1

bigi.

Writing Rn � h = h(P) + (h− h(P)), we have the decomposition Rn = k⊕MP as
k-modules, and analogously Rm = k⊕MQ. So write

ai = λi + ãi ∈ k⊕MP, i = 1, . . . , k and bi = μi + b̃i ∈ k⊕MQ, i = 1, . . . , l.

Because I′ ⊆ MP and I′′ ⊆ MQ, we have c := ∑k
i=1 ãi fi ∈ M2

P and d := ∑l
i=1 b̃igi ∈

M2
Q. So if we set a := a0 + c ∈ M2

P and b := b0 + d ∈ M2
Q, we get

ϕ− ϕ(P) = a+
k

∑
i=1

λi fi and ψ− ψ(Q) = b+
l

∑
i=1

μigi

Deriving on both sides of the equations with respect to all the variables, we get,
using (1):

∀i ∈ {1, . . . , n} : ∂ϕ

∂xi
(P) =

k

∑
j=1

λj
∂ f j
∂xi

(P) and

∀i ∈ {1, . . . , m} : ∂ψ

∂yi
(Q) =

l

∑
j=1

μj
∂gj
∂yi

(Q).

So the last row of JF(P,Q) is a linear combination of the first m+ n ones. As the
two big non-zero blocks of JF are simply the Jacobi matrices JU′ and JU′′ of the
nonsingular curves U′ and U′′, they have ranks n− 1 and m− 1, evaluated at P
and Q respectively, and we get

rk (JF(P,Q)) = rk(JU′(P)) + rk(JU′′(Q)) = (n− 1) + (m− 1) < m+ n− 1,

so (P,Q) ∈ Sing(U′ ×U U′′).
Conversely, let (P,Q) ∈ Sing(F) be a singular point. Then, by the nonsingularity
of U′ and U′′, we have rk(JF(P,Q)) = m+ n− 2. More specifically, the last row of
this matrix is a linear combination of the others:

∃λ1, . . . ,λk ∈ k ∀i ∈ {1, . . . , n} : ∂ϕ

∂xi
(P) =

k

∑
j=1

λj
∂ f j
∂xi

(P) and

∃μ1, . . . , μl ∈ k ∀i ∈ {1, . . . , m} : ∂ψ

∂yi
(Q) =

l

∑
j=1

μj
∂gj
∂yi

(Q).

Now set ϕ̃ := ϕ − ϕ(P) − ∑ λj f j and ψ̃ := ψ − ψ(Q) − ∑ μjgj. Then we have
ϕ̃ ∈ MP and ψ̃ ∈ MQ, and furthermore

∀i ∈ {1, . . . , n} : ∂ϕ̃

∂xi
(P) = 0 and ∀i ∈ {1, . . . , m} : ∂ψ̃

∂yi
(Q) = 0.

So we can apply (1) again to get ϕ̃ ∈ M2
P, ψ̃ ∈ M2

Q, or,

ϕ− ϕ(P) ∈ M2
P + I′ ∧ ψ− ψ(Q) ∈ M2

Q + I′′.

This is precisely (2), which we have already shown above to be equivalent to P
and Q being ramification points of ϕ and ψ, respectively. �
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So if we denote P1∗ := P1
C \{0, 1, λ, ∞} and by E∗, Y∗, X∗ its preimages under

h, β and π ◦ h, respectively, (and, for the sake of a simpler notation, do not change
the names for the restricted maps,) then we have in particular:

Remark 4.4. The following diagram is Cartesian in the category of topological
spaces together with covering maps:

X∗ Y∗

�

E∗ P1∗

π β

h

3. Monodromy of M-Origamis

Now, we are ready to calculate the monodromy of an M-Origami O(β), given
the monodromy of a Belyi morphism β, using the methods from Chapter 1. So
let β be a Belyi morphism of degree d := deg β that is, as explained earlier,
uniquely described by two permutations px, py ∈ Sd, and O(β) the corresponding
M-Origami. Then we have:

Theorem 3. Denote the standard generators of π1(E \ {∞}) ∼= F2 by A (“right”)
and B (“up”), and denote the standard generators of π1(P

1 \{0, 1,∞}) ∼= F2 by
x (counterclockwise path around 0) and y (counterclockwise path around 1). If
the monodromy of β is given by mβ(x) =: px ∈ Sd, mβ(y) =: py ∈ Sd, then the
monodromy of [2] ◦ π : π1(E \ {∞})→ S4d is given as follows:

m[2]◦π : π1(E \ {∞})→ S4d

m[2]◦π(A)(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, j) i = 1
(1, py(j)) i = 2
(4, j) i = 3
(3, p−1y (j)) i = 4

and m[2]◦π(B)(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3, j) i = 1
(4, j) i = 2
(1, p−1x (j)) i = 3
(2, px(j)) i = 4

Note that we use the notation from Theorem C here, i.e. we let S4d act on the set
{1, . . . , 4} × {1, . . . , d}.

Proof. The proof is a straightforward calculation, but we should get a clear idea
of the involved fundamental groups here. As a topological model for P1∗ we use
the pillow case, i.e. an euclidean rectangle R with width-to-height ratio 2 : 1, folded
in half and stitched together in the obvious way, the four resulting cusps forming
the punctures. The two to one covering h is then realised by taking two copies
of R, rotating one of them by an angle of π, stitching them together and then
identifying opposite edges in the usual way. The result is a genus 1 surface with 4
punctures. The following picture should give an idea of the whole situation.
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We have π1(P
1∗) ∼= F3. As depicted, we can take the paths w, x, y, z as generators,

subject to the relation wxzy = 1. (Remember that we use the convention to
read words in the fundamental group from the right to the left.) Now, we have
π1(E \ {0, 1, λ, ∞}) ∼= F5, and as in the picture we choose a, b, c, d, e as free
generators. We can verify easily that

h∗ : π1(E \ {0, 1, λ, ∞})→ π1(P
1∗),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a 	→ yw
b 	→ x−1w−1

c 	→ w2

d 	→ xw−1

e 	→ y−1w−1

.

Now, let us calculate the monodromy of the covering π : X \π−1({0, 1, λ, ∞})→
E \ {0, 1, λ, ∞}. Using the notation of the theorem, we have (as β is unramified
over λ) mβ(w) = 1 and mβ(z) = p−1x p−1y . Thus, by Theorem B a), we have

mπ : π1(E \ {0, 1, λ, ∞})→ Sd,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a 	→ py
b 	→ p−1x
c 	→ 1
d 	→ px
e 	→ p−1y

.

Now, we will use Theorem C to calculate the monodromy of [2] ◦ π. We need
only one puncture in the “bottom” elliptic curve E, so its fundamental group is
isomorphic to F2. As sketched in the figure below, we choose a base point x0 and
paths A and B as generators of π1(E \ {∞}).
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If we number the preimages of x0 as in the picture, of course the monodromy map
of [2] is given by

m[2](A) = (1 2)(3 4), m[2](B) = (1 3)(2 4).

The theorem requires us to choose right coset representatives of m−1
[2] (Stab(1)) in

π1(E \ {∞}). We take

γ1 := 1, γ2 := A−1, γ3 := B−1, γ4 := B−1A−1

and check that they do what they should by seeing that they lift along [2] to paths
βi connecting yi to y1. The next step is to calculate the ci’s. We get

ci(A) = [2]−1∗ (γkAγ−1i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[2]−1∗ (A−1A · 1) = 1, i = 1
[2]−1∗ (1 · AA) = a, i = 2
[2]−1∗ (B−1A−1AB) = 1, i = 3
[2]−1∗ (B−1AAB) = e, i = 4

and

ci(B) = [2]−1∗ (γkBγ−1i ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[2]−1∗ (B−1B · 1) = 1, i = 1
[2]−1∗ (B−1A−1BA) = c, i = 2
[2]−1∗ (1 · BB) = b, i = 3
[2]−1∗ (A−1BAB) = d, i = 4

.
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Putting all together, we get

m[2]◦π(A)(i, j) =
(
m[2](A)(i), mπ(ci(A))(j)

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, j) i = 1
(1, py(j)) i = 2
(4, j) i = 3
(3, p−1y (j)) i = 4

and

m[2]◦π(B)(i, j) =
(
m[2](B)(i), mπ(ci(B))(j)

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3, j) i = 1
(4, j) i = 2
(1, p−1x (j)) i = 3
(2, px(j)) i = 4

,

which is, seemingly by a strange coincidence, exactly what we have claimed. �

Now we can easily fill in the gap left open in the beginning of the previous section:

Remark 4.5. If we start with a Belyi morphism β, the topological space X∗ arising
in the construction is always connected, so O(β) is indeed an Origami.

Proof. What we have to show is that mA := m[2]◦π(A) and mB := m[2]◦π(B)
generate a transitive subgroup of S4d. So choose i ∈ {1, . . . , 4}, j ∈ {1, . . . , d}, then
it clearly suffices to construct a path γ ∈ π1(E \ {∞}) such that m[2]◦π(γ)(1, 1) =
(i, j).

Now, as Y∗ is connected, there is a path γ′ ∈ π1(P
1∗) such that mβ(γ

′)(1) = j.
Consider the homomorphism

φ : π1(P
1∗)→ π1(E \ {∞}),

{
x 	→ B−2,
y 	→ A2

By the above theorem, a lift of the path A2 connects the square of O(β) labelled
with (1, k) to the one labelled with(1, py(k)), and a lift of B−2 connects (1, k)
to (1, px(k)). So we get m[2]◦π(φ(γ

′))(1, 1) = (1, j). So to conclude, we set
γ := εφ(γ′), where ε := 1, A, B or AB for i = 1, 2, 3 or 4, respectively, and get
m[2]◦π(γ)(1, 1) = (i, j). �

For some calculations in the following sections, it will be useful to know the
monodromy of the map π around the Weierstraß points 0, 1, λ, ∞ ∈ E, respectively.
Therefore, we do the following quick calculation here:

Lemma 4.6. If we choose the following simple loops around the Weierstraß points

x′ := l0 := db−1 y′ := l1 := ac−1e−1

z′ := l∞ := bed−1a−1 w′ := lλ := c,

then we have

h∗(x′) = x2 h∗(y′) = y2

h∗(z′) = z2 h∗(w′) = w2.
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Proof. Indeed, by the calculations in the proof of Theorem 3, we have:

h∗(x′) = xw−1wx = x2,

h∗(y′) = yww−2wy = y2,

h∗(z′) = x−1w−1y−1w−1wx−1w−1y−1 = (ywx)−2 = z2,

h∗(w′) = w2.

�

4. The genus of M-Origamis

We calculate the genus of the M-Origami associated to a Belyi morphism β and
give lower and upper bounds depending only on g(Y) and deg β. We have the
following

Proposition 4.7. Let β : Y → P1
C be a Belyi morphism and d = deg β its degree,

m0 := px, m1 := py, m∞ := pz = p−1x p−1y ∈ Sd the monodromy of the standard
loops around 0, 1 and ∞. Further let g0, g1, g∞ be the number of cycles of even
length in a disjoint cycle decomposition of m0, m1 and m∞, respectively. Then we
have:

a)

g(X) = g(Y) + d− 1
2

∞

∑
i=0

gi.

b)

g(Y) +
⌈
d
4

⌉
≤ g(X) ≤ g(Y) + d.

Proof. The Riemann-Hurwitz formula for β says:

2g(Y)− 2 = d(2g(P1)− 2) + ∑
p∈Y

(ep − 1)

Let us now split up ∑p∈Y(ep − 1) = v0 + v1 + v∞, where vi := ∑p∈β−1(i)(ep − 1).
Of course, vi = ∑c cycle in mi

(len(c)− 1), where len(c) is the length of a cycle c.
Putting that and the fact that g(P1) = 0 in the last equation yields

2g(Y)− 2 = −2d+
∞

∑
i=0

vi.

Now we write down the Riemann-Hurwitz formula for π. Note that π is at most
ramified over the preimages of 0, 1 and ∞ under h, which we denote also by 0, 1
and ∞. β is unramified over the (image of the) fourth Weierstraß point, and so
is π. So again the ramification term splits up into ∑p∈X(ep − 1) = v′0 + v′1 + v′∞
with v′i = ∑c cycle in m′i

(len(c)− 1), where m′0,m
′
1,m

′
∞ are permutations describing

the monodromy of π going around the Weierstraß points 0, 1,∞ respectively. Of
course g(E) = 1, and so we get

2g(X)− 2 =
∞

∑
i=0

v′i.

Subtracting from that equation the one above and dividing by 2 yields

g(X) = g(Y) + d− 1
2

∞

∑
i=0

(vi − v′i),

so we can conclude a) with the following
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Lemma 4.8. vi − v′i = gi, where gi is the number of cycles of even length in mi.

The proof of this lemma is elementary. Write m′0 := mπ(x′), m′1 := mπ(y′), m′∞ :=
mπ(z′) as in Lemma 4.6, then we get m′i = m2

i by that lemma and Theorem B.
Now, note that the square of a cycle of odd length yields a cycle of the same
length, while the square of a cycle of even length is the product of two disjoint
cycles of half length. So, if c is such an even length cycle and c2 = c1c2, then
obviously (len(c)− 1)− ((len(c1)− 1) + (len(c2)− 1)) = 1. Summing up proves
the lemma. �
In part b) of the proposition, the second inequality is obvious as all gi are non-
negative. For the first one, note that we have gi ≤ d

2 , so ∑ gi ≤ 3
2d, and finally

d− 1
2 ∑ gi ≥ d

4 . Of course g(X) and g(Y) are natural numbers, so we can take the
ceiling function. �

With the notations of the above proposition and the considerations in the proof,
we can easily count the number of punctures of an M-Origami:

Remark 4.9. Let β : Y → P1
C be a Belyi morphism, π : X → E the normalisation of

its pullback by the elliptic involution as in Definition 4.1, and Oβ = (p : X → E)
the associated M-Origami.

a) Let W := {0, 1, λ, ∞} ⊆ E be the set of Weierstraß points of E, then we
have:

n(P) := |π−1(P)| = #(cycles in mP) + gP, (P ∈ {0, 1, ∞})
n(λ) := |π−1(λ)| = degπ = deg β.

b) For Oβ = (p : X → E), we have:

|p−1(∞)| = n(0) + n(1) + n(λ) + n(∞).

Proof. Part b) is a direct consequence of a), as by definition p = [2] ◦ π, and
[2] : E→ E is an unramified cover with [2]−1(∞) = W.

For a), the second equality is clear, since, as we noted above, π is unramified over
λ. If P ∈ {0, 1∞}, then n(P) is the number of cycles in m′P = m2

P (where we reuse
the notation from the proof above). As a cycle in mP corresponds to one cycle in
m2
P if its length is odd, and splits up into two cycles of half length if its length is

even, we get the desired statement. �

Let us now return to the genus of M-Origamis. We show that the upper bound in
part b) of Proposition 4.7 is sharp in “almost all” cases in the following sense:

Proposition 4.10. For g ∈ N, d ≥ 6g+ 1, but d �= 6g+ 2, there is a dessin of
genus g and degree d such that the resulting Origami has genus d+ g.

Proof. We have to construct dessins with ∑ gi = 0. For g = 0 and d odd, we can
obviously just take the d-star. For g = 0 and d ≥ 4 even, we can take the following
dessin with d− 3 edges on the right:
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Now let g ≥ 1. We take a regular 4g-gon where we mark the vertices with black
dots and the midpoints of edges with white dots. If we glue opposite edges, we get
a genus g dessin of degree 4g. Now, add a “sting” at each of the 2g white vertices.
For d ≥ 6g+ 1 odd, add d− 6g “stings” at the black vertex. For d ≥ 6g+ 4 even,
concatenate the dessin shown above (with d− 6g edges) to the black vertex. To
illustrate this, we draw this dessin for g = 2. The left one corresponds to the odd
case, the right one to the even.

�

If X is an M-Origami fulfilling g(X) ≤ G for some G ∈ N, then by the above
proposition we have d ≤ 4G. There are only finitely many dessins up to a given
degree, so as an interesting consequence we get the following corollary which
might seem surprising at first:

Corollary 4.11. Given a natural number G ∈ N, there are only finitely many
M-Origamis with genus less or equal to G.

In the special case of unicellular dessins (i.e. m∞ consists of one cycle of length
d = deg(β)), we can obviously strengthen the estimation of Proposition 4.7 b).
In this case we have g∞ = 0 or 1, depending on the parity of d, so we have the
following

Remark 4.12. In the situation of Proposition 4.7, for unicellular dessins we get

g(Y) +
⌈
d− 1
2

⌉
≤ g(X) ≤ g(Y) + d.

In particular, for trees we get ⌈
d− 1
2

⌉
≤ g(X) ≤ d.

It is often convenient to work with clean dessins, i.e. all preimages of 1 are
ramification points of order 2. As explained in Definition and Remark 2.8 c),
it is possible to replace a Belyi morphism β by a clean one by postcomposing
τ : z 	→ 4z(1− z). We want to calculate how this process changes the genus of the
obtained Origami. What happens to the dessin is that all vertices become black,
and in the centre of each edge a new white vertex is inserted. So the numbers
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g0, g1, g∞ are replaced by

g̃0 = g0 + g1, g̃1 = d g̃∞ = g∞ + u∞

where u∞ is the number of cycles of odd length in m∞. Note also that d̃ :=
deg(β̃) = 2d, so altogether we get:

Remark 4.13. Let X be the Origami obtained from some Belyi morphism β, and
X̃ the one obtained from β̃ = 4β(1− β). Then we have

g(X̃) = g(X) +
1
2
(d− u∞).

From Corollary 4.11 follows that we can (at least in theory) list all M-Origamis of
a given genus. We do this for genera 1 and 2.

Proposition 4.14. There are five dessins that yield genus 1 Origamis, and nine
dessins that yield genus 2 Origamis.

The calculations were done with the Sage computer algebra system [Sag10] to-
gether with Karsten Kremer’s Origami package [Kre10b]. Note that we do not
mark the cell drawn as unbounded, but we distinguish between dessins with black
and white vertices interchanged. The following five dessins correspond to the
genus 1 Origamis:

The nine dessins below correspond to the genus 2 Origamis:

Of these dessins, the middle one from the second row and the two left ones from
the third row yield genus 2 Origamis with one double root of the holomorphic
differential associated to its translation structure, the other ones yield Origamis
with two single roots.

Note that all the above dessins are determined by their cycle structure, thus are
defined over Q, and so are the resulting Origami curves.
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5. The Veech group

To calculate the Veech group of an M-Origami, we use the charactarisation that
Weitze-Schmithüsen gave in [Sch05]. According to Theorem 1 in that work, the
Veech group of an Origami O = (p : X∗ → E∗) is the image in Out+(π1(E∗)) ∼=
SL2(Z) of the stabiliser Stab(p∗π1(X∗)) under the action of Aut+(π1(E∗)) . More
generally, if φ ∈ Aut+(π1(E∗)) is an “orientation preserving” automorphism, and
A ∈ SL2(Z) ∼= Out+(π1(E∗)) is its image, then the monodromy of the Origami
A ·O is given by mp ◦ φ, where mp : π1(E∗) → Sd is the monodromy map of O.
This is shown in [Sch05, Proposition 3.5].

Proposition 4.15. Let β be the dessin of degree d given by a pair of permutations
(px, py), and Oβ the associated M-Origami. Then we have for the standard
generators S, T, −I of SL2(Z):

• S ·Oβ is the M-Origami associated to the pair of permutations (py, px).
• T ·Oβ is the M-Origami associated to the pair of permutations (pz, py),
where as usual pz = p−1x p−1y .

• (−I) ·Oβ
∼= Oβ, i.e. −I ∈ Γ(Oβ).

Proof. We lift S, T, −I ∈ SL2(Z) ∼= Out+(F2) to the following automorphisms of
F2 = 〈A, B〉, respectively:

φS : A 	→ B, B 	→ A−1

φT : A 	→ A, B 	→ AB

φ−I : A 	→ A−1, B 	→ B−1

Let us, for brevity, write mw := m[2]◦π(w) for an element w ∈ F2, so in particular
Oβ is given by the pair of permutations (mA,mB) as in Theorem 3.

First we calculate the monodromy of the Origami S · Oβ, which is given by
(m

φ−1S (A),mφ−1S (B)): We get

m
φ−1S (A)(i, j) = m−1B (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3, px(j)), i = 1
(4, p−1x (j)), i = 2
(1, j), i = 3
(2, j), i = 4

and m
φ−1S (B) = mA.

Now we conjugate this pair by the following permutation

c1 : (1, j) 	→ (2, j) 	→ (4, j) 	→ (3, j) 	→ (1, j),

which does of course not change the Origami it defines, and indeed we get:

c1m−1B c−11 (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, j), i = 1
(1, px(j)), i = 2
(4, j), i = 3
(3, p−1x (j)), i = 4

, c1mAc−11 (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3, j), i = 1
(4, j), i = 2
(1, p−1y (j)), i = 3
(2, py(j)), i = 4

,

which is clearly the M-Origami associated to the dessin given by the pair (py, px).
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Next, we discuss the action of the element T in the same manner, and we get:

m
φ−1T (A) = mA and m

φ−1T (B)(i, j) = m−1A mB(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(4, py(j)), i = 1
(3, j), i = 2
(2, p−1y p−1x (j)), i = 3
(1, px(j)), i = 4

.

The reader is invited to follow the author in not losing hope and verifying that
with

c2 : (i, j) 	→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1, py(j)), i = 1
(2, py(j)), i = 2
(4, py(j)), i = 3
(3, j), i = 4

we have

c2mAc−12 (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, j), i = 1
(1, py(j)), i = 2
(4, j), i = 3
(3, p−1y (j)), i = 4

and

c2m−1A mBc−12 (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3, j), i = 1
(4, j), i = 2
(1, pypx(j)), i = 3
(2, p−1x p−1y (j)), i = 4

,

which is the monodromy of the M-Origami associated to (pz, py).
For the element −I ∈ SL2(Z) we have

m
φ−1−I (A)

(i, j) = m−1A (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, p−1y (j)), i = 1
(1, j), i = 2
(4, py(j)), i = 3
(3, j), i = 4

and

m
φ−1−I (B)

(i, j) = m−1B (i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3, px(j)), i = 1
(4, p−1x (j)), i = 2
(1, j), i = 3
(2, j), i = 4

.

In this case,

c3 :

{
(1, j)↔ (4, j)
(2, j)↔ (3, j)

does the trick and we verify that c3mAc3 = m−1A , c3mBc3 = m−1B , so −I ∈ Γ(Oβ).
�

It will turn out in the next theorem that the Veech group of M-Origamis often is
Γ(2). Therefore we list, as an easy corollary from the above proposition, the action
of a set of coset representatives of Γ(2) in SL2(Z).

Corollary 4.16. For an M-Origami Oβ associated to a dessin β given by (px, py),
and

α ∈ {I, S, T, ST, TS, TST},
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α ·Oβ is again an M-Origami, and it is associated to the dessin with the monodromy
indicated in the following table:

I S T ST TS TST
px py pz py pz px
py px py pz px pz

Proof. The first three columns of the above table are true by the above proposition.
If we write M(px, py) for the M-Origami associated to the dessin given by (px, py),
then we calculate

ST ·M(px, py) = S ·M(pz, py) = M(py, pz),

TS ·M(px, py) = T ·M(py, px) = M(p−1y p−1x , px) ∼= M(pz, px),

TST ·M(px, py) = T ·M(py, pz) = M(p−1y p−1z , pz) = M(px, pz).

�
Theorem 4. Let, again, β be a dessin given by the pair of permutations (px, py).

a) For the associated M-Origami Oβ, we have Γ(2) ⊆ Γ(Oβ).
b) The orbit of Oβ under SL2(Z) precisely consists of the M-Origamis asso-

ciated to the dessins weakly isomorphic to β.
c) If Γ(2) = Γ(Oβ) then β has no nontrivial weak automorphism, i.e. Wβ =
{id}. In the case that β is filthy, the converse is also true.

Proof. a) We have Γ(2) = 〈T2, ST−2S−1, −I〉, so we have to show that
these three matrices are elements of Γ(Oβ). We already know by Propo-
sition 4.15 that −I acts trivially. Using the notation of the proof of the
above corollary, we calculate:

T2 ·M(px, py) = T ·M(pz, py) = M(p−1z p−1y , py) ∼= M(px, py),

ST−2S−1 ·M(px, py) = ST−2 ·M(py, px) = S ·M(py, px) = M(px, py).

b) By a), the orbit of Oβ under SL2(Z) is the set of translates of Oβ under a
set of coset representatives of Γ(2) in SL2(Z). We have calculated them in
the above corollary, and indeed they are associated to the dessins weakly
isomorphic to β.

c) “⇒”: Let Γ(2) = Γ(Oβ), then by part b) we have

6 = | SL2(Z) ·Oβ| ≤ |W · β| ≤ 6

so we have equality and indeed Wβ is trivial.
“⇐”: For now, fix an element id �= w ∈ W. By assumption, β � β′ :=
w · β. Let π, π′ be their pullbacks by h as in Definition 4.1. By Lemma
4.19∗, we have π � π′. Now assume Oβ

∼= Oβ′ , so by Lemma 4.20, there
exists a deck transformation ϕ ∈ Deck([2]) such that π′ ∼= ϕ ◦π. But since
β (and so β′) is filthy, ϕ has to fix λ ∈ E, so it is the identity. This is the
desired contradiction to π � π′. By varying w we get | SL2(Z) ·Oβ| = 6,
so in particular Γ(Oβ) = Γ(2). �

Part b) of the above theorem indicates a relationship between weakly isomorphic
dessins and affinely equivalent M-Origamis. Let us understand this a bit more
conceptually:

∗Note that this and the following lemma logically depend only on the calculations in the proof of
Theorem 3.
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Proposition 4.17. The group W from Definition and Remark 2.7 acts on the set of
Origamis whose Veech group contains Γ(2) via the group isomorphism

φ : W → SL2(Z)/Γ(2),

{
s 	→ S
t 	→ T

.

Furthermore, the map M : β 	→ Oβ, sending a dessin to the corresponding
M-Origami, is W-equivariant.

Proof. By the proof of Proposition 3.7, the action of SL2(Z) on the set of Origamis
whose Veech group contains Γ(2) factors through Γ(2). So any group homomor-
phism G → SL2(Z)/Γ(2) defines an action of G on this set. To see that the map
M is equivariant with respect to the actions of W on dessins and M-Origamis,
respectively, amounts to comparing the tables in Definition and Remark 2.7 and
Corollary 4.16. �

6. Cylinder decomposition

By the results of the above section, for an M-Origami Oβ we find that H/Γ(2) ∼=
P1
C \{0, 1, ∞} covers its Origami curve C(Oβ) which therefore has at most three

cusps. By Proposition 3.16 a) this means that Oβ has at most three non-equivalent
Strebel directions, namely

(
1
0
)
,
(
0
1
)
and

(
1
1

)
. For each of these, we will cal-

culate the cylinder decomposition. Before, let us prove the following lemma
which will help us assert a peculiar condition appearing in the calculation of the
decomposition:

Lemma 4.18. Let β be a Belyi morphism, and let px, py, pz be the monodromy
around 0, 1, ∞ as usual. If, for one cycle of py that we denote w.l.o.g. by (1 . . . k),
k ≤ deg(β), we have

∀i = 1, . . . , k : p2x(i) = p2z(i) = i,

then the dessin representing β is in the following list (where Dn, En, Fn and Gn
are dessins with n black vertices—so we can even write A = F1, B = D1, C = G2):

In particular under these conditions β is defined over Q.

Note: If we impose the cycle condition on px instead of py, we get of course the
dessins with black and white vertices interchanged, and if we impose it on pz, it
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is obvious that the series Dn becomes the daisy chain series D′n (the below image
showing D′4 as an example), and the series En, Fn and Gn become the dessins of
the Chebyshev-polynomials (see Example 2.4). The fact that they are defined over
Q does not change, of course.

Proof. The idea of the proof is to take cells of length 1 and 2 (this is the condition
p2z(i) = i), bounded by edges, and glue them (preserving the orientation) around
a white vertex w until the cycle around this vertex is finished, i.e. until there are
no more un-glued edges ending in w. The building blocks for this procedure are
shown as 1a and 2a in the figure below. Note that it is not a priori clear that we
end up with a closed surface in this process, but the proof will show that this is
inevitable.

As a first step we consider in which ways we can identify edges or vertices within
a cell of length 1 or 2, meeting the requirements that no black vertex shall have
a valence > 2 (this is the condition p2x(i) = i) and that the gluing respects the
colouring of the vertices. The reader is invited to check that the figure below lists
all the possible ways of doing this.
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Now we want to see in which ways we can glue these seven building blocks
around the white vertex w. In the cases 1b, 2b and 2c we already have a closed
surface, so we cannot attach any more cells, and end up with the dessins A, B
and C. If we start by attaching the cell 2a to w, we can only attach other cells of
that type to w. Note that we cannot attach anything else to the other white vertex,
as this would force us to attach a cell of length > 2 to w in order to finish the
cycle. So, in this case, we get the dessins of series D. Now consider the cell 2e. It
has 4 bounding edges. To each of its two sides, we can attach another copy of 2e,
leaving the number of bounding edges of the resulting object invariant, or a copy
of 1a or 2d, both choices diminishing the number of boundary edges by 2. Having
a chain of 2e’s, we cannot glue their two boundary components, as this would not
yield a topological surface but rather a sphere with two points identified. So to
close the cycle around the white vertex w, we have to attach on either side either
1a or 2d. This way we get the series E, F and G. If, on the other hand, we start
with a cell of types 1a or 2d, we note that we can only attach cells of type 1a, 2d or
2e, so we get nothing new.

It might be surprising at first that constructing one cycle of py with the given
properties already determines the whole dessin. Again, the reader is invited to list
the possibilities we seem to have forgotten, and check that they are in fact already
in our list.

Now, clearly all of the dessins of type A, . . . , E are determined by their cycle
structure and hence defined over Q. �

After this lemma, we are able to calculate the decomposition of an M-Origami into
maximal cylinders now. For a maximal cylinder of width w and height h, we write
that it is of type (w, h).

Theorem 5. Let Oβ be an M-Origami associated to a dessin β which is given by a
pair of permutations (px, py). Then we have:

a) If (px, py) does not define one of the dessins listed in Lemma 4.18, then,
in the Strebel direction

(
1
0
)
, Oβ has:

• for each fixed point of py one maximal cylinder of type (2, 2),
• for each cycle of length 2 of py one maximal cylinder of type (4, 2),
• for each cycle of length l > 2 of py two maximal cylinders of type
(2l, 1).

b) In particular, we have in this case:

#max. horizontal cylinders = 2 · # cycles in py − # fixed points of p2y.

c) We get the maximal cylinders of Oβ in the Strebel directions
(
0
1
)
and

(
1
1

)
if we replace in a) the pair (px, py) by (py, px) and (py, pz), respectively.

Before we write down the proof, we list, for the sake for completeness, the maximal
horizontal cylinders of the M-Origamis associated to the dessins of Lemma 4.18:

• The M-Origami coming from Dn has two maximal horizontal cylinders
of type (2n, 2) for n ≥ 3 (and else one of type (2n, 4)).

• The M-Origami coming from En has one maximal horizontal cylinder of
type (4n, 2).

• The M-Origami coming from Fn has one maximal horizontal cylinder of
type (4n− 2, 2).
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• The M-Origami coming from Gn has one maximal horizontal cylinder of
type (4n− 4, 2).

Let us draw the M-Origamis associated to D3, E3, F3 and G3 here:
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Proof (of Theorem 5). a) First we note that for each cycle c of py of length
l, we get two horizontal cylinders of length 2l, one consisting of squares
labelled (1, j) and (2, j), and one consisting of squares labelled (3, j) and
(4, j)—the latter rather belonging to the corresponding inverse cycle in
p−1y . They are maximal iff there lie ramification points on both their
boundaries (except in the trivial case where g(Oβ) = 1). Since the map π
from the construction of an M-Origami is always unramified over λ (see
Theorem 3), there are ramification points on the boundary in the middle
of such a pair of cylinders iff the corresponding cycle is not self inverse,
i.e. l > 2. On the other two boundary components, there are ramification
points iff not for every entry j appearing in c, we have p2x(j) = p2z(j) = 1.
This is due to Lemma 4.6, and it is exactly the condition in Lemma 4.18.

b) is a direct consequence of a).
c) By Proposition 3.16 d) we know that the cylinders in vertical and diagonal

direction are the horizontal ones of S−1 ·Oβ and (TS)−1 ·Oβ. As we know
that S ≡ S−1 and (TS)−1 ≡ ST (mod Γ(2)) we read off the claim from
the table in Corollary 4.16.
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7. Möller’s theorem and variations

We are now able to reprove Möller’s main result in [Möl05] in an almost purely
topological way. This will allow us to construct explicit examples of Origamis such
that Gal(Q/Q) acts non-trivially on the corresponding Origami curves, which
was not obviously possible in the original setting.

Let us first state the following theorem, reformulating Theorem 5.4 from [Möl05]:

Theorem I. a) Let σ ∈ Gal(Q/Q) be an element of the absolute Galois
group, and β be a Belyi morphism corresponding to a clean tree, i.e. a
dessin of genus 0, totally ramified over ∞, such that all the preimages
of 1 are ramification points of order precisely 2, and assume that β is
not fixed by σ. Then we also have for the Origami curve C(Oβ) of the
associated M-Origami: C(Oβ) �= C(Oβ)

σ (as subvarieties of Mg,[n]).
b) In particular, the action of Gal(Q/Q) on the set of all Origami curves is

faithful.

We will gather some lemmas which will enable us to reprove the above theorem
within the scope of this work and to prove similar statements to part a) for other
classes of dessins.

Note that when defining M-Origamis in Section 1 of this chapter, we did not
impose any conditions on the elliptic curve E. We will now use the model
E = C/Z2 again, whose j-invariant is 1728. Hence, E is defined over Q, so in
particular Eσ ∼= E for every σ ∈ Gal(Q/Q). Let us now begin with the following
simple

Lemma 4.19. Let β � β′ be two dessins, defined by (px, py) and (p′x, p′y), respec-
tively. Then, for their pullbacks π,π′ as in Definition 4.1 we also have π � π′.

Proof. Let deg(β) = deg(β′) = d (if their degrees differ, the statement is trivially
true). Now assume π ∼= π′. This would imply the existence of a permutation
α ∈ Sd such that cα ◦mπ = mπ′ , where cα is the conjugation by α. By the proof of
Theorem 3, we have mπ(d) = px, mπ(a) = py, so in particular (cα(px), cα(py)) =
(p′x, p′y), which contradicts the assertion that β � β′. �

Next, let us check what happens after postcomposing [2], the multiplication by 2
on the elliptic curve. But we first need the following

Lemma 4.20. Let π : X → E, π′ : X′ → E be two coverings. If we have
[2] ◦ π ∼= [2] ◦ π′, then there is a deck transformation ϕ ∈ Deck([2]) such that
ϕ ◦ π ∼= π′.

Proof. Clearly, E is Hausdorff, and [2] is a normal covering, so we can apply
Lemma 1.5. �

Proposition 4.21. Assume we have a dessin β given by (px, py), and a Galois
automorphism σ ∈ Gal(Q/Q) such that β � βσ. If furthermore the 4-tuple
(p2x, p2y, p2z , 1) ∈ (Sd)4 contains one permutation with cycle structure distinct from
the others, then we have Oβ � (Oβ)

σ.

Proof. First of all, what is (Oβ)
σ? We chose E to be defined over Q, so E ∼= Eσ,

and [2] is also defined over Q, so [2] = [2]σ, and so ([2] ◦ π)σ = [2] ◦ πσ which
means by definition that (Oβ)

σ = Oβσ .
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Assume now Oβ
∼= Oβσ . So by the above lemma, there is a deck transformation

ϕ ∈ Deck([2]) such that ϕ ◦ π ∼= πσ. The deck transformation group here acts by
translations, so in particular without fixed points. Note that by Lemma 4.6, the
tuple (p2x, p2y, p2z , 1) describes the ramification of π around the Weierstrass points,
and the ramification behaviour of πσ is the same. So, imposing the condition
that one entry in this tuple shall have a cycle structure distinct from the others,
it follows that ϕ = id. So we have even π ∼= πσ, and so by Lemma 4.19 β ∼= βσ,
which contradicts the assumption. �

Now, we have all the tools together to prove Theorem I.

Proof (of Theorem I). The second claim follows from the first, as the action of
Gal(Q/Q) is faithful on trees, and it stays faithful if we restrict to clean ones. We
have seen that in Theorem G.

So, choose a nontrivial Galois automorphism σ and a clean tree β of degree d
defined by (px, py) such that β � βσ.

First we check the condition of Proposition 4.21 by showing that the cycle structure
of p2z is distinct from the others. p2z consists of two cycles because purity implies
even parity of d. As β � βσ, surely d > 2, so p2z �= 1, and so it is distinct from
p2y = 1. Because of the purity, the dessin β has d

2 white vertices, and so d
2 + 1

black vertices, which is a lower bound for the number of cycles in p2x. Again, from
d > 2 we conclude that p2x must consist of at least 3 cycles and therefore cannot be
conjugate to p2z .
We claim now that Oβ and Oβσ are not affinely equivalent. By Theorem 4 and
Corollary 4.16 this amounts to checking that β and βσ are not weakly isomorphic.
As we will see later in an example, this cannot be assumed in general, but in
this case px, py, pz consist of d

2 + 1 cycles, d
2 cycles and 1 cycle, respectively, so

any weak isomorphism would actually have to be an isomorphism, which we
excluded.

So, by Proposition 3.13 , C(Oβ) �= C(Oβσ ) as embedded curves in the moduli space.
But as we saw in the proof of Proposition 4.21, the latter is equal to C((Oβ)

σ),
which is in turn equal to (C(Oβ))

σ by Proposition 3.17 b). Altogether we found,
for an arbitrary σ ∈ Gal(Q/Q), an Origami O such that

C(O) �= (C(O))σ.

So indeed, the absolute Galois group acts faithfully on the set of Origami curves.
�

Inspecting our results that we used to prove Möller’s theorem more closely, we
see that we can actually use them to give a bigger class of dessins β for which we
know that from βσ � β follows C(Oβ) �= (C(Oβ))

σ:

Theorem 6. Let β be a dessin such that βσ � β for some σ ∈ Gal(Q/Q).

a) If β is a tree or a filthy dessin, then Oβ � Oσ
β .

b) If furthermore M(β) = Mβ (in the sense of Definitions 2.15 and 2.16),
then we have C(Oβ) �= (C(Oβ))

σ.

Proof. For part a), remember that a dessin with monodromy given by (px, py)
is said to be filthy if it is not weakly isomorphic to a pre-clean one, i.e. 1 /∈
{p2x, p2y, p2z}. So the condition of Proposition 4.21 is satisfied for the permutation
1.
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The case of β being a tree is a little bit more tricky. We want to show that the
cycle structure of p2z is unique. β is totally ramified over ∞, so p2z has one cycle if
d = deg(β) is odd and two if it is even. First assume it to be odd. If p2x (and so px)
also had only one cycle, then we had β : z 	→ zd which contradicts the assumption
β � βσ. We repeat the argument for py. Clearly d > 1, so p2z �= 1.

Assume now d ∈ 2Z, so p2z has two cycles of length d
2 . Assume p2x to be conjugate

to it, then px has either one cycle of length d or two of length d
2 . We already

discussed the first case, and in the latter one, there is, for every d, only one tree
with that property:

So in particular it is defined over Q, which contradicts the hypothesis β � βσ.
Again we repeat the argument for py, and as surely d > 2 we have p2z �= 1.

For part b), we have to check that Oβ and Oσ
β are not affinely equivalent. Again

by Theorem 4 b) this is equivalent to β and βσ not being weakly isomorphic. But
indeed, the conditon M(β) = Mβ implies that whenever β and βσ are weakly
isomorphic for some σ ∈ Gal(Q/Q), we have actually β ∼= βσ. �

Note that Example 5.3 shows that the condition M(β) = Mβ is actually necessary:
the Galois orbit of dessins considered in that example contains a pair of filthy
trees which are weakly isomorphic. By the above arguments, the corresponding
M-Origamis are distinct but affinely equivalent. �
From Corollary 4.11 we know that in order to act faithfully on the Teichmüller
curves of M-Origamis, the absolute Galois group must act non-trivially on the
Teichmüller curves of M-Origamis of genus g for infinitely many g. The question
is if our construction can provide examples for Teichmüller curves not defined
over Q for many low genera g. The following proposition gives an answer:

Proposition 4.22. For every g ≥ 4, there is an Origami of genus g whose Teich-
müller curve is not fixed by the complex conjugation.

Proof. See Example 5.4. �



CHAPTER 5

Examples

1. M-Origamis from trees

We will now give some examples to enlighten the Galois action on Origami curves.
In order to do this, we will, of course, use our construction of M-Origamis, so first
of all, we need explicit examples of Galois orbits of dessins d’enfants. While the
arguments for the existence of a dessin in genus 0 and 1 that is not fixed by a
certain Galois automorphism σ given in [Sch94] are in principle constructive, they
are not really appropriate for constructing examples as they make use of Belyi’s
algorithm, which produces ludicrously high degrees even in simple cases. A first
source for examples is Bétréma’s and Zvonkin’s catalogue [BZ92] where they give
equations for all trees up to 7 edges and classify the Galois orbits.

Example 5.1. In the catalogue, we find that all trees up to 5 edges are defined over
Q, so they do not lead to better understanding of the Galois action. There are two
nontrivial Galois orbits of trees of degree 6, one of length 2, and one of length 3.
The first one is studied in detail in [Kre10a, 5.4]∗, so we discuss the second one
here. Let us draw the dessins in that orbit:

∗Be aware of the fact that the citation structure is not cycle free any longer!

69
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As usual, the vertices depicted as filled dots are the preimages of 0, and the white
dots are the preimages of 1. All three dessins have Belyi polynomials of the form

β(z) = z3(z− 1)2(z− a),

where a ∈ Q runs through the three roots of the following polynomial, which is
irreducible over Q:

25a3 − 12a2 − 24a− 16

For the sake of completeness, let us list them:

a1 =
1
25

(
4+ 18 3

√
2+ 6 3√4

)
, a2,3 =

1
25

(
4− 3 3√4(1∓

√
3i)− 9 3

√
2(1±

√
3i)

)
The real root corresponds to the first dessin which is mirror symmetric and hence
defined over R, and the two complex conjugate ones correspond to the lower two
dessins which are mirror images of each other.

We choose a numbering on the edges and write down the monodromy of each
of these dessins: px = (1 2 3)(4 5) for all three dessins, and from top to bottom
p(1)y = (3 4)(5 6), p(2)y = (1 6)(3 4), p(3)y = (2 6)(3 4).

To calculate the monodromy of the corresponding M-Origamis, we use Theorem
3. We know that if the degree of a dessin β is d, the degree of the corresponding
M-Origami Oβ is 4d. In the theorem, the permutations describing Oβ are given as
bijections on the set {1, 2, 3, 4} × {1, . . . , d}. We identify this set with {1, . . . , 4d}
by the map (i, j) 	→ i+ 4(j− 1) in order to be able to write up the permutations
in a usual manner. So, applying Theorem 3 yields

pB = (1 3 9 11 5 7)(2 4 6 8 10 12)(13 15 17 19)(14 16 18 20)(21 23)(22 24)

for all three corresponding Origamis (note that pB only depends on px, which can
be chosen to be the same) and, again from top to bottom

p(1)A = (1 2)(3 4)(5 6)(7 8)(9 10 13 14)(11 12 15 16)(17 18 21 22)(19 20 23 24)

which looks as follows:
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p(2)A = (1 2 21 22)(3 4 23 24)(5 6)(7 8)(9 10 13 14)(11 12 15 16)(17 18)(19 20)

which looks as follows:
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p(3)A = (1 2)(3 4)(5 6 21 22)(7 8 23 24)(9 10 13 14)(11 12 15 16)(17 18)(19 20)

which looks as follows:
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Of course also for the Origamis we have that the first one is mirror symmetric, and
the other two are mirror images of each other. All three are hyperelliptic Origamis
(due to Remark 4.2) of genus 4 with 18 punctures. It follows from Theorem 6 a)
that they are pairwise distinct. Furthermore we check that no two of them are
weakly isomorphic. So, by part b) of the mentioned theorem they lie on different
Teichmüller curves. A direct calculation (e.g. by using [WSKF+11]) shows that
their veech groups are equal to Γ(2).

Next, we look at trees for which both permutations px and py have cycle structures
(3 2 1 1). So, trouble is brewing in the sense of Theorem 4, as some of the dessins
could have weak automorphisms or be weakly isomorphic to each other. Let us
check what is happening there. According to the catalogue, the nine trees with
this cycle structure fall into two Galois orbits, one of length 3, the other one of
length 6.
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Example 5.2. We first look at the orbit of length 3, consisting of the following
dessins:

They are given by Belyi polynomials of the form

β(z) = z3(z− a)2
(
z2 +

(
2a− 7

2

)
z+

8
5
a2 − 28

5
a+

21
5

)
,

where a runs through the three roots of the polynomial

24a3 − 84a2 + 98a− 35,

one of which is real and the other two of which are complex conjugate.

We number the edges in such a way that for all three we get px = (1 2 3)(4 5) and,
in the ordering of the picture, we get

p(1)y = (3 4)(5 6 7), p(2)y = (2 7)(3 6 4), p(3)y = (1 7)(3 4 6).

First, we write down the monodromy of the corresponding M-Origamis, using
Theorem 3: For all of them, we can choose pB to be

pB = (1 3 9 11 5 7)(2 4 6 8 10 12)(13 15 17 19)(14 16 18 20)

(21 23)(22 24)(25 27)(26 28)

and further we calculate

p(1)A = (1 2)(3 4)(5 6)(7 8)(9 10 13 14)(11 12 15 16)

(17 18 21 22 25 26)(19 20 27 28 23 24),

p(2)A = (1 2)(3 4)(5 6 25 26)(7 8 27 28)(9 10 21 22 13 14)

(11 12 15 16 23 24)(17 18)(19 20),

p(3)A = (1 2 25 26)(3 4 27 28)(5 6)(7 8)(9 10 13 14 21 22)

(11 12 23 24 15 16)(17 18)(19 20).

Now let us draw the Origamis. Like in the previous example, we can do that in
a way that exhibits the mirror symmetry of the first one (which shows that the
Origami, and thus its curve, is defined over R), and the fact that the other two are
mirror images of each other, i.e. they are exchanged by the complex conjugation.
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Using Proposition 4.7 and Remark 4.9, we see that all of these three M-Origamis
of degree 28 have genus 6 and 18 punctures. The interesting fact is that the three
dessins admit a weak automorphism lying over z 	→ 1− z, i.e. they stay the same
after exchanging white and black vertices. By Corollary 4.16, this means that S is
contained in each of their Veech groups. T is contained in neither of them, because
by the same corollary this cannot happen for nontrivial trees, and so all three have
the Veech group generated by Γ(2) and S, so their Teichmüller curves have genus
0 with 2 cusps, and no two of these Teichmüller curves coincide.

Example 5.3. Now let us investigate the second Galois orbit with the same cycle
structure. The six dessins are depicted below:
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From the catalogue we learn that their Belyi polynomials are of the form

β(z) = z3(z− a)2
(
z2 +

(4
3
a5 − 34

15
a4 − 26

15
a3 +

7
5
a2 +

20
3
a− 28

5

)
z

− 8
15

a5 − 32
75

a4 +
172
75

a3 +
148
75

a2 − 14
5
a− 287

75

)
,

where a runs through the six complex roots of the following polynomial:

20a6 − 84a5 + 84a4 + 56a3 − 294a+ 245

As they have the same cycle structure as the three in the Galois orbit discussed
in the previous example, the resulting M-Origamis are of course combinatorially
equivalent to them: They also are of degree 28 and genus 6, and they have 18
punctures. But something is different here: the weak automorphism group of
each of these dessins is trivial. To see this, note that an element of the Group
W stabilising a tree (that is not the dessin of z 	→ zn, or z 	→ (1− z)n) has to
fix ∞, so it is either the identity or the element s which acts by exchanging the
white and black vertices. Indeed, none of these six dessins keep fixed under s (but
interestingly the whole orbit does). As these dessins are filthy, we conclude by
Theorem 4 c) that all have Veech group Γ(2). Furthermore, the two columns of
the picture are complex conjugates to each other, and we get the first row from
the second by applying s—which is also the case for the two dessins from the last
row. So what is the situation here? We have three Teichmüller curves, the first two
containing the Origamis associated to the two upper left and upper right dessins,
respectively. They are interchanged by the complex conjugation. The third curve
contains the two other Origamis, associated to the bottom row, so this Teichmüller
curve is stabilised under the action of the complex conjugation, and hence defined
over R.
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2. Curves for (almost) every genus

We construct a series of M-Origamis (Og)g≥4 here, such that Og has genus g, and
the corresponding Teichmüller curve is not fixed by the complex conjugation.

Example 5.4. Consider, for g ≥ 4, the following pair of dessins Dg and D′g:

Clearly, they are interchanged by the complex conjugation. We want to show that
it acts non-trivially, i.e. Dg � D′g. With the numbering of edges indicated in the
picture, we get for both dessins the following permutation as the monodromy
around 0:

px = (2 3 4)(5 6)(7 8) · · · (2g− 3 2g− 2)

For the monodromy around 1, we get

py = (1 2)(4 5)(6 7) · · · (2g− 4 2g− 3) and p′y = (1 3)(4 5)(6 7) · · · (2g− 4 2g− 3),

respectively. Let us assume (px, py) ∼= (px, p′y), so we claim the existence of some
c ∈ S2g−2 that commutes with px, such that c−1pyc = p′y. In order to commute
with px, we must have c(1) = 1, and the cycle decomposition must contain a
power of (2 3 4). So from c−1pyc(1) = p′y(1) = 3 we get c(3) = 2, so (4 3 2) must
be a cycle of c. As we must have c−1pyc(2) = p′y(2) = 2 we get c(2) = 5, which is
a contradiction. �
Note that D4 and D′4 appear in Example 5.1, where we calculated the genus of
the resulting M-Origamis to be 4. In increasing g by one, we increase the degree
by 2 and (in the sense of Proposition 4.7) g0 and g1 by 1, respectively. So by that
proposition, we get that the genus of the associated M-Origamis Og and O′g is g.
By Proposition 4.21, they are distinct, and as px is distinguished by its 3-cycle we
find that Dg and D′g are not weakly isomorphic. We conclude that C(Og) �= C(O′g),
and we remember that C(Og) = C(O′g)Ξ, where Ξ ∈ Gal(Q/Q) is the complex
conjugation.

3. An orbit of genus 1 dessins

Theorem 6 gives us conditions under which Galois orbits of dessins in genus
greater than 0 result in Galois orbits of Origami curves of the same length. We
give an example in genus 1.
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Example 5.5. Consider, for k ∈ {0, 1, 2}, the elliptic curve Xk, given by the
following affine equation:

y2 = x(x− 1)

(
x− e

2kπi
3

3
√
2

)
.

On each of them, the morphism

βk : (x, y) 	→ 4x3(1− x3)

is a Belyi morphism of degree 12. Let us draw the corresponding dessins, which
appear as Beispiel 5 and Beispiel 5’ in [Wol01]:

For all three of them, the top and bottom edges and the left and right edges shall
be identified in an orientation preserving way, in order to obtain dessins on genus
1 surfaces.

We choose a numbering on their edges in such a way that we find for their defining
permutations p(k)x = (1 2 3 4)(5 6)(7 8)(9 10)(11 12) for k = 0, . . . , 2 and

p(0)y = (1 3)(2 7 5 4 10 12), p(1)y = (1 8 12 3 5 9)(10 11), p(2)y = (1 12 8 3 9 5)(10 11).

Clearly these dessins are filthy, so by Theorem 6 a) we get three distinct Origamis
O0, O1 and O2. Also, for each of these dessins, the cycle structures of p(k)x , p(k)y and

p(k)z are pairwise distinct, which has two consequences: First, for each of them, the
group of weak automorphisms Wβk is trivial, and since they are filthy, this implies
that the Origamis have Veech group Γ(2). Secondly, any weak isomorphism
between them would have to be an isomorphism, so for each of them we have
Mβk = M(βk), so by part b) of the mentioned theorem we get three distinct curves.
Let us omit writing down permutations defining the three Origamis, and rather
draw pictures of them. They are each of degree 48, of genus 9, and they have 32
punctures.

Note that we draw them in a way that reveals that O0 is defined over R, O1 and
O2 are exchanged by the complex conjugation, and that for each of them we have
−I ∈ Γ(Ok).
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4. M-Origamis with Veech group SL2(Z)

The following series of examples arose in a discussion with Stefan Kühnlein.

Example 5.6. Here, we construct an infinite series of M-Origamis with Veech
group SL2(Z). It is quite noteworthy that only the two simplest Origamis in this
series are characteristic. An Origami O = ( f : X∗ → E∗) is called characteristic if
f∗(π1(X∗)) ≤ π1(E∗) ∼= F2 is a characteristic subgroup. For a detailed account of
these Origamis see [Her06].

If a dessin β is a fixed point under the action of the group W of Möbius transfor-
mations fixing the set {0, 1, ∞}, i.e.Wβ = W, then we know, according to Theorem
4 b), that the associated M-Origami has Veech group SL2(Z). It might seem at
first that there are no such dessins except β = idP1

C
, but indeed we will construct,

for every n ≥ 1, a dessin Kn of degree n2 with WKn = W. First, there is no other
choice than defining K1 = idP1

C
.

Now let n ≥ 2. Consider on the set (Z/nZ)2 the following two maps:

px : (k, l) 	→ (k+ 1, l), py : (k, l) 	→ (k, l + 1).

They are clearly bijective, so we can regard them as elements of Sn2 . Note that
they commute. Also, as pkxply(0, 0) = (k, l), they generate a transitive subgroup of
Sn2 and so (px, py) defines a dessin Kn of degree n2. We calculate its monodromy
around ∞ as pz = p−1x p−1y : (k, l) 	→ (k− 1, l − 1) and define

c : (k, l) 	→ (l, k), d : (k, l) 	→ (−k, l − k).
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As c2 = d2 = id, both c and d are also bijective and thus elements of Sn2 . Further-
more we easily verify that

c−1pxc = py, c−1pyc = px, d−1pxd = pz, d−1pyd = py,

so we find that s · Kn ∼= t · Kn ∼= Kn and thus by Definition and Remark 2.7,
WKn = W. Before we go on, we calculate the genus of Kn. The permutation px
consists of n cycles (of length n), and so do py and pz. As its degree is n2, by the
Euler formula we get 2− 2g(Kn) = 2n− n2 + n and thus

g(Kn) =
n2 − 3n+ 2

2
.

Now, look at the associated M-Origami OKn of degree 4n2. By the considerations
above, we know that it has Veech group SL2(Z). But since for n ≥ 3, we have
1 /∈ {p2x, p2y, p2z}, the group of translations cannot act transitively on the squares of
OKn which therefore is not a normal and specifically not a characteristic Origami.
According to a remark in [Her06], it seems as if not many examples are known
for non-characteristic Origamis with full Veech group SL2(Z). Let us close the
example by calculating the genus of OKn . We use the formula from Proposition 4.7
and therefore we have to count the cycles of even length in px, py and pz. We have

g0 = g1 = g∞ =

{
n, n ∈ 2Z
0, n ∈ 2Z+1

and therefore

g(OKn) = g(Kn) + n2 − 1
2
(g0 + g1 + g∞) =

{
3n2−6n+2

2 , n ∈ 2Z
3n2−3n+2

2 , n ∈ 2Z+1
.

The Origami OK3 has degree 36 and genus 10. We draw a picture of it that almost
reveals its mirror symmetry, i.e. the fact that it is defined over R. It is not known
to the author if this Origami can be drawn as a connected figure, or in a way
revealing some more of its symmetries†.
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†We could actually make the picture mirror symmetric to a diagonal axis by cutting square 24
diagonally in half, and gluing one half to the bottom edge of square 14.
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