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1. Introduction

There is an intrinsic dilemma in high energy physics. On the one hand, the ultimate goal is to
find a model which describes all observable processes in nature and gives conclusive answers to
all remaining questions. On the other hand, such a model would of course question the right
to exist for this field of physics. As of today, the situation is even worse. After an explosion
of surprising new findings from the 50’s to the 70’s a visionary called Standard Model was able
to explain all observations up to that time and was established in the mid 70’s. Furthermore,
all predictions made by this model are found to be correct inside the errors until today. But
for all that we know that this model is not the theory of everything as it does not answers all
the questions we have. For this reason we are obliged to find experimental deviations from the
Standard Model predictions in order to gain information about the next steps towards our final
goal.

In particle physics, there are two frontiers where to search for such a deviation. In the high energy
frontier one tries to find new heavy particles produced in high energetic particle collisions. In the
precision frontier on tries to find quantitative deviations from the Standard Model predictions.
Hints for physics beyond the Standard Model will show up indirectly in tiny deviations from the
Standard Model predictions. The Belle experiment, and also this thesis, is part of the latter. In
the field of B-physics one tries to find deviations in the B meson sector by precisely measuring
decay rates, CP-asymmetries and other parameters.

The special setup of the Belle experiment enables a unique method to measure otherwise inac-
cessible decay channels, called the full reconstruction method. In this thesis such a method was
developed introducing a new hierarchical reconstruction approach with extensive usage of multi-
variate analysis algorithms. With this new method we could double the efficiency compared to an
existing cut-based method. For this we reconstruct B mesons in 1104 exclusive decay channels,
employing nearly hundred neural networks in a hierarchical structure based on each other, in
order to be able to reduce the processing time by many orders of magnitude. This new method
is now officially used by the Belle collaboration for many interesting analyses and increases the
sensitivity for the search for tiny deviations from the Standard Model predictions.

In the second part of my thesis I performed an analysis using the new full reconstruction method
as a hadronic tag. I searched for the decays B → K(∗)νν̄. These decays are very interesting
because they are predicted by the Standard Model to be highly suppressed, but the theoretical
error on the branching ratio is very small. As we know that contributions from physics beyond
the Standard Model are small, these rare decays are interesting, because here, contributions from
the Standard Model and from new physics can be in the same order of magnitude. Depending on
the new physics model, the branching ratio of such a rare decay can even be increased by several
orders of magnitude. Because of the two neutrinos in the final state of the decays B → K(∗)νν̄
it is not possible to measure the quantities of these decays with conventional reconstruction
methods. It is only possible using the full reconstruction method, where the missing information
from the escaping neutrinos is compensated by fully reconstructing the entire event. The tag-
side is reconstructed using the full reconstruction tool and the rest of the event is used as the
signal-side B → K(∗)νν̄ decays in several modes.

It turned out that there is a significant improvement on the expected upper limit of the branching
ratio using the new full reconstruction method on the tag-side, in comparison to the predecessor
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1. Introduction

analysis by the Belle collaboration utilizing the classical cut-based full reconstruction method.
As the same cuts are applied and the increased data statistics is only 20%, this improvement
arises mainly due to the higher efficiency of the new full reconstruction method.
Another significant improvement could be achieved by utilizing NeuroBayes instead of the cut-
based selection on the signal-side of the analysis. At the same time, a higher efficiency and a
higher purity of the selection could be achieved. The balance between purity and efficiency was
optimized in order to reach the most stringent expected upper limit on the branching ratio.
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2. The Standard Model of Particle Physics

In the last century a new field of physics emerged after the observation of new particles. Only
the stable particles proton, neutron and electron were known until the discovery of the unstable
muon in 1936 and the charged pion in 1946. Already in 1935, Yukawa predicted the existence
of the pion as a massive exchange boson, binding neutrons and protons in the nucleus [Yuk55].
Since then, many new findings lead to a well-established model of particle physics, the so-called
Standard Model. This model currently describes all observations and measurements within the
uncertainties.

2.1. Structure of the Standard Model

The Standard Model is a relativistic quantum field theory, describing the interactions between
the elementary matter particles. All the elementary matter particles are fermions, interacting
among themselves by the exchange of gauge bosons. The Standard Model describes all known
fundamental forces, electromagnetic force, weak force and strong force. Only gravity is currently
not described by the Standard Model. The electromagnetic and the weak force are unified to
the electroweak force. There are two types of elementary matter particles, leptons and quarks.
Whereas the quarks couple to all forces, the leptons do not couple to the strong force. There are
six quarks and six leptons, both grouped in 3 generations (see figure 2.1a).

(a) The elementary particles of the Stan-
dard Model.

(b) The interactions between the ele-
mentary particles of the Standard
Model.

Figure 2.1.
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2. The Standard Model of Particle Physics

Mathematically, the Standard Model is described by the local gauge symmetry SU(3)×SU(2)×
U(1). The three gauge groups represent the three fundamental forces. The U(1) represents the
electromagnetic force with the weak hyper-charge, SU(2) the weak force with the weak isospin
and the SU(3) the strong force with the color charge.

2.1.1. The Leptons

Leptons are elementary particles that do not couple to the strong force. There are six types
of leptons, known as flavors, three charged particles, the electron, the muon, the tau and three
neutral particles, the neutrinos. The six leptons form three generations containing each a pair
of a charged lepton and a neutrino (see table 2.1a). Because the weak force only couples to left-
handed particles and right-handed anti-particles, these generations are weak isospin doublets for
the left-handed leptons. The right-handed particles are grouped in isospin singlets.
The first lepton, discovered by Thomson in 1897 is the stable electron with a mass of 511 keV.
The muon, discovered by Anderson and Neddermeyer at Caltech in 1936 was at first thought to
be the π-meson predicted by Hideki Yukawa but then identified as a lepton. It is unstable with
a lifetime of 2.2 ·10−6 s and a mass of 105.7MeV. Because of the high mass of 1777MeV, the tau
lepton was discovered by Perl et al. not until 1975 [Per+75]. This discovery was a big surprise,
because there wasn’t any hint of a third generation of leptons up to that time.
The existence of neutral leptons which only interact weakly was postulated in 1930 by Wolfgang
Pauli in order to explain the continuous electron spectrum of β-decays as a three body decay. The
existence was then confirmed by Cowan, Reines, Harrison, Kruse, and McGuire in 1956 [Cow+56].
Figure 2.2 shows the first event showing a neutrino that hits a proton in a hydrogen bubble
chamber. The neutrinos were always thought to be massless. But then, the Super-Kamiokande
experiment found evidence that neutrinos can oscillate [Fuk+98]. That implies, the neutrinos
must have a non-zero mass. It is still unknown, whether neutrinos are their own anti-particles,
like the photon. If they would be their own anti-particles, they are called Majorana neutrinos.
If the neutrinos would be Majorana neutrinos, one could for example observe the neutrino-less

double-beta decay. There are several experiments searching for this decay. In 2006 Klapdor-
Kleingrothaus et al. claimed to have found a more than 6σ evidence for this decay [KK+06],
but as the results are heavily contested [Aal+02] the question is still not answered.

Figure 2.2. The first observation of a neutrino in a hydrogen bubble chamber. (Image courtesy
of Argonne National Laboratory)
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2.2. Forces of the Standard Model

2.1.2. The Quarks

In 1964, Murray Gell-Mann proposed the existence of quarks as constituents of mesons and
baryons [GM64]. He found out that, if mesons are built up of (qq̄) constituents and baryons out
of (qqq) one could explain many observations in a natural way. Subsequently, this model was
confirmed mainly in deep elastic proton scattering experiments. The most convincing argument
was the finding that the structure functions do not depend on Q2 and therefore the proton has
to have point-like constituents, called partons, or later quarks. Today we know that there are six
quarks grouped in 3 families. They are spin 1/2 particles and the up-type quarks carry electrical
charge of +2/3 and the down-type quarks −1/3. They also carry weak isospin and therefore
couple to the weak force. They are the only matter particles carrying color charge and therefore
interact with the strong force. Because of the properties of the strong force (see section 2.2.2)
quarks are always enclosed in colorless hadrons. It is not possible to observe free quarks (one
could argue that the top quark is free, but it is only because it decays before it can build a
bound state). The charm quark was discovered in 1974 simultaneously by Richter [Aug+74] and
Ting [Aub+74] in the famous November Revolution with the discovery of the J/ψ resonance.
This resonance was found to be a cc̄ state.
The b quark was discovered in 1977 by the Fermilab E288 experiment, led by Leon M. Leder-
man [Her+77]. Similar to the discovery of the J/ψ, they discovered a bb̄-resonance at 9.5GeV
called Υ.
This was very exciting because it was not known before that there are 3 families of quarks. But
knowing that it was obvious that there has to be also a sixth quark called the top quark. The
prediction of the existence was indeed correct, but not the prediction of the mass of this quark.
When it was discovered in 1995 at the Fermilab (once again published in the same journal issue
by two groups CDF [Abe+95] and D∅ [Aba+95]) with a mass of 173GeV it was much heavier
than expected.

2.2. Forces of the Standard Model

Forces are described in the Standard Model by the exchange of bosonic force particles. There are
four known fundamental forces, the electromagnetic force, the weak force, the strong force and
gravity. The gravitational force is not included in the Standard Model but can also be described
by the exchange of a spin 2 graviton. As the electro-magnetic force is unified in the Standard
Model with the weak force, there are only two forces left in the Standard Model, the electro-weak
force and the strong force.

2.2.1. The Electroweak Force

Einstein was able to explain the photo-electrical effect by postulating that light consist of quan-
tum particles. Later, with quantum mechanics, Dirac was able to formulate a quantum field
theory for the electro-magnetic field, called quantum electro-dynamics. In the beginning, the
weak interaction was described by the V-A theory which accounted for the fact that the weak
interaction only couples to left-handed particles (and right-handed antiparticles) which was dis-
covered in 1957 by Wu et al. [Wu+57] in the beta decay of cobalt-60. But it was known that
this theory doesn’t behave very well at high energies. There was a theory by Sheldon Glashow,
Abdus Salam and Steven Weinberg unifying the electro-magnetic and weak theory. As the weak
force is much weaker than the electro-magnetic force, this symmetry needs to be broken. This
spontaneous symmetry breaking rotates the electro-weak gauge bosons into a massless purely
electromagnetic photon and the heavy W± and Z0 bosons. The confirmation of this theory was
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2. The Standard Model of Particle Physics

the discovery of the neutral weak currents, mediated by the Z0 boson in neutrino scattering by
the Gargamelle collaboration in 1973 and the discovery of the W± and Z0 bosons itself in 1983.
According to this theory, the weak force is not weaker because of a smaller coupling constant,
but it is only weaker due to the huge mass of the gauge bosons. Actually it is not possible to
assign a mass to gauge bosons in a quantum field theory. In order to be able to assign a mass
to the W± and Z0, currently the Higgs mechanism is used. One introduces a scalar Higgs field
doublet, which breaks since a phase transition in the early universe the electro-weak symmetry
spontaneously by obtaining a non-zero vacuum expectation value. It is broken such that it gives
a mass to the three W± and Z0 bosons, while the remaining degree of freedom is the physical
Higgs particle which is not discovered yet. This Higgs field also couples to the fermions through
the Yukawa coupling and gives them a mass. The stronger this coupling is, the higher is the
mass of the fermion.

By measuring the decay rates of pions, kaons, muons, it was found that kaon decay rates are four
times lower. This fact could be explained by Cabibbo in 1963 [Cab63]. He introduced a mixing
angle, the Cabibbo angle, which rotates the up quark with respect to the down type quarks u, s.
By choosing the right angle, one could explain the suppression of the kaon decays.

Another unexplainable observation was the lack of flavor changing neutral currents that is to
say transitions from a strange quark to a down quark. This could be explained by the work
of Glashow, Iliopoulos and Maiani [Gla+70] in 1970. By postulating a fourth quark in the
second quark family, these flavor changing neutral currents are highly suppressed because of
cancellations. While it was known that the weak interaction violates parity, it was thought that

Figure 2.3. Pictorial description of quark weak interactions. The color of the lines between the
quarks (u, c, t, d, s, b) indicates the strength of the weak coupling between these
flavors. I.e. they represent the magnitudes of the components of the CKM matrix.
The CKM matrix values were obtained from [Nak+10].

the combined CP is conserved. But then surprisingly, in 1964, James Cronin and Val Fitch
discovered a clear CP violation in the neutral kaon system. There were several attempts to solve
this problem, but only one was proven to be right many years later. In 1973 Makoto Kobayashi
and Toshihide Maskawa pointed out [Kob+73], if one extends the Standard Model by a third
quark generation, the resulting unitary 3× 3 mixing matrix has a non-vanishing imaginary part
which can give rise to CP violation. Their theory not noticed till the discovery of the b quark
(and therefore the third family), was finally confirmed with the discovery of CP violation in the
neutral B meson system by Belle [Abe+01] and BaBar [Aub+01] in 2001, which was amazingly

10



2.2. Forces of the Standard Model

accurately predicted by this theory. This complex CKM matrix [Nak+10] is unitary

⎡
⎣|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎤
⎦ =

⎡
⎣0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016

−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

⎤
⎦ ,

which gives additional constraints for the measured values of the matrix elements. These con-
straints can be visualized in the complex plane where the matrix is parametrized in the Wolfen-

stein parametrization

⎡
⎣ 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎤
⎦ ,

which is shown in figure 2.4. If the Standard Model is correct, all constraints must be fulfilled
that is the triangle in figure 2.4 must be closed exactly. To verify this or to find significant
deviations is one of the mayor fields of B-physics. The so-called e+e− B-factories PEP-II in the
USA and KEKB in Japan were mainly built to investigate this field. Furthermore there is LHCb
at the LHC and the plans for an upgrade of the Belle experiment to the Belle II experiment with
the ambitious goal to accumulate fifty times the data of the predecessor experiment.

2.2.2. The Strong Force

In order to explain the bindings of protons and neutrons in the nucleus, Yukawa formulated
his theory of the exchange of massive particles (pions) which results in an attractive potential,
analogous to the van der Waals forces between neutral atoms. Later with the discovery of the
quarks, it was a severe problem to interpret the Δ++ resonance as a baryon, containing three up-
quarks with parallel spins as it violates the Pauli principle. This problem was (once again) solved
independently in 1965 by Moo-Young Han with Yoichiro Nambu and Oscar W. Greenberg. By
introducing a new SU(3) gauge symmetry, the quarks gain enough degrees of freedom in order
to not violate the Pauli principle any more. At the same time this new symmetry gives rise
to a new force, carried by new gauge particles. From formal considerations, there have to be
eight of these particles, the gluons. The properties of this interaction is described by quantum
chromodynamics in dependence on the three charges, referred to as colors.

The main difference to the other forces is that the gluons are carrying color charge and therefore
are interacting with themselves. This gives rise to some unusual properties of the strong force.
In the electro-magnetic force, the virtual photons around a charge can produce e+e− pairs which
are attracted or repelled depending on the sign of the charge. This results in a screening of the
charge, that is, the coupling seems to be stronger with smaller distances. In the strong force, this
effect is turned around into an anti-screening effect due to the self coupling of the gluons. The
coupling becomes weaker with smaller distances. This effect is called the asymptotic freedom
and was discovered by Frank Wilczek [Gro+73].

The other unusual effect is the linear increase of the strong potential with large distances. This
implies that, with increasing distance of two color charges, the energy in the field rises until
the energy is sufficient to create a quark anti-quark pair out of the vacuum. This is the reason
why we cannot observe free color charges in nature and also the reason for the typical jet-like
structure in high energy collisions, called the hadronization.

11



2. The Standard Model of Particle Physics
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2.3. Beyond the Standard Model

2.3. Beyond the Standard Model

There are several arguments why the Standard Model cannot be the correct description of the
nature even as it describes all current observations.

• Baryon anti-baryon asymmetry
Our universe consists of matter and not of anti-matter. The Standard Model cannot
describe this impressive discrepancy.

• Hierarchy problem
The weak force is 1032 times stronger than gravity. Expressed in other words, the Higgs
boson is way too light compared to theory expectation. This discrepancy has to be “fine-
tuned” in the calculations of quantum corrections and is therefore a weak point of the
Standard Model.

• Massive neutrinos
The fact that neutrinos can oscillate implies that they have a non-zero mass. Even if this
could be added to the Standard Model, a satisfactory explanation for the mass is still
unknown.

• Dark matter
We know from rotation curves of galaxies that there has to be much more invisible dark
matter in the universe than we can explain. The Standard Model has no satisfactory
explanation for the origin of the dark matter.

• Energy scale
Some interactions are diverging for energies much higher than we can currently observe. It
is therefore obvious that there needs to be something beyond the Standard Model which
canceles these divergencies.

There are of course plenty of theories going beyond the Standard Model. One of the most
seriously discussed is supersymmetry (SUSY). In this theory each elementary fermion has a
bosonic supersymmetric partner and each boson has a fermionic supersymmetric partner as
shown in figure 2.5. As there were not found any of these supersymmetric partners yet, they

Figure 2.5. The particles of the supersymmetric theory.

have to be extremely heavy. Therefore this symmetry between fermions and bosons needs to be
broken. Quite a lot of the arguments above can be naturally explained by this theory. Just as
an example, in order to keep the proton stable one has to introduce the R-parity which needs to
be conserved. This immediately gives rise to a lightest stable supersymmetric particle which is
then a natural candidate for dark matter.

13
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2.4. Rare B Decays

So-called rare B-decays are a powerful probe for physics beyond the Standard Model. One
can either try to produce new, heavier particles in highest energy experiments, or one exploits
the fact that heavy particles can emerge as virtual particles in decay amplitudes. As they are
much heavier than other known particles, their contribution will be in general unmeasurable tiny
compared to the Standard Model process.
But there are decays in the Standard Model which are heavily suppressed or even completely
forbidden. A prominent example of such decays are flavor changing neutral currents (FCNC).
They are extremely suppressed in the Standard Model because they can only decay via so-called
penguin diagrams as shown in figure 2.6, a flavor changing neutral current decay of a b quark.
While this process is suppressed in the Standard Model it could be allowed in physics beyond

Figure 2.6. An example of a penguin diagram. It shows a flavor changing neutral current decay
of a b quark.

the Standard Model. Not withstanding the high-mass suppression, it could be compatible or
even larger than the Standard Model process. The relative discrepancy where experiments are
sensitive to, is therefore possibly large. Some decays of the shown transition will be analyzed in
part V. These are the decays B → K(∗)νν̄ which are very well suited for probing new physics
models, as discussed in part V.
The importance of these rare decays is the major motivation for the upgrade of the Belle ex-
periment to the Belle II experiment with the goal of increasing the luminosity by a factor of
50.
The improvement of the full reconstruction algorithm explained in part IV is a huge step forward
towards the exciting sensitivity frontier of probing physics beyond the Standard Model.
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3. Parameter Estimation

One fundamental task of statistical inference is the estimation of parameters. These parameters
are not measured directly, but only through the data, distributed according to the probability
density function defined by the true parameters. The more accurate the underlying probability
density function can be estimated, the more accurate the true parameters are known. This
chapter is about parameter estimation in counting experiments.

3.1. Counting Experiments

In particle physics, one often has to deal with counting experiments. This means that one counts
the occurrence of statistically independent events in a given time interval. Such a process can be
described as a Bernoulli-process. A Bernoulli-process is a chain of independent discrete trials,
each with two possible outcomes, success and no success, with a fixed probability p. After n
trials, the total count of successes k = 0, . . . , n is described by the binomial distribution:

P (r) =

(
n

k

)
pkqn−k . (3.1)

Mostly, in physical experiments we do not have discrete trials, but infinitesimal small time
intervals in which an event occurs or not with a very small probability p. In that case, the
binomial distribution converges to the Poisson distribution:

Pλ(k) =
λk

k!
e−λ , (3.2)

where λ is a parameter which describes the mean and the variance of the Poisson distribution
at the same time. The distributions for three different parameters λ are shown in figure 3.1.
Often, in physics experiments we are interested in the unknown amount of signal events NS and
in addition we have a certain amount of expected background events NB . What we can observe
is only the sum of both

NO = NS +NB , (3.3)

where NO is the observed number of events. Those two types of events are independent of each
other and therefore NO is distributed as the sum of two Poisson distributions with the parameters
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Figure 3.1. The Poisson distribution for three different parameters λ.

λS and λB . As

P (NO = NS +NB) =

NO∑
k=0

P (NS = k)P (NB = NO − k) (3.4)

=

NO∑
k=0

λkS
k!

e−λS
λNO−k
B

(NO − k)!
e−λB (3.5)

=
1

NO!
e−(λS+λB)

NO∑
k=0

(
NO

k

)
λkS λ

NO−k
B =

(λS + λB)
NO

NO!
e−(λS+λB) (3.6)

shows, the sum of two Poisson distributions is once again a Poisson distribution with λO =
λS + λB . The expectation for the background λB must be known, either from Monte Carlo
simulations, or from data sidebands. Therefore, as we can treat λB as constant, we can estimate
λS by maximizing the likelihood function

L(NO|λS) =
(λS + λB)

NO

NO!
e−(λS+λB) , (3.7)

as we have typically only one measurement. Our best estimator λ̂S is then just

λ̂S = NO − λB . (3.8)

The main issue is now to find the correct uncertainty of this point estimation. For this we
first have to discuss what uncertainty denotes. There are two possible approaches to define
uncertainty, one from frequentist statistics and one from Bayesian statistics.
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3.1. Counting Experiments

3.1.1. Frequentist Approach

In frequentist statistics, the parameters which have to be estimated are unknown, but they have
fixed values. It is not possible to treat them as random variables. Therefore, it is not possible
to assign probabilities to these parameters. If we define an arbitrary interval [s1, s2] in one
parameter space, then the probability is either 0 (the true parameter lies outside this interval),
or 1 (the true parameter lies inside the interval). The only valid interpretation is, if we repeat that
experiment over and over again, we can give a frequentist probability of how often that interval
included the true parameter. For a frequentist definition of uncertainty we need to define such
an interval with appropriate features. It makes sense to define such an interval in a way that
the probability that the constructed interval contains the true value, is given by a certain level
1 − α. If this interval is determined with the Neyman construction (see e.g [Ney37; Nak+10]),
it is called a confidence interval with the confidence level 1 − α. With the probability density
function f(N |λS) we can find a set of [N1(λS , α), N2(λS , α)] for each λS and a pre-defined α
such that

P (N1 < N < N2, λS) = 1− α =

∫ N2

N1

f(N |λS)dN . (3.9)

This is illustrated in figure 3.2. The intervals [N1, N2] (denoted in the figure as [X1, X2]) are
illustrated as horizontal lines for each λS (denoted as Θ) in figure 3.2. The set of all parameter
intervals is called the confidence belt. For a given observation NO (X in the figure) the confidence
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Figure 3.2. Illustration of the Neyman construction (from [Nak+10]).

interval is defined as the set of all parameters whose horizontal intervals intercept the vertical
line of this measurement. This set of parameters needs not to be at a stretch because it is only
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3. Parameter Estimation

defined as the intersection with the confident belt which can be bent. Its boundaries are the
parameters λ1(NO) and λ2(NO). If the experiment would be repeated a large number of times,
the interval [λ1(NO), λ2(NO)] would vary, covering the fixed value λtrue in a fraction 1−α of the
experiments. This is called coverage and is fulfilled for intervals determined with the Neyman
construction. The coverage condition in eq. 3.9 does not determine the N1 and N2 completely,
but only the enclosed probability. In [Ney37] it is suggested to take a central interval with α/2
probability on each side or for an upper (lower) limit, take N2 =∞ (N1 = −∞).

Feldman-Cousins Method

As reported in [Fel+98] there is a problem with the coverage in the changeover from calculating
a central interval instead of a previously planned limit after observing the data (”flip-flopping”).
Feldman and Cousins introduced a different ordering principle to choose the interval [N1, N2]
in equation 3.9. This is illustrated with a counting experiment in the presence of background
described by the likelihood function equation 3.7. For each possible true parameter λS and each
possible experimental result N we can calculate the likelihood ratio:

R =
f(N |λS)

f(N |λ̂S)
, (3.10)

where f(N |λS) is the likelihood of that measurement given the true parameter λS and f(N |λ̂S)

the likelihood of that measurement given the parameter with the highest likelihood λ̂S . Each
possible experimental result is then ranked according to this ratio and added to the acceptance
region until the probability of the entire acceptance region supersedes the desired confidence
level. This is shown in table 3.1 for λB = 3 and one parameter λS = 0.5. This calculation has to

Table 3.1. Illustrative calculation of the acceptance region for λS = 0.5 and known background
λB = 3. The measurement with an entry in the rank column are added to the
acceptance region.

N f(N |λS) λ̂S f(N |λ̂S) R rank
0 0.03 0 0.05 0.607 6
1 0.106 0 0.149 0.708 5
2 0.185 0 0.224 0.826 3
3 0.216 0 0.224 0.963 2
4 0.189 1 0.195 0.966 1
5 0.132 2 0.175 0.753 4
6 0.077 3 0.161 0.48 7
7 0.039 4 0.149 0.259
8 0.017 5 0.14 0.121
9 0.007 6 0.132 0.05

10 0.002 7 0.125 0.018
11 0.001 8 0.119 0.006

be repeated for a sufficient number of λS to reach the desired granularity. The confidence region
is then defined as the set of all λS where the observed value NO was in the acceptance region. A
confidence belt constructed with the Feldman-Cousins method for this example can be seen in
figure 3.3.

18



3.1. Counting Experiments

Figure 3.3. Confidence belt based on the Feldman-Cousins ordering principle, for 90% C.L. con-
fidence intervals for unknown Poisson signal mean λS in the presence of a Poisson
background with known mean λB = 3 (from [Fel+98]).
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Profile Likelihood Method

This method can be generally used in the presence of nuisance parameters in the likelihood
function. The main idea is to divide the parameters in two groups, the the parameter-of-interest
(POI) �λ and the nuisance parameters �ω. Now we can fix �λ and reduce the likelihood L(�x|�λ, �ω)

to L(�x|�ω) and maximize it. Now we repeat this for all values of �λ. Our best estimate and an
estimation of the confidence interval can be deduced by the maximal likelihood function values
with respect to �ω in dependence of �λ. Hence, we have profiled out the nuisance parameters �ω.
But this method also meets with criticism as it is only an approximation and theoretically not
well funded (see e.g. [Mon+09]).

3.1.2. Bayesian Approach

As described above, in the frequentist approach, the true parameters are unknown, but fixed.
The parameters therefore cannot be treated as random variables. In contrast, in the Bayesian
approach the parameters are treated as random variables. Therefore it is possible to calculate
the posterior density function for the parameters with the Bayes Theorem:

fΘ(θ | X) = constant · fΘ(θ)L(X | θ), (3.11)

where L(X | θ) is the likelihood function, fΘ(θ) is the prior distribution of the parameters and
constant is a normalization constant that ensures that the posterior distribution fΘ(θ | X) is
a proper probability distribution. This is the conditional probability density of the parameters
given this measurement X. It is not necessary to calculate a p-value or construct a confidence
interval with the Neyman construction or the Feldman-Cousins method. One can either give the
whole probability density function as a result, or the median, the mean, or any arbitrary quantile,
known as Bayesian credibility interval. It is important to note that this credibility interval is not
the same as the frequentist confidence interval. In contrast to the frequentist confidence interval,
the Bayesian credibility interval can be interpreted as the probability that the true parameter
lies inside this interval.

But there are two major problems of the Bayesian approach. The first one is that one needs a
prior distribution to calculate the posterior density. That prior changes in general the result of
the measurement. Sometimes one can use already existing measurements as a prior, but then it
is not possible to average both measurements anymore. Another possibility is to put objective
information, like physical boundaries into the prior distribution. But in general one would avoid
to bias the result in any way. For this, one needs an uninformative prior, which is not always a
uniform prior. There are many approaches to construct such a prior. For example the Jeffreys
prior [Jef46], which is invariant under re-parameterization and constructed as the square root of
the determinant of the Fisher information:

p(θ) ∝
√
I(θ) =

√√√√E

[(
∂

∂θ
ln f(X; θ)

)2
∣∣∣∣∣ θ
]
. (3.12)

As an example, the Jeffreys prior for the rate parameter λ of a Poisson distribution

f(n|λ) = e−λλ
n

n!
, (3.13)
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is

p(λ) ∝
√
I(λ) =

√√√√E

[(
d

dλ
ln f(x|λ)

)2
]
=

√√√√E

[(
n− λ

λ

)2
]

(3.14)

=

√√√√+∞∑
n=0

f(n|λ)

(
n− λ

λ

)2

=

√
1

λ
. (3.15)

The second major problem is that in general one is interested in one parameter, called the
parameter-of-interest (POI) but the likelihood and the prior may depend on many more param-
eters, the so called nuisance parameters, for example background shape parameters. In order to
obtain the posterior distribution of the POI, one needs to get rid of the nuisance parameters.
Therefore one has to integrate

fΘ(θ)L(X | θ), (3.16)

over all nuisance parameters, which might be impossible analytically, depending on the actual
prior and likelihood function.

3.1.3. Markov-Chain Monte Carlo Method

In the last ten years, the Markov-chain Monte Carlo method (MCMC) has received an increasing
popularity due to increasing computational power. Instead of integrating the Bayesian posterior
distribution, one creates a Monte Carlo sample, distributed according to the posterior probability
density function (PDF). Getting the distribution of the POI is then called marginalization, which
just means to take the projection of the POI of the posterior Monte Carlo sample. The MCMC
method is just a very efficient way to produce the Monte Carlo sample according to an arbitrary
distribution of prior times likelihood. The main idea behind this algorithm is to do not produce
independent random numbers, but produce random numbers, depending on the last random
number according to special rules. Therefore one gets a random walk through the PDF, where
the special rules ensure that the resulting sample is distributed according to the posterior PDF.
One of such MCMC algorithms is the Metropolis-Hastings algorithm [HAS70].

3.1.4. Limit Estimation with Systematic Uncertainties

In order to estimate an upper limit on a branching fraction

B =
Nsignal

N
, (3.17)

where the normalization N = NBB̄ · εsig and the estimated number of signal events Nsignal =
Nobs − Nb is needed. NBB̄ denotes the number of all produced events and εsig the signal
efficiency. Nobs, Nb are the number of observed events and the number of expected background
events, respectively. The limit on the branching fraction B is estimated by taking as Nsignal the
upper limit of the parameter estimated using the methods explained above.
In order to take systematic uncertainties on the background estimation and on the signal efficiency
into account, these parameters fitted with gaussian constraints corresponding to the estimated
systematic uncertainty (see e.g. [Con+03]). All the methods explained above are able to take
such systematic uncertainties as gaussian constraints into the limit estimation into account.
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4. Multivariate Analysis Algorithms

This chapter is about so-called multivariate analysis algorithms. With the huge increase of
computational power in the last decandes, these algorithms received a growing popularity as
they are in general computationally intensive. Out of the many algorithms, this chapter will
highlight neural networks, in particular the multivariate analysis package NeuroBayes.

4.1. Introduction

A wide and important field in statistical data analysis is classification. The common goal is to
separate two or more types of events by analyzing the distributions of their observables. If there
are many observables one refers to this methods as multivariate analysis algorithms. In general,
these algorithms project a N-dimensional vector of variables

�x =

⎡
⎢⎢⎢⎣
x1
x2
...
xN

⎤
⎥⎥⎥⎦ (4.1)

into a single scalar variable o ⎡
⎢⎢⎢⎣
x1
x2
...
xN

⎤
⎥⎥⎥⎦→ o . (4.2)

As an analogy we can think of a movie where several quantities like the actors performance, the
complexity of the story and so on should be projected into a single rating from 1 to 10. The
human brain is able to make such a projection. Therefore it is a natural approach to try to adopt
the biological mechanism into a mathematical algorithm.

4.2. Artificial Neural Networks

The mathematical description of the mechanisms in the human brain is called artificial neural
network. By the works of Warren McCulloch, Walter Pitts and Donald O. Hebb the fundamentals
of these artificial neural networks are known. As shown in figure 4.1b the neurons are connected
with many other neurons and, depending on the input gives one output to another neuron.
Training such a neural network means to adjust the weights of the connections between the
neurons. A special kind are the so-called feed-forward neural networks as shown in figure 4.1a.
The information in such feed forward neural network flows only in one direction, any kind of
loop is not allowed. For this special kind of a neural network structure it was possible to find an
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(a) Structure of an artificial
feed forward neural net-
work. (b) Structure of an artificial neuron.

Figure 4.1.

algorithm called back-propagation [Rum+86] which can be used to adjust the weights such that
a error function E, for example

E =
1

2

n∑
i=1

(ti − oi)
2

is minimized, where ti is the target of event i and oi the output of the network. It could be
shown [Ruc+90] that as this error function is in its minimum with respect to the weights the
output oi is a real probability. This is a very important feature and plays a very important role
in the new full reconstruction approach, explained in part IV.

4.3. Preprocessing in NeuroBayes

The NeuroBayes package is a multivariate analysis tool utilizing amongst other algorithms a
feed-forward neural network. This neural network is embedded in a collection of pre- and post-
processing algorithms.
The training of neural networks depends on various calculations including critical operations like
computing ratios from potential very small numbers. Therefore, in NeuroBayes [Fei+06] the
input variables are preprocessed such that numerical instabilities are minimized.

• Flatten the distribution
The distribution of each input variable is flattened by a transformation using the cumulative
distribution as shown in figure 4.2a.

• Tranform into purity
In the flattened distribution, in each bin the purity is estimated. A spline function is fitted
to these purity values. Each bin is then transformed into the corresponding purity using
this spline function. This regularizes the distribution and helps to get rid of statistical
fluctuations. Moreover, the values are already sorted by their purity.

• Transformation to the normal distribution
The flattened distribution is then transformed into a normal distribution using the cumu-
lative Gauss distribution.
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• De-correlation
As there are only normal distributions in all dimensions left, one can rotate them such that
all variables are de-correlated from each other as shown for two dimensions in figure 4.2b.

• Rotating into target
As now all variables are linearily independent of each other, one can rotate the variables
such that the whole information about the target variable is left in one variable. Only the
deviation from this simple monotonous ansatz needs to be learned by the neural network.

After applying all the preprocessing procedures, the training is extremely robust and finds in
most of the cases the optimum quite fast and reliable.
To be sure that the NeuroBayes output can be interpreted as a proper Bayesian probability, it
is possible to transform the output such that it is by construction interpretable as a Bayesian
probability.
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(a) Any distribution can be transformed into a flat distribution us-
ing the cumulative distribution.

(b) By scaling and rotating the variables into new variables, any
linear correlation can be removed.

Figure 4.2. Transformations of input variables used in the NeuroBayes preprocessing.
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The Experimental Setup
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5. The Belle Experiment

The next two chapters are about the experimental setup of the Belle experiment. There is
the KEKB accelerator and the multipurpose Belle detector situated in the high energy research
facility KEK in Tsukuba, Japan. The Belle experiment has stopped data acquisition in June
2010 and is now being upgraded to the high luminosity Belle II experiment.

5.1. The KEKB Accelerator

The KEKB accelerator [Kur+03] is a two-ring, asymmetric-energy, e+e− collider with one inter-
action point (IP) where 8GeV e− are colliding with 3.5GeV e+ resulting in 10.58GeV center-
of-mass energy, corresponding to the Υ(4S) resonance with a Lorentz boost factor of 0.425. It
utilizes the tunnel of the predecessor 30GeV e+e− accelerator TRISTAN with a circumference
of 3016m. A panoramic view of the accelerator and a drawing is shown in figure 5.1. The KEKB

(a) (b)

Figure 5.1. The KEKB accelerator as a drawing and a panoramic view.

accelerator currently holds two world records in the luminosity, a measure of number of collisions
per time and beam size. First, the peak luminosity of

L = 21.083 · 1033
1

cm2 · s
= 21.083

1

nb · s

and second, the world‘s largest integrated luminosity of∫
L = 1040 · 1039

1

cm2
= 1040

1

fb
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This high luminosity was achieved, amongst other things, by a small 22mrad opening angle
instead of head on collisions of the e+e− bunches. Later on, a new technique was introduced,
called crab cavities, where the e+e− bunches are rotated shortly before the collision in order to
hit head on once again. The design peak luminosity was excelled by a factor of 2.

5.2. The Belle Detector

The Belle detector [Aba+02] is situated in the high energy research facility KEK in Tsukuba,
Japan, using the KEKB accelerator described in chapter 5.1. It is a multi purpose detector which
encloses the interaction point (IP) in all directions with several different detector components
arranged like onion scales around the IP. Its purpose is to detect the visible final state decay
products of the particles, produced in the e+e− collisions. Figure 5.2a shows a perspective
view of the detector, whereas figure 5.2b shows a side-view along the beam-pipe of the detector.
One can see that the detector is slightly asymmetric which reflects the resulting boost of the
center-of-mass system due to the asymmetric beam energies.
In the following, the detector components are explained in more detail, starting from the inner-
most part to the outermost.

• Silicon Vertex Detector
The silicon vertex detector (SVD) is the innermost detector component. It is a silicon strip
detector with four layers around the beam-pipe. Its purpose is to precisely measure the
origin of charged tracks and therefore finding decay vertices of the decaying particles. The
silicon detector in the first period (called SVD1) covered a polar angle of 23◦ < Θ < 139◦

with three layers. During an update (called SVD2), the SVD was replaced by a stip detector
with four layers, increasing the coverage to 17◦ < Θ < 150◦.

• Central Drift Chamber
The central drift chamber (CDC) is a cylindrical volume with 8400 wires distributed in 50
layers, starting with a radius of 103mm and ending with a radius of 874mm. It covers a
polar angle of 17◦ < Θ < 150◦. Its main purpose is to measure precisely the momentum
of charged tracks. For this a homogeneous magnetic field of 1.5T is created by a super-
conducting solenoid coil. Depending on the momentum of the particles, they follow circular
paths. The larger the momentum is, the larger the radius of these paths are. The volume
is filled with gas which is ionized by the charged particles and the emitted electrons are
detected by the wires, measuring the amount of emitted electrons and their drift time. With
this information, pattern recognition algorithms try to find CDC hits belonging to one track
and the track fit algorithms are fitting the momentum. The amount of emitted electrons is
a measure of the energy loss dE/dx which is an important quantity to distinguish different
particle types. The measured tracks are visualized in figure 5.3.

• Aerogel Cerenkov Counter
The aerogel Cerenkov counter (ACC) is a Cerenkov light threshold counter. When charged
particles traveling through matter with a higher velocity as the speed of light in that
medium, they emit light in cones around the flight directions, with the opening angle
proportional to the mass of the particle. Therefore, we can use this information for particle
identification of high momentum charged particles as the particles need to have more than
speed of light in the medium. The diffraction index is chosen such that pions are above
the speed of light and other particles with the same momentum below this threshold.

• Time-of-Flight Detector
The time-of-flight detector (TOF) measures the flight time of the particles. Together with
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(a) A perspective view of the Belle detector.

(b) The Belle detector from a side view.

Figure 5.2. The Belle detector
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the momentum measured in the CDC we can therefore infer the mass of the particle.
Therefore, we can use this information for particle identification of low momentum charged
particles as the timing measurement has a too large error for very fast particles.

• Electro-Magnetic Calorimeter
The electro-magnetic calorimeter (ECL) is composed of 8736 Thallium doped Cesium iodide
(CsI(Tl)) scintillator crystals with silicon photo diode readout. It covers a polar angle of
17◦ < Θ < 150◦. There are additional calorimeters in the extreme forward and backward
directions (EFC), covering the polar angles 6.4◦ < Θ < 11.5◦ and 163.3◦ < Θ < 171.2◦.
The ECL is shown in figure 5.3. The scintillating material gets excited while electrons
are passing through. The intensity of the emitted visible light during the de-excitation is
proportional to the energy of the charged particle. As we mainly want to measure photons,
they first have to shower up, mainly due to pair production inside the crystals. As the
crystal have a total length of 16 times the radiation length, most of the energy of the
photons are contained and measured in the crystals.

• KL and Muon Detector
The KL and muon detector (KLM) is an instrumented iron flux return for the magnetic
field. It consists of iron plates, interlaced with glass resistive plate counters, detecting
charged particles local discharges of the plates. Its main purpose is to detect KL and
muons. As KL particles are neutral, the ECL is only 0.8 times the radiation length, while
the iron KLM compares to 3.9 times the radiation length. As there are huge fluctuations,
the energy of the KL can not be reliable estimated, but only the direction. Muons with
an energy above 600MeV are able to reach the KLM and are identified by their unique
signature in the KLM and ECL and with a charged track in the CDC pointing to the KLM
cluster.
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(a) View of the x-y plane

(b) View of the y-z plane

Figure 5.3. A typical event recored by the Belle detector. You can see the charged tracks in the
CDC and the clusters in the ECL.
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6. Particle Identification

For most of the analyses performed with the Belle detector, a good identification of final state
particles is very important. Most important is the separation between kaons and pions. For this
purpose, three detector components contribute with independent measurements to the particle
identification. As already mentioned, the CDC measures the specific dE/dx of a charged track,
the ACC the specific Cerenkov light emission and the TOF the specific time-of-flight. The specific
energy loss dE/dx for different charged particles is shown in figure 6.1a.
The independent measurements are then combined into a likelihood ratio between the hypothesis
of being a kaon track or a pion track. The separation power of this likelihood ratio is shown in
figure 6.1b. This particle identification (PID) is described in detail in [Aba+02].

(a) Energy loss dE/dx for different particle
types.
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Figure 6.1.
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Part IV.

The Full Reconstruction Method
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7. Introduction

In this part a unique analysis tool, the full reconstruction method, is presented. The major
difficulty in this method is the huge number of combinations. It is therefore crucial to reduce
the number of combinations to satisfy the limitations due to computational resources. In order
to reduce the number of combinations by several orders of magnitude, the multivariate analysis
algorithm NeuroBayes is used. Probabilities are estimated using NeuroBayes in a hierarchical
structure. It is possible to postpone the decisions whether a combination is used, in higher stages
in this hierarchy which maximizes the efficiency while the complexity can be chosen freely to
satisfy the computational limitations.

7.1. Overview

One common feature of e+e− colliders compared to hadron colliders is the well known initial
state of the reaction. The entire e+e− center-of-mass energy is carried away by the reaction
products, in contrast to hadron colliders, where only an unknown part of the center-of-mass
energy is available for the hard reaction. In e+e− colliders it is therefore possible to choose a
well known initial state. In B-factories such as the Belle experiment, the e+e− center-of-mass
energy is chosen such that the Υ(4S) resonance will be produced in roughly every fifth event.
In the rest of the events with hadronic final states, continuum events e+e− → qq̄(q = u, d, s, c)
are produced. The Υ(4S) resonance lies just above the kinematical threshold of producing a
BB̄ pair and is therefore able to decay into a BB̄ pair. All other decay channels are highly
suppressed by the OZI-rule and so, the Υ(4S) resonance decays into a BB̄ pair in over 96% of
the cases. An overview of the total cross-section of e+e− into hadrons in the Υ(4S) region and
a schematic illustration of the continuum and BB̄ events is shown in figure 7.1.
Due to the close-by threshold, it is obvious that, if there was an Υ(4S) resonance produced,
it always decays in exactly a BB̄ pair and nothing else. This gives a unique constraint on the
reconstruction of the entire event. Everything in the detector has its origin in the two B mesons
in the event.
Employing momentum and energy conservation we even do not have to detect all final state
particles. The known initial state gives us the opportunity to measure many decay channels
which otherwise would be inaccessible. The most prominent example is the decay

B0 → νν̄

which clearly is not possible to measure by reconstructing the final state particles, because both
neutrinos cannot be detected. Nevertheless, it is possible to measure at least the branching ratio
of this decay with the special setting mentioned above. If we fully reconstruct one B meson in one
event completely correctly, we know that there is exactly one other B meson in this event. None
of the final state particles used for this B meson does originate from the other B. Moreover, due
to the fact that the detector encloses the interaction point nearly hermetically, we know that all
remaining final state particles detected in this event must stem from the other B meson. In the
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7. Introduction

Figure 7.1. The e+e− to hadrons cross section in the Υ(1S) - Υ(4S) region. The orange
dashed line marks the kinematic threshold for the production of a BB̄ pair.
(source: [Bes+93])

example above we can measure the branching ratio by counting all events, in which we found a
fully reconstructed B meson but nothing else. In the following, the fully reconstructed B meson
is called the tag-side BTag and the remaining B meson is called the signal-side BSig candidate.
An illustration of this can be seen in figure 7.2. The aim of the full reconstruction tool is to

Figure 7.2. An illustration of the tag-side (purple) and an exemplary B → τν decay as the
signal-side (green).

reconstruct the BTag candidate. How this can be done will be explained in the following sections.
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8. Functional Requirements

8.1. Reconstruction

What the detector can measure are only tracks, caused by long-lived charged particles (π±, K±,
e±, μ±, p±) and clusters in the calorimeter, caused by photons and neutral hadrons (and also
charged particles). All other particles have to be reconstructed from these decay products. A
visualization of two events simulated by the Belle detector simulation are shown in figure 8.3.
The full reconstruction tool should be able to reconstruct, what happened on the tag-side. The
signal-side is a decay of B+ → K+νν̄ (see part V) in both events. The BTag was simulated
in the decay chain shown in figure 8.1 for the event shown in figure 8.3b and the decay chain
shown in figure 8.2 for the event shown in figure 8.3a. Only the underlined particles in figure 8.2
and 8.3a can be found in the detector, all other particles have to be reconstructed from these
final state particles. There is no information available which measured particle corresponds to
which particle in such a decay chain. The only possibility is to try all combinations and then
check which combinations match the selection criteria. The tracks marked green in figure 8.3
are correctly matched final state particles. The combination found in figure 8.3a was correctly
reconstructed as the decay that was generated. The combination found in figure 8.3b used the
track marked in red, but this is not a final state particle generated by the simulation. Therefore
this combination is wrong.

The challenging task for the full reconstruction tool will be to sort out as many wrong combina-
tions as possible and, at the same time find as many correct combinations as possible.

B+

D0

K∗+(1680)

K+(1460)

K0
S

π+ π−

π+

π0

γ γ

π−

K∗+

K0
S

π0

γ γ

π0

γ γ

π+

K∗0

K− π+

Figure 8.1. The simulated decay chain in the event shown in figure 8.3b. Only the underlined
particles can be found in the detector.

41



8. Functional Requirements

B+

D0

K− π+

π+

Figure 8.2. The simulated decay chain in the event shown in figure 8.3a. Only the underlined
particles can be found in the detector.

(a) (b)

Figure 8.3. A visualization of two events measured by the Belle detector. The final state particles
of the BTag are marked with green color and the single track of the BSig is marked
purple. In the outermost part, calorimeter clusters can be seen which are not used
here. The event shown in the left figure was reconstructed correctly. In the event
shown in the right figure, the red marked track was falsely reconstructed.
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8.2. Efficiency Maximization

8.2. Efficiency Maximization

It is crucial to reconstruct one B meson correctly in as many events as possible. This means that
we have to maximize the efficiency

εtot =

N∑
i

εi · Bi , (8.1)

where εi is the reconstruction efficiency in the decay channel i and Bi the branching ratio of the
decay channel i. While the branching ratios are fixed by nature, we have two possibilities to
maximize this efficiency εtot:

• Increase the number of reconstructed decay channels N .

• Increase the reconstruction efficiency εi.

In principle this would be a trivial task, but there are further constraints that expand this
problem to a complicated optimization problem.
B mesons are decaying in several hundred different decay channels with very small branching
ratios each. We are restricted to those decay channels where all final state particles are detectable
by the detector. Therefore all decay channels with one or more neutrinos in the final state are
ruled out. These are all the semi-leptonic decays (see figure 8.4a), which sum up to a total
fraction of ∼ 25%. The same holds for all the decay channels of the daughter particles like
D mesons. These branching fractions are treated as reconstruction efficiencies of the B meson
decay channels in the following. The Feynman graph of the b→ c transition which can be used
for the full reconstruction is shown in figure 8.4b.

(a) Feynman graph of a semi-leptonic b → �νc
transition.

(b) Feynman graph of a hadronic b → c tran-
sition.

Figure 8.4. Feynman graphs of the dominant b→ c transition.

8.3. Adjustable Purity

The purity of the tag-side B meson reconstruction is important for several reasons. The first
reason is that the analysis of signal-side B meson might highly depend on the purity of the
tag-side B meson. But since this is not true for all analyses there is a need for the possibility to
choose a different efficiency and purity of the tag-side B meson selection for different analyses.
Another reason is that the processing time for the user depends on the number of events where
at least one B meson candidate is found. By adjusting the purity such that only in every second
event a B meson candidate is found, the processing time for the user will be halved.
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8.4. Throughput Constraint

As already explained before it would be a trivial task to increase the efficiency of the BTag

reconstruction to the detector-limited possible maximum by adding all possible decay channels.
But this maximum cannot be reached as the combinatorial complexity increases exponentially
with the number of final state particles. In contrast to a purely academic problem, we want to
use this tool for analyses. This forces us to be able to process the whole data sample recorded
by the Belle experiment together with all Monte Carlo simulated samples in a few months at the
most. As there are 3 billion data events recorded and more than 5 times of the data luminosity
is available as Monte Carlo samples we need to be able to process more than 1000 events per
second. With the trivial solution by just doing naively each possible combination, one event
takes up to several minutes of computing time. In order to reach the desired throughput, the
tool has to speed up the processing time by many orders of magnitude.
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9. The Hierarchical Approach

9.1. Exploiting the Natural Hierarchical Structure

As explained before it would not be possible to calculate all possible combinations, especially if
we want to reconstruct the BTag in decay chains with high multiplicity. But this is also desired
in order to achieve a high efficiency. Looking at the structure of an exemplary decay chain like
in figure 8.2 one immediately recognizes a hierarchical structure. Due to energy conservation,
particles can only decay into lighter particles. Together with other physical constraints like
momentum conservation or angular momentum conservation we can reconstruct the intermediate
particles in several stages up to the B mesons. This gives us the possibility to switch over from
consecutively reconstructing exclusive decay channels to the reconstruction of semi-inclusive
decay channels.
In a classical cut-based approach this would be done in the same way, but in order to keep
the combinatorial complexity under control, one needs to cut away most of the intermediate
candidates. This reduces of course the efficiency but there is another serious problem. The
acceptable amount of candidates for the intermediate particles depends on the complexity of the
decays above. As an example, the amount of combinations of the decay B → Dπππ is much
higher than for the decay B → Dπ with the same amount of D candidates. To account for
this, one is forced to consecutively reconstruct exclusive decay channels and optimize the cuts
separately.
The new hierarchical approach explicitly accounts for this. The idea is to find a way to compare all
the different intermediate candidates, regardless of their individual decay channels. We decided
to estimate posterior signal probabilities and use this probability to decide whether a candidate
is used for further combinations or not, depending on the complexity of the decay in the higher
stages. A candidate is not thrown away per se, but for some channels he is accepted, for others
he is rejected.

9.2. Estimate Posterior Probabilities

As explained before, we need the posterior probabilities for each candidate. A trivial solution
would be to just estimate the frequentist probabilities for each exclusive decay channel by count-
ing signal and background candidates in the Monte Carlo samples. Depending on the complexity
of the B decay channel one could then just require a minimum probability for the intermediate
particles.
But as explained in chapter 4 we can do much better than this simple approach. By training
a NeuroBayes neural network we can obtain the proper posterior probability for each candidate
individually. This probability is not decay channel dependent, but candidate dependent. This will
result in a huge improvement, as we are now able to also include decay channels for intermediate
particles with huge amounts of background and use only those candidates which have a high
probability.
But of course this probability is worth much more than just a cut. This information will be
passed through the complete hierarchy up to the B mesons. As this probability contains all
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the information about being signal or background, it is sufficient to pass this probability to
combinations of heavier particles. Everything below that particle is combined in this probability.
As there is in some decay channels such a vast amount of background candidates, one needs to
find a method to train NeuroBayes efficiently with such a small signal fraction. Even if there
is from a theoretical point of view not a problem, one expects to get numerical instabilities if
the signal fraction is so tiny. We found that a signal fraction below 10% might lead to not
optimal NeuroBayes trainings. One possibility would be to divide the separation procedure into
two steps. In the first step, the biggest part of the background is reduced while not learning
all details. In a second step, NeuroBayes learns the remaining differences between signal and
background candidates. This is done by applying individual weights to the training samples,
where the weights reflect the “wrongness” of the first step. This is called a boost procedure.
As it turned out, a much simpler procedure is enough for our purpose. We just artificially
increased the signal fraction by dropping background events, until the signal fraction reaches
10%. The only problem that occurs with this procedure is that the probability of being signal
or background is only valid if the signal fraction is the same in the training and in the data
sample. This is not the case any more, but we can recalculate the proper probability if we know
the signal fraction in the training sample and in the data sample.
To calculate this correction, we need Bayes’ theorem, which is defined for two types of events,
X and Y , as

P (X|Y ) =
P (Y |X)P (X)

P (Y )
. (9.1)

For our purposes, it is preferable to use Bayes’ theorem in terms of the likelihood ratio

Λ(Y |X) =
P (Y |X)

P (Y |¬X)
, (9.2)

which leads to prior odds of

O(X) =
P (X)

P (¬X)
, (9.3)

and posterior odds given by

O(X|Y ) = O(X) · Λ(Y |X) , (9.4)

In our example X and ¬X are signal events (S) and background events (B) and Y is the output
(ot) from a network trained with the training dataset (denoted with the subscript t). The
likelihood ratio is

Λ(Y |X) =
P (ot|S)

P (ot|B)
, (9.5)

where P (ot|S) is the likelihood to get a network output, ot, given a signal event S and P (ot|B)
is the same for a background event. Given a network output ot the conditional probability of
being a signal event S, is

ot = Pt(S|ot) , (9.6)

and the corresponding probability of being a background event B is given by

(1− ot) = Pt(B|ot) . (9.7)
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9.2. Estimate Posterior Probabilities

By applying Bayes theorem as follows

Pt(S|ot)

Pt(B|ot)
=
Pt(S)

Pt(B)
· Λ(ot|S) (9.8)

we can write the likelihood ratio as

Λ(ot|S) =
P (ot|S)

P (ot|B)

=
ot

1− ot
·
Pt(B)

Pt(S)
. (9.9)

This likelihood ratio does not depend on the signal to background ratio because it only contains
measured information of one given event. We now can calculate, for any other signal to back-
ground ratio in the prediction dataset (denoted with the subscript p), the posterior odds with
Bayes theorem:

Pp(S|op)

Pp(B|op)
=
Pp(S)

Pp(B)
· Λ(ot|S) . (9.10)

Because the transformed probability op has to satisfy

Pp(S|op)

Pp(B|op)
=

op
1− op

(9.11)

to be the correct probability, we get:

op =
1

1 + ( 1
ot
− 1)

Pp(B)
Pp(S)

Pt(S)
Pt(B)

. (9.12)

This formula is used in the full reconstruction algorithm to correct for the artificially increased
signal fraction and is also published [Fei+11].
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10. The Framework Structure

10.1. The DecayChannel and DigitalPhysicist Classes

As we figured out the functional requirements in chapter 8 and an idea how to solve this problem
with the hierarchical approach in chapter 9 we need to design a framework which is able to satisfy
the requirements. As there are hundreds of decay channels, the framework has to have an easy
interface to include new decay channels. For this, the DecayChannel class is created, which does
not hold information about a specific candidate, but only information which is needed do the
actual combinations. An object of a DecayChannel class represents a particle (e.g. a D± meson)
and its specific decay channel. An example of the definition of such a DecayChannel object is
shown in listing 10.1. The CERN Monte Carlo particle numbering scheme [Nak+10] is used to
identify particle types.

1 //D∗+ − > D0 Pi+
2 // p a r t i c l e type : D∗+
3 DecayChannel∗ channel = new DecayChannel (413) ;
4 // c h i l d 1 : D0
5 channel−>addChild (421) ;
6 // c h i l d 2 : Pi+
7 channel−>addChild (211) ;

Listing 10.1 An example for a DecayChannel object construction.

In this example the decay of a D∗+ meson into a D0 meson and a π+ is defined. As can be seen,
the D0 child is not further specified. That means for the combination, each candidate which was
combined to a D0 defined in a D0 DecayChannel object, no matter in which decay channel, is
combined with an object defined as a π+ which is a final state particle.
In order to keep track and collect information about all the different decay channels which should
be reconstructed, the DigitalPhysicist class is created. This class stores all the different
DecayChannel objects. It is checked that there is at least one decay channel defined for each
particle type which is used as a child. In the example above it would be automatically checked
whether there is a D0 DecayChannel object. As heavier particles only decay into lighter particles,
it is further checked that all combinations of lighter particles are done before the combination to
heavier particles.

10.2. The Particle Class

For each combination instructed by the several DecayChannel objects a Particle object is
created and filled into a corresponding particle list. This Particle holds all the information
for the individual particle candidates. For convenience, these Particle lists have overloaded
operators for the actual combinatorial loop structure. The code snippet 10.2

1 Pa r t i c l e L i s t A,B,C;
2 f i l l (A) ;
3 f i l l (B) ;
4 C = A ∗ B;

49



10. The Framework Structure

Listing 10.2 An example for a DecayChannel object construction.

fills the particle list A and B with some arbitrary Particle objects for example π+ and π−

respectively. The particle list C will then be filled with all combinations of A and B. The
actual combinations are dynamically generated using the DecayChannel instructions stored in
the DigitalPhysicist object.

10.3. The Variable Class

As we want to train NeuroBayes neural networks for each particle in each decay channel separately
it is crucial to keep track of the variables which should be used in the neural network. The general
procedure is to write out ROOT files [Bru+97], train the NeuroBayes neural network off-line on
these root files and then implement the final NeuroBayes expert into the framework. This is a
very critical point, as NeuroBayes is trained with pure float type arrays and therefore a variable
is only determined by the position in this array. In order to fill the right variable inside the full
reconstruction framework into the same position in the NeuroBayes array as in the training, one
has to look inside the code and count the positions in the array. As all variables are of the type
float, NeuroBayes will not give any warning at all if one mixes up something here, also the output
might be unsuspicious. To avoid this source of errors, the Variable class is created. This class
defines what a variable is. A variable has to have a unique name and should be able to return
a float number if given a Particle object. All the variables which are important for a specific
decay channel, like invariant mass, number of daughter particles, angles and so on are added to
the corresponding DecayChannel object.
The definition of such a class inheriting from the virtual Variable class is shown in the code
snippet 10.3 and the usage in 10.4.

1 class Var iab le {
2 public :
3 Var iab le ( std : : s t r i n g aName) : name(aName) {} ;
4 virtual f loat c a l c u l a t e ( Be l l e : : P a r t i c l e ∗ p) const = 0 ;
5 std : : s t r i n g getName ( ) const {return name ; } ;
6 protected :
7 std : : s t r i n g name ;
8 } ;
9

10 class NChildrenMCVariable : public Var iab le {
11 public :
12 NChildrenMCVariable ( ) : Var iab le ( ”nchildrenMC” ) {} ;
13 virtual f loat c a l c u l a t e ( Be l l e : : P a r t i c l e ∗ p) const ;
14 } ;
15
16 f loat NChildrenMCVariable : : c a l c u l a t e ( Be l l e : : P a r t i c l e ∗ p) const

17 {
18 f loat N Children= p . MCChildren ( ) ;
19 return N Children ;
20 }

Listing 10.3 An example for a variable class.

1 //D∗+ − > D0 Pi+
2 // p a r t i c l e type : D∗+
3 DecayChannel∗ channel = new DecayChannel (413) ;
4 // c h i l d 1 : D0
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5 channel−>addChild (421) ;
6 // c h i l d 2 : Pi+
7 channel−>addChild (211) ;
8 //Add v a r i a b l e s
9 channel−>addVariable (new NChildrenMCVariable ( ) ) ;

Listing 10.4 An example for the usage of the variable class.

10.4. The NeuroBayes Interface

As all the decay channels have a list of the variables, they can automatically create ROOT n-
tuples out of this list, with the columns named after the corresponding Variable objects. With
these automatically generated ROOT n-tuples we can then train NeuroBayes neural networks.
As the transition from the training to the expert inside the full reconstruction module is a big
source of errors, this transition needs to automatized. For this, the necessary information about
the training, that is, the variable names and their individual preprocessing is stored in a training
file. This training file is read out in the training and the variables are automatically extracted
from the ROOT files by their unique name and passed to NeuroBayes in the order defined in the
training file. When implemented in the full reconstruction module, the NeuroBayes expert once
again reads out the same training file, but instead of extracting the variables from a ROOT file,
the Variable objects with the appropriate unique name are used. This procedure completely
removes this source of errors and also makes it very convenient and fast to train and implement
new NeuroBayes networks in the full reconstruction framework.

10.5. The Four Stages

By exploring the different possible B decay channels, it turned out that a structure with four
stages as shown in figure 10.1 is sufficient to reconstruct most of the decays. A stage is defined
as a group of particles which only decays into particles of a stage below. The lowest stage are
therefore the final state particles plus K0

S and π0 as these candidates were already combined
during the data processing and stored.
As already explained in section 9.2 the probabilities of all candidates will be passed over to higher
stages. Because of that, all NeuroBayes trainings of one stage can be done in one turn as they all
depend only on lower stages. Only after implementing the experts for all particles in this stage,
the next stage can be processed and trained.

10.6. The Decay Channels

Of course, the number of decay channels we add to the full reconstruction module is virtually
not limited. But as this module is needed by many analyses in the Belle collaboration one has
to stop developing at some point and release the package as it is. This argument might sound a
little bit nonscientific but it should not. Science can of course not neglect real world’s necessities
such as time limitations.
Anyway, the channels are added one after another according to the expected gain in efficiency.
Therefore one would not expect to gain much more efficiency by adding more channels than
there are in the current version. The reconstructed modes for the stage 2 particles are listed in
table 10.1 and the ones for the stage 3 particles in table 10.2. Finally, the B decay channels are
listed in table 10.3.
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Figure 10.1. The 4 stages of the full reconstruction

There are automatically unique hash tags generated for each of the decay channels. They consist
of 6 digit numbers, where the first 3 digits represent the CERN Monte Carlo particle numbering
scheme [Nak+10] and the last 3 digits are the sum of the children particle numbers plus additional
numbers for special cases.
At first glance it might look like a manageable amount of decay channels, but note that these
are not the exclusive modes we are actually reconstructing. Counting all the branchings, there
are 1104 exclusive decay channels recontructed.

10.7. The NeuroBayes Trainings

For the trainings we used variables with a good separation power for signal and background.
The most powerful variables for the different particle types are listed in appendix 22.1.
We explicitly paid attention that the variables have similar distributions on the Monte Carlo
samples and on the data sample. This was done by NeuroBayes trainings where the Monte Carlo
samples are trained against the data samples. Variables with a high separation power between
both samples have different distributions on data and Monte Carlo and therefore are removed
from the signal to background trainings.
Moreover, to be able to estimate the efficiency of the full reconstruction tool, a fit to the resulting
distribution of the beam-constraint mass

Mbc ≡
√
E2

beam − p
2
B (10.1)

was performed where Ebeam is the beam energy and pB the momentum of the reconstructed
candidate. For this, the background must not be biased such that it looks similar to the signal
distribution. If the B meson trainings would include variables which are highly correlated to
Mbc this would be the case. Therefore, we trained networks between different windows of Mbc

and removed all variables which were found to have a good separation power between the two
Mbc windows.

52



10.7. The NeuroBayes Trainings

D0 D+

mode BR mode BR
D0 → K−π+ 3.89% D+ → K−π+π+ 9.40%
D0 → K−π+π+π− 8.09% D+ → K0

Sπ
+ 1.49%

D0 → K−π+π0 13.90% D+ → K0
Sπ

+π0 6.90%
D0 → π+π− 0.14% D+ → K−π+π+π0 6.08%
D0 → π+π−π0 1.44% D+ → K0

Sπ
+π+π− 3.10%

D0 → K0
Sπ

0 1.22% D+ → K+K−π+ 0.98%
D0 → K0

Sπ
+π− 2.94% D+ → K+K−π+π0 1.50%

D0 → K0
Sπ

+π−π0 5.40%
D0 → K+K− 0.39%
D0 → K+K−K0

S 0.47%

Ds J/ψ

mode BR mode BR
D+

s → K+K0
S 1.49% J/ψ → e−e+ 5.94%

D+
s → K+π+π− 0.69% J/ψ → μ−μ+ 5.93%

D+
s → K+K−π+ 5.50%

D+
s → K+K−π+π0 5.60%

D+
s → K+K0

Sπ
+π− 0.96%

D+
s → K−K0

Sπ
+π+ 1.64%

D+
s → K+K−π+π+π− 0.88%

D+
s → π+π+π− 1.10%

Table 10.1. Stage 2 - Reconstructed D and J/ψ modes. Branching ratios are from Ref. [Nak+10].

D∗+ D∗0

mode BR mode BR
D∗+ → D0π+ 67.70% D∗0 → D0π0 61.90%
D∗+ → D+π0 30.70% D∗0 → D0γ 38.10%

D∗s
mode BR mode BR

D+∗
s → D+

s γ 94.20%

Table 10.2. Stage 3 - all D∗ modes (BR from [Nak+10]).
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B+ B0

mode BR mode BR
B+ → D̄0π+ 0.484% B0 → D−π+ 0.268%
B+ → D̄0π+π0 1.340% B0 → D−π+π0 0.760%
B+ → D̄0π+π+π− 1.100% B0 → D−π+π+π− 0.800%
B+ → D+

s D̄
0 1.000% B0 → D̄0π0 0.026%

B+ → D̄0∗π+ 0.519% B0 → D+
s D

− 0.720%
B+ → D̄0∗π+π0 0.980% B0 → D∗−π+ 0.276%
B+ → D̄0∗π+π+π− 1.030% B0 → D∗−π+π0 1.500%
B+ → D̄0∗π+π+π−π0 1.800% B0 → D∗−π+π+π− 0.700%
B+ → D+∗

s D̄0 0.760% B0 → D∗−π+π+π−π0 1.760%
B+ → D+

s D̄
0∗ 0.820% B0 → D+∗

s D− 0.740%
B+ → D+∗

s D̄0∗ 1.710% B0 → D+
s D

∗− 0.800%
B+ → D̄0K+ 0.037% B0 → D+∗

s D∗− 1.770%
B+ → D−π+π+ 0.107% B0 → J/ψK0

S 0.087%
B+ → J/ψK+ 0.101% B0 → J/ψK+π− 0.120%
B+ → J/ψK+π+π− 0.107% B0 → J/ψK0

Sπ
+π− 0.100%

B+ → J/ψK+π0 0.047%
B+ → J/ψK0

Sπ
+ 0.094%

Table 10.3. Stage 4 - All B modes (BR from [Nak+10]).
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11. Performance Optimizations

As already mentioned, it is crucial that the throughput of the module is inside an acceptable
limit. For this we need to cut away enough combinations to match this requirement while at the
same time keep as much efficiency as possible. As we have the probabilities of all candidates, we
found that the product of the probabilities of the child particles

pprod =

Nchild∏
i

pchild i (11.1)

is a very powerful quantity to cut on, in order to reduce the number of candidates drastically
while keeping a fair amount of signal candidates. We could, of course, also cut on the probability
of the particle itself, but the advantage is that it is orders of magnitude faster calculated than
the probability obtained by NeuroBayes, as for this, all variables need to be calculated. By
cutting on the product of the probabilities of the child particles pprod beforehand, one avoids
these expensive calculations for the majority of obviously wrong combinations.
The only remaining question is, where to place the cut for all the individual decay channels as
this quantity is not comparable between different decay channels. As the purities vastly differ
in different decay channels, the criteria for the cut depends on how many right combinations
compared to how many wrong combinations drop out with a harder cut. This can be visualized as
the slope by plotting the number of remaining signal candidates against the number of remaining
background events after applying several cuts as shown in figure 11.1 exemplary for the D0

modes. The cuts are chosen such that the slope of all the lines corresponding to the different
decay channels are the same. The slopes for the different particle types are then chosen such
that the total efficiency is as high as possible while the throughput is still acceptable.
Another constraint that needs to be mentioned is the average number of events where the full
reconstruction module finds at least one B meson candidate, the so-called full reconstruction
skim efficiency. For the usage afterwards the user needs to process each event in which the full
reconstruction module found at least one candidate. By reducing the skim efficiency, the average
processing time for all analyses using this tool will be reduced by this factor.

11.1. The Best BTag Candidate Selection

As the chance to correctly reconstruct two B mesons in one event is negligible, it makes sense to
assume that there can be only one correct combination in one event. Knowing this, if we select
the correct candidate and reject all other combinations in one event, immediately reduces the
background. As we do not know which combination is the correct one, we are forced to select
the best one. For this we sort the candidates according to their probability and suggest the
candidate with the highest probability as the best candidate for the user. In some analyses, the
background level doesn’t play a role and therefore we save the five best candidates in order to
increase the efficiency for such analyses further.
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11. Performance Optimizations

Figure 11.1. The signal-background plots for the D0 cut determination. The black dots are our
cutting points and all the lines have the same slope in these points.

56



12. Suppression of non BB̄ Background

So far we only trained the networks on information about being signal or background. But the
background is divided in two subclasses. There are Υ(4S) events decaying into BB̄ pair and there
are events of the type e+e− → uū, dd̄, ss̄, cc̄ where no BB̄ pair is produced. Of course candidates
reconstructed in continuum events are also background as well as wrong combinations in the
Υ(4S) events, but the kinematics of these continuum events are completely different. Therefore
it is possible to separate to some extent between continuum events and Υ(4S) events independent
of any B meson reconstruction. This, of course, helps to further suppress the background in the
full reconstruction sample using independent information.

12.1. Topological Variables

12.1.1. Fox-Wolfram Moments

The so-called Fox-Wolfram moments [Fox+78] characterize the shape of an event. As shown
in figure 12.1, the Υ(4S) events are much more spherical than the jet-like topologies of the
continuum events. The reason for this is that the B mesons are nearly at rest due to the nearby
threshold, while the lighter mesons have a large momentum and therefore a jet-like structure.
The Fox-Wolfram moments are able to parametrize this topological structure.
In addition, there is a method called the super Fox-Wolfram moments [Lee+03] (SFWM) where
the moments for BTag side and the BSig side are calculated separately and combine them using
a fisher discriminant. As this might introduce a efficiency bias because the super Fox-Wolfram
moments explicitly depend on the signal-side signature, these moments are treated separately.

12.1.2. Thrust Angle

The thrust axis is defined as the vector where the alignment of all other tracks is maximal. The
thrust angle is the angle between the thrust axis of the BTag candidate and the thrust axis of
the rest of the event. As BB̄ events are spherical, we expect this angle to be distributed flat,
while for jet-like continuum events we expect this angle to be small.

12.1.3. Momentum Direction of the BTag candidate

The angle cosΘB is the angle between the z-axis and the momentum of the BTag candidate in
the center-of-mass system. This angle is expected to be flat for continuum events, but peaks at
zero for B mesons due to angular momentum conservation.

12.2. Continuum Suppression Module

In order to take the topological information into account, but still be able to avoid possible biases
in special analyses, a completely separated module was built which can be optionally used by the
user, depending on his analysis. There are three possible usage modes for the full reconstruction
module.
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12. Suppression of non BB̄ Background

10 cm

BELLE

(a) A typical Υ(4S) event with a spherical
topology.

10 cm

BELLE

(b) A typical continuum event with a jet-like
topology.

Figure 12.1.

1. Without any continuum suppression.

2. With continuum suppression, only depending on the BTag candidate, i.e. without the
SFWM.

3. With continuum suppression, including the SFWM.

The resulting improvements due to the additional information are discussed in chapter 13.
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13. Resulting Performance

13.1. Fits to the Mbc Distribution

We are now able to compare the efficiency of the new full reconstruction approach to the classi-
cal cut-based tool, already existing and used in the Belle collaboration (e.g. [Lee+03; Liv+08;
Che+07; Ika+06]). We can estimate the efficiency and the purity using a fit to the Mbc distribu-
tion defined in equation 10.1. The results are shown in figure 13.1. It can be seen that we have
indeed reached a much higher efficiency, even with the same purity of the classical tool. These
Mbc fits are done with the complete data sample recorded by the Belle detector. According to the
fit, we reconstructed over 2 million B0 mesons and over 3 million B+ mesons. We can perform
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(c) B+ selection with roughly equal efficiency
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(d) B0 selection with roughly equal efficiency

Figure 13.1. Mbc plots for different selections: The dashed blue line is a fit of the Mbc distribu-
tions for the new full reconstruction algorithm, the solid red line to the classical
one. The network cuts are chosen to have (a) roughly equal purity, (b) roughly
equal background level, (c), (d) roughly equal efficiency compared to the classical
one.

these fits for several different cuts on the NeuroBayes probability, resulting in a purity-efficiency
curve. In figure 13.2 the purity-efficiency curves for charged and in figure 13.3 for the neutral
B mesons are shown for the three different modes of the full reconstruction module explained in
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13. Resulting Performance

section 12.2. In addition, the single (as one cannot choose different purities in the classical tool)
purity-efficiency point for the classical tool is shown. We observe a factor of two higher efficiency
for the new method compared to the classical one. For the same efficiency, the purity rises from
25% to over 80%.

Figure 13.2. Purity-efficiency plot for B+ mesons.

13.1.1. Without New Channels

If we exclude the newly added D and B decay channels from the full reconstruction and choose
a network output cut to achieve the same background level as in the classical full reconstruction,
the efficiency is increased by approximately 50% for B0 mesons and 60% for B+ mesons. A com-
parison of the individual B decay channels revealed that the largest improvement was achieved
in modes with two or more light mesons, where the new full reconstruction does not impose any
phase-space limits. The newly added channels make a valuable contribution of approximately
20% of the entire signal sample for both B0 and B+ mesons.

13.2. Efficiency Estimation Using a Signal-Side Analysis

Up to now, we only compared the efficiency of the BTag reconstruction alone. But in the end, the
efficiency increase of a possible signal-side analysis matters. For this, we reconstruct the decay

B0 → D∗−�+ν� (13.1)

on the signal-side. A kinematic variable used to distinguish correctly reconstructed signal can-
didates from background candidates is the missing mass, defined as
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13.2. Efficiency Estimation Using a Signal-Side Analysis

Figure 13.3. Purity-efficiency plot for B0 mesons.

M2
miss = |pΥ(4S) − (

∑
i

pi + pBtag
)|2, (13.2)

where pΥ(4S) denotes the four-momentum of the Υ(4s) resonance, pBtag
is the four-momentum

of the Btag and
∑

i pi is the sum of the four-momenta of the reconstructed particles on the signal
side. Because the neutrino is the only missing particle in this decay, we expect the missing mass
to be zero for signal events. The result can be seen in figure 13.4a for the new full reconstruction
algorithm and as a comparison in figure 13.4b the result for the classical full reconstruction
algorithm. A clear peak is observed at the expected position with similar resolutions for new and
classical full reconstruction. Thus despite the addition of less clean decay modes, the momentum
resolution of the fully reconstructed B meson is preserved. As expected we also observe in this
applied example a significant increase of efficiency.
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13. Resulting Performance
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(a) B0
→ D∗− �+ ν� - new full reconstruction
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(b) B0
→ D∗− �+ ν� - classical full recon-

struction

Figure 13.4. Missing mass distributions for B0 → D∗− �+ ν� decays of the new and classical full
reconstruction tool.
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14. The ekpturbo Module

The data, recorded by the Belle detector is stored in a row-wise data structure and consists
of several petabytes. Because of the row-wise structure, it is not possible to add additional
information, like our BTag candidate, for each event. Due to the limited capacity of the storage,
it would also not be possible to copy the whole data sample including the new items. This forces
each user to rerun the full reconstruction module over and over again.
In order to avoid this expensive waste of computation time we developed the ekpturbo module
which saves the information of the found BTag candidates separately. If they are already stored for
a given event, the ekpturbo module loads it, instead of recalculating it as shown in figure 14.1.
This is completely transparent for the user, he only recognizes an order of magnitude faster
processing time.

Figure 14.1. The drafted work flow of the ekpturbo module
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15. Conclusion

We have developed an improved full reconstruction algorithm for the Belle experiment by intro-
ducing a hierarchical selection procedure. Instead of cutting away candidates at the early stages,
we postpone the decision to later stages by very soft selections on the product of their Bayesian
signal probability and giving this probability as an input for the higher stages networks. Together
with a higher separation power of the neural networks compared to a cut based selection, this
enabled us to reconstruct more decay channels with an acceptable computation time. Depending
on the analysis, we expect an overall improvement of the effective luminosity of roughly a factor
of 2 for a large number of analyses relying on the full reconstruction and could be also verified
on data using a D(∗)�ν selection on the signal side.
This remarkable improvement correspons directly to several years of data taking and therefore
saves a lot of money. Moreover, the physics results can reach a sensitivity which could otherwise
be reached only by waiting for an equivalent amount of Belle II data for several years from now
on. This is a priceless competitive advantage with respect to other experiments like LHCb.
The developed module is now part of the official Belle software package and is already used for
many analyses.
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Part V.

The Analysis B → K
(∗)

νν̄
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16. Introduction

This part describes the search for the rare B meson decays B → K(∗)νν̄ using the new probabilis-
tic full reconstruction approach explained before. Significant improvement in the limit estimation
of the branching ratios of these decays can be observed mainly due to the higher efficiency of the
full reconstruction method. Another improvement can be achieved by using NeuroBayes neural
networks for the selection.

16.1. Overview

The Standard Model gives in general the biggest contributions to tree-level decay amplitudes
and is precisely measured to be consistent with the predictions inside the uncertainties in many
analyses. However, if a process is highly suppressed in the Standard Model, there is a chance
that contributions from physics beyond Standard Model can be as large or even larger than
the contribution from the Standard Model. Therefore, deviations of the order of percent up to
orders of magnitude could be possible. That is the reason why the so-called rare decays are
so interesting. One such interesting process is the quark transition b → sνν̄. The Standard
Model processes facilitating such a transition are shown in figure 16.2. As these are higher
order processes they are highly suppressed compared to tree level processes, which is forbidden
in this case as it is a flavor changing neutral current. This quark process occurs in the decays
B+ → K+νν̄, B+ → K∗+νν̄, B0 → K0νν̄ and B0 → K∗0νν̄. The theoretical predictions for
these decays are very precise because there is only one hadron in the final state and no charged
lepton as in the b → s�+�− transition. Moreover, these decays are enhanced by a factor of
three due to the three neutrino generations, compared to b → s�+�− transition. Theoretical
predictions for the branching ratios are listed in table 16.1.

decay branching ratio cite

B → Kνν̄ < 5 · 10−5 [Buc+00]
B → K∗νν̄ 1.3 · 10−5 [Buc+00]
B+ → K+νν̄ 4.5 · 10−6 [Alt+09]
B → K∗νν̄ 6.8 · 10−6 [Alt+09]

Table 16.1. Theoretical Standard Model predictions for the b→ sνν̄ decay modes.

In models beyond the Standard Model, these decays can be enhanced by orders of magnitude.
There are models with a nonstandard Z coupling [Buc+00], fourth quark models [Bur+10] and
models with extra dimensions [Col+06] which can have significant contributions to the branching
ratios of these transitions. In non minimal flavor violating supersymmetric models, the decay can
be mediated by a light neutralino. The various models are briefly summarized in [Bev11]. Once
these decays are discovered it would be very interesting to measure the longitudinal polarization
fL as this has huge discrimination power between the various extensions of the Standard Model.
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16. Introduction

It is possible to paramtetrize the contributions with the two parameters in terms of left and right
handed Wilson coefficients, Cν

L,R via ε and η, where

ε =

√
|Cν

L|
2 + |Cν

R|
2

|Cν
L|SM

(16.1)

and

η = −
	(CLCR)√
|CL|2 + |CR|2

. (16.2)

For the Standard Model one expects ε = 1 and η = 0.

A precise measurement would give a strong constraint to these models. This can be seen in
figure 16.1 where the ε and η plane is cutted already with the current experimentsl limits. With
a potential high luminosity B-factory such as the Belle II experiment one can probe the Standard
Model expectation with a high precision. There are already measurements done by Belle, BaBar
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Figure 16.1. The constraint on ε and η expected using exclusive branching fraction and fL mea-
surements made with data sample of 75 ab−1 at a potential high luminosity B-
factory. The central two contours represent the 68% and 95% confidence level
(C.L.) constraint obtained at a potential high luminosity B-factory, while the
light (green) contour indicates the existing constraint obtained using limits on
the B → K(∗)νν̄ modes.

and Cleo and listed in table 16.2.

The obvious disadvantage of these decays is that they are rare and therefore one needs very high
statistics and efficiencies. In order to be able to detect some few signal events it is crucial to
suppress most of the background. But, as there are two undetectable neutrinos in the final state,
we cannot exclusively reconstruct these decays and therefore cannot distinguish efficiently the
signal decays from background. But with the full reconstruction method explained in part IV
and in [Fei+11] we can compensate the missing neutrinos and suppress the background by many
orders of magnitude.
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16.2. Outline of the Analysis

Decay Branching ratio Experiment Cite

B → K+νν̄ < 1.3 · 10−5 BaBar [AS+10]
< 1.4 · 10−5 Belle [Che+07]
< 2.4 · 10−4 Cleo [Bro+01]

B → K0νν̄ < 5.6 · 10−5 BaBar [AS+10]
< 1.6 · 10−4 Belle [Che+07]

B → K∗+νν̄ < 8 · 10−5 BaBar [Aub+08]
< 1.4 · 10−4 Belle [Che+07]

B → K∗0νν̄ < 1.2 · 10−4 BaBar [Aub+08]
< 3.4 · 10−4 Belle [Che+07]

Table 16.2. Current experimental results.

Figure 16.2. The Feynman diagrams for the b→ sνν̄ transition in the Standard Model.

16.2. Outline of the Analysis

The general procedure will be, to reconstruct a BTag candidate using the full reconstruction
method and then reconstruct the signal-side in the modes B+ → K+νν̄, B0 → K0

Sνν̄, B
0 →

K∗0νν̄ and B+ → K∗+νν̄. The sum of the remaining energy measured by the calorimeter EECL is
then used to estimate the number of signal events, because we expect a peak at low EECL values
for signal events. We perform a counting experiment where we count the number of events in
the signal-box EECL< 0.3MeV and estimate the number of expected background events using
Monte Carlo simulated events together with the sideband region 0.45MeV <EECL< 1.2MeV in
the data sample.
In order to avoid a bias in the selection, this analysis is performed ’blind’, i.e the signal-box in
the data sample is opened only after finishing the whole procedure and selection criteria.
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17. Candidate Reconstruction

17.1. Used Data Samples

For this analysis, the complete data sample of 702.6 fb−1 collected with the Belle experiment
on the Υ(4S) resonance is used, which corresponds to 771 · 106 ± 1.4% BB̄ pairs. Because of a
detector upgrade, the data sample is divided into two parts, called SVD1 and SVD2. In order to
take advantage of the improved detector, a better track finding algorithm is used for a complete
processing of the data, called CASE-B data sample. In this analysis, CASE-B data is used.

There are officially produced Monte Carlo samples corresponding to 5 times the amount of
recorded data (5 streams). It is called generic Monte Carlo because all the particles produced in
the e+e− collision are decayed generically with the dominating quark-level process b→ c+W or
the continuum processes e+e− → (uū, dd̄, ss̄, cc̄). These production processes are grouped into
4 categories (see table 17.1). Two other official Monte Carlo samples are used, the rare Monte

name Description rel. amount

charged Υ(4S) decays into generically decaying charged B mesons 12%
mixed Υ(4S) decays into generically decaying neutral B mesons 12%
charm continuum e+e− → cc̄ decays 30%
uds continuum e+e− → uū, dd̄, ss̄ decays 46%

Table 17.1. Quality cuts for charged tracks

Carlo sample which covers all B decays with non b → c +W transitions corresponding to 50
times the data luminosity and the ulnu Monte Carlo sample which is a dedicated b→ ulν sample
corresponding to 20 times the data luminosity.

For each mode, a signal Monte Carlo sample was produced where one of the B mesons decays
into the respective specific signal final state, while the other one decays via generic b → c +W
transitions. The decay is generated using EvtGen [Lan01] with the modified decay amplitudes
described in [Buc+00] and the form factors calculated in [Bal+05b] and [Bal+05a].

All the samples are processed with the full reconstruction module described in chapter 7. It
is known from studies in chapter 7, using the full reconstruction module with the continuum
suppression switched on, including the super-fox-wolfram moments (SFWM) gives the highest
efficiency. Therefore this mode is used for the processing of the data. By applying the same cut
on the BTag NeuroBayes output for example in the K+ mode an increase in efficiency of 50% was
found, compared to the processing without the continuum suppression in the full reconstruction
module. But it has to be noted that the absolute value of this cut is not really comparable
between both modes (with and without continuum supression) but at least, the efficiency is
higher with this cut and can therefore be changed later on if necessary. Also the purity should
be higher at a cut with the same efficiency because of less wrongly selected BTag candidates.
This mode is used for the following analysis.
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17. Candidate Reconstruction

17.2. Track Selection Criteria

The tracks used to reconstruct the signal-side have to originate from a region around the inter-
action point (IP). In order to have at least the chance to measure the track momentum in the
drift chamber, the tracks need to have a transversal momentum pt of at least 0.1GeV. All the

Cut (short name) Description

|dr| <2 cm impact parameter in radial direction
|dz| < 5 cm impact parameter in beam direction
pt > 0.1GeV lower cut on the transversal momentum

Table 17.2. Quality cuts for charged tracks

applied cuts are summarized in table 17.2

17.3. Candidate Selection Criteria

There are five different decay modes, K+,K0
S , K

∗+ → K0
Sπ

+,K∗+ → K+π0 and K∗0 → K+π−.
The reconstruction criteria for these modes are:

• K± candidates are tracks with a particle identification likelihood ratio RK ≡ LK/(LK +
Lπ) of greater than 0.6. This particle identification is explained in chapter 6.

• π± candidates are tracks with a particle identification likelihood ratio RK ≡ LK/(LK +
Lπ) of smaller than 0.4.

• π0 candidates are formed from two clusters in the electro-magnetic calorimeter that are
not matched with a charged track and have an energy of at least 50MeV. The IP is taken
as the decay vertex, which results in a tail to lower invariant masses for π0 candidates
decaying further in the detector [Che+05]. The invariant mass has to lie between 117.8MeV
and 150.2MeV. In order to reduce combinatorial background from combinations with noise
clusters, the asymmetry

aγ =

∣∣∣∣Eγ1 − Eγ2

Eγ1 + Eγ2

∣∣∣∣
between both clusters should be smaller than 0.9.

• K0
S candidates are formed from two oppositely charged tracks. The so-called GoodKS

selection criteria is required. Their invariant mass must be within ±15MeV/c2 of the
nominal mass [Nak+10]. The distance of closest approach of the candidate charged tracks
to the IP in the plane perpendicular to z axis is required to be larger than 0.02 cm for
high momentum (> 1.5GeV/c) K0

S candidates and 0.03 cm for those with momentum less
than 1.5GeV/c. The π+π− vertex is required to be displaced from the IP by a minimum
transverse distance of 0.22 cm for high-momentum candidates and 0.08 cm for the remaining
candidates. The mismatch in the z direction at the K0

S vertex point for the π+π− tracks
must be less than 2.4 cm for high-momentum candidates and 1.8 cm for the remaining
candidates. The direction of the pion pair momentum must also agree with the direction
of the vertex point from the IP to within 0.03 rad for high-momentum candidates, and to
within 0.1 rad for the remaining candidates [Che+05]. The invariant mass distribution can
be seen in figure 17.1a.
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17.3. Candidate Selection Criteria

• K∗± candidates are reconstructed in two different decay modes:

K∗± → K+π0

and

K∗± → K0
sπ

+ .

Their invariant mass must be within ±75MeV/c2 of the nominal mass [Nak+10]. The
invariant mass distribution of both decays can be seen in figure 17.1b and figure 17.1c
respectively.

• K∗0 candidates are formed from a charged kaon and an oppositely charged pion. Their
invariant mass must be within ±75MeV/c2 of the nominal mass [Nak+10]. The invariant
mass distribution can be seen in figure 17.1d.

All the applied cuts are summarized in table 17.3. As be can seen in figure 17.1, the cuts are
chosen such that only a small fraction of signal is lost, without further optimizing these cuts.

Particle Cut (short name) Description

K+ atc PID > 0.6 lower cut on the particle identification likelihood
ratio

π+ atc PID < 0.4 upper cut on the particle identification likelihood
ratio

π0 117.8MeV<
m(π0) <150.2MeV

invariant mass cut

Eγ >50MeV lower cut on the gamma energy
aγ <0.9 upper cut on the energy asymmetry of the two

photons
K0

S |m(K0
S)−MK0

S
| <15MeV invariant mass cut on the difference to the nom-

inal mass MK0
S

GoodK S > 0 A set of cuts addressing the displaced vertex of
the K0

S from the IP (see text)
K∗+ |m(K∗+)−MK∗+ | <75MeV invariant mass cut on the difference to the nom-

inal mass MK∗+

K∗0 |m(K∗0)−MK∗0 | <75MeV invariant mass cut on the difference to the nom-
inal mass MK∗0

Table 17.3. Summary of the selection criteria for the reconstruction of light meson candidates
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17. Candidate Reconstruction
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Figure 17.1. The invariant mass distributions for the different strange mesons decays. The black
dots show the reconstructed invariant mass from the generic MC sample corre-
sponding to 5 times the data. The green line shows the distribution of the correct
reconstructed mesons, the purple line the background distribution.
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18. Cut-based Analysis

This cut-based analysis is based on the analysis of Kai-Feng Chen [Che+07]. All the cuts are
taken from there and not further optimized as most of them are physically motivated and still
give optimal results.

18.1. Signal-Side Selection Criteria

In order to reduce the number of reconstructed candidates drastically, some selection criteria
need to be fulfilled by each candidate. As already mentioned above, there needs to be a BTag

candidate with the correct charge combination together with the signal-side candidate (neutral-
neutral, positive-negative, negative-positive). If there are more than one BTag candidate in one
event, the one with the highest NBout is taken.

• BTag

The NBout for the BTag is calculated, taking information for continuum suppression into
account, as explained before. In addition, this BTag candidate has to have a NBout of at
least 0.02. This cut is chosen because it gives a good limit near the optimum for all modes
and also gives a similar background level as in the analysis of Kai-Feng Chen [Che+07].
The distribution is shown in figure 23.2.

For the final selection, also a cut on Mbc and ΔE of the BTag is performed as seen in
table 18.1.

• Veto

Because we expect nothing else in an event than the BTag and the signal-side BSig candidate,
we veto candidates where additional tracks, or additional π0 candidates are left over. For
π0 candidates, the same quality cuts are applied as mentioned above. For the veto track
candidates, all detected tracks are taken, without any quality cuts.

• Missing momentum

The missing momentum pMis, defined as

pMis = pBeam − (pBTag + pSig) , (18.1)

where pBeam is the four-momentum of the beam and pBTag, pSig are the four-momenta
of the BTag and the BSig respectively, should not point into the direction of the beam-
pipe, in order to reduce background from particles escaping through the beam-pipe. The
angle θMis between the missing-momentum and the beam-pipe in the laboratory rest frame
should therefore satisfy −0.86 < cosθMis < 0.95.

• Extra energy in the calorimeter

The summed extra energy in the calorimeter EECL should not exceed 1.2GeV. The energies
of the clusters in the calorimeter added to EECL have to exceed the thresholds

– Forward end-cap: 100MeV.
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18. Cut-based Analysis

– Barrel: 50MeV.

– Backward end-cap: 150MeV.

These thresholds are found to separate well between real photons and noise and also reject
the beam background in forward and backward direction in which we are not interested in
this analysis.

This window is further divided into the signal-box EECL < 0.3GeV and the sideband
0.45GeV < EECL < 1.2GeV, where only a fraction of signal signal events are found as
shown in figure 18.1.

• Momentum of the light meson

In order to reduce background from b→ c decays, we perform a lower cut on the momentum
of the light meson K(∗) in the BSig rest frame �p∗ > 1.6GeV. To reduce backgrounds from
two-body B decays (e.g B → Kγ) an upper cut of �p∗ < 2.5GeV is performed.

All the applied cuts are summarized in table 18.1. The so called N-1 plots are shown in
the appendix 23.1. In these plots, all cuts are applied, except for the cut on the plotted
variable. In addition, the cut values for this variable are shown.

Cut (short name) Description

BTagChargeCombination BTag candidate with the corresponding charge combina-
tion (neutral-neutral, positive-negative, negative-positive)

Mbc > 5.27GeV lower cut on Mbc of the BTag candidate
−0.08GeV <ΔE < 0.06GeV cut on ΔE of the BTag candidate
BTagNBout > 0.02 lower cut on the NBout of the BTag candidate
NRemainingPi0 = 0 no additional Pi0 candidate should be left, standard Pi0

cuts applied
NRemainingTracksAll = 0 no additional track should be left, no quality cuts on the

veto tracks applied
−0.86 < cosθmis < 0.95 the missing-momentum should not point into the beam-

pipe
EECL < 1.2GeV upper cut on the extra energy in the calorimeter
�p∗ > 1.6GeV lower cut on the momentum in BSig rest frame to reduce

background from charm decays
�p∗ < 2.5GeV upper cut on the momentum in BSig rest frame to reduce

background from two-body B decays

Table 18.1. A list of cuts for the cut-based selection

18.2. Comparison Between Monte Carlo and Data

A comparison between the generic Monte Carlo sample and the data with these cuts applied is
shown in figure 18.2. Since this is a blind analysis, these events are from the BTag Mbc sideband
Mbc < 5.27GeV, where one expects no signal events. The data Monte Carlo agreement is really
good. One has to keep in mind that the Monte Carlo is scaled by 0.2 since it corresponds to
the luminosity of 5 times the data. It is not scaled to an equal number of entries as in the data
sample.
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Figure 18.1. The EECL distributions for signal events. The dashed lines border the signal-box on
the left and the sideband region on the right.
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18. Cut-based Analysis

There is also a quantitative result shown in table 18.2. In order to compare the two histograms
a p-value was calculated, based on an algorithm [Gag06] which can also handle event-by-event
weights. Here the Monte Carlo histogram is scaled to have the same total number of entries
as the data histogram. A low p-value below 5% would indicate that both distributions are not
compatible, but this is not the case. All decay modes agree well.
The full reconstruction method was not especially optimized in a way to obtain equal efficien-
cies on data and on Monte Carlo samples. Therefore, as for example some decay modes are
experimentally only poorly known, one would not even expect to find such a good agreement. In
order to find out if this is just pure luck, the ratios of the individual decay channels of the full
reconstruction method are plotted in figure 18.3. The Monte Carlo samples for this comparison
consist of generic and rare Monte Carlo, scaled to the data luminosity. For this comparison, the
selection criteria explained above are applied, except that the EECL sideband is taken and the
cuts on cosθmis and �p∗ are released. The different BTag decay channels are classified by their
decay hash, explained in section 10.6. It seems that most of the decay channels are indeed com-
patible with one within their errors. Note that one cannot compare the yields with figures 18.2
as there different cuts were taken. The good agreement in figure 18.2 indicates that the BTag

background level (Mbc sideband) is compatible between data and Monte Carlo, whereas the BTag

signal efficiency is lower on data. The dependency of this ratio to Mbc can be seen in figure 18.4.
For this comparison the EECL sideband is used and to increase statistics the cuts cosθmis, �p

∗

from table 18.1 are removed. The ratio between Monte Carlo and data is slightly higher in the
Mbc signal window.
In order to take this into account, an Mbc fit has to be performed on data and Monte Carlo.
From these fits, we obtain the number of BTag signal candidates NBTagdata and NBTagMC for
data and Monte Carlo respectively. The signal efficiency on data is then defined by

εSigdata =
NBTagdata

NBTagMC
× εSigMC , (18.2)

where εSigMC is the signal efficiency obtained by the signal Monte Carlo sample. The fits are
shown in figure 18.5 and the resulting fit parameters are shown in table 18.3. These fits are done
in the EECL sideband with the same selection criteria applied respectively. In order to increase
the statistics, the cuts on cosθmis and �p

∗ are removed which should not affect the BTag efficiency.
The resulting ratios are listed in table 18.4 and visualized in figure 18.6. The uncertainties on
the ratio is the quadratic sum of the relative uncertainties on the number of BTag candidates
obtained by the fit.
If this approach really works is checked by comparing the normal MC samples with the same,
but modified samples, where one arbitrary BTag decay channel is excluded (B+ → D̄0π+π0).
The correction factor was obtained by Mbc fits of the BTag in the EECL sideband as explained
above for the normal and the modified generic MC sample as

NBTagdata

NBTagMC
= 0.82± 3.00% (18.3)

We can estimate the true efficiency of the modified sample with the signal MC by excluding the
same BTag decay channel

εmod = 5.929 · 10−04 . (18.4)

As explained above, we can also estimate it using the normal signal MC sample and the BTag

efficiency correction, obtained by the Mbc fits

εcorr =
NBTagdata

NBTagMC
× εSigMC = 5.965 · 10−04 . (18.5)
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18.3. Background Composition

The double ratio is very well consistent with one

εmod

εcorr
= 0.994± 0.035 , (18.6)

This proofs that it is possible to correct for differences in the BTag efficiencies by fitting the Mbc

distributions in the EECL sidebands on data and Monte Carlo separately.

mode p-value

K+ 0.555228
K0

S 0.631279
K∗+ → K0

Sπ
+ 0.74524

K∗+ → K+π0 0.8432
K∗0 → K+π− 0.6706

Table 18.2. Resulting p-values on how compatible the data distributions with the background
hypotheses are. There is no significant deviation between Monte Carlo and data.

mode data MC
purity Nsig purity Nsig

K+ 0.67 1158.9± 60.6 0.68 1449.6± 28.9
K0

S 0.84 1463.9± 52.4 0.80 1918.4± 28.6
K∗+(K0

Sπ
+) 0.66 1526.1± 73.2 0.72 2541.5± 37.4

K∗+(K+π0) 0.62 2374.4± 90.6 0.66 3001.0± 44.0
K∗0(K+π−) 0.68 1061.3± 55.5 0.68 1521.7± 29.0

Table 18.3. Parameters of the fits to the Mbc distributions of the BTag candidates for data and
Monte Carlo.

mode ratio error

K+ 0.80 ±5.6%
K0

S 0.76 ±3.9%
K∗+ → K0

Sπ
+ 0.60 ±5.0%

K∗+ → K+π0 0.79 ±4.1%
K∗0 → K+π− 0.70 ±5.6%

Table 18.4. Ratios of the BTag efficiencies between data and Monte Carlo.

18.3. Background Composition

It is interesting to know the composition of the contributing background. In figure 18.7 one
can see the different background contributions in the different decay modes. For charged B
modes (K+,K∗+) the biggest contribution comes from generic charged B decays, whereas for
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Figure 18.2. The EECL distributions for the different strange mesons decays in the Mbc sideband
with the cut-based method. The black dots show the EECL distribution from data,
and the purple solid line from the generic MC sample scaled to the luminosity of
the data. The dashed lines mark the boundaries of the signal window (left) and
sideband window (right).
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Figure 18.3. The ratio of the Monte Carlo sample divided by the data sample for the individual
BTag decay channels
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Figure 18.4. The ratio of the Monte Carlo sample divided by the data sample in the
EECL sideband as a function of Mbc
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Figure 18.5. Fits to the BTag Mbc distributions for the data and Monte Carlo sample in the
EECL sideband for the different modes separately. The black dots are the data
points, the signal distribution is marked yellow, the background distribution is
marked with a purple line and the green line is the sum of signal and background.
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Figure 18.6. Ratios of the BTag efficiencies between data and Monte Carlo.

the neutral B modes (K0
S ,K

∗0), the biggest contribution comes from generic neutral B decays.
The contributions from the non-B Monte Carlo sample and the rare B decays Monte Carlo
sample are smaller than the contributions from charmed B decays in all modes.

It is further interesting if there are dominant decays in the background samples which mimic
the signal. For this, the Monte Carlo events are sorted by their real, generated decay channels.
The most frequent decay channels are listed in table 18.5 and ordered by their frequency. There
is no single dominant cross-feed from another decay. In general, all decays with only additional
photons or neutral hadrons in the final state contribute. For example, if in the K+ mode, the
generated decay was B → D0K+, the K+ is taken as the signal side. Then the D0 most often
decayed into a 0-prong final state, for example D0 → ηπ0 or D0 → KLπ

0. Sometimes also a
track was just not reconstructed, or it is used in the BTag candidate. Another example is the
decay B → ηcK

+, where the ηc goes to K0K̄0 or nn. In figures 23.3e and 23.3d one can see a
peak in the distribution of the rare Monte Carlo sample. This comes from decays B → f ′2K

∗

where the f ′2 decays into two K0
L mesons in 22% of the cases. Of course, a KL veto would help to

suppress such backgrounds, but as the KL efficiency is known to be much worse on data (in the
order of 50%) than on the Monte Carlo sample, the systematic uncertainties introduced (since
the reason for the efficiency difference is yet unknown) would at least compensate the gain in
background reduction.

18.4. Background Estimation and Signal Efficiency

Using the signal Monte Carlo samples it is now possible to estimate the raw signal efficiencies in
the signal-box by counting the number of correctly selected candidates Nsig

εsig =
Nsig

Ngen
, (18.7)
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Figure 18.7. The EECL distribution of the different types of Monte Carlo generated events. The
contributions from charged B decays are marked purple, from neutral B decays
green, from continuum events yellow and the contributions from rare B decays
are marked orange.
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Figure 18.8. The EECL distribution of the Monte Carlo generated decays for each mode. The
purple histogram corresponds to the most frequent decay in table 18.5, the green
one to the second most frequent, the yellow one to the third most frequent and
orange to the fourth most frequent. The sample corresponds to five times the
data luminosity.
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mode dominant background contributions relative
fre-
quency

K+ D0 + (e±ν, μ±ν,K±, π±, ρ±) 42%
D∗0 + (e±ν, μ±ν,K±, π±) 30%
ηc +K± 10%
J/ψ +K± 6%

K0
S D∓ + (e±ν, μ±ν) 41%

ηc +K0
S 7%

D∗∓ + (e±ν, μ±ν) 1%

K∗+ → K0
Sπ

+ D∗0 + (e±ν, μ±ν,K∗+) 48%
D0 + (e±ν, μ±ν,K∗+) 12%

K∗+ → K+π0 D0 + (e±ν, μ±ν, ρ±,K∗±, nn) 39%
D∗0 + (e±ν, μ±ν, ρ±,K±K0, nn, τ±ν) 32%
J/ψ +K± 5%

K∗0 → K+π− D∓ + (e±ν, μ±ν, τ±ν, nn) 30%
D∗∓ + (e±ν, μ±ν, nn) 22%
ηc + (K∗0,KL) 10%

Table 18.5. The Monte Carlo generated decays contributing to the background and their relative
frequency for each mode.

where Ngen is the number of generated events. The raw efficiencies are corrected with the particle
identification correction factors, obtained in section 18.5 and the correction factors for the BTag

efficiencies, obtained in section 18.2. One has to be careful to take all intermediate branching
fractions into account in order to obtain the correct efficiencies. The branching ratio correction
factors for this analysis, the generated events and the yields are listed in table 18.6.

The uncertainty on the raw efficiency estimation is a binomial error because of the two possibil-
ities, selected or not selected

σε =

√
Nsig(Ngen−Nsig)

Ngen

Ngen
. (18.8)

But for the small efficiencies encountered here, the differences to just Poisson errors are tiny. The
resulting efficiencies and their uncertainties are listed in table 18.6. The raw efficiencies are then

mode εsig [10−5] stat. error generated branching fraction
factor

K+ 72.8 ±1.2% 10M -
K0

S 8.2 ±4.2% 10M 0.692
K∗+(K0

Sπ
+) 11.7 ±6.1% 10M 0.692× 0.666× 0.5

K∗+(K+π0) 21.9 ±3.7% 10M 0.33
K∗0(K+π−) 19.2 ±2.8% 10M 0.66

Table 18.6. Signal efficiencies obtained from the signal Monte Carlo samples.
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18. Cut-based Analysis

corrected by factors for the particle identification and the BTag efficiencies, listed in table 18.7.

mode PID correc-
tion

BTag cor-
rection

εsig [10−5]

K+ 0.991 0.80 57.7
K0

S 1.000 0.76 6.3
K∗+(K0

Sπ
+) 0.970 0.60 6.8

K∗+(K+π0) 1.003 0.79 17.4
K∗0(K+π−) 0.972 0.70 13.0

Table 18.7. Signal efficiencies corrected by the correction factor for the particle identification and
the correction factors for the BTag efficiencies.

The background level in the data signal-box EECL< 0.3GeV is estimated using the generic and
rare Monte Carlo samples and the data sideband EECL> 0.45GeV. The expected number of
background events is

Nb = Nsideband ·RMC , (18.9)

where Nsideband is the number of observed events in the sidebands of the data sample and RECL

is the ratio

RMC =
NMC,signal-box

NMC,sideband
, (18.10)

where NMC,signal-box and NMC,sideband are the number of events from the Monte Carlo samples
in the signal-box and sidebands respectively. The estimated ratios and the statistical errors are
listed in table 18.8. The error is calculated as

σRMC
=

√(
σNMC,sideband

NMC,sideband

)2

+

(
σNMC,signal-box

NMC,signal-box

)2

. (18.11)

mode NMC,signal-box NMC,sideband RECL stat. error

K+ 20.54 41.92 0.49 ±11.5%
K0

S 2.58 3.22 0.80 ±34.4%
K∗+(K0

Sπ
+) 0.56 3.5 0.16 ±56.1%

K∗+(K+π0) 6.24 22.32 0.28 ±18.9%
K∗0(K+π−) 8.82 17.7 0.50 ±17.2%

Table 18.8. The estimated signal-box to sideband ratios and the statistical errors obtained from
the generic and rare Monte Carlo samples.

With equation 18.9, the observed events in the sideband Nsideband and the estimated ratios in
table 18.8, we obtain Nb. The Poisson errors of the observed events in the sideband σNsideband

has
to be taken into account for the error on Nb. The observed Nsideband and the resulting expected
number of background events in the signal region Nb and the error (only statistical error from
Nsideband) is listed in table 18.9. For the K0

S mode, no events were observed in the sideband.
Therefore, the central value for Nb would be zero, in this case the expectation from the Monte
Carlo sample is used.
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mode Nsideband Nb stat. error

K+ 31 15.19 ±18.0%
K0

S 2.58 (MC) 2.58 (MC) -
K∗+(K0

Sπ
+) 2 0.32 ±70.7%

K∗+(K+π0) 23 6.44 ±20.9%
K∗0(K+π−) 5 2.5 ±44.7%

Table 18.9. The estimated number of background events Nb in the signal-box and the statistical
errors obtained from the generic and rare Monte Carlo samples.

18.5. Systematic Uncertainties

There are two parts where systematic uncertainties occur. There is the uncertainty on the
expected background level Nb and the uncertainty on the signal normalization

N = NBB̄ · εsig . (18.12)

Both parts are needed to calculate the branching ratio limit and therefore also both sources of
systematic uncertainties enter the limit calculation.

18.5.1. Systematic Uncertainties on the Signal Normalization

• The number of BB̄-pairs

There is an official estimation of the produced number of BB̄-pairs and the error on that
number:

NBB̄ = 771 · 106 ± 1.4%

• Track reconstruction efficiency

According to [Bhu] the systematic uncertainty on each single charged track is estimated to
be 0.35%. Therefore the systematic uncertainty depends on the mode.

• K0
S reconstruction efficiency

According to [Whi], the overall systematic uncertainty on the reconstruction efficiency is
2.23%

• π0 reconstruction efficiency

The systematic error on the π0 reconstruction efficiency is estimated in Belle note [Lin+]
using η decays to be 4%.

• K/π particle identification

The differences of the particle identification between data and Monte Carlo is estimated on
an inclusive D∗ sample in the unpublished Belle note [M.N+]. This study gives correction
factors depending on the cosθ and the momentum of each single charged track. The
correction factors and uncertainties obtained are listed in table 18.11. The correction
factors are applied to the efficiency.

• Signal reconstruction efficiency

The statistical error evaluated in section 18.4 is taken into account as a systematic uncer-
tainty.
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18. Cut-based Analysis

• BTag efficiency

As already pointed out in section 18.2, there is a difference in the BTag efficiency between
data and Monte Carlo. The statistical error on this ratio estimated by the Mbc fit is taken
as a systematic uncertainty. The difference in efficiency is applied as a correction factor to
the signal efficiency.

• Veto efficiency

The difference in the charged track and π0 veto efficiency between data and Monte Carlo is
estimated using a D(∗)�ν sample. This sample has very little background and is therefore
well suited for this veto efficiency check. The decay channels used for this sample are listed
in table 18.9. The cuts applied are summarized in table 18.10

B Channels

B0 → D−�ν
B0 → D∗−�ν

B+ → D0�ν
B+ → D∗0�ν

D∗ Channels

D∗+ → D0π+

D∗+ → D+π0

D∗0 → D0π0

D∗0 → D0γ

D Channels

D+ → KSπ
+

D+ → KSπ
+π0

D+ → KSπ
+π+π−

D+ → K−π+π+

D+ → K−π+π+π0

D0 → K−π+

D0 → K−π+π0

D0 → K−π+π+π−

D0 → KSπ
0

D0 → KSπ
+π−

Figure 18.9. The decay channels for the D(∗)�ν sample

dr < 2.0 cm and dz < 4.0 cm for charged tracks.
eID > 0.1, μID > 0.1, πID > 0.1, KID > 0.1
110MeV/c2 < M(π0) < 150MeV/c2

goodKs==1

E(γ ← π0) > 50 MeV/c2 for all angles

1.84GeV/c2 < M(D+/0) < 1.90GeV/c2

| �p∗(D0/+)| < 3.0 GeV/c

0.143GeV/c2 < ΔM(D∗+/0 −D0/+) < 0.148GeV/c2

BTagMbc > 5.27GeV/c2

−0.08GeV < BTagDE < 0.06GeV
−0.2GeV < MissingMass2 < 0.2GeV
EECL< 0.3GeV

Table 18.10. Summary of the cuts applied for the D(∗)�ν sample.

The ratio

R =
Nveto

Nnoveto

is calculated separately for the data and the Monte Carlo sample in the EECL signal-box.
The resulting ratios are

RMC = 0.314± 0.005
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18.5. Systematic Uncertainties

Rdata = 0.335± 0.004 .

The deviation from unity of the double ratio

Δ = (1−
Rdata

RMC
) = 0.0636± 0.019

plus 1σ statistical uncertainty is used as an systematic error of ±8.3% on the signal
efficiency. The EECL distributions of the D(∗)�ν for data and Monte Carlo are shown in
figure 18.10 together with the distributions with the veto applied and the double ratio in
bins of the EECL distribution. The double ratios separately for the D∗ and the D samples
were also checked. Both double ratios

RD = 0.963± 0.022

RD∗ = 0.915± 0.027

agree with each other within 2σ. That means we can use the single ratio from above.

Forthermore, the distribution of the remaining tracks is checked in the EECL signal-box
below 0.3GeV. As can be seen in figure 18.11 there is a slight dependency of the number
of remaining tracks to the ratio of MC and data but this is alredy included in the systematic
uncertainty estimated above.

All the systematic errors for the signal normalization are summarized in table 18.12.

mode ratio(pion) ratio(kaon)

K+ - 0.99± 0.86%
K∗+ → K0

Sπ
+ 0.97± 1.19% -

K∗+ → K+π0 - 1.00± 0.89%
K∗0 → K+π− 0.97± 1.11% 1.01± 0.88%

Table 18.11. Correction factors and uncertainties for the differences of the K/π particle identi-
fication between data and Monte Carlo.

18.5.2. Systematic Uncertainties on the Background Level

• Statistical uncertainty of the ratio estimation

The statistical uncertainty ΔRECL in the estimation of the ratio RECL defined in equa-
tion 18.10 is taken as a systematic uncertainty. The error is listed in table 18.8.

• Differences of RECL in data and Monte Carlo

The differences of data and Monte Carlo are evaluated using wrong-tag samples. In these
samples, the BTag doesn’t match to the signal side. The ratiosRMC andRdata are estimated
for this wrong-tag sample and the mean shift plus 1σ statistical error is used as a systematic
error. The cuts on �p∗ and cosθmis are removed in the wrong-tag sample in order to gain
statistics and because they are not correlated to the EECL distribution. The ratios RMC

and Rdata are averaged over all modes. Both ratios RMC and Rdata deviate by less then
2σ. The ratios are estimated to be

RMC = 0.36± 0.02
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Figure 18.10. The EECL distributions of the D(∗)�ν sample. The solid line is the distribution
without the vetos applied and the dots with errorbars with the vetos applied.
In figure 18.10c, the double ratio in bins of the EECL distribution is shown.
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Figure 18.11. The ratio between MC and data of the number of remaining tracks in the
EECL signal-box for the charged and the neutral sample separately.

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

NBB̄ 1.4 1.4 1.4 1.4 1.4
Tracks 0.35 - 0.35 0.35 0.7
K0

S - 2.23 2.23 - -
π0 - - - 4.0 -
K/π PID 0.86 - 0.90 0.87 1.83
signal MC statis-
tics

1.17 4.19 6.10 3.70 2.80

BTag efficiency 5.60 3.88 5.02 4.09 5.57
veto efficiency 8.3 8.3 8.3 8.3 8.3

Sum 10.19 10.39 11.77 10.84 10.63

Table 18.12. Summary of the systematic uncertainties on the signal normalization. Each number
is in units %.
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Rdata = 0.47± 0.05 ,

and therefore 47.35% is taken as the systematic uncertainty evoked by differences of the
data and Monte Carlo samples.

• Statistical uncertainty of the number of events in the sideband Nsideband

The statistical uncertainty of the number of events in the sideband Nsideband of the data
sample need to be taken into account. This error is listed in table 18.9

All the systematic errors for the expected number of background events in the signal-box Nb are
summarized in table 18.14.

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

ΔRECL(stat.
only)

11.49 34.44 56.13 18.86 17.24

Data MC differ-
ences

47.35 47.35 47.35 47.35 47.35

Sum 48.72 58.55 73.43 50.96 50.39

Table 18.13. Summary of the systematic uncertainties on the ratio RECL. Each number is in
units %.

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

central value 15.19 2.58 0.32 6.44 2.50

ΔRECL 7.40 1.51 0.23 3.28 1.26
ΔNsideband 2.73 0.58 0.23 1.34 1.12

Sum 7.89 1.62 0.33 3.55 1.68

Table 18.14. Summary of the absolute systematic uncertainties on the expected number of back-
ground events Nb.

18.6. Limit Estimation

As explained in section 3.1, by counting the observed numbers in the signal region Ndata,signal-box

we can now calculate the limits on the branching ratio

B =
Nsignal

N
, (18.13)

where N = NBB̄ ·εsig and Nsignal = Nobs−Nb , the estimated number of signal events in the data
signal-box. The number of BB̄ pairs NBB̄ is taken, because indeed there are only half of the BB̄
pairs charged or neutral respectively, but there are 2 B mesons in one event and therefore cancels
down. Nobs, Nb are the number of observed events in the data signal-box and the number of
expected background events in the data signal-box respectively.
For evaluation of the sensitivity of this measurement, it is interesting to estimate the expectation
value of the limit, given the hypothesis of only background. As we would expect that the number
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of observed events fluctuates Poisson distributed around the expected background level Nb, we
calculate the weighted mean of all limits, estimated for Nobs around Nb. The weights are the
Poisson probabilities

w = Poisson(Nobs|Nb) . (18.14)

There are many possible methods to calculate limits as already explained in section 3.1. For a
comparison, five different methods were applied, profile likelihood [Mur+00], Feldman-Cousins [Fel+98],
Markov-Chain Monte Carlo (MCMC) [HAS70] and the Bayesian approach [Yon+07] with a flat
prior and a 1/s prior, i.e. the non-informative prior. In all methods, the systematic uncertainties
are treated as Gaussian constraints with a width according to the systematic uncertainty and
the parameters Nb and Nsignal are fitted to Nobs with these constraints. The results are shown in
figure 18.12. Depending on the background level and the systematic uncertainty on that, there
are significant deviations between the different methods. As the Feldman-Cousins approach has

Figure 18.12. A comparison of five different methods to estimate the limit for all five modes.

several advantages like a proper coverage for all cases particularly in the transition from one-sided
to a two-sided limit, this approach is taken to estimate the limit in the following. All estimated
limits are limits with a two-sided 90% confidence level (as Feldman-Cousins is per construction
a two-sided limit).
The resulting expected upper limits are listed in table 18.15
It is now possible to estimate the increase in sensitivity of this analysis to the predecessor analysis
of Kai-Feng Chen [Che+07]. For each mode, both limits are calculated in the same way, but for
the limits of the old analysis the number of BB̄-pairs NBB̄ = 534.5 · 106 is taken. The result
is shown in figure 18.13. A summary of all the numbers, relevant to estimate the limit are
listed in table 18.16 for this cut-based analysis and in table 18.17 for the analysis of Kai-Feng
Chen [Che+07].
The increase in sensitivity is not the same for all modes, but, as the limit highly depends on the
background level, small deviations can lead to different limits. Note that this analysis comprises
a completely new full reconstruction algorithm and the data is reprocessed with a new tracking
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mode exp. upper limit [10−5]

K+ 5.1
K0

S 9.0
K∗+(K0

Sπ
+) 5.1

K∗+(K+π0) 7.2
K∗0(K+π−) 4.8

Table 18.15. The expected upper limts for each mode.

Figure 18.13. A comparison of the expected limits of this analysis and the predecessor analysis
of Kai-Feng Chen [Che+07]
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algorithm compared to the data of the predecessor analysis. This new tracking algorithm has
a higher tracking efficiency. This analysis should be very sensitive on such an increase in track
multiplicity, as there is a veto against additional tracks in an event.

Figure 18.14. A comparison of the expected limits of this analysis, the observed limits in the
predecessor analysis of Kai-Feng Chen [Che+07] and the world best limits
from [Nak+10].

In figure 18.14, a comparison of the expected limits of this analysis compared to the observed
limits in Chen’s analysis [Che+07] and the world best limits from [Nak+10]. Except for the K+

mode and the K0
S mode, all of the expected limits are better than the current world best limits

on the decays respectively. Of course, the actual observed limits can be quite different from the
expectations. This is quite remarkable, as the world best limits are estimated by BaBar using a
combined hadronic and semi-leptonic tag and the semi-leptonic tag has much more statistics.

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

Nb 15.19 2.58 0.32 6.44 2.50
εsig[10

−5] 57.68 6.29 6.80 17.37 13.00
ΔNb 7.89 1.62 0.33 3.55 1.68
Δεsig[%] 10.19 10.39 11.77 10.84 10.63

Table 18.16. Summary of the relevant information for the limit estimation for the cut-based
selection.

The final blinded data EECL distributions and the scaled background expectations are shown in
figure 18.15.
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S mode
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(c) K∗+
→ K+π0 mode
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(d) K∗+
→ K0

Sπ
+ mode
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(e) K∗0
→ K+π− mode

Figure 18.15. The blinded EECL distribution and the Monte Carlo expectation (data: dots with
error-bars, generic MC: green, rare MC: purple)
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source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

Nb 19.96 1.99 2.29 3.33 4.17
εsig[10

−5] 26.70 4.99 2.77 3.01 5.12
ΔNb 3.96 0.94 1.19 1.37 1.34
Δεsig[%] 10.90 6.90 12.10 12.20 5.90

Table 18.17. Summary of the relevant information for the limit estimation from the analysis of
Kai-Feng Chen [Che+07].
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19. Neural-Network-based Analysis

19.1. Selection Criteria

As already explained in chapter 4, a cut-based method can only reach optimal background sup-
pression if there are no correlations among the variables. In order to increase the separation power
between signal and background events, the multivariate analysis package NeuroBayes [Fei+06]
is used. This package comprises a feed-forward neural network together with a series of sophis-
ticated preprocessing algorithms.

The candidates are reconstructed in the same way as explained in 17.3. In order to reduce the
most obvious background, some of the cuts of table 18.1 are applied and listed in table 19.1.
The momentum of the child meson in the BSig rest frame �p∗ is highly correlated to the q2 of
the decay, and this distribution might be model-dependent. As NeuroBayes would learn the
exact distribution it is safer to remove this observable from the training and just apply the
cuts listed in table 19.1 because then the dependency on this distribution is weaker. The cut
NRemainingTracks is also a veto against additionally charged track in the event, but, in contrast
to the cut-based selection not on all tracks, but only on tracks satisfying the track selection
criteria from section 17.2.

Cut (short name) Description

BTagChargeCombination BTag candidate with the corresponding charge combina-
tion (neutral-neutral, positive-negative, negative-positive)

Mbc > 5.27GeV lower cut on Mbc of the BTag candidate
BTagNBout > 0.02 lower cut on the NBout of the BTag candidate
NRemainingPi0 = 0 no additional π0 candidate should be left
NRemainingTracks = 0 no additional track should be left
EECL < 2.0GeV upper cut on the extra energy in the calorimeter
�p∗ > 1.6GeV lower cut on the momentum in BSig rest frame to reduce

background from charm decays
�p∗ < 2.5GeV upper cut on the momentum in BSig rest frame to reduce

background from two-body B decays

Table 19.1. A list of pre-cuts for the NeuroBayes selection

19.2. The Set of Variables

The main advantage of multivariate analysis is that one is not restricted in the number of variables
to use. As all the correlations among different variables are handled correctly by the NeuroBayes
package one does not have to worry about this issue neither. There are only two issues one has
to take care (but this also holds for the cut-based and any other method):
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19. Neural-Network-based Analysis

• Correlation to the quantity to be measured:
In the general case one trains the classification tool with a sample where the truth is
known, in most cases Monte Carlo samples. These classification tools are then optimized
to separate signal from background. But later, on data, one tries to measure the amount
of signal using a quantity which separates between signal and background, in this case the
EECL distribution. If the classification tool can learn this distribution one will loose this
separation power for the measurement. One therefore has to avoid that the tool can learn
the distribution of the quantity to be measured.

• Differences in the distributions of the variables between data and Monte Carlo:
While the idea of Monte Carlo simulation is to replicate the real data, there will be always
differences between the simulation and real data. If there are significant differences, one
can either not rely on the efficiencies and separation power obtained from the Monte Carlo
samples, or one has to reduce the impact of these differences on the classification tool.

Both issues can be addressed also with a NeuroBayes training. For the correlation to the quan-
tity to be measured one can for example train two EECL windows against each other only for
background events. NeuroBayes will then calculate the significance of the correlation of each
variable to the target, in this case EECL . The separation power of such a network gives a feeling
how correlated the input variables are altogether to the EECL distribution. The separation of
such a training is shown exemplary for the K+ mode in figure 19.1a. It can be seen that there
is a separation power within these variables, but it is so small that the training cannot learn the
exact distribution of EECL . In figure 19.1b is shown the separation of the same training with one
additional variable which is highly correlated to EECL . This variable is the difference between
the overall energy measured in the calorimeter and the energy of all particles from BTag and BSig

(RemainingEcl). In the distribution for lower and upper EECL window for the highest corre-
lated variable in the weakly correlated training 19.1c and in the highly correlated training 19.1d
one can clearly see that AngleMMtoEvtMMinCMS is only weakly correlated to EECL . The weak
correlated variable set, listed in table 19.3 can safely be used for the separation of signal and
background events.

The other issue of possible differences in the data and Monte Carlo sample can also be addressed
with a NeuroBayes training. Possible difference can for example arise, if the momentum resolution
is not correctly described by the Monte Carlo simulation. Similar to the method above we can
train a signal free sideband from the data sample against the same sideband from the Monte Carlo
sample. The separation of a training with the variable set listed in table 19.2 and 19.3 is shown
in figure 19.2a together with distributions for the most significant variable DistToOtherBdz in
figure 19.2b. The most significant variable was found to be DistToOtherBdz, the difference of the
mean dz of the BTag and BSig candidate. As shown in figure 19.2c there is only a tiny difference
between the data sample and the Monte Carlo sample. Another training for comparison is
shown in figure 19.2b where in addition the variable NRemainKL is used, which is the number
of remaining K0

L candidates in the event. This variable is known to have significant differences
between data and Monte Carlo and is indeed found to be the most significant variable, as shown
in figure 19.2d. The variable set used for the first training and listed in table 19.3 can safely be
used for the analysis.

Note that both, the correlation to EECL network and the data Monte Carlo difference network
are only used as checks whether there are strong dependencies. It would be possible to use Neu-
roBayes to also solve both problems by reweighting the Monte Carlo training samples according
to the NeuroBayes outputs of the trainings explained above.

104



19.2. The Set of Variables

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Network Output

0

20

40

60

80

100

120

140

E
v
e
n
ts

(a) The separation of lower EECL window (red)
and upper EECL window (black) in the
K+ mode with weak correlation of the
input variables to EECL .

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Network Output

0

500

1000

1500

2000

2500

E
v
e
n
ts

(b) The separation of lower EECL window (red)
and upper EECL window (black) in the
K+ mode with strong correlation of the
input variables to EECL .

-0
.9
9
8
3
6
4

-0
.8
9
7
6
8
1

-0
.7
7
7

-0
.6
2
2
7
8
1

-0
.5
3
2
2
2

-0
.4
5
1
8
4
4

-0
.3
6
1
3
5
3

-0
.2
7
3
6
0
7

-0
.2
0
3
0
3
5

-0
.1
3
1
4
8
5

-0
.0
6
2
4
5
5
8

0
.0
0
2
0
3
3
3
7

0
.0
5
6
3
6
4
5

0
.1
1
8
5
1
5

0
.1
7
3
4
3
9

0
.2
2
0
9
8
6

0
.2
6
6
3
3

0
.3
0
4
7
6
1

0
.3
4
3
6
6
5

0
.3
8
2
1
5
6

0
.4
0
9
6
9
4

0
.4
4
3
8
7
2

0
.4
7
3
1
8
8

0
.5
0
2
4
2
6

0
.5
3
6
8
5
7

0
.5
6
8
4
0
5

0
.5
9
3
2
8
5

0
.6
1
8
0
3
7

0
.6
3
6
7
1

0
.6
5
6
3
6
6

0
.6
7
3
2
6
2

0
.6
9
8
2
7
8

0
.7
1
9
9
9
7

0
.7
4
0
0
9

0
.7
5
7
3
7
1

0
.7
7
5
7
2
4

0
.7
9
5
6
4
6

0
.8
0
7
7
3

0
.8
2
7
3
8
4

0
.8
4
1
8
0
8

0
.8
5
7
4
8
3

0
.8
6
8
7
7
8

0
.8
7
9
8
3
1

0
.8
9
5
0
4
4

0
.9
0
9
0
2
6

0
.9
2
3
2
5
6

0
.9
3
9
6
6
9

0
.9
5
4
5
5
8

0
.9
7
2
6
1
6

0
.9
8
4
6
6
9

0
.9
9
9
6
2
8

0

5

10

15

20

25

30

35

E
v
e
n
t
s

(c) The distribution of lower EECL window
(red) and upper EECL window (black) for
the variable with the highest correlation
to EECL (AngleMMtoEvtMMinCMS).
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(d) The distribution of lower EECL window
(red) and upper EECL window (black)
for the variable with the highest corre-
lation to EECL (RemainingEcl).
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Figure 19.1. Correlation to the quantity to be measured
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(a) The separation of data (red) and Monte
Carlo (black) in the K∗0(K+π−) mode.
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(b) The separation of data (red) and Monte
Carlo (black) in the K∗0(K+π−) mode
with the additional variable NRemainKL.
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(c) The distribution of data (red) and Monte
Carlo (black) for the variable with the
highest significance (DistToOtherBdz).
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(d) The distribution of data (red) and Monte
Carlo (black) for the variable with the
highest significance (NRemainKL).
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(e) The purity of data (red) and Monte Carlo
(black) for the variable with the highest
significance (DistToOtherBdz).
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(f) The purity of data (red) and Monte Carlo
(black) for the variable with the highest
significance (NRemainKL).

Figure 19.2. Data and Monte Carlo differences
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19.2. The Set of Variables

No. Cut (short name) Description

1 MCinfo This is the target variable, the information whether a can-
didate was correctly reconstructed or not.

2 ΔE ΔE of the BTag candidate
3 BTagNBout > 0.02 the NBout of the BTag candidate
4 NRemainingTracksAll number additional tracks in the event without any qulity

cuts applied on the tracks
5 RatioToOtherType the ratio of this BTag candidates NBout and the best of

the other type if there is one
6 RatioToSecondBest the ratio of this BTag candidates NBout to the second best

of this type if there is one
7 cosθmis the angle between the missing-momentum and the beam-

pipe
8 AngleMMtoEvtMMinCMS the φ angle angle between the missing-momentum of the

signal candidate and the whole event in the center-of-mass
rest frame

9 EclEnergyInMMDir the total energy measured by the calorimeter in a small
cone around the direction of the missing-momentum

10 DistToOtherBdz the distance in z-direction between the mean |dz| of the
signal candidate and the BTag candidate

11 DistToOtherBdz signi the significance of the distance in z-direction between the
mean |dz| of the signal candidate and the BTag candidate

Table 19.2. A list of variables used for the NeuroBayes training for the K+ mode.
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19. Neural-Network-based Analysis

No. Cut (short name) Description

1 MCinfo This is the target variable, the information whether a can-
didate was correctly reconstructed or not.

2 ChildMass the invariant mass of the reconstructed child meson
3 ΔE ΔE of the BTag candidate
4 BTagNBout > 0.02 the NBout of the BTag candidate
5 NRemainingTracksAll number of additional tracks in the event
6 RatioToOtherType the ratio of this BTag candidates NBout and the best of

the other type if there is one
7 RatioToSecondBest the ratio of this BTag candidates NBout to the second best

of this type if there is one
8 cosθmis the angle between the missing-momentum and the beam-

pipe
9 AngleMMtoEvtMMinCMS the φ angle between the missing-momentum of the signal

candidate and the whole event in the center-of-mass rest
frame

10 EclEnergyInMMDir the total energy measured by the calorimeter in a small
cone around the direction of the missing-momentum

11 DistToOtherBdz the distance in z-direction between the mean |dz| of the
signal candidate and the BTag candidate

12 DistToOtherBdz signi the significance of the distance in z-direction between the
mean |dz| of the signal candidate and the BTag candidate

Table 19.3. A list of variables used for the NeuroBayes training all modes, except for the K+

mode.
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19.3. The Training Results

19.3. The Training Results

The set of variables listed in table 19.3 is then used to perform a training for all modes. For the
background candidates, wrongly reconstructed candidates from the generic Monte Carlo sample
are used. For the signal candidates, correctly reconstructed candidates from the respective signal
Monte Carlo sample are used.

The resulting separations are shown in figure 19.3. The purity in bins of the NeuroBayes output
is shown in figure 19.4 and a visualization of the correlation matrix of the input variables is
shown in figure 19.5.
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Figure 19.3. Separation of signal (red) and background (black) events for the different modes.
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(a) K+ mode

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Network Output

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
u
ri
ty

(b) K0
S mode

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Network Output

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
u
ri
ty

(c) K∗+
→ K+π0 mode
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Figure 19.4. Purity as a function of NeuroBayes output.
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19.3. The Training Results

(a) K+ mode (b) K0
S mode

(c) K∗+
→ K+π0 mode (d) K∗+

→ K0
Sπ

+ mode

(e) K∗0
→ K+π− mode

Figure 19.5. Visualization of the correlation matrix. The numbers correspond to the numbers in
table 19.2 and table 19.3. The first row respectively column is the target variable.
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19. Neural-Network-based Analysis

19.4. Optimization of the NeuroBayes Cut

Having the signal probabilities obtained by NeuroBayes for each event, one is free to choose
any cut value, each with different purities and efficiencies. Therefore one has to choose the cut
value such that the measurement has the highest sensitivity. As we are aiming for a limit on the
branching fractions of these modes, it is best to optimize the cut according to the lowest expected
limit on a signal free sample. This optimization is shown in figure 19.6 for all modes. The main
contributions to the systematic uncertainties on the expected number of background events Nb

is taken into account, as this depends on the statistics and therefore on the NeuroBayes cut.
Nb is estimated without taking the data sideband, as this would bias the optimization towards
lower limits. Nb is estimated using the Monte Carlo sample, scaled to the data sideband with no
cut on the NeuroBayes selection applied. The steps in some of the plots are just artifacts of the
fractional number of events estimated on Monte Carlo in contrast to the integer type number for
the observed number. The estimated cut values are taken for the further analysis.

19.5. Background Estimation and Signal Efficiency for the

NeuroBayes Selection

The background is estimated in the same way as explained in the cut-based analysis in sec-
tion 18.4. First, the ratio RECL between the EECL signal-box and sideband is estimated using
the Monte Carlo samples. The results are listed in table 19.4.

mode NMC,signal-box NMC,sideband RECL stat. error

K+ 7.62 13.52 0.56 ±19.2%
K0

S 4.10 11.78 0.35 ±23.3%
K∗+(K0

Sπ
+) 1.04 7.26 0.14 ±42.2%

K∗+(K+π0) 3.08 10.82 0.28 ±26.3%
K∗0(K+π−) 3.72 6.60 0.56 ±26.4%

Table 19.4. The estimated signal-box to sideband ratios and the statistical errors obtained from
the generic and rare Monte Carlo samples for the NeuroBayes selection.

mode Nsideband Nb stat. error

K+ 10 5.64 ±31.62%
K0

S 4.00 1.39 ±50.00%
K∗+(K0

Sπ
+) 2.00 0.29 ±70.71%

K∗+(K+π0) 15.00 4.27 ±25.82%
K∗0(K+π−) 4.00 2.25 ±50.00%

Table 19.5. The estimated number of background events Nb in the signal-box and the statistical
errors obtained from the generic and rare Monte Carlo samples for the NeuroBayes
selection.

The signal efficiencies are estimated by applying the NeuroBayes cut on the signal Monte Carlo
samples. The resulting raw efficiencies are listed in table 19.6. These raw efficiencies are then
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19.5. Background Estimation and Signal Efficiency for the NeuroBayes Selection
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Figure 19.6. The expected limit as a function of the NeuroBayes output. The purple dots are
the expected limits and the dashed lines mark the optimal cut values.
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19. Neural-Network-based Analysis

corrected by the correction factor for the particle identification and the correction factors for the
BTag efficiencies (see table 18.4) listed in table 19.7.

mode εsig [10−5] stat. error generated branching fraction
factor

K+ 53.17 ±1.37% 10m -
K0

S 15.81 ±3.02% 10m 0.692
K∗+(K0

Sπ
+) 17.05 ±5.04% 10m 0.692× 0.666× 0.5

K∗+(K+π0) 22.01 ±3.69% 10m 0.33
K∗0(K+π−) 17.79 ±2.91% 10m 0.66

Table 19.6. Signal efficiencies obtained from the signal Monte Carlo samples.

mode PID correc-
tion

BTag cor-
rection

εsig [10−5]

K+ 0.991 0.82 43.4
K0

S 1.000 0.78 12.3
K∗+(K0

Sπ
+) 0.970 0.61 10.0

K∗+(K+π0) 1.003 0.80 17.7
K∗0(K+π−) 0.972 0.71 12.3

Table 19.7. Signal efficiencies corrected by the correction factor for the particle identification and
the correction factors for the BTag efficiencies.

19.6. Systematic Uncertainties for the NeuroBayes Selection

19.6.1. Systematic Uncertainties on the Signal Normalization

The systematic uncertainties for the signal normalization is carried over from the cut-based se-
lection except for the uncertainty originating from the signal Monte Carlo statistical uncertainty.
All the uncertainties are listed in table 19.8.

19.6.2. Systematic Uncertainties on the Background Level

The systematic uncertainty on the background level is obtained in the same way as for the
cut-based selection. For the differences between data and Monte Carlo, also the wrong-tag
sample is used. The respective NeuroBayes cuts are applied to this wrong-tag sample and then
the difference of RMC and Rdata plus 1σ of the statistical uncertainty is used as a systematic
uncertainty on the ratio RECL. The results from the wrong-tag sample are

Rdata = 0.32± 0.14 (19.1)

RMC = 0.36± 0.04 (19.2)

and the double-ratio

RMC/data = 0.88± 0.4 (19.3)
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19.7. Limit Estimation

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

NBB̄ 1.4 1.4 1.4 1.4 1.4
Tracks 0.35 - 0.35 0.35 0.7
K0

S - 2.23 2.23 - -
π0 - - - 4.0 -
K/π PID 0.86 - 0.90 0.87 1.83
signal MC statis-
tics

1.37 3.02 5.04 3.69 2.91

BTag efficiency 5.60 3.88 5.02 4.09 5.57
veto efficiency 8.3 8.3 8.3 8.3 8.3

Sum 10.22 9.97 11.26 10.84 10.66

Table 19.8. Summary of the systematic uncertainties on the signal normalization for the Neu-
roBayes selection. Each number is in units %.

which gives an overall uncertainty of 51.66%. The distributions of the wrong-tag events for the
data and the Monte Carlo sample are shown in figure 19.7. Even if the statistics is very low in
some modes, it is interesting to see that there is no peaking structure in the data signal-box.
The errors on the ratio RECL are summarized in table 19.9 and the absolute uncertainties on
the number of expected background events Nb are summarized in table 19.10.

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

ΔRECL(stat.
only)

19.24 23.31 42.15 26.26 26.41

Data MC differ-
ences

51.66 51.66 51.66 51.66 51.66

Sum 55.13 56.68 66.67 57.95 58.02

Table 19.9. Summary of the absolute systematic uncertainties on the ratio RECL. Each number
is in units %.

19.7. Limit Estimation

We can now estimate the expected limits assuming only background. This is done in the same
way as for the cut-based method in section 18.6.
A summary of all the numbers, relevant to estimate the limit are listed in table 19.11.
The resulting expected upper limits are listed in table 19.12. A comparison to the expected
limits obtained with the cut-based selection is visualized in figure 19.8 and with Chen’s analysis
in figure 19.9. There is a significant improvement for all modes with the NeuroBayes selection.
In figure 19.10, a comparison of the expected limits of this analysis with the NeuroBayes se-
lection compared to the observed limits in Chen’s analysis [Che+07] and the world best limits
from [Nak+10]. Except for the K+ mode, all of the expected limits are better than the current
world best limits on the decays respectively. Of course, the actual observed limits can be different
from the expectations.
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(e) K∗0
→ K+π− mode
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(f) All modes together

Figure 19.7. The EECL distribution of the wrong-tag sample. The purple histogram shows the
distribution of the rare Monte Carlo sample and the green histogram the generic
Monte Carlo sample. The black dots with error bars are the data points.
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19.7. Limit Estimation

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

central value 5.64 1.39 0.29 4.27 2.25

ΔRECL 3.11 0.79 0.19 2.47 1.31
ΔNsideband 1.78 0.70 0.20 1.10 1.13

Sum 3.58 3.00 0.28 2.71 1.73

Table 19.10. Summary of the absolute systematic uncertainties on the expected number of back-
ground events Nb.

source K+ K0
S K∗+(K0

Sπ
+) K∗+(K+π0) K∗0(K+π−)

Nb 5.64 1.39 0.29 4.27 2.25
εsig[10

−5] 42.11 12.06 9.93 17.47 12.07
ΔNb 3.58 3.00 0.28 2.71 1.73
Δεsig[%] 10.22 9.97 11.26 10.84 10.66

Table 19.11. Summary of the relevant information for the limit estimation for the NeuroBayes
selection.

mode exp. upper limit [10−5]

K+ 3.1
K0

S 3.7
K∗+(K0

Sπ
+) 3.4

K∗+(K+π0) 5.6
K∗0(K+π−) 4.9

Table 19.12. The expected upper limits for each mode.
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19. Neural-Network-based Analysis

Figure 19.8. A comparison of the expected limits of the NeuroBayes selection compared to the
cut-based selection.

Figure 19.9. A comparison of the expected limits of the NeuroBayes selection compared to the
cut-based selection and the expected limits for Chen’s analysis.

118



19.7. Limit Estimation

Figure 19.10. A comparison of the expected limits of this analysis with the NeuroBayes selection,
the observed limits in the predecessor analysis of Kai-Feng Chen [Che+07] and
the world best limits from [Nak+10].

The final blinded data EECL distributions and the scaled background expectations are shown in
figure 19.11.
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19. Neural-Network-based Analysis
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(c) K∗+
→ K+π0 mode
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(d) K∗+
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Sπ
+ mode
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(e) K∗0
→ K+π− mode

Figure 19.11. The blinded EECL distribution and the Monte Carlo expectation (data: dots with
error-bars, generic MC: green, rare MC: purple)
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20. Partial Unblinding

20.1. Cut-based Selection

For the full unblinding, the whole collaboration needs to be satisfied with the analysis proce-
dure which will take some time. However, because of the huge expected improvements and the
sounding analysis, I was allowed to do a partial unblinding of the K+ mode with the data used
in Chen‘s analysis corresponding to 534.586 million BB̄ pairs.
The resulting EECL distributions are shown in figure 20.1. The observed and expected numbers
together with the estimated upper limit is shown in table 20.1. In this table, also the 90% lower
limit is shown. If it is 0 then the observed number of signal events has less than 2σ evidence.
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(a) K+ mode

Figure 20.1. The unblinded EECL distribution and the scaled Monte Carlo expectation (data:
dots with error-bars, generic MC: green, rare MC: purple) for the data sample
used in the predecessor analysis. The expected background plus 1σ systematic
uncertainty is shown as a horizontal dashed line.

20.2. NeuroBayes Selection

Also the NeuroBayes selection is partially ublinded. The resulting EECL distributions are shown
in figure 20.2. The observed and expected numbers together with the estimated upper limit is
shown in table 20.2.
The observed limits in both selections are weaker than the expected limits, because there are
more events observed as expected with the background only hypothesis. This is further discussed
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20. Partial Unblinding

source K+

Nb 9.91
εsig[10

−5] 57.68
ΔNb 5.34
Δεsig[%] 10.19

Obs. events 21
Obs. limit[10−5] 8.79
Obs. lower limit[10−5] 0

Table 20.1. Summary of the relevant information for the limit estimation for the cut-based se-
lection for the partial data-sample.
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(a) K+ mode

Figure 20.2. The unblinded EECL distribution and the scaled Monte Carlo expectation (data:
dots with error-bars, generic MC: green, rare MC: purple) for the data sample
used in the predecessor analysis. The expected background plus 1σ systematic
uncertainty is shown as a horizontal dashed line.

source K+

Nb 5.25
εsig[10

−5] 42.11
ΔNb 3.34
Δεsig[%] 10.22

Obs. events 10
Obs. limit[10−5] 6.9
Obs. lower limit[10−5] 0

Table 20.2. Summary of the relevant information for the limit estimation for the NeuroBayes
selection for the partial data-sample.
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20.3. Further Checks

in the next section.

20.3. Further Checks

As can be seen in figure 20.1a and figure 20.2a there is a non-significant excess of data events in
the signal-box. This needs extremely careful further examination. It is of course possible that it
is a upward fluctuation of the background. The shape seems not to be described by the expected
signal-shape, shown in figure 18.1a. The most dangerous case would be, if it is a bias in the data
EECL distribution of the background. This could be either a peaking background which is not
described by the Monte Carlo, or the EECL distribution itself is not well described by the Monte
Carlo. This examination needs to be done before the box opening of the complete data sample,
as it is a blind analysis.
In figures 20.3 one can see a comparison of the EECL distribution for the veto against all tracks
and the anti-veto with only events where at least one track remains for the cut-based selection
in the K+ mode. For both distributions, no good track, passing the quality criteria is allowed
and the lower cut on �p∗ is removed.
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(a) track veto
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(b) track anti-veto

Figure 20.3. The unblinded EECL distribution for the veto and the anti-veto for data and the
scaled Monte Carlo expectation (data: dots with error-bars, generic MC: green,
rare MC: purple) for the data sample used in the predecessor analysis.

One can see that the distribution in figure 20.3a has more data events in the signal-box as
expected from Monte Carlo and in the anti-veto sample it is the other way round, having too few
events in the signal-box. That might be a hint that the veto against all tracks with no quality
cuts applied might be the reason for the excess. A discrepancy in this variable was already seen
in figure 18.11.
In addition, the EECL distribution for data and Monte Carlo in the Mbc sideband can be seen
in figure 20.4a once with the veto on all tracks applied and once with a veto only against good
tracks, matching the quality criteria. Both distributions seems to be fine, which would point to
a background component from real B meson decays.
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20. Partial Unblinding
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(b) K+ mode without veto

Figure 20.4. The unblinded EECL distribution of the Mbc sideband and the scaled Monte Carlo
expectation (data: dots with error-bars, generic MC: green, rare MC: purple) for
the data sample used in the predecessor analysis.
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21. Further Improvements

The currently most stringent limits on the branching ratios of B → K(∗)νν̄ decays are set by the
BaBar collaboration. In their analysis [Aub+08] and [AS+10] they not only used a hadronic full
reconstruction as done in this analysis, but they also included a semi-leptonic full reconstruction
tag. While the background level is expected to rise, the efficiency of the full reconstruction tag
will also be significantly increased. This semi-leptonic tag is currently under construction and,
with regards to the success of the BaBar results, a significant improvement can be expected.
Furthermore, as shown in section 18.3, an additional veto on neutral hadrons (e.g. KL mesons)
will help to reduce the expected background further and therefore, the reconstruction efficiency
can be increased.
Currently, the signal shape is not used beside the division into a signal-free sideband and a signal
region. It could help to fit the signal and background distributions in oder to separate signal
from background further.
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Part VI.

Conclusion
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Conclusion

After ten years of extremely successful running of the Belle detector we achieved an improvement
of a factor of two in efficiency of the full reconstruction technique used by the collaboration for
many interesting analyses. The fundamental innovation was the turning away from cut-based bi-
nary decisions towards probability-based decisions. Exploiting the hierarchical structure, where
heavy particles decay into lighter particles, we propagate the signal to background probability for
each candidate upwards the hierarchy from lighter to heavier particles, postponing the decisions
of keeping or discarding the candidate to higher stages. Of course, keeping all reconstructed
candidates would result in a maximal efficiency, but this would result in so many possible com-
binations that the processing of the whole dataset would take several years. Therefore, we had
to reduce the number of combinations by reducing the intermediate particle candidates. As al-
ready mentioned, we cut away candidates in higher stages, more detailed, we cut softly on the
product of the children’s probability. This means that a child with a very high probability can
compensate a child with a lower probability. This results in a much higher efficiency compared
to cut-away the children based on their own probability alone.
We could show that the multivariate analysis package NeuroBayes is able to estimate the proper
Bayesian probability for each candidate which is crucial for our approach. In order to be able
to train and deploy hundreds of NeuroBayes experts, with each of them using different vari-
ables, we developed a highly flexible reconstruction framework. By full automatization of the
reconstruction procedure the human error rate is minimized as well as the time consumption for
the implementation of new decay channels to be reconstructed. In the end we reconstruct 1104
exclusive B meson decay channels.
Altogether, as we are able to freely choose the total number of combinations, we found a good
balance between highest possible efficiency and acceptable processing time for the whole data
sample. As already confirmed by many analyses in the Belle collaboration, the efficiency is
doubled compared to the previously used cut-based full reconstruction tool. This efficiency
increase is comparable to several years of data taking and will improve the sensitivity of many
future analyses.
In order to take advantage of this remarkable improvement I updated a previous measurement
by K.F. Chen for the Belle collaboration, the search for the decays B → K(∗)νν̄. By redoing this
analysis, a significant improvement of the expected limit showed up due to the higher efficiency
of the full reconstruction tool. Depending on the mode, the expected limit could be lowered by
a factor of 2 to 5 compared to the predecessor analysis (see figure 18.13).
By exchanging the cut-based selection of this analysis with a NeuroBayes-based selection, another
significant improvement could be achieved because the efficiency and the purity increased at the
same time using the multivariate technology. Another reduction by up to a factor of 2 of the
expected limit could be achieved compared to the cut-based selection (see figure 19.8).
These amazing improvements reveal the importance of the efficiency enhancement of our new full
reconstruction method for the sensitivity of future analyses, including the upcoming unblinding
of the analysis presented in this thesis.
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22. Appendix for the Full Reconstruction

22.1. Variables Used for the NeuroBayes Trainings

22.1.1. Stage 1 Trainings

Variable name Description

energy measured energy
pt measured pt
ptot measured ptot
dEdx_ratio measured dE/dx ratio
dEdx_pull measured dE/dx pull
trk_pid particle identification based on track measurements
tof_pid particle identification based on time-of-flight measurements
acc_pid particle identification based on aerogel-Cherenkov measurements
PID_eid electron identification
PID_eid_flag electron identification
PID_muid muon identification
PID_muid_flag muon identification
ATC_PID_binned_01 combined particle identification binned for different hypothesis
ATC_PID_binned_02 combined particle identification binned for different hypothesis
ATC_PID_binned_03 combined particle identification binned for different hypothesis
ATC_PID_binned_04 combined particle identification binned for different hypothesis

Table 22.1. A list of variables used for the NeuroBayes training for electrons
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22. Appendix for the Full Reconstruction

Variable name Description

energy measured energy
pt measured pt
ptot measured ptot
dEdx_ratio measured dE/dx ratio
dEdx_pull measured dE/dx pull
trk_pid particle identification based on track measurements
tof_pid particle identification based on time-of-flight measurements
acc_pid particle identification based on aerogel-Cherenkov measurements
PID_eid electron identification
PID_eid_flag electron identification
PID_muid muon identification
PID_muid_flag muon identification
ATC_PID_binned_10 combined particle identification binned for different hypothesis
ATC_PID_binned_11 combined particle identification binned for different hypothesis
ATC_PID_binned_12 combined particle identification binned for different hypothesis
ATC_PID_binned_13 combined particle identification binned for different hypothesis
KLM_likelihood1 information about the muon likelihood from the KLM
KLM_likelihood2 information about the muon likelihood from the KLM
KLM_likelihood3 information about the muon likelihood from the KLM
KLM_likelihood4 information about the muon likelihood from the KLM
KLM_likelihood5 information about the muon likelihood from the KLM
KLM_Chi2 χ2 for the muon hypothesis from the KLM
KLM_Outcome information about the muon from the KLM

Table 22.2. A list of variables used for the NeuroBayes training for muons

Variable name Description

energy measured energy
pt measured pt
ptot measured ptot
dEdx_ratio measured dE/dx ratio
dEdx_pull measured dE/dx pull
trk_pid particle identification based on track measurements
tof_pid particle identification based on time-of-flight measurements
acc_pid particle identification based on aerogel-Cherenkov measurements
PID_eid electron identification
PID_eid_flag electron identification
PID_muid muon identification
PID_muid_flag muon identification
ATC_PID_binned_20 combined particle identification binned for different hypothesis
ATC_PID_binned_21 combined particle identification binned for different hypothesis
ATC_PID_binned_23 combined particle identification binned for different hypothesis
ATC_PID_binned_24 combined particle identification binned for different hypothesis

Table 22.3. A list of variables used for the NeuroBayes training for pions
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22.1. Variables Used for the NeuroBayes Trainings

Variable name Description

energy measured energy
pt measured pt
ptot measured ptot
dEdx_ratio measured dE/dx ratio
dEdx_pull measured dE/dx pull
trk_pid particle identification based on track measurements
tof_pid particle identification based on time-of-flight measurements
acc_pid particle identification based on aerogel-Cherenkov measurements
PID_eid electron identification
PID_eid_flag electron identification
PID_muid muon identification
PID_muid_flag muon identification
ATC_PID_binned_30 combined particle identification binned for different hypothesis
ATC_PID_binned_31 combined particle identification binned for different hypothesis
ATC_PID_binned_32 combined particle identification binned for different hypothesis
ATC_PID_binned_34 combined particle identification binned for different hypothesis

Table 22.4. A list of variables used for the NeuroBayes training for kaons

Variable name Description

energy measured energy
pt measured pt
ptot measured ptot
Pi0Mass invariant mass
Pi0GammaMatch booleaen whether the gammas are matched with tracks
Pi0ChildrenAngle angle between gammas
Pi00ECL_en energy gamma 1
Pi01ECL_en energy gamma 2
Pi00EA_e9 gamma 1 shower shape
Pi01EA_e9 gamma 2 shower shape
Pi00EA_e9unf gamma 1 shower shape
Pi01EA_e9unf gamma 2 shower shape
Pi00EA_width gamma 1 shower shape
Pi01EA_width gamma 2 shower shape
Pi00EA_nhits gamma 1 shower shape
Pi01EA_nhits gamma 2 shower shape
Pi00EA_seed gamma 1 initial christal
Pi01EA_seed gamma 2 initial christal
Pi00EA_cID gamma 1 christal ID
Pi01EA_cID gamma 2 christal ID

Table 22.5. A list of variables used for the NeuroBayes training for π0
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22. Appendix for the Full Reconstruction

Variable name Description

Mass invariant mass
energy measured energy
px momentum in x direction
py momentum in y direction
pz momentum in z direction
pt transversal momentum
ptot total momentum
Z_dist difference of the impact parameters in z direction
Intersect tracks intersect
Chi2 χ2 of the fit
dr radius of the nearest approach to the IP
dPhi phi of the nearest approach to the IP

Table 22.6. A list of variables used for the NeuroBayes training for K0
S

Variable name Description

pt transversal momentum
ptot total momentum
EA_e9 shower shape
EA_e9unf shower shape
EA_width shower shape
EA_nhits shower shape
EA_seed initial christal
EA_cID christal ID
ECL_en Energy in the ECL

Table 22.7. A list of variables used for the NeuroBayes training for gamma
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22.1. Variables Used for the NeuroBayes Trainings

22.1.2. Stage 2 Trainings

Variable name Description

pt transversal momentum
ptot total momentum
Ch0_NBout NeuroBayes output of child 0
Ch0_PseudoHelAng pseudo helicity angle of child 0
Ch0_pt transversal momentum of child 0
Ch0_ptot total momentum of child 0
Ch01_Angle angle between of children
Ch1_NBout NeuroBayes output of child 1
Ch1_energy energy of child 1
Ch1_PseudoHelAng pseudo helicity angle of child 1
Ch1_pt transversal momentum of child 1
Ch1_ptot total momentum of child 1
sumChldNB sum of the childrens NeuroBayes ouputs
prodChildNB product of the childrens NeuroBayes ouputs

Table 22.8. A list of variables used for the NeuroBayes training for J/ψ

Variable name Description

ptot total momentum
dist_to_IP distance to the IP
mom_dir_dev deviation of the momentum from the direction to the IP
prodChildNB product of the childrens NeuroBayes ouputs
sig_dist_to_IP significance of the distance to the IP
sumChldNB sum of the childrens NeuroBayes ouputs
ChX_NBout NeuroBayes output of child X
ChX_PseudoHelAng pseudo helicity angle of child X
ChX_ptot total momentum of child X
ChX_Mass invariant mass of child X
ChXY_InvMassScaled scaled invariant mass of child pair X,Y with no mass information

for the mother particle
ChXY_Angle angle of child pair X,Y

Table 22.9. A list of variables used for the NeuroBayes training for D+,D0 ,Ds mesons
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22. Appendix for the Full Reconstruction

22.1.3. Stage 3 Trainings

Variable name Description

ptot total momentum
prodChildNB product of the childrens NeuroBayes ouputs
sumChldNB sum of the childrens NeuroBayes ouputs
ChX_NBout NeuroBayes output of child X
ChX_PseudoHelAng pseudo helicity angle of child X
ChX_ptot total momentum of child X
ChX_Mass invariant mass of child X

Table 22.10. A list of variables used for the NeuroBayes training for D∗+,D∗0 ,D∗s mesons

22.1.4. Stage 4 Trainings

Variable name Description

deltaE ΔE of the B candidate
prodChildNB product of the childrens NeuroBayes ouputs
sumChldNB sum of the childrens NeuroBayes ouputs
CosThetaB cosθ of the B candidate to the beam pipe
Dstar_D_massdiff D∗ −D mass difference of the first D∗

D_hash_from_1st_dstar decay hash of the first D∗

Dstar2_D_massdiff D∗ −D mass difference of the second D∗

D_hash_from_2nd_dstar decay hash of the first D∗

ChX_NBout NeuroBayes output of child X
ChX_PseudoHelAng pseudo helicity angle of child X
ChX_ptot total momentum of child X
ChX_Mass invariant mass of child X
ChX_hash decay hash of child X
ChXY_InvMassScaled scaled invariant mass of child pair X,Y with no mass information

for the mother particle
ChXY_Angle angle of child pair X,Y

Table 22.11. A list of variables used for the NeuroBayes training for B+,B0 mesons
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23. Appendix for the Analysis B → K
(∗)
νν̄

23.1. N-1 Plots

In the following you can see the so-called N-1 plots of the cut variables for the different modes
separately. In these plots, all cuts are applied, except for the plotted one. This gives a direct
feeling about the cut efficiencies for the different cut values. Because of correlations between the
cut variables, it might be misleading to look only to the distribution of the individual variables,
without the other cuts applied.
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23. Appendix for the Analysis B → K(∗)νν̄
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Figure 23.1. N-1 plots for AngleMissingMomentumToBeam. This variable is the angle of the
missing momentum to the beam pipe. The purple histogram shows the signal
distribution and is normalized to one. The green and the yellow histograms show
the distributions for the generic and the rare Monte Carlo sample repectively and
the sum of both is normalized to one. The cut values for this variable are marked
with dashed lines.
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23.1. N-1 Plots
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Figure 23.2. N-1 plots for BTagNBout. This variable is the NeuroBayes output of the BTag

canditate. The purple histogram shows the signal distribution and is normalized
to one. The green and the yellow histograms show the distributions for the generic
and the rare Monte Carlo sample repectively and the sum of both is normalized
to one. The cut values for this variable are marked with dashed lines.
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23. Appendix for the Analysis B → K(∗)νν̄

Ch0_Pstar_inBSigRest
0 1 2 3

ar
b.

 u
ni

ts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(a) K+ mode

Ch0_Pstar_inBSigRest
0 1 2 3

ar
b.

 u
ni

ts

0.00

0.01

0.02

0.03

0.04

0.05

(b) K0
S mode

Ch0_Pstar_inBSigRest
0 1 2 3

ar
b.

 u
ni

ts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

(c) K∗+
→ K+π0 mode

Ch0_Pstar_inBSigRest
0 1 2 3

ar
b.

 u
ni

ts

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) K∗+
→ K0

Sπ
+ mode

Ch0_Pstar_inBSigRest
0 1 2 3

ar
b.

 u
ni

ts

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(e) K∗0
→ K+π− mode

Figure 23.3. N-1 plots for Ch0PstarinBSigRest. This variable is the momentum of the light me-
son in the BSig rest frame. The purple histogram shows the signal distribution
and is normalized to one. The green and the yellow histograms show the distri-
butions for the generic and the rare Monte Carlo sample repectively and the sum
of both is normalized to one. The cut values for this variable are marked with
dashed lines.
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23.1. N-1 Plots
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Figure 23.4. N-1 plots for NRemainPi0. This variable is the number of remaining π0 candidates.
The purple histogram shows the signal distribution and is normalized to one. The
green and the yellow histograms show the distributions for the generic and the
rare Monte Carlo sample repectively and the sum of both is normalized to one.
The cut values for this variable are marked with dashed lines.
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23. Appendix for the Analysis B → K(∗)νν̄
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Figure 23.5. N-1 plots for NRemainTracksAll. This variable is number of remaining tracks. The
purple histogram shows the signal distribution and is normalized to one. The
green and the yellow histograms show the distributions for the generic and the
rare Monte Carlo sample repectively and the sum of both is normalized to one.
The cut values for this variable are marked with dashed lines.
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23.2. Variables Used for the NeuroBayes training

23.2. Variables Used for the NeuroBayes training

In the following you can see a summary of all the variables used for the trainings. For each
mode, all variables are shown, ordered by the significance, contributed to the total separation
of the training. For each variable, the distribution is shown for background (black) and signal
(red) in the big figure (e.g figure 23.6a). In the smaller figure on the left (e.g figure 23.6b) you
can see the flattened distribution for background (black) and signal (red) and in the small left
figure (e.g figure 23.6c) the purity in bins of this variable. If there is no information available for
a candidate in one vaiable, they are filled in an extra bin, marked yellow.
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23. Appendix for the Analysis B → K(∗)νν̄
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Figure 23.6. K+ mode
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23.2. Variables Used for the NeuroBayes training
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Figure 23.7. K+ mode

147



23. Appendix for the Analysis B → K(∗)νν̄
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Figure 23.8. K+ mode
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23.2. Variables Used for the NeuroBayes training
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23. Appendix for the Analysis B → K(∗)νν̄
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S mode
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23.2. Variables Used for the NeuroBayes training
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23. Appendix for the Analysis B → K(∗)νν̄
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S mode
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23.2. Variables Used for the NeuroBayes training
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S mode

153



23. Appendix for the Analysis B → K(∗)νν̄
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23.2. Variables Used for the NeuroBayes training
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23. Appendix for the Analysis B → K(∗)νν̄
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23.2. Variables Used for the NeuroBayes training
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23. Appendix for the Analysis B → K(∗)νν̄
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Figure 23.18. K∗+ → K+π0 mode

158



23.2. Variables Used for the NeuroBayes training
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Figure 23.19. K∗+ → K+π0 mode
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23. Appendix for the Analysis B → K(∗)νν̄
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Figure 23.20. K∗+ → K+π0 mode

160



23.2. Variables Used for the NeuroBayes training
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Figure 23.21. K∗+ → K+π0 mode
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23. Appendix for the Analysis B → K(∗)νν̄
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23.2. Variables Used for the NeuroBayes training
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23. Appendix for the Analysis B → K(∗)νν̄
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23.2. Variables Used for the NeuroBayes training
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Übernahme des Korreferats.

Die Anfertigung dieser Dissertation war nur möglich durch die hervorragende Betreuung durch
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