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Abstract 
 

This work presents representative applications of a general mathematical framework for 

simultaneously calibrating model parameters and responses through the assimilation of 

experimental data, leading to “best-estimate” values with reduced uncertainties for both 

parameters and responses in a generic time-dependent system.  This mathematical framework 

indicates the agreement between the computed and experimentally measured responses while 

performing: (i) simultaneous calibration of all parameters and responses; (ii) treatment of 

systems involving correlated parameters and responses; (iii) simultaneous calibration over all 

time intervals.  

The salient features of the above methodology are highlighted by presenting a time-

independent paradigm neutron diffusion problem and, respectively, a time-dependent 

radioactive decay problem, illustrating that the assimilation of consistent experimental 

information substantially reduces the uncertainties in the best estimate predictions for both 

model parameters and responses. This work also presents, in premiere, a large-scale 

application of assimilating experimental data from the OECD/NRC BWR Full-Size Fine-

Mesh Bundle Tests (BFBT) benchmarks for the calibration of representative model 

parameters in the three-dimensional thermal-hydraulics code FLICA4, which is routinely used 

for the analysis and design of light-water reactors (LWR). The BFBT benchmarks were 

specifically designed by NUPEC to enable a systematic comparison between full-scale 

experimental data and predictions of numerical simulation models. In this work, the BFBT 

measurements are used for the calibration of model parameters in the thermal-hydraulics code 

FLICA4, for the following benchmark measurements: (i) pressure drops (steady one-

dimensional simulations); (ii) axial void fractions distributions (transient one-dimensional 

simulations); and (iii) transversal void fraction distributions (steady three-dimensional 

simulations, at sub-channel level with cross-flows). By calibrating representative FLICA4-

parameters, this work shows that the consistent assimilation of measurements reduces 

systematically uncertainties and improves in the predictions of large-scale thermal-hydraulics 
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codes. Further research is planned towards the consideration of multi-physics code systems 

comprising coupled thermal-hydraulics and reactor physics numerical simulation tools. 

Developing predictive experimentally validated “best-estimate” numerical models is 

particularly important for designing new technologies and facilities based on novel processes, 

while striving to avoid, as much as possible, the costly and lengthy procedures of building 

representative mock-up experiments, which might confirm -but would not necessarily 

explain- the predictions of simulation tools.  
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Kurzfassung 
 

Diese Arbeit stellt den allgemeinen mathematischen Rahmen für das Kalibrieren von 

Modellparametern und Ergebnissen eines generischen zeitabhängigen Systems durch die 

Integration von experimentellen Daten, dar. Das Kalibrieren führt zu optimal geschätzten 

Werten mit reduzierten Unsicherheiten  für Parameter und Ergebnisse. 

 Dieser mathematische Rahmen zeigt die Konsistenz zwischen den berechneten und 

experimentell gemessenen Ergebnissen bei: (i) gleichzeitigen Kalibrierung aller Parameter 

und Antworten; (ii) Behandlung von Systemen, die korrelierte Parameter und Antworten 

einschließen; (iii) gleichzeitigen Kalibrierung über allen Zeitintervallen, an.  

Die wichtigsten Merkmale der oben genannten Methodologie sind hervorgehoben in ein 

zeitunabhängiges Paradigmenneutronendiffusionsproblem, und, beziehungsweise, ein 

zeitabhängiges Radioaktives-Zerfall Problem. Diese Beispiele  zeigen wie die Integration von 

konsistenten experimentellen Informationen die Unsicherheiten  für Parameter und Ergebnisse 

beträchtlich reduziert. 

Diese Arbeit stellt auch das Kalibrieren, mit experimentellen Daten aus dem OECD/NRC 

BWR Fine-Mesh Bundle Tests (BFBT), von typischen Modellparametern im 

dreidimensionalen thermischen Hydraulikcode FLICA4 dar. FLICA4 ist ein Code welcher 

routinemäßig für die Analyse und das Design von Leichtwasserreaktoren (LWR)  verwendet 

wird.  

Die BFBT Experimenten wurden speziell von NUPEC dafür entworfen, um systematische 

Vergleiche zwischen experimentellen Daten und Voraussagen numerischer 

Simulationsmodellen zu ermöglichen. In dieser Arbeit werden die BFBT Messungen für die 

Kalibrierung von FLICA4-Parametern für die folgenden Fällen verwendet: (i) Druckabfälle; 

(ii) axiale Dampf-Bruchteile („Void-Fractions“) Verteilungen (zeitabhängige Simulationen); 

und (iii) transversalen Void-Fraction-Verteilungen (dreidimensionale Simulationen mit 

Kreuzströmungen). 

Durch Kalibrierung von typischen FLICA4 Parametern zeigt diese Arbeit, dass die 

konsistente Integration von Messungen Unsicherheiten für Code-Parameter und Ergebnisse 

deutlich reduziert. Anschließende Forschung mit Multiphysik Codesystemen, welche die 

gekoppelte thermische Hydraulik und Reaktorphysik und numerische Simulationswerkzeuge 

umfassen, ist geplant. 
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Introduction 
 

Repeated measurements of the same physical quantity yield values that differ from each 

other, as well as from the true but unknown value of that quantity. This variation in results is 

due to experimental errors, imperfect instruments, and imperfectly known calibration 

standards. Hence, around any reported experimental value, there always exists a range of 

values that may also be plausibly representative of the true value. In turn, this means that all 

inferences, predictions, engineering computations, and other applications of measured data are 

necessarily founded on weighted averages over all the possibly true values, with weights 

indicating the degree of plausibility of each value. Thus, since the true value of physical 

quantities cannot be measured exactly, nominally measured values are insufficient, by 

themselves, for applications; the quantitative uncertainties accompanying the measurements 

are also needed, along with the respective nominal values. Since the use of uncertain data may 

necessitate costly safety margins (in medicine, weather and climate prediction, or in the 

chemical, automotive, aerospace, or nuclear industries), working groups of the International 

Standards Organization have been developing uniform rules for reporting data uncertainties. 

Combination of data from different sources involves a weighted propagation (e.g., using 

sensitivities) of various uncertainties, requiring reasoning from incomplete information for 

extracting “best” values together with “best” uncertainties from often sparse, incomplete, 

error-afflicted, and occasionally discrepant experimental data. 

 

The probabilistic description of possible future computational and experimental outcomes, 

based on all recognized errors and uncertainties, is the aim of predictive estimation. Predictive 

estimation comprises three key elements: model calibration, model extrapolation, and 

estimation of the validation domain. Model calibration involves the integration (assimilation) 

of new data for updating (i.e., “calibrating” or “adjusting”) the parameters characterizing a 

computational model. The procedures for model calibration must encompass the propagation 

of all relevant uncertainties, including:  

(i) data uncertainties (input data, model parameters, initial and boundary conditions, 

forcing functions, etc);  

(ii) numerical discretization errors; 

(iii) discrepancies within the experimental data and/or discrepancies between data and 

model predictions; and 
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(iv) uncertainties in the physics of the modeled processes (e.g., due to incomplete 

knowledge).  

 

The results of model calibration are best-estimated values for parameters and predicted 

responses, as well as best-estimate reduced uncertainties (i.e.,smaller values for the variance-

covariance matrices of the predicted best-estimate parameters and responses, provided all 

elements involved in the calibration process are consistent with each other. Quantitative 

model extrapolation addresses the prediction of uncertainty in new environments or 

conditions of interest, including both untested parts of the parameter space and higher levels 

of system complexity in the validation hierarchy. Estimation of the validation domain 

addresses the estimation of contours of constant uncertainty in the high-dimensional space 

that characterizes the application of interest. 

 

Perhaps the earliest systematic activities on finding best-estimate values for model 

parameters were initiated simultaneously in Europe [Cecchini et al, 1964], Israel [Humi et al, 

1964], and the former Soviet Union [Usachhev, 1964], in the course of evaluating neutron 

cross sections by using time-independent reactor physics experiments for measuring “integral 

quantities” (also called “system responses”) such as reaction rates and multiplication factors. 

A decade later, these activities had reached conceptual maturity under the name of “cross-

section adjustment” [see, e.g. Rowlands, 1973 and Gandini , 1973], which essentially 

amounted to using a weighted least-square procedure (with response sensitivities as weighting 

functions) for combining uncertainties in the model parameters with uncertainties in the 

experimental data, subject to the constraint imposed by the linearized reactor physics model. 

The resulting “adjusted” parameters and their “adjusted” uncertainties were then employed in 

the respective reactor physics model to predict better results (reaction rates, multiplication 

factors, Doppler coefficients) in an extended application domain (e.g., a new or improved 

reactor core design). By the late-1970s, the first-order response sensitivities, which appeared 

as weighting functions in the least squares adjustment procedure, were efficiently computed 

using adjoint neutron fluxes, as typified by the works of [Kuroi and Mitani, 1975, Dragt et al, 

1977], and [Weisbin et al, 1978]. It is important to note that all of these works dealt with the 

time-independent linear neutron transport or diffusion equation, as encountered in reactor 

physics and shielding, for which the corresponding adjoint equations were already known and 

readily available. For nonlinear, time-dependent or stationary problems, the adjoint method 
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for computing efficiently sensitivities was generally formulated in 1981 by [Cacuci, 1981] , 

while the first general formulation of a “data adjustment” like methodology for time-

dependent nonlinear problems was presented in 1982 by [Barhen et al, 1982]. Regrettably, 

this advanced (for its time) data adjustment methodology stagnated in the field of nuclear 

engineering after 1982 and apparently failed to influence other scientific fields. 

 

In the late 1980s and during the 1990s, the fundamental concepts underlying “data 

adjustment” seem to have been rediscovered while developing the so-called “data 

assimilation” procedure in the geophysical sciences, in that the concepts underlying data 

assimilation are the same as those underlying the (much older) “data adjustment” procedure. 

Since then, well over a thousand works on data assimilation have been published in the 

geophysical sciences alone, under the name of “3D-VAR” (for time-independent problems, 

and “4D-VAR” (for time-dependent problems). Although too numerous to cite extensively 

here,  representative works can be found cited in the books by [Lewis et al, 2006, Lahoz et al, 

2010, and Cacuci et al, 2011].  

 

[Cacuci and Ionescu-Bujor, 2010] have recently published a comprehensive mathematical 

methodology for best-estimate predictions following the assimilation experimental data and 

simultaneous calibration of model parameters and responses, for large-scale nonlinear time-

dependent systems. This methodology generalizes and significantly extends the results 

customarily used in nuclear engineering as well as those underlying 4D-VAR data 

assimilation procedures in the geophysical sciences [Lewis et al, 2006, Lahoz et al, 2010, and 

Cacuci et al, 2011]. This methodology also provides quantitative indicators constructed from 

sensitivity and covariance matrices for determining the consistency (agreement or 

disagreement) among the a priori computational and experimental data (parameters and 

responses). Once the inconsistent data, if any, is discarded, the methodology by [Cacuci and 

Ionescu-Bujor, 2010] yields best-estimate values for parameters and predicted responses, as 

well as best-estimate reduced uncertainties (i.e., “smaller” values for the variance-covariance 

matrices) for the predicted best-estimate parameters and responses.  

[Petruzzi et al, 2010] have applied the methodology developed by [Cacuci and Ionescu-

Bujor, 2010] to a blowdown thermal-hydraulics benchmark of interest to nuclear reactor 

safety, demonstrating that the assimilation of consistent experimental data leads to a 

significant reduction of uncertainties of the best estimate predicted results. Going significantly 
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beyond the limited scope of the work by [Petruzzi et al, 2010], the present work presents a 

large-scale application of assimilating experimental data from the international OECD/NRC 

BWR Full-Size Fine-Mesh Bundle Tests (BFBT) benchmarks [Neykov et al., 2006] for the 

calibration of representative model parameters in the three-dimensional thermal-hydraulics 

code FLICA4 [Fillion et al., 2007]. This code is designed for the analysis of thermal-hydraulic 

phenomena in LWR cores. 

 
 This work is structured as follows: Section 2 reviews the methodology for data 

assimilation and simultaneous calibration of model parameters and responses, for a generic 

time-dependent physical system; of course, time independent systems are included as a 

particular case within this framework. This methodology also includes quantitative indicators 

(based on uncertainties and sensitivities) for determining the degree of agreement (or 

disagreement) relevant to the assimilation and best-estimate adjustment of parameters and 

responses, of computations and experiments. Furthermore, this methodology also provides the 

basic elements for quantitative model extrapolation (i.e., prediction of uncertainty in new 

environments or conditions of interest, including both untested parts of the parameter space 

and higher levels of system complexity in the validation hierarchy) and estimation of the 

validation domain.  

 

Section 3 highlights the salient features of the above methodology by presenting a time-

independent paradigm neutron diffusion problem and, respectively, a time-dependent 

radioactive decay problem. These problems clearly show that the assimilation of consistent 

experimental information substantially reduce the uncertainties in the best estimate 

predictions for both model parameters and responses. Section 3 also presents, in premiere, a 

large-scale application of assimilating experimental data from the OECD/NRC BWR Full-

Size Fine-Mesh Bundle Tests (BFBT) benchmarks for the calibration of representative model 

parameters in the three-dimensional thermal-hydraulics code FLICA4. This code system has 

been designed by the Comissariat a l’Energie Atomique (France) and is routinely used for the 

analysis and design of light-water reactors (LWR). The BFBT benchmarks were specifically 

designed by NUPEC to enable a systematic comparison between full-scale experimental data 

and predictions of numerical simulation models. The BFBT experiments are particularly well 

suited for quantifying uncertainties in the prediction of detailed sub-channel void fraction 

distributions and critical powers. In this work, the BFBT measurements are used for the 
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calibration of model parameters in the thermal-hydraulics code FLICA4, for the following 

benchmark measurements: (i) pressure drops (steady one-dimensional simulations); (ii) axial 

void fractions distributions (transient one-dimensional simulations); and (iii) transversal void 

fraction distributions (steady three-dimensional simulations, at sub-channel level with cross-

flows).  

 

Finally, Section 4 offers concluding remarks, addressing further work needed to alleviate 

the current limitations of the best-estimate predictive methodology presented in this work, as 

well as applications involving coupled thermal-hydraulics and reactor physics simulation 

tools.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 11



1 Consistent Experimental Data Assimilation and Model 
Calibration: Mathemathical Formalism 
 

This chapter presents a rigorous first-order methodology for computing best-estimate 

predictive results by combining experimental and computational information in conjunction 

with models of time-independent and time-dependent systems. This methodology uses Bayes’ 

theorem in conjunction with information theory to assimilate consistently all available 

experimental and computational uncertainty-afflicted information (including discretization-

modeling errors) for obtaining best-estimate calibrated model parameters and responses, 

together with correspondingly reduced uncertainties. This new methodology also provides 

quantitative indicators for assessing the consistency among parameters and responses, for 

consequent acceptance or rejection of information within the overall assimilation procedure. 

To facilitate the presentation of the fundamental concepts underlying this new methodology, 

its time-independent formalism is presented first, in Section 1.1 relegating the presentation of 

the full time-dependent formalism to Section 1.2. 

 

1.1 Time-Independent Data Assimilation and Model 
Calibration 

 

Mathematical models of physical processes comprise independent variables (e.g., time, 

space, energy, etc.), dependent variables (e.g., temperatures, pressures, velocities, fluxes, 

etc.), and model parameters (boundary and initial conditions, correlations, etc.). Specifically, 

consider that the mathematical model comprises N  parameters (e.g., material properties, 

correlations, etc.), denoted by the components nα  of a vector ( )1 N, ,α α=α … .  As a matter of 

convention, all vectors considered in this work are column vectors, unless specified otherwise. 

In practice, the parameters are experimentally determined quantities, so their exact values are 

unknown; usually, only their mean (or nominal) values, 0
n nα α≡ , and their covariances 

(uncertainties) are known. These covariances are usually represented in the form of a positive 

definite matrix called the covariance matrix, αC , which is defined as  

 

   ( )( )0 0 ††
α δ δ − −C α α α α α α� � ,    (1.01) 
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where the components of the N -dimensional vector δα  are of the form 0
n n nδα α α≡ − , and 

where the dagger (†)  signifies transposition. Note that “transposition” will be indicated only 

when necessary to avoid misinterpretation. The diagonal elements of αC  are the variances, 

( ) ( ( )) 2
n n

(

nn
varα α δα= =C , of the  parameters, while the off-diagonal components are 

the covariances, ( )

N

)m n m nmn
cov ,α α α δα δα=C = , of the corresponding pairs of parameters. 

The results computed using the mathematical model are customarily called responses, and 

will henceforth be denoted by the I -dimensional column vector ( )1 Ir , ,r=r … . Note that the 

actual values of these responses are also not known exactly, since r  depends on the uncertain 

model parameters random quantities ( )1 N, ,α α=α … ; hence, r  is also considered to be a 

random quantity.  

Consider, furthermore, that experimental measurements corresponding to the computed 

responses are also available. The nominal values for the experimentally measured responses 

will be denoted in the sequel by the components of an I -dimensional vector,  (the subscript 

“m” is used in this subsection to denote “experimentally measured” quantities). The 

associated uncertainty matrix for the experimentally measured responses will be denoted by 

, and is defined as  

mr

mC

( )( )††
m m m m mδ δ − −C r r r r r r� � , m m .δ ≡ −r r r   (1.02) 

 

In the most general case, the measured responses may be correlated to the parameters 

( 1 N, , )α α=α …  through a response-parameter uncertainty (covariance) matrix of order 

I N× , of the form 

( )( ) ( )( )0 0† ††
r m r,α αδ δ≡ = − − = − −C r α r r α α C α α r rm   (1.03) 

 

By using the maximum entropy principle, Cacuci and Ionescu-Bujor (2010) have shown 

that the most objective prior probability distribution corresponding to the computational and 

experimental information described above is a multivariate Gaussian of the form: 
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 ( ) ( )
( )

( )
( ) ( ) 1

1 2

1
2

2
†

j

exp Q
p | d d , Q , z

det π
−

⎡ ⎤−⎢ ⎥⎣ ⎦= ≡
z

z C z z z z C z
C

,− ∞ < < ∞

)

 (1.04) 

 

where the ( )  partitioned matrix  represents the joint uncertainty matrix of 

the parameters and responses: 

(N I N I+ × + C

 

   r

r m

α α

α

⎞⎛
≡ ⎟⎜
⎝ ⎠

C C
C

C C
,     (1.05) 

 

while z  denotes the ( )I N+ -dimensional partitioned vector 

 

   
0

m

⎞⎛ −
≡ ⎟⎜ −⎝ ⎠

α α
z

r r
      (1.06) 

 

 In general, the responses ( )1 Ir , ,r=r … depend nonlinearly and implicitly (in an 

analytically intractable form) on the model parameters ( )1 N, ,α α=α … . Such a dependence 

can be generally represented in the vector-form ( )α=r R . Furthermore, the uncertainties in 

parameters and modeling induce uncertainties in the computed responses, and can be 

computed either by means of statistical methods (for relatively simple models with few 

parameters) or deterministically, by using the propagation of moments (errors) method [see 

Cacuci, 2003]. In this method, the computed response is linearized via a functional Taylor-

series expansion around the nominal values, , of the parametersα , as follows: 0α

 

( ) ( ) ( )( )0 0 0 0 higher order termsδ= + = + − +r R α α R α S α α α ,  (1.07) 

 

where  denotes the computed response at the nominal parameter values , while 

 represents the 

( 0R α

)
) 0α

( 0S α ( )N I+ -dimensional matrix containing the local sensitivites (i.e., the 

first-order partial derivatives) of the computed responses with respect to the parameters,  

namely: 
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 ( )

( ) ( )

( ) ( )

1 1

111 1

1

1

NN

I IN I I

N

R R
s s

s s R R

α α

α α

⎞∂ ∂⎛
⎟⎜ ∂ ∂⎞⎛ ⎟⎜

⎟⎜ ⎟⎜
⎟⎜ ⎟⎜⎜ ⎟ ∂ ∂⎝ ⎠ ⎟⎜

⎜ ⎟∂ ∂⎝ ⎠

α α

S α
α α

…
…

� # % # � # % #
"

"

   (1.08) 

 

Local sensitivities can be computed exactly only by using deterministic methods that 

involve some form of differentiation of the system under investigation. As first shown by 

[Cacuci,1981a and 1981b], the most general and comprehensive way of defining local 

sensitivities for operators (in the sense of nonlinear functional analysis) is in terms of the 

(first) Gâteaux-differential of the system’s response, at the nominal value of the system’s 

dependent variables and parameters. There are two general procedures for calculating exactly 

and efficiently the local sensitivities for any type of large-scale nonlinear systems (including 

feedback), namely the Forward Sensitivity Analysis Procedure (FSAP) and the Adjoint 

Sensitivity Analysis Procedure (ASAP). The FSAP is advantageous to employ only if the 

number of different responses of interest for the problem under consideration exceeds the 

number of system parameters and/or parameter variations. For large-scale systems, in which 

the number of system parameters and/or parameter variations to be considered exceeds the 

number of responses of interest, the ASAP is, by far, the most advantageous method to 

employ, even though its implementation requires an appropriately constructed adjoint 

sensitivity system. The remarkable efficiency of the ASAP stems from the fact that the adjoint 

sensitivity system is linear in the adjoint function, is independent of any parameter variations, 

and needs to be solved only once per response. In particular, if the original model is linear in 

the state (i.e., dependent) variables, then the adjoint sensitivity equation can be solved 

independently of the original model. In turn, once the adjoint function has been calculated, it 

is used to obtain the sensitivities to all system parameters by simple quadratures, without 

needing to solve repeatedly differential and/or integral equations. 

In Eq. (1.07), the notation  indicates that the sensitivity matrix is evaluated at the 

nominal parameter values . It follows from Eq. (1.07) that the expectation value, 

( )0S α

0α r , of 

the response , and the corresponding covariance matrix, r ( )0
rcC α , are of the form 
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 ( )0=r R α ,       (1.09) 

 

and 

 

  
( ) ( ) ( )

( ) ( )

0 0

0 0

†† †
rc

†
.α

δ δ δ δ 0⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

C α r r S α α α S α

S α C S α

� ⎦    (1.10) 

 

The next task is to condense the posterior information contained in Eqs. (1.04) and (1.07) 

into a recommended best-estimate value  for the parameters bez ( )1 N, ,α α=α …  and responses 

, together with corresponding best-estimate recommended uncertainties for these 

quantities. If a loss function is given, decision theory indicates how these best-estimate 

quantities are to be computed. If no specific loss function is provided, the recommended best-

estimate updated posterior mean vector 

( 1 Ir , ,r=r … )

bez  and its respective best-estimate posterior 

covariance matrix are usually evaluated by assuming “quadratic loss.” In such a case, the bulk 

of the contribution to the distribution ( )p |z C  in Eq. (1.04) is extracted by considering the 

point in phase space where the respective exponent attains its minimum, subject to the relation 

provided by Eq. (1.07). This constrained minimization problem is solved by introducing an 

I -dimensional vector of Lagrange multipliers, λ , to obtain the following unconstrained 

minimization problem  

 

( ) ( ) ( )( )0 0 0

0

2 †

be
be

be
m

P , Q( ) min,

at .

⎡ ⎤+ − + + − =⎣ ⎦
⎞⎛ −

= ≡ ⎟⎜
−⎝ ⎠

z λ z λ r R α S α α α

α α
z z

r r

�
  (1.11) 

 

In the above expression, the superscript “be” denotes “best estimated values,” and the 

factor “2” was introduced for convenience in front of  in order to simplify the subsequent 

algebraic derivations. The point 

λ
bez  where the functional ( )P ,z λ  attains its extremum 

(minimum) is defined as the point where its derivative with respect to z  vanishes. This point 

can be conveniently determined by rewriting ( )P ,z λ  in the form 
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  ( ) ( ){ }2 † b
IP , Q( ) , min, at≡ + − + = =⎡ ⎤⎣ ⎦z λ z λ S α I z d z z e , (1.12)  

 

where 

 

   ( )0
m−d R α r�      (1.13) 

 

is an I -dimensional vector of “deviations” reflecting the discrepancies between the nominal 

computations and the nominally measured responses. 

Thus,  becomes stationary at the point P( )z be=z z , which is defined implicitly through 

the conditions 

 

   ( ) ( ) beP , , P , , at∇ = ∇ = =z λz λ 0 z λ 0 z z .   (1.14) 

 

The condition  ensures that the constraint represented by Eq. (1.07) is 

fulfilled at 

( )P ,∇ λ z λ 0=

be=z z , while the condition ( )P ,∇ =z z λ 0  yields 

 

 
( ) ( ){ }

( )

1

1

2 2

2 2

† † †

†
be

P , ,

, at .

−

−

⎡ ⎤∇ = ∇ + − +⎣ ⎦

⎞⎛
= + = =⎟⎜

−⎝ ⎠

z zz λ z C z λ S α λ z λ d

S α λ
C z 0 z z

λ

†

  (1.15) 

 

Multiplying the last line of the above equation on the left by C  and solving it for bez  

gives: 

 

   ( ) ( )† †
rbe

r m

α α

α

⎞ ⎞⎛ ⎛⎞⎛
= =⎟⎜ ⎟⎜− −⎝ ⎠⎝ ⎝

⎟⎜
⎠ ⎠

C CS α λ S α λ
z C

C Cλ λ
.  (1.16) 

 

 Writing the above expression in component form gives the following results for the 

calibrated best-estimate parameters and responses, respectively: 
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   ( )( )0 †be
r ,α α ⎡ ⎤= + − ⎣ ⎦α α C C S α0 λ     (1.17) 

 

   ( ) ( )( )0 †be
c m m r .α ⎡ ⎤= + − ⎣ ⎦r α r C C S α λ    (1.18) 

 

Evaluating Eq. (1.07) at bez  while using Eqs. (1.17) and (1.18) yields the following 

important expression for the Lagrange multiplier : λ

 

 . (1.19) ( ) ( ) ( ) ( )0 0 0 0†

m rc r r m
⎡ ⎤⎡ ⎤ ⎡ ⎤≡ − = − − +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦αd R α r C α C S α S α C C λα

 

In Eq. (1.19), the matrix-valued expression that multiplies λ  is actually the covariance-

matrix, , of the vector of response-deviations, d , as shown below:  ( )0
dC α

 

  
( ) ( )( ) ( )( )

( ) ( ) ( )

0 0

0 0 0

†† † †
d

†

rc r r m .α α

δ δ δ δ 0⎡ ⎤= − − ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

C α dd r S α α r α S α

C α C S α S α C C

�
 (1.20) 

 

Hence, the expression of the Lagrange multiplier  at  becomes λ bez

 

   ( ) 10
d

−
⎡ ⎤= ⎣ ⎦λ C α d .      (1.21) 

 

Note that the second and third terms in Eq. (1.20), which are transposes of each other, are 

square matrices of order I  resulting from the multiplication of two rectangular matrices. 

Consequently, the matrix  is a symmetric matrix of order ( 0α )dC I , which is important when 

computing its inverse since, in practical problems, the number of computed or measured 

responses is typically much less than the number  of model parameters. N

 

Replacing now Eq. (1.21) in Eqs. (1.17) and (1.18), respectively, yields the following 

expressions for the nominal values of the calibrated (adjusted) best-estimate responses and 

parameters: 
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     (1.22) ( )( ) ( ) 10 0 †be
r d ,α α

−
⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦α α C C S α C α d0

 

  ( ) ( )( ) ( ) 10 0†be be
m m r d .

−
⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦� αr r α r C C S α C α d   (1.23) 

 

Using Eqs. (1.21), (1.16) and (1.7) in Eq. (1.11) yields the following expression for the 

minimum of ( )Q z : 

 

   
( ) ( )

( ) ( )

0 1

10 0

be † be
min

† be † †
d

Q Q

.

−

−

⎡ ⎤≡ = −⎣ ⎦

⎡ ⎤= − = = ⎣ ⎦

z λ Z α C C z

λ Z α z λ d d C α d
  (1.24) 

 

The new, best-estimate covariances, be
αC  and , corresponding to the best-estimate 

parameters  and responses , together with the new best-estimate parameter-

response covariance matrix 

be
rC

beα ( ber α )
be

rαC  are defined as follows: 

 

   ( )( )†be be be
α − −C α α α α� ,     (1.25) 

 

   ( )( ) ( )( )†be be be
r ,− −C r r α r r α�     (1.26) 

 

   ( ) ( )( )†be be be
rα − −C α α r r α� .    (1.27) 

 

The explicit expression of be
αC  is obtained by replacing Eq. (1.22) in Eq. (1.25), carrying 

out the respective averaging procedure, and recalling from Eqs. (1.07) and (1.12) that 

 

   ( ) ( )( )0 0
m m .− = − − −d R α r r r S α α α� 0    (1.28) 
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Thus, replacing Eq. (1.22) in Eq. (1.25) gives 

 

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

10 0 0 0 0

10 0 0

1 10 0 0 0

†be †
d r

† †

r d

† †
r d d r .

α α α

α α

α α α α

−

−

− −

⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C α α α α α α d C α C S α C

C C S α C α d α α

C C S α C α dd C α C S α C

�

 (1.29) 

 

The above expression can be simplified by recalling Eq. (1.20), and by noting that 

 

 ( ) ( ) ( )( )0 0 0 ††
d r ,α α α ⎡ ⎤− = − ⎣ ⎦C α α α d C C S α�     (1.30) 

 

( ) ( ) ( )( ) ( )0 0 0 ††

d rα α α
0

dα⎡ ⎤ ⎡− = − = ⎤⎣ ⎦ ⎣C α d α α C S α C C α� ⎦        (1.31) 

 

Replacing Eqs. (1.29) through (1.31) in the expression of be
αC  leads to 

 

 
( )( ) ( ) ( )( )

( ) ( ) ( )

10 0 0

10 0 0

†be
r d r

†
d d d .

α α α α α α

α α α

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C C C S α C α C S α C

C C α C α C α
  (1.32) 

 

Furthermore, noting that  

 

( ) ( ) ( )( )0 0 ††
rd m m r ,α ⎡ ⎤− = − ⎣ ⎦C α r r d C C S α� ( ) ( ) ( )( )0 0†

dr m m rα⎡ ⎤− = − ⎣ ⎦C α d r r C S α C�

    (1.33) 

 

and replacing the above expressions in Eq. (1.26) gives the following expression for the best-

estimate parameter covariance matrix: 

 

 
( )( ) ( ) ( )( )

( ) ( ) ( )

10 0 0

10 0 0

†be
r m m r d m

†
m r d d r d .

α α

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C C C S α C α C S α C

C C α C α C α

r
  (1.34) 
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A similar sequence of computations leads to the following expression for the best-estimate 

response-parameter covariance matrix: 

 

 ( )( ) ( ) ( )( )
( ) ( ) ( )

10 0 0

10 0 0

be be
r r

†

r m r d r

†
r r d d d .

α α

α α α

α α

−

−

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C

C C C S α C α C S α C

C C α C α C α

α   (1.35) 

 

Note in Eq. (1.32) that a symmetric positive matrix is subtracted from the initial parameter 

covariance matrix αC . In this sense, therefore, the best-estimate parameter uncertainty matrix 

be
αC  has been reduced by the calibration (adjustment) procedure, which has introduced new 

information from experiments. Similarly, in Eq. (1.34), a symmetric positive matrix is 

subtracted from the initial covariance matrix  of the experimentally measured responses. 

Hence, the best-estimate response covariance matrix  has also been improved (reduced) 

through the addition of new experimental information. Furthermore, Eq. (1.35) indicates that 

the calibration (adjustment) procedure will introduce correlations between the calibrated 

(adjusted) parameters and responses even if the parameters and response were initially 

uncorrelated, since  even if 

mC

be
rC

0≠be
rαC 0rα =C  , i.e., 

 

 ( ) ( )10 0be
r m rc mα α

−
⎡ ⎤ ⎡= +⎣ ⎦ ⎣C C C α C S α C⎤⎦ , when 0rα =C .   (1.36) 

 

As the above expression indicates, the adjustment (calibration) modifies the correlations 

among the parameters through couplings introduced by the sensitivities of the participating 

responses; these sensitivities relate the initial parameter-covariances and experimental-

response covariances. Furthermore, the incorporation of additional (experimental) information 

in the adjustment (calibration) process reduces the variances of the adjusted parameters and 

responses while also modifying their correlations. 
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Note that Eq. (1.34) expresses the best-estimate response covariance matrix  in terms 

of the initial covariance matrix  of the experimental-responses. Alternatively, it is of 

interest to derive the expression of the computed best-estimate response covariance 

matrix, , by using the propagation of moments (errors) method directly on the calibrated 

model, in which the nominal parameter values  are replaced by their “best estimated” 

values . Here, the subscript “rc” attached to  refers to “computed response”, to 

emphasize that  is to be computed by using the propagation of errors on the calibrated 

model, and thus distinguish it from the covariance  (which results directly from the 

calibration/adjustment process applied to the nominal model). In order to compute  using 

the propagation of moments method, the model is linearized around  (instead of ), i.e. 

be
rC

C

α

mC

be
rcC

beα

0α
be
rcC

C

be
rcC

be
r

be
rc

0beα

 

  ( ) ( )( )be be be higher order terms= + − +r R α S α α α . (1.37) 

 

It follows from Eqs. (1.37) that 

 

 

( )( ) ( )( )
( ) ( )( ) ( )

( ) ( )
( ) ( ) ( ) ( ){ } ( )10 0 0

†be be be
rc

††be be be be

†be be be

†be † be
d d d .

α

α α α

−

= − −

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C r R α r R α

S α α α α α S α

S α C S α

S α C C α C α C α S α

  (1.38) 

 

Comparing Eq. (1.38) to Eq. (1.34) reveals that, in general,  since 

. However, when the model is exactly linear, the sensitivity matrix 

be be
rc r≠C C

( ) ( 0be ≠S α S α ) S  is 

independent of the parameter values , i.e., α

 

   ( ) ( )0be = =S α S α S ,  for linear models.    (1.39) 
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It consequently follows that 

 

 

( ) ( )
( ) (

1

1

be † †
rc r d r

† †
rc rc r rc e r r rc r

be
r ,

α α α α α

α α α

−

−

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − − + − − −⎣ ⎦
=

C S C C C S C C SC S

C C SC C C C S SC C C S

C for linear models.

)α  (1.40) 

 

The above equality can be demonstrated by using the following identity which holds for 

regular square matrices A ,  and : B C

 

      (1.41) 
( )( ) ( )

( )( ) (

1

1

† †

† † .

−

−

− − + − − −

= − − + − − −

A A C A B C C A C

B B C A B C C B C )
 

and by effecting the replacements rc→A C ,   in the above identity. For 

completeness, note that Eq. (1.41) can be obtained by starting from the identity 

e→B C †
rα→C C S

 

( )( ) ( )( )1 1† † †− −
= − + − − + − + − −I A C A B C C B C A B C C , 

 

and by multiplying it on the right by ( )−A C  to obtain 

 

   

( )( ) ( )

( )( ) (
( )( ) ( )

( )( ) ( )
( )( ) ( )

1

1

1

1

1

† †

† †

† †

† †

† † ,

−

−

−

−

−

− = − + − − −

+ − + − − − + − + −

= − + − − −

+ − + − − + − −

− − + − − −

A C A C A B C C A C

B C A B C C A C B B C C

A C A B C C A C

B C A B C C A B C C

B C A B C C B C

)†

 

 

a result which, after some minor rearrangements, reduces to Eq. (1.41). 

 

It is important to note that the computation of the best estimate parameter and response 

values, together with their corresponding best-estimate uncertainties, namely Eqs. (1.23), 
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(1.24), (1.32) requires the inversion of a single matrix, namely the matrix  defined in 

Eq. (1.20). Note also that  is matrix of order 

( )0
dC α

( )0
dC α I , which is computationally 

advantageous to invert in practice, since the number of measured (or computed responses) is 

most often considerably smaller that the number of model parameters . N

 

On the other hand, for the relatively rarely encountered practical instances when I N� , it 

is also possible to derive alternative expressions for the best-estimate calibrated parameters 

and their corresponding best-estimate covariances, by using the linearized model, namely Eq. 

(1.07) to eliminate at the outset the response (variable) r , and carry out the minimization 

procedure solely for the parameters (variable) α , thus performing all derivations in the N -

dimensional “parameter space” rather than in the I -dimensional “response space.” These 

derivations are quite tedious to perform, but a considerable shortcut can be achieved by 

rewriting the matrix  in an alternative way, by employing the Sherman-Morrison-

Woodbury extension, namely: 

( ) 10
d

−
⎡⎣C α ⎤⎦

 

  ( ) ( )1 1 1 1 1† † ,
− 1 1†−− − − − −+ = − +A CBD A A C B D A C D A   (1.42) 

 

with A  and  are invertible, and B =D C . Thus, applying Eq. (1.42) to Eq. (1.21) leads to  

 

  .   (1.43) 

( )
( )

11

11 1 1 1 1 with

†
d rc r r m

† †

†
m r r

,

.

α α

α

α α

−−

−− − − − −

− − +

= − +

− −

C C C S SC C

A A S C S A S S A

A C C S SC

�

�

 

The above expression provides the bridge between the “response-space” and “parameter-

space“ formulations of the data adjustment procedure. The above expression highlights the 

fact that the response-space formulation requires a single inversion of an I -dimensional 

square symmetric matrix, while the “parameter space” formulation require the inversion of 

three symmetric matrices, two of which are -dimensional and one is N I -dimensional. When 

the parameters and responses are initially uncorrelated, i.e., if rα =C 0 , then the expressions in 
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parameter space of the best-estimate calibrated (adjusted) quantities can be simplified 

somewhat by using the following special form of Eq. (1.43): 

 

  ( ) ( )1 1 1† † †− 1 1†−− −+ = +BC A CBC B C A C C A−

1†
m
−

,    (1.44) 

 

in which case Eq. (1.43) can be rewritten in the form   

 

  , when ( ) 11 1 1† †
d mα α

−− − −= +C S C C S C S S C rα =C 0 .   (1.45) 

 

In the above case, the “parameter-space” expressions for  and beα be
αC  become  

 

  ,   when ( ) 10 1 1 1be † †
mα

−− − −= − +α α C S C S S Cm d rα =C 0 ,   (1.46) 

 

  ( ) 11 1be †
mα α

−− −= +C C S C S ,   when rα =C 0 .    (1.47) 

 

The computational evaluation of the above expressions still requires the inversion of two 

-dimensional one N I -dimensional symmetric matrices. From a computational standpoint, 

therefore, the parameter-space formulations should be avoided whenever possible, using the 

“response-space” formulations instead. 

 

 

1.1.1 Data Consistency Indicators 
 

The actual application of the model calibration (adjustment) algorithms, consisting of Eqs. 

(1.22), (1.23), (1.32), (1.34) and (1.35), to a physical system is straightforward, in principle, 

although it can become computationally very demanding in terms of data handling and 

computational speed requirements. It is also important to note that the indiscriminate 

incorporation of all (seemingly relevant) experimental-response data could produce a set of 

calibrated (adjusted) parameter values that might differ unreasonably much from the 

corresponding original nominal values. Worse yet, the indiscriminate use of information 
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might even fail to improve the agreement between the calculated and measured values of 

some of the very responses by which the library was calibrated (adjusted). 

 

When calibrating (adjusting) a library of model parameters, it is tacitly assumed that the 

given parameters are basically “correct,” except that they are not sufficiently accurate for the 

objective at hand. The calibration procedure uses additional data (e.g., experimental 

responses) for improving the parameter values while reducing their uncertainties. Although 

such additional information induces modifications of the original parameter values, the 

adjusted parameters are still generally expected to remain consistent with their original 

nominal values, within the range of their original uncertainties. As just mentioned, however, 

indiscriminate calibration of model parameters by experimental responses that significantly 

deviate from their respective computed values would significantly modify the resulting 

adjusted parameters. 

 

On the other hand, calibrating a parameter library by using measured responses that are 

very close to their respective computed values would cause minimal parameter modifications 

and a nearly perfect reproduction of the given responses by the adjusted library (as would be 

expected). In such a case, the given responses would be considered as being consistent with 

the parameter library, in contradistinction to adjustment by inconsistent experimental 

information, in which case the adjustment could fail because of inconsistencies. These 

considerations clearly underscore the need for using a quantitative indicator to measure the 

mutual and joint consistency of the information available for model calibration. 

The minimum value, ( be
minQ Q≡ )z , can be readily computed by replacing  in the 

definition of 

bez

( )Q z , cf. Eq. (1.04), and carrying out the respective algebra, to obtain 

 

  ( ) ( ) 10be †
min dQ Q

−
⎡ ⎤≡ = ⎣ ⎦z d C α d ,  ( )0

m−�d R α r .   (1.48) 

 

As the above expression indicates, ( )be
minQ Q≡ z  represents the square of the length of the 

vector , measuring (in the corresponding metric) the deviations between the experimental 

and nominally computed responses. Note that 

d

( )be≡ zminQ Q  can be evaluated directly from 

the given data (i.e., given parameters and responses, together with their original uncertainties) 
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after having inverted the deviation-vector uncertainty matrix ( )0
dC α . It is also very important 

to note that  depends solely on the original data and can therefore be computed 

prior to the application of the data assimilation procedure. As the dimension of d  indicates, 

the number of degrees of freedom characteristic of the calibration under consideration is equal 

to the number of experimental responses. In the extreme case of absence of experimental 

responses, no actual calibration takes place since 

( be
minQ Q≡ z )

( )0α=d R , so that the best-estimate 

parameter values are just the original nominal values, i.e., ; an actual adjustment occurs only 

when at least one experimental response is included. 

 

Replacing Eq. (1.48) in Eq. (1.04) shows that the bulk of the contribution to the joint 

posterior probability distribution, which comes from the point , takes on the form of the 

following multivariate Gaussian distribution: 

 

 
( ) ( )

( ) ( ) 10 0 −
⎡⎣ α ( )0

1
2
1
2

be

†

x d x

exp Q

exp .

⎡ ⎤−⎢ ⎥⎣ ⎦
⎧ ⎫⎡ ⎤ ⎡ ⎤= − −⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

z

r R α C α

)

bep |z C ∼

⎤ −⎦ r R
  (1.49) 

 

The above relation indicates that experimental responses can be considered as random 

variables approximately described by a multivariate Gaussian distribution with means located 

at the nominal values of the computed responses, and with a covariance matrix . In 

turn, the random variable 

( )0
d αC

( be
minQ Q≡ z  obeys a 2χ -distribution with n  degrees of freedom, 

where  denotes the total number of experimental responses considered in the calibration 

(adjustment) procedure.  Since 

n

( )be
minQ Q≡ z  is the “ 2χ  of the calibration (adjustment) at 

hand,“ it can be used as an indicator of the agreement between the computed and 

experimental responses, measuring essentially the consistency of the experimental responses 

with the model parameters. Recall that the 2χ  (chi-square) distribution with  degrees of 

freedom of the continuous variable 

n

x , 0 x≤ < ∞ , is defined as 
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( ) ( )

( ) ( )

2

2 1 2
2

1 0 1 2
2 2

n

n x
n

P x x dx k x dx

x e dx, x , n , ,
n

χ

Γ
− −

< < +

= >

�

… .=
   (1.50) 

 

The 2χ -distribution is a measure of the deviation of a “true distribution” (in this case: the 

distribution of experimental responses) from the hypothetic one (in this case: a Gaussian). The 

mean and variance of x  are x n=  and ( ) 2var x n= , respectively. Further practically useful 

asymptotic properties of the 2χ -distribution for  are as follows: (i) n →∞ x  is asymptotically 

normal with mean n  and variance ; (ii) 2n x / n  is asymptotically normal with mean 1  and 

variance ; (iii)  2 / n 2x  is asymptotically normal with mean 2n 1−  and variance 1. 

Although the 2χ -distribution is extensively tabulated, the notation is not uniform in the 

literature for the various derived quantities (in particular, for the corresponding cumulative 

distribution functions and fractiles). The cumulative distributions, denoted here by ( )2
nP χ  

and ( 2 )nQ χ , are defined as 

 

  
( ) ( ) ( )

( ) ( ) ( ) ( )

2
0

2
0

2 2 2
0 0 0

2 2 2
0 0 1

n n

n n

P P k t dt;

Q P k t dt P

χ

χ

χ χ χ

2
0n .χ χ χ χ

∞

≤

≥ = −

∫

∫

� �

� �
   (1.51) 

 

In practice, one rejects a hypothesis using the 2χ -distribution when, for a given 

significance level α  and number of degrees of freedom n , the value of 2
minQ χ≡

( )n

 exceeds a 

chosen critical fractile value . Published tables often show  versus ( )2 nαχ
2
1 αχ − α . When 

the number of degrees of freedom is large ( ), a useful asymptotic approximation is 30n >

( ) ( n )22
21 2 2 1n / zαχ ≈ − + α 2z , with α  denoting the corresponding fractile of the standard 

normal distribution ( )0 zΦ , computed by solving the equation ( ) 10 22 z α 2Φ α= − , using the 

tabulated tables for ( )0 zΦ . For large or small values of α , a more accurate approximation is 

( )
3

2
α

2 1n nαχ 2
2

9 9
z

m m
⎞⎛

≈ −⎜
⎝

+ ⎟⎟
⎠

. It may be often more convenient to transform 2χ  to the 
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variate  2t χ= n  (i.e., “ 2χ  per degree of freedom”), in which case the transformed 

distribution, , becomes ( )ng t ( ) ( )n ng t nk nt= , with mean value 1t =  and variance 2 n . 

 

For model calibration (adjustment), it is important to assess if: (i) the response and data 

measurements are free of gross errors (blunders such as wrong settings, mistaken readings, 

etc.); and (ii) the measurements are consistent with the assumptions regarding the respective 

means, variances, and covariances. For example, if 2 1nχ � , then the measurements are very 

likely to be both free of gross errors and consistent with the assumptions. However, if 
2 1nχ �  or 2 1nχ � , the measurements (or at least some measurements), the assumptions, 

or both are suspect. In particular, unusually large values 2 1nχ �  could be obtained when 

the original variances are underestimated; increasing them beyond their assumed nominal 

values would cause the adjusted values of 2 nχ  and ( )2
nP χ  to decrease accordingly. The 

reverse argument would apply if the a priori values of 2 nχ  and ( )2
nP χ  were unusually 

small (e.g., 2 1nχ � , ( )2 410nP χ −∼ ), which could stem from a priori overestimated 

variances. A practical quantitative criterion for the “acceptance” or “rejection” of 

experimental results in conjunction with a given “theoretical” model (i.e., in conjunction with 

the assumptions regarding the variates underlying the model) is to accept the value of 2 nχ  

whenever , in analogy to the ( )20 15 n. P χ< 0 85.< 1" "σ  range of normal distributions. Note 

that, when setting an acceptance criterion for 2 nχ  of the general form 

 

   ( )2 1nPα χ< < α− ,       (1.52) 

 

the exact value of α  is not essential and is subject to personal judgment. This is because the 

probability (nP )2χ  is still sensitive to the value of 2 nχ  due to the fact that 

( )2 1 2n nχ ±�  (except for few degrees of freedom, e.g., for 5n ≤ ), so the acceptable 

range of 2 nχ  narrows as 1 n  (see also the previously noted asymptotic forms for 2 nαχ ). 

In other words, moderate changes in 2 nχ  lead to significant relative changes in ( 2
nP )χ . For 

example, the central 50%-range of 2 20χ  is (0.77, 1.19), and the corresponding 90%-range is 
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(0.54, 1.57), implying that values of 2 20χ  below  or above  would be definitely 

unacceptable. 

0 4.� 2 0.�

 

In addition to measuring the overall consistency of a given set of parameters and 

responses, the quantity “ ” also measures the consistency among the measured 

responses. Hence, an entire data set (model parameters and/or experimental responses) should 

not be indiscriminately disqualified because of a “too high” or “too low” value of , 

since even a single “outlying” response could significantly degrade the set’s overall 

consistency. Note that a simple-minded assessment and ranking of “questionable responses” 

according to the values of the “individual consistencies” (i.e., the values of 

2 / nχ

2 / nχ

2χ  obtained for 

each response as if it were the only response available for calibrating the entire set of 

parameters), would be very likely misleading. This is because the sum of the respective 

“individual consistencies” [which would numerically be obtained by dividing the squares of 

the deviations, , through the sum of the respective variances of the computed and measured 

responses ], would not be equal to the “joint consistency” (i.e., the joint 

2
id

comr( )p
ivar var+ ( )exp

ir

2χ ) of the entire set of experimental responses. This is because the deviation-vector 

uncertainty matrix ( ) ( ) ( ) ( )0 0
c r ⎡ ⎤⎣ ⎦α C S α S α0 †

α ⎡ ⎤− −⎣ ⎦
0

rC Cd rC�

( )0
rc α

mα +C α  is generally non-

diagonal, even if both C  and xC  are diagonal. On the other hand, verifying the 

consistency of all partial sets of the array of n  responses with respect to their consistency 

with the given library is usually impractical, since the number of partial sets of an array of n  

responses is 2 . Therefore, such a verification would be feasible in practice only when the 

number of measured responses is very small. 

1n −

 

A procedure that has been successfully used to identify successively the responses which 

are least consistent with a given library of parameters is based on leaving out one response at 

a time and evaluating  for the remaining ( )2
1 1nχ − 1n −  responses. The response left out is 

subsequently returned to the response set, another response (response “two”) is eliminated, 

and the corresponding  is evaluated. This procedure is continued until all remaining 

 are successively evaluated. The response that yields the lowest 

( )2
1 2nχ −

( )2
1 3n i , i , ,n,χ − = … 2

1nχ −  when 
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eliminated is considered to be “the least consistent;” it is therefore ranked “last” in the 

consistency sequence and eliminated from further consideration. The evaluation procedure is 

then repeated for the remaining  (“more consistent“) responses, to identify the “second 

least consistent response,” which is then ranked next-to-last. Subsequently, this procedure is 

repeatedly applied to the successive, fewer and fewer, partial response sets until establishing 

the complete consistency sequence. Establishing such a consistency sequence requires only 

1n −

( )1 2n n +  computations of 2χ , as compared to ( )2 1n −  calculations needed to assign 2χ  

values to all possible partial sets of  responses. n

 

The quantity 2 nχ  measures the consistency of any set of n  experimentally measured 

responses with a given library of model parameters, in the sense that if 2
1χ  refers to a specific 

set of n  experimental responses and 2
2χ  to another set of n  responses, then 2

1
2
2χ χ<  means 

that the first set is more consistent with the library than the second. On the other hand, when 

varying the number of responses, it is not a priori obvious whether the set yielding a smaller 
2 nχ  is also necessarily the most consistent with the given parameters. As an example, 

consider the value ( )2
nP χ 0 8= 5. , which can correspond to both 2 5 1.χ = 623  and also to 

2 10 1 453.χ = . If, for example, one set of 5 responses would give a computed value 
2 5 1= 6.χ , and second set of 10 responses would give 2χ 10 1= 5. , the first set would be 

considered to be the “more consistent set,” for it falls within the “central 70% range,“ whereas 

the second set does not. In such situations, it is preferable to use the quantity 

( )nQ (2 1 )2
nPχ χ= − , as an additional measure of consistency. 

 

Quite generally, therefore, the calibration (adjustment) of a set of model parameters and 

experimental responses must include the verification of their mutual consistency, which is 

performed by first generating the consistency sequence, and then determining the probabilities 

( 2
iQ )χ , when , while generating the sequence. The less consistent responses will 

show up at the end of the sequence, and the probabilities 

1 2i , , ,= … n

( )2
iQ χ  will generally decrease as i  

approaches the total number of responses, n . Such an analysis would identify the 
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significantly less-consistent responses, and would also indicate the level of consistency of all 

response subsets along the consistency sequence. 

 

In parallel, the irregular model parameters, if any, must also be identified. This can be done 

by computing 2χ  for any response subset, and using ( )( ) ( ) 10 0 †be
r dα α

−0⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦α α C C S α C α d  

 to compute the corresponding values for the best-estimate parameters. This way, the actual 

individual parameter adjustments induced by the respective response subset are also examined 

while proceeding step-by-step along the consistency sequence, noting which parameters vary 

more than others do, and by how much. Usually, the parameter-adjustments induced by the 

more consistent subsets of responses tend to be marginal. In contradistinction, the less-

consistent responses and the questionable parameters would tend to undergo larger 

adjustments, requiring specific further examinations. 
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1.2 Time-Dependent Data Assimilation and Model 
Calibration 

 

Following the work of [Cacuci and Ionescu-Bujor, 2010b], we consider that the time-

dependent generic physical system comprises Nν
α  model parameters and rNν  distinct 

responses, respectively, at every time node  1 t,N2  , ,...ν = . Hence, at every time node ν , the 

(column) vector να  of Jν
α  system parameters, and the (column) vector νr of rJν  measured 

responses can be represented in component form as 

 

 { }1n |n , N ,ν ν ν
αα= =α … { }1  1  i rr |i , ,N , ,... ,Nν ν ν ν= = =r … t   (1.53) 

 

At any time node ν , the system parameters are considered to be variates with mean values 

( )0 ν
α . Furthermore, the correlations between two parameters i

να  and j
μα , at two time nodes 

μ  and ν , have the general form 

 

   ( ) ( )0

,ij i i j jcνμ ν ν μ μ
α α α α α

0⎡ ⎤ ⎡ ⎤≡ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
    (1.54) 

 

The above covariances constitute the elements of symmetric covariance matrices of the 

form 

 

  ( ) ( ) ( ) ( )0 0
† †μ νμν μν νμ νμ

α α
⎡ ⎤− − = = =⎢ ⎥⎣ ⎦

C α α α α C C C�
†

α α   (1.55) 

 

Similarly, the measured responses are characterized by mean values ( )m
νr  at a time node 

ν , and by symmetric covariance matrices between two time nodes μ  and ν  defined as 

 

  ( ) ( ) ( ) ( )
† †

m m m m m
μ νμν μν νμ νμ⎡ ⎤− − = = =⎣ ⎦C r r r r C C C�

†

m   (1.56) 
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In the most general case, the measured responses may be correlated to the parameters 

through symmetric response-parameter uncertainty matrices of the form 

 

 ( ) ( ) ( ) ( )0 0
† †

r m r m;
ν μμ νμν μν

α α
⎡ ⎤ ⎡ ⎤− − − −⎢ ⎥ ⎣ ⎦⎣ ⎦

C r r α α C α α r r� � .  (1.57) 

 

Note that the matrices r
μν
αC  are not bona-fide variance-covariance matrices, in that they are 

not necessarily square positive matrices (often, they are rectangular), and the elements on 

their respective main diagonals (if they happen to be square) are also covariances (or 

correlations) rather that variances. 

At any given time node ν , a response ir
ν  can be a function of not only the system 

parameters at time node ν , but also of the system parameters at all previous time nodes μ , 

1 μ ν≤ ≤ ; this means that ( )ν ν νp=r R , where the vector ( )1 , , , ,ν μp α α α� … … ν  has been 

introduced for notational convenience. In general, the response computed using the model 

depends nonlinearly and implicitly (in an analytically intractable form) on the model 

parameters. Furthermore, the uncertainties in parameters and modeling induce uncertainties in 

the computed responses, and can be computed either by means of statistical methods (for 

relatively simple models with few parameters) or deterministically, by using the propagation 

of moments (errors) method, as described by [Cacuci, 2003]. In this method, the computed 

response is linearized via a functional Taylor-series expansion around the nominal values, 

( ) ( )10 0, , ( )0(0 ), ,
μ ν

ανp α α� … … , of the parameters νp , as follows: 

 

 , (1.58) ( ) ( ) ( ) ( )0
0 0

1
 1 t, ,...,N

ν μν ν ν ν ν νμ μ μ

μ
ν

=

⎡ ⎤= = + − + =⎢ ⎥⎣ ⎦∑r R p R p S p α α …

 

where ( )0
ν νR p  denotes the vector of computed responses at a time node ν , at the nominal 

parameter values 0
νp , while ( )0

νμ μS p , 1 μ ν≤ ≤ , represents the ( )rJ Jν μ
α× -dimensional 

matrix containing the first Gateaux-derivatives of the computed responses with respect to the 

parameters, defined as 
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( )

( ) ( )

( ) ( )

1 0 1 0

1
11 1

0

1

0 0

1

N
N

i
in

n
I IN

I I

N

R R

s s
Rs

s s
R R

ν μ ν μ

μ μ
νμ νμ

ν
νμ μ νμ

μ
νμ νμ

ν μ ν μ

μ μ

α α

α

α α

⎞⎛ ∂ ∂
⎟⎜

∂ ∂ ⎟⎜⎞⎛ ⎟⎜ ∂⎟⎜ ⎟⎜⎟⎜ ⎟⎜ ∂⎜ ⎟ ⎟⎜⎝ ⎠
∂ ∂ ⎟⎜

⎟⎜ ∂ ∂⎝ ⎠

p p

S p

p p

…
…

� # # � # #
"

"

,  1 μ ν≤ ≤ , (1.59) 

 

Since the response ( 0 )ν νR p  at time node ν  can depend only on parameters ( )0 μ
α which 

appear up to the current time node ν , it follows that νμ =S 0  when μ ν> , and hence non-

zero terms in the expansion shown in (1.58) can only occur in the range 1 μ ν≤ ≤ . It is 

important to note that discretization parameters are also included among the components of 

, and the sensitivities of responses to such discretization parameters can be computed as 

described in [Cacuci ,2003]. 

α

 

By introducing the block matrix 

 

   

11

1t tN N

,
tN

⎞⎛
⎟⎜
⎟⎜

⎜ ⎟
⎝ ⎠

S 0
S

S S

…
� # % #

"
    (1.60) 

 

and the (block) column vectors 

 

   ,     (1.61) ( 1 tN, , , ,μα α α α� … … )

)
  

   ,      (1.62) ( 1 tN, , , ,μr r r r� … …

 

   ( ) ( )0 1 tN, , , ,μR α R R R� … … ,    (1.63) 

 

the system shown in (1.58) can be written in the form 
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  ( ) ( )0 0 higher order terms= + − +r R α S α α    (1.64) 

 

Applying the propagation of errors method to (1.64), which involves the formal integration 

of the over the unknown joint distributions of the parameters α , yields the following 

expressions for the expectation value, r , of the response r , and the corresponding 

covariance matrix, ( )0
rcC α , of the computed responses, i.e., 

 

   ( )0=r R α ,      (1.65) 

 

and 

 

( ) ( ) ( ) ( ) (0 0 0 0† †† †
rc αδ δ δ δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣C α r r S α α α S α S α C S α� )0 ⎤⎦

tN

. (1.66) 

 

The covariance matrix of the computed responses, , has the symmetric structure rcC

 
111

1

t

t t

N
rc rc

rc
N N
rc rc

⎞⎛
⎟⎜
⎟⎜

⎜ ⎟
⎝ ⎠

C C
C

C C

…
� # % #

"
, 

 

with components defined as 

 

  .  (1.67) ( ) ( )
1 1

 1
† †

rc rc t; , ,...,N
μν

νμ νη ηρ μρ μν
α

η ρ
ν μ

= =

= =∑∑C S C S C =

 

As indicated by (1.65), the expectation value of the computed responses for linearized 

models in which the numerical errors are neglected is given by the value of the response 

computed at the nominal parameter-values. 

 

According to the maximum entropy algorithm described in [Cacuci and Ionescu-Bujor, 

2010b] to the computational and experimental information described in (1.53) through (1.67)  
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indicates that the most objective probability distribution for this information is a multivariate 

Gaussian of the form 

 

 ( ) ( )
( )

( )
( ) ( ) 1

1 2

1
2

2
†

j

exp Q
p | d d , Q , z

det π
−

⎡ ⎤−⎢ ⎥⎣ ⎦= ≡
z

z C z z z z C z
C

− ∞ < < ∞ , (1.68) 

 

where: 

 

   
0

m

⎞⎛ −
≡ ⎟⎜ −⎝ ⎠

α α
z

r r
, ( ) ( ) ( )( )10 0 0 0 tN

, , , ,
μ

α α α α� … … ,  (1.69) 

 

   r

r m

α α

α

⎞⎛
≡ ⎟⎜
⎝ ⎠

C C
C

C C
,      (1.70) 

 

with 

 
11 12

21 22

t tN N

... ...

... ...
... ... ... ...
... ... ...

α α

α α
α

α

⎞⎛
⎟⎜
⎟⎜= ⎟⎜
⎟⎜

⎜ ⎟
⎝ ⎠

C C

C C
C

C

, 

11 12

21 22

t t

r r

r r
r

N N
r

... ...

... ...
... ... ... ...
... ... ...

α α

α α
α

α

⎞⎛
⎟⎜
⎟⎜= ⎟⎜
⎟⎜

⎜ ⎟
⎝ ⎠

C C

C C
C

C

, 

11 12

21 22

t t

m m

m m
m

N N
m

... ...

... ...
... ... ... ...
... ... ...

⎞⎛
⎟⎜
⎟⎜= ⎟⎜
⎟⎜

⎜ ⎟
⎝ ⎠

C C

C C
C

C

. 

 

The posterior information, which is contained in (1.68) and (1.64), can now be condensed 

into a recommended best-estimate value ( )be ν
z  at a time node ν  for the parameters να  and 

responses νr , together with corresponding best-estimate recommended uncertainties for these 

quantities. The procedure for obtaining these best-estimate results is formally similar to that 

leading to Eq. (1.11) 

Subsequent computations are facilitated by recasting (1.64) in the form 

 

   ( )0 + =Z α z d 0 ,  ( )0
m−d R α r� ,    (1.71) 
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where  is the vector comprising all of the experimentally measured 

responses, 

( 1 tN
m m m m, , , ,μr r r r� … …

( )0
m

)
−d R α r�  is a vector of “deviations” reflecting the discrepancies between the 

nominal computations and the nominally measured responses, while Z  denotes the 

partitioned matrix 

 

( )

11

t tN N

;
⎞⎛−
⎟⎜
⎟⎜

⎜ ⎟−⎝ ⎠

I 0
Z S U U

0 I

…
� � # %

"
#

,

,   (1.72) 

 

where  denotes the identity matrix of corresponding dimensions.  1 t, , ,Nνν ν =I …

 

Computing the stationary point of ( )Q z  subject to (1.71) poses a constrained minimization 

problem which can be solved by introducing Lagrange multipliers, λ , to construct the 

augmented Lagrangian functional ( )P ,z λ  defined as 

e

 

( ) ( ) ( )
0

02
be

† b
be

m

P , Q min, at
⎞⎛ −⎡ ⎤≡ + + = = ≡ ⎟⎜⎣ ⎦ −⎝ ⎠

α α
z λ z λ Z α z d z z

r r
.  (1.73)  

 

where  denotes the corresponding vector of Lagrange multipliers. In the 

above expression, the superscript “be” denotes “best-estimated values”, and the factor “2” 

was introduced for convenience in front of λ  in order to simplify the subsequent algebraic 

derivations. The point  where the functional 

( 1 tN,..., ,...,ν=λ λ λ λ

bez

)

( )P ,z λ  attains its extremum (minimum) is 

defined implicitly through the conditions 

 

  ( ) ( ) beP , , P , , at∇ = ∇ = =z λz λ 0 z λ 0 z z .    (1.74) 

 

The solution to the above constrained minimization problem leads to the following final 

results for the predictive best-estimate parameters, responses, and their corresponding reduced 

uncertainties (covariance matrices) are as follows: 

1. The best-estimate predicted nominal values for the calibrated (adjusted) parameters: 
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 .    (1.75) ( )( ) ( ) 10 0 †be
r dα α

−
⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦α α C C S α C α d0

tN

 

In component form, the above expression for the calibrated best-estimate parameter values 

becomes 

 

 , (1.76) ( ) ( ) ( )0

1 1 1
1

t tN N
be †

r d , , ,
μν ν μρνμ νρ μη η

α α
μ ρ η

ν
= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤
= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ ∑ ∑α α C C S K d …

 

where d
νηK  denotes the corresponding ( ),ν η -element of the block-matrix , with the 

block-matrix   defined as follows: 

1
d
−C

( )0
dC α

 

 
( ) ( )( ) ( )( )

( ) ( ) ( )

0 0

0 0 0

†† † †
d

†

rc r r m .α α

δ δ δ δ 0⎡ ⎤= − − ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

C α dd r S α α r α S α

C α C S α S α C C

�
  (1.77) 

 

In component form, the matrix  is expressed as dC

 

 ( ) ( )

( ) ( )

1 111 11 11

1 1 1

11 111 11 11 11 1

1

111 1

1

t t

t t t t t t t t t

t
tt

t
tt t t t

N N
d d rc m rc m

d
N N N N N N N N N
d d rc m rc m

N NN† †
r r r r

N NN N N N† †
r r r

ρρ
α α α α

ρ

ρρ ρ ρρ
α α α

ρ

=

=

⎞ ⎞⎛ ⎛ + +
⎟ ⎟⎜ ⎜
=⎟ ⎟⎜ ⎜

⎜ ⎟ ⎜ ⎟+ +⎝ ⎝⎠ ⎠

+ +

−

+ +

∑

∑

C C C C C C
C

C C C C C C

C S S C S C C S

C S S C C S S C

… …
� # % # # % #

" "

…

# % #

"
1

tN

.

ρ =

1 t

t

N

N
r
ρ
α

⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜ ⎡ ⎤

⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
∑

 (1.78) 

 

2. The best-estimate predicted nominal values for the calibrated (adjusted) responses: 

 

 ( ) ( )( ) ( ) 10 0†be
m m r dα

−
⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦r α r C C S α C α d .    (1.79) 
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At a specific time node ν , each component ( )be ν
r of ( )ber α  has the explicit form 

 

 . (1.80) ( ) ( ) ( )
1 1 1

1
t tN N

be †
m m r d , , ,

μν μρν νμ νρ μη η
α

μ ρ η
ν

= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤
= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ ∑ ∑r r C C S K d … tN

 

3. The expressions for the best-estimate predicted covariances be
αC  and , corresponding 

to the best-estimate parameters  and responses 

be
rC

beα ( )ber α , together with the predicted best-

estimate parameter-response covariance matrix be
rαC : 

 

  
( )( )

( ) ( ) ( )10 0 0

†be be be

†
d d d ,

α

α α α

−

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C α α α α

C C α C α C α

�
   (1.81) 

 

  
( )( ) ( )( )

( ) ( ) ( )10 0 0

†be be be
r

†
m r d d r d ,

−

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C r r α r r α

C C α C α C α

�
   (1.82) 

 

  
( ) ( )( )

( ) ( ) ( )10 0 0

†be be be be
r r

†
r r d d d ,

α α

α α

−

= − −

⎡ ⎤ ⎡ ⎤ ⎡= − ⎣ ⎦ ⎣ ⎦ ⎣

C C α α r r α

C C α C α C α

�

⎤⎦

   (1.83) 

 

where 

 

  ( ) ( ) ( )( )0 ††
rd m m r ,α

0⎡ ⎤− = − ⎣ ⎦C α r r d C C S α�    (1.84) 

and 

  ( ) ( ) ( )( )0 0 0 ††
d r .α α α ⎡ ⎤− = − ⎣ ⎦C α α α d C C S α�    (1.85) 
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For completeness, the block-matrix components, which correlate two (distinct or not) time-

nodes, of the above calibrated best-estimate covariance matrices are given below: 

 

( ) ( )
1 1 1 1

t tN N
be †

r d r

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ
α α α α α

η ρ π π= = = =

⎡ ⎤ ⎡= − − −⎢ ⎥ ⎢⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ

α
⎤
⎥⎦

r

,  (1.86) 

  

( ) ( )
1 1 1 1

t tN N
be †
r m m r d m

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ
α α

η ρ π π= = = =

⎡ ⎤ ⎡= − − −⎢ ⎥ ⎢⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ ⎤

⎥⎦
,  (1.87) 

  

( ) ( )
1 1 1 1

t tN N
be †
r r m r d r

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ
α α α α

η ρ π π= = = =

⎡ ⎤ ⎡= − − −⎢ ⎥ ⎢⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ

α
⎤
⎥⎦

.  (1.88) 

 

Note in Eq. (1.81) that a symmetric positive matrix is subtracted from the initial parameter 

covariance matrix αC ; hence, in this sense, the best-estimate predicted parameter uncertainty 

matrix be
αC  has been reduced by the calibration (adjustment) procedure, through the 

introduction of new information from experiments. Similarly, a symmetric positive matrix is 

subtracted in (1.82) from the initial covariance matrix of the experimental-responses; 

hence, the best-estimate predicted response covariance matrix  has been improved 

(reduced) through the introduction of new experimental information. Furthermore, (1.83) 

indicates that the calibration (adjustment) procedure will introduce correlations between the 

calibrated (adjusted) parameters and responses even if the parameters and response were 

initially uncorrelated, since  even if 

mC

be
rC

0be
rα ≠C 0rα =C  , i.e., 

 

  ( ) ( )10 0be
r m rc mα α

−
⎡ ⎤ ⎡= +⎣ ⎦ ⎣C C C α C S α C⎤⎦ , when 0rα =C .  (1.89) 

 

As the above expression indicates, the adjustment (calibration) modifies the correlations 

among the parameters through couplings introduced by the sensitivities of the participating 

responses. In the calibration procedure, the sensitivities play the role of weighting functions 

for propagating the initial parameter-covariances and experimental-response covariances to 

the adjusted best-estimate predicted quantities. Thus, as indicated by Eqs. (1.81) through 

(1.83), the incorporation of additional (experimental) information in the adjustment 
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(calibration) process reduces the variances of the adjusted parameters and responses while 

also modifying their correlations. Furthermore, all of the considerations following Eq. (1.34) 

are also valid for the time-dependent formalism, since all of the corresponding expressions are 

formally identical. In particular,  since be be
rc r≠C C ( ) ( )0be ≠S α S α , in general, except when the 

model is linear and “perfect” (i.e., free of errors).  

 

In view of Eq. (1.78), it is essential to note that the inverse matrix, , incorporates 

simultaneously all of the available information about the system parameters and responses, at 

all time nodes [i.e., 

1
d
−C

1 2 t, ,...,Nν = ]. Specifically, at any time node ν ,  incorporates 

information not only from time nodes prior in time to 

1
d
−C

ν  (i.e., information regarding the "past" 

and "present" states of the system) but also from time nodes posterior in time to ν  (i.e., 

information about the “future” states of the system). Through the matrix C , at any specified 

time node 

1
d
−

ν , the calibrated best-estimates parameters ( )be ν
α  and responses , 

together with the corresponding calibrated best-estimate covariance matrices (

( ) �
be

be ber α r

)νμαC , 

( )be
r

νμ
C , and ( )be

r

νμ

αC  will also incorporate automatically all of the available information about 

the system parameters and responses at all time nodes [i.e., 1,2,...,Ntν = ]. 

 

In this respect, the methodology presented in this section is conceptually related to the 

"foresight" aspects encountered in decision analysis. It is also important to note that, in 

practice, the application of the methodology developed in this section involves two distinct 

computational stages. A complete sensitivity data base (i.e., sensitivities nisνμ  at all times nodes 

1 t, , ,Nν μ = … ) needs to be generated “off-line” prior to performing the “data assimilation” 

and “model calibration” (or data adjustment) stages. All sensitivities are subsequently 

combined with appropriate covariance matrices to compute calibrated best-estimate 

responses, parameters, and best-estimate covariance matrices. 

 

Because of the “foresight” and “off-line” characteristics, the methodology presented in this 

Section can be called the “off-line with foresight” data assimilation and adjustment (model 

calibration) methodology, underscoring that all sensitivities are generated separately, prior to 
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performing the uncertainty analysis, and that foresight characteristics are included in the 

calibration procedure. Since the incorporation of foresight effects involves the inversion of the 

matrix , this methodology is best suited for problems involving relatively few time nodes. 

For large-scale highly nonlinear problems involving many time nodes, the matrix  

becomes very large, requiring large amounts of computer storage; the inversion of  may 

become prohibitively expensive in such cases. These difficulties can be reduced at the 

expense of using less than the complete information available at any specific time node. For 

example, even in time-dependent problems in which the entire time history is known (e.g., 

transient behavior of reactor systems), one may nevertheless choose to use only information 

up to the current time index, and disregard the information about “future” system states. 

dC

dC

dC

 

On the other hand, in dynamical problems such as climate or weather prediction, in which 

the time variable advances continuously and states beyond the current time are not known, 

information about future states cannot be reliably accounted for anyway. Thus, the most 

common way of reducing the dimensionality of the data assimilation and model calibration 

problem is to disregard information about future states and limit the amount of information 

assimilated about “past states”. Data assimilation and model calibration procedure using such 

a limited amount of information can be performed either off-line or on-line, assimilating the 

new data as the time index advances. 

 

The simplest case of dynamic data assimilation and model calibration is when these 

operations are performed by using information on-line from only two successive time-steps. 

In this particular case, the expressions given by Eqs. (1.76), (1.80), (1.86), (1.87) and (1.88) 

for the best-estimate predicted calibrated quantities reduce to the following explicit formulas: 

(i) The components ( , representing the calibrated best-estimates for the system 

parameters at time node , can be written in a particular form of Eq. (1.76), as follows: 

)kbeα

k

 

( ) ( ) ( )0

1 1 1
1 2

k kk kbe k k †
r d

k k k
, k , ,...,N .

μ μρμ ρ μη η
α α

μ ρ η= − = − = −

⎧ ⎫⎡ ⎤ ⎡ ⎤
= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ ∑ ∑α α C C S K d t  (1.90) 
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(ii) The vector ( , representing the best-estimates predicted values for the system 

responses at a time node k , take on the following particular form of Eq. (1.80): 

)kber

 

( ) ( ) ( )
1 1 1

1 2
k kk kbe k k †

m m r d
k k k

, k , ,...,N .
μ μρμ ρ μη η

α
μ ρ η= − = − = −

⎧ ⎫⎡ ⎤ ⎡ ⎤
= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ ∑ ∑r r C C S K d t  (1.91) 

 

(iii) The components ( )be νμ

αC , , of the calibrated best-estimate covariance 

matrix, 

( 1, k , kν μ = − )
be
αC , for the calibrated best-estimates system parameters is obtained by particularizing 

Eq. (1.86) to two consecutive time nodes ( )1k ,− k , 1 2 tk , ,...,N= , leading to 

 

( ) ( )
1 1 1 1

1 1 1 2

k k
be †

r d r
k k k k

tfor k , k; and k , k; k , ,...,N .

ρ ηνμ ρπνμ νρ νπ ρη ημ
α α α α α

η ρ π π

ν μ
= − = − = − = −

⎡ ⎤ ⎡= − − −⎢ ⎥ ⎢⎣ ⎦ ⎣
= − = − =

∑ ∑ ∑ ∑C C C C S K C S Cηπ πμ
α
⎤
⎥⎦ , (1.92) 

 

(iv). The components ( )be
r

νμ
C , ( , of the calibrated best-estimate covariance 

matrix , for the best-estimate responses takes on the following particular form of Eq. 

(1.87): 

)

r

1, k , kν μ = −

be
rC

 

( ) ( )
1 1 1 1

1 1 1 2

k k
be †
r m m r d m

k k k k

tfor k , k; and k , k; k , ,...,N .

ρ ηνμ ρπνμ νρ νπ ρη ημ
α α

η ρ π π

ν μ
= − = − = − = −

⎡ ⎤ ⎡= − − −⎢ ⎥ ⎢⎣ ⎦ ⎣
= − = − =

∑ ∑ ∑ ∑C C C C S K C S Cηπ πμ ⎤
⎥⎦ , (1.93) 

 

(v). The components ( )be
r

νμ

αC , , of the best-estimate response-parameter 

covariance matrix 

( 1, k , kν μ = − )
be

rαC  take on the following particular  form of Eq. (1.88): 

 

( ) ( )
1 1 1 1

1 1 1 2

k k
be †
r r m r d r

k k k k

tfor k , k; and k , k; k , ,...,N .

ρ ηνμ ρπνμ νρ νπ ρη ημ
α α α α

η ρ π π

ν μ
= − = − = − = −

⎡ ⎤ ⎡= − − −⎢ ⎥ ⎢⎣ ⎦ ⎣
= − = − =

∑ ∑ ∑ ∑C C C C S K C S Cηπ πμ
α
⎤
⎥⎦  (1.94) 
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For each time node, , the quantities 1 2 tk , ,...,N= d
νηK  which appear in Eq. (1.90) through 

(1.94) have the following expressions: 

 

   (1.95) 
( )

( ) ( ) ( )

111 1 1 1 1 1

1 11 1 1 1 1 1 1 1

k ,k k ,k k ,k k ,k k ,k
d d d d d

k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d

−−− − − − − −

− −− − − − − − − −

⎡ ⎤= −⎢ ⎥⎣ ⎦

= +

K C C C C

C C C K C C
1−

 

 
( ) ( )
( )

11 11 1 1 1 1 1 1 1

11 1 1

k ,k k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d d

k ,k k ,k k ,k
d d d

−− −− − − − − − − −

−− − −

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

K C C C C C C

C C K
  (1.96) 

 

    (1.97) 
( )

( ) ( ) ( )

111 1 1 1

1 1 1 1 1 1

k ,k k ,k k ,k k ,k k ,k
d d d d d

k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d

−−− − − −

− − − − − −

⎡ ⎤= −⎢⎣

= +

K C C C C

C C C K C C
1−

⎥⎦

1

 

 
( ) ( )
( )

11 11 1 1 1 1

1 1 1 1

k ,k k ,k k ,k k ,k k ,k k ,k k ,k
d d d d d d d

k ,k k ,k k ,k
d d d

−− −− − − − −

− − − −

−⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

K C C C C C C

C C K
   (1.98) 

 

For time-independent problems, the (time-dependent) results derived in Eqs. (1.90) 

through (1.94) reduce to expressions that are formally identical to Eqs. (1.75), (1.79), (1.81), 

(1.82) and (1.83). Hence, the later expressions can be used directly to obtain the best-estimate 

predicted values for parameters, responses, and their respective covariances. Recall that 

modeling errors can be treated in a manner similar to parameter uncertainties, by including the 

discretization intervals among the components of the vector α  of model parameters, as 

detailed in [Cacuci , 2003]. 

 

Finally, it is important to emphasize that the explicit formulas presented in this Section are 

based on the linearized relationship between responses and parameters that customarily 

underlies the “propagation of moments” method, i.e., Eq. (1.64), without considering 

nonlinearities explicitly. Nevertheless, this limitation is not as severe as it may appear at first 

glance, since nonlinear relations between computed responses and model parameters can be 
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treated by considering Eq. (1.64) iteratively, starting with the known nominal values of the 

quantities involved. The first iteration (in such an iterative procedure) would yield all of the 

major explicit results derived in Eqs. (1.75), (1.79), (1.81), (1.82) and (1.83) .The subsequent 

iteration would the results of Eqs (1.75), (1.79), (1.81), (1.82) and (1.83) as the “prior 

information” in a second application of these formulas, and compute the new (“second-

iteration”) best-estimate quantities by using once again these formulas. This iterative 

procedure would be continued until the best-estimated values would converge within a small, 

user-specified, convergence criterion. The actual application of the model calibration 

(adjustment) algorithms –see Eqs. (1.75), (1.79), (1.81), (1.82) and (1.83), to a physical 

system is straightforward, in principle, although it can become computationally very 

demanding in terms of data handling and computational speed requirements.  

 

Just as for the time-independent case discussed in Section 1.1.1, the expression 

 measures (in the corresponding metric) the deviations between the 

experimental and nominally computed responses, and can be evaluated directly from the 

given data (i.e., given parameters and responses, together with their original uncertainties) 

after having inverted the deviation-vector uncertainty matrix 

( ) ( ) 10be †
dQ

−
⎡ ⎤= ⎣ ⎦z d C α d

( )0
dC α .  This quantity obeys a 

2χ -distribution with n  degrees of freedom, where n  denotes the total number of 

experimental responses considered in the calibration (adjustment) procedure, and indicates the 

degree of agreement between the computed and experimental responses, measuring 

essentially the consistency of the experimental responses with the model parameters. For 

model calibration (adjustment), it is important to assess if: (i) the response and data 

measurements are free of gross errors (blunders such as wrong settings, mistaken readings, 

etc), and (ii) the measurements are consistent with the assumptions regarding the respective 

means, variances, and covariances. As has been noted by [Cacuci and Ionescu-Bujor, 2010a], 

when the distance between any two nominal response values, 0
i

0
jR R− , is smaller or at least 

not much larger than the sum of the corresponding uncertainties, say i jσ σ+ , the data is 

considered to be consistent or to agree “within error bars”. However, if the distances 0 0
i jR R−  

are larger than ( )j kσ σ+ , the data are considered to be inconsistent or discrepant. 

Inconsistencies can be caused by unrecognized or ill-corrected experimental effects (e.g., 
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background, dead time of the counting electronics, instrumental resolution, sample impurities, 

calibration errors, etc,). Note that the probability that two equally precise measurements yield 

a separation greater than 2i jσ σ+ = σ  is very small, namely ( )1 0 157erfc .�  for Gaussian 

sampling distributions with standard deviation σ . Thus, although there is a nonzero 

probability that genuinely discrepant data do occur, it is much more likely that apparently 

discrepant experiments actually indicate the presence of unrecognized errors, an issue 

addressed in the recent work of [Cacuci and Ionescu-Bujor, 2010a]. 

 

The consistency indicator expression ( ) ( )0be
dQ

1−† ⎡ ⎤= ⎣ ⎦C αz d d  together with Eqs. (1.75), 

(1.79), (1.81), (1.82) and (1.83) have been programmed into a computational software 

module called BEST-EST, based on the conceptual framework of [ROOT CERN]. This 

computational software module will be used for the time-dependent applications to be 

presented in Section III of this work.  
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2 Time Independent Data Assimilation and Model 
Calibration: Paradigm Examples 

 

2.1 Neutron Diffusion in One Dimensional Geometry 
 

In this Section, the main features methodology presented in Section 1.1 will be illustrated 

using a paradigm application to a steady-state neutron diffusion problem. 

 

2.1.1 Mathematical Formulation 
 

Consider the diffusion of monoenergetic neutrons due to distributed sources of strength  S
3neutrons cm s⋅  within a slab of material of extrapolated thickness 2 . The linear neutron 

diffusion equation that models mathematically this problem is 

a

 

   ( )
2

2 0a
dD S , x
dx
ϕ Σ ϕ− + = ∈ −a,a ,     (2.1) 

 

where ( )xϕ  is the neutron flux, D  is the diffusion coefficient, aΣ  is the macroscopic 

absorption cross section, and S  is the distributed source term. Note that, in view of the 

problem’s symmetry, the origin x  has been conveniently chosen at the middle (center) of 

the slab. The boundary conditions for Eq. (2.1) are that the neutron flux must vanish at the 

extrapolated distance, i.e., 

0=

 

   ( ) 0aϕ .± =       (2.2) 

 

A typical response R  for the neutron diffusion problem modeled by Eqs. (2.1) and (2.2) 

would be the reading of a detector placed within the slab, for example, at a distance b  from 

the slab’s midline at 0x = . Such a response is given by the reaction rate 

 

   ( ) ( )dR b ,Σ ϕ≡e      (2.3) 
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where  represents the detector’s equivalent reaction cross section. The system parameters 

for this problem are thus the positive constants 

dΣ

aΣ , , , and D S dΣ , which will be considered 

to be the components of the vector  of system parameters, defined as α

 

         (2.4) ( a , D, S , .Σ Σ≡α )d

 

Consider that the components of ( )a , D, S ,Σ Σ≡α d are imprecisely (e.g., experimentally) 

determined quantities, with mean nominal values ( )0 0 0 0
a , D , S , 0

dΣ Σ=α  and standard 

deviations ( a , D, S ,α )dδ Σ δ δ δh � Σ , respectively. The vector ( )xe  appearing in the 

functional dependence of R  in Eq. (2.3) denotes the concatenation of ( )xϕ  with , defined 

as 

α

 

   ( ),ϕ≡e α .      (2.5) 

 

The nominal value ( )0 xϕ

α

 of the flux is determined by solving Eqs. (2.1) and (2.2) for the 

nominal parameter values , to obtain ( )0 0 0 0
a , D , S ,Σ= 0

dΣ

 

   ( )
0

0
0 1 a
a

S cosh xk 0 0x , k D
cosh ak

ϕ
Σ

⎞⎛
= − ≡⎟⎜

⎝ ⎠
,Σ    (2.6) 

 

where 0 0
ak Σ≡ D  is the nominal value of the reciprocal diffusion length for our illustrative 

example. Inserting Eq. (2.6) together with the nominal value 0
dΣ  into Eq. (2.3) gives the 

nominal response 

 

   ( ) (
0 0

0
0 1d

a

S coshbk )0 0 0R , ,
cosh ak

Σ ϕ
Σ

⎞⎛
= − ≡⎟⎜

⎝ ⎠
e e α .   (2.7) 
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Note that even though Eq. (2.1) is linear in ϕ , the solution ( )xϕ  depends nonlinearly on 

, as evidenced by Eq. (2.6). The same is true of the response α ( )R e . Even though ( )R e  is 

linear separately in ϕ  and in , as shown in Eq. (2.3), α R  is not simultaneously linear  in ϕ  

and α , which leads to a nonlinear dependence of ( )R e  on . This fact is confirmed by the 

explicit expression of  given in Eq. (2.7). 

α

( )R e

Recalling next that  

 

        (2.8) ( a , D, S , ,α δ Σ δ δ δ Σ≡h )d

 

we can compute the sensitivities of the response ( )R e  to the variations αh , which are given 

by the G-differential ( )0R ;δ e h  of ( )R e  at  to variations 0e

 

   ( )h ,ϕ αh h� .      (2.9) 

 

By definition, the G-differential ( )0R ;δ e h  of ( )R e  at   is 0e

 

   ( ) ( ){ }0 0

0

dR ; R .
d ε

δ ε
ε =

≡ +e h e h     (2.10) 

 

Hence, the explicit form of the G-differential of ( )R e  defined in Eq. (2.3) becomes 

    

( ) ( ) ( ) ( ){ }
( ) ( )

0 0 0

0

0 0

d d
dR ; b h b

d
R R h ,

ϕ ε

α α ϕ ϕ

δ Σ ε δ Σ ϕ ε
ε =

⎡ ⎤≡ + +⎣

′ ′= +

e h

e h e

⎦   (2.11) 

 

where the “direct-effect” term Rα α′ h  is defined as 

 

   ( ) ( )0
d

0R b ,α α δ Σ ϕ′ e h �     (2.12) 
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while the “indirect-effect” term R hϕ ϕ′  is defined as 

 

   ( ) ( )0 0
dR h h bϕ ϕ ϕΣ′ ≡e .     (2.13) 

 

As indicated by Eq. (2.11), the operator ( )0R ;δ e h  is linear in h ; in particular, R hϕ ϕ′  is a 

linear operator on hϕ . This linear dependence of ( )0R ;e hδ  on  is underscored by writing 

henceforth  to denote the sensitivity of 

h

( 0DR e );h ( )e eR  at  to variations . The “direct-

effect” term R

0 h

α α′ h  can be evaluated at this stage by replacing Eq. (2.6) into Eq. (2.12), to 

obtain 

 

   ( )
0

0
0 1d
a

S coshbkR .
cosh akα α δ Σ

Σ
⎞⎛

′ = − ⎟⎜
⎝ ⎠

e h     (2.14) 

 

The “indirect-effect” term R hϕ ϕ′ , though, cannot be evaluated at this stage, since ( )h xϕ  is 

not yet available. The first-order in αh , the expression of ( )h xϕ  is obtained by calculating 

the G-differentials of Eqs. (2.12) and (2.13), and then solving the resulting equations. The G-

differentials of Eqs. (2.12) and (2.13) yield the “forward sensitivity equations” (or “tangent 

linear model”) 

 

   ( ) ( ) ( )20 0 0L h L Oϕ α α αϕ⎡ ⎤′+ =⎣ ⎦α α h h ,    (2.15) 

 

together with the boundary conditions 

 

   ( ) 0h aϕ .± =       (2.16) 

In Eq. (2.15), the operator  is defined as ( )0L α

 

   ( )
2

0 0
2 a

dL D 0

dx
,Σ≡ −α      (2.17) 
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while the quantity 

 

   ( )
2 0

0 0 0
2 a

dL D
dxα α
ϕ Sϕ δ δ Σ ϕ⎡ ⎤′ ≡ − +⎣ ⎦α h δ ,   (2.18) 

 

which is the partial G-differential of Lϕ  at  with respect to α , contains all of the first-

order parameter variations 

0α

αh . Solving Eq. (2.15) yields the solution 

 

    (2.19) 
( ) ( )

( )
1

2

h x C cosh xk coshak

C x sinh xk coshak a sinhak cosh xk ,
ϕ = −

+ −

 

where the constants  and  are defined as 1C 2C

 

   
( )

( )

0 0

1 0
a a

a

S S
C

coshak
δ Σ Σ δ

Σ

−
≡ ,      (2.20) 

 

and, respectively, 

 

   
( )

( )

0 0

2 20 02
a a

a

D D S
C

D coshak

δ δ Σ Σ

Σ

−
≡

0

.     (2.21) 

 

Evaluating Eq. (2.19) at x b=  and replacing the resulting expression in Eq. (2.13) gives 

the “indirect-effect” term as 

  

 
( ) ( )

( )

0 0
1

0
2

d

d

R h C coshbk coshak

C bsinhbk coshak a sinhak coshbk .
ϕ ϕ Σ

Σ

′ = −

+ −

e
  (2.22) 

 

As generally shown by Cacuci (2003), the need to solve repeatedly the forward sensitivity 

equations for each component of αh  can be circumvented by using the Adjoint Sensitivity 

Analysis Procedure (ASAP). The first prerequisite for applying the ASAP is that the 
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“indirect-effect” term ( )0R hϕ ϕ′ e  be expressible as a linear functional of hϕ . An examination 

of Eq. (2.13) readily reveals that ( )0R hϕ ϕ′ e  is indeed a linear functional of hϕ . Therefore, 

( )0R hϕ ϕ′ e

uH

( a,aΩ ≡ −

 can be represented as an inner product in an appropriately defined Hilbert space 

. For this example, the appropriate space is the real Hilbert space , with 

, equipped with the inner product 

( )2 Ωu ≡H L

)

 

( ) ( ) ( ) ( )

( ) (2

a

a

u

f x , g x f x g x dx ,

for f ,g ,Ω Ω
−

≡

∈ ≡ ≡

∫

H L
  

)
  (2.23) 

a,a− .

 

In , the linear functional ( )2 Ωu ≡H L ( )0R hϕ ϕ′ e  defined in Eq. (2.13) can be represented 

as the inner product 

  

  
( ) ( ) ( ) ( )

( )

0 0 0

0

a

d d
a

d

R h h b h x x b

x b , h .

ϕ ϕ ϕ ϕ

ϕ

Σ Σ δ

Σ δ
−

′ ≡ = −

= −

∫e dx
   (2.24) 

 

( )0L+ αThe next step underlying the ASAP is the construction of the operator  that is 

formally adjoint to ( 0L )α . In view of Eq. (2.17), the formal adjoint of ( 0 )L α  is the operator 

 

   ( )
2

0 0
2 a

dL D
dx

0 .Σ+ ≡ −α     (2.25) 

 

Note that ( 0L+ )α  and ( 0L )α  are formally self-adjoint. The qualifier “formally” must still 

be kept at this stage, since the boundary conditions for ( )0L+ α  have not been determined yet. 

The boundary conditions for ( )0L+ α  are obtained as 
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( ) ( ) ( ) ( ) ( )

{ }

2 2
0 0 0 0

2 2

a a

a a
a a

x a

x a

d h d x
x D h x dx D x h x dx

dx dx

P h , .

ϕ
ϕ ϕ

ϕ

ψ
ψ Σ Σ ψ

ψ

− −

=

=−

⎡ ⎤ ⎡ ⎤
− = −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤+ ⎣ ⎦

∫ ∫
 (2.26) 

 

Note that the function ( )xψ  is still arbitrary at this stage, except for the requirement that 

( )2Qψ Ω∈ =H L ; note also that the Hilbert spaces  and  have now both become the 

same space, i.e., . 

uH QH

( )ΩH H 2u Q= = L

Integrating the left-side of Eq. (2.26) by parts twice and canceling terms yields the 

following expression for the bilinear boundary form: 

 

  { } 0
a

a
a

a

dh dP h , D h .
dx dx

ϕ
ϕ

ψψ ψ−
−

ϕ
⎡ ⎤

⎡ ⎤ = −⎢ ⎥⎣ ⎦
⎣ ⎦

    (2.27) 

 

Since hϕ  is known at x a= ±  from Eq. (2.16) the boundary conditions for ( 0L+ )α  can 

now be selected as 

 

   ( ) 0aψ ,± =       (2.28) 

 

which ensures that unknown values of hϕ , such as the derivatives { }a

a
dh dxϕ −

, would be 

eliminated from the bilinear form { } a
aP h ,ϕ ψ −⎡⎣ ⎤⎦  in Eq. (2.27). Note that the implementation 

of both Eqs. (2.28) and (2.16) into Eq. (2.27) actually causes { } a
aP h ,ϕ ψ −⎡ ⎤⎣ ⎦  to vanish. 

 

Since the boundary conditions selected in Eq. (2.28) for the adjoint function ( )xψ  are the 

same as the boundary conditions for ( )h xϕ  in Eq. (2.16), and since the operators (L+ )0α  and 

( 0L )α  are formally self-adjoint, we can at this stage drop the qualifier “formally,” and can 

now conclude that the operators ( )0L+ α  and ( )0L α  are indeed self-adjoint. 
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The last step in the construction of the adjoint system is the identification of the source 

term, which shows that 

 

   ( ) ( )0 0
dR x bϕ Σ δ∇ = −e ,     (2.39) 

 

so that the complete adjoint system becomes 

 

  ( ) ( ) ( )
2

0 0 0 0
2 a d

dL D x x
dx
ψψ Σ ψ Σ δ+ ≡ − = −α b ,   (2.30) 

 

where the adjoint function ( )xψ

Q

 is subject to the boundary conditions , as shown 

in Eq. (2.16). Recalling that 

( ) 0aψ ± =

0δ =  and 0P̂ =  for our example, and using Eq. (2.18) gives 

the following expression for the “indirect-effect” term ( )0R hϕ ϕ′ e : 

 

  ( ) ( ) ( )
2 0

0
2

a

a
a

d 0R h x D x S
dxϕ ϕ
ϕψ δ δ Σ ϕ δ

−

⎡ ⎤
′ = − − +⎢ ⎥

⎣ ⎦
∫e dx ,   (2.31) 

where ( )xψ  is the solution of the adjoint sensitivity system defined by Eqs. (2.30) and (2.28). 

 

As expected, the adjoint sensitivity system is independent of parameter variations αh , so it 

needs to be solved only once to obtain the adjoint function ( )xψ . Very important, too, is the 

fact (characteristic of linear systems) that the adjoint system is independent of the original 

solution ( )0 xϕ

)

, and can therefore be solved directly, without any knowledge of the neutron 

flux (xϕ . Of course, the adjoint system depends on the response, which provides the source 

term. Solving the adjoint system for our illustrative example yields the following expression 

for the adjoint function ( )xψ : 

 

 ( ) ( ) ( ) ( ) ( )
0

0 0 2
d

a

sinh b a k
x sinh x a k H x b sinh x b k ,

sinh akD
Σψ
Σ

−⎡ ⎤
= + + −⎢ ⎥

⎣ ⎦
−  (2.32) 
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where  is the Heaviside-step functional defined as (H x b− )

 

   ( )
0 0
1 0

, for x
H x .

, for x
<⎧

= ⎨ ≥⎩
     (2.33) 

 

Using Eq. (2.32) in Eq. (2.31) and carrying out the respective integrations over x  yields, as 

expected, the same expression for the “indirect-effect” term ( )0R hϕ ϕ′ e  as obtained in Eq. 

(2.22). Finally, the local sensitivity ( )0DR ;e h  of ( )R e  at  to variations 0e αh  in the system 

parameters is obtained from Eqs. (2.11), (2.14), and either Eq. (2.22) provided by the FSAP 

or, alternatively, using the adjoint function in Eq. (2.31), as provided by the ASAP; either 

way, the final expression of the sensitivity ( )h0 ;eDR  is 

 

  

( )

( )
( )

0
0

0

0
1

2

1d
a

d

S coshbkDR ;
cosh ak

C coshbk coshak

C b sinhbk cosh ak a sinh ak coshbk .

δ Σ
Σ

Σ

⎞⎛
= − ⎟⎜

⎝ ⎠
+ −⎡⎣
+ − ⎤⎦

e h

  (2.34) 

 

It is instructive to compare the expression of the local sensitivity  with the 

expression of the exact variation 

( 0DR ;e h)

 

   ( ) ( ) ( )0
exact

0R R RΔ ≡ + −e h e ,    (2.35) 

 

which would be induced in the response ( )R e  by parameter variations αh . The exact 

variation  is readily obtained from Eq. (2.07) as ( )exact
RΔ

 

  ( ) ( ) ( )
0

0 0
0 1 p

d dexact
a a p

coshbkS SR R ,
cosh ak

δΔ Σ δ Σ
Σ δ Σ

⎞⎛+
= + − −⎟⎜⎜ ⎟+ ⎝ ⎠

e   (2.36) 

 

where 
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   ( ) ( )0 0
p a ak DΣ δ Σ δ≡ + + D .    (2.37) 

 

On the other hand, we can solve exactly the perturbed equation 

 

   ( ) ( ) ( )0 0 0 0exactL h x Sα ϕϕ⎡ ⎤+ + + + =⎣ ⎦hα S ,δ   (2.38) 

 

subject to the boundary conditions given by Eq. (2.16), to obtain 

 

  

( )
( )

( )

( ) ( ) ( ) ( )

0 0

0

0
0

exact a a
p p

a a p

p p

a p

S Sh x cosh xk coshak
cosh ak

cosh ak cosh xk cosh ak cosh xk
S .

cosh ak cosh ak

ϕ
δ Σ Σ δ

Σ δ Σ

Σ

−
= −

+

−
+

  (2.39) 

 

Comparing Eq. (2.39) to Eq. (2.19) readily confirms that the solution  of the forward 

sensitivity equations is the first-order, in 

( )h xϕ

αh , approximation of ( )xexacthϕ , i.e., 

 

   ( ) ( ) ( )2exacth x h x Oϕ ϕ α= + h .

)

    (2.40) 

 

Similarly, comparing Eq. (2.36) to Eq. (2.34) confirms, as expected, that the local 

sensitivity  is the first-order, in ( 0DR ;e h αh , approximation of the exact response 

variation, namely: 

 

   ( ) ( ) ( ) ( )20 0 0R R DR ; O α+ = + +e h e e h h .   (2.41) 

 

Actually, it can be shown that the functional Taylor-series of ( )0R +e h  contains three 

terms only, namely 
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  ( ) ( ) ( ) ( )0 0 0 2 01
2

R R DR ; D R ;+ = + +e h e e h e h ,   (2.42) 

 

where ( ) ( ) ( )2 0 2 dD R ; h b .ϕδ Σ=e h

( )R e

 In view of Eq. (2.34), the expressions of the partial 

sensitivities of  to the various parameters are: 

 

   
0

0 1d

a

R coshbk ,
S cosh

Σ
Σ ak

⎞⎛∂
= − ⎟⎜∂ ⎝ ⎠

     (2.43) 

    
0

0 1
d a

R S coshbk ,
cosh akΣ Σ

⎞⎛∂
= − ⎟⎜∂ ⎝ ⎠

      (2.44) 

 

( ) ( )

0 0 0 0

2 200 00

11
2

d d

a aaa

R S coshbk S a sinh ak coshbk b sinhbk cosh ak ,
coshak cosh akD

Σ Σ
Σ ΣΣΣ

⎞⎛∂ −
= − − +⎟⎜∂ ⎝ ⎠

   (2.45) 

 

 
( )

0 0 0

20 0 0

1
2

a d

a

R S a sinh ak coshbk b sinhbk cosh ak .
D D D cosh ak

Σ Σ
Σ

∂ −
= −

∂
  (2.46) 

 

Note that the relative sensitivities of R  to dΣ  and  are unity, i.e., S ( )( )0 1d dR RΣ Σ∂ ∂ =  

and ( )( )0 1R S S R∂ ∂ = . The expressions in Eqs. (2.43) through (2.46) will be used in 

conjunction with Eqs. (1.66), (1.75), (1.77), (1.79), (1.81), (1.82), and (1.83) to assimilate 

experimental information, perform data adjustment (model calibration), and compute the best 

estimate values for parameter, responses, and their associated uncertainties. 

   

To illustrate with numerical values the application of these formulas, consider that the slab 

of extrapolated thickness a  consists of water with material properties having the following 

nominal values:   , containing distributed neutron sources 

emitting   nominally S

0 10a cmΣ −=

0 7 neutrons

0197.

10

, 0 0 16D , c=

3 1cm s .

m

− −⋅ ⋅

0 0 15S / S %.=

=

, 0 0 5D / D % ,Δ Δ

 For the sake of argument, consider that all 

of these parameters are uncorrelated and the following relative standard deviations: 

  0 0 5a a/ %ΔΣ Σ = =
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Furthermore, consider that measurements are performed with an infinitely thin detector 

immersed at different locations, x b= , in the water slab, having an indium-like nominal 

detector cross section 0 7 438d .Σ 1cm−=

10%.

, uncorrelated to the other parameters, with a standard 

deviation  Collecting this information (and omitting, for simplicity, the 

respective units), it follows that the covariance matrix for the model parameters is 

0 0
d d/ΔΣ Σ =

 

 

( )
( )

( )
( )

25

23

26

21

9 85 10 0 0 0

0 8 0 10 0 0

0 0 1 5 10 0

0 0 0 7 44 10

.

.

.

.

α

−

−

−

⎞⎛ × ⎟⎜
⎟⎜ × ⎟⎜= ⎟⎜

× ⎟⎜
⎟⎜

⎜ ⎟×⎝ ⎠

C .  (2.47) 

 

 

2.1.2 An Imprecise but Consistent Measurement 
 

Consider now that a measurement is performed at 10b cm=  in the positive direction (i.e., 

to the right of the origin ), yielding 0x = 910 neutrons 3 13 40mr . cm s− −= ×

8 neutrons c

⋅

38 50 10. m s

⋅

1

, with a relative 

standard deviation of 25 , i.e., % m mr / rΔ − −= ×

)

⋅ ⋅

23 1m s− −⋅ ⋅

10b cm

, which corresponds 

to a variance . On the other hand, using Eq. (2.07), the 

nominal value of the computed response at 

( utrons c1710 ne7 2mC . 2= ×

=  is obtained as 

( )10 3 9 3 177 10R cm

( )

.= × neutrons cm s− −⋅ ⋅ . The absolute sensitivities of the response to are: 

1110×10R cm∂ ∂ 1aΣ 92.= − , ( ) 533 10.= − ×10 1R cm D∂ ∂ ,  ( ) 210R c 3 77 10m S .∂ ∂ = × , 

( ) 80×10R cm∂ ∂ 5 0dΣ 8 1.= . 

 

The relative sensitivities of ( )10R cm  to aΣ  and are: D

 

( ) ( )010 10 99999a aR cm R cm .Σ Σ⎡ ⎤∂ ∂ = −⎡ ⎤⎣ ⎦ ⎣ ⎦ ,

( ) ( )0 610 10 5 64 10R cm D D R cm . −⎡ ⎤∂ ∂ = − ×⎡ ⎤⎣ ⎦ ⎣ ⎦ . 
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Using the above sensitivities in Eq. (1.66) together with the covariance matrix shown in 

Eq. (1.99) yields the following value for the computed variance of ( )10R cm : 

 

 ( ) ( ) ( ) ( )217 3 110 10 10 4.98 10
†

rcC cm cm cm n cm sα
− −= = ×⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦S C S ⋅ ⋅ , (2.48) 

 

which corresponds to a computed relative standard deviation  ( )10 18 72rcC / R cm . %Δ =

%

, due 

to parameter sensitivities and uncertainties. Note that this standard deviation is smaller than 

would be naively expected from the popular recipe of “taking the square root of the sum of 

the squared errors”, which would in this case amount to19 . The smaller actual computed 

standard deviation is due to the fact that the sensitivity of 

37.

( )10R cm D

( )10

 to  is vanishingly 

small, so that the error in  does not contribute to the computed error in D R cm . 

 

Applying now Eqs. (1.75), (1.79), (1.81), (1.82), and (1.83) to the above information leads 

to the following best estimate values and covariances: 

 
10 0197be

a . cmΣ −= , 0 16beD , c= m 6 39 7372 10beS . neutrons cm s, 1− −= × ⋅ ⋅ 17 351be
d . cmΣ, −=  

(2.49) 

 
-4

-2

6

-1

-7 -1 -1

-7 -7 -7

-1 -7 -1

-1 -7 -1

 9.71 10 0 0 0
  0 0.80 10 0 0
0 0 1.28 10 0
0 0 0 6.99 10

1.0 -1.67 10 1.03 10 0.63 10
-1.67 10 1.0 5.75 10 3 50 10
1.03 10 5.75 10 1.0 -2.17 10
0.63 10 3 50 10 -2.17 10 1.0

beC

.

.

α

⎞⎛ ×
⎟⎜

× ⎟⎜=
⎟⎜ ×
⎟⎜

×⎝ ⎠
⎛ × × ×
⎜

× ×⎜×
⎜ × × ×
⎜

× × ×⎝
-4

-2

6

-1

 9.71 10 0 0 0
  0 0.80 10 0 0
0 0 1.28 10 0
0 0 0 6.99 10

,

×

⎞
⎟
⎟
⎟
⎟
⎠

⎞⎛ ×
⎟⎜

× ⎟⎜×
⎟⎜ ×
⎟⎜

×⎝ ⎠

   (2.50) 
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( )29 3 1 17 3 13 62 10 2 95 10be be
rr . n cm s , C . n cm s− − − −= × ⋅ ⋅ = × ⋅ ⋅ ,   (2.51) 

 

    (2.52) 

 

 

)-1

 (2.53) 

 

8 3 15 43 10 14 99be be be
r rC . neutrons cm s , C / r . % ,Δ Δ− −= × ⋅ ⋅ =

( ) (8 -1 -6 -1

-4

-2

6

-1

5 43 10 -2.08 10 -1.15 10 7.18 10 4.37 10

 9.71 10 0 0 0
  0 0.80 10 0 0
0 0 1.28 10 0
0 0 0 6.99 10

be
RC .

.

α = × × × × × ×

⎞⎛ ×
⎟⎜

× ⎟⎜×
⎟⎜ ×
⎟⎜

×⎝ ⎠

 
Figure 2.01: An imprecise (relative standard deviation = 25%) but consistent measurement 

 

igure 2.01 shows the spatial variation of the original nominal computed values and 

sta

t-estimate response value, , is predicted by 

the he

( χ 2 0 1168.= ) 

F

ndard deviations (depicted using broken lines) together with the best estimate values and 

corresponding standard deviations (depicted using solid lines).  The value of the consistency 

indicator is 2 0 12.χ = , which is reasonable for a single measurement. Altogether, the above 

information leads to the following conclusions: 

 (i) As would be expected intuitively, the bes ber

 data assimilation and model calibration formalism to fall between t  experimentally 

measured and the originally computed values, somewhat closer to the computed values, 
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because the relative standard deviation of the computed response, ( )10 18 72rcC / R cm . %Δ = , 

is smaller than the  relative standard deviation of the measured respo

 

nse ( 25% ), i.e., 

( ) ( ) ( )( )3 40 3 62 10 3 77 10be
mr . r . R cm . ⎡ 9 3 1n cm s− − ⎤⋅ ⋅ ⎦   (2.54) 

ent reduces the best-

 = < = < = ×⎣

 

i) Again as expected, the assimilation of a consistent experim

est

  

(i

imate variance, be
rC , of ber  to a value that is smaller than the variances of both the 

computed and measured responses, i.e., 

 

( ) ( ) ( )177 22 10mC .= ×   (2.55) 

values of the relative sensitivities to 

17 172 95 10 4 99 10be
r rcC . C .= × < = × <

 

ii). In the case under consideration, the absolute (i

S ,

mo

dΣ  and aΣ  were all equal to unity. In such a case, the adjustment procedure usually affects 

s he pa eters with the largest standard deviation, while those with the smallest original 

standard deviation are adjusted the least. The above results underscore this general trend, in 

that the best estimate value of the source S   (characterized by the largest original uncertainty) 

was adjusted the most, followed by the best-estimate value for d

t t ram

Σ  (the second largest original 

uncertainty), and aΣ   (which had the smallest original unc ainty).  Since the relative 

sensitivity to D  was vanishingly small, this parameter was not adjusted following the 

assimilation of the experiment. 

(iv) Comparing the matrice

ert

s in Eqs. (2.47) and (2.50) in

sta

dicates that the best-estimate 

ndard deviations for the parameters are also reduced by comparison to their original values. 

Due to the same reasons as discussed above (i.e., equal absolute values for the relative 

sensitivities of S , dΣ , and aΣ ), and the values of the respective original standard deviations, 

the best-estimate standard deviations for S  and dΣ  are the most reduced, the standard 

deviation for aΣ  is reduced the least, while that for D s not reduced. 

(v) Although the parameters were originally considered as uncorrel

 i

ated, cf. Eq. (2.47), the 

assimilation of the experimental response induces correlations among the best-estimate 

parameters, as indicated by the correlation matrix in Eq. (2.50), as follows:  

(a) be
aΣ  becomes positively correlated with both beS  and be

dΣ ; 
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(b)  and be
dΣ  become anti-correlated; and beS

(c)  rema  uncorrelated to the other besbeD ins t-estimate parameters, due to its vanishingly 

sm

e correlation matrix 

all relative sensitivity. 

(vi) As indicated by th be
RCα  in Eq. (2.53), the best-estimate response 

be

e diffusion parameter is the sole 

qu

comes anti-correlated to be
aΣ , remains uncorrelated to beD , and becomes positively 

correlated to both  beS  and Σ ven though originally the response was considered to have 

been uncorrelated to any of the original model parameters. 

(vi) Due to its vanishingly small relative sensitivity, th

be
d , e

antity that has remained essentially unaffected by the assimilation of the experiment and 

subsequent calibration procedure, i.e., 0 beD D=  and 0 0 5be beD / D D / D %Δ Δ= = . 

 

 

2.1.3 A Precise and Consistent Measurement 

onsider now that the measurement described in the previous section, i.e., 

h e

 

 

 

C
9 3 13 40 10. neutrons cm s− −= × ⋅ ⋅ , is performed more precisely, with a relative standard 

r than 25% ), with a corresponding variance 

3 12 89C . cm s− −= ⋅ .In t , therefore, the experimental variance is 

the computed response variance 

( ) ( )20 17 3 14.98 10rcC neutrons cm s− −= × ⋅ ⋅α . 

mr

deviation 5m mr / r %Δ =  (rathe

(1610m neutrons× ⋅

considerably smaller t

) is cas
2

han
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Figure 2.02: A precise (relative standard deviation = 5%) and consistent measurement 

( ) 2 0 27.χ =

 

Figure 2.02 shows the spatial variation of the original nominal computed values and 

standard deviations (depicted using broken lines) together with the best estimate response 

values and corresponding standard deviations (depicted using solid lines).  The value of the 

consistency indicator is , which is considerably better than for the imprecise 

measurement considered in the previous section. After assimilating the experiment, the best-

estimate values produced by the calibration procedure are: 

2 0 27.χ =

 
10 0198be

a . cmΣ −= , 0 16beD , c= m 6 39 393 10beS . neutrons cm s, 1− −= × ⋅ ⋅ 17 2371be
d . cmΣ, −= ,

  (2.56) 
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-4
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-1 -7 -1
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-3.94 10 1.0 1.82 10 8.91 10
3.34 10 1.82 10 1.0 -7.57 10
1.63 10 8.91 10 -7.57 10 1.0

beCα

⎞⎛ ×
⎟⎜

× ⎟⎜=
⎟⎜ ×
⎟⎜

×⎝ ⎠
⎛ × × ×
⎜

× ×⎜×
⎜ × × ×
⎜

× × ×⎝
-4

-2

5

-1

 9.51 10 0 0 0
  0 0.80 10 0 0
0 0 9.39 10 0
0 0 0 6.35 10

,

×

⎞
⎟
⎟
⎟
⎟
⎠

⎞⎛ ×
⎟⎜

× ⎟⎜×
⎟⎜ ×
⎟⎜

×⎝ ⎠

  (2.57) 

 

The adjusted best-estimate response value, the corresponding best-estimate response 

variance, and the best-estimate response-parameter correlation matrix are obtained, 

respectively, as 

 

 , 9 33 42 10ber . n cm s− −= × ⋅ ⋅ 1 ( )216 3 12 73 10be
rC . n cm s− −= × ⋅ ⋅   (2.58) 

 

 

( )
( )

8

-2 -7 -1 -1

-4

-2

5

-1

1 65 10

-6.47 10 -3.52 10 2.99 10 1.46 10

 9.51 10 0 0 0
  0 0.80 10 0 0
0 0 9.39 10 0
0 0 0 6.35 10

be
RC .

.

α = ×

× × × × ×

⎞⎛ ×
⎟⎜

× ⎟⎜×
⎟⎜ ×
⎟⎜

×⎝ ⎠

   (2.59) 

 

The following conclusions can be drawn from the above information: 

(i) The more precise measurement considered in this section has a considerably stronger 

influence on the best-estimate adjusted values than the less precise one considered in the 

previous section, pulling the adjusted values strongly towards the experimentally measured 

value, as depicted in Figure 2.02. Thus, the best-estimate response value 

is much closer to the experimentally measured value than 

to the originally computed value. 

93 42 10ber . neutrons cm s− −= × ⋅ ⋅3 1
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 ( ) ( ) ( )( )0 93 40 3 42 3 77 10be
mr . r . R . n cm s− −3 1⎡ ⎤= < = < = × ⋅ ⋅⎣ ⎦α   (2.60) 

 

(ii) The best-estimate response variance  is also reduced more significantly in this case 

than in the case of the less precise measurement considered in the previous section; the best-

estimate relative standard deviation is 4 8 . As before, the adjusted best-estimate response 

variance is smaller than both the measured and the computed response variances, namely. 

be
rC

3%.

 

 ( ) ( ) ( )16 16 172 73 10 2 89 10 4 98 10be
r m rcC . C . C .= × < = × < = ×    (2.61) 

 

(iii) Since the sensitivities have remained unchanged, the largest adjustments occurred for 

the source S  (characterized by the largest original uncertainty), followed by  (the second 

largest original uncertainty);  underwent a minute adjustment, while D  was not adjusted 

(just as in the previous section). However, since the experimental response variance is much 

smaller than in the previous section, the corresponding parameter-adjustments are also larger 

than in the previous section. 

dΣ

aΣ

(iv) Comparing the best-estimate parameter covariance matrix beCα  in Eq. (2.57) with the 

original parameter covariance matrix in Eq. (2.47) shows that  the best-estimate standard 

deviations for the parameters are reduced more by the more precise experiment considered in 

this case (by comparison to the uncertainty reductions effected in the previous section). The 

largest reductions of the standard deviations occurred, in order, for  (best-estimate relative 

standard deviation reduced to 10%), 

S

dΣ  (best-estimate relative standard deviation reduced to 

8.78%), and (best-estimate relative standard deviation reduced to 4.79%), while that for  

was hardly reduced (4.99%). 

aΣ D

(v) Just as in the previous section, the originally uncorrelated parameters became 

correlated after calibration, as indicated by the correlation matrix beCα  in Eq. (2.57). The 

nature of the induced correlations has retained the same character as in the previous section 

(i.e.,  has become positively correlated with both  and be
aΣ

beS be
dΣ ;  and  have become 

anti-correlated; and  remained uncorrelated to the other best-estimate parameters), but the 

beS be
dΣ

beD
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induced best-estimate correlations have become stronger (i.e., larger in absolute values) than 

in the previous case, by a factor of about three. 

(vi) Just as in the previous section, the best-estimate response has become anti-correlated 

to , remained uncorrelated to , and became positively correlated to both   and be
aΣ

beD beS be
dΣ . 

However, as indicated by the correlation matrix be
RCα  in Eq. (2.59), these correlations have 

become weaker (i.e., have become larger in absolute values), also by a factor of about three, 

by comparison to the previous case. 

(vi) As before, because of its vanishingly small relative sensitivity, the diffusion parameter 

has remained essentially unaffected by the assimilation of the experiment and subsequent 

calibration procedure. 

 

 

2.1.4 Four Precise and Consistent Measurements 
 

To illustrate the effects of several consistent measurements, and also to test that symmetric 

measurements (with respect to the vertical plane through the origin) do preserve the solution’s 

symmetry, we consider four consistent  ( ) measurements, taken at the symmetric 

locations  , and having the following values and relative 

standard deviations (abbreviated as “rsd”): 

2 1 21.χ =

10 40cm, cm,− − 10 40cm, cm

 

( ) ( )9 3 1
1 110 3 40 10 5m mr r meas.at cm . n cm sec ; rsd r %;− −= × ⋅ ⋅ =�   (2.62) 

 

( ) ( )9 3 1
2 210 3 59 10 6m mr r meas.at cm . n cm sec ; rsd r %;− −− = × ⋅ ⋅ =�   (2.63) 

 

( ) ( )9 3 1
3 340 3 77 10 5m mr r meas.at cm . n cm sec ; rsd r %;− −− = × ⋅ ⋅ =�   (2.64) 

 

      ( ) ( )9 3 1
4 440 3 74 10 5m mr r meas.at cm . n cm sec ; rsd r %;− −= × ⋅ ⋅ =�   (2.65) 

 

Thus, the covariance matrix of the measured responses is 
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   (2.66) 

( )
( )

( )
( )

28

28

28

28

1 7 10 0 0 0

0 2 15 10 0 0

0 0 1 89 10 0

0 0 0 1 87 10

m

.

.

.

.

⎛ ⎞×⎜ ⎟
⎜ ⎟
⎜ ⎟×
⎜ ⎟=
⎜ ⎟×⎜ ⎟
⎜ ⎟
⎜ ⎟×⎝ ⎠

C

 

The nominal values of the computed responses at the above locations are as follows: 

 

  ( ) 9 3
1 10 3 77 10 1R comp. at cm . n cm sec ;− −= × ⋅ ⋅    (2.67) 

 

  ( ) 9 3
2 10 3 77 10 1R comp. at cm . n cm sec ;− −− = × ⋅ ⋅    (2.68) 

 

  ( ) 9 3
3 40 3 66 10 1R comp. at cm . n cm sec ;− −− = × ⋅ ⋅    (2.69) 

 

  ( ) 9 3
4 40 3 66 10 1R comp. at cm . n cm sec ;− −= × ⋅ ⋅    (2.70) 

 

As expected, the above computed responses confirm the problem’s symmetry. The 

matrices  and , with S relS ( )j jstd . dev.Δα α� ,  containing the nominal values of the 

absolute and relative sensitivities, respectively, are: 

 
11 5 2 8

11 5 2 8

11 9 2 8

11 9 2 8

1 92 10 1 33 10 3 78 10 5 08 10
1 92 10 1 33 10 3 78 10 5 08 10
1 76 10 1 24 10 3 66 10 4 92 10
1 76 10 1 24 10 3 66 10 4 92 10

i

j

. . . .

. . . .R

. . . .

. . . .
α

⎛ ⎞− × − × × ×
⎜ ⎟⎛ ⎞ − × − × × ×∂ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟∂ − × − × × ×⎝ ⎠ ⎜ ⎟⎜ ⎟− × − × × ×⎝ ⎠

�S ,  (2.71) 

 

 

6

6

1 2

1 2

0 99999 5 64 10 1 00 1 00
0 99999 5 64 10 1 00 1 00

9 46 10 5 41 10 1 00 1 00
9 46 10 5 41 10 1 00 1 00

ji
rel

j i

. . .

. . .R .
R . . .

. . .

Δα
α

−

−

− −

− −

⎛ ⎞− − ×
⎜ ⎟⎛ ⎞ − − ×∂ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟∂ − × − ×⎝ ⎠ ⎜ ⎟⎜ ⎟− × − ×⎝ ⎠

�S

.

.

.

.

  (2.72) 
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As already noted, the relative sensitivities of each of the four responses are unity for  and 

. Furthermore, the relative sensitivities of 

S

dΣ 2R  and 2R  to aΣ  are practically unity (in the 

region where the response is essentially constant in space), while those of 3R  and 4R  to aΣ  

are just about 5% smaller, in the regions closer to the slab’s boundary. Finally, the relative 

sensitivities of 2R  and 2R  to  are practically nil (in the region where the response is 

essentially constant in space), while those of 

D

3R  and 4R  to  considerably larger, but still 

very small (ca. 5%) by comparison to the other relative sensitivities. Using the above 

sensitivities in Eq. (1.66) together with the covariance matrix shown in Eq. (2.58) yields the 

following value for the covariance matrix of the computed responses: 

D

   (2.73) 

8

8

8

8

8

8

8

7 06 10 0 0 0
0 7 06 10 0 0
0 0 6 83 10 0
0 0 0 6 83 10

1 0 0 9999 0 9998 0 9998
0 9999 1 0 0 9998 0 9998
0 9998 0 9998 1 0 1 00
0 9998 0 9998 1 00 1 0

7 06 10 0 0 0
0 7 06 10 0 0
0 0 6 83 10 0
0 0 0 6

†
rc

.
.

.
.

. . . .
. . . .
. . . .
. . . .

.
.

.
.

α=

⎛ ⎞×
⎜ ⎟

×⎜ ⎟= ⎜ ⎟×
⎜ ⎟⎜ ⎟×⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟×
⎜ ⎟
⎜ ⎟
⎝ ⎠

×
×

×
×

C SC S

883 10

.

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟×⎝ ⎠

 

From the above covariance matrix and from Eqs. (2.67) through (2.70), the relative 

standard deviations of the four computed responses are  ( ) ( )3 4 18 64rsd R rsd R . %= =  and , 

respectively. Note that the particular values (essentially either unity or zero) of the 

components of the sensitivity matrix lead to a fully correlated covariance matrix for the four 

computed responses. 

 

Applying the data assimilation and adjustment procedure, cf. Eqs. (1.75), (1.79), (1.81), 

(1.82), and (1.83), to the above information leads to the following best estimate parameter 

values, relative standard deviations (abbreviated as “rsd”), and covariances:  
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  ( )10 0198 4 79be be
a a. cm , rsd . %;Σ Σ−= =     (2.74) 

 

  ( )0 1591 5 00be beD , cm, rsd D . %;= =     (2.75)  

 

  ( )6 3 19 85 10 9 21be beS . n cm s , rsd S . %;− −= × ⋅ ⋅ =    (2.76) 

 

  ( )17 388 8 53be be
d d. cm , rsd . %;Σ Σ−= =     (2.77) 

 

 

-4

-3

5

-1

-4 -1 -1

-4 -2 -3

-1 -2 -1

-1 -3 -1

 9.50 10 0 0 0
  0 7.99 10 0 0
0 0 9.08 10 0
0 0 0 6.30 10

1.0 -8.89 10 3.51 10 1.67 10
-8.89 10 1.0 1.02 10 4 84 10
3.51 10 1.02 10 1.0 -8.24 10
1.67 10 4 84 10 -8.24 10 1.0

be

.

.

α

⎞⎛ ×
⎟⎜

× ⎟⎜=
⎟⎜ ×
⎟⎜

×⎝ ⎠
⎛ × × ×
⎜

× ×⎜×
⎜ × × ×
⎜

× × ×⎝

C

-4

-3

5

-1

 9.50 10 0 0 0
  0 7.99 10 0 0
0 0 9.08 10 0
0 0 0 6.30 10

,

×

⎞
⎟
⎟
⎟
⎟
⎠

⎞⎛ ×
⎟⎜

× ⎟⎜×
⎟⎜ ×
⎟⎜

×⎝ ⎠

  (2.78) 

 

 ( ) ( )9 3 1
110 3 66 10 2 58be beat cm : r . n cm sec ; rsd r . %;− −= × ⋅ ⋅ =1   (2.79) 

 

 ( ) ( )9 3 1
2 210 3 66 10 2 59be beat cm : r . n cm sec ; rsd r . %;− −− = × ⋅ ⋅ =   (2.80) 

 

 ( ) ( )9 3 1
3 340 3 56 10 2 59be beat cm : r . n cm sec ; rsd r . %;− −− = × ⋅ ⋅ =   (2.81) 

 

 ( ) ( )9 3 1
440 3 56 10 2 58be beat cm : r . n cm sec ; rsd r . %;− −= × ⋅ ⋅ =4   (2.82) 
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    (2.83) 

7

7

7

7

7

7

7

 9.51 10 0 0 0
  0 9.51 10 0 0
0 0 9.19 10 0
0 0 0 9.19 10

1.00 1.00 0.988 0.988
1.00 1.00 0.988 0.988
0.988 0.988 1.00 0.999
0.988 0.988 0.999 1.00

 9.51 10 0 0 0
  0 9.51 10 0 0
0 0 9.19 10 0
0 0 0 9.1

be
r

⎛ ⎞×
⎜ ⎟

×⎜ ⎟=
⎜ ⎟×
⎜ ⎟⎜ ⎟×⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟×
⎜ ⎟
⎜ ⎟
⎝ ⎠

×
×

×
×

C

79 10

,

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟×⎝ ⎠

 
7

7

7

7

-2 -2 -1 -2

-2 -2 -1 -2

-2 -2 -1 -2

-2 -2

 9.51 10 0 0 0
  0 9.51 10 0 0
0 0 9.19 10 0
0 0 0 9.19 10

-8.65 10 5.12 10 1.60 10 7 62 10
-8.65 10 5.12 10 1.60 10 7 62 10
1.72 10 -5.62 10 1.96 10 9.34 10
1.72 10 -5.62 10

be
r

.

.

α

⎛ ⎞×
⎜ ⎟

×⎜ ⎟=
⎜ ⎟×
⎜ ⎟⎜ ⎟×⎝ ⎠

× × × ×
× × × ×

×
× × × ×
× ×

C

-1 -2

-4

-3

5

-1

1.96 10 9.34 10

 9.50 10 0 0 0
  0 7.99 10 0 0
0 0 9.08 10 0
0 0 0 6.30 10

.

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟× ×⎝ ⎠
⎛ ⎞×
⎜ ⎟

×⎜ ⎟×⎜ ⎟×
⎜ ⎟⎜ ⎟×⎝ ⎠

  (2.84) 
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Figure 2.03 Four precise consistent precise measurements ( ) 2 1 21.χ =

 

Figure 2.03 shows the spatial variation of the original nominal computed values and 

standard deviations (depicted using broken lines) together with the best estimate response 

values and corresponding standard deviations (depicted using solid lines).  The value of 

 indicates a very good consistency among the four measurements. Altogether, the 

above information leads to the following conclusions: 

2 1 21.χ =

(i) The adjustment procedure preserves the problem’s symmetry, as reflected in all of the 

values in Eqs.(2.73) through (2.84). In order to preserve this symmetry, the adjustment 

procedure forces the best-estimate response values 2 3
be ber r=  to fall below both the 

experimentally measured and the originally computed values. However, the values of 

 remain nevertheless consistent with the other best-estimate response values, since 

they remain within their “one-standard deviation” respective ranges. 

2 3
be ber r=

(ii) As expected, the assimilation of a consistent experiment reduces the best-estimate 

variances values that are smaller than the variances of both the computed and measured 

responses, i.e., 

 

( ) ( ) ( ) 1 4be m
i i irsd r rsd r rsd R ; i , , ;< < = …    (2.85) 
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(iii). As in the previous sections, the absolute values of the relative sensitivities to  and 

 were unity, while that of  remained nearly equal to unity, and that of D  continued to 

remain vanishingly small. Hence, also as in previous sections the best estimate value of the 

source   (characterized by the largest original uncertainty) was adjusted the most, followed 

by the best-estimate value for  (the second largest original uncertainty), and   (which 

had the smallest original uncertainty). In contrast to the case of a single experiment, though , 

the diffusion coefficient D  was adjusted (slightly) following the assimilation of four 

experiments, due to the fact that the relative sensitivities to D of the responses near the slab’s 

boundaries were small but non-zero. 

S

dΣ aΣ

Σ

S

d aΣ

(iv) As in previous sections, the best-estimate standard deviations for the parameters are 

also reduced by comparison to their original values. Due to the same reasons as discussed in 

the previous sections, the best-estimate standard deviations for S  and  are the most 

reduced, the standard deviation for 

dΣ

aΣ  is reduced the least, and that for D  is not been 

reduced. 

(v) As in the previous sections, the assimilation of experimental data causes the originally 

uncorrelated parameters and responses to become correlated, as indicated by the matrices 
be
αC ,  and be

rC be
rαC . 

 

Parameter estimation is an important part of the creation of a complex numerical model. 

Therefore, the values of the various model parameters must be calibrated (adjusted) to the 

correct values. Until the recent introduction of adjoint methods in this field, parameters have 

been estimated by using a large number of trial-and-error direct perturbation sensitivity 

experiments. For problems involving a large number of unknown parameters, the 

identifiability problem becomes even more difficult because of correlation between 

parameters. Hence, models must consider not only optimal parameter values (which adjoint 

computations now readily generate), but a range of parameter values within the joint 

distribution of parameter uncertainties, since this joint distribution determines the 

uncertainties in responses for a given scenario. For these reasons, the problem of parameter 

estimation has recently attracted a great deal of attention; intense efforts and research 

resources are devoted to this problem. 
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Data adjustment (model calibration) for large-scale models will certainly pose significant 

computational challenges which may require adopting reasonable compromises, such as 

reduced-order modeling, to avoid difficulties arising from increased dimensionality. Methods 

of large-scale constrained minimization for the solution of optimal parameter estimation for 

range-bounded parameters may need to employ sequential quadratic programming and 

projected gradient minimization methods. 
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3 Time-Dependent Data Assimilation and Model 
Calibration 

 

 

3.1 Paradigm Example: A Radioactive Decay Chain 
 

Consider the time-dependent decay of a radioactive substance, , from an initial 

quantity  at time  which decay with a decay constant 

( )1N t

1( )1 0N = 10N ,0t = λ  into a daughter 

substance, . The daughter substance is itself radioactive and decays, in turn, with a 

decay constant 

( )2N t

2λ  into a grand-daughter substance, ( )3N t , which is also radioactive, and 

decays, in turn, with a decay constant 3λ . This three-member radioactive decay chain can be 

written in matrix form as:  

 

  
( )
( )
( )

1

1

1 2 2

3

2 3

0 0
0

0
0

0

d
dt N t

d N t
dt

N td
dt

λ

λ λ

λ λ

⎞⎛ + ⎟⎜
⎞⎛

0
⎞⎛⎟⎜

⎟⎜ ⎟⎜⎟⎜ − + =⎟⎜ ⎟⎜⎟⎜ ⎜ ⎟⎜ ⎟⎟⎜ ⎝ ⎠⎝ ⎠
⎟⎜ − +⎜ ⎟

⎝ ⎠

    (3.01) 

 

subject to the initial conditions: 

 

  ( ) ( ) ( )1 10 2 30 0 0 0 0 atN N , N , N , t= = = 0.=    (3.02) 

 

The decay constants 1 2 3i , i , ,λ =  and the initial quantity  are considered to have been 

obtained experimentally and are therefore affected by uncertainties. The information usually 

available in practice are nominal (mean) values and standard deviations. In this particular 

case, therefore, the nominal values, denoted as  and , are considered to be 

known along with the respective standard deviation, denoted here as 

10N

0
i , iλ =0

10N 1 2 3, ,

N10δ  and 1 2 3i , i , ,δλ = .  
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For the purposes of model calibration (data adjustment), consider that various 

experimentally measured values of the so-called activities ( ) ( ) 1 2 3i i iA t N t , i , , ,λ≡ =  at 

various instances in time, are also available. Especially for small numbers, they are 

intrinsically statistical quantities which may or may not be correlated. The paradigm problem 

considered in this section is to apply the time-dependent methodology presented in Section 

1.2, using the “experimentally measured” activities, to obtain best-estimate mean values and 

reduced uncertainties for the decay constants 1 2 3i , i , ,λ =  and the initial quantity . 10N

  

The activities ( ) ( ) 1 2 3i i iA t N t , i , ,λ≡ = , can be computed after solving Eqs. (3.01) and 

(3.02) for any (known) nominal values of the model parameters  and 10N 1 2 3i , i , ,λ = , to 

obtain 

 

  ( ) 1
1 10

tN t N e ,λ−=        (3.03) 

 

  ( ) ( 1 210 1
2

2 1

t tNN t e e ,λ λ )λ
λ λ

− −= −
−

     (3.04) 

  
( ) ( )( ) ( )( )

( )( )

1 2

3

1 2 10 1 2 10
3

2 1 3 1 1 2 3 2

1 2 10

3 1 3 2

t t

t

N e N eN t

N e .

λ λ

λ

λ λ λ λ
λ λ λ λ λ λ λ λ

λ λ
λ λ λ λ

− −

−

= +
− − − −

+
− −

   (3.05) 

 

The above solutions indicate that the radioactivity of the parent substance, , decays 

ultimately to zero from its initial value 

( )1N t

( )1 0N = 10N  at time 0t = . The daughter substance, 

, builds up to a maximum value ( )2N t ( )2 2mN t = 2 2 mt
10N e λ− , which is reached at time 

( ) (1
2 2 1 2t ln )1/m λ λ λ−≡ −

( )3N t

λ , after which it will ultimately decay to zero, too. The grand-

daughter substance, , also builds up to a maximum value after which it also ultimately 

decays to zero. 

 

 A measured activity at any time instant instances is evidently a “number”. From a 

computational point of view, such a “number” can be represented mathematically as a 

it
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functional of the state variables ( ) ( ) ( )1 2 3N t , N t , N t≡ ⎡ ⎤⎣ ⎦u  and model parameters 

[ 10 1 2 3N , , , ]λ λ λ≡α  of the general form 

 

   ( ) ( ) ( )
0

ft

i, F , t t dt ,δ≡ −∫ u αu α     (3.06) R

 

where  is a function of the indicated arguments and ( )F ,u α ( )ittδ −  is the customary Dirac 

delta functional. The sensitivity of the response ( )R ,u α  defined in Eq. (3.06) to variations 

[ 10 1 2N , ,α ]δ δλ δλ≡h

( )

3,δλ

( )

 in the model parameters and variations 

( ) ( ) ( ) ( )1 2 3t , h t , h t≡⎤ ⎡ ⎤⎦ ⎣ ⎦1 2u N t , Nδ δ≡ ⎡⎣h 3N t hδ

( )u, ; ,

t ,

DR

 in the state functions is given by the 

Gateaux-differential αu α h h  of ( )R ,u α  at the nominal parameter values 

0 0 0 0
10 1 2 3N , , , 0λ λ λ⎡≡ ⎣α

( ) ( )0 0 0
1 2N t , N t≡u

⎤⎦

( )0
3⎡ ⎤⎣ ⎦

 and the corresponding the nominal values of the state variables as 

, and is defined as , N t

 

  ( ) 0 0

0
u u

dDR , ; , R ,
dα

ε

ε ε
ε =

⎧ ⎡≡ + +⎨ ⎣⎩ ⎭
u α h h u h α hα

⎫⎤⎬⎦ .  (3.07) 

  

Applying the above definition to Eq. (3.06) gives 

 

   ( ) ( ) ( )u dir in
DR , ; , DR DR ,α = +u α h h     (3.08) 

 

where the direct effect term (  is defined as )dir
DR

      (3.09) ( ) ( ) ( )0 0

0

ft

idir
DR F , t t dt ,α α δ′≡ ∫ u α h −

−

 

while the indirect effect term (  is defined as )in
DR

       (3.10) ( ) ( ) ( )0 0

0

ft

u u iin
DR F , t t dt .δ′≡ ∫ u α h
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The forward sensitivity system (variational tangent model) [Cacuci, 2003] of the 

radioactive chain model is needed in order to determine the variational vector . This system 

is obtained by taking the Gateaux-derivative of Eqs. (3.01) and (3.02), to obtain 

uh

  

( )
( )
( )

( )
( ) ( )
( ) ( )

1
0

1 1 1
0 0

1 2 2 2 2 1 1
0 0

3 3 3 2 2

2 3

0 0

0

0

d
dt h t N t

d h t N t N t
dt

h t N t N td
dt

λ
δλ

λ λ δλ δλ
δλ δλ

λ λ

⎞⎛ + ⎟⎜
⎞⎛⎞ −⎛⎟⎜
⎟⎜⎟⎜⎟⎜≡ − + = − + ⎟⎜⎟⎜⎟⎜

⎜ ⎟ ⎜ ⎟− +⎟⎜ ⎝ ⎠ ⎝ ⎠⎟⎜ − +⎜ ⎟
⎝ ⎠

Lh   (3.11) 

 

subject to the initial conditions 

 

  ( ) ( ) ( )1 10 2 30 0 0 0 0 ath N , h , h , tδ= = = 0.=

⎤⎦

   (3.12) 

 

 

3.1.1 Deterministic Computation of Sensitivities Using the Adjoint 
Model 

 

The adjoint sensitivity system corresponding to the above forward sensitivity model is 

obtained by applying the general theory outlined in [Cacuci, 2003]. Fundamentally, the 

adjoint system is introduced via an appropriately defined inner product. For the present 

problem, in which the state variables are three-component vectors of the form 

, the  inner product is defined as  ( ) ( ) ( )1 2 3u h t , h t , h t≡ ⎡⎣h

 

   ( ) ( )
3

10

ft

u i i
i

h , h t t dt .ψ ψ
=

⎡ ⎤≡ ⎢ ⎥⎣ ⎦
∑∫     (3.13) 

where ( ) ( ) ( )1 2 3t , t , tψ ψ ψ≡ ⎡⎣ψ

( ) ( )

⎤⎦ . Applying the general theory outlined in [Cacuci, 2003] 

leads to the following final-value time problem for the vector of adjoint functions 

( )1 2 3t , t , tψ ψ ψ⎡ ⎤⎣ ⎦≡ψ : 
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( )
( )
( )

( )

( )

( )

1 1
1

1

2 2 2
2

3

3

3

0

0

0 0

i

*
i

i

Fd t t
Ndt t

d Ft t
dt N

td F t tdt N

δλ λ
ψ

λ λ ψ δ
ψ

λ δ

t ,

⎞⎛ ∂⎞⎛ − ⎟⎜− + − ⎟⎜ ∂ ⎟⎜⎞⎛⎟⎜ ⎟⎜ ∂⎟⎜⎟⎜≡ − + − = − ⎟⎜⎟⎜⎟⎜ ∂ ⎟⎜⎜ ⎟⎟⎜ ⎝ ⎠ ⎟⎜ ∂⎟⎜ − + −⎜ ⎟ ⎟⎜⎝ ⎠ ∂⎝ ⎠

Lψ  (3.14) 

 

subject to the final-time conditions  

 

  ( ) ( ) ( )1 2 30 0 0 at .f f ft , t , t , t tψ ψ ψ= = = f=    (3.15) 

 

The indirect effect term can be expressed alternately in terms of adjoint functions as 

follows: 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

0

0
10 1 1 1 2 1

0

0 0
2 2 3 2 3 3 3

0 0

0

f

f

f f

t
*

u u u uin

t

t t

ˆDR F u , h dt h , L , Lh P h, ;u ,

N N t t t dt

N t t t dt N t t dt ,

α ψ ψ ψ α

δ ψ δλ ψ ψ

δλ ψ ψ δλ ψ

′≡ = = −

= + −⎡ ⎤⎣ ⎦

+ − −⎡ ⎤⎣ ⎦

∫

∫

∫ ∫

 (3.16) 

 

Note the important fact, generally valid for time-evolution systems, that the sensitivity of 

the response to the system’s initial conditions are related directly to the values of the adjoint 

functions at the initial-time. Actually, for the particular radioactive decay chain example 

considered in this section, the sensitivity of the particular responses selected above actually 

coincides with the value of the adjoint function at the initial time . This property 

provides a very valuable tool to verify the accuracy of solving the adjoint sensitivity system 

backwards in time, from the final-time value to the initial one, to compute the respective 

adjoint functions. 

0t =
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3.1.1.1 Measurements of ( ) ( )1 1 1 iA t N t , i , ,n .λ≡ = … 11  
 

To begin with, consider that values ( ) ( )1 1 1 1iA t N t , i , ,n ,λ≡ = … 1  of the time-dependent 

activity of the radioactive substance ( )t 1n1N , are measured at  instances , in 

time. These measured responses may or may not be correlated. From a computational 

standpoint, the nominal values of these responses can be readily computed at each time point 

 by using Eq. (3.03) to obtain 

11it , i , ,n= …

11it , i , ,n= …

 

   ( ) ( ) 10 0 0 0 0 0
1 1 1 1 10 1it

i 1R , N t N e , i ,λλ λ −= = =u α … ,n .   (3.17) 

 

The above response can be represented mathematically as a functional of the form given in 

Eq. (3.06), namely 

   ( ) ( ) ( )1 1 1
0

ft

iR , N t t tλ δ≡ −∫u α dt ,     (3.18) 

 

where ft  denotes the (finite or infinite) final-time value to be considered for this problem. 

 

The sensitivities of the above response to variations  and uh αh  are given by the Gateaux-

differential, ( )0 0
1 uDR , ; , αu α h h , of ( )1R ,u α , which is obtained as a particular case of Eqs. 

(3.09) and (3.10), giving the expressions 

 

  
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0
1 1 1

0 0
1 1 1 1 1 1

0

where
f

u dir in

t

i idir in

DR , ; , DR DR ,

DR N t , DR h t t t dt.

α

δλ λ δ

= +

≡ ≡ ∫

u α h h

−
  (3.19) 

 

The direct effect term, ( , can be evaluated immediately, but the indirect effect term 

 needs to be evaluated either by the forward (FSAP) or the adjoint (ASAP) sensitivity 

analysis procedure. Even though the number of model parameters (4) is modest in this 

)1 dir
DR

( )1 in
DR
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paradigm problem, the ASAP is still more efficient to use than the FSAP. For the particular 

form of (  defined in Eq. (3.19), the adjoint sensitivity system shown in Eq. (3.14) takes 

on the following particular form: 

)1 in
DR
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1 1
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⎜ ⎟ ⎜ ⎟⎟⎜ ⎝ ⎠ ⎝ ⎠⎟⎜ − +⎜ ⎟
⎝ ⎠

 (3.20) 

 

subject to the same final-time conditions as shown in Eq. (3.15). The solution to the above 

final-time problem is readily obtained in the form 

 

     (3.21) ( ) ( ) ( ) ( ) (
0
10

3 2 1 10 0 it t
it , t , t e H t tλψ ψ ψ λ − −≡ ≡ = ) ,−

)
 

where  denotes the customary Heaviside functional defined as ( iH t t−

 

  ( )
0 if
1 if

i
i

i

, t t ,
H t t

, t t.
<⎧

− ≡ ⎨ ≥⎩
     (3.22) 

 

Taking into account the expression of the direct effect term from Eq. (3.19), inserting the 

expressions obtained in Eq. (3.21) into the general form given in Eq. (3.16), and performing 

the respective integration yields the following expressions for the non-zero sensitivities of 

( )2R ,u α : 

 

  ( ) ( )0
10 0 01 1

1 1 10 1
10 1

0 1it
i

R Re , N t e
N

λψ λ λ
λ

− 0
1 it .λ−∂ ∂

= = = −
∂ ∂

   (3.23) 
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3.1.1.2 Measurements of ( ) ( )2 2 2 jA t N t , j , ,n .λ≡ = … 21  
 

Consider next that values ( ) ( )2 2 2 1j 2A t N t , j , ,nλ≡ = …

( )t 2n

, of the time-dependent activity of 

the radioactive substance , are measured at  instances 2N 21jt , j , ,n= … , in time. These 

measured responses may or may not be correlated. The computed nominal values of these 

responses can be readily computed from Eq. (3.04) to obtain  

 

  ( ) ( ) ( )0 0
1 2

0 0
0 0 0 0 10 1

2 2 2 0 0
2 1

1j jt t
j

N
2R , N t e e , j , ,− −= = − =

−
…λ λλλ

λ λ
u α n .

)

 (3.24) 

 

As before, the response (2R ,u α  can be represented mathematically as a functional of the 

form  

   ( ) ( ) ( )2 2 2
0

ft

jR , N t t tλ δ≡ −∫u α dt ,     (3.25) 

where ft  denotes the (finite or infinite) final-time value to be considered for this problem. 

 

The sensitivities of the above response to variations  and uh αh  are given by the Gateaux-

differential, ( )0 0
2 uDR , ; , αu α h h , of ( )2R ,u α , which is obtained as  
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( ) ( ) ( ) ( ) ( ) ( )

0 0
2 2 2

0 0
2 2 2 2 2 2

0

where
f

u dir in

t

j jdir in

DR , ; , DR DR ,

DR N t , DR h t t t dt.

= +

≡ ≡ ∫

α

δλ λ δ

u α h h

−
  (3.26) 

 

The direct effect term, ( , can be evaluated immediately, but the indirect effect term 

 needs to be evaluated either by the forward (FSAP) or the adjoint (ASAP) sensitivity 

analysis procedure. For the particular form of 

)2 dir
DR

( )2 in
DR

( )2 in
DR  defined in Eq. (3.26), the adjoint 

sensitivity system shown in Eq. (3.14) takes on the following particular form: 
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  (3.27) 

 

subject to the same final-time conditions as shown in Eq. (3.15). The solution to the above 

final-time problem is readily obtained in the form  
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Taking into account the expression of the direct effect term from Eq. (3.26), inserting the 

expressions obtained in Eq. (3.28) into the general form given in Eq. (3.16), and performing 

the respective integration yields the following expressions for the non-zero sensitivities of 

( )1R ,u α : 
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3.1.1.3 Measurements of ( ) ( )3 3 3 kA t N t , k , ,nλ≡ = … 31 . 
 

Consider now that values ( ) ( )3 3 3 1kA t N t , k , ,n ,λ≡ = …

( )t 3n

3  of the time-dependent activity of 

the radioactive substance , are measured at  instances 3N 31kt , k , ,n= … , in time. These 
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measured responses may or may not be correlated. As before, the response (3 )R ,u α  can be 

represented mathematically as a functional of the form  

 

   ( ) ( ) ( )3 3 3
0

ft

kR , N t t tλ δ≡ −∫u α dt ,     (3.30) 

 

where ft  denotes the (finite or infinite) final-time value to be considered for this problem. 

The sensitivities of the above response to variations  and uh αh  given by the Gateaux-

differential, ( )0 0
3 uDR , ; , αu α h h , of ( )3R ,u α , which is obtained as  
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The direct effect term, ( , can be evaluated immediately, while the indirect effect 

term  will be evaluated using the adjoint (ASAP) sensitivity analysis procedure. For 

the particular form of 

)3 dir
DR

( )3 in
DR

( )3 in
DR  defined in Eq. (3.31), the adjoint sensitivity system shown in 

Eq. (3.14) takes on the following particular form: 
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subject to the same final-time conditions given in Eq. (3.15). Solving the above final-time 

problem gives 
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Taking into account the expression of the direct effect term from Eq. (3.31), inserting the 

expressions from the adjoint functions from Eq. (3.22) into the general form given in Eq. 

(3.16), and performing the respective integration yields the following expressions for the non-

zero sensitivities of ( )3R ,u α : 
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(3.34) 
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3.1.2 Best-Estimate Predictions after Data Assimilation and Model 
Calibration 

 

As a specific example of a radioactive decay chain involving three nuclides, consider the 

decay of iodine into cesium: 

 

1 2

135
54 9 2/
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1 2
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where the radioactive constants 1 2 3, ,λ λ λ have the following nominal values: 
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For an initial quantity of iodine , the time-dependent behaviour of the 

solutions of Eqs. (3.03) through (3.05) are depicted in Figure 3.01.  

0
1 100 10N ( ) N mol= =

 

 
Figure 3.01: Time-variation of the nuclides following the decay chain defined in (3.35). 

 

 86



 

Consider next that the radionuclides’ activities are measured during the first 40 hours of 

the transient radioactive decay process. These activities are therefore the “measured 

responses”.  The corresponding computed responses (activities) are readily obtained by 

multiplying the respective number densities (see Figure 3.01, above) with the corresponding 

decay constants, and their behavior in the time interval 0-40 hours is displayed in Figure 3.02. 

It turns out that the activity of the third isotope (Cs) is negligible (6 orders of magnitude 

smaller) compared with those of the Iodine and Xenon and will therefore not be considered 

for data assimilation and model calibration. In the following, the activity of the Iodine nuclei 

will be denoted by the “response” 1 1R N1λ=  and the activity of the Xenon nuclei will be 

denoted  by the “response” 2R N2 2λ= . 

  

 
Figure 3.02: Time-dependent activities of Iodine (R1) and Xenon (R2). 

 

The uncertainty, and therefore adjustable, to be considered for the data assimilation and 

calibration procedure are the decay constants λ1, λ2 and the initial quantity of Iodine isotope 

(N10). Figure 3.03 shows the relative sensitivities of the two responses [see Eq. (3.29)] to the 

three system parameters. The activity of Iodine (R1) is not sensitive to λ2.  
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Figure 3.03: Relative sensitivities of the activities R1 (left) and R2 (right) to the parameters 

N10, λ1 and, respectively, N10, λ1, λ2. 

 

 
Figure 3.04: Nominal values of computed responses and their corresponding error bands 

(standard deviations) derived from error propagation. Red dots denote consistent “measured” 

responses (for R1 and R2) at four time nodes: 3, 7, 15 and 27 hours, with corresponding 

standard deviations. 

 

In Figure 3.04, the nominal values of the computed responses are depicted by the middle 

lines. On each side of the computed nominal values, are the lines depicted the computed 

standard deviations that arise from the propagation of the following relative standard 

deviations of the system parameters: 

( ) ( ) ( )10 9 151 2rel rel relN %, %,σ σ λ σ λ= = 13%=    (3.37)   
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Four consistent “experimental” measurements, depicted as red-dots in Figure 3.04, are 

considered to be available at 3, 7, 15, and 27 hours, respectively. The consistency indicator 

for these m

ilating and ca

simultaneously, the resulting best-estimate relative standard deviations of the system 

easurements is indicating that the experimental and computational 

information to be considered posed for data assimilation is consistent. Using the BEST-EST 

software module for assim librating both responses and parameters 

parameters are: 

 ( )

2 2 463 8. /χ =  

( ) ( )10 3 09 6 93 8 141 2rel rel relN . %, . %, . %σ σ λ σ λ= = = . (3.38) 

As expected for a consistent data assimilation and model calibration procedure, the errors 

in the considered parameters have been clearly reduced, as indicated by compa

estimate results in (3.38) with the initial ones in (3.37). The relative standard deviation for 

ring the best-

2λ  

is not so strongly reduced because only R2 is sensitive to 2λ . 

 

 
Figure 3.05: Initial (Ri, in blue) and adjusted (Ri

BE, in red) responses (central lines) with 

corresponding standard deviations (side lines). The eight “experimental” points used for the 

data adjustment (four for each response) and their standard deviations are also displayed

ave 

been reduced by about 50%. These results clearly demonstrate the value of combining 

co

. 

 

After data assimilation, the new values of the best-estimate responses, depicted in red in 

Figure 3.05, fall in between the computed and measured values, and their uncertainities h

nsistent measurements and computations for reducing uncertainties in predicted best-

estimate quantities. 
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3.2 Large-Scale Application: Data Assimilation and Model 
Calibration of the FLICA4 3D Thermal-Hydraulics Code 
using the NUPEC BFBT Experiments 

 

l reactor thermal-hydraulics 

ental facility simulated using the code system FLICA4 developed at CEA/France. The 

experim

ental data. The 

BFBT benchmarks are particularly well suited for quantifying uncertainties in predictions of 

detailed distributions of sub-

 

This Chapter demonstrates an application of the time-dependent best-estimate data 

assimilation and model calibration methodology presented in Section 1.2 and programmed in 

the software module BES-EST to a large-scale three-dimensiona

experim

ental information used for calibrating FLICA4-parameters stems from the 

international OECD/NRC BWR Full Size Fine-Mesh Bundle Tests (BFBT) benchmarks, 

which were designed by the Nuclear Power Engineering Corporation (NUPEC) of Japan for 

enabling systematic validation of simulation tools using full-scale experimental data. The 

following specific BFBT experiments will be used in this work for calibrating parameters and 

boundary conditions for FLICA4: (i) one-dimensional pressure drops; (ii) axial void fraction 

distributions; and (iii) three-dimensional transverse void fraction distributions. The resulting 

uncertainties for the best-estimate parameters and distributions of pressure drops and void 

fractions will be shown to be smaller than the a priori experimental and computed 

uncertainties, thus demonstrating the successful calibration of a large-scale reactor core 

thermal-hydraulics code using the BFBT benchmark-grade experiments.  

 

Section 3.2.1 describes the experimental set-up of the BFBT benchmarks. The Nuclear 

Power Engineering Corporation (NUPEC) of Japan designed these experiments for enabling a 

systematic validation of numerical simulation models using full-scale experim

channel void fraction and critical powers. Section 3.2.1.1 

presents the description of the BFBT experimental loop facility and test section, while Section 

3.2.1.2 highlights the methods for measuring pressures drops, as well as static and transient 

void fraction distributions. Section 3.2.1.3 presents the geometrical description and material 

properties of the BWR fuel assembly mock-up used in the respective BFBT measurements. 

Section 3.2.2 comprises four subsections, which present the procedure and best-estimate 

results following the calibration of model parameters in FLICA4, in conjunction with the 

assimilation of experimental data from the NUPEC BFBT experiments [Neykov et al., 2006]. 

To begin with, Section 3.2.2.1 presents the high fidelity FLICA4 simulations that have been

 90



pe

neering Corporation of Japan (NUPEC) 

performed measurements [Inoue et al., 1995] of void fraction distribution in full-size mock-up 

essurized water reactors (PWRs). 

The void fraction distributions were visualized using computer tomography (CT) technology 

un

of sub-channel void distribution are 

incompletely known, and the correlations replacing first-principles are not generally 

ap

rformed for the following benchmark measurements: (i) pressure drops stemming from 

steady one-dimensional FLICA4-simulations; (ii) axial void fractions distributions stemming 

from transient one-dimensional FLICA4-simulations; and (iii) transversal void fraction 

distributions stemming from steady three-dimensional FLICA4-simulations, at sub-channel 

level with cross-flow. 

 

3.2.1 Description of the BFBT experiments 
 

From 1987 to 1995, the Nuclear Power Engi

fuel bundles for both boiling water reactors (BWRs) and pr

der actual plant conditions for mesh sizes smaller than a sub-channel. In addition to 

measuring void fraction distributions, NUPEC also performed steady state and transient 

measurement of critical power in equivalent full-size mock-ups. The NUPEC measurements 

are internationally considered to be highly reliable because of the high reliability of the 

experimental facility, including control of the system pressure, inlet sub-cooling, and rod 

surface temperature. Thus, these measurements provide internationally a comprehensive 

database for the development of consistent mechanistic models for predicting void fraction 

distributions and boiling transition in sub-channels. 

 

Gaining accurate knowledge about boiling transition and void fraction distribution is 

essential for the quantification of nuclear reactor safety margins. However, the theoretical 

principles underlying the numerical modeling 

plicable to the wide range of geometrical arrangements and operating conditions found in 

operating LWRs of various types. The international OECD/NRC BWR Full-Size Fine-Mesh 

Bundle Tests (BFBT) benchmarks [Neykov et al., 2006] were established based on the 

NUPEC database to motivate research on insufficiently known two-phase flow regimes by 

facilitating a systematic comparison of full-scale experimental data to predictions of 

numerical simulation models. These benchmarks are particularly well suited for quantifying 
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uncertainties in the prediction of detailed distributions of sub-channel void fractions and 

critical powers.  

 

The design and data acquisition systems of NUPEC’s facility enable both macroscopic and 

microscopic measurements. In this context, measurement of sub-channel void fractions are 

considered as macroscopic data, while the digitized computer graphic images are considered 

as microscopic data. Thus, the BFBT measurements of void fraction distributions and critical 

powers in a multi-rod assembly under typical reactor power and fluid conditions enable 

comparisons with predictions of computational models and encourage the development of 

new theoretical models focusing more on microscopic processes. 
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3.2.1.1 Experimental Loop Facility and Test Section 
 

By using an electrically heated rod assembly that simulates a full scale BWR fuel 

assembly, NUPEC’s BWR Full-size Fine-mesh Bundle Test (BFBT) facility is able to 

simulate the high-pressure and high temperature fluid conditions characteristic of operating 

BWRs.  

3.2.1.1.1 Experimental Loop Facility  
 

Figure 3.06 shows the diagram of the BFBT experimental loop facility. The facility 

enables steady-state simulations that span the full range of BWR operating conditions, as well 

as time-dependent simulations of complex BWR operational transients. The limiting operating 

conditions for the facility are as follows: pressure up to 10.3 MPa, temperature up to 315 °C, 

power up to 12 MW, and flow rate up to 75 t/h.  

 

 
Figure 3.06: Facility for NUPEC Rod Bundle Test Series 
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The main structural components are made of stainless steel (SUS304). De-mineralized 

water is used as a cooling fluid. As depicted in Figure 3.06, water is circulated by the 

circulation pump (1); the three valves (3) of different sizes control the coolant flow rate. A 

direct-heating tubular pre-heater (4) controls the inlet fluid temperature for the test section (5). 

Sub-cooled coolant flows upward into the test bundle (5), in which it is heated to become a 

two-phase mixture. The steam is separated from the steam-water mixture in the separator (7) 

and is condensed using a spray of sub-cooled water in the steam drum (8). The condensed 

water is then returned to the circulation pump (1). The spray lines (9), which have four 

different-sized valves, control the system pressure in both steady and transient state. The 

pressurizer (6) controls the system pressure when the power in the test section is low. After 

the water is cooled with two air-cooled heat exchangers (11), the spray pump (10) forces a 

spray into the steam-drum. The operation range of the test loop depicted in Figure 3.06 covers 

the full range of BWR steady-state operating conditions. 

 

3.2.1.1.2 Test Section  
 
 

Figure 3.07 depicts the test section, which comprises a pressure vessel, a simulated flow 

channel, and electrodes, and a full-scale BWR mock-up fuel assembly installed within the 

vessel. Although two types of BWR bundles (a current 8x8 type and a high burn-up 8x8 type) 

were simulated in the BFBT experiments, this work considers only the experiments involving 

the “high burn-up” 8×8 mock-up; its characteristic dimensions are listed in Table 3.01. Each 

rod in the test assembly is heated electrically to simulate the actual operating conditions for a 

reactor fuel rod. The cladding, insulator, and heater are made of inconel, boron nitride, and 

nichrome, respectively. 
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Figure 3.07: Cross Sectional View of Test Section 

 
Items High burnup  

8×8 
Number of fuel rods 
Outer diameter (mm) 
Heated length (m) 
Number of water rod 
Outer diameter of water rod 
(mm) 
Rod pitch (mm) 
Width of channel box 
Number of spacer 
Spacer type 

60 
12.3 
3.7 
1 
34.0 
16.2 
132.5 
7 
Ferrule 

 
Table 3.01: Characteristics of BWR Test Bundles 
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3.2.1.2 Measurement Methods  
 

This section highlights the measurement methods for the static and transient void fraction 

distributions (Sec.3.2.1.2.1), and for the pressures drop measurements (Sec.3.2.1.2.2). 

 

3.2.1.2.1 Void Fraction Distribution (Static and Transient)  
 

The X-ray computerized tomography (CT) scanner and the X-ray densitometer were used 

as shown in Figure 3.08 (a) for measuring void fraction distributions. Fine-mesh void 

distributions were measured under steady-state conditions using the X-ray CT scanner at a 

point 50 mm above the heated length. Figure 3.08 (b) shows the void fraction measuring 

section. The pressure vessel is made of titanium, while the channel wall and the cladding of 

the heater rods at this location are made of beryllium in order to minimize X-ray attenuation 

in the structure. The X-ray CT measurement system comprises an X-ray tube and 512 

detectors at locations shown in Figure 3 (c), attaining a spatial resolution of 0.3 mm × 0.3 

mm.  

 
Figure 3.08: Void fraction measurement system 
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The cross-sectional average transient void fraction distributions were measured by the X-

ray densitometer at 3 elevations (at elevations 682, 1706, 2730 mm, from bottom to top, in 

Figure 3.07. To enable these measurements, the channel sections at these elevations were 

made of beryllium, and the heater rods were clad with beryllium having the same diameter as 

the Inconel portion of the heater rod. 

 

Scan method 360o  rotation with pulse X-rays 
Type of X-ray beam  Fan-shaped X-ray beam of 34o radiation 

angle 
Voltage of X-ray tube  Max. 120 kV 
Current  Max 400mA 
Scanning time  15s 
Scanning region  D=300 mm 
Dimensions of reconstruction element  0.3mm X 0.3mm 
 

Table 3.02: Specification of X-ray CT Scanner 

 

Table 3.02 shows the basic specifications of the X-ray CT scanner. As a fan-shaped X-ray 

beam scans an object, the object attenuates the beam; the detectors measure the attenuated 

beam and record the X-ray intensity data. These records are called “projection data”; 

complete 360o projection data were thus obtained. The distribution of the linear attenuation 

coefficient is obtained by reconstructing the projection data. The reconstruction technique is 

called a “filter back projection”, and has been widely used in the field of nuclear medicine. 

All void fraction signals from the detectors are calibrated using a signal from a reference 

detector to improve the signal-to-noise ratio. 

 

The steady state measurements were performed using thermal-hydraulic conditions that 

would envelope the steady-state parameters characterizing the actual operation of a BWR in 

terms of the bundle’s geometrical configuration, power shape and two-phase flow. The range 

of test conditions included pressures ranging from 1 MPa to 8.6 MPa, flow rates ranging from 

284 kg/m2/s to 1988 kg/m2/s, and exit qualities ranging from 1 to 25%. The X-ray CT 

scanner and the X-ray densitometer measurements systems were used in the experiments. In 

particular, the X-ray densitometer was employed for performing transient measurements of 

the cross-sectional averaged transient void fraction distribution resulting from the combined 
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effects of pressure, flow rate, and power for the following four operational transients: (a) 

turbine trip without bypass; (b) one pump trip; (c) re-circulation pump tripped; and (d) 

malfunction of pressure control system (pressure increase). 

 

3.2.1.2.2 Pressure Drop Measurements 
 

Pressure drop measurements were also performed in the loop facility depicted in Figure 

3.06. For this purpose, the loop was operated under normal BWR operational conditions and 

typical transient conditions. The full-scale 8x8 high burn-up fuel assembly mock-up was 

installed in the test section. The steady-state pressure drop was measured in both single-phase 

flow and two-phase flow conditions that cover the normal operational behavior. The bundle 

pressure drop was monitored at several locations, as depicted in Figure 3.09. 

 
Figure 3.09: Pressure tap locations for pressure drop measurements. 
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3.2.1.3 Fuel Assembly Data 
 

Table 3.03 lists the transversal power profiles for the beginning of operation (type A). 

Table 3.04 provides geometric information for the 8×8 high burn-up mock-up assembly in 

addition to the information provided in Table 3.01. 

1.15 1.30 1.15 1.30 1.30 1.15 1.30 1.15
1.30 0.45 0.89 0.89 0.89 0.45 1.15 1.30
1.15 0.89 0.89 0.89 0.89 0.89 0.45 1.15
1.30 0.89 0.89 0.89 0.89 1.15
1.30 0.89 0.89

 
0.89 0.89 1.15

1.15 0.45 0.89 0.89 0.89 0.89 0.45 1.15
1.30 1.15 0.45 0.89 0.89 0.45 1.15 1.30
1.15 1.30 1.15 1.15 1.15 1.15 1.30 1.15

 

Table 3.03: Transversal Power Shape of Type A for the Test Assembly Type 4. 

 

Item Data 
 
 
 
Test assembly 4 

 
 
 
 
 
 
 
 

Simulated fuel assembly type High burn-up 8×8 
Number of heated rods 60 
Heated rods outer diameter 
(mm) 

12.3 

Heated rods pitch (mm) 16.2 
Axial heated length (mm) 3708 
Number of water rods 1 
Water rods outer diameter 
(mm) 

34.0 

Channel box inner width (mm) 132.5 
Channel box corner radius 
(mm) 

8.0 

In channel flow area (mm2) 9463 
Spacer type Ferrule 
Number of spacers 7 
Spacer pressure loss 
coefficients 

1.2 
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Spacer location (mm) 455, 967, 1479, 1991, 
2503, 3015, 3527 mm 
(Distance from bottom of 
heated length to spacer 
bottom face)  

Transversal power shape A 
Axial power shape Uniform  

 

Table 3.04: Geometry and Power Shape of the (here used) Assembly Type. 

 

The heated rod is single-ended and electrically grounded. Its structure and dimensions are 

listed in Table 3.05. The surface temperature of the rod is measured by 0.5 mm-diameter 

chromel-alumel thermocouples. Additional thermocouples are embedded in the cladding 

surface, which are positioned axially just upstream of the spacers. Each heated rod is joined to 

an X-ray transmission section, which is of the same diameter as the heated rod but with 

cladding made of beryllium in order to facilitate the transmission of X-ray. The thermo-

mechanical properties of the heated rod are shown in the Table 3.06 and are based on the 

MATPRO model used in TRAC code [TRAC-PF1/MOD2 Theory Manual]. 

 

Item Data 
Outer diameter (mm) 7.3  

Heater Material Nichrome 
Outer diameter (mm) 9.7  

Insulator Material Boron Nitride 
Thickness (mm)  1.3  

Cladding Material Inconel 600/Berylium  

 

Table 3.05: Heated rod structure. 

 

 Density ρ  (kg/m3)  
Nichrome 8393.4 
Boron 
Nitride 

2002 

Inconel 
600 

2 216 01846 5 261008 10 1 345453 10 1 194357 10f f. ( . . T . x T− −× × − × − 7 2 )  

 Specific heat cp (J/kg.K)  
Nichrome 0 2075110 .

fT  
Boron 
Nitride 

4 2 7 3760 59 1 7955 8 6704 10 1 7955 10f f f. . T . x T . x T− −+ − +  
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Inconel 
600 

5 8

7 3 13 4 16 5

19 6 23 7

4186 8 0 1014 4 378952 10 2 046138 10

1 7955 10 2 060318 10 3 682836 10

2 458648 10 5 597571 10

f f
2

f f f

f f

. ( . . T . T

. T . T .

. T . T )

− −

− −

− −

× + × − ×

× − × + ×

− × + ×

T−

+

 

 Thermal Conductivity k(W/m.K) 
Nichrome ( )329 18 2 683 10 100f. . x T−+ −  

Boron 
Nitride 25 27 1 365 10 3 f. . . T− ×  

Inconel 
600 

3 6

9 3 12 4 16 5

1 729577 8 011332 4 643719 10 1 872857 10

3 914512 10 3 475513 10 9 936696 10
f f

f f

. ( . . T . T

. T . T .

− −

− −

× + × + ×

× + × − ×

2

fT )−

−
 

 

Table 3.06 Thermo-mechanical properties of heater rod 

 

Spacer grids support the fuel rods in nuclear reactor fuel assemblies. Spacer grids decrease 

the flow cross sectional area locally, thereby increasing the local velocity pressure drop and 

heat transfer coefficients. They may have special geometrical features to promote turbulence, 

the effect of which may propagate further downstream. Spacer grids may provide a larger 

surface area on which to collect entrained liquid droplets, which may increase the local fluid 

film flow rate under sub-CHF conditions and may lead to rewetting of the fuel rod cladding 

under post-CHF conditions. In summary, spacer grids generally have a beneficial effect on 

critical heat flux (CHF) in typical nuclear reactor assemblies, but the effects depend on their 

geometrical characteristics pressure, local mass velocity, and quality. Figure 3.10 depicts the 

ferrule spacer grid used in the BFBT experiments. 
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 Figure 3.10:.Ferrule spacer grid 
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3.2.2 Best-Estimate Model Calibration Using the Thermal-Hydraulics 
Code FLICA4 and Assimilating BFBT Experimental Data 

 

This Section presents the use of selected BFBT experiments within the data assimilation 

methodology of [Cacuci and Ionescu-Bujor, 2010] to calibrate important parameters in the 

core thermal-hydraulics code FLICA4 [Fillion et al., 2007, Toumi et al, 2000a, Toumi et al, 

2000b, Anyel et al, 2005].  

 

3.2.2.1 FLICA4 Simulations of BFBT Measurements  
 

Using the data described in the Section 3.2.1.3, high fidelity FLICA4 simulations have 

been performed for 3 classes of measurement benchmarks: (i) pressure drops (steady one-

dimensional simulations); (ii) axial void fractions distributions (transient one-dimensional 

simulations); and (iii) transversal void fraction distributions (steady three-dimensional 

simulations at sub-channel level with cross-flow). The four rounded corners of the transversal 

section of the mock-up high burn-up assembly (see Table 3.04) have been modeled using 

appropriate definitions for the corresponding hydraulic diameter and wet perimeter, 

respectively, of the channel (for one-dimensional simulations) or sub-channel (for three-

dimensional simulations). For three-dimensional simulations, the large central sub-channel 

was modeled by means of four sub-channels containing cylindrical rods with correspondingly 

adjusted hydraulic diameters and wet perimeters (see Table 3.04). The steady and, 

respectively, transient conditions for the benchmark measurements have been modeled in 

FLICA by designing axial meshes with surfaces that match perfectly the measurement 

coordinates on the vertical-axis (see Figure 3.11) .  
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Figure 3.11: Void fraction measurement system. 

 

The specific features of the spatial meshes used in the FLICA4 simulations are as follows: 

 

(A) for the one-dimensional computations of pressure drops and axial void fraction 

distributions: axial meshes, from bottom to top, as follows: 10 meshes of 64 mm each, 

followed by one mesh of 42 mm, followed by 46 meshes of 64 mm each, and finally followed 

by one mesh of 82 mm; 

 

(B) for the three-dimensional computations of transversal void fraction distributions:  

(i) axial meshes, from bottom to top, as follows: 50 meshes of 74.16 mm each for 

modeling the heated length of 3.708 m, followed by 2 meshes of 25 mm each for modeling 

the X-ray CT-scanner surface (i.e., the unheated length of 50 mm in Figure 3.11); and  

(ii) 64 cross-sectional meshes, each modeling one of the sub-channels depicted in the 

figure inserted in Table 3.04 as follows: (a) four central sub-channels for modeling the center 
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of the mock-up assembly; and (b) 60 sub-channels containing the heated fuel rods. Note that 

the four corner sub-channels, having one rounded corner and two surfaces facing the exterior, 

and the 24 lateral sub-channels, having only one surface facing the exterior, have mesh-shapes 

that differ from those for the interior sub-channels.  

 

The thermo-mechanical properties of the heater rods (see Table 3.06) have also been 

implemented in FLICA4. These properties play a particularly important role for modeling the 

transient benchmark, where the thermal coupling between heater rods and fluid is essential for 

describing correctly the transient behavior. The following correlations have been used in 

FLICA for simulating the benchmark measurements: 

- friction model type F3 [Fillion et al.,2007], corrected by the default model for the wall 

heating and the biphasic multiplying model of Friedel [Friedel, 1979]; 

- turbulent mixing and diffusivity coefficients computed with the F3 model [Fillion et 

al.,2007], 

- recondensation model of type F3 [Fillion et al.,2007]; 

- relative motion between phases described by Ishii’s correlation [Ishii, 1977]; 

- a generic Forster & Greif -like correlation [Forster and Greif, 1958], describing the wall-

overheating with respect to saturation, in the regime of completely developed nucleate 

boiling; 

- [Groeneveld-et al., 1996] correlation27 for computing the critical flux and the critical 

thermal flux ratio (CTFR). 

 

3.2.2.2 Best-Estimate Pressure Drops 
 

The “spacer pressure loss coefficient”, Kloss, of the ferrule spacer grids of the fuel assembly 

is a very influential parameter for computing pressure drops in the BFBT experiments, and is 

also accessible to users of FLICA4 for possible calibration. As listed in Table 3.04, a value of 

Kloss =1.2 was recommended for this coefficient; however, an uncertainty band around this 

value was not provided. To validate this recommended value, and simultaneously obtain an 

accompanying standard deviation (uncertainty) for Kloss, the BFBT experiments P70031, 

P70032, and P70033 were selected for use in the data assimilation procedure summarized in 

the previous Section, in order to obtain a calibrated best-estimate predicted value for Kloss , 
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along with the best-estimate uncertainty for this predicted value.  The experiments labeled 

P70031, P70032, P70033 provide single-phase pressure drop measurements for the defining 

conditions (outlet pressure, inlet temperature, and flow rate) listed in the Table 3.07. The 

relative standard deviations of these measurements are taken to be 4%. 

In order to initiate the calibration of Kloss , a starting nominal value of Kloss =1.10, together 

with a relative uncertainty (standard deviation) of 10%, have been deliberately used in 

FLICA4 to compute the pressures along the mock-up assembly for the experimental 

conditions listed in Table 3.07. The FLICA4-results, computed using Kloss =1.10, are depicted 

in Figure 3.12 for the three benchmark experiments. The pressure drops corresponding to the 

upper seven spacer grids (see Figure 3.09) are apparent from the respective discontinuities.  

 

Experiment 

number 

Outlet pressure 

(MPa) 

Inlet temperature 

(0C) 

Flow rate 

(t/h) 

Reynolds 

number x 102 

1 (BFBT P70031) 7.16 285.6 39.70 15.81 

2 (BFBT P70032) 7.16 285.3 44.60 17.75 

3 (BFBT P70033) 7.16 258.7 55.00 21.86 

 

Table 3.07: Defining conditions for pressure drop measurements 
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Figure 3.12: FLICA4-computed nominal pressures along the mock-up assembly for the 

three benchmarks considered in Table 3.07. 

 

The hollow markers in Figure 3.13 represent the normalized ratios between the nominal 

values of the computed and measured responses. In this figure, the marker-labels 1, 2, and 3 

correspond to the BFBT-benchmark experiments P70031, P70032, and P70033 listed in  

Table 3.08, respectively. Except for “response number 3”, which corresponds to the ratio 

“computation-to-measurement” between elevations 3342 mm and 3708 mm,  the other hollow 

markers in Figure 3.13 clearly indicate a systematic bias, in that the computations yield 

pressure drops that are smaller than the corresponding measurements. In turn, this systematic 

bias indicates that the chosen nominal value of 1 10lossK .=  needs to be calibrated.  
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Figure 3.13: Normalized nominal (before calibration) and best estimate (after calibration) 

pressure drop responses for the 3 benchmark experiments. 

 

Figure 3.14: Relative standard deviations of the best-estimated pressure drop responses for 

the three benchmark-experiments. 
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The spacer pressure loss coefficient Kloss will now be calibrated using the data assimilation 

procedure of [Cacuci and Ionescu-Bujor, 2010] applied simultaneously to all three 

benchmarks listed in Table 3.07, using the computational module BESTEST. As shown in 

Table 3.08, the relative sensitivities of the FLICA4-computed responses to Kloss are fairly 

uniformly important for all 27 responses, ranging from 51.09% for response number 8 

(measured between elevations 0 and 682 mm) of experiment number 1, to 78.11% for 

response number 1 (measured between elevations 3598 mm and 3708 mm) of experiment 

number 3. 

Resp. 
No. 
        
Exp. 
        No. 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

P70031 77.04 
 

73.65 60.25 58.21 57.97 58.21 58.14 51.09 57.26 

P70032 77.64 
 

73.78 60.80 58.71 58.51 58.90 58.66 51.61 57.82 

P70033 78.11 
 

74.85 61.87 5976 59.63 59.50 59.62 52.58 58.83 

 

Table 3.08: Relative ( %)-sensitivities for Kloss  

 

The above sensitivities were used together with the standard deviation of the parameter 

Kloss in Eq. (3.11), within BESTEST, to obtain the covariance matrix, , of the computed 

responses. This covariance matrix is shown in Figure 3.15, which underscores the fact that 

covariance matrices usually obscure somewhat the extent of correlations among its elements. 

Actually, the elements of  are expected to be fully correlated since a single model 

parameter (namely Kloss) is considered in FLICA4 for data assimilation and calibration. This 

expectation is confirmed by the results for the correlation matrix of the computed responses, 

which is depicted in Figure 3.16: as expected, all of its entries are unity. The results for the 

relative standard deviations of the computed responses are listed in Table 3.09. The absolute 

values of the respective standard deviations can be obtained by using the relative values in 

conjunction with the nominal computed response values shown in Figure 3.12.  

rcC

rcC
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 Figure 3.15: Covariance matrix for the computed responses for the three experiments 

described in Table 3.07. 

 

 

Figure 3.16: Correlation matrix for the computed responses for the three experiments 

described in Table 3.07. 
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Resp. 
No. 
        
Exp. 
        No. 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

P70031 7.57 
 

6.75 5.96 5.34 5.25 5.18 5.19 4.77 5.25 

P70032 7.76 
 

6.88 6.13 5.51 5.44 5.36 5.35   4.90 5.40 

P70033 7.82 
 

7.04 6.33 5.64 5.55 5.44 5.47 5.01 5.53 

 

Table 3.09: Relative standard deviations (in %) of computed responses. 

 

The above sensitivities together with the a priori covariance matrices for the measured 

responses and standard deviation (of 0.11) for Kloss were used to compute the value of the 

consistency indicator. The value thus obtained was ( )2 29 241 27 1 083.χ = = . , which is very 

close to 1.0, thereby indicating that the data considered for data assimilation and calibration of 

Kloss is highly consistent overall, free of discrepant values. The denominator (27) in the 

expression of 2χ  accounts for the number of experimental responses (i.e., 9 pressure drops 

times 3 benchmarks) used in the assimilation and calibration procedure. 

 

The best-estimate value computed by BEST-EST for the spacer pressure loss coefficient is 

, while its accompanying best-estimate relative standard deviation obtained from 

Eqs. (3.15) is 1.2%. Reassuringly, the best-estimate value  is very close to the 

recommended value for FLICA4. The use of highly consistent experimental data has resulted 

in a very strongly reduced, and ultimately very small (1.2%), best estimate relative standard 

deviation. The best-estimate value  will be henceforth used for the spacer 

pressure loss coefficient for all of the analyses to be presented in subsequent sections of this 

work. 

1 119be
lossK .=

1 119be
lossK .=

1 119be
lossK .=

 

The results the best estimate response values computed using BEST-EST are indicated by 

the filled-in (black) markers in Figure 3.13. The initial bias, which has characterized the 

original un-calibrated responses (computed using Kloss=1.1), has been drastically reduced after 

data assimilation and model calibration; the best estimate responses are much closer to the 
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measured ones. Table 3.10 and Figure 3.14 present the corresponding best-estimate (relative) 

standard deviations. Since a single model parameter (namely Kloss), has been considered for 

data assimilation and calibration, the normalized (to the corresponding variances) best-

estimate correlation matrices for the responses and also the best-estimate correlations for the 

parameters-responses are all unity (fully correlated). Figure 3.17 highlights the excellent 

agreement between the best estimate responses and the response-values obtained by re-

computations using FLICA4 with the best estimate value  for the spacer pressure 

loss coefficient. This excellent agreement indicates that the simulation model (FLICA4) 

behaves almost linearly with respect to variations in . 

1 119be
lossK .=

be
lossK

Resp. 
No. 
        
Exp. 
        No. 

 
 

1 

 
 

2 

 
 

3 

 
 
4 

 
 
5 

 
 
6 

 
 
7 

 
 
8 

 
 
9 

P70031 0.930 0.892 0.738 0.714 0.711 0.714 0.713 0.631 0.703 
P70032 0.936 0.893 0.744 0.719 0.718 0.722 0.719 0.637 0.709 
P70033 0.942 0.905 0.757 0.732 0.730 0.729 0.731 0.648 0.721 

 

Table 3.10: Best estimate relative (%)-standard deviations for best estimate responses. 

 

Figure 3.17: Normalized best estimate and recalculated (using ) pressure drop 

responses. 

1 119be
lossK .=
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3.2.2.3 Best-Estimate Transient Axial Void Fraction Distributions 
 

A large variety of transient tests were performed in the BFBT facility in order to measure 

the transient void fraction distributions as functions of pressure, flow, and power changes 

representative of operational transients important for reactor safety, namely turbine trip 

without bypass, one pump trip, re-circulation pump tripped, and malfunction of pressure 

control system (pressure increase). The void fraction distributions were measured using the X-

ray densitometer as indicated in Figure 3.11. This Section will present the results of using the 

experimental data provided by the “turbine trip without bypass” (TTWB) test number 4102-

001~009 in order to calibrate selected model parameters in the one-dimensional version of 

FLICA4 for obtaining best-estimate predictions from the numerical simulation of the transient 

axial void fraction distribution for this TTWB-test. The parameters pressure, flow, and power 

play a primordial role for the envisaged model calibration and will therefore be called 

“defining conditions” for the resulting axial void fraction distributions, in order to distinguish 

them from other parameters that will be calibrated in FLICA4.  

The TTWB transient was simulated with FLICA4, including thermal coupling, using the 

calibrated value  (see previous section). The nominal values of the “defining 

conditions” (i.e., flow rate, power and outlet pressure) for the TTWB measurements are 

depicted in Figure 3.18. These “defining conditions” will be calibrated in Section 3.2.2.3.1. 

Three system responses have been considered for data assimilation and calibration, namely 

the time-dependent cross-sectional (transversal) averaged transient void distributions 

measured with the X-ray densitometers at three axial elevations: h1 = (3708 – 978) mm, h2 = 

h1 - 1024 mm, h3 = h2 – 1024 mm (see Fig.3.11). These responses are denoted by R1, R2, R3, 

respectively, and are depicted in Figure 3.19. Note that the BFBT experimental setup provides 

experimental information for the TTWB defining conditions (cf., Figure 3.18) and for the 

system responses (transient void fractions depicted in Figure 3.19) at every 0.02 seconds. As 

will be discussed in the sequel, such extremely narrow time intervals will not be necessary for 

the purpose of data assimilation and model calibration; a subset of these measurements will 

provide sufficiently accurate experimental information for this purpose.  

1 119be
lossK .=
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Figure 3.18: Defining conditions (flow rate, power, pressure at outlet) for the TTWB test. 
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Figure 3.19: Measured void fraction responses for the TTWB test 4102-001~009. 

 

In the forgoing, the outlet pressure, flow rate, and power were called “defining conditions” 

because these quantities play a key role in defining the transient TTWB test number 4102-

001~009. As depicted in Figure 3.18, these defining conditions undergo large variations 

during the TTWB test, which greatly influence the transient axial void fraction distributions. 

However, these influences have a relatively local effect, lasting for less than 8 seconds after 

the instant at which some defining condition (i.e., outlet pressure, flow rate or power) might 

be perturbed. This localized effect of perturbation is clearly indicated by the typical 

sensitivities depicted in Figures 3.20 through 3.22. These sensitivities were computed for 

responses considered at every 0.1 seconds, thus resulting in 500 time nodes per response, and 

as depicted, they decay very rapidly away from their maximum which corresponds to the 

instant at which the perturbation was effected in the respective defining condition. The fact 

that the effect of perturbations in the defining condition is so localized, for all three responses 

and all three defining conditions, has greatly facilitated the computations of the time-

dependent sensitivity matrix for the transient data assimilation process. In particular, this 
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feature has made it possible to neglect the parameter sensitivities for the last 8 seconds of the 

TTWB transient, so that the number of parameters for the data assimilation/model calibration 

procedure was limited to 420 per defining condition; hence, the total number of parameters 

considered for data calibration is 3 x420 = 1260.  

 

Figure 3.20: Typical time-dependent absolute sensitivities of the void fraction response R1 

(measured in % of void fraction) to outlet pressure (pout), flow rate (Φ), power (P). Parameter 

perturbations effected at 11.1 s (1stcolumn), 21.1s (2ndcolumn), and 31.1s (3rdcolumn).  
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Figure 3.21: Typical time-dependent absolute sensitivities of the void fraction response R2 

(measured in % of void fraction) to outlet pressure (pout), flow rate (Φ), power (P). Parameter 

perturbations effected at 11.1 s (1stcolumn), 21.1s (2ndcolumn), and 31.1s (3rdcolumn). 
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Figure 3.22: Typical time-dependent absolute sensitivities of the void fraction response R3 

(measured in % of void fraction) to outlet pressure (pout), flow rate (Φ), power (P). Parameter 

perturbations effected at 11.1 s (1stcolumn), 21.1s (2ndcolumn), and 31.1s (3rdcolumn). 

 

As in previous sections, the BEST-EST module has been used for implementing the data 

assimilation/ model calibration procedure of Section 3.1 for calibrating the TTWB “defining 

conditions”. Furthermore, a 4% nominal relative standard deviation was considered for the 

flow rate, while the nominal relative standard deviation for the outlet pressure was taken as 

2%. The standard deviations for the void fraction distributions were taken to be 3.5%, 

independent of time and space. 
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As in the previous Section, the data assimilation procedure was applied individually to 

each of the void fraction responses R1, R2, and R3. The values of the corresponding 

consistency indicators were computed with BEST-EST as 

 and 2
1 473 39 500 0 95. .χ = ÷ = , 2

2 243 35 500 0 49. .χ = ÷ = , 2 3
3 17 52 500 3 5 10. .χ −= ÷ = × , 

respectively. The black lines in Figure 3.23 depict the best estimate responses, which fall, as 

expected, between the originally measured and computed values, being closer to the 

experimental values. The accompanying best estimate error bands for the three individually 

calibrated responses are depicted in Figure 3.24, which underscores the significant uncertainty 

reduction after data assimilation and model calibration. Of course, there is a corresponding set 

of best estimate “defining conditions” for each of the three responses, which allows for an 

excellent agreement between the best-estimate predictions and the individual transient 

measurements. Although BEST-EST  calibrates the defining conditions parameters only for 

420 time steps (since the sensitivities for the remaining time-steps are practically zero), the 

information is assimilated for the full range of 500 time steps (corresponding to the time 

interval 10-60 seconds) displayed in Figure 3.23. Figures 3.25 through 3.27 show that the best 

estimate defining conditions agree well with the corresponding original experiments. Note 

that the best estimate nominal values presented in these figures were obtained by using only 

the first 420 time steps in BEST-EST, since the sensitivities for the remaining time steps are 

negligible due to their “localization” features, as mentioned in the foregoing. As Figures 3.25 

through 3.27 indicate, the outlet pressure is most affected by the data assimilation process; 

this is due to the high sensitivities of the void fraction distributions to the TTWB outlet 

pressure. Typical best-estimate correlations, after data assimilation, among parameters and 

responses are displayed in Fig. 3.28, showing that the non-zero values are clustered along the 

main diagonal of the respective matrix. The corresponding correlations for the other two 

responses are not displayed since they behave similarly. 
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Figure 3.23: Experimental (red), simulated (blue) and best estimate (black) void fraction 

distributions after data assimilation and individual calibration of responses.  
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Figure 3.24: Error bands for experimental and best estimate void fraction distributions after 

data assimilation and individual calibration of responses.  
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Figure 3.25: Nominal and best estimate TTWB defining conditions assimilating only the 

experimental data provided by R1. 
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Figure 3.26: Nominal and best estimate TTWB defining conditions assimilating only the 

experimental data provided by R2. 
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Figure 3.27: Nominal and best estimate TTWB defining conditions assimilating only the 

experimental data provided by R3. 
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Figure 3.28: Normalized best estimate correlation matrices for R1 
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3.2.2.4 Best-Estimate Two-Dimensional Transverse Void Fraction 
Distributions 

 

Stationary two-dimensional void fraction distributions have been measured using the X-ray 

CT scanner depicted above the X-ray densitometers positions in Figure 3.11 Such 

measurements can be used to calibrate the three-dimensional capabilities of FLICA4. The 

particular measurement selected for data assimilation in this Section is depicted in Figure 3.29 

 

 

 

Figure 3.29: Two-dimensional pixels of transversal void fraction distribution measured by 

the X-ray CT scanner. 
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The transverse void fractions at “pixel” level shown in Figure 3.29 were collapsed by 

arithmetical averaging into sub-channel void fraction distributions  as shown in Figure 3.30, 

in order to compare them with three-dimensional calculations FLICA4 performed with cross-

flows at sub-channel level. For the FLICA4 computations, the 64 sub-channels depicted in 

Figure 3.29 were defined by the 7 vertical and 7 horizontal lines which are equidistant to the 

columns and rows of fuel rods (depicted by the 60 white spots in the Figure 3.29). The outside 

borders (shown in white in Figure 3.29) of the mock-up assembly enclose the outer 28 sub-

channels. The results of the three-dimensional FLICA4 computations (performed with cross-

flows at sub-channel level) of the void fraction distribution corresponding to the measurement 

displayed in Figure 3.30 are shown in Figure 3.31, in “scalar map” and, respectively, “iso-

surfaces” representations. Corresponding to the three-dimensional results displayed in this 

figure, the computed transverse void fraction distribution has nominal values as shown in 

Figure 3.32. The percentage difference between the experimental and computational results 

shown in Figure 3.31 and 3.32, respectively, are displayed in Figure 3.33, in relative 

percentages. 

 

 

Figure 3.30 : Experimental transversal void fraction distributions 
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Figure 3.31: 3D transversal void fraction distributions computed with FLICA4. Top view: 

“Scalar Map” representation; Bottom view: “Iso-surfaces”. 
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Figure 3.32: Computed nominal values of the transversal void fraction distribution. 

 

 

Figure 3.33: Percentage comparison “(Exp-Sim)/Exp” between experimental and 

computed transversal void fraction distributions.  
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Table 3.11 lists the nominal values and the accompanying relative standard deviations of the 

FLICA4-parameters that will be considered for calibration in conjunction with the transversal 

void fraction distribution measurements. The first four parameters in this table are the 

“defining conditions” for the measurement under consideration while the fifth parameter in 

Table 3.11 significantly impacts the lateral void fraction distribution 

Parameters Nominal Values and 

Standard Deviations 

1. Outlet pressure [MPa] 7.19±3% 

2. Flow rate [t/h]] 54.80±3% 

3. Inlet subcooling [KJ/Kg] (α1) 128.1±3% 

4. Power [MW] 4.68±3% 

5. Coefficient for turbulent mixing (BT) 1.00±3% 

Table 3.11: Nominal values of system parameters for transversal void fraction calibration. 

 

Figure 3.34 displays sensitivities of the 64 sub-channel void fractions, considered as 

responses, to the 5 parameters listed in Table 3.11, highlighting, in particular, the large 

relative sensitivity of the responses to the coefficient for turbulent mixing.  

 

 130



 

Figure 3.34: Relative sensitivities of the 64 sub-channel void fraction responses to the 5 

system parameters listed in Table 3.11. 

 

The 64 experimental sub-channel void fraction responses were assumed to be uncorrelated, 

with relative standard deviations taken to be 7% for each of the sub-channels. This standard 

deviation was derived based on the respective pixel-data. Even for this relatively large 

uncertainty, the consistency indicator was computed by BEST-EST as , 

indicating consistency among measurements and FLICA4 parameters. The best estimate 

relative standard deviations of the calibrated parameters are displayed in the 3rd column of 

Table 3.12, which shows, in particular, that the turbulent mixing coefficient (5th parameter) 

has undergone the largest uncertainty reduction, as would be expected in view of the (largest) 

corresponding sensitivity. Figure 3.35 displays the normalized best estimate parameter and 

response correlations, respectively, produced by BEST-EST following the assimilation 

procedure. Both matrices display non-zero off-diagonal elements, with particularly strong 

correlations induced by the assimilation and calibration procedure among the calibrated 

responses. Figure 3.36 presents the comparison (in percentages) between experimental and 

best estimate calibrated responses, while Figure 3.37 presents the (best estimate) reduced 

2 74.54 64 1 16.χ = ÷ =
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standard deviations for the calibrated transversal void fraction distributions. The calibrated 

responses are considerably better balanced with respect to 0.0 than the un-calibrated ones (cf., 

Figure 3.33), before data assimilation. 

 

Parameters Nominal Values BESTEST Values 

1. Outlet pressure [MPa] 7.19±3% 7.72±1.86% 

2. Flow rate [t/h]] 54.80±3% 57.55±2.58% 

3. Inlet subcooling [KJ/Kg] (α1) 128.1±3% 129.88±2.90% 

4. Power [MW] 4.68±3% 4.41±2.85% 

5. Coefficient for turbulent 

mixing (BT) 

1.00±3% 1.08±0.63% 

 

Table 3.12: Best estimate nominal values and reduced uncertainties for the calibrated 

FLICA4 parameters. 

 

 132



 

 

 
Figure 3.35: Normalized best estimate correlations for parameters (top) and responses 

(bottom). 
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Figure 3.36: Comparison between experimental and BESTEST transversal void fraction 

responses, 100% (Exp-Best) /Best. 

 

 

Figure 3.37: Relative standard deviations of the best-estimated transversal void fraction 

responses. 
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4 Summary and Conclusions 
 

This work has presented representative applications of a general mathematical framework 

for simultaneously calibrating model parameters and responses through the assimilation of 

experimental data, leading to “best-estimate” values with reduced uncertainties for both 

parameters and responses in a generic time-dependent system.  This mathematical framework 

provides an indication of the agreement between the computed and experimentally measured 

responses while performing:  

(i) Simultaneous calibration of all parameters and responses; 

(ii) Treatment of systems involving correlated parameters and responses; 

(iii) Simultaneous calibration over all time intervals.  

 

The salient features of the above methodology have been highlighted be presenting a time-

independent paradigm neutron diffusion problem and, respectively, a time-dependent 

radioactive decay problem. These problems have clearly shown that the assimilation of 

consistent experimental information substantially reduce the uncertainties in the best estimate 

predictions for both model parameters and responses. The last section of this work has 

presented, in premiere, a large-scale application of assimilating experimental data from the 

OECD/NRC BWR Full-Size Fine-Mesh Bundle Tests (BFBT) benchmarks for the calibration 

of representative model parameters in the three-dimensional thermal-hydraulics code 

FLICA4, which is routinely used for the analysis and design of light-water reactors (LWR). 

The BFBT benchmarks were specifically designed by NUPEC to enable a systematic 

comparison between full-scale experimental data and predictions of numerical simulation 

models. The BFBT experiments are particularly well suited for quantifying uncertainties in 

the prediction of detailed sub-channel void fraction distributions and critical powers. In this 

work, the BFBT measurements have been used for the calibration of model parameters in the 

thermal-hydraulics code FLICA4, for the following benchmark measurements: (i) pressure 

drops (steady one-dimensional simulations); (ii) axial void fractions distributions (transient 

one-dimensional simulations); and (iii) transversal void fraction distributions (steady three-

dimensional simulations, at sub-channel level with cross-flows). By calibrating representative 

FLICA4-parameters, this work has shown that this methodology can be successfully used for 

reducing systematically uncertainties in large-scale reactor core thermal-hydraulics codes 

using the BFBT benchmark-grade experiments. Further research is planned towards the 
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consideration of multi-physics code systems comprising coupled thermal-hydraulics and 

reactor physics numerical simulation tools.  

 

The estimation of the validation domain of the physics underlying the models of interest 

requires estimation of contours of constant uncertainty in the high-dimensional space that 

characterizes the application of interest. In practice, this involves the identification of areas 

where the predictive estimation of uncertainty meets specified requirements for the 

performance, reliability, or safety of the system of interest. The state-of-the-art in estimation 

of the validation domain is very early in both the conceptual and mathematical development. 

Developing predictive experimentally validated “best-estimate” numerical models is 

particularly important for designing new technologies and facilities based on novel processes, 

while striving to avoid, as much as possible, the costly and lengthy procedures of building 

representative mock-up experiments which might confirm—but would not necessarily 

explain— the predictions of simulation tools. For example, the performance of fuels and 

materials, in particular fuel irradiation behavior, is dominated by the coupled effects of 

several phenomena and relies uniquely on very expensive and time-consuming confirmatory 

mockup experiments (e.g., multiyear irradiations), with little or no predictive capability; 

improvements in this regard have very high potential payoff. Also, systems-level analysis 

tools are, by nature, primarily predictive because they are evaluating systems that typically do 

not exist. When coupled phenomena occur, in particular for safety analyses, validation has 

been restricted to either mockup or component-level experimental comparison, with little 

predictive capability. The best-estimate calibrated values for model parameters obtained 

through the application of the mathematical framework presented in this work can also be 

used to estimate quantitatively the validation domain of the model under consideration, by 

computing contours of constant best-estimate uncertainties in the high-dimensional 

parameter-space. The best-estimate calibrated values an also be used to perform “model 

extrapolation”, by predicting uncertainties in new environments or conditions of interest. 

Extrapolation of large-scale models would address both untested parts of the parameter space 

and higher levels of system complexity in the validation hierarchy.  

 

The explicit formulas used in this work are based on the linearized relationship between 

responses and parameters that customarily underlies the “propagation of moments” method, 

without explicitly considering nonlinearities and modeling errors. Nevertheless, neither of 
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these limitations is as severe as it may appear at first glance, since: (i) modeling errors can be 

treated in a manner similar to parameter uncertainties by including the discretization intervals 

in the vector of model parameters, as shown by Cacuci (2003); and (ii) nonlinear relations 

between computed responses and model parameters can be treated iteratively. Thus, all of the 

major formulas used in this work are to be considered as the first step in an iterative procedure 

which starts with the known nominal values of the quantities involved. The subsequent step of 

such an iterative procedure would be to use the formulas for the best-estimate mean values 

and covariances for the parameters and responses presented in Section 1 as the “prior 

information”, and compute the new (“second-generation”) best-estimate quantities by using 

once again formally similar formulas. This iterative procedure would be repeated until the 

best-estimated values would not change any longer, thereby indicating convergence of the 

nonlinear iterative procedure. 

 

Computationally, the most intensive aspect of the above-mentioned methodology presented 

in this work is the computation of the sensitivities of responses to model parameters, which 

play a crucial role as weighting functions in all of the expressions for the best-estimated 

predicted values for parameters, responses and their associated best-estimated reduced 

uncertainties.  For large-scale systems, the most efficient method for computing these 

sensitivities is the adjoint sensitivity procedure (ASAP). Another computationally intensive 

aspect in the assimilation and  calibration methodology presented in Section II is the inversion 

of the covariance matrix  associated with the vector of deviations between the respective 

computed and experimentally-measured responses. Methods for efficiently inverting of this 

matrix, as well as for reducing its dimension through “reduced-order modeling” using proper 

orthogonal decomposition methods are of substantial interest.    

 

Ongoing research is currently devoted to the explicit treatment of modeling errors, and to 

extending the formulas used in this work by including not only the sensitivities (i.e., first-

order information) but also the Hessians (i.e., second-order information) of the responses. 

Additional work is also ongoing to remove the current restriction to Gaussian distributions. 

Actually, the de-facto limitation to Gaussian distribution is characteristic of all of the state-of-

the-art procedures for data assimilation and model calibration, as evidenced by the scientific 

literature published thus far. Removing these limitations would contribute significantly to 

understanding the validation of coupled nonlinear multi-physics models (e.g., of two or more 
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physical phenomena that were not coupled in the initial validation database), particularly the 

accompanying increase of uncertainty. Developing predictive experimentally validated “best-

estimate” numerical models is particularly important for designing new technologies and 

facilities based on novel processes, while striving to avoid, as much as possible, the costly and 

lengthy procedures of building representative mock-up experiments, which might confirm -

but would not necessarily explain- the predictions of simulation tools.  

 

The costs of “validation, verification, and model calibration through data assimilation” 

must be weighed against the costs of incorrect or improper decisions based on possibly faulty 

computational modeling and simulation. Analogous to probabilistic risk assessment activities, 

risk is typically defined as the product of the probability of the occurrence of the event and the 

consequence of the event. If erroneous conclusions based on modeling and simulations are 

made on high-consequence events, decision makers could place their constituency at extreme 

risk. This is especially true for systems that cannot be tested. For such systems, the only path 

to progress is to improve drastically the confidence and understanding of computational 

simulations, while continually relaxing their limitations and enlarging their validation 

domains. 
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APPENDIX  
 

SUMMARY DESCRIPTION OF THE CORE THERMAL-HYDRAULICS 
CODE SYSTEM FLICA4 

 
 

The three-dimensional (3D) two-phase flow code [Fillion et al., 2007, Toumi et al, 2000a, 

Toumi et al, 2000b, Anyel et al, 2005] models the transient and steady-state thermal-hydraulic 

phenomena in a reactor core. The two-phase mixture is modeled by a set of four 3D balance 

equations, expressing the conservation of mass, momentum, and energy of mixture, and mass 

of vapor respectively. The non-equilibrium of the phase-velocities is modeled by a drift flux 

correlation. A one-dimensional (1D) model is used to simulate the conduction in solids (fuel). 

Depending on the fluid, the geometry and operating conditions (e.g. pressure), the user has a 

choice of closure laws (correlations) for wall friction, drift flux, heat transfer and critical heat 

flux. The numerical procedure used for solving the conservation equations is a finite volume 

method, comprising an extension of Roe’s approximate Riemann solver for defining 

convective fluxes, and the VF9 scheme28[ROOT] for estimating the diffusive fluxes. The 

forward stepping in time is based on a linearized conservative implicit integrating step 

together with a Newton iterative method. FLICA4 employs a technological description of the 

objects (e.g., fuel rods) and an automatic computation of homogenized properties (e.g., 

hydraulic diameter). The computational mesh is first defined in the radial direction, followed 

by an extrusion in the axial direction. The FLICA4 code system has been very widely used to 

model many installations, ranging from the simulation of experimental facilities to the 

modeling, design, and safety analysis of almost all types of reactors including BWR, PWR, 

RBMK, VVER.  

 

Physical Model  

The two-phase flow model in FLICA4 is based on a Eulerian description of the mixture of 

liquid and vapor. Thermal and kinematical non-equilibrium between the two phases are 

modeled by two closure laws. Several sets of closure laws are available for different 

applications. Although the conservation equations in the FLICA4 code are unrestrictedly 3D, 

several particular physical models are restricted to a particular direction of flow. 
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Four-equation model 

The mixture mass properties are defined using void fraction and volumetric mass, as 

follows 

   ( )( )1χ α ρ χ α ρ χ ρ α ρ χ ρ
=

⎛ ⎞
= + − = ⎜ ⎟

⎝ ⎠
∑v v v v l l k k k

k v ,l
/ / , 

where χ denotes any fluid variable while the subscripts l and v are used to denote the 

“liquid” and “vapor” phases, respectively. 

The three balance equations for the mixture are: 

 Mass:    0div u
t
ρ ρ∂
+ =

∂
; 

 Momentum:  ( )( )k k k k k ku div u u g
t
ρ ρ α α Π ρ τ∂

+ ⊗ + =
∂ ∑ + ; 

 Energy:  ( )( )k k k k k k k totE div u E u q Q ug
t
ρ ρ α α Π ρ∂

+ − − =
∂ ∑ + . 

In the above conservation equations, E denotes the total energy, Πk denotes the stress 

tensor, q denotes the heat flux accounting for molecular and turbulent conductivity, τ denotes 

the friction force, and Qtot denotes the volumetric source term of thermal power. 

The non-equilibrium between phases is modeled by employing:  

(i) a balance equation for vapor mass: 

   ( )ρ ρ Γ∂
+ −

∂ v cvc div cu K gradc
t

=

l

, 

where Kcv is a diffusion coefficient and Γ is the source term (vapor generation on wall Γw and 

evaporation or condensation within the bulk flow Γlv); and  

(ii) a closure law for relative velocity between the two phases r vu u u= − . 

In particular, sub-cooled boiling is modeled using the vapor mass conservation equation. 

The relative velocity is classically defined by a drift flux model. In addition, a second closure 

law is necessary for energy: the vapor is supposed to remain at saturation in the presence of 

liquid, except for the particular case of boiling crisis. 
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Closure laws 

In FLICA4 [Fillion et al., 2007], the user can customize the model by selecting each 

closure relationship (e.g. heat transfer coefficient) and adjusting the respective parameters. 

The heat transfer between fluid and wall is modeled in FLICA4 to cover several regimes: 

single-phase liquid, nucleate boiling, film boiling, and single-phase vapor. For the single-

phase conditions, the heat transfer coefficient is defined as: 

   , ( )k wH / T TΦ= − K

where Φ and Tw are respectively the wall heat flux and the wall temperature. Usually, the 

correlations define the Nusselt number: 

   k h w,kNu H D / λ= , 

where Dh is the hydraulic diameter. Three cases are considered, as follows:  

(i) for laminar conditions (Re < 2000), the Nusselt number is constant, and specified by the 

user, 

   ; lamNu Nu=

(ii) for turbulent conditions (Re > 5000), the Nusselt number is a function of Reynolds and 

Prandtl numbers, 

   ( ) ( )
( )0

d

lb c
l

w

T
Nu Nu a Re Pr

T
μ
μ

⎞⎛
= + ⋅ ⎟⎜⎜ ⎟

⎝ ⎠
; 

(iii) for transition between laminar and turbulent conditions, a linear interpolation based on 

Reynolds number is used. 

The Dittus-Boelter correlation uses the following values for the parameters: Nulam = 4.36, 

Nu0 = 0, a = 0.023, b = 0.8, c = 0.4, d = 0. This model is well adapted for axial flow in rod 

bundle. 

For two-phase conditions in nucleate boiling, the wall temperature is assumed to be 

constant for a given heat flux and pressure:  

   . w sat sT T TΔ= + at

There are two correlations available in FLICA4, namely: 

(a) Jens & Lottes, 1951, 

   
0 25

4 57 91
10 62 10

.

sat
PT . expΦΔ − ⎞⎛= ⋅ ⋅ ⎜ ⎟⋅⎝ ⎠

; 
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(b) Forster & Greif, 1958, 

   
0 385 0 23

4 54 44
10 10

. .

sat
PT . ΦΔ

−

= ⋅ ⋅ . 

For Critical Heat Flux (CHF), FLICA4 provides choices of many correlations, including 

W3[Fillion et al., 2007], [Groeneveld et al., 1996], and [Sudo et.al., 1993]. Beyond CHF, the 

correlation of [Bishop, Sandberg, and Tong, 1965] is used for film boiling: 

  
0 80 1 23 0 0680 68

0 0193
. . ..

f f pfh v

h f f

CD GH .
D
λ μ ρ ρ

μ λ ρ ρ

⎞ ⎞⎛ ⎛ ⋅ v

l

⎞⎛⎞⎛⋅
= ⋅ ⋅ ⋅ ⋅ ⋅⎟ ⎟⎜ ⎜ ⎟⎜⎟⎜⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎝⎠ ⎠

, 

where the film temperature is defined by: ( )0 5f w satT . T T= ⋅ + . 

Transitions between the conditions mentioned in the foregoing are triggered by the heat 

flux or the wall temperature, as follow: (a) liquid convection: when , (b) 

nucleate boiling: when , (c) film boiling: when . 

w sat sT T TΔ< +

F )

at

CHFΦ Φ< w wT T ( CH>

The vapor generation  on the heated wall is defined aswΓ 4
w

heatD L
χΦΓ = , where L denotes  

the latent heat, and χ denotes the heat flux fraction; χ = 0 means that all the heat flux is used to 

heat up the liquid (single-phase), while χ = 1 means that the liquid is fully saturated. Between 

these two extreme conditions, the heat flux fraction is defined from the wall temperature, as 

follows: 

   w,lc sat sat

w,lc l sat

T T T
T T T

Δ
χ

Δ
− −

=
− −

, 

where Tw,lc is the wall temperature consistent with the heat transfer coefficient for liquid 

convection.  

The interfacial mass transfer, (i.e. condensation or flashing) lvΓ  is deduced from the heat 

transfer between liquid and vapor  lv
lv L

ΦΓ = . 

The momentum transfer mainly models the friction on solids, such as fuel rods, plates, or 

mixing grids. The τ friction force reads: 

   1
2

w
s

h

u u K
D
Λτ ρ

⎞⎛
⎟⎜= − +

⎜ ⎟
⎝ ⎠

, 
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where wΛ  and sK  account respectively for the distributed wall friction, and the singular 

pressure drops. sK  is provided by the user when defining the geometry, whereas wΛ  is 

calculated by correlations. For one direction (e.g. z) FLICA4 uses a combination of three 

coefficients: 0
i
w iso wf F YΛ = ⋅ ⋅ , where isof  is the isothermal friction coefficient, b

isof a Re−= , 

and  is the correction for wall heating, and  is the two-phase correction. The coefficients 

a and b in 

wF 0Y

isof depend on the Reynolds number (laminar or turbulent conditions) and on the 

channel type (tube, rod bundle, etc.). 

The stress tensor for viscous and turbulent effects is defined for each phase by: 

   ( ) 21
3

i j
ij t k k kl
k ij k k i

j i l

u u uP M
x x x

δ δ δ
jΠ δ μ δ

δ δ δ

⎞⎛
= − + + − ⎟⎜⎜ ⎟

⎝ ⎠
, 

where t
k kMμ  is a turbulent viscosity (i and j account for the X, Y and Z directions). In 

practice, the turbulent viscosity is only taken into account for the liquid phase. The standard 

formulation used for turbulent conditions is ( )0 0
bt

l tM M Re Re Y= ⋅ − ⋅ , where 0M  is a 

constant defined by the user. 

The relative velocity between vapor and liquid is defined by a correlation for the slip ratio 

(
z
v

lz
l

u )f P, ,........
u

γ ρ= = , or the drift flux 0v v ,limu C J u= ⋅ + , where J  is the volumetric 

velocity and  is the limit velocity of the vapor when the flow is stagnant. The drift flux 

models are preferably used since the liquid velocity can be zero or negative. Ishii25 and Zuber 

& Findlay34 models are implemented because they are suitable for many flow conditions, and 

they can be extended to three-dimensional formulation. 

v.limu

When thermal power boundary conditions are not directly known for the fluid, but only for 

the fuel elements, the heat conduction in the fuel (rods or plates) is solved in order to compute 

the source term Qtot. The fuel temperature is obtained from the heat balance 

equation ( ) ( )p s s ss
c T t div T Qρ δ δ λ s= ∇ +

G
,where the solid properties (heat capacity, (ρcp)s and 

conductivity, λs) are defined by the user as function of the solid temperature sT  and the 

material (e.g. UO2). The boundary conditions for the heat conduction equation are s wT=T , at 

fuel wall, and , at the center of the fuel. 0sT n∇ ⋅ =
GG
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The heat conduction equation is solved in one dimension, assuming that axial conduction is 

much lower than radial conduction within the fuel element. For transient computations, the 

wall heat flux and wall temperature are solved implicitly, using the heat transfer coefficient. 

In preparation for spatial discretization the two-phase flow equations are written in the 

form  

   ( ) ( )( ) ( )U grad F U G U ,gradU S U
t
∂

+ ⋅ + =
∂

, 

where U denotes the vector of conservative variables, F and G denote the inviscid 

(convection) and the viscous flux (diffusion) respectively, and S denotes the source term. 

Applying the finite volume method, the two-phase flow equations are integrated over each 

cell of the chosen spatial mesh, assuming the conservative variables are constant over each 

individual cell. This integration leads to a system of ordinary differential equations in time, in 

which the unknowns are the fluxes at each interface between two adjacent cells. 

The numerical method developed in FLICA4 for computing the convective fluxes is based 

on an approximate Riemann solver [Toumi et al, 2000b], requiring the solution of a one-

dimensional Riemann problem at each cell interface and uses the characteristics directions 

within a conservative framework. This method is applicable to any spatial mesh, structured or 

not, conformal or not. The diffusive fluxes are computing using a VF9-type [Faille, 1992] 

scheme which is a nine points finite volume technique applicable to either structured or 

unstructured meshes. 

The time discretization of the finite-volume averaged two-phase equations can be 

performed either explicitly or fully implicitly. Since explicit discretization leads in practice to 

very small time steps (10s or less), it is not used. The system of nonlinear algebraic equations 

that results from the implicit time discretization is solved using a Newton method, which 

ensures the preservations of conservative properties. The convergence of the steady-state 

calculations is accelerating by employing a procedure of the form 1 1n nU U Uωδ n+ += + , where 

the superscript n denotes the iteration number. 

The application of Newton’s method in conjunction with the implicit time discretization 

requires at each time step the solution of a linear system of the form ( ) ( )1n n nA U U B Uδ + = , 

where . The matrix A is sparse, non-symmetric, and structured in 6x6 

blocks (stemming from the 6 conservative scalar variables). Several pre-conditioning 

1 1n nU U Uδ + += − n
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techniques are implemented in FLICA4 to allow the use of large time steps, including 

incomplete decomposition ILU(0) and ILU(1) in conjunction with conjugate gradient square, 

bi-CGSTAB, and generalized minimal residual methods. Domain decomposition is used with 

parallel linear solvers for very large problems. 
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