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Abstract 
 

Abstract 

Mycotoxins are secondary metabolites of small molecular weight formed by a wide diversity 

of different moulds. They are found worldwide as contaminants of food and their effects on 

humans and animals can be significant. Besides the health risk economic losses due to 

mycotoxin contamination are rather high since up to 25 % of the world´s food crops are 

affected. The black mould Alternaria alternata, the most common Alternaria species in 

harvested fruits and vegetables, produces five major Alternaria toxins including alternariol 

(AOH), alternariol monomethylether (AME) and tenuazonic acid (TA). Although numerous 

toxicological studies were conducted to clarify the effects of Alternaria toxins, an 

unambiguous result was not obtained and a risk assessment is not available. The best way to 

exclude serious health risks due to mycotoxins is the prevention of mycotoxin spoilage in 

foods and food raw materials. Therefore, a detailed knowledge about toxin formation is 

necessary. 

In a first approach the influence of different carbon and nitrogen sources on mycotoxin 

production in shaken and static culture was investigated. The experiments showed a clear 

dependency between nitrogen limitation and the production of the mycotoxins AOH and 

AME whereas TA production appeared to be growth associated and independent on nitrogen 

depletion and source. By selecting different carbon and nitrogen sources mycotoxin 

production was enhanced significantly or inhibited completely. Both mycotoxin production 

and composition was dependent on cultivation conditions. Highest concentrations of all 

mycotoxins were detected when cultivated statically with glucose as carbon source and 

phenylalanine as nitrogen source. The use of acetate as carbon source resulted in the sole 

production of AOH independent on cultivation condition (section 4.1). 

For the elucidation of mycotoxin formation a reliable and robust test system in a bioreactor 

was established. The process proved to be highly reproducible and consumption and 

formation rates were achieved by logistic fitting. By altering process parameters their 

influence on mycotoxin formation was observed. Different aeration rates (2 vvm – 0.013 

vvm) were evaluated to enhance mycotoxin production. By lowering the aeration rate to 0.013 

mycotoxin concentrations were increased. Furthermore, promising carbon and nitrogen 

sources from the medium optimization experiments were tested. Results from shaking flask 

experiments were confirmed and mycotoxin production was enhanced (section 4.2). 



Abstract 
 

The regulation of secondary metabolite formation is very complex; among other things carbon 

to nitrogen (C:N) ratio and feedback inhibition play an important role. Therefore, in a third 

attempt the effects of C:N ratio on mycotoxin formation were observed by changing glucose 

concentrations while the nitrogen content was kept constant. First results in shaking flasks 

showed that the increase from 10 g/L to 30 g/L of initial glucose concentration enhanced 

AOH production remarkably. However, a clear production peak was observed in shaking 

flask experiments at day 7 followed by an abrupt decrease of AOH concentration. Thus, to 

elucidate possible feed-back inhibition mechanisms or degradation processes feeding 

experiments with AOH were performed. They revealed that feeding of AOH up to a certain 

concentration can enhance the production of all monitored mycotoxins. Higher initial AOH 

concentrations showed no further effect on mycotoxin production. Decreasing AOH 

concentrations were also observed in feeding experiments (section 4.3). 

The biosynthesis of the mycotoxins AOH and AME is possibly a multi-enzyme process, but 

the genes are not known. The knowledge about biosynthetic genes offers new possibilities in 

the elucidation of regulatory mechanisms. As the genes for fungal secondary metabolite 

production are usually clustered the identification of one gene promotes the identification of 

the whole gene cluster. In a fourth approach one enzyme of the cluster, the AOH-O-

methyltransferase, which catalyzes the methylation reaction from AOH to AME is 

characterized and partially purified. Two strategies were pursued; in a genetic attempt several 

fungal O-methyltransferases were compared and conserved regions were used for primer 

design. In the second biochemical attempt the protein was purified from protein crude extract 

by chromatography methods (section 4.4). 

In this work, new approaches for the elucidation of Alternaria toxin production were 

developed and established. Particularly, the development of the bioreactor process enables 

high reliability and comparability of single experiments and provides a platform for further 

studies revealing influences on mycotoxin production.  
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Zusammenfassung 

Mykotoxine sind sekundäre Stoffwechselprodukte von kleiner molekularer Masse, die von 

diversen Schimmelpilzgattungen gebildet werden. Mykotoxine wurden weltweit als 

Kontaminanten in Lebensmitteln nachgewiesen und entfalten ihre in Menschen und Tieren 

vielgestaltige, meist schädliche Wirkung. Neben gesundheitlichen Risiken verursachen sie 

zusätzlich enormen wirtschaftlichen Schaden, da bis zu 25 % der weltweiten Getreideerträge 

mit Mykotoxinen kontaminiert sind. Der Schwarzschimmel Alternaria alternata, die auf 

geernteten Obst und Gemüse am häufigsten verkommende Alternaria Art, produziert 

hauptsächlich fünf Alternaria-Gifte, darunter Alternariol (AOH), Alternariolmonomethylether 

(AME) und Tenuazonsäure (TA). Trotz zahlreicher toxikologischer Studien, die das Ziel 

hatten, mögliche Gesundheitsschäden durch Alternaria-Gifte aufzuklären, konnte 

diesbezüglich kein eindeutiges Ergebnis gewonnen werden. Eine Risikobewertung dieser 

Toxine ist auf Grund dessen nicht erfolgt. Die beste Möglichkeit, gesundheitlichen Risiken 

vorzubeugen, ist demnach die Vermeidung von Lebensmittelverunreinigungen durch 

Alternaria-Toxine. Um dies realisieren zu können, ist jedoch detailiertes Fachwissen über die 

Mykotoxinbildung in A. alternata notwendig. 

In einem ersten Ansatz wurde der Einfluss verschiedener Kohlenstoff- und Stickstoffquellen 

auf die Mykotoxinbildung sowohl in Schüttel- wie auch in Standkultur untersucht. In diesen 

Experimenten zeigte sich ein Zusammenhang zwischen Stickstofflimitierung und der Bildung 

der Mykotoxine AOH und AME, wohingegen die Bildung von TA nicht von der Art der 

Stickstoffquelle beeinflusst wurde und vermutlich wachstumsassoziiert und unabhängig von 

der Stickstofflimitierung auftrat. Durch die Wahl der jeweiligen Kohlenstoff- oder 

Stickstoffquelle konnte die Bildung der Mykotoxine sowohl signifikant erhöht, als auch 

komplett verhindert werden. Zusätzlich dazu wurden Mykotoxinmenge und                             

-zusammensetzung durch die Kultivierungsbedingungen beeinflusst.  Die höchsten 

Konzentrationen an allen Mykotoxinen wurden in Standkultur mit Glucose als 

Kohlenstoffquelle und Phenylalanin als Stickstoffquelle erhalten. Die Kultivierung mit Acetat 

als Kohlenstoffquelle resultierte in der alleinigen Bildung von AOH (siehe Kapitel 4.1). 

Um die Mykotoxinbildung weiter aufklären zu können, wurde ein zuverlässiges und robustes 

Testsystem im Bioreaktor etabliert. Der entwickelte Bioprozess erwies sich als äußerst 

reproduzierbar; Bildungs- und Verbrauchsraten ließen sich daraus durch ein logistisches 

Fitting errechnen. Durch Variation einzelner Prozessparameter wurde deren Einfluss auf die 

Mykotoxinbildung ermittelt. Um die Ausbeute an Mykotoxin weiter zu steigern, wurden 
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diverse Begasungsraten im Bereich von 2 vvm bis 0.013 vvm getestet; dies konnte durch die 

Verringerung der Begasung auf 0.013 vvm erreicht werden. Desweiteren wurde jeweils eine 

vielversprechende Kohlenstoff- und Stickstoffquelle aus den Medienoptimierungsversuchen 

(Kapitel 4.1) im Reaktormaßstab getestet. Das Ergebnis aus dem Schüttelkolben konnte 

übertragen und so die produzierte Mykotoxinmenge in der Kulturbrühe erhöht werden (siehe 

Kapitel 4.2). 

Die Regulation der Sekundärmetabolitbildung ist sehr komplex. Neben weiteren Faktoren 

spielen aber unter anderem das Verhältnis von Kohlenstoff- und Stickstoffmengen im 

Medium (C:N Verhältnis) sowie mögliche Feedback-Inhibierungen eine Rolle. Aus diesem 

Grund wurde in einem dritten Ansatz der Einfluss des C:N Verhältnisses auf die 

Mykotoxinbildung untersucht, indem bei gleichbleibender Stickstoffmenge die 

Glucosekonzentration im Medium variiert wurde. Erste Ergebnisse aus 

Schüttelkolbenexperimenten zeigten, dass die Erhöhung der anfänglichen 

Glucosekonzentration von 10 g/L auf 30 g/L eine deutliche Steigerung der AOH Menge zur 

Folge hatte. Zusätzlich konnte ein klares Konzentrationsmaximum an AOH nach 7 

Kultivierungstagen beobachtet werden; danach sank die AOH Konzentration abrupt ab. 

Desweiteren wurden Zufütterungsversuche mit AOH durchgeführt, um mögliche 

Degradationsprozesse und/oder Feedback-Inhibierungen aufzuklären. Diese Versuche zeigten, 

dass eine AOH-Zufütterung bis zu einer bestimmten Konzentration eine weitere AOH 

Bildung fördert. Über diesen Punkt hinaus hatte die Zufütterung keine weitere Auswirkung. 

Dennoch zeigte sich auch in diesen Experimenten eine Abnahme der AOH Konzentration im 

Medium (siehe Kapitel 4.3). 

Die Biosynthese der beiden Mykotoxine AOH und AME wird wahrscheinlich durch einen 

Multi-Enzym-Komplex katalysiert, jedoch sind dessen Gene nicht bekannt. Die Aufklärung 

der Biosynthesegene würde allerdings neue Möglichkeiten bei der Erforschung der 

Regulationsmechanismen eröffnen. Da die Biosynthesegene pilzlicher Sekundärmetabolite 

meist in Genclustern organisiert vorliegen, kann die Identifikation eines Genes innerhalb des 

Cluster die Aufklärung der anderen Gene stark voranbringen. In einen vierten Ansatz wurde 

deshalb ein Enzym aus dem Biosynthesecluster, die AOH-O-Methyltransferase, die die 

Methylierungsreaktion von AOH zu AME katalysiert, näher charakterisiert und teilweise 

aufgereinigt. Dabei wurden zwei Strategien verfolgt: in einem genetischen Ansatz wurden 

zahlreiche pilzliche O-Methyltransferasen miteinander verglichen und auf konservierte 

Regionen innerhalb der Proteine untersucht. Diese Regionen dienten daraufhin für die 
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Generierung von Primern. Im zweiten, biochemischen Ansatz wurde das Enzym aus dem 

Proteinrohextrakt von A. alternata mittels chromatographischer Methoden angereichert (siehe 

Kapitel 4.4). 

In dieser Arbeit wurden neue Ansätze zur Untersuchung der Mykotoxinbildung in A. 

alternata entwickelt und etabliert. Die Prozessentwicklung im Bioreaktor gewährleistet 

insbesondere eine hohe Reproduzierbarkeit und ermöglicht die Vergleichbarkeit einzelner 

Experimente. Somit wurde dadurch eine Plattform geschaffen, um weitere Einflussfaktoren 

der Toxinbildung zu ermitteln. 
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I. Introduction 

I. Introduction 

The aim of the present work was the establishment of a reliable and reproducible 

biotechnological process for the production of 

the identification and elucidation of factors influencing mycotoxin production and helps to 

understand mycotoxin production in 

following chapters will introduce to moulds in

particular, biotechnological chances and challenges of fungal fermentation and will finally 

summarize the existing knowledge about 

 

1.1 Moulds 

Moulds are filamentous fungi which do not 

can therefore be found in the

and Zygomycota. Typical representatives 

Penicillium, Fusarium and 

Figure 1: Typical representative genera of moulds. 
(http://www.commanster.eu/commanster/Mushrooms/Asco/Mucoraceae.html
sp.  C. Penicillium sp. (http://de.academic.ru/pictures/dewiki/83/Schimmel_050904.jpg
Aspergillus sp. (http://www.skn.ac.th/skl/skn422/nature/fun5.jpg
 

 

The aim of the present work was the establishment of a reliable and reproducible 

process for the production of Alternaria mycotoxins. This process enables 

the identification and elucidation of factors influencing mycotoxin production and helps to 

understand mycotoxin production in A. alternata which is still largely unknown. 

will introduce to moulds in general and to the black mould 

particular, biotechnological chances and challenges of fungal fermentation and will finally 

summarize the existing knowledge about Alternaria mycotoxins. 

Moulds are filamentous fungi which do not belong to a specific phylogenetic group.

be found in the fungal divisions Ascomycota, Deuteromycota (Fungi imperfecti) 

and Zygomycota. Typical representatives are members of the genera 

and Alternaria (figure 1). 

Typical representative genera of moulds. 
http://www.commanster.eu/commanster/Mushrooms/Asco/Mucoraceae.html

http://de.academic.ru/pictures/dewiki/83/Schimmel_050904.jpg
http://www.skn.ac.th/skl/skn422/nature/fun5.jpg). 
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The aim of the present work was the establishment of a reliable and reproducible 

mycotoxins. This process enables 

the identification and elucidation of factors influencing mycotoxin production and helps to 

which is still largely unknown. The 

general and to the black mould A. alternata in 

particular, biotechnological chances and challenges of fungal fermentation and will finally 

a specific phylogenetic group. Moulds 

divisions Ascomycota, Deuteromycota (Fungi imperfecti) 

genera Mucor, Aspergillus, 

 

Typical representative genera of moulds. A. Mucor sp. 
http://www.commanster.eu/commanster/Mushrooms/Asco/Mucoraceae.html). B. Alternaria 

http://de.academic.ru/pictures/dewiki/83/Schimmel_050904.jpg). D. 
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Moulds are ubiquitous in nature; they are heterotrophic organisms which derive their energy 

from organic matter. The mycelium often builds a wide network (Kück et al., 2009). For 

utilization of complex compounds in the soil moulds are secreting hydrolytic enzymes. In this 

way, complex polysaccharides such as starch, lignin or cellulose can be degraded and utilized 

by the fungus. On account of this, saprophytes play a major role in decomposition and 

recycling of organic material. Besides of saprophytic lifestyle moulds can also act as 

opportunistic pathogens in humans and livestock or as plant pathogens or decay foodstuffs 

and textiles (Mücke and Lemmen, 2004).  

Fungal reproduction is mainly mediated by asexually produced spores or conidia (Petrini and 

Petrini, 2008). These spores can be uninucleate or multinucleate, were produced in large 

numbers and are resistant to dryness, heat and UV-radiation. Due to their little weight they are 

spread easily through air and germinate where the conditions are favorable. Inhaled spores are 

mainly responsible for fungal allergies and asthmas. Although the diversity of species causing 

allergies can be rather high, the most prevalent genera are Cladosporium, Alternaria, 

Aspergillus and Penicillium (Jürgensen and Madsen, 2009). 

Many moulds are able to produce mycotoxins. Mycotoxins are toxic secondary metabolites of 

low molecular weight, but are not necessary for growth or development (Fox and Howlett, 

2008). They can be released in the substrate and therefore spoil foodstuffs. 

 

1.2 The genus Alternaria 

Alternaria species are wide spread black moulds and belong to the division of Deuteromycota 

(Bottalico and Logrieco, 1998). The genus Alternaria was founded in 1917 by Nees von 

Esenbeck with Alternaria alternata (former name: A. tenuis) as main species (Rotem, 1994). 

Alternaria alternata (Fr.) Keissler is the most common species but it is referred to as an 

unresolved species group and not as a single species (Barkai-Golan, 2008). By now over 100 

species can be differentiated, but there is much nomenclature confusion (Kwasna, 1992; 

Rotem, 1994). The taxonomy of the genus Alternaria is not well defined and has been 

extensively discussed (Neergaard, 1945; Ellis, 1971, 1976; Kwasna, 1992; Simmons, 1992; 

Rotem, 1994). A combined approach of morphological and genetic features as well as 

secondary metabolite profiles could be the key for a better discrimination and identification of 

species (Logrieco et al., 2009). The reproduction of Alternaria species is exclusively 
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mediated by asexual conidia; the corresponding sexual reproductive stage (teleomorph) is the 

genus Lewia.  

Characteristically the mycelium and conidia of all Alternaria species are of a dark black or 

greenish colour (Pitt and Hocking, 2009). The mulitcelled conidia are organized in long 

chains which are produced from simple, sometimes branched conidiophores. Figure 2 shows 

the morphology of A. alternata and its conidia. 

 

  

Figure 2: Morphology of A. alternata. A. Growing culture of A. alternata on Potatoe-
Dextrose-Agar plates. B. Microscopic picture of conidia 
(http://www.mycology.adelaide.edu.au/). C. Schematic picture of multicelled conidia 
developing on the conidiophores (www.sci.muni.cz/mikrob/Miniatlas/alt.htm). 
 

Alternaria species are common saprophytes found on decaying organic materials world-wide. 

The genus Alternaria includes also opportunistic plant-pathogens affecting many cultivated 

plants in the fields and stored fruits and vegetables during post-harvest (Guo et al., 2004). The 

most common species of the genus Alternaria, A. alternata, contains seven different 

pathogenic variants which produce host-specific toxins and causes necrotic diseases on 

different plants (Nishimura and Kohmoto, 1983; Kohmoto et al., 1995; Hatta et al., 2002). 

Therefore, it is the principle causative agent for brown spot on citrus (Kohmoto et al., 1979), 

brown necrotic lesions on foliage, black pit disease on potatoes (Droby et al., 1984) and late 

blight on California pistachios (Aradhya et al., 2001).  

The optimal growth temperature for Alternaria is between 22 °C and 28 °C which enables 

growth at room temperature in various climate regions. However, Alternaria species can grow 

even at low temperatures; the minimal developmental temperature is -3 °C (Sommer, 1985). 

That is why contamination of refrigerated foodstuffs during transport and storage is possible 

(Ozcelik et al., 1990). Therefore, Alternaria species are able to develop on cabbage, celery 

and other vegetables stored at 0 °C. In particular, tomatoes stored under 8 - 12 °C are 

extremely sensitive to Alternaria infestations (Barkai-Golan, 2001). But, it should be noticed, 

A B C 



I. Introduction 
 

4 

that A. alternata is not able to penetrate undamaged plant tissue. Invasion requires openings 

of the host tissue like calyx scars or wounded tissues which are often generated during harvest 

and handling (Barkai-Golan, 2008). Table 1 reviews natural infestations of Alternaria species 

on agricultural commodities. 

Table 1: Pre- and postharvest infestations of Alternaria species 

Agricultural commodity Alternaria species References 

Grains 

Barley A. spp. Kosiak et al., 2004 
 A. alternata Medina et al., 2006 
 
Maize A. alternata Broggi et al., 2007 
 A. alternata, A. radicina, Torres et al., 1998 
    A. tenuissima, A. infectoria 
 
Oat A. spp. Kosiak et al., 2004 
 
Rice A. alternata Broggi et al., 2007 
 
Rye A. spp. Semaskiene et al., 2005 
 
Sorghum/ragi A. infectoria Broggi et al., 2007 
 A. alternata Ansari and Shrivastava, 1990  
 
Wheat A. alternata, A. infectoria,  
 A. tenuissima Broggi et al., 2007 
 A. alternata  Li and Yoshizawa, 2000 
 A. alternata Li et al., 2001 
 A. spp. Kosiak et al., 2004 
 
Fruits 

Apples A. spp. Granado et al., 2008 
 A. alternata Robiglio and Lopez, 1995 
 A. alternata Vinas et al., 1992 
 
Blueberries A. spp. Tournas and Katsoudas, 2005 
 A. spp. Stinson et al., 1980 
 
Grapes A. alternata Swart and Holz, 1994 
 
Lemons A. spp. Tournas and Katsoudas, 2005 
 
Mandarins A. spp. Tournas and Katsoudas, 2005 
 
Mangos A. alternata Prusky et al., 1983 
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Melons A. spp. Yang et al., 2003 
 
Olives A. alternata Visconti et al., 1986 
 
Oranges A. spp. Tournas and Katsoudas, 2005 
 
Papaya A. alternata Barkai-Golan, 2001 
 
Pears A. alternata Lockhart and Forsyth, 1974 
 
Pecans A. alternata Schroeder and Cole, 1976 
 
Persimmon A. alternata Prusky et al., 1981 
 
Raspberries A. humicola White and Fabian, 1953 
 
Strawberries A. spp. Tournas and Katsoudas, 2005 
 
Vegetables 

Carrots A. alternata, A. radicina Solfrizzo et al., 2005 
 
Dried beans A. spp. Mislivec et al., 1975 
 
Eggplant A. alternata Barkai-Golan, 2002 
 
Peppers A. alternata Barkai-Golan, 2002 
 
Potatoes A. alternata Droby et al., 1984 
 
Red kidney beans A. spp. Sanchis et al., 1988 
 
Tomatoes A. alternata Barkai-Golan, 2002 
 A. alternata Hasan, 1995 
 A. alternata Harwig et al., 1979 
 A. tenuissima, A. longipes Pose et al., 2004  
   
Others 

Amaranth A. alternata, A. spp. Bresler et al., 1995 
 
Cottonseed A. alternata, A. tenuissima Davis et al., 1977 
 
Oilseed rape A. alternata Vinas et al., 1994 
 
Soybean A. alternata Broggi et al., 2007 
 
Sunflower grains A. alternata Pozzi et al., 2005  
 
Tobacco A. alternata Lucas et al., 1971 
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Besides of the economical loss due to harvest and post-harvest decay A. alternata is able to 

produce toxic secondary metabolites, the Alternaria toxins (Andersen et al., 2006; Logrieco et 

al., 2009; Patriarca et al., 2007). Since Alternaria species infect naturally a wide variety of 

fruits and vegetables even under refrigeration, contamination of these goods with Alternaria 

toxins is possible. Therefore Alternaria toxins can be considered as toxic contaminant of our 

everyday food (Barkai-Golan, 2008) (see also section 1.5).  

 

1.3 Fungi in biotechnology 

1.3.1 Products 

Since thousands of years moulds (mainly Aspergillus and Penicillium species) were applied 

for the production and refinement of food e.g. fermentation of alcoholic/non-alcoholic 

beverages or bread baking. In the last 50 years the purposeful application of fungi for 

commercially important products has increased rapidly (Papagianni, 2004). The modern 

industrial mycology was founded in the 1940s with the development of the submerged 

production of penicillin. Nowadays fungi are used in many industrial processes for the 

production of enzymes, pigments, vitamins, polyhydric alcohols, polysaccharides, lipids, 

glycolipids and secondary metabolites. Additionally fungi are extremely useful in 

biotransformation processes (Adrio and Demain, 2003). Table 2 gives an overview of some 

commercially important products and their sources. An extensive list of industrial fungal 

processes and products is given by the “ATCC names of industrial fungi” list (Jong et al., 

1994). 

Table 2: Examples of fungal products of commercial interest  

 Production 
Product Organism process Reference  

Enzymes 

α-Amylase Aspergillus oryzae SSF Ramachandran et al., 2004  

Cellulase Trichoderma reesii,  
 Aspergillus niger SSF Lee et al., 2011 

Invertase Aspergillus niger SSF Aranda et al., 2006 

Laccase Trametes pubescens SmF, b. Galhaup et al., 2002 

Lipase Aspergillus niger SmF, b. Macris et al., 1996  

Pectinase Aspergillus niger SSF Couto and Sanromán, 2006 
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Proteases Aspergillus oryzae SSF/SmF b. Sandhya et al., 2005 

Antibiotics/Pharmaceuticals 

Cephalosporins Acremonium chrysogenum SSF Adinarayana et al., 2003 

Cyclosporins Tolypocladium niveum SmF, b. Isaac et al., 1990 

Griseofulvin Penicillium griseofulvum SSF Saykhedkar and Singhal, 2004 

Lovastatin Aspergillus terreus SmF, f-b. Porcel et al., 2007 

Penicillins Penicillium chrysogenum SmF, f-b. Elander, 2003   

Paclitaxel Fusarium solani SmF, b. Chakravarthi et al., 2008  

Organic acids 

Citric acid Aspergillus niger SSF/SmF Grewal and Kalra, 1995  

Fumaric acid Rhizopus oryzae SmF, b. Zhou et al., 2002   

Gluconic acid Aspergillus niger SmF, f-b. Ramachandran et al., 2006 

Itaconic acid Aspergillus terreus SmF, b. Willke and Vorlop, 2001 

Kojic acid Aspergillus oryzae SmF, b./i. Kwak and Rhee, 1992 

Mycotoxins 

Ergot alkaloids Claviceps purpurea SmF, b. Tudzynski et al., 2001 

Zearalenone Gibberella zeae SmF, b. Woodings, 1972   

Gibberellic acid Gibberella fujikuroi SSF Machado et al., 2004  

Polyunsaturated fatty acids 

γ-linolic acid Mortierella alpine SmF, b. Shimizu et al., 1989 

Arachidonic acid Mortierella alpina SmF, b. Eroshin et al., 2000 

SSF: solid state fermentation; SmF: submerged fermentation; b.: batch; f-b.: fed batch; i.: 
immobilized cells. 
 
       

With the development of molecular biological techniques new possibilities for the 

homologous and heterologous protein production were provided. Host strains are chosen on 

the basis of production yields and regulatory issues but also on holding the “GRAS” 

(Generally Recognized As Safe) status which is attained by the U.S. Food and Drug 

Administration (FDA) (Adrio and Demain, 2003). Filamentous fungi are able to produce large 

amounts of proteins but the production yield of heterologous expressed, non-fungal proteins is 

usually low (Punt et al., 2002). One major reason for this is the abundant production of 

secreted proteases of the fungal host. Therefore much research was done on this topic and 
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several improved protease-deficient strains were developed (Mattern et al., 1992; van den 

Hombergh et al., 1997). Further improvements to enhance production yields were achieved by 

the use of strong promoters, the introduction of large numbers of gene copies, the use of 

strong secretion signals and the fusion with a fungal well-secreted protein (Archer et al., 

1994; Gouka et al., 1997; Gouka et al., 1999; Moralejo et al., 1999; Punt et al., 2002; 

Verdoes et al., 1995). Nevertheless, the production yield of non-fungal proteins keeps low; 

therefore, most of the recombinant food-grade proteins are of fungal origin (Archer, 2000; 

Pariza and Johnson, 2001). The continuously increasing list of heterologous fungal enzymes 

which are improved for food application is given at http://www.enzymetechnicalassoc.org.  

 

1.3.2 Challenges of fungal fermentation 

The development of submerged production and therefore the establishment of fungal 

biotechnology in the 1940s created great production potentials. However, the fungal 

morphology appeared to be problematic. Filamentous fungi are morphological complex 

organisms. They undergo different developmental stages in which morphology is changed 

during the life cycle. In nature, fungi are growing in long branched hyphae in surface culture 

creating a wide spread mycelium consisting of a mass of hyphal filaments. In submerged 

culture different morphological forms are possible ranging from dispersed mycelial filaments 

to dense pellets which assemble due to strong interactions between hyphae. The morphology 

is influenced by certain process parameters, i.e. chemical (medium components), physical 

(pH, temperature) and culturing conditions (nature of inoculum) (Kossen, 2000; Schügerl et 

al., 1998), but it is in turn affected by the process. Filamentous growth results in high 

viscosity which has a negative impact on the transport of O2, CO2, heat and nutrients. In 

contrast pellet growth effects in low viscosity, but the inner part of larger pellets is often 

limited in nutrients and undergoes autolysis whereas the degree of limitation is dependent on 

the pellet density (Elmayergi, et al., 1973). Figure 3 gives an overview of the relationship 

between morphology and process conditions (according to Kossen, 2000). 
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Figure 3: Relationship between morphology and process conditions (according to Kossen, 
2000). 
 
Fungal morphology is an important factor concerning production yields. Therefore, in some 

fermentation processes the maximum product yield can only be achieved when the fungus is 

growing in a particular morphological form. Bermek et al. (2004) investigated the influence 

of morphology on the production of ligninolytic enzyme production in Trichophyton rubrum. 

The best results were obtained when the fungus was growing in small pellets with extending 

filaments. In case of secondary metabolite production, e.g. mycotoxins, the formation of the 

product is independent of growth and not associated with increasing biomass (Megee et al., 

1970). The production of different metabolites requires a unique set of physiological 

conditions which has to be determined for each metabolite and fungus for the exploitation of 

the full production potential. Therefore, for each product the precise physiological conditions 

and the correct stage of development have to be identified (Papagianni, 2004). On account of 

this Schügerl et al. (1998) summarized extensively the process parameters which influence 

xylanase production by Aspergillus awamori. They could show that a large interrelationship 

exists between the key parameters reactor type (shake flasks, stirred tank and airlift tower 

loop reactor), medium composition (semisynthetic and complex medium with solid particles 

of different sizes, different concentrations of phosphate), the specific power input (stirrer 

speed) and growth, morphology, physiology and productivity of the fungus. The authors 

stated that published results may appear contradictory when not all relevant parameters were 

considered.  
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Considering the challenges of fungal submerged fermentation due to morphological aspects 

solid state fermentation appears to be advantageous. Although efficient fungal strains are 

available which are well adapted to submerged fermentation by genetic engineering, 

cultivation in free water is not the natural habitat of fungi. Therefore, submerged cultivation 

may impair metabolic efficiency (Hölker et al., 2004). Solid state fermentation is carried out 

on moist solid supports which acts either as inert carrier or is additionally used as nutrient 

source (Barrios-Gonzáles et al., 2005). Free water is nearly absent in this kind of fermentation 

which mimics the natural environment of the organisms. Due to the tight contact of the 

cultivated fungi to the substrate highest substrate concentrations can be achieved (Hölker et 

al., 2004). Solid state fermentations in a small scale provide several advantages compared to 

submerged fermentation: Due to the low water demand the desired end product is highly 

concentrated. Additionally, less energy is required, aeration is easier and anti-foam chemicals 

are not needed. As can be seen from table 2 many process optimizations of well established 

submerged fermentations were conducted using solid state fermentation. Nevertheless, in 

industry enzymes and secondary metabolites are mainly produced under submerged 

cultivation conditions due to the simplified scale-up and greater control of parameters, i.e. pH, 

heat and nutrient conditions (Robinson et al., 2001). Although the importance of solid state 

fermentation especially for the production of secondary metabolites was recognized by 

Barrios-Gonzáles and Mejia (1996) and Robinson et al. (2001), the production on industrial 

scale is hampered by the unavailability of suitable bioreactors (Balakrishnan and Pandey, 

1996). 

With respect to the production of mycotoxins, other secondary metabolites or any other 

products with Alternaria spp. submerged fermentation protocols were not developed yet. For 

the establishment of a reproducible process for Alternaria toxin production all the above 

mentioned important physiological factors have to be considered and optimized which will 

help for the development of further production processes of other interesting metabolites of 

Alternaria spp. 
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1.4 Mycotoxins 

Mycotoxins are secondary metabolites of small molecular weight formed by a wide diversity 

of different moulds. Well-known mycotoxin producers are Aspergillus, Fusarium, Alternaria, 

Trichoderma, Trichothecium and Penicillium species (Smith et al., 1983). Today about 650 

different mycotoxins are known which belong to approximately 25 chemical groups (Klaffke, 

2010). Mycotoxins like other secondary metabolites are usually formed subsequent to the 

growth phase (trophophase) in the idiophase. The formation of mycotoxins is subjected to 

complex regulation mechanisms, but is often induced by nutrient limitations (Demain, 1986). 

The production of mycotoxins is neither necessary for growth nor for development. 

Therefore, the reason for their formation is not known (Fox and Howlett, 2008). A role as 

chemical defense mechanisms against other microbial organisms may be conceivable to 

improve the environmental conditions enabling further proliferation.  

Due to the release of mycotoxins into the surrounding substrate, contamination of agricultural 

products and foodstuff is possible. In this way mycotoxins can reach the food chain and can 

be ingested by both humans and livestock (Andersen and Frisvad, 2004). Based on 

estimations of the Food and Agriculture Organization (FAO) of the United Nations 

approximately 25 % of the world´s food crops are affected by mycotoxin producing fungi and 

global losses of foodstuffs due to mycotoxins are in the range of 1000 million tons per year 

(http://www.fao.org/ag/agn/agns/chemicals_mycotoxins_en.asp; Mücke and Lemmen, 2004). 

The occurrence of mycotoxins in foods and feeds is depending on intrinsic and extrinsic 

factors. Extrinsic factors connected to storage conditions are controllable other than climate or 

intrinsic factors like fungal strain specificity, strain variation, and instability of toxigenic 

properties (Hussein and Brasel, 2001). Therefore, it is not possible to predict their presence or 

to prevent their occurrence entirely during preharvest, storage and processing operations 

(Wood, 1992). Mycotoxins are responsible for various acute or chronic effects on humans and 

animals (mycotoxicosis) (Hussein and Brasel, 2001). Some of the versatile toxic effects 

include the increased risk of cancer (Mücke and Lemmen, 2004), organ damages of liver and 

kidney (Keweloh, 2006), the influence on hormone system, damage of the central nervous 

system and teratogenic and mutagenic properties (Schön, 2005). The severity of a 

mycotoxicosis depends on the mycotoxin itself as well as on the amount and the duration of 

exposure, but also the age, sex and health of the poisoned individual may play a role. 

Additionally, mycotoxicoses can heighten vulnerability to microbial diseases, worsen the 
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effects of malnutrition, and interact synergistically with other toxins (Bennet and Klich, 

2003). 

The versatile toxicological effects of mycotoxins can be partly explained by their diverse 

chemical characteristics. Table 3 gives an overview of the major mycotoxicological groups. 

Table 3: Major groups of mycotoxins (according to Bhatnagar et al., 2002; Bennet and Klich, 
2003) 

Group of mycotoxin Main producers Toxic effect Liturature 

Aflatoxins Aspergillus parasiticus acute toxicity Goldblatt, 1969;  
 Aspergillus flavus (death), Cary et al., 2000; 
  hepatotoxic, Cullen et al., 1987; 
  carcinogenic Eaton and Groopman, 
   1994. 
 
Ochratoxins Aspergillus ochraceus nephrotoxic, Abarca et al., 1994; 
 Aspergillus alliaceus,  carcinogenic, Bayman et al., 2002; 

 Aspergillus auricomus, dermatotoxic Ciegler et al., 1972; 
 Aspergillus carbonarius,  hepatotoxic, Creppy, 1999;  
 Aspergillus glaucus,  teratogenic, Kuiper-Goodman and  
 Aspergillus melleus immuno- Scott, 1989;  
 Aspergillus niger suppressive van Egmond and  
 Penicillium verrucosum Speijiers, 1994. 
 
Citrinin Aspergillus ochraceus nephrotoxic, Blanc et al., 1995; 
 Aspergillus niveus yellow rice  Hetherington and  
 Aspergillus terreus disease Raistrick, 1931; 
 Aspergillus oryzae  Manabe, 2001; 
 Penicillium citrinum  Saito et al., 1971; 
 Penicillium camemberti  Jordan et al., 1978.  
 Monascus ruber   
 Monascus purpureus 
 

Ergot alkaloids Claviceps species gangrene, Flieger et al., 1997; 
  abortion, Lorenz and Hoseney, 
  convulsions, 1979. 
  hypersensitivity, 
  ataxia, 
  lactation  
  suppressive, 
  hallucinogenic 

Patulin Penicillium griseofulvum antibacterial, Ciegler, 1977; 
 Penicillium expasum antiviral, Ciegler et al., 1971;
  antiprotozoal, Trucksess and Tang, 
  carcinogenic, 2001. 
     contact edema, 
     hemorrhage 
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Fusarium toxins  

Fumonisins Fusarium verticillioides phytotoxic, Bezuidenhout et al.,
  Leuko- 1988; 

  encephalomalacia, Marasas, 2001; 
  pulmonary edema, Gelderblom et al.,  
  hydrothorax, 1988; 
  hepatotoxic, Harrison et al., 1990; 
  carcinogenic, Ross et al., 1992; 
  apoptosis in liver. Pozzi et al., 2001; 
   Tseng and Liu, 1997; 

Wan Norhasima et al., 
2009. 

 
 Zearalenones Fusarium graminearum estrogenic Abid-Essefi et al., 
     2009. 
 
Trichothecenes Fusarium species inhibit eukaryotic  Marasas et al., 1984; 
  protein synthesis, Sudakin, 2003); 
  hemorrhage, Cundliffe et al., 1974); 
  vomiting, Chu, 1997; 
  dermatitis. Wu et al., 2010. 

 
Alternaria toxins for details see section 1.5 
 

Regulations concerning mycotoxins in foods and feeds have been established in many 

countries to protect the consumer from the effects. Since the discovery of the first mycotoxins 

(aflatoxins) in 1960 the number of countries with known specific mycotoxin regulation 

increased to 100 in 2003. Currently 13 mycotoxins or groups of mycotoxins are under 

concern. Their regulations are based on scientific opinions of authoritative bodies like the 

FAO/WHO Joint Expert Committee on Food Additives of the United Nations (JECFA) and 

the European Food Safety Authority (EFSA) (van Egmond et al., 2007).  

In the EU legal limits for mycotoxins were harmonized and national regulations were 

replaced. From five out of the nine mycotoxin groups given in table 3 regulatory limits exist. 

In the commission regulation from 2006 updated in 2010 maximum levels for mycotoxins in 

foodstuff were set as follows (http://eurlex.europa.eu/; Köppen et al., 2010):  

Aflatoxins: The maximum amount of aflatoxin B1 in foodstuffs is set to 2 µg/kg and the 

sum of aflatoxins B1, B2, G1 and G2 to 4 µg/kg. Dairy product may contain 0.05 µg/kg 

aflatoxin M1. Maximum amounts of aflatoxins in dietary foodstuffs for babies and small 

children are lower and were set to 0.1 µg/kg. 
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Ochratoxin A: The maximum tolerable weekly intake (TWI) of ochratoxin A was set to 

120 ng/kg body weight (b.w.). The maximum amounts in foodstuffs are between 2 µg/kg 

(for wine and grape juices) and 10 µg/kg (for raisins and instant coffee).  

Patulin: For patulin a provisional maximum tolerable daily intake (PMTDI) of 0.4 µg/kg 

b.w. is endorsed. The maximum amount in foodstuffs is set to 50 µg/kg in apple juice and 

to 25 µg/kg in apples and other solid apple products. 

Fusarium toxins: With regard to Fusarium toxins a temporary tolerable daily intake (TDI) 

of 0.2 µg/kg b.w. is set for zearalenone and of 2 µg/kg b.w. for fumonisins.  

In addition regulations for further Fusarium toxins (desoxynivalenol, nivalenol, T-2 and HT-

2) exist. Taken together, limits for around 50 mycotoxin-food combinations are defined. In 

the following years a limit will probably also be established for ergot alkaloids. For the other 

mycotoxins including Alternaria toxins a risk assessment is currently not available. 

 

1.5 Alternaria Toxins 
 

Alternaria species are capable to produce a wide diversity of secondary metabolites belonging 

to different chemical groups including dibenzopyrones, tetramic acids, lactones, quinones and 

cyclic peptides. More than 120 secondary metabolites of Alternaria species are known; a 

quarter of that is designated as mycotoxins (Panigrahi, 1997).  

However, only five major toxins of the known 30 are common natural contaminants of 

consumable goods: the benzopyrene derivatives alternariol (AOH), alternariol 

monomethylether (AME), altenuene (ALT), the tetramic acid tenuazonic acid (TA) and the 

perylene derivative altertoxin I (ATX I) (figure 4).  
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Figure 4: Chemical structures of the five major Alternaria toxins alternariol, alternariol 
monomethylether, altenuene, tenuazonic acid and altertoxin I (Barkai-Golan, 2008). 
 

In the last years Alternaria toxins have received increasing attention: e.g. from 2000 to 2004 

the European Union carried out the multi-disciplinary project: “Safe organic vegetables and 

vegetable products by reducing risk factors and sources of fungal contaminants throughout the 

production chain: the carrot – Alternaria model” for the development of strategies for a safe 

organic food supply. The project included the establishment of methods for the detection of 

Alternaria spp. on carrot, the establishment of analytical methods for Alternaria toxins, the 

determination of the toxigenic potential of Alternaria spp. isolated from carrot and the 

monitoring of mycotoxin accumulation in the production chain 

(http://www.seedcentre.wur.nl/UK/Projects/Safe_Organic_Vegetables/). The detection and 

discrimination of Alternaria spp. contaminating carrots will mainly be achieved by 

morphological characteristics and by using of selective media. A PCR method for the 

differentiation of A. alternata, A. dauci and A. radicina is available but proved to be not 

always reliable. HPLC-based analytical methods for artificially on rice produced mycotoxins 

were developed. Although A. alternata and A. radicina isolates from carrot and wild carrot 

showed a high virulence and a high mycotoxigenic potential when grown on rice, A. alternata 

toxins were not detected in naturally infected carrots. This fact was also confirmed by 

Benzopyrone derivatives  

Tetramic acid  Perylene derivative  

alternariol (AOH)  alternariol 
monomethylether (AME) 

altenuene (ALT)  

tenuazonic acid (TA)  altertoxin I (ATX I)  
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Solfrizzo et al. (2005). The results will be used by EU regulatory and standard bodies and can 

be at least partly transferred to other organic crops and food products which are affected by 

Alternaria spp.  

Nevertheless, based on the current data a risk assessment for Alternaria toxins is not possible, 

which was recently stated by the German Federal Institute of Risk Assessment (Bundesinstitut 

für Risikobewertung, BfR, 2003). According to the BfR only little toxicological data is 

available just for seven out of the 30 known Alternaria mycotoxins which is insufficient for 

an assessment of the health risk for the consumer. This opinion was supported 2007 by the 

Czech Scientific Committee on Food (CSCF, 2007). 

 

1.5.1 Producers of Alternaria toxins 

Alternaria alternata, the most common Alternaria species in harvested fruits and vegetables, 

produces the five major Alternaria toxins and additionally tentoxin, altenuisol, alteniric acid, 

altenusin and dehydroaltenusin (Chelkowski and Visconti, 1992; Bottalico and Logrieco, 

1998). The ability of A. alternata to produce several different mycotoxins renders it 

interesting for mycotoxicologists (Scott, 2004). 

Nevertheless, other Alternaria species are also able to produce mycotoxins. AOH and AME 

were found to be produced by A. tenuissima, A. brassicae, A. capsici-annui, A. citri, A. 

cucumerina, A. dauci, A. kikuchiana, A. longipes, A. porri, A. solani and A. tomato (Bottalico 

and Logrieco, 1998; Andersen and Frisvad, 2004; Pose et al., 2004). The tetramic acid TA is 

not only produced by A. alternata but also by Phoma sorghina and Pyricularia oryzae and 

other Alternaria species including A. capsici-annui, A. citri, A. japonica, A. kikuchiana, A. 

longipes, A. porri, A. radicina, A. tenuissima and A. tomato (Iwasaki et al., 1972; Meronuck 

et al., 1972; Steyn and Rabie, 1976; Bottalico and Logrieco, 1998; Pose et al., 2004). The 

perylene derivative ATX I and the related altertoxin II and III were also formed by A. 

tenuissima, A. mali, A. radicina and A. tomato (Bottalico and Logrieco, 1998). Additionally 

the plant pathogen Alternaria alternata f. sp. lycopersici produces the host specific AAL 

toxin which is similar to fumonisins (Abbas and Riley, 1996; Mirocha et al., 1992). Table 4 

summarizes the Alternaria species which are able to produce Alternaria toxins (according to 

Ostry, 2008). 
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Table 4: Main Alternaria toxins produced by Alternaria species according to Ostry (2008)  

Alternaria species  Mycotoxins   References 

A. alternata  AOH, AME, ALT, ATX I, Chelkowski and Visconti, 1992;  
   TA    Bottalico and Logrieco, 1998. 

A. tenuissima   AOH, AME, ATX I, -III, Davies et al., 1977; Young et al., 
TA    1980; Bottalico and Logrieco, 1998. 

A. brassicae  AOH, AME   Bottalico and Logrieco, 1998. 

A. capsici-annui  AOH, AME, TA  Bottalico and Logrieco 1998. 

A. citri   AOH, AME, TA  Freeman, (1966); Kinoshita et al., 1972. 
         
A. cucumerina  AOH, AME   Raistrick et al., 1953; Freeman, 1966. 

 
A. dauci  AOH, AME   Raistrick et al., 1953; Freeman, 1966. 

 
A. kikuchiana  AOH, AME, TA  Torikata et al., 1969; Kinoshita et al.,  

1972; Kameda et al., 1973. 

A. longipes   AME, TA   Mikami et al., 1971; Bottalico and  
       Logrieco 1998. 

A. porri  AME, TA   Bottalico and Logrieco, 1998. 

A. solani AOH, AME, TA  Stoessl, 1969; Pollock et al., 1982; 
     Bottalico and Logrieco, 1998. 

A. tomato  AOH, AME, TA  Bottalico and Logrieco, 1998. 
   ATX I, -II, -III 

A. japonica  TA    Kinoshita et al., 1972. 

A. radicina  ATX I, -II, -III, TA  Bottalico and Logrieco, 1998;  
       Solfrizzo et al., 2005. 

A. mali   ATX I, -II, -III, TA  Kinoshita et al., 1972. 

A. cassiae  ATX I, -II   Hradil et al., 1989. 

A. oryzae  TA    Kinoshita et al., 1972. 

AOH: alternariol; AME: alternariol monomethylether; TA: tenuazonic acid; ATX: altertoxin. 
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1.5.2. Occurrence of Alternaria toxins 

Alternaria species infest naturally diverse fruits and vegetables. Therefore, it is not surprising 

that Alternaria toxins can be detected in these goods. However, mycotoxin content and 

composition strongly depends not only on the fungal species or strain but also on the substrate 

meaning the host species or cultivar and the environmental conditions. These facts are 

represented by apparently contradictory publications: Ozcelik et al. (1990) detected AOH and 

AME in apples and tomatoes. The maximum concentrations were 1161 µg/g AOH and 323 

µg/g AME in tomatoes and accordingly 372 µg/g AOH and 32 µg/g AME in apples. TA was 

not observed. In contrast, in earlier studies by Harwig et al. (1979) and by Stinson et al. 

(1980; 1981) TA was the major mycotoxin found in inoculated and naturally infested 

tomatoes with maximum concentrations of 1373 µg/g TA in fruit tissue.  

Similarly, Logrieco et al. (1990) isolated two different A. alternata strains from a natural 

black or gray “heart rot” of mandarin. The two kinds of Alternaria heart rot differed in 

coloring of the mycelia and both qualitatively and quantitatively in the production of 

mycotoxins. The black rot samples were able to produce TA, AOH and AME whereas TA 

was the only detectable mycotoxin in the grey rot sample. The toxin profile changed when 

both samples were growing on rice kernels. The overall production of all mycotoxins in both 

isolates was higher and additionally ALT and ATX I were detectable.  

Considering all agricultural commodities which are naturally infested by Alternaria species 

the potential of spoilage by Alternaria mycotoxins appears to be high. Several studies 

investigated both the natural occurrence of Alternaria toxins in foodstuffs and the 

mycotoxigenic potential of Alternaria isolates subsequently inoculated on their natural 

substrate. Although Alternaria alternata is able to produce high yields of mycotoxins on 

different substrates under artificial conditions, Alternaria toxins were detected only in few 

commodities in nature. Table 5 gives an overview about the natural occurrence of Alternaria 

mycotoxins in foodstuffs. 
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Table 5: Natural occurrence of Alternaria mycotoxins in foodstuff 

Commodity  Mycotoxin (max. level)  References 

Apples   AOH (58.8 µg/g)   Stinson et al., 1981, 
   AME (2.3 µg/g) 
   ALT (0.5 µg/g) 
   TA (0.5 µg/g)   

   TA (9.6 µg/g)    Singh and Sumbali, 2004. 

Barley   AOH 0.13 µg/g)   Kütt et al., 2010 

Mandarins  AOH (5.2 µg/g)   Logrieco et al., 1990 
   AME (1.4 µg/g) 

TA (173.9 µg/g)  

Olives   AOH (2.9 µg/g)   Visconti et al., 1986 
   AME (2.3 µg/g) 

ALT (1.4 µg/g)  
TA (0.3 µg/g)     

Pecans   no information   Schroeder and Cole, 1976 

Peppers  AOH (440 µg/g)   Scott, 2001 
   AME (294 µg/g) 
   ALT (103 µg/g) 
   TA (342 µg/g) 

Sorghum  AOH + AME (7.9 µg/g)  Seitz et al., 1975 

Sunflower grain AOH (170.9 ng/g)   Pozzi et al., 2005 
   AME 108.6 (ng/g) 

Tomatoes  AOH ( 5.3 µg/g)   Stinson et al., 1981 
   AME (0.8 µg/g) 
   ALT (1.1 µg/g) 
   TA (139.0 µg/g) 

   TA (70 µg/g)    Stack et al., 1985 

   AOH (1.3 µg/g)   Bottalico and Logrieco, 1998 
   AME (0.3 µg/g) 
   TA (7.2 µg/g) 

Wheat   AOH (0.731 µg/g),    Li and Yoshizawa, 2000 
AME (1.426 µg/g),  

    TA (6.432 µg/g). 

   AOH (1.388 µg/g)   Azcarate et al., 2008 
   AME (7.451 µg/g) 
   TA (8.841 µg/g) 

AOH: alternariol; AME: alternariol monomethylether; ALT: altenuene; TA: tenuazonic acid.
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Based on this data a risk assessment in the daily nutrition is problematic. Most of the samples 

contaminated with Alternaria toxins were visibly moldy, i.e. the products were obviously not 

suitable for consumption. Therefore, an intentional consumption of moldy products would be 

unlikely. But mycotoxins are not restricted to the rotten part. Robiglio and Lopez (1995) 

detected mycotoxins in the surrounding tissues of rotten fruits which were not visibly affected 

by the fungus. Furthermore, mycotoxins can be detected in cell-free culture supernatants as 

well as in asymptomatic tissues of inoculated fruits. Occurrence of mycotoxins in apparently 

unaffected fruits is therefore possible and has to be considered (Barkai-Golan, 2008). 

The natural occurrence of mycotoxins in processed food may pose a serious risk for the 

human health. As other mycotoxins, Alternaria toxins are chemically stable during storage 

and processing, even after cooking or autoclaving. Combina et al. (1999) evaluated the heat 

stability of AOH, AME and TA in sunflower flour. While AOH and AME concentrations 

were not significantly decreased after 90 min of heating at 100 °C, TA concentration was 

reduced to 50 % after heat treatment. The combination of heat and pressure while autoclaving 

proved to be more effective: the 90 min treatment at 121 °C and 0.1 MPa resulted in 75 % 

decontamination of AOH and a 100 % decontamination of AME. TA concentration was 

reduced to 33 % compared to the initial concentration. On account of this it is not surprising 

to detect Alternaria toxins in several fruit juices, wine and edible oils (table 6). 

 

Table 6: Occurrence of Alternaria toxins in processed food 

Product  Mycotoxin (max. level) Reference 

Tomato puree  AOH (8.756 µg/g)  Terminiello et al., 2006 
   AME (1.734 µg/g) 
   TA (4.021 µg/g) 

   TA (76 ng/g)   Motta and Valente Soares, 2001 

Tomato pulp  TA (110 ng/g)   Motta and Valente Soares, 2001 

Tomato paste  TA (100 ng/g)   Scott and Kanhere, 1980 

Apple juice  AOH (5.42 ng/ml)  Delgado and Goméz-Cordovéz, 1998 
concentrate  AME (1.71 ng/ml) 

Apple juice  AOH (5 ng/ml)  Scott et al., 1997 
    
   AOH (2.4 ng/ml)  Lau et al., 2003 
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   AME (0.43 ng/ml) 

Raspberry juice AOH (0.84 ng/ml)  Lau et al., 2003 

Cranberry nectar AOH (5.6 ng/ml)  Lau et al., 2003 
   AME (0.7 ng/ml) 

Cranberry juice AOH (0.04 ng/ml)  Scott et al., 2006 
   AME (0.003 ng/ml) 

Prune nectar  AOH (5.5 ng/ml)  Lau et al., 2003 
   AME (1.4 ng/ml) 

Grape juice  AOH (1.6 ng/ml)  Lau et al., 2003 
   AME (0.23 ng/ml) 

Red grape juice AOH (0.46 ng/ml)  Scott et al., 2006 
   AME (39.5 ng/ml) 

Red wine  AOH (1.9 ng/ml)  Lau et al., 2003 

(Canadian)  AOH (5.02 ng/ml)  Scott et al., 2006 
   AME (0.21 ng/ml) 

(Italian)  AOH (19.4 ng/ml)  Scott et al., 2006 
   AME (0.19 ng/ml) 

White wine  AOH (1.48 ng/ml)  Scott et al., 2006 
   AME (0.06 ng/ml) 

Sunflower seed AOH (180 ng/g)  Nawaz et al., 1997 
meal#   AME (100 ng/g) 
   TA (1900 ng/g) 

Oilseed rape  AOH (68 ng/g)  Nawaz et al., 1997 
meal#   AME (55 ng/g) 
   TA (730 ng/g) 

Olive oil*  AOH (793 ng/ml)  Visconti et al., 1986 
   AME (285.7 ng/ml) 

* oil produced in laboratory from the most contaminated olives.    
# for animal feed purposes 
AOH: alternariol; AME: alternariol monomethylether; TA: tenuazonic acid. 

 

Detection of Alternaria toxins ranged from 50 % of 32 samples of commercial apple juice as 

shown by Delgado and Goméz-Cordovéz (1998) to sporadic samples of other fruit beverages 
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as shown by Lau et al. (2003). The absence of TA in most of the fruit beverages may be 

explained by the lower heat stability compared to AOH and AME (Combina et al., 1999). A 

decontamination of TA due to pasteurization of the fruit juices would be conceivable. In 

contrast to TA both AOH and AME are able to withstand the pasteurization procedure 

without apparent losses and are stable over weeks in apple juice as reported by Scott and 

Kanhere (2001). TA was not tested in this study. 

Considering the data shown in table 6 an unintentionally intake of AOH and AME in the 

range of several µg per day appears to be thoroughly probable. A daily consumption of one 

liter apple juice is quite common and may contain AOH between 2.4 µg/L (Lau et al., 2003) 

and 5.42 µg/L (Delgado and Goméz-Cordovéz, 1998). In case of processed food the consumer 

needs to rely on the care of the manufacturer in the choice of fruits and vegetables because the 

presence of moldy raw-materials in the end-product is not identifiable by the consumer. It is 

therefore urgent to clarify the risk potential of Alternaria toxins and to set maximum 

allowable amounts in food.  

 

1.5.3 Toxicity and biological effects of Alternaria toxins 

Compared to other mycotoxins, e.g. aflatoxins, the Alternaria toxins have a low acute 

toxicity. Therefore, an acute toxicosis of humans by Alternaria toxins caused by food supply 

seems unlikely. But low-level exposure over long terms is an additional serious hazard. Vinas 

et al. (1992) considered tenuazonic acid as the most important toxic compound produced by 

Alternaria. Alternariol, alternariol monomethylether, altenuene and altertoxin I are more 

interesting for their mutagenic potential. For the determination of the Alternaria toxin toxicity 

both single mycotoxins and complex extracts with unknown composition were used. 

Alternaria extracts 

The exposure to Alternaria toxins has been associated with certain adverse health effects. 

Pero et al. (1973) tested the toxicity of both crude extracts and single mycotoxins to mice by 

intraperitoneal injections. The lethal dose of Alternaria extract was 300 mg/kg body weight. 

Sauer et al. (1978) reported on feeding experiments with Alternaria spoiled corn and rice to 

rats and chickens. Toxic effects on chicken were observed when the feed contained 50 % of 

spoiled corn and rice. Necrosis and hemorrhages could be observed in the gizzard and isthmus 

of dead birds. Lethality was observed on rats fed with the 50 % spoiled feeding mixture. Dead 

animals showed hemorrhages in the stomach and intestines. In the study of Schrader et al. 
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(2001) the mutagenicity of Alternaria extracts was tested using the Ames test. A direct 

mutagenic activity capable to induce frameshifts and base pair mutations was observed in 

Salmonella strains TA98 and TA100. Liu et al., (1991) examined the mutagenic and 

tumorigenic properties of Alternaria extracts. They observed reverse mutations in E. coli 

cells, abnormal DNA replication events in several mammalian cell lines and transformation of 

NIH-3T3 fibroblast cells. Of particular health concern is the incidence of esophageal cancer in 

Linxin, China. The etiology of this cancer was connected with the contamination of cereal 

grains with A. alternata (Dong et al., 1987; Liu et al., 1992). As stated by Pero et al. (1973), 

the toxicity of complex extracts is much higher than of the single tested mycotoxins which 

suggest synergism between single components.  

Alternariol and derivatives 

As stated by Pero et al. (1973), Pollock et al. (1982) and Olson and Visconti (1988) the 

benzopyrone derivatives AOH, AME and ALT are not very acutely toxic, but AOH and AME 

have been reported to act mutagenic and genotoxic (Scott and Stoltz, 1980; DiCosmo and 

Straus, 1985; An et al., 1989; Davis and Stack, 1994; Schrader et al., 2001, 2006; Brugger et 

al., 2006). The LD50 for AOH and AME is higher than 400 mg/kg bodyweight for mice (Pero 

et al., 1973). Panigrahi and Dallin (1994) measured the toxicity of TA, AOH, ALT and ATX-I 

on brine shrimp larvae (Artemia salina L.). The determined LD50 values were 75 g/ml, 100 

g/ml, 375 g/ml and 200 g/ml for TA, AOH, ALT and ATX-I, respectively. AME was not 

found to produce any mortality.  

Brugger et al. (2006) investigated the mutagenic potential of AOH on two different gene loci 

in the Chinese hamster cell line V79 and in mouse lymphoma cells L5178Y tk+/−. The 

treatment with 10 µM AOH and higher resulted in a significant and concentration-dependent 

induction of mutations in the gene-loci of both cell lines. The morphology of treated mouse 

lymphoma cells was indicative for extensive chromosomal deletions and the induction of 

micronuclei. The authors stated that the mutagenic potential of AOH is about 50 fold lower 

than the established mutagen 4-nitroquinoline-N-oxide but may be the reason for the 

cancerogenicity of this mycotoxin. 

Pero et al. (1973) elucidated the cytotoxic potential of AOH, AME and ALT against HeLa 

cells and Bacillus mycoides. In the Bacillus-test the lowest concentrations of the toxins for a 

measurable inhibition zone were 60 µg/disc, 500 µg/disc and 125 µg/disc for AOH, AME and 

ALT, respectively. In the test with HeLa cells the ID50 values were 6 µg/ml, 14 µg/ml and 28 

µg/ml for AOH, AME and ALT, respectively. In the Bacillus-test a clear synergism of AOH 
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and AME was observed: Only 0.25 µg of each AOH and AME in a 1:1 mixture was necessary 

to elicit an inhibition zone. In the HeLA cells test a similar synergism was not observed. 

Furthermore a fetotoxic effect of AOH was examined when administered to rats at a 

concentration of 100 mg/kg b.w. 

AME was found to act mutagenic in the E. coli ND160 reverse mutation assay (An et al., 

1989). These assay measures the frameshift revertants at a lacZ mutation (Clarke and Wade, 

1975). 

But there are also contradictory studies concerning the mutagenicity of AOH and AME. 

Using the Ames-Test both AOH and AME were found to be not mutagenic for the Salmonella 

typhimurium strains TA98 and TA100 which are indicative for reversions at GC sites (Scott 

and Stoltz, 1980; Davis and Stack, 1994; Schrader et al., 2001). The weak mutagenicity of 

AME towards the strain TA98 observed by Scott and Stoltz (1980) was explained by possible 

contamination with highly mutagenic compounds by Davis and Stack (1994). However, 

Schrader et al. (2006) observed a weak mutagenicity of both AOH and AME for the S. 

typhimurium strains TA102 and TA104 which are indicative for AT mutations. As stated by 

Schrader et al. (2006) an additional mechanism involved in mutagenic activation may be 

possible. The low mutagenicity of single mycotoxins detected in the Ames-Test seems to be 

unable to account for the proposed carcinogenicity. 

Concerning the genotoxic properties AOH seems to exhibit a more pronounced genotoxicity 

than AME. In the study of Fehr et al. (2009) both AOH and AME increased the rate of DNA 

strand breaks at micromolar concentrations in human carcinoma cells, but did not enhance 

oxidative DNA damage. Furthermore, a substantial affinity of AOH to the minor groove of 

the DNA could be demonstrated. Interaction studies confirmed that AOH, as the most DNA-

damaging Alternaria metabolite, potently inhibited DNA relaxation and stimulated DNA 

cleavage activities of topoisomerase I, IIa and IIb. Therefore, AOH was characterized as a 

poison of topoisomerase I and II. 

The DNA strand breaking ability observed by Fehr et al. (2009) confirmed the studies of 

Pfeiffer et al. (2007). In the work of Pfeiffer et al. (2007) the treatment of cultured Chinese 

hamster V79 cells, human liver HepG2 cells and human colon HT-29 cells with AOH and 

AME caused a concentration-dependent induction of DNA strand breaks at concentrations 

ranging from 5 to 50 µM. They demonstrated that the genotoxic activity is carried out by the 

compounds themselves and was abolished by glucuronidation. Therefore, they concluded that 

the activity of a cell for the formation of glucuronides may play a critical role in the health 

risk posed by Alternaria toxins. 
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In the study of Lehmann et al. (2006) the estrogenic activity, the effect on cell proliferation 

and the genotoxic potential of AOH was examined in vitro in Ishikawa cells (human 

endometrial adenocarcinoma cell line) and in V79 cells. The estrogenic potential found for 

AOH was approximately 10,000 fold weaker than the endogenous hormone E2, but was 

comparable with the phytoestrogen Daidzein or the environmental xeno-estrogen Bisphenol 

A. Although the possible exposure to AOH, e.g. due to apple-juice consummation, is very low 

(100 fold lower than the determined EC50 value in the experiments), the authors suggested 

that it is likely to exceed the exposure to the weak estrogen Bisphenol A which has raised 

considerable toxicological concerns (Markey et al., 2001). With respect to the genotoxic and 

cytotoxic potential the authors noticed an induction of micronuclei in both cell lines and a 

cell-cycle arrest in the G2 and S phase which is a common response of eukaryotic cell to 

genotoxic challenges. Nevertheless, the in vivo relevance of these results has to be questioned 

due to the high concentrations needed for the observed effects. 

Tenuazonic acid 

As shown by several studies TA is more toxic as AOH, AME and ALT. Griffin and Chu 

(1983) tested the toxicity of Alternaria toxins in the chicken embryo essay. In contrast to the 

other mycotoxins TA elicited dose-related mortality responses over the range of 150–1500 

µg/egg. The calculated LD50 value was 548 µg/egg. 

When consumed orally, TA induced the collapse of the cardiovascular systems of mouse, dog 

and monkey. Furthermore, an increase in salivary secretion, nausea and death were observed 

in these animals (Smith et al., 1968).  

When fed to young chicken over a period of three weeks, a dose of 1.25 – 1.5 mg TA/kg/day 

caused weight loss and nutritional irregularities. No death occurred, but microscopic and 

macroscopic lesions in various tissues were observed (Giambrone et al., 1978). 

In the study of Yekeler et al. (2001) the effect of AME (50/100 mg/kg/day) and TA (25 

mg/kg/day) on the esophagus of mice was examined when fed daily over a period of 10 

months. After 10 month of mycotoxin feeding the esophageal epithelium of both AME and 

TA fed mice displayed inflammatory responses. In TA-fed animals severe developmental 

changes of the mucosa cells (dysplasia) was observed. The highest number of precursor 

lesions was present in TA-fed animals and precancerous changes of the esophageal mucosa 

were evident. Furthermore, sorghum grains spoiled by Phoma sorghina containing TA were 

associated with the human haematological disorder “Onyalai” (Steyn and Rabie, 1976). 
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Tested for the mutagenic potential the Ames Test showed no mutagenic activity to Salmonella 

strains TA98, TA100 and TA104 (Scott and Stoltz, 1980; Schrader et al., 2001, 2006), but 

was slightly mutagenic in strains TA97 and TA102 (Schrader et al., 2006). 

Zhou and Qiang (2008) demonstrated the inhibition of cell proliferation in the cell lines 3T3 

mouse fibroblasts, Chinese hamster lung cells (CHL) and human hepatocytes (L-O2) with 

EC50(72h) values of 31.22, 35.73 and 41.84 µg/ml, respectively. The inhibition was dependent 

on exposure time and increased with the extension of toxin exposure. Furthermore, a decrease 

in the total protein content of all three cell lines was observed. 

As previously discovered by Shigeura and Gordon (1963) TA inhibits the incorporation in 

vivo and in vitro of amino acids into proteins and acts therefore as a potent protein 

biosynthesis inhibitor. Furthermore, it exhibits antitumor, cytotoxic and antibacterial activities 

(Gitterman, 1965). Miller et al. (1963) demonstrated that the sodium salt of TA inhibited the 

cytopathic effect of a wide spectrum of viruses. 

Although numerous toxicological studies were conducted to clarify the effects of Alternaria 

toxins, an unambiguous result was not obtained. Rather the opposite appears to be the case; 

the reported results are mainly contradictory. Experiments with Alternaria extracts are 

reasonable because it corresponds to the situation when spoiled foodstuff is ingested. 

Nevertheless, the extracts are complex, the ingredients are not defined. Additionally, the cited 

studies are not comparable in any way because extracts of different A. alternata 

isolates/strains or even another Alternaria species were used which were obtained by 

cultivation on different substrates. The risk potential was furthermore studied in dissimilar 

test systems. However, the studies revealed a serious mutagenic potential due to DNA damage 

which is verified by the cancer incident in China (Dong et al., 1987; Liu et al., 1992). 

Nevertheless, tests with single toxins or defined toxin mixtures are an indispensable 

requirement to assess the mutagenic/toxigenic potential of single toxins and to evaluate 

synergisms. In recent studies commercially available single toxins or chemically synthesized 

toxins were applied. Although different test systems were used, the results appear to be more 

comparable and reliable. For the induction of significant mutations or DNA damages AOH 

and AME concentrations in the low µM-range are necessary. Brugger et al. (2006) observed 

first mutagenic effects at concentrations between 5 µM and 10 µM (1.3 mg/L – 2.6 mg/L) 

AOH, whereas Fehr et al. (2009) detected the strand-breaking ability of AOH and AME at 

concentrations of 1 µM (0.26 mg/L and 0.27 mg/L, respectively). Comparing these studies 

with detected mycotoxin concentrations in processed food (see section 1.5.2, table 6) the 

concentration needed to observe effects in cell culture are 1,000 fold higher than found in e.g. 
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apple juice. Nevertheless, studies with long-term exposure were not conducted and it is not 

clear if toxin accumulation in cells or tissues takes place. Therefore, coordinated and 

systematical long-term studies have to be conducted before the mutagenic potential can be 

fully assessed. For these tests pure toxins in the mg-range were needed which can be 

promoted by a cost-efficient production process. 

 

1.5.4 Formation of Alternaria toxins 

The best way to exclude serious health risks due to mycotoxins is the prevention of 

mycotoxin spoilage in foods and food raw materials. Therefore, a detailed knowledge about 

toxin formation is necessary. In the following sections the biosynthesis pathway and the 

conditions for mycotoxin formation are summarized. 

 

1.5.4.1 Biosynthesis of Alternaria toxins 

Although AOH is thought to be formed by a polyketide synthetase (Light, 1970), the 

biosynthetic genes are not known and the enzymatic pathway has still to be elucidated. 

Isotope labeling experiments of Gatenbeck and Hermodsson (1965) revealed that a single 

chain is formed by a head to tail condensation of one molecule acetyl-CoA and six molecules 

of malonyl-CoA followed by a subsequent cyclization to the aromatic compound AOH. 

Stinson and Moreau (1986) identified and partially purified a putative O-methyltransferase 

which catalyzes the methylation of AOH to AME, named alternariol-O-methyltransferase. 

The methyl donor S-adenosyl-L-methionine (SAM) and Mg2+ were found to be Co-factors. 

The experiments showed that the enzyme is located in the cytosol and is not associated with 

the AOH-synthetase. Hiltunen and Söderhäll (1992) further purified the enzyme and 

determined its molecular mass to 43 kDa. AOH was considered as precursor of many 

benzopyrones of the genus Alternaria. Figure 5 gives a hypothetical scheme of the formation 

of benzopyrone derivatives (adapted from Stinson, 1985). Based on AME ALT may be 

formed via the intermediates altenusin and dehydroaltenusin by further hydroxylations, 

oxidations and reductions. 
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Figure 5: Hypothetical biosynthetic pathway of alternariol its derivatives (adapted from 
Stinson, 1985). SAM: S-adenosyl-L-methionine; redn: reduction; oxidn: oxidation.  

 

The tetramic acid TA is biosynthetically derived from L-isoleucine and acetate (Stickings, 

1959; Stickings and Townsend, 1961). Gatenbeck and Sierankiewicz (1973) demonstrated in 

their experiments that the initial step of TA formation is N-aceto-acetylation of L-isoleucine 

followed by the formation of the five-membered ring. Just like with the AOH biosynthesis, 

the genes of TA biosynthesis are not known. 

As the genes for fungal secondary metabolite production are usually clustered (Keller and 

Hohn, 1997), the identification of the biosynthetic gene cluster for AOH production (and its 

derivatives) could be essentially promoted by the identification of a single gene of this cluster. 

The purification of the alternariol-O-methyltransferase is one aim of this doctoral thesis and 

will help to identify further genes of the cluster. The genome of A. alternata was sequenced 

by the group of Chris Lawrence, Virginia Bioinformatics Institute, but the sequence is not 

freely accessible. The access to the genomic data and subsequent annotation will be a great 

help for the identification of the other biosynthetic genes. 
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1.5.4.2 Environmental conditions affecting mycotoxin production 

Mycotoxin production varies with fungal strain, the substrate and environmental growth 

conditions. As with other secondary metabolites, mycotoxin formation is not coupled with 

fungal growth and starts in the late exponential growth phase (Söderhäll et al., 1978). 

Therefore, despite similar mycelial growth the mycotoxin production is influenced by 

different culture conditions (Söderhäll et al., 1978; Burroughs et al., 1976). This includes 

factors like water activity, temperature, pH-value, light and substrate. In general according to 

Schmidt-Heydt et al. (2008) mycotoxin production can be regarded as an adaptation to 

imposed abiotic or other stresses of the mycotoxigenic species. 

Moulds need a certain amount of free water for germination and growth which is expressed as 

water activity (aw) of the substrate. The aw value is defined as the vapor pressure of a liquid or 

of the substrate divided by the vapor pressure of pure water at the same temperature. The 

minimum aw for growth of A. alternata was determined between 0.84 and 0.88, while the 

optimum is between 0.98 and 1.00 (Magan and Lacey, 1984; Rowan et al., 1999; Pose et al., 

2009). Pose et al. (2010) determined the optimum aw value and temperature for the Alternaria 

toxin production using a synthetic tomato medium. Independent of the tested temperature 

AOH and AME production were favored at an aw of 0.954 which is lower than the optimal aw 

value for growth. In contrast to this TA concentration increased with the aw; the maximum TA 

level was detected at an aw of 0.982 which matches with the optimal aw for growth. 

Contradictory, Magan et al. (1984) observed highest production of AOH, AME and ALT at 

an aw of 0.98 both on wheat extract agar and wheat grains. Similarly, Oviedo et al. (2010) 

revealed the best combination of water activity and temperature for the production of AOH 

and AME by two A. alternata strains isolated from soybean on soybean agar. Both strains 

produced highest amounts of AOH at an aw value of 0.98, but for AME production the 

optimal aw value differed: 0.92 and 0.94 for the different strains, respectively. According to 

Sanchis and Magan (2004) the absolute aw limit required for mycotoxin (AOH, AME and 

ALT) production is 0.88 – 0.89. 

Besides of the water activity incubation temperature is also an important environmental 

factor. In many studies the influence of both water activity and temperature on mycotoxin 

production is analyzed together. For germination and growth the optimal temperature varies 

between 25°C to 30°C depending on the strain (Magan and Lacey, 1984). As for the water 

activity optimal temperatures for mycotoxin varies significantly with different strains and 

media. Hasan (1995) reported on different optimal temperatures for the different mycotoxins: 
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28°C for AOH and AME production, 21°C for TA production and 14°C for altertoxin 

production. Magan et al. (1984) detected mycotoxins in nearly all combinations of aw value 

and temperatures tested in the range of 5°C to 30°C and water activity of 0.9 to 0.98, 

respectively. Independent of the aw value highest concentrations of AOH, AME and ALT 

were obtained at 25°C. In the study of Pose et al. (2010) the optimal temperatures were 21°C 

for AOH and TA production and 35°C for AME production. Nevertheless, it should be noted 

that the cited studies did not examine mycotoxin production at the same temperatures nor 

used equal temperature intervals which makes the studies roughly comparable.  

The pH value of the growth substrate plays an important role on germination, growth and 

secondary metabolite production. A. alternata is capable to grow in a pH range of 2.7 – 8.0 

with an optimum of pH 5.4 (Hasija, 1970). The influence of pH on the mycotoxin production 

of A. alternata was not studied yet. In general mycotoxin formation seems to be favored at 

acidic pH values as shown for aflatoxin and sterigmatocystin by Keller N.P. et al. (1997) and 

for fumonisin B1 by Keller S.E. et al. (1997). 

Light influences filamentous fungi with regard to growth and mycotoxin production. In fungi, 

three light-sensing systems have been described at the molecular level: blue light-sensing 

achieved by a flavin-based photoreceptor, red light-sensing achieved by a phytochrome and a 

retinal-based opsin-system with unclear function (Purschwitz et al., 2006). 

For the determination of the influence of light on A. alternata four studies were conducted. 

According to Söderhäll et al. (1978) and Häggblom and Niehaus (1986) light had no 

influence on fungal growth in drop culture when exposed to a light intensity of 180 W/m2 or 

15 W/m2, respectively, but inhibited mycotoxin production. Mycotoxin production was 

strongly reduced when the culture was illuminated continuously and was totally inhibited 

when the culture was treated during the exponential growth phase. Instead of mycotoxin 

production a red-brown pigment was observed in light treated cultures (Söderhäll et al., 

1978). In the study of Häggblom and Niehaus (1986) detailed experiments for the detection of 

sensitive time-periods and the influence of the illumination length were conducted. Two 

different light responses were detected: the first response during the early growth period 

immediately after inoculation which required a longer light period (6 h and more) and 

inhibited subsequent AOH production and the second response during the AOH production 

phase which required only short exposure (1 min) and inhibited further AOH production. 

Häggblom and Unestam (1979) compared the influence of white, blue and red light on the 

mycotoxin production of seven A. alternata isolates with different AOH and AME production 
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abilities. They confirmed the inhibition of mycotoxin production at continuously light 

exposure for all strains tested. Whereas blue light inhibited the production of AOH and AME 

up to 73 %, the treatment with red light had no effect on AOH and AME formation. 

Furthermore, the illumination with blue light enhanced the total lipid content of the mycelium 

and red-brown pigments were produced as well as after exposure with white light. Since AME 

production was always inhibited to the same extent as AOH production the authors concluded 

that the methylation step for AME formation was not affected by light. Schmidt-Heydt et al. 

(2011) confirmed recently the reduction of AME formation by blue-light. 

Besides abiotic factors the substrate or nutritional factors affect mycotoxin production as well. 

Burroughs et al. (1976) observed AOH, AME and ALT production of three different A. 

alternata isolates on various sterile grain substrates. Best results were achieved on rice. 

However, substrate preferences are strongly strain-dependent and cannot be generalized.  In 

contrast nitrogen starvation seems to be a more general inducer of mycotoxin biosynthesis as 

shown for various mycotoxigenic species like fumonisin production in Fusarium proliferatum 

(Kohut et al., 2009) and ochratoxin A in Aspergillus spp. (Medina et al., 2008). Mycotoxin 

production was examined in different studies in both synthetic and complex media 

supplemented with various carbon / nitrogen sources. But, as said before, results are strongly 

dependent on fungal strain and additionally on the basal medium supplemented. A 

systematical approach for the determination of the influence of carbon and nitrogen sources in 

a semi-synthetic medium on Alternaria toxin production has not been carried out yet and is 

part of this thesis. 

As mentioned above, Schmidt-Heydt et al. (2008) concluded their studies that mycotoxin 

production might be a stress adaptation. Therefore, from the food safety point of view, 

conditions imposing stress have to be avoided during storage and transport to lower the risk of 

mycotoxin spoilage. This might also include the use of preservatives (Schmidt-Heydt et al., 

2007) and the use of protective atmospheres (Magan and Lacey, 1984b).  

 

Since the discovery of AOH and AME in 1953 by Raistrick et al. (1953) many physiological 

and toxicological studies were conducted. Unfortunately, these studies were rarely systematic 

and are roughly comparable due to the utilization of different strains, cultivation methods, 

media and experimental conditions. Therefore, a profound and deep knowledge about 

regulation and production of Alternaria toxins was not obtained in nearly 60 years of 

research. With increasing attention on the part of the European Union and other authoritative 
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bodies and with the availability of sensible analytical methods and commercially available 

standards a first step towards directed, comparable and standardized research was done. 

Nevertheless, there is still a lot of work to be done until a risk assessment for Alternaria 

toxins will be available. The present work is therefore concerned with the establishment of a 

reproducible production process which enables a systematic research of process parameters 

affecting mycotoxin formation and the directed production of single mycotoxins. Furthermore 

first experiments for the purification of a protein involved in mycotoxin biosynthesis were 

presented which will help to identify the biosynthetic gene cluster. 
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II. Research Proposal 

Mycotoxins are found worldwide as contaminants of food and their effects on humans and 

animals can be significant. Besides the health risk economic losses due to mycotoxin 

contamination are rather high since up to 25 % of the world´s food crops are affected. 

Regulations concerning mycotoxins in foods and feeds have been established in many 

countries to protect the consumer from the effects. Nevertheless, based on the current data a 

risk assessment for Alternaria toxins is not possible. Therefore, no-observed-adverse-effect-

levels (NOAEL) and benchmark doses (BMD) are not established for Alternaria mycotoxins 

and consequently exposure limits as tolerable daily intake (TDI) or even a provisional 

maximum tolerable daily intake (PMTDI) are not defined by the Joint FAO / WHO Expert 

Committee on Food Additives (JECFA) and the European Food Safety Authority (EFSA). 

Since prevention is better than cure, the aims of this project were to determine factors which 

affect (positively or negatively) the mycotoxin production by Alternaria alternata DSM 

12633. The establishment of a bioprocess for mycotoxin production enables monitoring of the 

mycotoxin production in detail dependent on different factors and the production of single 

mycotoxins or mycotoxin mixtures for further toxicological studies. To realize these aims the 

present work was focused on following aspects: 

• Screening for an appropriate defined medium to elucidate nutritional factors affecting 

mycotoxin production. 

• Optimization of the production medium by supplementation with different carbon and 

nitrogen sources. 

• Establishment of a submerged bioprocess for the production of Alternaria mycotoxins 

in a small-scale bioreactor. 

• Monitoring of the process and detection of important factors for the mycotoxin 

production by altering process parameters. 

• Optimization of the process by using the results of the medium optimization 

experiments and by determination of the optimal C/N ratio. 

• Identification of the gene cluster for the production of the polyketide mycotoxins 

AOH, AME and ALT by characterization and purification of the alternariol-O-

methyltransferase catalyzing the methylation of AOH yielding AME. 
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III. Characteristics of the Bioreactor Minifors 

The characteristics of the bioreactor have to be considered for constant and reproducible 

mycotoxin production.  

Fermentations of Alternaria alternata DSM 12633 were performed in the bench-scale 

bioreactor system Minifors (Infors AG, Bottmingen, Switzerland) (figure 5).  

 

Figure 5: Photo (left) and scheme (right) of the Minifors bench-scale bioreactor system. 
 

The bioreactor comprises of a total volume of 2.5 L. With a height of 275 mm and diameter of 

110 mm the reactor possess a slenderness ratio of 2.5. It can be controlled by a digital 

measuring and control unit operated via the software IRIS which is responsible for data 

acquisition, process instrumentation and control. All acquired online data are saved and 

displayed graphically during cultivation. This includes stirrer speed, pH, temperature, titration 

of base and acid and exhaust gas analytics. Therefore, it is possible to infer from the acquired 

data on the growth phase and substrate consumption of the fungus, e.g. titration of base occurs 

while consumption of ammonium. Figure 6 shows exemplarily an online cultivation course. 
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Figure 6: Exemplary cultivation course of a 22 day fermentation without pH regulation 
displayed by IRIS software. Temperature course (yellow), stirrer speed (red), pH value 
(green), O2 amount (blue) and CO2 amount (black) are illustrated. 
 
 
To ensure the best possible comparability and reproducibility of all cultivations the reactor 

installations have to match in each experiment. Therefore, the positions of stirrer and flow 

breakers were kept constant in the vessel as well as the installation of the electrodes and 

sensors in the reactor lid. The adjustment of the installations on the lid is shown in figure 7 

and further described in table 7. 

 

Figure 7: Reactor lid of Minifors bioreactor with numbered connections (see also table 7). 
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Table 7: Connections of the reactor lid 

#   Connection plug     Company 

1   vessel mount      Infors AG 

2   blind pipe for temperature sensor Pt100  Infors AG 

3   gas sparger      Infors AG 

4   anti-foam sensor     Infors AG 

5   pH electrode 405-DPAS-SC-K8S/225  Mettler-Toledo 

6   sampling pipe      Infors AG 

7   dummy plug /      Infors AG  
   pO2- electrode Oxyferm 225    Hamilton 

8   tapping membrane     Infors AG 

9   exhaust gas cooler     Infors AG 

10   inlet for acid, base and feed    Infors AG 

11   stirrer       Infors AG 
 

For process control the reactor is equipped with a temperature sensor, a pH- and a pO2- 

electrode. The temperature of the medium inside the bioreactor is controlled by two heating 

pads which are tempered by cooling water circulation. In all fermentation the pO2- electrode 

is not used due to invasive growth of the fungus on the electrode membrane which precludes 

data acquisition. Therefore the corresponding connection plug is sealed by a dummy and 

oxygen consummation will be monitored via exhaust gas analyzing. Anti-foam reagent is not 

necessary due to low foam formation during fermentation and is not used either; therefore, the 

sensor is fixed above the medium level and the inlet for anti-foam reagent is sealed with a 

piece of flexible tube. For stirring and a fine dispersion of gas the reactor is equipped with 

two six-bladed Rushton Turbines assembled in a distance of 6 cm on the stirrer shaft. The 

system is aerated by using filter sterilized compressed air regulated by a rotameter. The 

exhaust gas is water-cooled and filtered through glass wool before it is conducted through the 

exhaust gas analyzer (Infors AG). The acquired data are processed by the IRIS software. The 

pH value of the medium is monitored by the pH electrode (Mettler-Toledo) during the 

cultivation. Due to consumption of substrate and secretion of metabolites the pH can be 

altered. The desired pH value is kept constant by titration with 2 M NaOH or 2 M H3PO4. The 

addition of base and acid occurs pulsed and the pH is measured before adding the next 

portion; the pump speed and duration can be set via the software. For sterilization the 

bioreactor can be removed from the control unit and is autoclaved 20 min at 121 °C and 1 bar 
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overpressure. To ensure complete darkness during the whole fermentation the glass vessel is 

muffled with black felt. The medium is inoculated via the tapping membrane: conidia 

suspension is drawn in a syringe and injected through the membrane.  
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IV. Publications and Manuscripts 

This doctoral thesis is based on following publications and manuscripts which are specified in 

detail in the following sections (chapters 4.1 – 4.4). 

 

Chapter 4.1: 

Running title: Influence of carbon and nitrogen sources on mycotoxin production.  

Brzonkalik K., Herrling T., Syldatk C., Neumann A., (2011). The influence of different 

nitrogen and carbon sources on mycotoxin production in Alternaria alternata.  

International Journal of Food Microbiology 147: 120-126. DOI: 

10.1016/j.ijfoodmicro.2011.03.016.  

(Parts of the experimental work were done within the diploma thesis of Tanja Herrling.) 

This article describes: 1.) Mycotoxin production starts after nitrogen source depletion. 2.) 

Mycotoxin production and composition is also dependent on nitrogen source as well as on 

carbon source. 3.) Mycotoxin production and composition is altered by cultivation conditions.  

 

 

Chapter 4.2: 

Running title: Mycotoxin production in a bioreactor. 

Brzonkalik K., Herrling T., Syldatk C., Neumann A., (2011). Process development for the 

elucidation of mycotoxin formation in Alternaria alternata. 

Submitted to Applied Microbiology and Biotechnology. 

(Parts of the experimental work were done within the diploma thesis of Tanja Herrling.) 

This article contains: 1.) The establishment of a reproducible process in a bioreactor for the 

production of Alternaria mycotoxins. 2.) The influence of aeration rate on the production of 

Alternaria mycotoxins. 3.) Process optimization using alternative nitrogen and carbon 

sources. 
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Chapter 4.3: 

Running title: Optimization of the carbon/nitrogen ratio and AOH feeding experiments. 

Brzonkalik K., Syldatk C., Neumann A. Determination and optimization of process 

parameters for mycotoxin production by submerged cultivation of Alternaria alternata: 

carbon/nitrogen ratio and product inhibition. 

(manuscript in preparation) 

This manuscript specifies: 1.) Growth kinetics and parameters of A. alternata cultivated 

submerged in a semi-synthetic medium in shake flasks. 2.) Influence of initial glucose 

concentration on biomass production and mycotoxin formation. 3.) Influence of different 

concentration of the product alternariol on mycotoxin formation. 

 

 

Chapter 4.4: 

Running title: Enzymes of mycotoxin biosynthesis: AOH-O-methyltransferase. 

Brzonkalik K., Syldatk C., Neumann A. Identification of putative O-methyltransferases and 

characterization of the alternariol-O-methyltansferase of Alternaria alternata. 

(manuscript in preparation). 

This manuscript describes: 1.) Comparison of fungal O-methyltransferase sequences and 

identification of conserved domains. 2.) Amplification of four putative O-methyltransferase 

genes of A. alternata using degenerated primers. 3.) Amplification of one full-length gene 

using TAIL-PCR method and expression of this gene in E.coli and the yeast Kluveromyces 

lactis 4.) Characterization of the AOH-O-methyltransferase in protein crude extract, 

determination of pH and salt stability and first purification attempts.   
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Abstract 

The aim of this study was to determine the influence of different carbon and nitrogen sources 

on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) 

and tenuazonic acid (TA) by Alternaria alternata at 28 °C using a semi-synthetic medium 

(modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally 

the effect of shaken and static cultivation on mycotoxin production was tested. Initial 

experiments showed a clear dependency between nitrogen depletion and mycotoxin 

production. To assess whether nitrogen limitation in general or the type of nitrogen source 

triggers the production, various nitrogen sources including several ammonium/nitrate salts 

and amino acids were tested. In static culture the production of AOH/AME can be enhanced 

greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME 

production completely. TA was not significantly affected by the choice of nitrogen source. In 

shaken culture the overall production of all mycotoxins was lower compared to static 

cultivation. Furthermore tests with a wide variety of carbon sources including 

monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and 

acetate were performed. In shaken culture AOH was produced when glucose, fructose, 

sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon 

sources. AME production was not detected. The use of sodium acetate resulted in the highest 

AOH production. In static culture AOH production was also stimulated by acetate and the 

amount is comparable to shaken conditions. Under static conditions production of AOH was 

lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources 

induced mycotoxin production compared to 4 in shaken culture. This is the first study which 

analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and 

assesses the effects of culture conditions on mycotoxin production by A. alternata. 
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1. Introduction 

Mycotoxins are secondary metabolites of low molecular weight formed by a wide diversity of 

different moulds. Well-known mycotoxin producers are Aspergillus, Fusarium, Alternaria 

and Penicillium species. Fungi of the genus Alternaria contaminate fruits, vegetables and 

cereals both as plant-pathogens and saprophytes. Besides the economic loss due to pre-harvest 

and post harvest decay, Alternaria mycotoxin contaminated food can be ingested by both 

livestock and humans (Andersen et al., 2006; Logrieco et al., 2009; Patriarca et al., 2007). 

Alternaria alternata produces several different mycotoxins of which alternariol (AOH), 

alternariol monomethyl ether (AME) and tenuazonic acid (TA) are best studied (Coombe et 

al., 1970; Montemurro and Visconti, 1992; Pero et al., 1973; Rosett et al., 1957; Visconti et 

al., 1986). Alternaria is known to produce mycotoxins when growing on wheat (Li and 

Yoshizawa, 2000), sunflower seeds (Nawaz et al., 1997; Pozzi et al., 2005), oilseed rape 

(Nawaz et al., 1997), pecans (Schroeder and Cole, 1976), fruits and fruit juices (Delgado et 

al., 1996; Lau et al., 2003), carrots (Solfrizzo et al., 2004), tomato products (Andersen and 

Frisvad, 2004; da Motta and Valente Soares, 2001; Ozcelik et al., 1990) and grains (Broggi et 

al., 2007; Scott, 2001). Alternaria alternata can grow at low temperatures so that 

contamination of refrigerated foodstuffs during transport and storage is possible (Ozcelik et 

al., 1990). Alternaria toxins are connected to certain health disorders (Woody and Chu, 

1992). The acute toxic effects of AOH and AME are quite weak: their LD50 is higher than  

400 mg/kg of bodyweight for mice. However, AME is cytotoxic and shows synergistic effects 

with AOH (Pero et al., 1973). There are only a few studies which investigate the effects of 

Alternaria toxins in mammalian cells, but Brugger et al. (2006) showed that AOH is 

mutagenic in cultured cell lines. Furthermore Pfeiffer et al. (2007) demonstrated in vitro the 

DNA strand-breaking ability of AOH and AME. Because of the oncogenic potential of AOH 

(Liu et al., 1992) a connection to the incidence of oesophageal cancer in Linxian, China was 

suggested by Dong et al. (1987). 

Tenuazonic acid is produced not only by Alternaria species but also by Phoma and 

Pyricularia species (Iwasaki et al., 1972; Meronuck et al., 1972; Steyn and Rabie, 1976). 

Davies et al. (1977) reported the toxicity of TA to chicken embryos and rats where it caused 

haemorrhage and death. It is thus essential to investigate factors which induce or inhibit 

mycotoxin production. An increasing number of studies have demonstrated the role of 

environmental factors in mycotoxin production in many filamentous fungi (Georgianna and 

Payne, 2009; Schmidt-Heydt et al., 2008). Schmidt-Heydt et al. (2008) demonstrated that 
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abiotic factors such as temperature, pH and water activity exert influence at the transcriptional 

level and enhance the expression of the biosynthetic genes. Water activity and temperature in 

particular are shown to influence the production of Alternaria mycotoxins (Hasan, 1995; 

Oviedo et al., 2010; Pose et al., 2010). Besides abiotic factors nutritional factors seem to 

affect mycotoxin production as well. Nitrogen-starvation induces the expression of genes for 

the biosynthesis of fumonisin in Fusarium proliferatum and ochratoxin in Aspergillus spp. 

(Kohut et al., 2009; Medina et al., 2008) whereas sufficient amounts of nitrogen caused a 

repression of fumonisin production (Shim and Woloshuk, 1999). In the same way other 

culture conditions such as composition of culture media, trace elements and carbon source 

markedly influenced ochratoxin production in Aspergillus species (Medina et al., 2004, 2008; 

Mühlencourt et al., 2004). Some authors studied the influence of carbon sources on 

ochratoxin production but the result depended on strain and medium used (Ferreira and Pitout, 

1969; Lai et al., 1970; Medina et al., 2008). Nevertheless Medina et al. (2008) showed that 

differences in ochratoxin production can be related to the nature of the sugar.  

Although AOH is thought to be formed by a polyketide synthase (PKS) (Gatenbeck and 

Hermodsson, 1965; Light, 1970; Wittowski, 1984), the biosynthetic genes are not known and 

the enzymatic pathways have still to be elucidated. AME is formed by methylation of AOH. 

The putative AOH-O-methyltransferase was partially purified and characterised by Stinson 

and Moreau (1986). The corresponding gene is still unknown. The tetramic acid TA is 

proposed to be formed from acetyl-CoA and isoleucine (Gatenbeck and Sierankiewicz, 1973). 

As well as the lack of knowledge of genetic controls, there are few studies on the influence of 

culture conditions on Alternaria toxin formation. The scope of this study is to examine the 

influence of nitrogen and carbon sources and different culture conditions on Alternaria toxin 

production in a semi-synthetic medium. This may be helpful in providing more information 

about the physiology and the metabolic pathways of mycotoxin production in A. alternata and 

it could provide a basis for the development of a process to produce AOH in larger amounts. 
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2. Materials and methods 

2.1. Reagents and standards 

Standards of alternariol, alternariol monomethyl ether, altenuene and tenuazonic acid were 

purchased from Sigma-Aldrich (Germany). All reagents, fine-chemicals and solvents were 

obtained from Roth (Germany), Becton, Dickinson and Company (BA, Germany) or Sigma-

Aldrich (Germany). 

 

2.2. Fungi and medium 

A. alternata DSM 12633 was obtained from the DSMZ culture collection (Deutsche 

Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany). All cultures of 

A. alternata were routinely grown on PDA (39 g/l potato dextrose agar, pH 5.6). Conidia 

were harvested from plates that were incubated 7 days at 28 °C with 25% glycerol and filtered 

through Miracloth (Calbiochem). Conidia were counted in a Thoma counting chamber and 

diluted to a concentration of 1×106 conidia per ml. Aliquots were stored at −80 °C. For the 

experiments modified Czapek-Dox medium was used (modified after Gatenbeck and 

Hermodsson, 1965): 10 g/l glucose (anhydrous), 0.06 g/l NH4Cl, 0.25 g/l NaNO3, 1 g/l 

KH2PO4, 0.5 g/l MgSO4·7H2O, 0.25 g/l NaCl, 0.25 g/l KCl, 0.01 g/l FeSO4·7H2O, 0.01 g/l 

ZnSO4·7H2O, 1 g/l yeast extract, pH 5.5. Carbon sources and nitrogen sources were prepared 

separately and added after autoclaving. For the carbon test glucose was replaced by other 

carbon sources (see Section 2.4) and for the nitrogen test the mixture of ammonium chloride 

and sodium nitrate was replaced by other nitrogen sources (see Section 2.3). Carbon and 

nitrogen tests were both prepared in shaken and in static culture. For both culture conditions a 

volume of 20 ml of the respective medium was used. All cultures were inoculated with 850 

conidia per ml medium. Static cultures were performed in standard disposable Petri dishes (Ø 

85 mm), and the shaken cultures in 100 ml glass shake-flasks with baffles. For both culture 

conditions a time course was performed. Static cultures were kept for 5–12 days in the dark at 

28 °C. Shaken cultures were cultivated on a rotary shaker at 140 rpm for 5–8 days at 28 °C in 

the dark. All conditions were performed in triplicate. Each sample was prepared in an 

individual flask or Petri dish and the entire contents used for analysis. Results were presented 

for the static cultures after 8 days, and for the shaken cultures after 7 days.  

For the fermentation experiments 1.5 l of the basal modified Czapek-Dox medium at pH 5.5 

was used. The process was operated in the small-scale bioreactor (vessel volume 2.0 l) 
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Minifors (Infors, Switzerland) for 14 days at 28 °C in the dark. The medium (1.5 l) was 

inoculated with 1×106 conidia. Stirrer speed was increased from 400 rpm to 900 rpm after 48 

h, and aeration rate was 0.013 vvm. For titration 0.2 M sodium hydroxide and 0.2 M 

phosphoric acid were used.  

 

2.3. Nitrogen sources  

For the nitrogen tests the nitrogen sources ammonium chloride and sodium nitrate of the 

modified Czapek-Dox medium were replaced. In these tests glucose was added as carbon 

source. The basal medium had a total nitrogen concentration of 56.8 mg/l. To ensure the same 

conditions for all samples the amount of all tested nitrogen sources was adjusted to a total 

nitrogen concentration of 56.8 mg/l. Apart from ammonium and nitrate salts several amino 

acids and urea were investigated: NH4Cl + NaNO3 (0.06 g/l + 0.25 g/l), NH4Cl (0.217 g/l), 

NaNO3 (0.345 g/l), NH4NO3 (0.162 g/l), (NH4)H2PO4 (0.467 g/l), NH4CH3COO (0.313 g/l), 

KNO3 (0.411 g/l), glycine (0.305 g/l), serine (0.427 g/l), proline (0.467 g/l), phenylalanine 

(0.671 g/l), arginine (0.177 g/l), asparagine (0.305 g/l), aspartate (0.54 g/l), glutamate (0.597 

g/l) and urea (0.122 g/l). To elucidate the influence of yeast extract in the medium a control 

sample without additional nitrogen source was performed. For the determination of 

ammonium and nitrate the photometrical assays “Ammonium-Test” (Spectroquant®, Merck, 

Germany) and “Nitrat-Test” (Spectroquant®, Merck, Germany) were used. 

 

2.4. Carbon sources  

For the carbon tests glucose was replaced by other carbon sources and the mixture of 

ammonium chloride and sodium nitrate was added as nitrogen source. In all samples the total 

carbon amount was 4 g/l and the concentration of all carbon sources was adjusted to this. A 

wide range of different carbon sources was tested: D-glucose (10 g/l), L-arabinose (10 g/l), D-

xylose (10 g/l), D-galactose (10 g/l), L-rhamnose (10.11 g/l), D-fructose (10 g/l), D-maltose 

(10 g/l), D-sucrose (9.5 g/l), lactose monohydrate (10 g/l), starch (10 g/l), cellulose (10 g/l), 

glycerol (10.22 g/l), D-sorbitol (10.11 g/l) and sodium acetate trihydrate (22.66 g/l). In 

shaking flask experiments a combination of glucose/sucrose and glucose/sodium acetate was 

tested additionally. The total carbon concentration remained constant; the ratio of applied 

carbon was 1:1 (5 g/l glucose+4.25 g/l sucrose) and 25:1 (9.62 g/l glucose + 0.91 g/l sodium 

acetate). To determine the influence of yeast extract an additional control sample without 
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carbon source was carried out. The glucose concentration during fermentation was monitored 

with the photometrical anthrone assay (Pons et al., 1981). 

 

2.5. Detection and measurement of Alternaria mycotoxins 

A 10 ml aliquot of cell-free culture broth was acidified with 10 �l conc. HCl (32%, 10.32 M) 

and extracted twice with ethyl acetate. At each extraction step the mixture was vigorously 

vortexed and centrifuged at 4600 g for 5 min. The ethyl acetate supernatants from both 

extraction steps were combined and evaporated to dryness in a vacuum centrifuge. More than 

90% of the mycotoxins could be extracted by this method. The residue was redissolved in 200 

�l methanol (HPLC grade) and used for HPLC analyses.  

Mycotoxin standard solutions of 0.2 mM (AOH), 0.1 mM (AME) and 10 mM (TA) in 

methanol were diluted with methanol and used for calibration. The analysis was performed 

with a standard HPLC device (Agilent 1100 Series, Agilent, Germany) equipped with a 25 cm 

reversed phase column (Luna 5 �m C18(2), Phenomenex, Germany) at 30 °C. Mobile phase 

solution was methanol/0.1 M NaH2PO4 pH 3.2 (2:1) at a flow rate of 0.7 ml/min (according to 

Shephard et al., 1991). Mycotoxins were monitored with a UV detector at 280 nm. Retention 

times were 5.3±0.1 min for TA, 10.2±0.1 min for AOH and 23.3 ±0.1 min for AME. 

Detection limits for this method were 16 ng of injected AOH, 33 ng of injected AME and 12 

ng of injected TA. To quantify the mycotoxin concentration in the culture broth the peak area 

in each sample was plotted against the standard curve. In addition to the mycotoxin 

concentration in the culture broth mycotoxin contents were normalized to biomass and 

expressed as �g mycotoxin per g dry weight. To determine dry biomass, fungal mycelium was 

transferred in a weighed tube and dried completely at 60 °C. The weight was determined on a 

standard balance. 
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3. Results 

3.1. Nitrogen limitation leads to AOH and AME production 

Several media were tested for the production of mycotoxins. The production of mycotoxins 

was significantly higher in all tested complex or undefined media (e.g. autoclaved rice, rice-

flour liquid medium according to Misra and Sinha, 1979) than in the tested defined media 

(e.g. Czapek-Dox medium and Vogel's medium) (results not shown). However, for 

elucidating the effects of carbon or nitrogen sources, a more defined medium is necessary so 

that medium components can be exchanged and to exclude, as far as possible, combinatorial 

effects with undefined medium components. The semi-synthetic modified Czapek-Dox 

medium combines good fungal growth with acceptable mycotoxin yields. To produce AOH in 

larger amounts a bioprocess was developed (detailed results for process development will be 

published elsewhere). A typical process scheme is shown in Fig. 1.  

 

 

Fig. 1. Fermentation of A. alternata in modified Czapek-Dox medium (glucose 10 g/l, NH4Cl 
0.06 g/l, NaNO3 0.25 g/l, KH2PO4 1 g/l, NaCl 0.25 g/l, KCl 0.25 g/l, MgSO4·7H2O 0.5 g/l, 
FeSO4·7H2O 0.01 g/l, ZnSO4·7H2O 0.01 g/l, yeast extract 1 g/l), pH 5.5 at an aeration rate of 
0.013 vvm and an agitation rate from 400 rpm to 900 rpm after 48 h. 
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Glucose was consumed at a constant linear rate during the whole process with half of the 

amount (5 g/l) being depleted after 140 h. Nitrogen consumption followed a different pattern. 

After total exhaustion of ammonia, depletion of nitrate took place. AOH was first detected 

after 150 h. At this point only traces of nitrate were still measurable. AME production started 

after 170 h. TA production began almost immediately at 50 h during the first fungal growth 

phase. The typical mycotoxin yields in this process were 3.5–3.6 mg/l AOH, 1.4– 1.5 mg/l 

AME and ~37 mg/l TA. To elucidate whether the AOH production depended on a nitrogen 

limitation in general or on the applied nitrogen source, several experiments were conducted in 

shaken flasks and static culture. 

 

 

3.2. Impact of nitrogen sources on toxin production in shaken and static culture  

3.2.1. Static culture  

The cultivation of A. alternata was performed in Petri dishes with media supplemented with 

different nitrogen sources. Growth was observed in all media, but the appearance of mycelium 

was influenced markedly depending on the supplemented nitrogen source (see Fig. A, 

supplementary data). Differences in shape, color, texture and tightness were observed. Dry 

biomass after 8 days of growth was more or less the same except in samples grown with 

ammonium chloride or ammonium dihydrogen phosphate where dry biomass was lower. 

Table 1 shows the mycotoxin levels at day 8 expressed in mg per liter culture broth and 

normalized to biomass as mg per g dry weight (data not shown for days 5–7 and 9–12). TA 

was detected without significant differences in concentration in all samples irrespective of the 

nitrogen source, whereas the production of the polyketide mycotoxins AOH and AME was 

strongly influenced by the nitrogen source. Media containing ammonium chloride, sodium 

nitrate, ammonium dihydrogen phosphate, potassium chloride or arginine seemed to inhibit 

the production of these mycotoxins. In contrast media containing ammonium nitrate, aspartate 

or phenylalanine elicited a high mycotoxin yield up to 27 mg/l for phenylalanine, an 

enhancement of 300 fold compared to the basal medium. When inorganic salts were used as 

the nitrogen source a combination of ammonium and nitrate was adequate for reasonable 

mycotoxin production. The application of either single ammonium or nitrate salts seemed to 

inhibit the production of polyketide mycotoxins. Furthermore the ratio of both salts appeared 

to be important. The ratio of the basal medium was 1:2.6 (NH4
+ : NO3

−) whereas the ratio in 

ammonium nitrate is 1:1. The use of ammonium nitrate increased AOH production ~40 fold. 

The levels produced with the majority of tested amino acids were higher than the initial 
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medium (between ~2 fold for proline and ~20 fold for glutamate) whereas quite high levels 

could be obtained with aspartate (~40 fold) and phenylalanine in particular (~300 fold).  

Table 1 
Mycotoxin production after 8 days by Alternaria alternata cultured statically in modified 
Czapek-Dox medium supplemented with different N sources  

 
N sourcea  AOH    AME    TA 
 [mg/l]  [mg/g]  [mg/l]  [mg/g]  [mg/l]  [mg/g] 

 
None added 0.01±0.02 0.002±0.003 ND ND 17.07±0.87 3.31±0.17 

NH4Cl and  0.09±0.03 0.02±0.01 ND ND 25.58±1.39 5.68±0.31 
NaNO3   

NH4Cl ND ND ND ND 22.79±4.68 4.70±0.97 

NaNO3 ND ND ND ND 21.94±0.36 3.43±0.06 

NH4NO3 3.73±0.86 0.62±0.14 1.75±0.26 0.29±0.04 29.95±0.57 4.9 9±0.09 

(NH4)H2PO4 ND ND ND ND 25.07±1.60 5.22±0.33 

NH4Acetate 0.81±0.65 0.13±0.11 0.22±0.16 0.04±0.03 24.71±1.04 4.08±0.17 

KNO3 ND ND ND ND 20.16±0.45 3.36±0.47 

Urea 0.62±0.28 0.10±0.05 0.23±0.10 0.04±0.02 25.45±1.70 4.1 7±0.28 

Gly 0.54±0.28 0.25±0.13 0.17±0.14 0.08±0.07 21.18±1.13 4.15±0.22 

Ser 0.36±0.16 0.06±0.03 0.17±0.07 0.03±0.01 25.79±1.05 4.41±0.18 

Pro 0.21±0.01 0.04±0.002 0.12±0.006 0.02±0.001 23.27±0.72 3.85±0.12 

Phe 27.54±2.48 4.44±0.40 15.16±2.13 2.45±0.34 37.95±1.36 6.12±0.22 

Arg ND ND ND ND 23.19±0.18 3.74±0.03 

Asn 0.55±0.17 0.07±0.02 0.32±0.09 0.04±0.01 27.11±0.25 3.39±0.03 

Asp 3.96±0.98 0.81±0.20 1.77±1.06 0.36±0.22 30.83±0.11 6.29±0.02 

Glu 1.76±0.49 0.30±0.08 0.75±0.23 0.13±0.04 30.90±1.01 5.19±0.17 

 
Results are mean of three replicates ± standard deviation and given in mg mycotoxin per litre 
culture broth (mg/l) and mg mycotoxin related to g biodrymass (mg/g). 
a N source added to modified Czapek Dox medium without nitrogen source (1 g/l KH2PO4, 
0.25 g/l NaCl, 0.25 g/l KCl, 0.5 g/l MgSO4 * 7 H2O, 0.01 g/l FeSO4 * 7 H2O, 0.01 g/l ZnSO4 
* 7 H2O, 1 g/l yeast extract) supplemented with 10 g/l glucose, inital pH 5.5.  
ND: not detected. 
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3.2.2. Shaken culture  

In shaken culture the morphology of A. alternata was not dependent on the supplemented 

nitrogen source. The black mycelium adhered to the wall above the liquid level and grew also 

in pellet form in the medium. Highest production yields were obtained after 7 days (data not 

shown for days 3–6 and 8). Table 2 shows the results of the shaken flask experiments and 

displays only nitrogen sources which resulted in AOH/AME production.  

Table 2 

Mycotoxin production after 7 days by Alternaria alternata cultured in shaking flasks in 
modified Czapek-Dox medium supplemented with different N sources  

 
N sourcea  AOH    AME    TA 
 [mg/l]  [mg/g]  [mg/l]  [mg/g]  [mg/l]  [mg/g] 

 
None added 0.33±0.08 0.08±0.02 0.15±0.01 0.04±0.002 5.56±1.04 1.37±0.22 

NH4Cl and  1.31±0.42 0.25±0.08 0.55±0.34 0.11±0.06 13.00±0.89 2.49±0.13 
NaNO3   

NH4NO3 3.65±0.12 0.73±0.01 1.24±0.33 0.25±0.08 19.75±0.28 3.93±024 

KNO3 1.01±0.20 0.19±0.03 0.60±0.09 0.12±0.02 9.53±0.006 1.82±0.06 

Phe 2.52±1.66 0.45±0.31 1.58±1.30 0.28±0.24 23.09±0.27 4.10±0.18 

Arg 0.71±0.29 0.13±0.05 0.44±0.14 0.08±0.03 10.85±2.32 2.02±0.56 

Asn 0.77±0.19 0.15±0.04 0.34±0.16 0.07±0.03 17.05±2.20 3.34±0.60 

Asp 4.00±2.60 0.95±0.63 0.64±0.10 0.15±0.03 23.66±3.25 5.59±0.69 

Glu 3.49±0.37 0.75±0.09 1.24±0.31 0.26±0.06 19.05±2.28 4.07±0.44 

 
Results are mean of three replicates ± standard deviation and given in mg mycotoxin per liter 
culture broth (mg/l) and mg mycotoxin related to g biodrymass (mg/g). 
a N source to modified Czapek Dox medium without nitrogen source (1 g/l KH2PO4, 0.25 g/l 
NaCl, 0.25 g/l KCl, 0.5 g/l MgSO4 * 7 H2O, 0.01 g/l FeSO4 * 7 H2O, 0.01 g/l ZnSO4 * 7 H2O, 
1 g/l yeast extract) supplemented with 10 g/l glucose, intial pH 5.5. 

 

AOH/AME production was not observed in media supplemented with ammonium chloride, 

sodium nitrate, ammonium dihydrogen phosphate, ammonium acetate, urea, glycine, serine or 

proline. In response to the altered cultivation method (shaken vs static) AOH and AME 

production was different for some N-sources. Whereas mycotoxin production was obtained 

with ammonium nitrate and aspartate with nearly the same yields in shaken as in static 

culture, production with phenylalanine was strongly reduced. Compared with static culture, 

mycotoxin levels increased in the basal medium with the combination of ammonium chloride 

and sodium nitrate, but were still lower compared to a controlled fermentation in a bioreactor. 
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Nevertheless the production levels were increased around 3 fold by using ammonium nitrate 

or aspartate compared to the basal medium which could provide a good basis for the process 

optimisation. 

 

 

3.3. Impact of the carbon source on toxin production in shaken and static culture 

3.3.1. Static culture 

Biomass and morphology were strongly influenced by carbon source (see also Fig. B, 

supplementary data). Media which contained starch, cellulose, glycerol, sodium acetate or no 

carbon source resulted in reduced growth with low biomass. AOH was detected in media 

containing glucose, xylose, fructose, rhamnose, sorbitol, maltose, sucrose, starch or sodium 

acetate, whereas AME was detected only after cultivation with fructose, sorbitol, rhamnose 

and sucrose. TA was produced in alternating concentrations in nearly all media excluding 

those that contained no carbon source, sodium acetate or cellulose. Cultivation with most of 

the carbon sources did not enhance AOH production significantly compared to glucose, 

rhamnose and sodium acetate being the exception. Cultivation with rhamnose increased both 

AOH and AME production to ~1.7 mg/l of AOH (24 fold enhancement) and ~1.6 mg/l of 

AME (AME was not detected in medium with glucose) whereas cultivation with sodium 

acetate only raised AOH production to ~10.5 mg/l (150 fold enhancement). Highest yields of 

TA were achieved with maltose and sucrose which resulted in 26.8 mg/l and 24.6 mg/l TA, 

respectively (Table 3).  
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Table 3 
Mycotoxin production after 8 days by Alternaria alternata cultured statically in modified 
Czapek-Dox medium supplemented with different C sources  

 
C sourcea  AOH    AME    TA 
 [mg/l]  [mg/g]  [mg/l]  [mg/g]  [mg/l]  [mg/g] 

 
None added ND ND ND ND ND ND 

Glucose 0.07±0.02 0.01±0.003 ND ND 20.92±1.37 3.48±0.23 

Arabinose ND ND ND ND 9.96±0.29 1.9 9±0.06 

Xylose 0.09±0.08 0.013±0.01 ND ND 15.60±1.25 2.40±0.20 

Fructose 0.07±0.08 0.01±0.01 0.09±0.08 0.01±0.01 16.09±5.66 2.68±0.94 

Galactose ND ND ND ND 16.56±0.70 3.01±0.13 

Rhamnose 1.69±0.06 0.31±0.01 1.60±0.09 0.29±0.02 5.41±0.67 0.98±0.12 

Sorbitol 0.06±0.05 0.009±0.008 0.09±0.01 0.01±0.002 15.20±1.55 2.34±0.24 

Maltose 0.12±0.02 0.02±0.003 ND ND 26.78±0.78 4.46±0.13 

Sucrose 0.12±0.11 0.02±0.02 0.06±0.05 0.01±0.009 24.63±2.18 4.48±0.40 

Lactose ND ND ND ND 10.85±0.94 2.41±0.21 

Starch 0.13±0.07 /* ND /* 1.22±0.87 /* 

Cellulose ND /* ND /* ND /* 

NaOAc 10.52±0.96 3.51±0.32 ND ND ND ND 

Glycerol ND ND ND ND 8.81±0.37 3.52±0.15 

 
Results are mean of three replicates ± standard deviation and given in mg mycotoxin per liter 
culture broth (mg/l) and mg mycotoxin related to g biodrymass (mg/g). 
a C source added to modified Czapek Dox medium without carbon source (0.06 g/l NH4Cl, 
0.25 g/l NaNO3, 1 g/l KH2PO4, 0.25 g/l NaCl, 0.25 g/l KCl, 0.5 g/l MgSO4 * 7 H2O, 0.01 g/l 
FeSO4 * 7 H2O, 0.01 g/l ZnSO4 * 7 H2O, 1 g/l yeast extract), pH 5.5.  
/* biodrymass not determined. 
ND: not detected. 
 

 

3.3.2. Shaken culture  

All carbon sources tested in static culturewere also tested in shaken culture. Additionally two 

combinations of carbon sources (glucose/sucrose and glucose/acetate)were examined. AOH 

and AME production was not detected in media with most of the tested carbon sources. AOH 

was produced only in the presence of glucose, fructose, sucrose, sodium acetate and with both 

carbon source combinations. In Table 4 all carbon sources are listed which induced AOH 

production.  
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Table 4 
Mycotoxin production after 7 days by Alternaria alternata cultured in shaking flasks in 
modified Czapek-Dox medium supplemented with different C sources  

 
C sourcea  AOH    AME    TA 
 [mg/l]  [mg/g]  [mg/l]  [mg/g]  [mg/l]  [mg/g] 

 
None added ND ND ND ND ND ND 

Glucose 0.60±0.17 0.11±0.03 ND ND 14.83±1.8 2.65±0.35 

Fructose 0.15±0.07 0.03±0.01 ND ND 18.63±0.1 3.45±0.03 

Sucrose 0.18±0.99 0.03±0.02 ND ND 23.31±1.69 4.45±0.22 

NaOAc 4.66±2.24 1.16±0.45 ND ND ND ND 

Gluc.+sucr. 0.47±0.21 0.09±0.04 ND ND 25.69±3.95 4.66±0.71 

Gluc.+ac. 0.16±0.08 0.03±0.02 ND ND 3.74±1.49 0.69±0.27 

 
Results are mean of three replicates ± standard deviation and given in mg mycotoxin per liter 
culture broth (mg/l) and mg mycotoxin related to g biodrymass (mg/g). 
a C source added to modified Czapek Dox medium without carbon source (0.06 g/l NH4Cl, 
0.25 g/l NaNO3, 1 g/l KH2PO4, 0.25 g/l NaCl, 0.25 g/l KCl, 0.5 g/l MgSO4 * 7 H2O, 0.01 g/l 
FeSO4 * 7 H2O, 0.01 g/l ZnSO4 * 7 H2O, 1 g/l yeast extract), initial pH 5.5.  
ND: not detected; Gluc.+sucr.: glucose + sucrose (1:1); Gluc.+ac.: glucose + sodium acetate 
(10:1). 
 

Highest mycotoxin concentrations were achieved after 7 days (data not shown for days 3–6 

and 8) and were similar or slightly higher than the static culture with the exception of sodium 

acetate which was half that of the static culture. For both of the C-source combinations AOH 

production did not increase compared with the levels obtained with the respective C-sources 

alone. Nevertheless sodium acetate enhanced AOH production around 7 fold and seemed to 

inhibit the production of the other mycotoxins. This may be useful for the purification of 

AOH and is a good basis for process optimization. 
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4. Discussion 

In this study a semi-synthetic medium was used to determine the influence of carbon and 

nitrogen sources on the production of mycotoxins in A. alternata. This semi-synthetic 

medium was chosen to exclude, as far as possible, the effects of abundant nutrients and 

growth factors and to enable the exchange of carbon and nitrogen sources. Yeast extract        

(1 g/l) present in the modified Czapek-Dox medium provided the required of vitamins and 

micronutrients. According to the manufacturer (Becton, Dickinson and Company) the yeast 

extract that was used for these experiments contained 11% (w/w) nitrogen. To determine the 

influence of yeast extract, controls without an additional nitrogen or carbon source were 

made. Although A. alternata grew fairly well with yeast extract as sole nitrogen source, the 

production of the mycotoxins was very low. Without an additional carbon source growth with 

just yeast extract was reduced and mycotoxins were not detected. Therefore it can be 

concluded that the observed effects regarding mycotoxin formation can be assigned to the 

supplemented nitrogen and carbon sources. 

Considering all data from this study it can be assumed that mycotoxin production is regulated 

not only by nutritional factors but also by cultivation conditions. Static culture appeared to be 

supportive for mycotoxin production since higher concentrations of mycotoxins were detected 

with many more of the tested carbon and nitrogen sources in static culture than in shaken 

culture. In general the production of the polyketide mycotoxins seemed to be influenced by 

both carbon and nitrogen sources whereas TA production was more influenced by carbon 

sources. The production of TA was apparently connected to fungal growth since it started 

very early in the exponential growth phase.  

Most nitrogen sources elicited different results in mycotoxin production in static and shaken 

culture. In the basal medium with sodium nitrate and ammonium chloride, very low yields of 

AOH (0.09 mg/l) were obtained in static culture. In shaken culture the yield was ~15 fold 

higher and during fermentation in the bioreactor a ~38 fold enhancement could be achieved 

compared to static culture. For phenylalanine this tendency was inverted: 27 mg/l were 

produced in static culture whereas the yields in shaken culture were 11 fold lower. In contrast 

to this, the varying culture conditions seemed not to influence mycotoxin production in media 

containing either ammonium nitrate or aspartate. One reason for these observations could be 

the formation of gradients. In shaken culture and in the bioreactor all substances are well 

mixed and gradients of nutrients should not form, whereas in static culture nutrients must 

diffuse and localized nutrient limitation may occur. Kohut et al. (2009) showed that nitrogen 
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starvation and other stresses triggered the expression of the fumonisin biosynthetic genes and 

therefore the production of the mycotoxin fumonisin. For Alternaria alternata some studies 

exist which investigated the influences of abiotic factors, e.g. temperature and water activity 

(Hasan, 1995; Tournas and Stack, 2001), but only one study examined the impact of nitrogen 

on mycotoxin production. Orvehed et al. (1988) tested the effect of sodium nitrate, glutamate 

and urea on AOH and AME production. They found that the production dramatically 

decreased when 6 or 12mM of these nitrogen sources were added to a modified Czapek-Dox 

medium 72 h after inoculation. Nitrate repression of mycotoxin production was shown for 

aflatoxin intermediates in Aspergillus parasiticus (Kacholz and Demain, 1983) or for 

ochratoxin in Aspergillus ochraceus (Abbas et al., 2009). In our study AOH and AME could 

not be detected in media containing sodium or potassium nitrate in static culture. Also in 

shaken culture AOH and AME were not produced in medium with sodium nitrate and in the 

bioreactor AOH production only started after nitrate consumption. So repression due to nitrate 

can be hypothesized. In contrast to the study of Orvehed et al. (1988) AOH was produced in 

the presence of glutamate and urea. In the study of Orvehed et al. (1988), however, the 

nitrogen sources were added during the exponential growth phase and not at the beginning. 

Furthermore much more nitrogen in total (up to 12 mM) was used in the Orvehed study so the 

inhibitory effects observed could simply be caused by the high amounts of nitrogen in the 

medium. 

With respect to the carbon sources different monosaccharides, disaccharides, complex 

saccharides and smaller carbon sources were tested methodically. However, a general scheme 

for the regulation of Alternaria toxins was not observed. As with the nitrogen source 

experiments, mycotoxin yields varied considerably in shaken and static culture and in shaken 

culture only four of all tested carbon sources induced the production of AOH. Nevertheless 

highest amounts of AOH were obtained with sodium acetate in static culture (10.5 mg/l) as 

well as in shaken culture (4.6 mg/l). Interestingly TA was totally repressed using sodium 

acetate as carbon source. There are several studies that have investigated the influence of 

carbon sources on mycotoxin production fungi other than A. alternata. They show that the 

best carbon source has to be determined for each mycotoxin and is dependent on the strain 

used and the medium which is supplemented. Ochratoxin production in A. ochraceus HP was 

supported by lactose (Abbas et al., 2009) but in A. ochraceus (Aso 2) by a mixture of sucrose 

and glucose (Medina et al., 2008). Aflatoxin production in A. parasiticus NRRL 2999 was 

enhanced by glucose, fructose, sucrose or sorbitol (Buchanan and Stahl, 1984) whereas 

sucrose, kestose or nystose increased trichothecene production in different Fusarium 
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graminearum isolates (Jiao et al., 2008). The production of polyketide mycotoxins seems to 

be under complex regulation since sodium acetate, for example, enhanced AOH production 

but greatly repressed AME production. Due to the lack of knowledge about the regulation of 

the AOH production it is difficult to speculate why acetate appeared to be the best C-source. 

Although the same amount of carbon was available in each experiment, acetate is more easily 

oxidised than glucose and other monosaccharides tested. Less energy can be provided because 

less NADH is produced due to direct insertion into the citrate cycle. Besides the lack of 

energy, differences in redox status because of lower NADH levels or a direct stimulation of 

the first biosynthetic genes of AOH production by acetate may be possible reasons for this 

observation.  

Considering the results presented here, first insights into physiological control mechanisms 

were obtained and a good basis was provided for process optimization. The differences 

between static and shaken culture show the importance of a controlled and homogenous 

system in providing information on the influence of nitrogen or carbon sources on mycotoxin 

production. Analogous experiments in a bioreactor are currently in progress in our laboratory. 

Controlled cultivation in a bioreactor enables further investigation of the influence on 

mycotoxin production of important parameters such as temperature and strain which could not 

be considered in this study. 
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Fig. A Effect of nitrogen sources on growth of 
Modified Czapek-Dox medium
1 g/l, NaCl 0.25 g/l, KCl 0.25 g/l, MgSO
0.01 g/l, yeast extract 1 g/l) was supplemented with the indicated nitrogen source. All
were inoculated with 1.7×10
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Effect of nitrogen sources on growth of A. alternata in static culture after 8 days. 
Dox medium without additional nitrogen source (glucose 10 g/l, KH

1 g/l, NaCl 0.25 g/l, KCl 0.25 g/l, MgSO4·7H2O 0.5 g/l, FeSO4·7H2O 0.01 g/l, ZnSO
0.01 g/l, yeast extract 1 g/l) was supplemented with the indicated nitrogen source. All
were inoculated with 1.7×104 conidia. 

 

61 

 

in static culture after 8 days. 
nitrogen source (glucose 10 g/l, KH2PO4   
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4.2 Mycotoxin production in a bioreactor 
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Abstract 

The black mould Alternaria alternata produces a wide diversity of mycotoxins which are of 

particular health concern. Since no maximum allowable limits are set for Alternaria toxins in 

food and feed, prevention of Alternaria infestations and mycotoxin spoilage is the only way 

to avoid health risks. Thus, the understanding of mycotoxin biosynthesis is essential. For that 

purpose, a reliable batch process in a 2 L bioreactor was established which enables the study 

of several parameters influencing the production of the mycotoxins alternariol (AOH), 

alternariol monomethylether (AME) and tenuazonic acid (TA) by A. alternata DSM 12633. 

Modified Czapek-Dox medium was used with glucose as carbon source and ammonium and 

nitrate as nitrogen sources. Consumption of carbon and nitrogen sources as well as formation 

of the three mycotoxins were monitored; the average data of five independent fermentations 

was plotted and fitted using a logistic equation with four parameters. Maximum mycotoxin 

concentrations of 3.49 ± 0.12 mg/L AOH, 1.62 ± 0.14 mg/L AME and 38.28 ± 0.1 mg/L TA 

were obtained. 

In this system the effect of different aeration rates (0.53 vvm - 0.013 vvm) was tested which 

exerted a great influence on mycotoxin production. The use of the semi-synthetic Czapek-Dox 

medium allowed the exchange of carbon and nitrogen sources for acetate and aspartic acid. 

The use of acetate instead of glucose resulted in the sole production of alternariol whereas the 

exchange of ammonium and nitrate for aspartate enhanced the production of both AOH and 

AME while TA production was not affected. 

 

 

Keywords: 

Alternaria alternata, Mycotoxin, Batch process, Aeration rate.  

 

 

 

  



IV. Publications and Manuscripts
 

65 

1. Introduction 

Mycotoxins are secondary metabolites of low molecular weight produced by filamentous 

fungi. Since the discovery of the first mycotoxins, the aflatoxins, in 1960 which caused the 

death of 10,000 turkeys many new mycotoxins have been identified in the last 50 years. 

Today 300 to 400 compounds are designated as mycotoxins (Bennett and Klich, 2003). As 

other secondary metabolites mycotoxins are formed subsequently to the growth phase and are 

not necessary for growth or development (Fox and Howlett, 2008). Mycotoxin formation is 

subjected to a complex regulation, but it is often induced by nutrient limitation (Demain, 

1986). Mycotoxins are released by the fungus in the surrounding substrate and contamination 

of agricultural products is therefore possible. They are connected to certain health disorders 

and elicit acute toxic, mutagenic, teratogenic, carcinogenic and sometimes estrogenic 

properties (Bhatnager et al., 2002). Based on estimations of the Food and Agriculture 

Organization (FAO) of the United Nations approximately 25 % of the world´s food crops are 

affected by mycotoxin producing fungi and global losses of foodstuffs due to mycotoxins are 

in the range of 1000 million tons per year 

(http://www.fao.org/ag/agn/agns/chemicals_mycotoxins_en.asp).  

Alternaria species are wide spread black moulds which belong to the division of 

Deuteromycota (Bottalico and Logrieco, 1998) and are common saprophytes found on 

decaying organic material world-wide. The genus Alternaria includes also opportunistic 

plant-pathogens affecting many cultivated plants in the fields and stored fruits and vegetables 

during post-harvest (Guo et al., 2004). Alternaria species are capable to produce a wide 

diversity of secondary metabolites belonging to different chemical groups including 

dibenzopyrones, tetramic acids, lactones, quinones and cyclic peptides. More than 120 

secondary metabolites of Alternaria species are known; a quarter of that are designated as 

mycotoxins (Panigrahi, 1997). Five major Alternaria toxins can be found as natural 

contaminants in foodstuffs: the benzopyrene derivatives alternariol (AOH), alternariol 

monomethylether (AME), altenuene (ALT), the tetramic acid tenuazonic acid (TA) and the 

perylene derivative altertoxin I (ATX I) (Barkai-Golan, 2008). These toxins were detected in 

apples (Stinson et al., 1981), tomatoes (Stinson et al., 1981), wheat (Azcarate et al., 2008; Li 

and Yoshizawa, 2000), olives (Visconti et al., 1986), sunflower seeds (Pozzi, 2005), fruit 

juices (Lau et al., 2003) and tomato products (Motta and Valente Soares, 2001; Terminiello et 

al., 2006). Therefore, Alternaria toxins can be considered as toxic contaminant of our 

everyday food (Barkai-Golan, 2008).  
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Although the acute toxicity of Alternaria toxins is low (LD50 of Alternaria extracts: 300 

mg/kg body weight in mice, LD50 of AOH: > 400 mg/kg body weight of mice (Pero et al., 

1973)), they are connected to certain health disorders. Alternaria extracts have been described 

as mutagenic and tumorigenic (Liu et al., 1991; Schrader et al., 2001). Of particular health 

concern is the incidence of esophageal cancer in Linxin, China. The etiology of this cancer 

was connected with the contamination of cereal grains with A. alternata (Dong et al., 1987; 

Liu et al., 1992). As stated by Pero et al. (1973), the toxicity of complex extracts is much 

higher than of the single tested mycotoxins which suggest synergism between single 

components. Although numerous toxicological studies were conducted to clarify the effects of 

Alternaria toxins a risk assessment for Alternaria toxins is not possible. According to the 

German Federal Institute of Risk Assessment (Bundesinstitut für Risikobewertung, BfR, 

2003) only little toxicological data is available just for seven out of the 30 known Alternaria 

mycotoxins which is insufficient for an assessment of the health risk for the consumer. 

As long as maximum allowable limits in food for Alternaria toxins were not defined 

prevention of Alternaria infestations and mycotoxin spoilage is the best way to avoid health 

risks. Therefore, knowledge about factors which enhance or inhibit mycotoxin production and 

its regulation is crucial. Mycotoxin production varies with fungal strain, the substrate and 

environmental growth conditions. This includes factors like water activity, temperature, pH-

value and light. According to Schmidt-Heydt et al. (2008) mycotoxin production can be 

regarded as an adaptation to imposed abiotic or other stresses of the mycotoxigenic species. 

Whereas the influence of water activity, temperature and light was extensively studied for 

different A. alternata strains and media (Hasan, 1995; Magan et al., 1984; Pose et al., 2010; 

Schmidt-Heydt et al., 2011; Söderhäll et al., 1978), the effects of pH and nutritional factors 

were neglected. Additionally, all these studies use different kinds of media and culture 

conditions, e.g. solid agar-media, liquid surface culture or drop cultures, which render direct 

comparisons difficult. The intention of this work is therefore the establishment of a 

reproducible system which enables the elucidation of all important influences on mycotoxin 

production in A. alternata. For optimal reproducibility and comparability of single 

experiments a process in a bioreactor was developed allowing direct monitoring and 

prevention of nutrient or oxygen limitations. With respect to the production of mycotoxins 

with Alternaria spp. submerged fermentation protocols were not developed yet. To the 

knowledge of the authors only one protocol for submerged fermentation of Alternaria spp. for 

the production of the new antibiotic altersetin (Hellwig et al. 2002) and another solid state 

fermentation protocol for the production of mycoherbicidal agents with A. alternata (Singh et 
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al., 2010) were published. The primary purpose of the presented process is to enhance the 

knowledge of regulatory mechanisms for Alternaria toxin production but additionally it may 

be helpful for the development of further production processes of other interesting secondary 

metabolites of Alternaria spp.  

 

 

 

2. Materials and methods 

2.1 Strain, media and processsing 

A. alternata DSM 12633 was obtained from DSMZ culture collection (“Deutsche Sammlung 

von Mikroorganismen und Zellkulturen“, Braunschweig, Germany). All cultures of A. 

alternata were routinely grown on PDA (Roth, Germany). Conidia were harvested from 

plates that were incubated seven days at 28°C with 25 % glycerol and filtered through 

Miracloth (Calbiochem). Conidia were counted in a Thoma counting chamber and diluted to a 

concentration of 1*106 condia per ml. Aliquots were stored at -80°C. 

For the fermentation experiments 1.5 L of modified Czapek-Dox medium (modified after 

Gatenbeck and Hermodsson, 1965) at pH 5.5 were used: 10 g/L glucose, 0.06 g/L NH4Cl, 

0.25 g/L NaNO3, 1 g/L KH2PO4, 0.5 g/L MgSO4 * 7 H2O, 0.25 g/L NaCl, 0.25 g/L KCl, 0.01 

g/L FeSO4 * 7 H2O, 0.01 g/L ZnSO4 * 7 H2O, 1 g/L yeast extract. For all experiments the 

same amounts of carbon (4 g/L) and nitrogen (56.8 mg/L) were used: Glucose was exchanged 

for 22.66 g/L sodium acetate trihydrate and the mixture of ammonium chloride and sodium 

nitrate was exchanged for 0.54 g/L aspartic acid. The carbon sources were prepared separately 

and were added after autoclaving. The process was operated in the small-scale bioreactor 

(vessel volume 2.0 L) Minifors (Infors, Bottmingen, Switzerland) for the indicated time 

period (table 2) at 28°C in the dark. The medium was inoculated directly with 1*106 conidia, 

a pre-culture was not used. The bioreactor was equipped with two 6-blade Rushton Turbines; 

stirring speed was enhanced from 400 rpm to 900 rpm after 48 h. The aeration rate was 0.013 

vvm if not indicated otherwise. For pH adjustment 0.2 M sodium hydroxide and 0.2 M 

phosphoric acid were used.  
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2.2 Analytical methods 

2.2.1 Data analysis 

Nutrient consumption and mycotoxin production were fitted using a logistic equation with 

four parameters in a scientific data analysis and graphing software (Sigma Plot 9.0, Systat, 

San Jose, USA). The used equation was: 

���� = 	�� +	
	


��
�

�
��

   (1) 

The four parameters are the following: y0 indicates the minimum concentration of the 

respective nutrient or mycotoxin; a indicates the maximum nutrient/mycotoxin concentration; 

x0 indicates the process time when half of the nutrient amount is consumed or half of the 

maximum mycotoxin concentration is produced; b is a shape parameter and difficult to 

explain biologically (Erkmen and Alben, 2002). Ammonium and AME concentration lapse 

were derived analogously with a logistic equation with three parameters (cf. Eq. 1, but 

excluding y0). Derivation of the fitting was used for the determination of absolute 

consumption and production rates. 

 

2.2.2 Detection of mycotoxins 

Alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TA) were 

analyzed simultaneously by HPLC. The standard HPLC device (Agilent 1100 Series, Agilent, 

Waldbronn, Germany) was equipped with a 25 cm reversed phase column (Luna 5 µm 

C18(2), Phenomenex, Aschaffenburg, Germany). Analyses were performed at 30 °C and a 

flow rate of 0.7 ml/min. Mobile phase solution was methanol/0.1 M NaH2PO4 (2:1), pH 3.2 

(according to Shephard et al., 1991). Mycotoxins were monitored with a UV detector at 280 

nm. For quantification a standard curve with mycotoxin standard solutions was prepared. The 

standards were purchased from Sigma-Aldrich (Munich, Germany) and solved in methanol.  

Mycotoxins were extracted twice with equal amounts of ethyl acetate from 5 ml culture broth 

after acidifying with 5 µl conc. HCl. The supernatants were combined and evaporated to 

dryness in a vacuum centrifuge. The residue was dissolved in methanol and used for HPLC 

analyzes. Retention times were 5.3 ± 0.1 min (TA), 10.2 ± 0.2 min (AOH) and 23.3 ± 0.1 min 

(AME). 
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2.2.3   Quantification of nutritional components and biomass 

The glucose concentration during the fermentation process was monitored with the 

photometrical anthrone assay (Pons et al., 1981). 

Ammonium and nitrate were determined with the photometrical assays “Ammonium-Test” 

(Spectroquant®, Merck, Germany) and “Nitrat-Test” (Spectroquant®, Merck, Darmstadt, 

Germany). 

For biomass quantification fungal mycelium was transferred from the bioreactor at the end of 

fermentation to a weighed tube and dried completely at 60°C. The weight was determined on 

a standard balance. 

 

 

 

3. Results 

3.1 Process parameters of A. alternata fermentation in a 2 L bioreactor system 

A first approach for the biotechnological production of Alternaria toxins was published 

previously by Brzonkalik et al. (2011). To elucidate the reproducibility of the system five 

independent fermentations were performed. The following results represent the average data 

of all five fermentations (figure 1). Consumption of the nutrients glucose, ammonium and 

nitrate showed characteristic logistic decrease and were fitted according to Eq. 1. The root 

squares for the consumption curve fittings were ≥0.98. Formation of the mycotoxins could be 

described logistically and were also fitted according to Eq. 1. The root square for the 

formation curve fittings of TA and AOH were ≥0.99 and of AME ≥0.97. The maintained 

parameters for the fittings are displayed in table 1.  
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Figure 1: Production of the mycotoxins tenuazonic acid (TA) (A), alternariol (AOH) and 
alternariol monomethylether (AME) (B) and consumption of the nutrients glucose, nitrate and 
ammonium (A, B) with A. alternata DSM 12633 in a 2 L bioreactor. Measured glucose, 
nitrate, ammonium, TA, AOH and AME concentrations are given as averages of five 
independent fermentations. All lines represent logistic fittings of the concentrations based on 
Eq. 1. 

 

 

 

 

 

A 

B 
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Table 1: Parameters of logistic fittings based on Eq. 1 of nutrient consumption and 
mycotoxin formation in a bioreactor cultivation with A. alternata  

 Max. consumption/ 
 y0 a x0 b R2 production rate ri [mg/(L*h)] 

Glucose -0.3964 10.7147 141.2869 4.2033 0.9891  84.38 

Nitrate -1.174 207.9278 126.501 18.6103 0.9997  0.742 

Ammonium 0 39.0676 89.0597 4.9735 0.9828  7.67 

TA -0.0448 38.7128 112.0248 -4.5425 0.9936  0.412 

AOH -0.1304 3.6254 178.5357 -14.4819 0.9933  0.078 

AME 0 2.0951 225.0668 -6.8872 0.9775  0.017 

TA: tenuazonic acid; AOH: alternariol; AME: alternariol monomethylether. 
Parameters were maintained from five experiments.  
 

Both nitrogen sources and glucose were consumed completely during the process. The 

consumption of glucose and ammonium did not start immediately most probably due to a 

germination phase of approximately 24 h and the presence of yeast extract in the medium. 

After 50 h of cultivation first TA concentrations of 0.92 mg/L were quantified. TA production 

continued until the end of fermentation (260 h) but was slowed down with decreasing glucose 

concentrations. A maximum TA concentration of 38.28 ±1.61 mg/L was achieved. The 

nitrogen sources were depleted subsequently; after total exhaustion of ammonia consumption 

of nitrate started. With exhaustion of nitrate first AOH concentrations could be detected and 

reached a maximum concentration of approximately 3.49 ± 0.12 mg/L at the end of 

fermentation. AME production started delayed after AOH production and reached a 

maximum concentration of 1.62 ± 0.14 mg/L. 

Absolute consumption and production rates were obtained by derivation of the respective 

fitting with the maxima indicated in table 1. All rates were normalized and the relative rates of 

glucose and the mycotoxins TA, AOH and AME are shown in figure 2. 
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TA: tenuazonic acid; AOH: alternariol; AME: alternariol monomethylether.
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secondary metabolites. 
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The maximum of glucose consumption rate indicates high 

TA production appeared to 
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mycotoxin production. In these experiments measurement of pO2 

At higher aeration rates (2 

was not growing in pellet form, but was clinging on the flow-

breaker and other fixtures very tightly. Only low concentrations of AOH (0.67 ± 0.31 mg/L) 

AME was not detectable. 

to 0.067 vvm resulted in an increase of all mycotoxins to 1.81 

± 1.40 mg/L AOH, 0.74 ± 1.05 mg/L AME and 37.87 ± 0.88 mg/L. A further enhancement of 
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mycotoxin production was achi

mg/L AOH, 1.78 ± 0.23 AME and 38.35 ± 1.22 mg/L could be detected. Due to the decrased 

aeration rates the morphology of 

clinging at the vessel wall, total biomass was reduced and pellets occurred in the culture 

broth. When the aeration rate was lowered to 0.013 vvm the biomass was further reduced and 

more mycelium was present freely in the broth in form of pellets or filaments. Inherent to the 

design further decrease of the aeration rate was not possible. Therefore

used consisting of 5 % oxygen and 95

keeping the aeration rate at 0.013 vvm. The aeration with the gas mixture caused a

decrease of the polyketide mycotoxins (0.24 ± 0.35 mg/L AOH, AME was not detected) but 

did not affect TA production (34.60 ± 1.58 mg/L)

aeration was stopped completely after 48 h at 0.013 vvm (designated as

The production of the polyketide mycotoxins seemed to be inhibited; AOH and AME 

not detected, TA production was reduced

Figure 3: Mycotoxin production with 
aeration rates. Results are mean of two replicates.
TA: tenuazonic acid; AOH: alternariol; AME: alternariol monomethylether. 

anuscripts

mycotoxin production was achieved by lowering the aeration rate to 0.013 vvm: 3.

mg/L AOH, 1.78 ± 0.23 AME and 38.35 ± 1.22 mg/L could be detected. Due to the decrased 

aeration rates the morphology of A. alternata changed: At 0.067 vvm less mycelium was 

wall, total biomass was reduced and pellets occurred in the culture 

broth. When the aeration rate was lowered to 0.013 vvm the biomass was further reduced and 

more mycelium was present freely in the broth in form of pellets or filaments. Inherent to the 

sign further decrease of the aeration rate was not possible. Therefore

% oxygen and 95 % nitrogen to decrease the oxygen supply while 

keeping the aeration rate at 0.013 vvm. The aeration with the gas mixture caused a

decrease of the polyketide mycotoxins (0.24 ± 0.35 mg/L AOH, AME was not detected) but 

did not affect TA production (34.60 ± 1.58 mg/L) significantly. In a final experiment the 

aeration was stopped completely after 48 h at 0.013 vvm (designated as 

The production of the polyketide mycotoxins seemed to be inhibited; AOH and AME 

TA production was reduced to a maximum concentration of

Mycotoxin production with A. alternata in a 2 L bioreactor system using different 
aeration rates. Results are mean of two replicates. 
TA: tenuazonic acid; AOH: alternariol; AME: alternariol monomethylether. 
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eved by lowering the aeration rate to 0.013 vvm: 3.1 ± 0.06 

mg/L AOH, 1.78 ± 0.23 AME and 38.35 ± 1.22 mg/L could be detected. Due to the decrased 

changed: At 0.067 vvm less mycelium was 

wall, total biomass was reduced and pellets occurred in the culture 

broth. When the aeration rate was lowered to 0.013 vvm the biomass was further reduced and 

more mycelium was present freely in the broth in form of pellets or filaments. Inherent to the 

sign further decrease of the aeration rate was not possible. Therefore, a gas mixture was 

% nitrogen to decrease the oxygen supply while 

keeping the aeration rate at 0.013 vvm. The aeration with the gas mixture caused a drastic 

decrease of the polyketide mycotoxins (0.24 ± 0.35 mg/L AOH, AME was not detected) but 

. In a final experiment the 

 “anaerobic” in fig. 3). 

The production of the polyketide mycotoxins seemed to be inhibited; AOH and AME were 

a maximum concentration of 8.04 ± 0.52 mg/L.  

 

L bioreactor system using different 

TA: tenuazonic acid; AOH: alternariol; AME: alternariol monomethylether.  
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3.3 Fermentation with alternative carbon and nitrogen sources 

As shown previously for ochratoxin (Abbas et al., 2009; Medina et al., 2008), aflatoxin 

(Buchanan and Stahl, 1984), trichothecene (Jiao et al., 2008) and Alternaria toxins 

(Brzonkalik et al., 2011), mycotoxin production depends on nitrogen and carbon source. In 

the study of Brzonkalik et al. (2011) the carbon source acetate and the nitrogen source 

aspartic acid were promising candidates for an enhancement of Alternaria toxin production in 

static cultivation and shaking flask experiments. Consequently, fermentation experiments 

were performed with the described process with different combinations of carbon and 

nitrogen sources and are displayed in table 2. 

 

Table 2: Mycotoxin production in a 2 L bioreactor by A. alternata depending on carbon and 
nitrogen source at an aeration rate of 0.013 vvm 

carbon source nitrogen source AOH [mg/L]  AME [mg/L]  TA [mg/L]  process time [h] BDM [g/L] 

 aGlucose NH4Cl, NaNO3 3.49 ± 0.121 1.62 ± 0.142 38.28 ± 1.61 260 3.3 ± 0.1  

 bGlucose aspartic acid 7.75 ± 0.064 4.81 ± 0.014 36.54 ± 0.81 350 3.49 ± 0.27 

 bNa-acetate NH4Cl, NaNO3 6.64 ± 0.010  ND ND 400 1.98 ± 0.06 

 Na-acetate aspartic acid 3.66  ND ND 400 2.62 

a Results are mean of 5 replicates ± standard deviation. 
b Results are mean of 2 replicates ± standard deviation. 
Acetate fermentations were conducted without pH control, glucose fermentations were 
performed at pH 5.5. Values display maximal detected mycotoxin concentration. Process time 
gives the earliest time point when the maximum concentration was achieved. 
AOH: alternariol; AME: alternariol monomethylether; TA: tenuazonic acid; BDM: 
biodrymass; ND: below detection limit of < 0.001 mg/L. 
 
 

The exchange of ammonium and nitrate for aspartic acid resulted in a 2.2 fold increase of the 

AOH maximum concentration to 7.75 mg/L and enhanced AME production to 4.81 mg/L. 

Maximum TA concentration was not affected compared to the fermentation with ammonium 

and nitrate. While the biomass concentration was not altered significantly, process time had to 

be prolonged to 350 h to reach abovementioned mycotoxin concentrations.  

The exchange of glucose for acetate in combination with ammonium and nitrate seemed to 

inhibit the formation of TA and AME. Only AOH was detected and its maximum 

concentration was enhanced 1.9 fold to 6.64 mg/L. Biomass production was decreased to 1.98 

g/L, but the process was slowed down again and had to be prolonged to nearly 400 h. This 

may be explained by the slow consumption of acetate which took 300 h to total depletion. 

Keeping the pH at 5.5 in the acetate fermentation did result in an inhibition of conidia 
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germination, therefore, the initial pH was set to 6.5 and was not controlled throughout the 

process. A pH optimization of this fermentation could probably reduce fermentation time. A 

combination of acetate and aspartic acid did not result in any further increase of AOH 

maximum concentration compared to the combination of glucose and ammonium/nitrate, but 

again TA and AME were not detected. 

When AOH content is normalized to biomass (expressed as mg mycotoxin per g biomass) 

maintained concentrations were the following: 1.06 mg/g (glucose/ammonium and nitrate), 

2.22 mg/g (glucose/aspartic acid), 3.35 mg/g (acetate/ammonium and nitrate) and 1.40 mg/g 

(acetate/aspartic acid). 

 

 

4. Discussion 

It was shown, that Alternaria toxins can be produced reproducibly in a bioreactor system 

under controlled conditions. Consumption of nutrient and mycotoxin formation can be 

characterized with logistic equations. The semi-synthetic Czapek-Dox broth is perfectly 

suitable for the elucidation of nutritional influences as shown previously (Brzonkalik et al., 

2011). Therefore, this medium was chosen for the fermentation experiments, but a further 

enhancement of mycotoxin production can be achieved by using other complex media.  

Literature about mycotoxin production in bioreactor systems is rare; most studies were 

conducted in shaking flasks or solid media which cannot ensure optimal mixing, pH control 

and uniform supply with nutrients. Regulation of mycotoxin formation is very complex; 

fungal morphology and culture conditions have a great impact on mycotoxin production. As 

shown by Brzonkalik et al. (2011) mycotoxin formation was different in static and in shaken 

culture although the same production strain and the same medium were used. Several 

different nitrogen and carbon sources were tested but whether mycotoxin production was 

higher in static or in shaken cultivation differed with each tested C or N source. With respect 

to the basal modified Czapek-Dox medium containing glucose and ammonium/nitrate 

cultivation in a bioreactor seems to be favorable since the maintained AOH concentrations are 

~3 fold higher than in the shaking flask experiments mentioned by Brzonkalik et al. (2011) 

and the standard deviations of detected mycotoxin concentrations were lower. However, 

biomass detection during the process remained difficult. The mycelium was not dispersed 

homologuesly in the culture broth. Therefore, reliable biomass determination during sampling 

was not possible and total biomass could only be quantified at the end of the process. 

Nevertheless, glucose consumption showed a typical logistic lapse which may be used as an 
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indirect method for biomass determination as suggested for mammalian cells growing in 

packed-bed reactors (Meuwly et al., 2007). In case of Alternaria fermentations less 

comparable data exist. To the knowledge of the authors only one process in a stirred tank 

reactor was described in literature. Hellwig et al. (2002) reported the production of the new 

antibiotic altersetin. Due to structure similarities the author presumed that altersetin might be 

a derivative of TA. Furthermore, its formation was inhibited when nitrogen was restricted. 

Formation of TA during their process was mentioned but detected concentrations were not 

given. Optimization of stirrer speed and aeration rate in the bioreactor enhanced altersetin 

production considerably from 1.5 mg/L up to 25 mg/L. Bioreactor experiments do therefore 

not only provide more constant results, they offer also the possibility to study more 

parameters compared to shaking flasks, e.g. aeration. The aeration rate influences fungal 

morphology directly (Mantzouridou et al., 2002; Pfefferle et al., 2000; Stasinopolous and 

Seviour, 1992; Wecker and Onken, 1991) and fungal morphology in turn plays an important 

role in metabolism during fermentation (Cho et al., 2002; Metz and Kossen, 1997). As shown 

in this study, decreased aeration rates led to an increase of free mycelium in form of pellets or 

filaments and to higher mycotoxin concentrations. The optimal aeration rate was found to be 

0.013 vvm in combination with an agitation rate of 900 rpm. A high agitation was necessary 

in combination with low aeration rates to prevent blocking of the air sparger due to fungal 

growth. For altersetin production a higher aeration rate (0.3 vvm) combined with lower 

agitation (100 rpm) was found to be optimal, but altersetin concentrations were not given for 

lower or higher agitation rates (Hellwig et al., 2002). Aflatoxin production with Aspergillus 

flavus was optimized by testing aeration rates at a constant stirring speed of 100 rpm (Hayes 

et al., 1966). The authors detected a nearly 20 fold increase in aflatoxin production when the 

aeration was enhanced from 0.6 vvm to 0.9 vvm. A further increase to 1.2 vvm resulted in 

decreasing aflatoxin concentrations. The effect of two aeration rates (0.5 vvm and 0.05 vvm) 

on fumonisin production in Fusarium proliferatum was studied by Keller et al. (1997). The 

higher aeration with 0.5 vvm at an agitation with 500 rpm caused an increase fumonisin 

production compared to the lower aeration rate. Although the comparability between all these 

studies is limited, it can be stated that the aeration rate has a considerable impact on fungal 

metabolites production. With respect to the optimal aeration rate for mycotoxin production a 

general statement cannot be given, but all studies found aeration rate below 1.0 vvm to be 

supportive for their processes, but for each process agitation has to be taken into account. An 

enhanced stirrer speed results in an increased dispersity of gas bubbles and therefore in an 

increased oxygen transfer rate and dissolved oxygen content in the culture broth. 
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Consequently, high agitation rates enable lower aeration rates. Additionally, the type of stirrer 

influences shear forces and gas dispersity, but stirrer types were not specified in the 

abovementioned studies. 

As mentioned before, mycotoxin regulation is complex and many factors are influencing their 

formation, this includes nutritional factors. Mycotoxin production is affected by carbon and 

nitrogen metabolism mediated by global regulators like the Cys2His2 zinc finger transcription 

factors AreA (nitrogen metabolism) and CreA (carbon metabolism) and their homologues. 

Additionally, availability of precursor units for mycotoxin production may play a role (Yu 

and Keller, 2005). However, regulation mechanisms of Alternaria toxin formation are not 

known and the biosynthetic gene clusters have not been identified yet. 

Nevertheless, acetate serves as precursor for all three mycotoxins: TA is formed from 

isoleucine and acetate (Stickings, 1959; Stickings and Townsend, 1961), the polyketides AOH 

and AME develop from a head to tail condensation of one molecule acetyl-CoA and six 

molecules of malonyl-CoA followed by a subsequent cyclization (Gatenbeck and 

Hermodsson, 1965). Unsurprisingly, fermentation with acetate resulted in highest AOH 

concentration when normalized to biomass but inhibited formation of TA and AME. As 

shown in figure 2 production of TA production appears to be growth-related in contrast to the 

polyketide mycotoxins. Simply feeding of precursor units did not enhance but inhibit TA 

production indicating further regulation mechanisms. The fact that acetate allows AOH but 

not AME production indicates for an independent regulation of the polyketide synthase and 

the methyltransferase enzyme which catalyzes the methylation reaction of AOH to AME 

(Stinson and Moreau, 1986). An independent regulation of both enzymes was already 

presumed by Orvehed et al. (1988). From a biotechnological point of view the possibility to 

produce single mycotoxins is desirable because less purification steps are necessary.  

Considering the results of this study a defined process was successfully established enabling 

the elucidation of the effect of aeration rate, carbon and nitrogen sources on mycotoxin 

production. The presented process suits perfectly for further investigations of parameters 

influencing mycotoxin production and facilitates the comparability of different experiments. 
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Abstract 

Effects of carbon/nitrogen ratios on production of the mycotoxins alternariol (AOH) and 

tenuazonic acid (TA) and fungal biomass by submerged cultivation of the black mould 

Alternaria alternata DSM 12633 were investigated in shake flasks. Glucose was used as 

carbon source and its concentration was altered while nitrogen concentration was kept 

constant. Growth kinetics and mycotoxin production parameters were studied depending on 

carbon/nitrogen ratios in the range of 24-96. With increasing initial glucose concentration 

fungal biomass did increase but the maximum specific growth rate was not influenced. 

Highest titres of AOH, i.e. 1.95 mg/L ± 0.03, and TA, i.e. 22.25 mg/L ± 1.17, were obtained 

with 30 g/L glucose which corresponds to a C/N ratio of ~72. Furthermore AOH feeding 

experiments were conducted to investigate possible product inhibitions and mycotoxin 

metabolization. When smaller AOH concentrations (1 mg/L, 5 mg/L) were present mycotoxin 

production was stimulated. Higher AOH concentrations had no effect and mycotoxin yields 

were comparable to the control. 

 

Keywords:  

Alternaria alternata, mycotoxins, C/N ratio, Alternariol feeding experiments 
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1. Introduction 

Mycotoxins are harmful secondary metabolites produced by a wide variety of moulds. Black 

moulds of the genus Alternaria are able to form several mycotoxins of different chemical 

classes whereas the polyketide mycotoxins alternariol (AOH) and its methylated derivative 

alternariol monomethylether (AME) as well as the tetramic acid tenuazonic acid (TA) are best 

studied (Coombe et al., 1970; Logrieco et al., 2009; Patriarca et al., 2007). These compounds 

have been identified in food products contaminated with Alternaria species: wheat (Li and 

Yoshizawa, 2000) and other grains (Broggi et al., 2007), sunflower seeds (Nawaz et al., 1997; 

Pozzi et al., 2005), oilseed rape (Nawaz et al., 1997), pecans (Schroeder and Cole, 1976), fruit 

and fruit juices (Delgado et al., 1996; Lau et al., 2003), tomato products (Andersen and 

Frisvad, 2004; Motta and Valente Soares, 2001; Ozcelik et al., 1990) and olives (Visconti et 

al., 1986).  

While the acute toxicity of Alternaria toxins is low compared to other mycotoxins as e.g. 

aflatoxins low-level exposure over long terms can be a serious problem. AOH posses an 

oncogenic potential and was connected to an incidence of oesophageal cancer in Lixian, 

China (Dong et al., 1987). Although Alternaria toxins received increased attention over the 

last years, e.g. the multidisciplinary project “Safe organic vegetables and vegetable products 

by reducing risk factors and sources of fungal contaminants throughout the production chain: 

the carrot – Alternaria model” carried out by the European Union from 2000 – 2004, a risk 

assessment based on the current data is still not possible. In addition to the insufficient 

toxicological data not much is known about biosynthesis and regulation of the mycotoxins 

either. Hypothetical biosynthesis pathways for AOH/AME and TA have been suggested 

(Gatenbeck and Hermodsson, 1965; Gatenbeck and Sierankiewicz, 1973; Hiltunen and 

Söderhäll, 1992; Stinson, 1985; Light, 1970) but the genes are not known. Environmental 

factors have a great impact on Alternaria toxin production. Mycotoxin production varies with 

fungal strain, substrate and other growth conditions. While TA production seems to be 

connected to fungal growth (Brzonkalik et al., 2011), production of AOH and AME is not 

coupled with fungal growth and starts in the late exponential phase (Söderhäll et al., 1978). 

As shown by Magan et al. (1984), Oviedo et al. (2010) and Pose et al. (2010) temperature and 

water activity are important factors influencing AOH/AME and TA production in Alternaria 

alternata. Furthermore light exert a great influence on AOH production and can reduce 

mycotoxin formation significantly compared to yields obtained in the dark (Häggblom and 

Niehaus, 1986; Häggblom and Unestam, 1979; Söderhäll et al., 1978). Brzonkalik et al. 

(2011) studied the influence of different carbon and nitrogen sources in a semi-synthetic 
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medium in static and shaking culture on mycotoxin production in A. alternata. They revealed 

that AOH and AME production is regulated by nitrogen and starts after total nitrogen 

consumption. The influence of the nitrogen source is higher than of the carbon source. Choice 

of cultivation condition, carbon and nitrogen source can change mycotoxin composition and 

determines mycotoxin amount.  

The best way to avoid health risks due to ingestion of contaminated food is the prevention of 

food spoilage by Alternaria toxins. Therefore, profound knowledge about mycotoxin 

formation is absolutely essential. Detailed information of influencing factors and regulatory 

mechanisms may additionally be helpful for enhanced production of mycotoxin for further 

toxicological studies. The present paper reports on mycotoxin production and biomass 

formation of A. alternata DSM 12633 in a semi-synthetic medium. By changing glucose 

concentration while keeping the amount of nitrogen constant the effects of C:N ratio on 

mycotoxin formation were observed. Furthermore feeding experiments with AOH were 

performed to elucidate possible feed-back inhibition mechanisms or degradation processes. 

 

 

 

2. Materials and methods 

2.1 Organism and cultivation 

A. alternata DSM 12633 was obtained from the DSMZ culture collection (“Deutsche 

Sammlung von Mikroorganismen und Zellkulturen”, Braunschweig, Germany) and was 

routinely grown on PDA (Roth, Germany). Conidia were harvested with 25 % glycerol from 

plates that were incubated for 7 days at 28 °C and filtered through Miracloth (Calbiochem). 

Conidia were counted and diluted to 106 conidia per ml. Aliquots were stored at -80 °C.  

For all experiments modified Czapek-Dox medium (modified after Gatenbeck and 

Hermodsson, 1965) at an initial pH of 5.5 was used: 0.06 g/L NH4Cl, 0.25 g/L NaNO3, 1 g/L 

KH2PO4, 0.5 g/L MgSO4 x 7 H2O, 0.25 g/L NaCl, 0.25 g/L KCl, 0.01 g/L FeSO4 x 7 H2O, 

0.01 g/L ZnSO4 x 7 H2O, 1 g/L yeast extract. The used yeast extract contained 11 % (w/w) 

nitrogen according to the manufacturer (Becton, Dickinson and Company). Glucose was 

added separately after autoclaving in final concentrations of 10 g/L, 20 g/L, 30 g/L and 40 g/L 

which corresponds to a C:N ratio of approx. 24, 48, 72 and 96, respectively. 100 ml shaking 

flasks with baffles were filled with 20 ml of the respective medium and inoculated with 1.7 x 

104 conidia. Mycotoxin production, biomass formation, glucose and nitrogen consumption 
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were observed over 14 days. Shaking flasks were incubated at 28 °C on a rotary shaker at 140 

rpm in the dark. Samples were taken after 3, 5, 7, 10, 12 and 14 days in triplicates. For each 

sample an individual flask was prepared which was harvested completely.  

For the feeding experiment a stock solution of 400 mg/L AOH in methanol was prepared. 

AOH was added to final concentrations of 1 mg/L (50 µl stock solution), 5 mg/L (250 µl 

stock solution) and 10 mg/L (500 µl stock solution) to the medium. Cultivation conditions 

remained the same but samples were taken only after 7 and 14 days in triplicates. 

 

2.2 Analytical methods 

2.2.1 Biomass dry weight, glucose and nitrogen concentration 

At a given sampling time fungal mycelium was completely removed from the shaking flask 

and transferred to a pre-weight tube. Biomass was dried in an oven at 60 °C and its weight 

was determined on a standard balance.  

Glucose concentration was monitored with the photometrical anthron assay (Pons et al., 

1981). 

For the determination of ammonium and nitrate the photometrical assays “Ammonium-Test” 

(Spectroquant®, Merck, Germany) and “Nitrat-Test” (Spectroquant®, Merck, Germany) were 

used.  

 

2.2.2 Mycotoxins 

A 10 ml aliquot of cell-free culture broth was acidified with 10 �l conc. HCl (32%, 10.32 M) 

and extracted twice with 10 ml ethyl acetate. At each extraction step the mixture was 

vigorously vortexed and centrifuged at 4,600 g for 5 min. The ethyl acetate supernatants from 

both extraction steps were combined and evaporated to dryness in a vacuum centrifuge. The 

residue was redissolved in 200 �l methanol (HPLC grade) and used for HPLC analyses. 

Standards of AOH, AME and TA were purchased from Sigma-Aldrich (Germany). 

Mycotoxin standard solutions of 0.2 mM (AOH), 0.1 mM (AME) and 10 mM (TA) in 

methanol were diluted with methanol and used for calibration. The analysis was performed 

with a standard HPLC device (Agilent 1100 Series, Agilent, Germany) equipped with a 25 cm  

reversed phase column (Luna 5 �m C18(2), Phenomenex, Germany) at 30 °C. Mobile phase 

solution was methanol/0.1 M NaH2PO4 pH 3.2 (2:1) at a flow rate of 0.7 ml/min (according to 

Shephard et al., 1991). Mycotoxins were monitored with a UV detector at 280 nm. Retention 

times were 5.3±0.1 min for TA, 10.2±0.1 min for AOH and 23.3 ±0.1 min for AME. 
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To quantify the mycotoxin concentration in the culture broth the peak area in each sample was 

plotted against the standard curve.  

 

2.2.3 Data analysis 

Glucose consumption and biomass production were fitted using a logistic equation with four 

parameters in a scientific data analysis and graphing software (Sigma Plot 9.0, Systat, San 

Jose, USA). The used equation was: 

���� = 	�� +	
	


��
�

�
��

   (1) 

The four parameters are the following: y0 indicates the minimum concentration of the glucose 

or biomass; a indicates the maximum glucose/biomass concentration; x0 indicates the process 

time when half of the glucose amount is consumed or half of the maximum biomass 

concentration is produced; b is a shape parameter and difficult to explain biologically 

(Erkmen and Alben, 2002). Derivation of the fitting was used for the determination of 

absolute consumption and production rates. 

 

 

3. Results and discussion 

3.1 Growth kinetics 

Carbohydrates are not only important as energy and carbon source for cell growth; they can 

even influence secondary metabolite profiles. As shown previously by Brzonkalik et al. 

(2011) glucose proved to be an appropriate carbon source for elucidation of AOH and TA 

production in submerged culture whereas other carbon sources seemed to inhibit mycotoxin 

production. For the determination of the optimal C:N ratio the initial glucose content was 

varied while the quantity of nitrogen in the medium was held constant (167.8 mg/L). In all 

experiments nitrogen was the limiting nutrient and was consumed after 5 days (data not 

shown). The time point of total nitrogen consumption and the beginning of nitrogen limitation 

was indicated as a red line in all figures. Figure 1 displays glucose consumption and fungal 

growth expressed in dry biomass. 
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Figure 1: Glucose consumption courses (A) and fungal growth
of A. alternata depending on initial glucose concentrations. 
independent samples ± standard deviation.
1. The red dotted line represents total consumption of nitrogen and the beginning of nitrogen 
limitation. 

 

With an initial glucose concentration of 10 g/L gluc

days. Therefore, biomass increased

It can be assumed that glucose given at an initial concentration of 10 g/L was also a limiting 

factor in these experiments. 

concentration approximately 20 g/L glucose were consumed over the observed 14 days

glucose consumption curves were quite similar

phase can be located between day 3 and 5. 

growth phase was reached and only slight increases in biomass could be observed. 

biomass yields (11.62 g/L) were achieved with initial glucose concentration of 40 g/L

days. Interestingly, further biomass increase was noticed after 5 days for initial glucose 

concentrations ≥20 g/L although nitrogen was depleted. One possible explanation may be 

some sort of recycling of nitrogen containing components of older hyphae. Fungal

occurs typically at the tip and older parts of the mycelium are used as storage compartments 

with little cell organelles and metabolic activity. 

glucose concentration on fungal growth (by maximum dry weight)
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Glucose consumption courses (A) and fungal growth expressed
depending on initial glucose concentrations. All results are mean of three 

independent samples ± standard deviation. The lines are results of the fittings according to Eq. 
1. The red dotted line represents total consumption of nitrogen and the beginning of nitrogen 

With an initial glucose concentration of 10 g/L glucose was completely consumed after 5 

days. Therefore, biomass increased only until day 7 to 5.2 g/L and kept constant from then on. 

It can be assumed that glucose given at an initial concentration of 10 g/L was also a limiting 

factor in these experiments. In all other experiments independent on initial glucose 

concentration approximately 20 g/L glucose were consumed over the observed 14 days

glucose consumption curves were quite similar. According to figure 1B the 

tween day 3 and 5. After nitrogen consumption at day 7 the stationary 

growth phase was reached and only slight increases in biomass could be observed. 

g/L) were achieved with initial glucose concentration of 40 g/L

Interestingly, further biomass increase was noticed after 5 days for initial glucose 

20 g/L although nitrogen was depleted. One possible explanation may be 

some sort of recycling of nitrogen containing components of older hyphae. Fungal

occurs typically at the tip and older parts of the mycelium are used as storage compartments 

with little cell organelles and metabolic activity. Table 1 summarizes the effect of initial 

glucose concentration on fungal growth (by maximum dry weight). 
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expressed as dry biomass (B) 
All results are mean of three 

The lines are results of the fittings according to Eq. 
1. The red dotted line represents total consumption of nitrogen and the beginning of nitrogen 

ose was completely consumed after 5 

and kept constant from then on. 

It can be assumed that glucose given at an initial concentration of 10 g/L was also a limiting 

In all other experiments independent on initial glucose 

concentration approximately 20 g/L glucose were consumed over the observed 14 days and 

. According to figure 1B the logistic growth 

After nitrogen consumption at day 7 the stationary 

growth phase was reached and only slight increases in biomass could be observed. Highest 

g/L) were achieved with initial glucose concentration of 40 g/L after 14 

Interestingly, further biomass increase was noticed after 5 days for initial glucose 

20 g/L although nitrogen was depleted. One possible explanation may be 

some sort of recycling of nitrogen containing components of older hyphae. Fungal growth 

occurs typically at the tip and older parts of the mycelium are used as storage compartments 

Table 1 summarizes the effect of initial 
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Table 1: Effects of initial glucose concentrations / different C:N ratios on fungal growth of A. 
alternata  

Parameter Initial glucose concentration [g/L] (C:N ratio)    
 10 (24) 20 (48) 30 (72)  40 (96) 

Maximum DWa [g/L] 5.20 ± 0.13 8.73 ± 0.39 10.02 ± 0.48 11.62 ±1.28 

µmax [h
-1]b 0.045 0.039 0.032 0.029 

max. growth 
rate rx [g/h]b 0.095 0.093 0.079 0.082 

average growth 0.74 0.62 0.72 0.83 
rate [g/d] 

YX/S [g/g] 0.52 0.44 0.45 0.64  

All results refer to day 14 excepting the results for 10 g/L glucose which refer to day 7.  
a Results are mean of three replicates ± standard deviation.  
b obtained from the fit according Eq. 1. 
DW: dry weight of biomass.  
 
 

Independent on the glucose concentration the maximum specific growth rate µmax and the 

maximum growth rate are almost the same in all experiments and were determined to be 

0.029 – 0.045 h-1 and 0.079 – 0.095 g/h, respectively. To the knowledge of the authors these 

parameters have not been determined before for Alternaria. Comparison of specific growth 

rates of other filamentous fungi proved to be difficult as the growth rate varies considerably 

with culture conditions and medium composition. As shown for Monascus purpureus it can 

be enhanced from 0.011 h-1 to 0.073 h-1 by lowering the culture pH from 6.5 to 4.0 in nitrogen 

limited medium (Chen and Johns, 1993). The growth rate of Aspergillus terreus in a defined 

medium under nitrogen limited condition was determined to be 0.052 by Hajjaj et al. (2001). 

Therefore, the determined growth rate for A. alternata is low but in range of the other cited 

data. In other studies the average growth rate is used instead of the specific growth rate. Mao 

et al. (2005) observed an average growth rate of 0.93 d-1 – 1.06 d-1 in submerged culture of 

Cordyceps militaris when initial glucose concentration was higher than 25 g/L. As with 

specific growth rate the average growth rate for A. alternata is low but in the same range 

when differences in medium composition are considered. However, growth yield on glucose 

(0.44 g/g – 0.64 g/g) appeared to be very high which suggest a high conversion of glucose to 

biomass. In comparison the growth yield on glucose for A. terreus in a complex medium was 

0.52 g/g and in a defined medium 0.25 g/g (Hajjaj et al., 2001). In all experiments nitrogen 

was the limiting compound; therefore, biomass increase ought to be limited by nitrogen and 
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not depending on initial glucose concentration. However, the presented results suggest that 

YX/S is slightly depending on glucose concentration. The high biomass/substrate coefficient 

for 40 g/L glucose may partly be explained by measurement uncertainties illustrated by the 

high standard deviation of the last biomass value. But the coefficient remains high even if the 

data of day 12 is used for calculation (YX/S (12d): 0.62). 

 

 

3.2 Mycotoxin formation 

As for the growth kinetics mycotoxin production was observed depending on different C:N 

ratios. Figures 2 and 3 show the production courses of AOH and TA over 14 days as well as 

the highest AOH yields on day 7. 

AOH was initially detected at day 5 when nitrogen was depleted. A maximum AOH 

concentration can be observed at day 7. These maximum was further compared in figure 2B. 

For the initial glucose concentrations of 10 g/L, 20 g/L and 40 g/L nearly the same AOH 

concentrations were detected: 0.25 mg/L ± 0.003, 0.12 mgL/ ± 0.07 and 0.33 mg/L ± 0.29, 

respectively. AOH production was noticeably enhanced at an initial glucose concentration of 

30 g/L, 1.95 mg/L ± 0.03 could be achieved. The detected AOH amount decreased at day 10 

and 12 and increased slightly at day 14. 
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Figure 2: Alternariol (AOH) production of A. alternata depending on different initial glucose 
concentrations. Time courses of mycotoxin production are given over 14 days (A) and highest 
mycotoxin concentrations at day 7 were compared (B). All results are mean of 3 independent 
samples ± standard deviation. The dotted red line indicates nitrogen depletion. 
 
 

The noticeable increase in AOH production at 30 g/L initial glucose concentration is very 

interesting from the biotechnological and physiological point of view. Nevertheless, due to 

the sampling every second day it may be possible that the production peaks of the other 

glucose concentrations were not recorded because of shifted production maxima to day 6 or 

day 8. But even at day 10 when AOH concentration dropped considerably for all glucose 

concentrations the highest concentrations can be detected for 30 g/L initial glucose 

A 

B 
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concentration. Therefore, this experiment is an

has to be confirmed in a bioreactor system. In this system the production phase is prolonged 

and the production curve does not suddenly drop as in shaking flask cultivations. 

for the sudden decrease of AOH is not clear, but was confirmed in several other shaking flask 

experiments. Since it is not recorded for bioreactor cultivations parameters which are not 

controlled during shaking flask cultivations come into question, e.g. pH and aeration.

 

Figure 3: Tenuazonic acid (TA) production of 
glucose concentrations. Time courses of
are mean of 3 independent samples ± standard deviation.
nitrogen depletion. 
 

TA was formed in the early growth phase as it was already detected at day 3. 

concentration courses followed biomass increase.

fluctuations all concentration time courses 

to day 7 and stayed almost constant like the dry weight curve. As with AOH production the 

initial glucose concentration of 30 g/L seemed to favor TA production, but the enhancement 

appeared not to be significant

TA concentrations were detected for 10 g/L glucose at day 12 with 16.95

g/L at day 7 with 16.18 mg/L ± 0.34, for 30 g/L glucose at day 14 with 22.25 mg/L ± 1.17 and 
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concentration. Therefore, this experiment is an interesting hint for further experiments but it 

has to be confirmed in a bioreactor system. In this system the production phase is prolonged 

and the production curve does not suddenly drop as in shaking flask cultivations. 

se of AOH is not clear, but was confirmed in several other shaking flask 

experiments. Since it is not recorded for bioreactor cultivations parameters which are not 

controlled during shaking flask cultivations come into question, e.g. pH and aeration.

Tenuazonic acid (TA) production of A. alternata depending on different initial 
glucose concentrations. Time courses of TA concentrations are given over 14 days. All results 
are mean of 3 independent samples ± standard deviation. The dotted red li

TA was formed in the early growth phase as it was already detected at day 3. 

followed biomass increase. Although measured TA data had 

concentration time courses were in the same range. TA production

almost constant like the dry weight curve. As with AOH production the 

initial glucose concentration of 30 g/L seemed to favor TA production, but the enhancement 

appeared not to be significant and may be explained by higher biomass production

were detected for 10 g/L glucose at day 12 with 16.95

g/L at day 7 with 16.18 mg/L ± 0.34, for 30 g/L glucose at day 14 with 22.25 mg/L ± 1.17 and 
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interesting hint for further experiments but it 

has to be confirmed in a bioreactor system. In this system the production phase is prolonged 

and the production curve does not suddenly drop as in shaking flask cultivations. The reason 

se of AOH is not clear, but was confirmed in several other shaking flask 

experiments. Since it is not recorded for bioreactor cultivations parameters which are not 

controlled during shaking flask cultivations come into question, e.g. pH and aeration. 

 
depending on different initial 

are given over 14 days. All results 
The dotted red line indicates 

TA was formed in the early growth phase as it was already detected at day 3. TA 

Although measured TA data had 

range. TA production increased 

almost constant like the dry weight curve. As with AOH production the 

initial glucose concentration of 30 g/L seemed to favor TA production, but the enhancement 

plained by higher biomass production. Highest 

were detected for 10 g/L glucose at day 12 with 16.95 mg/L ± 0.78, for 20 

g/L at day 7 with 16.18 mg/L ± 0.34, for 30 g/L glucose at day 14 with 22.25 mg/L ± 1.17 and 
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for 40 g/L glucose at day 10 with 18.97 mg/L ± 2.58. Table 2 summarizes the effect of initial 

glucose concentrations on mycotoxin formation. 

Table 2: Effects of initial glucose concentrations / different C:N ratios on mycotoxin 
production of A. alternata 

Parameter Initial glucose concentration [g/L] (C:N ratio)    
 10 (24) 20 (48) 30 (72) 40 (96) 

Max. AOH titre  
[mg/L] (day)a 0.25 ± 0.003 (7) 0.34 ± 0.07 (14) 1.95 ± 0.03 (7) 0.33 ± 0.29 (7) 

AOH productivity  
[mg/(L*d)] 0.036 0.024 0.279 0.047 

AOH yield on  
DW [mg/g] 0.048 0.038 0.237 0.037 

Max. TA titre 
[mg/L] (day)a 16.95 ± 0.78 (12) 16.18 ± 0.34 (7) 22.25 ± 1.17 (14) 18.97 ±2.58 (10) 

TA productivity 
[mg/(L*d)] 1.41 2.31 1.59 1.90 

TA yield on 
DW [mg/g] 3.51 2.18 2.22 1.83 
a Results are mean of three replicates ± standard deviation.  
DW: dry weight of biomass; AOH: alternariol; TA: tenuazonic acid. 
 

The comparison of the concentration curves of AOH and TA implies different regulatory 

mechanisms for both mycotoxins. Although both mycotoxins are originated from acetyl-CoA 

(Stinson, 1985; Stickings and Townsend, 1961) TA was already formed at an early growth 

stage whereas AOH was first detected after nitrogen depletion. Therefore AOH production 

seemed to be associated with the stationary growth phase due to nitrogen limitation when 

acetyl-CoA units from the citrate cycle can be used for polyketide formation. For AOH 

formation, its highest titre, productivity and yield related to biomass were obtained with 30 

g/L glucose or an C:N ration of approx. 72. Higher or lower initial glucose concentrations 

were unfavorable. 

TA is formed from acetyl-CoA and the amino acid isoleucine (Stickings and Townsend, 

1961). Therefore the concentration curves for biomass and TA production resemble each 

other and TA production will stop under nitrogen limited conditions. Absolute TA titres 

enhanced with increasing biomass, but when related to biomass the highest yield of 3.51 mg/g 

was achieved with an initial glucose concentration of 10 g/L and decreased with higher 

glucose concentrations and biomass production. In contrast to AOH TA production did not 
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show a clear maximum and was not degraded or transformed to other metabolites when 

nitrogen was depleted although it could be used as nitrogen source. The reason for the drop is 

not clear since in bioreactor cultivations this decrease was not observed (Brzonkalik et al., 

2011). Shake flask experiments are very helpful for preselection of promising cultivation 

parameters and can provide first tendencies but they are suitable only for preliminary 

investigations because conditions in shake flask are only loosely defined and neither the pH 

value nor dissolved oxygen concentration are monitored and controlled and standard 

deviations are usually high. Therefore fully controlled cultivations in a bioreactor are 

currently performed in our lab.  

 

 

3.3 Alternariol feeding experiments 

For the elucidation of AOH degradation and possible feed-back inhibition of AOH production 

feeding experiment were performed. Therefore 3 different AOH amounts (1 mg/L, 5 mg/L 

and 10 mg/L final concentration) were added at the beginning of the cultivation with an initial 

glucose concentration of 10 g/L. Cultures were extracted after 7 and 14 days and mycotoxin 

yields were determined (table 3). 

Table 3: Mycotoxin yields of A. alternata after feeding with different amounts of alternariol 
(AOH) 

Added AOH AOH [mg/L] AME [mg/L] TA [mg/L] 
[mg/L] day 0 day 7 day 14 day 7 day 14 day 7 day 14 

 0 0.25 ± 0.003 n.d. n.d. n.d 15.34 ± 1.91 13.97 ±3.37 

 1 3.93 ± 0.12 1.25 ± 0.02 1.48 ± 0.12 0.27 ± 0.04 62.9 ± 0.62 52.07 ± 0.07 

 5 10.85 ± 0.47 4.79 ± 1.13 7.93 ± 1.34 3.42 ± 2.62 60.9 ± 0.01 55.97 ± 0.03 

 10 0.74 ± 0.41 0.56 ± 0.04 n.d n.d 19.03 ± 0.02 17.07 ± 0.01 

Results are mean of 3 independent experiments ± standard deviation. AOH stock solution was 
prepared in methanol and was added to 20 ml modified Czapek-Dox medium to the indicated 
final concentration before inoculation.  
AOH: alternariol; AME: alternariol monomethylether; TA: tenuazonic acid; n.d.: below 
detection limit. 

 

The addition of AOH in small amounts of 1 mg/L or 5 mg/L final concentration seemed to 

stimulate the AOH production of A. alternata. These amounts of AOH in the culture broth are 

not uncommon since ~5 mg/L AOH can be produced in a bioreactor with modified Czapek-
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Dox medium containing 10 g/L glucose as shown previously (Brzonkalik et al., 2011). 

Furthermore AME production was initiated which was not observed in cultures without AOH 

addition and TA production was enhanced additionally. The addition of 1 mg/L AOH resulted 

in the detection of 3.93 mg/L AOH in the culture broth after 7 days which is a fourfold 

increase compared to the added concentration. A TA concentration of 62.9 mg/L was 

measured which is a fourfold increase compared to the control culture and the detected AME 

concentration was 1.48 mg/L. All mycotoxin concentrations decreased at day 14; The AOH 

and AME amounts were reduced remarkably to 32 % (1.25 mg/L) and 18 % (0.27 mg/L), 

respectively. TA concentration was slightly lowered to 83 % (52.07 mg/L). When 5 mg/L 

AOH were added AOH production was enhanced as well to 10.85 mg/L at day 7 which 

corresponds to a twofold enhancement compared to the added concentration.  However, the 

AME production was improved considerably to a concentration of 7.93 mg/L at day 7. TA 

concentration was not further increased and was 60.9 mg/L. All mycotoxin concentrations 

decreased at day 14 but were only reduced to 44 % of AOH (4.79 mg/L) and 43 % of AME 

(3.42 mg/L). TA amount was kept almost constant. The addition of 10 mg/L AOH did not 

result in an increase of mycotoxin production. AOH and TA amounts were comparable to the 

control cultivation and AME was not detected. 

The indicated data did not imply a feed-back inhibition but suggest a self-enhancement of 

AOH production up to a certain concentration. Interestingly, the production of the other 

mycotoxins AME and TA were also enhanced. Nevertheless, mycotoxin titres dropped at day 

14 as well as in the other experiments shown in section 3.2. This phenomenon may be 

explained by the experiments conducted by Jonsson et al. (1987). They observed the 

metabolization of labeled AOH and AME in A. alternata cultures and suggested a possible 

involvement of a peroxidase in the turnover. However, the authors of the this work suggest 

another possibility when the hypothetical production pathway of AOH (Stinson, 1985) is 

considered. AOH and AME are not endproducts of this pathway; they are further modified 

and converted to other mycotoxins e.g. altenuene. Therefore, AOH and AME have not to be 

degraded necessarily but converted to metabolites which could not be identified with the used 

analytical methods. The involved enzymes may be stimulated by certain concentrations of 

precursor molecules like AOH and AME. This hypothesis cannot be proved until the gene 

cluster is identified. Nevertheless, metabolization seems to be dependent on culture conditions 

since decrease in mycotoxin concentrations was not observed in bioreactor experiments (data 

not shown). 
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4. Concluding remarks 

In this work the influence of different C:N ratios on biomass and mycotoxin production of A. 

alternata was demonstrated. Biomass production increased with higher initial glucose 

concentrations but growth kinetic parameters stayed almost constant. AOH production 

showed a clear maximum at day 7 and decreased thereafter. Highest AOH concentrations 

(1.95 mg/L) were obtained with an initial glucose concentration of 30 g/L. The curve shape of 

TA production mimicked the biomass curve. TA concentration stayed constant when nitrogen 

was depleted. Highest TA concentrations of 22.25 mg/L were obtained with 30 g/L initial 

glucose concentration. Feeding experiments revealed that feeding of AOH up to a certain 

concentration can enhance the production of all monitored mycotoxins. The fundamental data 

obtained in this work may be useful for deeper understanding of mycotoxin regulation in A. 

alternata and helps for further optimization of parameters for Alternaria toxin production in a 

bioreactor. 
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Abstract 

Alternaria alternata produces the polyketide mycotoxin alternariol (AOH) and alterarniol 

monomethylether (AME) when grown in darkness. The biosynthesis of the mycotoxins is 

possibly a multi-enzyme process, but their genes are not known. As shown previously, AME 

is formed by methylation of AOH mediated by an AOH-O-methyltransferase. The present 

work describes the identification and amplification of putative O-methyltransferase of A. 

alternata in order to identify the AOH-O-methyltransferase. By comparison of fungal O-

methyltransferase proteins three conserved domains were determined and used for primer 

design. Four O-methyltransferases fragments were amplified and one complete gene was 

overexpressed. In a second approach the enzyme was characterized in A. alternata crude 

extract. Salt stability and pH tolerance range was determined. In agreement with other studies 

the enzyme tolerated 1 M of different salts and its pH optimum was around pH 7. For 

purification several buffers proved to be appropriate, but highest enzyme activity was detected 

in phosphate-buffer. First purification steps were the precipitation of the protein with 40 % 

(NH4)2SO4 and the application to DEAE-Sepharose anion-exchange column. Determination 

of the protein and subsequently of the gene sequence will be an important step for the 

elucidation of the whole biosynthesis gene cluster. 

 

Keywords: 

Alternaria alternata, mycotoxin biosynthesis, alternariol-O-methyltransferase 
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1. Introduction 

Mycotoxins are harmful secondary metabolites of small molecular weight. They are produced 

by several mold genera including Fusarium, Aspergillus, Penicillium and Alternaria. These 

metabolites contaminate foods and feeds and can therefore be ingested by humans and 

animals. The consumption of contaminated food is related to several acute and chronic health 

disorders like induction of cancer, mutagenicity, urogenital, vascular, kidney and nervous 

disorders. Besides the health risk significant economic losses due to mycotoxin contamination 

have to be taken into account. According to FAO estimations global losses of foodstuffs are in 

the range of 1000 million tons per year 

(http://www.fao.org/ag/agn/agns/chemicals_mycotoxins_en.asp).  

The best way to overcome both health risks and economical losses is the prevention of 

mycotoxin contamination in foods and feeds. Therefore, a comprehensive knowledge of the 

regulation of biosynthesis on both genetic and physiological level is necessary.  

Compared to other mycotoxins knowledge about Alternaria toxins is limited. Although 

Alternaria mycotoxins can be found in many foodstuffs like wheat (Li and Yoshizawa, 2000), 

sunflower seeds (Nawaz et al., 1997; Pozzi et al., 2005), oilseed rape (Nawaz et al., 1997), 

pecans (Schroeder and Cole, 1976), fruits and fruit juices (Delgado et al., 1996; Lau et al., 

2003), tomato products (Andersen and Frisvad, 2004; Motta and Valente Soares, 2001; 

Ozcelik et al., 1990) and other grains (Broggi et al., 2007; Scott, 2001), and are connected to 

certain health disorders like the suggested connection to esophageal cancer in China (Dong et 

al., 1987), toxicity data relevant for hazard characterization are not available (Ostry, 2008). 

According to the German Federal Institute of Risk Assesment (Bundesinstitut für 

Risikobewertung BfR) in 2003 a risk assessment of Alternaria toxins is not possible based on 

the current data.  

Alternaria alternata produces several different mycotoxins whereas the polyketide toxins 

alternariol (AOH) and alternariol monomethyl ether (AME) and the tetramic acid tenuazonic 

acid (TA) are best studied (Coombe et al., 1970; Montemurro and Visconti, 1992; Pero et al., 

1973; Rosett et al., 1957; Visconti et al., 1986). The formation of Alternaria toxins is 

influenced by abiotic and nutritional factors. The production of the polyketide toxins AOH 

and AME is like other secondary metabolites not linked to fungal growth and is initiated in 

the late exponential growth phase (Söderhäll et al., 1978). In contrast to this, the formation of 

TA seems to be coupled to fungal growth and is similar to primary metabolites (Brzonkalik et 

al., 2011). The influence of water activity and temperature on mycotoxin production of 

different A. alternata strains grown on several media was extensively studied (Pose et al., 
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2010; Magan et al., 1984; Magan and Lacey, 1984; Hasan, 1995) and was shown to be very 

important. Light is a further factor which influences mycotoxin production. Light inhibits the 

formation of AOH and AME as shown by Söderhäll et al. (1978) and Häggblom and Niehaus 

(1986). Like other mycotoxins AOH and AME production is triggered by nitrogen starvation 

(Brzonkalik et al., 2011).  

The biosynthetic pathways of Alternaria toxins are still hypothetical since the genes are not 

known. Although the genome of A. alternata is sequenced, it is not annotated and not 

available to the public. However, the genome of A. brassicicola, a close relative to A. 

alternata, is fully sequenced and annotated (http://genome.jgi-

psf.org/Altbr1/Altbr1.home.html). Furthermore, A. brassicicola is also able to produce TA, 

AOH and AME and contains therefore the respective biosynthetic genes. 

The tetramic acid TA is biosynthetically derived from L-isoleucine and acetate (Stickings, 

1959; Stickings and Townsend, 1961). Gatenbeck and Sierankiewicz (1973) demonstrated in 

their experiments that the initial step of TA formation is N-aceto-acetylation of L-isoleucine 

followed by the formation of the five-membered ring. AOH is thought to be formed by a 

polyketide synthetase (Light, 1970) and probably subsequently methylated to the methylether 

AME mediated by the S-adenosylmethionine (SAM) dependent AOH-O-methyltransferase 

(Stinson and Moreau, 1986). Further derivatives like altenuene may be built by further 

hydroxylations, oxidations and reductions (Stinson, 1985).  

As the genes for fungal secondary metabolite production are usually clustered (Keller and 

Hohn, 1997), the identification of the biosynthetic gene cluster for AOH (and its derivatives) 

production can be essentially promoted by the identification of a single gene of this cluster. 

After the identification of one gene of the cluster other genes can easily be isolated by PCR 

based methods, e.g. primer walking. This work focuses therefore on the characterization and 

partial purification of the (SAM) dependent AOH-O-methyltransferase because some basic 

studies were conducted previously by Stinson and Moreau (1986), Orvehed et al. (1988) and 

Hiltunen and Söderhäll (1992). Stinson and Moreau (1986) showed in their study the SAM 

dependency of the methyltransferase and that the enzyme is located in the cytosol. It did not 

show any activity towards structural similar compounds. A partial purification by Hiltunen 

and Söderhäll (1992) resulted in the determination of the molecular mass of 43 kDa. 

Consequent kinetic studies revealed a Km (SAM) of 110 µM at 15 and 30 µM AOH. The 

inhibition constant Ki for the competitor SAH was 120 µM. The apparent Km (AOH) was 1.7 

µM at 0.8 mM SAM. AME was not found to inhibit the reaction (Hiltunen and Söderhall, 

1992).  
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The aim of the present work was to enhance the knowledge about the AOH-O-

methyltransferase by identification of putative O-methyltransferases in the genome of A. 

alternata and by purification of the AOH-O-methyltransferase to throw light in the 

biosynthesis of AOH and help to understand the important question of regulation of 

mycotoxin production. 

 

 

2. Material and Methods 

2.1 Strain and Media 

Alternaria alternata DSM 12633 was obtained from DSMZ culture collection (“Deutsche 

Sammlung von Mikroorganismen und Zellkulturen“, Braunschweig, Germany). All cultures 

of A. alternata were routinely grown on PDA (Roth, Germany). Conidia were harvested from 

plates that were incubated 7 days at 28°C with 25 % glycerol and filtered through Miracloth 

(Calbiochem). Conidia were counted in a Thoma counting chamber and diluted to a 

concentration of 1*106 condia per ml. Aliquots were stored at -80°C. 

For the extraction of DNA, RNA and proteins A. alternata was cultured in liquid rice-medium 

according to Misra and Sinha (1979). 40 g/L of milled rice were dissolved in deionized water 

and autoclaved. The starch containing supernatant was transferred to a fresh bottle and 30 g/L 

glucose and 1 g/L yeast extract were added. Deionized water was filled up to the final volume 

and the medium was autoclaved. 20 ml of the liquid medium was aliquoted in standard Petri 

dishes and inoculated with 1*105 conidia. Plates were incubated in the dark at 28°C for 3 days 

(DNA extraction) or 6 days (protein and RNA isolation). 

 

2.2 Molecular biological methods 

2.2.1 DNA/RNA extraction 

A. alternata was grown for 3 days at 28 °C on liquid rice-medium in surface culture. The 

mycelium was harvested, washed in deionized water, blotted dry between filter papers and 

immediately ground to a fine powder in liquid nitrogen. Approximately 100 mg of the powder 

were transferred to a 1.5 ml reaction tube and 600 µl of lysis puffer (2 % SDS, 10 mM 

Tris/HCl pH 8.0, 0.1 M NaCl, 2.5 mM EDTA pH 8.0) were added. For cell disruption the 

suspension was mixed vigorously, frozen in liquid nitrogen for 30 sec and mixed again for 30 

sec. The procedure was repeated several times. The sample was thawed at 60 °C.  DNA was 
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isolated by phenol/chloroform extraction and a subsequent isopropanol precipitation over 

night at 4 °C.  

For the RNA isolation A. alternata was grown for 6 days at 28 °C on liquid rice-medium in 

surface culture in the dark. Under these conditions the AOH-O-methyltransferase gene is 

expressed and the corresponding protein is active. As for DNA extraction the mycelium was 

harvested, washed, blotted dry and ground to a fine powder in liquid nitrogen. The RNA 

extraction was conducted with the NucleoSpin® RNA Plant kit according to the manufacturer 

(Macherey & Nagel, Germany). 

 

2.2.2 PCR methods and primer 

All PCR experiments were conducted with DreamTaqTM Green DNA Polymerase (Fermentas, 

Germany) with the supplied (NH4)2SO4 buffer containing 2 mM MgCl2 (final concentration) 

according to the manufacturer. For primer design for the amplification of putative SAM 

dependent O-methyltransferases of A. alternata the published genome of the close relative A. 

brassicicola (JGI – DOE Joint Genome Institute, http://genome.jgi-

psf.org/Altbr1/Altbr1.home.html) was consulted and conserved domains were identified by 

protein alignments with the free software BioEdit 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html). Table 1 gives the used primer pairs with the 

obtained fragment length and the optimal annealing temperatures. 

Table 1: Primers used for amplification of gene fragments of putative SAM-dependent O-
methyltransferases in A. alternata.  

Primer Sequence (5´-3´) An. Temp. Fragment  

Mt6for TTC CTT GTC GAC GTT GGT GGC TCT GG 48 °C 269 bp 
Mt6rev CAT GGC GGG CAC GAT TGC CTT GAG AAT 

Mt5for GAG ACC TAC TTY GAY TAY ATG 48 °C 524 bp 
Mt5rev RTT CAT CAT YTG CCA RTC CAT 

Mt8for GAR CAR CCN TGG GAY ACN ATG CAR 50 °C 427 bp 
Mt8rev RTT RTC YTG NGG YTG YTT RTA 

Mt037for MGN AAY CAY AAR ATG AGC TGG 48 °c 443 bp 
Mt037rev CAT NCC ACT NGT RCA RTT CAT 
 
Wobble bases: M = A or C; Y = C or T; R = A or G; N= A, T, C or G. An. Temp: annealing 
temperature. 
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The full-length genomic sequence of the putative methyltransferase Mt6 was obtained by 

using 2 step thermal asymmetric interlaced (TAIL)-PCR according to Liu and Whittier (1995) 

and Arie et al. (2000). Two arbitrary degenerate primers (AP1 and AP2) were each combined 

with a specific primer generated from the obtained gene fragment (Mt6for x Mt6rev). The 

PCR mixture (25 µl) of the primary TAIL reaction consisted of 1x DreamTaq Green 

(NH4)2SO4 PCR buffer (including 2 mM MgCl2), additional 0.5 mM MgCl2 (final total 

concentration 2.5 mM), 0.2 mM dNTP, 0.4 µM specific Primer, 5 µM of one AD primer, 20 

ng fungal DNA, 1.25 U DreamTaq polymerase. The secondary amplification reactions (50 µl) 

contained 1x DreamTaq (NH4)2SO4 buffer, 2.5 mM MgCl2 (final concentration), 0.2 mM 

dNTP, 0.2 µM nested specific primer, 4 µM of the same AD primer as in primary reaction 

and 1 U DreamTaq polymerase. Template was 1 µl of a 1:50 dilution of primary reaction 

mixture. The cycling conditions for the TAIL-PCR are shown in table 2.  

Table 2: Cycling conditions used for TAIL-PCR (according to Liu and Whittier, 1995) 

Reaction Step Cycle No. Thermal conditions 

Primary 1 1x 95 °C (3 min). 
 2 5x 95 °C (15 sec), 63 °C (1 min), 72 °C (2 min). 
 3 1x 95 °C (15 sec), 30 °C (3 min), ramping to 72 °C over 3 
   min, 72 °C (2 min). 
 4 10x 95 °C (5 sec), 44 °C (1 min), 72 °C (1 min). 
 5 12x 95 °C (5 sec), 63 °C (1 min), 72 °C (2 min), 
   95 °C (5 sec), 63 °C (1 min), 72 °C (2 min), 
   95 °C (5 sec), 44 °C (1 min), 72 °C (2 min). 
 6 1x 72 °C (5 min). 

Secondary 1 1x 95 °C (3 min). 
 2 10x 95 °C (5 sec), 63 °C (1 min), 72 °C (2 min), 
   95 °C (5 sec), 63 °C (1 min), 72 °C (2 min), 
   95 °C (5 sec), 44 °C (1 min), 72 °C (2 min). 
 3 1x 72 °C (5 min). 
    
 

To confirm the 3´end of the transcript a rapid amplification of cDNA ends (RACE)-PCR was 

used and finally the complete transcript was amplified with reverse transcription (RT)-PCR. 

For the generation of cDNA the First Strand cDNA Synthesis Kit (Fermentas, Germany) was 

used according to the manufacturer. For the 3´-RACE the 3´-RACE adapter Primer was used 

to synthesize cDNA instead of the supplied oligo-dT Primer of the cDNA synthesis kit. The 

obtained cDNA with the linked adapter was applied to a PCR reaction with the PCR adapter 

Primer and the specific primer AaMt6_for2. Subsequently the PCR fragment was diluted 1:50 
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and applied to a second PCR reaction with the PCR adapter Primer and the specific nested 

primer Mt6for.  

For the amplification of the full-length transcript the cDNA synthesis was conducted with the 

supplied oligo-dT primer of the kit. The obtained cDNA was applied to a PCR reaction with 

both specific primers AaMt_start_BamHI x AaMt_end_XhoI or AaMt_start_XhoI x 

AaMt_end_BamHI and which had the overlapping restriction sites BamHI and XhoI, 

respectively. All primers used for TAIL-, 3´-RACE- and RT-PCR and subsequent PCRs are 

given in table 3. 

Table 3: Primers used for TAIL-, 3´-RACE-, RT-PCRs and subsequent PCRs. 

Primer Sequence (5´-3´) Reference 

AD1 NGT CGA SWG ANA WGA A  Arie et al., 2000 

AD2 TGY TGY WSN CAR TTY GG  Arie et al., 2000 

TAIL1rev CCT CAT CAT TCC AGT CCT GG  this study 

TAIL1revnested CGC ACC TTT CAC AGG TTG CTC  this study 

TAIL2rev GTG CTC AGA TGT GCG GGT TGC  this study 
 GCC C  

TAIL2revnested CGC GAT GAG CTC CCT ACA CGC this study 
 GTC C  

3´-RACE adapter GGC CAC GCG TCG ACT AGT ACT Invitrogen 
 TTT TTT TTT TTT TTT T  

PCR adapter GGC CAC GCG TCG ACT AGT ACT  Invitrogen 

AaMt6_for2 ATG GCG GCC GAT TCY ACT CCG this study 
 AGC  

Mt6for TTC CTT GTC GAC GTT GGT GGC this study 
 TCT GG 

Oligo-dT TTT TTT TTT TTT TTT TTT Fermentas 

AaMt_start_BamHI CGG GAT CCG ATG GCG GCC GAT this study 
 TCY ACT CCG AGC  

AaMt_start_XhoI CTC GAG AAA AGA ATG GCG GCC this study 
 GAT TCC ACT CCG 

AaMt_end_BamHI GGA TCC CTA CGC AAG CTC AAG this study 
 CTC GAT C 

AaMt_end_XhoI GGC TCG AGC GCA AGC TCA AGC this study 
 TCG ATC AG  

Wobble bases: N: A, G, T or C; S: G or C; W: A or T; R: A or G; Y: C or T. 
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All PCR products were gel purified (MinElute Gel Extraction Kit, Qiagen, Germany), ligated 

into pDrive vector (Qiagen, Germany) according to the manufacturer´s recommendation and 

sequenced (Eurofins MWG Operon, Germany) with T7 promoter sequencing primer or SP6 

promoter sequencing primer. 

 

2.2.3 Expression of the putative methyltransferase Mt6 

The obtained cDNA of the gene Mt6 was cloned via the restriction sites BamHI and XhoI into 

expression vectors for E. coli and Kluveromyces lactis. For the overexpression in E. coli the 

AaMt_start_BamHI x AaMt_end_XhoI fragment was used and cloned into the pET-21b 

vector (Novagen, Germany). The expression strain was E. coli BL21(DE3)pLysS (Stratagene, 

Germany). For the expression an overnight preculture was cultured in LB broth (10 g/L NaCl, 

10 g/L tryptone and 5 g/L yeast extract) at 37 °C and 200 rpm. The main culture (LB broth) 

was inoculated 1:100 with the preculture and incubated at 37 °C and 200 rpm to an OD600 of 

0.6. The protein expression was induced with 1 mM IPTG (final concentration) and the 

culture was further cultivated at 30 °C and 200 rpm. Samples (10 ml) were taken after 2 h,     

3 h, 4 h and 5 h, centrifuged and the pellet was dissolved in 100 mM Tris/HCl pH 8.0. Cells 

were disrupted via sonification and centrifuged again. Proteins in both supernatant and pellet 

fractions were separated on a SDS gel and stained with Coomassie Blue R-250 (Imperial 

Protein Stain, Thermo Scientific, Germany). Protein concentrations were measured 

photometrically with Bradford reagent (Bio-Rad Protein Assay, Bio-Rad, Germany).  

For the overexpression in the yeast K. lactis the fragment AaMt_start_XhoI x 

AaMt_end_BamHI was cloned into the vector pKLAC2 (New England Biolabs, Germany). 

Transformation of yeast cells and protein expression were conducted with K. lactis Protein 

Expression Kit (New England Biolabs, Germany) according to the manufacturer. Since the 

protein is fused to a secretion signal lysis of yeast cell is not necessary to achieve the 

overexpressed protein. The secretion signal is removed by Kex protease processing. Culture 

supernatant samples were analyzed for protein expression on SDS-PAGE.  
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2.3 Protein biochemical methods 

2.3.1 Protein extraction and activity assay 

For the protein extraction A. alternata was grown for 6 days in liquid rice-medium in surface 

culture. The mycelium was harvested, washed in deionized water, blotted dry between filter 

papers and immediately ground to a fine powder in liquid nitrogen. Frozen not-ground 

mycelium was stored at -80 °C for months without losing protein activity. All following steps 

were processed at 4 °C or on ice. The powder was transferred to a glass beaker and was 

solved under gently stirring in the indicated buffer. The obtained viscous solution was 

centrifuged at 10,000 g for 20 min and the supernatant was again centrifuged at 58,000 g for 1 

h. Protein concentration was determined as described in section 2.2.3. The reaction mixture (1 

ml) for the activity test contained 50 mM of the respective buffer, 1.25 mM MgCl2, 1 mM 

SAM, 26 µM AOH and approximately 100 mg protein crude extract. The mixture was 

incubated at 30 °C overnight or for the indicated time period. The enzyme activity was 

determined by measuring the conversion of the substrate AOH to AME by HPLC. The 

reaction was stopped by adding 0.5 ml of ethylacetate. which was also the first extraction step 

of AOH and AME. After a second addition of 0.5 ml ethylacetate the combined organic 

phases were evaporated to dryness and the residues were dissolved in 100 µl methanol. The 

standard HPLC device (Agilent 1100 Series, Agilent, Germany) was equipped with a 25 cm 

reversed phase column (Luna 5 µm C18(2), Phenomenex, Germany). The analyses were 

performed at 30°C and a flow rate of 0.7 ml/min. Mobile phase solution was methanol/0.1 M 

NaH2PO4 (2:1), pH 3.2 (according to Shephard et al., 1991). Mycotoxins were monitored with 

a UV detector at 280 nm. For quantification a standard curve with mycotoxin standard 

solutions was prepared. The standards were purchased from Sigma-Aldrich (Germany) and 

solved in methanol. Retention times 10.2 ± 0.2 min (AOH) and 23.3 ± 0.1 min (AME). 

 

 

2.3.2 Protein purification 

For the purification of the AOH-O-methyltransferase the fast protein liquid chromatography 

(FPLC) system ÄktaExplorer (GE Healthcare, Germany) was used. For a first screening for 

appropriate column materials the 1 ml HiTrap Columns (GE Healthcare, Germany) Q 

SepharoseTM Fast Flow (anion-exchanger), DEAE SepharoseTM Fast Flow (anion-exchanger) 

and CM SepharoseTM Fast Flow (cation-exchanger) were tested. The ion-exchange columns 

were equilibrated with the respective buffer which was used for crude extract preparation. 

Elution was performed with a linear gradient of 0-1 M NaCl in equilibration buffer.  
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Additionally precipitation experiment with solid (NH4)2SO4 were conducted. Samples of 

crude extract in 100 mM NaPP pH 7.0 were brought to 20%, 40 % and 60 % under gently 

stirring on ice while keeping the pH to 7.0. After 30 min of precipitation the protein was 

pelleted by centrifugation at 20,000 g for 30 min. Pellet was dissolved in 100 mM NaPP 

buffer pH 7.0 and both supernatant and redissolved pellet were tested for activity. 
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3. Results 

3.1 Amplification of putative O-methyltransferase gene fragments of A. alternata 

The genome of A. brassicicola, closely related to A. alternata, was scanned for SAM 

dependent O-methyltransferases. 7 putative methyltransferases were found: AB06792.1 

(AbMt6), AB06186.1 (AbMt5), AB01408.1 (AbMt037), AB07405.1 (AbMt8), AB04168.1 

(AbMt3), AB05241.1 (AbMt4) and AB01342.1 (AbMt035). The protein sequences were 

aligned to determine conserved residues or domains which are shown in figure 1. 

                  10         20         30         40         50              
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    ---------- ---------- ---------- ---------- ----------   
AbMt6    ---------- ---------- ---------- ---------- ----------   
AbMt035  ---------- ---------- ---------- --MSTSHSRI AELAAEVVKH   
AbMt037  ---------- ---------- ---------- ---------- ----------   
AbMt3    MPAFPPTLTS HHIGGCLEAA AGKASYLSAQ AFEFPSSDLE YGKMGSVQQH   
AbMt4    ---------- ---------- ----MSFTSI LLAFDKLSRP TERPYIMIAE   
AbMt5    ---------- ---------- ---------- ---------- ----------   
 
                  60         70         80         90        100             
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    ----MSAIPS LPEPSIAAPD EGIVADNVLE ALEALAAGNI TASLR--DNE   
AbMt6    ---------- ----MAADAS PSKAALSLLD NIAQLSDGFR KASPG-----   
AbMt035  TQQIDEHLNS NGLPYPSFHA EGPVDLGLPP DLEHSRAAVL RASQ---ELN   
AbMt037  ---------- ----MLSFQD TIKTLDSIQP SQFSTDAERY EGKEAARRLL   
AbMt3    EIATLNSLAA QISELAAKMT KQLEAEKVTP VTLEADSPIK YEKLPG-DVF   
AbMt4    HQSTLLELAK EVQQLTTKIV NDLTEKKVPE PSFAIDSDTI PETP---EQI   
AbMt5    ---------- ---------- ---------- ---------- ----------   
 
                 110        120        130        140        150         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    EKRLRFLEAA RMASVKLEQP WDTMQRLIFC ALPP--NMVQ VGINLGLWRL   
AbMt6    -AREGLLDAC RSLIAEVSHP SENMLQLLWA QPAHLSTLWM GVEVKLFHAM   
AbMt035  DLLQHPRDLL FNHHVRIRTT RISKLQFFVL ISSQHNALVY LQLISRFEIA   
AbMt037  GRLELPFEQA WRLSFETPVL IAGIQTILDL GIWKQWTETD KQNPGASVHL   
AbMt3    MTRQLLEDAL KDMWILSQGP SESVFNYVHM AIP---DAAC LNVLNQFDFW   
AbMt4    GLRARLNDAA RDLLRLVNGP RNDARTFVCY LY----DLAA WQVACEFNFF   
AbMt5    ---------- ---------- ---------- ---------- ----------   
 
                 160        170        180        190        200         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    LAKQQGAV-M SVGEMAVELR AEKALLVRVL RWAATQWMVE QVGV---ETY   
AbMt6    KHVPDAGAAV HDIAAKCDKN VDPVVVGRML RHLAAMGTVR ETGP---DTF   
AbMt035  GKVPVNGE-I TFSRLAAAIG IDEGAMARIL RLGIAYRIFR EPRQ--GVIA   
AbMt037  DQLLKWAN-A RAEPNLLHWY ADIMAVGRFL RHIAALYVLE ETDV---DTW   
AbMt3    GAVPVDGN-A TFEDIAKYTR LPFEVVSRVI DHAVTMRFFT KPSPTATSVK   
AbMt4    EAIPEDGS-A TIQEIAGKVA MDEDRVGRFL RMLSSDRVFE EIEP--DVFK   
AbMt5    ---------- ---------- ---------- ---------- ----------   
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                 210        220        230        240        250         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    RATNITRYLS M--SGFESVI FHVTERNIAL YNAIPKWLAD NAYKQPQDNK   
AbMt6    ANTRTSAAFA E--PSYQDSI LYIAENFAPV HQSMKAYFEQ RDWKCPDSGL   
AbMt035  HSAASRQIVD D--ARVADWV GASVDDMWPA AQKVVDALTK WP-DAAEPNR   
AbMt037  KPTPYSLSLG DTVSHTDQIT QCGTDHTVPT GVNLPYFLKK YNYREPVDLA   
AbMt3    HTSRSAALAK D--SGLSALV QMVLDETGPP MFLLPEALRR FSQGKPEISK   
AbMt4    HTSRSVLYLK D--KQWRDVM HYQLDEFFRA ASETSESIKE SP-MVTDGQR   
AbMt5    ---------- ---------- -------MGP TTQWTAYFAE NGLAEPPRSN   
             
     260        270        280        290        300         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    NLPFNLSQ-N TDLHFFEWLS --QRPRHQQA FNEYMSFQRV GQKS------   
AbMt6    DAPFQHTYNC KGSHYFEYFE --QNPEMGRR FASMMDSWSK GRPR------   
AbMt035  TG-FSLAN-D TDLPFHVVLT --QSPQRARR FGGAMSFLTK GDG-------   
AbMt037  KLDNYRDMTG GKDFFATCAA --DPVGKGSS FMGLMTALRN HKMS------   
AbMt3    NI-KETAF-R LCHSGGEAWG --DHETSWEF IENDGEGEKK GWRQRNFVKF   
AbMt4    NA-FVTRH-G VDL--FGYYK --QDPKRAAR FASAMAGVSR RKSSPNQSEA   
AbMt5    RSPGGFALGM PDKTAYEIMA --AIPGLATR MNGAMAIDGD IPVTG-----   
 
                 310        320        330        340        350         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    ----WLDVFP LDKYVHASST GSDS--RPLF VDVGGGHGHQ SREVIRRFP-   
AbMt6    -----WFSQD YYPVHDRLIS GADKD-APFL VDVGGGSGHD IEGLRQSFQG   
AbMt035  --------HS LRYLTDGYPW AATP--PGTV VDLGGSHGDA AFALARRYPN   
AbMt037  ----WTDVYD TNRIVDGAEL EAGK---PLF VDIGGAHGLD TSRLLDKHPN   
AbMt3    MAYIKDLFHT ENIVLEAIDW KAEG--DITV VDLGGSAGHD DAVLATKFPN   
AbMt4    TSLMTIVERH FDNLKESFPW DTIS--GRKV IDVGGGSGHM SVNLARAFPN   
AbMt5    -------VYD FSWIATYAAE DAGEEKRELI VDVAGGKGQA LKDILEETPA   
 
                 360        370        380        390        400         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    --WVQGRVVL QDTHAAAIDS --AKSIQGLE VVHHDFTK-- ---AQPTKGA   
AbMt6    ---QLPGTLV LQDRPEIVDL --AKLGPGAE AMAHDFMT-- ---EQPVKDA   
AbMt035  HHFIVQD--- -LPEVVKNSR --PEYGLNVE FMAHDFFD-- ---EQPVKGA   
AbMt037  ---LPANVLI LQDTPEVVAM PIEDLDKRIV KQAYDFFT-- ---PQPQMHA   
AbMt3    LKIVVQDLPE VATVFEKEFP --SDLKSRVS FRTHNLFD-- ---PQPVQ-A   
AbMt4    LELIVQDSLT MLSSASQNDF --SDLNGRVT FMPHDFFT-- ---KQPVSGA   
AbMt5    ---IPAARCV LQDQPHVIAE AVEEHKDSAV LGPVKKIGSS IFGEQPTKGA   
 
                 410        420        430        440        450         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    CVYYLRNILH DWPDQACFNI LSQLKDALAP ---DSVILLD ELILG-----   
AbMt6    RAYYLHSIIQ DWNDEVNTAI LKAIVPAMKK G--YSKVLIN DFVVP-----   
AbMt035  EVYYYRWTLH NWPDKYCAKT LRALIPALKP ---GAKLLIM DVV---MPSP   
AbMt037  RAYFYHAVPH DWPDADCVRM FSQVAAVFKR G--YSKLLIY EVVLP-----   
AbMt3    DIYMLKWILH DWPDAESVKI LQALRPALRP ---GARVLFI DYVGKQEPSD   
AbMt4    AAYLLRYITH NWSDEDCIRI FRALVPALEK SPAGTPILIN DVV---MPAL   
AbMt5    LVYYIRRVLN DWSDHEALQI LKNVRAACAD D---SRVLIA EYLRP-----   
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                460        470        480        490        500         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    ---DESTHWY GASFDLLMMA NYGARERSLA EWDRILDKVG LERKTLVPYS   
AbMt6    ---NQGAHWA QTCLDWELMA SLGARHRTEE EHRKMYQGAG LNMTGIWRHP   
AbMt035  GSLPNDLDRK LRAMDLTMLE VGNAKERDLP EWKSLLEKVD MRFHLREVHQ   
AbMt037  ---KRGATNL MTTLDLQLMN CTSGMERTEE HWARLLREAG FRIVGISRHP   
AbMt3    EELPRSIQGF GTATDLRMMA LFNAKERPVE AWKDIFRQAD ESYIHHVKLN   
AbMt4    GEASRYQDNR MRQVDIMMML VLGAKQRTEE QFRRLLSDAD PRLKIKAIHG   
AbMt5    ----EQPSVY TSTVDMFILN -IGGKVRSEK AFGELAAKAG LKIVSVARHE   
 
                  
     510        520        530        540        550         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8    MHG------- ---------D GIQVVGARST VHERL----- ----------   
AbMt6    H--------- ---------S LDSLIELELA ---------- ----------   
AbMt035  P--------- ---------L GSALSIIEVV WKE------- ----------   
AbMt037  R--------- ---------A VESVIEADLV ---------- ----------   
AbMt3    G--------- --------IA MLSLAQTKKL LQSSYALESN SDEERKSLES   
AbMt4    KGNMSLIEAY LDTDGAPGAQ GSAVAGSSAI ATSADGVQED ATPASNLSQA   
AbMt5    K--------- ---------T ESAVVEMEPI ---------- ----------   
 
                 560         
         ....|....| ....|.... 
AbMt8    ---------- ---------  
AbMt6    ---------- ---------  
AbMt035  ---------- ---------  
AbMt037  ---------- ---------  
AbMt3    GLS------- ---------  
AbMt4    EALPPLPLGG TNSQRPRNR  
AbMt5    ---------- ---------  
 

Figure 1: Alignment of putative SAM-dependent O-methyltransferase protein of A. 
brassicicola (http://genome.jgi-psf.org/Altbr1/Altbr1.home.html). Conserved residues or 
domains were marked with red boxes. 

 

Three conserved motifs were indentified: Motif I consisting of (F/L/V/I) (V/I) D (V/I/L) G G 

G/S X G, motif II comprising of Q P (V/T) K (G/D) A and motif III containing H D W P D. 

Additionally the sequences were blasted against the NCBI data base 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to detect further similarities in homologous genes of 

other fungi. Based on this results primer were generated (see table 1) and used for the 

amplification of gene fragments in A. alternata. 4 out of 7 approaches were successful and 

fragments could be amplified. The fragments were 269 bp - 524 bp long and shared high 

similarity with the homologous genes in A. brassicicola. The 4 gene fragments of A. alternata 

were aligned with the respective regions of the homologs of A. brassicicola (figure 2). 
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A 

               160        170        180        190        200         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  CTGGAGGCTG CCAGGATGGC CTCTGTCAAG CTTGAGCAAC CATGGGACAC   
AaMt8  ---------- ---------- --------AG ATTGAGCAGC CATGGGATAC   
 
               210        220        230        240        250         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  TATGCAGCGG CTGATCTTCT GCGCACTGCC GCCCAACATG GTGCAAGTGG   
AaMt8  CATGCAACGA TTGATCTTTT GTGCACTACC GCCCAACATG GTGCAAGTTG   
 
               260        270        280        290        300         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  GCATTAATCT GGGGCTCTGG AGGCTACTTG CCAAGCAGCA AGGTGCTGTG   
AaMt8  GTATTGATCT TGGGCTGTGG AGGCTACTCA CTAAGCGAGA GGGTGCAGTG   
 
               310        320        330        340        350         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  ATGAGTGTGG GTGAGATGGC TGTGGAGTTG CGCGCTGAAA AGGCACTACT   
AaMt8  ATGAGTGTGA GTGAGATGGC TGTGGAGTTG GGTGCGGAAA AAGCACTGTT   
 
               360        370        380        390        400         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  AGTGCGAGTG CTGCGGTGGG CCGCGACACA ATGGATGGTG GAGCAGGTTG   
AaMt8  AGTGCGAGTG TTGCGGTGGG CTGCGACGCA ATGGATGGTG GAGCAGGTTG   
 
               410        420        430        440        450         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  GCGTCGAGAC GTACCGGGCG ACAAACATTA CGCGATACCT GTCCATGTCA   
AaMt8  GCGTCGAGAC GTACCGTGCA ACAAACATTA CGCGATATCT TTCCATGTCA   
 
               460        470        480        490        500         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  GGCTTCGAGT CTGTGATTTT CCACGTGTGC GTACTTGCGG CATTTGGTTT   
AaMt8  GGGCTAGAGT CTGTCGTATT CCATGTGTGA GTACT--CCG TGTCTGGTCT   
 
               510        520        530        540        550         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  TCCAAAGACC ATGACTGACT TGCTTTGACA GGACCGAGAG GAACATTGCA   
AaMt8  T--GACAATC ACAGCTGACT CTCTTTG-CA GAACAGAAAG GAATATTGCA   
 
               560        570        580        590        600         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt8  CTGTACAACG CGATACCAAA GTGGCTAGCC GACAATGCCT ACAAGCAACC   
AaMt8  CTTTACAACG CGATACCAAA GTGGCTAGCC GACAATTCCT ACAAACAGCC   
 
               610        620        630                         
       ....|....| ....|....| ....|....|  
AbMt8  ACAGGACAAC AAAAACCTTC CATTCAATCT  
AaMt8  ACAAGACAAC AA-------- ----------  
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B               710        720        730        740        750         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6  CCGACAAGGA TGCACCGTTC CTTGTCGACG TTGGTGGCGG CTCTGGACAC   
AaMt6  ---------- --AGATTTTC CTTGTCGACG TTGGTGGC-- -TCTGGGCAC   
 
               760        770        780        790        800         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6  GACATTGAAG GCCTAAGGCA GTCGTTCCAG GGCCAGCTAC CCGGTACGCT   
AaMt6  GATATTGAAG GTCTGAGGGA GGCATTCCAT GGCCAGATAC CAGGTACACT   
 
               810        820        830        840        850         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6  GGTGCTACAA GATAGACCCG AGATTGTTGA CCTTGCCAAA CTTGGTCCCG   
AaMt6  GGTGCTACAG GACAGGCCGG AGATTGTTGA GCTTGCGAAA CTTGGTCCTG   
 
               860        870        880        890        900         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6  GCGCCGAGGC CATGGCACAC GACTTCATGA CCGAGCAACC GGTCAAAGAT   
AaMt6  GGACGGAGGC GACGGCACAC GACTTCATGA CTGAGCAACC TGTGAAAGGT   
 
               910        920        930        940        950         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6  GCACGGGCAT ATTATCTACA TTCCATCATC CAAGATTGGA ACGATGAGGT   
AaMt6  GCGCGGGCGT ATTATCTGCA TTCGATTATC CAGGACTGGA ATGATGAGGT   
 
               960        970        980        990        1000        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6  CAATACTGCC ATTCTCAAGG CAATCGTGCC CGCCATGAAG AAGGGATATT   
AaMt6  AAACACCGAA ATTCTCAAGG CAATCGTGCC CGCCATGAAT CAC-------   
 
 
 

 C               710        720        730        740        750         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  GGGCAAGGGA AGCAGTTTCA TGGGTCTGAT GACTGCGTTG CGGAACCATA   
AaMt037  ---------- ---------- ---------- ---------- -GGNACCATA   
 
                 760        770        780        790        800         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  AGATGAGCTG GACAGACGTA TATGACACGA ACCGCATCGT CGATGGTGCA   
AaMt037  AGATGAGCTG GACAGATGTG TACGATACGA ACCGCATCGT CGATGGTGCT   
 
                 810        820        830        840        850         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  GAGCTAGAGG CTGGGAAACC ATTGTTCGTA GACATCGGTG GCGCGCACGG   
AaMt037  GATGTCCAGA CTGGAAAACC TTTGTTTGTG GACATTGGCG GCGCGCACGG   
 
                 860        870        880        890        900         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  TCTCGATACT TCGCGTCTTC TGGATAAACA TCCCAATTTG CCCGCCAACG   
AaMt037  TCTCGATACT TCGCGTCTCC TCGACAAGCA TCCAAACCTG CCTGCCAACG   
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    910        920        930        940        950         
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  TCCTGATTCT GCAAGATACC CCGGAAGTCG TCGCCATGCC GATAGAGGAT   
AaMt037  TTCTGGTCCT GCAAGATACT CCCGAAGTCG TCGCAATGCC CATTGAAGAC   
 
                 960        970        980        990        1000        
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  CTGGACAAGA GGATCGTGAA ACAAGCCTAC GACTTCTTCA CACCTCAGCC   
AaMt037  TTGGATAAGA GGATAGTGAA ACAAGCCTAC GACTTCTTCA CGCCTCAACC   
 
                 1010       1020       1030       1040       1050        
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  CCAAATGCAC GCACGCGCTT ATTTCTACCA TGCCGTGCCA CACGACTGGC   
AaMt037  CCAAAAGCAC GCGCGCGCTT ACTTCTTCCA TGCCGTACCC CACGACTGGC   
 
                 1060       1070       1080       1090       1100        
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  CTGACGCGGA CTGCGTACGC ATGTTTTCGC AAGTAGCCGC TGTATTCAAA   
AaMt037  CTGACGCGGA CTGCGTTCGC ATGTTCTCGC AAGTGGCCGC TGTGTCCAAG   
 
                 1110       1120       1130       1140       1150        
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  CGAGGATACT CCAAGCTTTT GATCTATGAG GTCGTGCTAC CGAAGAGGGG   
AaMt037  CGCGGATACT CCAAGCTCCT GATATACGAG GTTGTGTTGC CGAAGAAGGG   
 
                 1160       1170       1180       1190       1200        
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  TGCCACGAAC TTGATGACTA CGCTGGACCT GCAGCTTATG AACTGTACAA   
AaMt037  AGCCACGAAC TTGATGACGA CGTTGGATTT GCAGCTCATG AACTGCACGA   
 
                 1210       1220       1230       1240       1250        
         ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt037  GTGGAATGGA GAGGACGGAG GAGCACTGGG CGAGGTTGTT GAGGGAAGCT   
AaMt037  GTGGCATGAA TCTGA----- ---------- ---------- ---------   
 

 
D 
 
               860        870        880        890        900         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  GCGCGACAGC CCTTTTGTCA ACGCCTATCA GTGCAAAGGC GAGACCTACT   
AaMt5  ---------- ---------- ---------- ---------- GAGACCTACT   
 
               910        920        930        940        950         
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  TCGACTACAT GAACAAGCCC GAAAACGTGC GCATGTTTGA TGCATTCAAT   
AaMt5  TCGATTATAT GAACAAGCCC GAGAACGCAC GCATGTTCGA TGCATTCAAT   
 
               960        970        980        990        1000        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  GAGACGATGA CGCTGCGGAA GCCAGGCGAG CACGACACAT TTGTGCAAGC   
AaMt5  GGGACGATGA CACTCCGGAA GCCAGGCGAG CACGACACGT TCGTTGCAGC   
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      1010       1020       1030       1040       1050        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  GTACCCAGTC AAGGAGCGCC TGGCTATGGG CGACCCCTCG CGCGTCCTGT   
AaMt5  GTACCCCGTC AAGGAGCGCC TTGCCATCAG CGAACCCTCG CGCATTCTAC   
 
               1060       1070       1080       1090       1100        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  TCGTCGATAT CGGCGGCGGT GTAGGCCATC AGGTGCGCAA GTTCTGCGAG   
AaMt5  TCGTCGATAT TGGCGGCGGT ATAGGCCATC AAGTTCGCAA ATTCTCCGAG   
 
               1110       1120       1130       1140       1150        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  CGCGCGCAAG GAATGCAGGG CGTGTGCGTG CTGTTGGATC TTCCAAGCGT   
AaMt5  CGTGCACAGG GAATGCAGGG CGTGTGTGTG CTGTTGGATC TTCCCAGTGC   
 
               1160       1170       1180       1190       1200        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  AATAGCACAG GCTAAGGACT TGCCGGCCGG AGCCGTGACG GTCGGACAAA   
AaMt5  GATAGCGCAG GCTAAGGAGC TGCCAGACGG AGCCGTGACA GTCGGACAGA   
 
               1210       1220       1230       1240       1250        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  GTTTCTTCGA TCCCATGCCG CAGTCTTTAA AGGGCGCCAA GGCCTTCTAC   
AaMt5  GTTTCTTCGA CCCTATGCCC CAGTCTTTGA AGGGTGCGAA AGCCTTCTAT   
 
               1260       1270       1280       1290       1300        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  TTGCGCATGC TTCTGCATGA TTGGCCCGAG ATGCAGGCCG TTACCATCCT   
AaMt5  CTGCGTATGC TTCTGCATGA TTGGCCGGAG ATGCAGGCTG TTACTATCTT   
 
               1310       1320       1330       1340       1350        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  GAAAAACATT GTCGATGCAA TGGCTCAGGA CAGTGTGGTG TTGATTCACG   
AaMt5  GAAGAATATT GTCGATGCGA TGGCCCAGGA CAGTGTGGTA TTGATTCACG   
 
               1360       1370       1380       1390       1400        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  AGGTCATTCT AGCGGAGACG GAATTCGACC ATTTTGATGC CAAGATGGAT   
AaMt5  AGGTCATTCT AGCGGAGACA GAATTCGATC ACTNNNANGC CAAGATGGAC   
 
               1410       1420       1430       1440       1450        
       ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt5  TGGCAGATGA TGAACTTGGC CTCGGGCGAA CGTACCATGG GTCAGTGGAA   
AaMt5  TGGCAAATGA TGAAC----- ---------- ---------- ----------   

 
Figure 2: Alignment of putative SAM-dependent O-methyltransferase gene fragments of A. 
alternata (Aa) with fragments of A. brassicicola (Ab). A. Alignment for methyltransferase 8 
(Mt8). B. Alignment for methyltransferase 6 (Mt6). C. Alignment for methyltransferase 037 
(Mt037). D. Alignment for methyltransferase 5 (Mt5). 
Primer position: red arrow; putative intron position: dashed black line. 

 

 

Mt5rev 



4.4 Enzymes of mycotoxin biosynthesis: AOH-O-methyltransferase 
 

118 

3.2 Identification of the whole genomic and cDNA sequence and expression of Mt6 in A. 

alternata  

Using TAIL-PCR the 5´-end of the Mt6 gene could be identified while the 3´-end was 

determined by 3´RACE-PCR. The genomic fragment consisted of 1259 bp. The cDNA 

sequence was finally obtained by RT-PCR and cloned into pDrive vector. The cDNA 

fragment has a length of 1212 bp. When compared with the genomic sequence the location of 

a single intron of 47 bp was detected. The intron position in the gene of A. alternata matches 

well with the one in A. brassicicola. For further cloning into expression vectors the PCR 

product was tagged with XhoI and BamHI restrictions sites. Both the genomic and cDNA 

sequence were aligned with the corresponding gene of A. brassicicola as shown in figure 3. 

All employed primers were marked within the sequence and the putative SAM binding 

domain was highlighted. 

                     10         20         30         40         50             
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  ATGGCCGCCG ATGCAAGCCC GAGCAAGGCT GCCCTCTCCC TCCTCGACAA   
AaMt6 gDNA  ATGGCGGCCG ATTCCACTCC GAGCAAGGCT GCTCTTTCTC TCCTCGACAA   
AaMt6 cDNA  ATGGCGGCCG ATTCCACTCC GAGCAAGGCT GCTCTTTCTC TCCTCGACAA   
 
                     60         70         80         90        100            
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CATTGCGCAG CTCAGCGATG GCTTCAGGAA GGCCAGTCCC GGCGCCCGCG   
AaMt6 gDNA  CATTGCGCAA CTCAGCGATG GCTTCAAGAA TGGGAGTCCT GGCGCGAGAG   
AaMt6 cDNA  CATCGCGCAA CTCAGCGATG GCTTCAAGAA TGGGAGTCCT GGCGCGAGAG   
 
                    110        120        130        140        150         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  AAGGGCTGCT GGACGCGTGC AGGAGCCTCA TCGCCGAAGT CAGCCATCCA   
AaMt6 gDNA  AAGGGTTGCT GGACGCGTGT AGGGAGCTCA TCGCGGAAGT CAGCAATCCA   
AaMt6 cDNA  AAGGGTTGCT GGACGCGTGT AGGGAGCTCA TCGCGGAAGT CAGCAATCCA   
 
                    160        170        180        190        200         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  TCCGAGAACA TGCTGCAGCT GTTATGGGCG CAGCCCGCCC ATCTGAGCAC   
AaMt6 gDNA  TCTGAGAATA TGCTGCAATT GTTATGGGCG CAACCCGCAC ATCTGAGCAC   
AaMt6 cDNA  TCTGAGAATA TGCTGCAATT GTTATGGGCG CAACCCGCAC ATCTGAGCAC   
 
                    210        220        230        240        250         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  ACTCTGGATG GGCGTCGAAG TCAAGCTCTT CCACGCCATG AAGCATGTCC   
AaMt6 gDNA  ACTTTGGATG GGCGCGGAAG TGAAGCTGTT TCAGGCCATG AAAGACGTCC   
AaMt6 cDNA  ACTTTGGATG GGCGCGGAAG TGAAGCTGTT TCAGGCCATG AAAGACGTCC   
 
                    260        270        280        290        300         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CGGACGCGGG TGCTGCCGTC CACGACATCG CGGCCAAGTG CGACAAGAAC   
AaMt6 gDNA  CGGAATCTGG TGCTACTGTT GGAGACATCG CGAAGAAGTG CGAAAAGAAT   
AaMt6 cDNA  CGGAATCTGG TGCTACTGTT GGAGACATCG CGAAGAAGTG CGAAAAGAAT   

AaMt6_for2 / AaMt_start_BamHI /_XhoI 

TAIL2revnested 

TAIL2rev 
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                    310        320        330        340        350         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GTTGACCCAG TCGTCGTCGG GCGCATGCTT CGTCATCTCG CTGCCATGGG   
AaMt6 gDNA  GTTGATCCGA TTATCGTTGG ACGCATGCTT CGACATCTTG CTGCTATGGG   
AaMt6 cDNA  GTTGATCCGA TTATCGTTGG ACGCATGCTT CGACATCTTG CTGCTGTGGG   
 
                    360        370        380        390        400         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CACGGTGCGC GAGACTGGCC CGGATACTTT TGCAAACACA CGCACCTCAG   
AaMt6 gDNA  CACAGTGCGC GAGACTGGTC CCGGTACCTT TGCAAACACT CCTACTTCTT   
AaMt6 cDNA  CACAGTGCGC GAGACTGGTC CCGGTACCTT TGCAAACACT CCTACTTCCT   
 
                    410        420        430        440        450         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CTGCCTTTGC TGAACCATCC TACCAAGACT CGATCCTGTA CATTGCCGAA   
AaMt6 gDNA  CCGCATTCGC CGAACAATCG TATCAAGACT CAATAAAATA TATCGCAGAG   
AaMt6 cDNA  CCGCATTCGC CGAACAATCG TATCAAGACT CAATAAAATA TATCGCAGAG   
 
                    460        470        480        490        500         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  AACTTTGCGC CGGTCCATCA GTCCATGAAG GCGTACTTTG AGCAGCGTGA   
AaMt6 gDNA  AACTTTGCGC CGGCGCATCA ATCCATGAAG TCGTACTTTG ATCAGCGTGA   
AaMt6 cDNA  AACTTTGCGC CGGCGCATCA ATCCATGAAG TCGTACTTTG ATCAGCGTGA   
 
                    510        520        530        540        550         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CTGGAAATGT CCCGATTCCG GCCTCGATGC GCCTTTTCAG CACACCTACA   
AaMt6 gDNA  CTGGAAATGC CCCGACTCTA GTCTCGATGC GCCATTCCAG CATGCCTACA   
AaMt6 cDNA  CTGGAAATGC CCCGACTCTA GTCTCGATGC GCCATTCCAG CATGCCTACA   
 
                    560        570        580        590        600         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  ACTGCAAAGG GAGCCATTAC TTTGAGTACT TTGAGCAAAA CCCCGAAATG   
AaMt6 gDNA  ACTGCAAGGG AACCCACTAC TTTGAATTCT TCCAGAAAAA CCCTGAAGTA   
AaMt6 cDNA  ACTGCAAGGG AACCCACTAC TTTGAATTCT TCCAGAAAAA CCCTGAAGTA   
 
                    610        620        630        640        650         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GGACGCCGCT TCGCTAGCAT GATGGACTCG TGGAGCAAGG GACGGCCGCG   
AaMt6 gDNA  GGACGGCGCT TCGCTAGTAT GATGGACTCT TGGAGCAAGG GACGGCCGCG   
AaMt6 cDNA  GGACGGCGCT TCGCTAGTAT GATGGACTCT TGGAGCAAGG GACGGCCGCG   
 
                    660        670        680        690        700         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GTGGTTCTCC CAGGATTACT ACCCGGTCCA CGATCGCTTG ATCAGCGGTG   
AaMt6 gDNA  GTGGTTCTCC AAGGATTACT ACCCTGTCGA AGATCGGCTG ATCAGCGGTG   
AaMt6 cDNA  GTGGTTCTCC AAGGATTACT ACCCTGTCGA AGATCGGCTG ATCAGCGGTG   
 
                    710        720        730        740        750         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CCGACAAGGA TGCACCGTTC CTTGTCGACG TTGGTGGCGG CTCTGGACAC   
AaMt6 gDNA  CCGAGAAGGA TGTACCGTTT CTCGTCGACG TAGGCGGCGG CTCTGGGCAC   
AaMt6 cDNA  CCGAGAAGGA TGTACCGTTT CTCGTCGACG TAGGCGGCGG CTCTGGGCAC   
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       760        770        780        790        800         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GACATTGAAG GCCTAAGGCA GTCGTTCCAG GGCCAGCTAC CCGGTACGCT   
AaMt6 gDNA  GATATTGAAG GTCTGAGGGA GGCATTCCAT GGCCAGATAC CAGGTACACT   
AaMt6 cDNA  GATATTGAAG GTCTGAGGGA GGCATTCCAT GGCCAGATAC CAGGTACACT   
 
                    810        820        830        840        850         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GGTGCTACAA GATAGACCCG AGATTGTTGA CCTTGCCAAA CTTGGTCCCG   
AaMt6 gDNA  GGTGCTACAG GACAGGCCGG AGATTGTTGA GCTTGCGAAA CTTGGTCCTG   
AaMt6 cDNA  GGTGCTACAG GACAGGCCGG AGATTGTTGA GCTTGCGAAA CTTGGTCCTG   
 
                    860        870        880        890        900         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GCGCCGAGGC CATGGCACAC GACTTCATGA CCGAGCAACC GGTCAAAGAT   
AaMt6 gDNA  GGACGGAGGC GATGGCACAC GATTTCATGA CTGAGCAACC TGTGAAAGGT   
AaMt6 cDNA  GGACGGAGGC GATGGCACAC GATTTCATGA CTGAGCAACC TGTGAAAGGT   
 
                    910        920        930        940        950         
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GCACGGGCAT ATTATCTACA TTCCATCATC CAAGATTGGA ACGATGAGGT   
AaMt6 gDNA  GCGCGGGCGT ATTATCTGCA TTCGATTATC CAGGACTGGA ATGATGAGGT   
AaMt6 cDNA  GCGCGGGCGT ATTATCTGCA TTCGATTATC CAGGACTGGA ATGATGAGGT   
 
                    960        970        980        990        1000        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CAATACTGCC ATTCTCAAGG CAATCGTGCC CGCCATGAAG AAGGGATATT   
AaMt6 gDNA  AAACACCGAA ATCCTCAAGG CAATAGTGCC AGCCATGAAG AAGGGGTATT   
AaMt6 cDNA  AAACACCGAA ATCCTCAAGG CAATAGTGCC AGCCATGAAG AAGGGGTATT   
 
                    1010       1020       1030       1040       1050        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  CAAAGGTCCT CATCAACGAT TTTGTGGTTC CAAATCAGGG CGCGCATTGG   
AaMt6 gDNA  CCAAGGTCCT TGTGAGCGAC TTTGTAGTCC CGAACCAAGG CGCGCATTGG   
AaMt6 cDNA  CCAAGGTCCT TGTGAACGAC TTTGTAGTCC CGAACCAAGG CGCGCATTGG   
 
                    1060       1070       1080       1090       1100        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GCGCAGAGTA GGCTGTCCTC GTCTCTTGAT GCCAGCACCT GCTAACGTAA   
AaMt6 gDNA  GCGCAGAGTA AG-TCTTCTG GTTTAATGAT ATGACATGCG ACTAACGAAC   
AaMt6 cDNA  GCGCAGA--- ---------- ---------- ---------- ----------   
 
                    1110       1120       1130       1140       1150        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  AATAGCATGC CTTGACTGGG AGCTCATGGC CAGTCTTGGA GCCCGACACC   
AaMt6 gDNA  GGTAGCTTGT CTCGACTGGG AGCTCATGGC CAGTCTTGGA GCGCGACACC   
AaMt6 cDNA  -----CTTGT CTCGACTGGG AGCTCATGGC CAGTCTTGGA GCGCGACACC   
 
                    1160       1170       1180       1190       1200        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GAACCGAAGA GGAGCACCGG AAAATGTACC AAGGTGCAGG TTTGAACATG   
AaMt6 gDNA  GAACGGAAGA GGAACACCGA AAGATGTACG AAGGGGCAGG CTTGAAAATG   
AaMt6 cDNA  GAACGGAAGA GGAACACCGA AAGATGTACG AAGGGGCAGG CTTGAAAATG   
 
                     
 
 

TAIL1rev 

TAIL1revnested 

Mt6rev 
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       1210       1220       1230       1240       1250        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  ACGGGTATCT GGCGGCATCC GCATAGTCTT GACTCTCTGA TTGAGCTTGA   
AaMt6 gDNA  ATGGGTGTTT GGCGGCATCC GCATAGTCTT GACTCTCTGA TCGAGCTTGA   
AaMt6 cDNA  ATGGGTGTTT GGCGGCATCC GCATAGTCTT GACTCTCTGA TCGAGCTTGA   
 
                    1260       1270       1280       1290       1300        
            ....|....| ....|....| ....|....| ....|....| ....|....|  
AbMt6 gDNA  GCTGGCATAA ---------- ---------- ---------- ----------   
AaMt6 gDNA  GCTTGCGTAG ---------- ---------- ---------- ----------   
AaMt6 cDNA  GCTTGCGTAG ACTAGATCTG AATAGCAATG ATATCGCGGC TTGTTGAAAA   
 
                    1310    
            ....|....| .... 
AbMt6 gDNA  ---------- ----  
AaMt6 gDNA  ---------- ----  
AaMt6 cDNA  AAAAAAAAAA AAAA  

 

Figure 3: Alignment of the genomic and cDNA sequence of the putative SAM-dependent O-
methyltransferase gene Mt6 of A. alternata (Aa) with the corresponding gene of A. 
brassicicola (Ab). Primers used for amplification: red arrow; intron sequence: black dashed 
line; 3´UTR: blue arrow; SAM binding domain: red box, the translated amino acid sequence 
is indicated below. 

 

 

For the expression of the gene in E. coli the 5´-end was tagged with the restriction site XhoI 

and the 3´end with the restriction site BamHI. The tagged fragment was cloned into the 

expression vector pET-21b. In a first overexpression experiment several clones were screened 

for proper gene expression after 2 h of induction and one clone was chosen for detailed 

experiments. These experiments revealed the presence of the protein as insoluble inclusion 

bodies in the pellet fraction while the protein could not be detected in the soluble supernatant 

fraction (figure 4). 

 

  

AaMt_end_BamHI /_XhoI 
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Figure 4: SDS PAGEs of overexpression experiments of 
protein in E. coli. Left: An initial screening of several clones. A separation of pellet and 
supernatant fraction was not conducted.
Supernatant (soluble fraction) and pellet (insoluble fraction) were applied separately. 
expressed protein has a molecular weight of approx. 45 kDa and is indicated by a red arrow. 
nI: not induced; 2h, 3h, etc.: time point of sampling after induction with 1 mM IPTG.
 

This result could not be enhanced by lowering expression temperature or 

concentrations. Nevertheless the molecular mass of the protein was determined to be approx. 

45 kDa. Activity tests of the pellet fraction were negative, i.e. AME production was not 

observed. 

To overcome the problem of protein insolubility a

For the expression in the yeast 

combination AaMt_start_Bam

The SDS-PAGE revealed no visible overexpr

protein in the culture broth (result not shown). 

negative. The Blast search in the genome of 

existence of min. 7 putative methyltransferases whereof 4 were 

Due to the expression experiments it cannot be fully excluded that methyltransferase Mt6 

exhibits AOH-O-methyltransferase activity, b

encodes for the desired protein. 

Therefore, further expression 

was pursued instead. 
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nI: not induced; 2h, 3h, etc.: time point of sampling after induction with 1 mM IPTG.

This result could not be enhanced by lowering expression temperature or 

Nevertheless the molecular mass of the protein was determined to be approx. 

Activity tests of the pellet fraction were negative, i.e. AME production was not 

oblem of protein insolubility a eukaryotic expression system was tested. 

For the expression in the yeast K. lactis the gene fragment was amplified using the primer 

BamHI and AaMt_end_XhoI und cloned into the vector pKLAC2. 

PAGE revealed no visible overexpression or rather secretion of an overexpressed 

protein in the culture broth (result not shown). The activity test with culture broth was also 

negative. The Blast search in the genome of A. brassicicola (see section 3.1) revealed the 

existence of min. 7 putative methyltransferases whereof 4 were also found in 

Due to the expression experiments it cannot be fully excluded that methyltransferase Mt6 

methyltransferase activity, but it is also possible that one of the other genes 

encodes for the desired protein.  

Therefore, further expression experiments were not conducted. A protein purification strategy 
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A. alternata methyltransferase 6 
Left: An initial screening of several clones. A separation of pellet and 

more detailed experiment with one clone. 
Supernatant (soluble fraction) and pellet (insoluble fraction) were applied separately. The 
xpressed protein has a molecular weight of approx. 45 kDa and is indicated by a red arrow.  

nI: not induced; 2h, 3h, etc.: time point of sampling after induction with 1 mM IPTG. 

This result could not be enhanced by lowering expression temperature or decreased IPTG 

Nevertheless the molecular mass of the protein was determined to be approx. 

Activity tests of the pellet fraction were negative, i.e. AME production was not 

eukaryotic expression system was tested. 
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3.3 Characterization of the AOH

Prior to purification experiments pH

and NaPP buffer in the range of pH 6 to pH 8 were prepared. Protein crude extract was 

prepared in the respective buffer and app

protein was more active in NaPP buffer as in Tris buffer of the same pH value. The pH 

optimum for both buffers was around pH 7 but the pH tolerance was in range of pH 6.5 to pH 

8. Salt tolerance tests were performed in

M NaCl, 1 M KCl and 1 M (NH

Figure 5: Salt and pH tolerance
extract. A. pH tolerance of the protein in 
was prepared in the respective buffer of the indicated pH and applied to the activity test. 
Activity was determined by detecting produced AME after 16 h. 
protein. Protein crude extract was prepared in 
indicated salt was added additionally to the activity test. 

A 
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the AOH-O-methyltransferase of A. alternata

Prior to purification experiments pH- and salt stability of the protein was tested. 

and NaPP buffer in the range of pH 6 to pH 8 were prepared. Protein crude extract was 

prepared in the respective buffer and applied to the activity test. As shown in figure 5

protein was more active in NaPP buffer as in Tris buffer of the same pH value. The pH 

optimum for both buffers was around pH 7 but the pH tolerance was in range of pH 6.5 to pH 

tests were performed in 100 mM NaPP buffer pH 7. The tolerance towards 1 

M NaCl, 1 M KCl and 1 M (NH4)2SO4 was tested (see figure 5 B). 

tolerance of A. alternata AOH-O-methyltransferase in protein crude 
. pH tolerance of the protein in 100 mM Tris and NaPP buffer. Protein crude extract 

was prepared in the respective buffer of the indicated pH and applied to the activity test. 
Activity was determined by detecting produced AME after 16 h. B. Salt 
protein. Protein crude extract was prepared in 100 mM NaPP buffer pH 7. 1 M of the 
indicated salt was added additionally to the activity test.  
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A. alternata 

and salt stability of the protein was tested. 100 mM Tris 

and NaPP buffer in the range of pH 6 to pH 8 were prepared. Protein crude extract was 

As shown in figure 5 A the 

protein was more active in NaPP buffer as in Tris buffer of the same pH value. The pH 

optimum for both buffers was around pH 7 but the pH tolerance was in range of pH 6.5 to pH 

NaPP buffer pH 7. The tolerance towards 1 

 

 

methyltransferase in protein crude 
Tris and NaPP buffer. Protein crude extract 
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The protein activity was survived in the presence of the salts but was reduced to 55.25 % 

(NaCl), 49.93 % (KCl) and 39.8 % ((NH4)2SO4).  

 

3.4 Partial purification of the A. alternata AOH-O-methyltransferase 

In a first step purification by ion exchange chromatography was tested. Protein crude extract 

was prepared in 50 mM MES buffer pH 6.5 for cation exchange chromatography and in 20 

mM Tris/Cl buffer pH 8 for anion exchange chromatography. While the methyltransferase 

was not bound on CM Sepharose (cation exchanger) and the protein activity was detected in 

the flow-through it was bound on DEAE Sepharose (anion exchanger) and AOH-O-

methyltransferase activity was eluted as a single peak with approx. 0.3 M NaCl. These results 

may be helpful for further experiments and a subsequent application to a second weaker anion 

exchanger appears to be reasonable. 

A second strategy comprises a precipitation of protein and a subsequent application to 

hydrophobic interaction chromatography (HIC). Therefore (NH4)2SO4 precipitation tests were 

performed and protein activity was determined in pellet and supernatant fraction after 

precipitation with 20 %, 40 % and 60 % (NH4)2SO4. Approx. 70 % of protein activity was 

detected in the pellet fraction of 40 % (NH4)2SO4 precipitation (table 4). 

 

Table 4: Fractional precipitation of AOH-O-methyltransferase with solid (NH4)2SO4. Shown 
are the measured protein activities expressed in percent in supernatant and pellet fractions. 

Salt concentration Activity supernatant Activity pellet 
   0 % 100 % --- 
   20 % 70 % 10 % 
   40 % 15 % 65 % 
   60 % 0 80 % 
 

First experiments using HIC resulted in a tight binding of AOH-O-methyltransferase on the 

column material independent which type of HIC was used, e.g. Phenyl-Sepharose, Butyl-

Sepharose. An elution of protein was not possible. Further elution strategies are currently 

under investigation. 
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4. Discussion 

Contamination of food and feeds with Alternaria toxins is an unpredictable problem 

concerning health risk of humans and livestock since risk assessment data are not available. 

For a better understanding of the regulation of Alternaria toxins the knowledge of the 

biosynthetic gene clusters is crucial. This work focuses on one gene involved in the 

biosynthesis of the most studied Alternaria toxins AOH and AME which product carries out 

the methylation of AOH to AME. The biosynthetic gene of many secondary metabolites and 

therefore mycotoxins are organized in clusters: aflatoxin (Yu et al., 2004), trichothecene 

(Kimura et al., 2007), fumonisin (Procter et al., 2003) and zearalenone (Kim et al., 2005). As 

shown for O-methyltransferase I gene (dmtA) from Aspergillus parasiticus cloning of this 

gene enables identification of neighbor genes by genome walking (Motomura et al., 1999). 

For the identification of gene sequences two strategies can be pursued: a genetic strategy 

which involves knowledge about conserved regions of the respective gene/enzyme class and a 

biochemical strategy which means a purification of the protein. For both strategies a reliable 

and fast activity test is necessary which was already published for the AOH-O-

methyltransferase by Stinson and Moreau (1986) and Orvehed et al. (1988) and was adapted 

in this work.  

SAM-dependent O-methyltransferases share little sequence identity but the structural fold is 

highly conserved (Martin and McMillan, 2002). As stated by Fauman et al. (1999) a 

comparison of several SAM-dependent methyltransferases revealed a 13 % protein sequence 

identity at best. Among the non-DNA methyltransferases only three conserved motifs can be 

found (Kagan and Clarke, 1994). The comparison of 7 putative SAM-dependent O-

methyltransferases from A. brassicicola (figure 1) revealed three conserved motifs and five 

conserved residues within the alignment. Kagan and Clarke (1994) compared in their work a 

wide variety of different methyltransferases (84 in all) and named consensus sequences for the 

three found motifs. Motif I in their work corresponds to motif I in this work and comprises of 

the consensus sequence (V/I/L) (L/V) (D/E) (I/V) G (G/C) G (T/P) G. Motif I in the present 

study consist of the consensus sequence (F/L/V/I) (V/I) D (V/I/L) G G G/S X G and matches 

therefore quite well. The differences of both consensus sequences may be explained when 

sequence selection of the Kagan and Clarke (1994) study is taken into account: only one 

fungal methyltransferase was included in their comparison of 84 methyltransferases. In 

previous studies this motif was identified to be part of the SAM binding pocket (Cheng et al., 

1993). The more general consensus sequenced was determined to be h h (D/E) h G X G X G 

whereas h stands for an hydrophobic residue (Wu et al., 1992) and matches very well with 
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motif I of the present study. The hydrophobic residues form a hydrophobic platform on one 

side of the purine and ribose rings of SAM and the glycine residues are involved in proper 

positioning of the SAM in the binding pocket by forming a tight loop (Cheng et al., 1993; 

Kagan and Clarke, 1994). The second motif named by Kagan and Clarke (1994) can only be 

found in parts in the alignment of A. brassicicola methyltransferases: Q P (V/T) K (G/D) A in 

the present study compared to (P/G) (Q/T) (F/Y/A) D A (I/V/Y) (F/I) (C/V/L).  The function 

as well as the significance of motif II and III are not clear since they are not always found in 

methyltransferases (Wu et al., 1994). Although motif III of this study H D W P D  is very 

well conserved it differs completely from the described motif III L L (R/K) P G G (R/I/L) 

(L/I) (L/I/V/F) (I/L) in the Kagan and Clarke (1994) study. While common sequence motifs 

excepting motif I were not found the identified domains will help to enhance the scarce 

knowledge about fungal methyltransferases and enabled the amplification of at least four 

methyltransferases in A. alternata. The universal validity of the motifs which were revealed in 

the present work will be further investigated in related fungi.  

Based on the gene fragment the complete sequence of A. alternata gene Mt6 was elucidated. 

The translated protein sequence contained a well conserved motif I sequence L V D V G G G 

S G and shares high similarity to other fungal O-methyltrasferases. Applied to the NCBI blast 

search against the non-redundant database the translated protein sequence of Mt6 showed the 

highest identitiy of 85 % to an O-methyltransferase of Pyrenophora tritici-repentis (accession 

number XP_001937233.1) with unknown function. The sequence similarity and the presence 

of motif I suggests the protein to be an SAM-dependent O-methyltransferase. Furthermore the 

gene is expressed in AOH producing mycelium which promotes it to a promising candidate 

for AOH-O-methyltransferase. However, all attempts to get the soluble form of the protein 

failed and the proof is still required. Expression of Mt6 protein in E. coli was successful as 

shown in figure 4 but resulted in the formation of inclusion bodies. Inclusion bodies are 

formed when the heterologous protein failed to reach its native conformation due to the lack 

of post-translational modifications or high product yields obtained by strong promoters and 

high inducer concentrations (Baneyx and Mujacic, 2004). Additionally, highly hydrophobic 

proteins are more susceptible to accumulate and form inclusion bodies (Singh and Panda, 

2005). AOH-O-methyltransferase proved to be highly hydrophobic during protein 

purification. It bound tightly to Phenyl Sepharose column material and could not be eluted by 

decreasing ionic strength. As reported by Hiltunen and Söderhäll (1992) the protein can be 

eluted by using 40 % ethylene glycol. A third reason for insoluble expression in E. coli may 

be the C-terminal His-tag linked to the protein due to protein purification considerations 
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which may interfere protein folding. Nevertheless, reducing expression temperature or 

decreasing inducer concentration did not result in production of soluble protein and changing 

the expression system did not result in visible protein expression at all. Although the activity 

test was negative, it cannot be excluded completely that Mt6 protein exhibits AOH-O-

methyltransferase activity because both expression strategies failed. Nevertheless, it is also 

possible that another putative O-methyltransferase gene encodes for the protein. 

Therefore, the biochemical strategy appears to be promising and will be continued. 

Determined characteristics of unpurified enzyme are in agreement with previous studies of 

Stinson and Morau (1986) and Hiltunen and Söderhäll (1992). Tris buffer inhibits strongly 

enzyme activity. At pH 7.0 the activity was reduced to 22 % in Tris buffer compared to 

phosphate buffer which matches with reported 19.1 % by Stinson and Moreau (1986). 

Additionally pH optimum was described between pH 7 and 8 (Stinson and Moreau, 1986) 

which was confirmed in this study. High salt tolerance enables different purification 

strategies. Anion exchange chromatography showed to be very encouraging and will be the 

basis for further purification attempts. 

The final aim of this study is the identification of the whole gene cluster responsible for AOH 

and AOH-derivative production. To achieve this aim only the sequence of one gene is 

theoretically necessary because further sequences of the cluster can be obtained by PCR based 

methods. Nevertheless, the public accessibility of the A. alternata genome would simplify the 

cluster identification and would offer the possibility to elucidate the function of other 

polyketide cluster as a previous study revealed the existence of 11 putative polyketide 

synthases in A. alternata which are organized in clusters (Fetzner et al., 2011). 
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V. Concluding Remarks 

In the present work a reproducible process was developed. As shown in chapter 4.2 this 

process enables variation of all process parameters and research of their effects on mycotoxin 

production. Due to medium optimization mycotoxin concentrations of 7.75 mg/L (30 µM) 

AOH, 4.81 mg/L (17.7 µM) AME and 36.54 mg/L (185.3 µM) TA were obtained by 

fermentation with glucose and aspartic acid. This process offers the possibility for a scale-up 

to larger volumes. For fungal fermentations other fermentation systems may be more 

favorable, e.g. solid-state fermentation or airlift reactor systems, and complex media can 

enhance the production yield. Furthermore, the knowledge of the biosynthetic genes would 

allow genetic manipulation of the production strain for further increase of production yields 

and to ensure the production of a single toxin by knockout of other mycotoxin production 

genes. Therefore, this work provides a good basis and offers a high potential for further 

process optimization. However, as shown by previous toxicological studies, significant effects 

of Alternaria toxins appeared in the µM-range which can be provided by the presented 

process. The mycotoxins can be purified easily by extraction with different solvents and a 

subsequent one-step chromatography. Protocols were published for the extraction and 

purification in gram-quantities (Chu and Bennett, 1981). 

Alternaria toxins can be produced both biotechnologically and chemically. The biochemically 

produced mycotoxins AOH, AME and TA can be purchased from Sigma-Aldrich. At the time 

of this writing the costs for the mycotoxins are as follows (excluding value added tax): 5 mg 

AOH 411 €, 5 mg AME 187.50 €, 10 mg TA copper salt 201.50 €. The prices varied 

considerably during this thesis; in the beginning costs for AOH and AME were considerably 

higher (around 600 € per 5 mg) and ALT was still offered. Details about production process 

or purification strategies were not provided by Sigma-Aldrich. The costs of the presented 

process in this work are considerably lower due to the simultaneous production of all three 

mycotoxins. Alternatively, total chemical syntheses of AOH/AME (Koch et al., 2005), 

ALT/iso-ALT (Altemöller et al., 2006) and TA (Schobert et al., 2004) were developed. In 

case of AOH and AME the palladium-catalyzed synthesis comprised seven steps and 

achieved an overall yield of 22.2 %. The synthesis required approximately 14 days. The 

chemical synthesis is time-consuming and expensive; in a small scale, i.e. few milligrams, 

biotechnological produced mycotoxin is therefore more cost-effective (J. Podlech, personal 

communication). Consequently, a reproducible process was established which was primarily 

intended for the study of mycotoxin production, but which is also competitive to chemical 

synthesis and can provide sufficient amounts of mycotoxins for toxicological studies.  



VI. References 
 

133 

VI. References 

Abarca M.L., Bragulat M.R., Castellá G., Cabañes F.J., (1994). Ochratoxin A production 
 by strains of Aspergillus niger var. niger. Appl Environ Microbiol. 60: 2650-2652. 

Abbas H.K., Riley R.T., (1996). The presence and phytotoxicity of fumonisins and AAL-
 toxin in Alternaria alternata. Toxicon. 34: 133-136. 

Abid-Essefi S., Bouaziz C., Golli-Bennour E.E., Ouanes Z., Bacha H., (2009). 
 Comparative study of toxic effects of zearalenone and its two major metabolites alpha-
 zearalenol and beta-zearalenol on cultured human Caco-2 cells. J Biochem Mol 
 Toxicol. 23: 233-243. 

Adinarayana K., Prabhakar T., Srinivasulu V., Rao M.A., Lakshmi P.J., Ellaiah P., 
 (2003). Optimization of process parameters for cephalosporin C production under 
 solid state fermentation from Acremonium chrysogenum. Process Biochem. 39: 171-
 177.  
 
Adrio J.L, Demain A.L., (2003). Fungal Biotechnology. Int Microbiol. 6: 191-199. 

Altemöller M., Podlech J., Fenske D., (2006). Total synthesis of altenuene and isoaltenuene. 
European J Org Chem. 2006: 1678-1684. 

 
An Y., Zhao T., Miao J., Liu G., Zheng Y., Xu Y., van Etten R.L., (1989). Isolation, 
 identification, and mutagenicity of alternariol monomethyl ether. J Agaric Food Chem. 
 37: 1341-1343. 
 
Andersen B., Frisvad J.C., (2004). Natural occurrence of fungi and fungal metabolites in 
 moldy tomatoes. J Agric Food Chem. 52: 7507-7513. 

Andersen B., Smedsgaard J., Jorring I., Skouboe P., Pedersen L.H., (2006). Real-time 
 PCR quantification of the AM-toxin gene and HPLC quantification of toxigenic 
 metabolites from Alternaria species from apple. Int J Food Microbiol. 11: 105–111. 

Ansari A.A., Shrivastava A.K., (1990). Natural occurrence of Alternaria mycotoxins in 
 sorghum and ragi from North Bihar, India. Food Addit Contam. 7: 815-820. 

Aradhya M.K., Chan H.M., Parfitt, D.E., (2001). Genetic variability in the pistachio late 
 blight fungus, Alternaria alternata. Mycol Res. 105: 300-306. 

Aranda C., Robledo A., Loera O., Contreras-Esquivel J.C., Rodríguez R., Aguilar C.N., 
 (2006). Fungal invertase expression in solid-state fermentation. Food Technol 
 Biotechnol. 44: 229-233. 
 
Archer D.B., (2000). Filamentous fungi as microbial cell factories for food use. Curr Opin 
 Biotechnol. 11: 478-483. 
 
Archer D.B., Jeenes D.J., Mackenzie D.A., (1994). Strategies for improving heterologous 
 protein production from filamentous fungi. Antonie Van Leeuwenhoek. 65: 245-250. 
 
Azcarate M.P., Patriarca A., Terminiello L., Fernández Pinto V., (2008). Alternaria 
 toxins in wheat during the 2004 to 2005 Argentinean harvest. J Food Prot. 71: 1262-
 1265. 



VI. References 
 

134 

Balakrishnan K., Pandey A., (1996). Production of biologically active secondary 
 metabolites in solid state fermentation. J Sci Ind Res. 55: 365–372. 
 
Barkai-Golan R., (2001). Post-harvest diseases of fruits and vegetables, development and 
 control. Elsevier, Amsterdam. 
 
Barkai-Golan R., (2002). An annotated check-list of post-harvest fungal diseases of fruits 
 and vegetables in Israel. In: Department of Postharvest Science of Fresh Produce. 2. 
 Edition. ARO, the Volcani Center, Bet Dagan, Israel. 
 
Barkai-Golan R., (2008). Alternaria mycotoxins. In: Barkai-Golan R., Paster N., (Eds.): 
 Mycotoxins in fruits and vegetables. Elsevier, San Diego, CA, USA. 
 
Barrios-Gonzáles J., Fernández F.J., Tomasini A., Mejia A., (2005). Secondary 
 metabolites production by solid-state fermentation. MJM. 1: 1-6. 

Barrios-González J., Mejía A., (1996). Production of secondary metabolites by solid-state 
 fermentation. Biotechnol Annu Rev. 2: 85-121. 
 
Bayman P., Baker J.L., Doster M.A., Michailides T.J., Mahoney N.E., (2002). Ochratoxin 
 production by the Aspergillus ochraceus group and Aspergillus alliaceus. Appl 
 Environ Microbiol. 68: 2326-2329. 

Bennett J.W., Klich M., (2003). Mycotoxins. Clin Microbiol Rev. 16: 497–516. 
 
Bermek H., Gülseren I., Li K., Jung H., Tamerler C., (2004). The effect of fungal 
 morphology on ligninolytic enzyme production by a recently isolated wood-degrading 
 fungus Trichophyton rubrum LSK-27. World J Microbiol Biotechnol. 20: 345-349. 
 
Bezuidenhout S.C., Gelderblom W.C.A., Gorst-Allman C.P., Horak R.M., Marasas 
 W.F.O., Spiteller G., Vleggaar R., (1988). Structure elucidation of the fumonisins, 
 mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun. 1988: 743-745. 
 
Bhatnagar D., Yu J., Ehrlich K.C. (2002). Toxins of Filamentous Fungi. In Breitenbach 
 M., Crameri R., Lehrer S.B. (Eds): Fungal Allergy and Pathogenicity. Chem Immunol. 
 Basel, Karger, 81: 167–206. 

Blanc P.J., Loret M.O., Goma G., (1995). Production of citrinin by various species of 
 Monascus.  Biotechnol Lett. 17: 291-294. 
 
Bottalico A., Logrieco A., (1998). Toxigenic Alternaria species of economic importance. In 
 Sinha K.K., Bhatnager D., (Eds.), Mycotoxins in agriculture and food safety. Marcel 
 Dekker, New York. 
 
Bresler G., Brizzio S.B., Vaamonde G., (1995). Mycotoxin-producing potential of fungi 
 isolated from amaranth seeds in Argentina. Int J Food Microbiol. 25: 101-108. 
 
Broggi L.E., González H.H., Resnik S.L., Pacin A., (2007). Alternaria alternata prevalence 
 in cereal grains and soybean seeds from Entre Ríos, Argentina. Rev Iberoam Micol. 
 24: 47-51. 
 



VI. References 
 

135 

Brugger E.M., Wagner J., Schumacher D.M., Koch K., Podlech J., Metzler M., 
 Lehmann L., (2006). Mutagenicity of the mycotoxin alternariol in cultured 
 mammalian cells. Toxicol Lett. 164: 221-230.  

Bundesinstitut für Risikobewertung (BfR), (2003). Stellungnahme des BfR vom 30. Juli 
 2003: Alternaria-Toxine in Lebensmitteln. Available at: 
 http://www.bfr.bund.de/cm/208/alternaria_toxine_in_lebensmitteln.pdf  

Burroughs R., Seitz L.M., Sauer D.B., Mohr H.E., (1976). Effect of substrate on metabolite 
 production of Alternaria alternata. Appl Environ Microbiol. 31: 685-690. 
 
Cary J.W., Bhatnagar D., Linz J.E., (2000). Aflatoxin: Biological significance and 
 regulation of biosynthesis. In Cary J.W., Linz J.E., Bhatnagar D., (Eds.): Microbial 
 foodborne diseases. Mechanisms of pathogenesis and toxin synthesis. Lancaster, 
 Technomic Publishing. 
 
Chakravarthi B.V., Das P., Surendranath K., Karande A.A., Jayabaskaran C., (2008). 
 Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J Biosci. 
 33: 259-267. 

Chełkowski J., Visconti A., (Eds.) (1992). Alternaria. Biology, plant diseases and 
metabolites.  Elsevier, Amsterdam, the Netherlands. 

Chu F.S., (1997). Trichothecene mycotoxicosis. In Dulbecco R., (Eds.): Encyclopedia of 
 Human Biology, 2. Edition, Academic Press, New York, N.Y. 
 
Chu F.S., Bennett S.C., (1981). High-performance liquid chromatographic preparation of 

alternariol, alternariol methyl ether, and altenuene. J Assoc Off Anal Chem. 64: 950-
954. 

 
Ciegler A., (1977). Patulin. In Rodricks J.V., Hesseltine C.W., Mehlman M.A., (Eds.): 
 Mycotoxins in human and animal health. Pathotox Publisher, Inc., Park Forest South, 
 Ill. 
 
Ciegler A., Detroy R.W., Lillejoj E.B. (1971). Patulin, penicillic acid and other carcinogenic 
 lactones. In Ciegler A., Kadis S., Ajl S.J., (Eds.): Microbial toxins, vol VI: Fungal 
 toxins. Academic Press, New York, N.Y. 
 
Ciegler A., Fennell D.J., Mintzlaff H.J., Leistner L., (1972). Ochratoxin synthesis by 
 Penicillium species. Naturwissenschaften. 59: 365-366. 
 
Clarke C.H., Wade M.J., (1975). Evidence that caffeine, 8-methoxypsoralen and steroidal 
 diamines are frameshift mutagens for E. coli K-12. Mutat Res. 28: 123-125.  

Combina M., Dalcero A., Varsavsky E., Torres A., Etcheverry M., Rodriguez M., 
 Gonzalez Quintana H., (1999). Effect of heat treatments on stability of alternariol, 
 alternariol monomethyl ether and tenuazonic acid in sunflower flour. Mycotoxin Res. 
 15: 33-38.  
 
Couto S.R., Sanromán M.A., (2006). Application of solid-state fermentation to food 
 industry - A review. Journal of Food Engineering. 76: 291-302.  

Creppy E.E., (1999). Human ochratoxicosis. J Toxicol 18: 277-293. 



VI. References 
 

136 

Cullen J.M., Ruebner B.H., Hsieh L.S., Hyde D.M., Hsieh D.P., (1987). Carcinogenicity of 
 dietary aflatoxin M1 in male Fischer rats compared to aflatoxin B1. Cancer Res. 47: 
 1913-1917. 
 
Cundliffe E., Cannon M., Davies J., (1974). Mechanism of inhibition of eukaryotic protein 
 synthesis by trichothecene fungal toxins. Proc Natl Acad Sci U S A. 71: 30-34. 

Czech Scientific Committee on Food (CSCF), (2007). Scientific opinion of the Czech 
 Scientific Committee on Food to Alternaria mycotoxins. Brno, Czech Republic. 
 Available at: http://www.chpr.szu.cz/ 

Davis N.D., Diener U.L., Morgan-Jones G., (1977). Tenuazonic acid production by 
 Alternaria alternata and Alternaria tenuissima isolated from cotton. Appl Environ 
 Microbiol. 34: 155-157. 
 
Davis V.M., Stack M.E., (1994). Evaluation of alternariol and alternariol methyl ether for 
 mutagenic activity in Salmonella typhimurium. Appl Environ Microbiol. 60: 3901-
 3902. 
 
Delgado T., Gómez-Cordovés C., (1998). Natural occurrence of alternariol and alternariol 
 methyl ether in Spanish apple juice concentrates. J Chromatogr A. 815: 93-97. 

Demain A.L., (1986). Regulation of secondary metabolism in fungi. Pure Appl Chem. 58: 
 219-226. 

DiCosmo F., Straus N.A., (1985). Alternariol, a dibenzopyrone mycotoxin of Alternaria 
 spp., is a new photosensitizing and DNA cross-linking agent. Experientia. 41: 1188-
 1190. 

Dong Z.G., Liu G.T., Dong Z.M., Qian Y.Z., An Y.H., Miao J.A., Zhen Y.Z., (1987). 
 Induction of mutagenesis and transformation by the extract of Alternaria alternata 
 isolated from grains in Linxian, China. Carcinogenesis. 8: 989-991. 
 
Droby S., Dinoor A., Prusky D., Barkai-Golan R., (1984). Pathogenicity of Alternaria 
 alternata on potato in Israel. Phytopathology. 74: 537-542. 

Eaton D.L., Groopman J.D., (Eds.) (1994). The toxicology of aflatoxins -  Human health, 
 Veterinary and Agricultural  significance. Academic Press, New York N.Y. 
 
Elander R.P., (2003). Industrial production of β-lactam antibiotics. Appl Microbiol 
 Biotechnol. 61: 385–392. 

Ellis, M.B., (1971). Dematiaceous hyphomycetes. Commonwealth Mycological Institute, 
 London, Kew, UK. 
 
Ellis, M.B., (1976). More dematiaceous hyphomycetes. Commonwealth Mycological 
 Institute, London, Kew, UK. 
 
Elmayergi H., Scharer J.M., Moo-Young M., (1973). Effects of polymer additives on 
 fermentation parameters in a culture of A. niger. Biotechnol Bioeng. 15: 845-859. 
 



VI. References 
 

137 

Eroshin V.K., Satroutdinov A.D., Dedyukhina E.G., Chistyakova T.I., (2000). 
 Arachidonic acid production by Mortierella alpina with growth-coupled lipid 
 synthesis. Process Biochem. 35: 1171-1175.  

Fehr M., Pahlke G., Fritz J., Christensen M.O., Boege F., Altemöller M., Podlech J., 
 Marko D., (2009). Alternariol acts as a topoisomerase poison, preferentially affecting 
 the IIalpha isoform. Mol Nutr Food Res. 53: 441-451. 
 
Flieger M., Wurst M., Shelby R., (1997). Ergot alkaloids - sources, structures and analytical 
 methods. Folia Microbiol (Praha). 42: 3-29. 
 
Fox E.M., HowlettB.J., (2008). Secondary metabolism: regulation and role in fungal biology. 
 Curr Opin Microbiol. 11: 481-487. 

Freeman G.G., (1966). Isolation of alternariol and alternariol monomethyl ether from 
 Alternaria dauci (kühn) groves and skolko. Phytochemistry. 5: 719-721. 
 
Galhaup C., Wagner H., Hinterstoisser B., Haltrich D., (2002). Increased production of 
 laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb 
 Technol. 30: 529-536. 

Gatenbeck S., Hermodsson S., (1965). Enzymic synthesis of the aromatic product 
 alternariol. Acta Chem Scand. 19: 65-71. 
 
Gatenbeck S., Sierankiewicz J., (1973). On the biosynthesis of tenuazonic acid in Alternaria 
 tenuis. Acta Chem Scand. 27: 1825-1827. 
 
Gelderblom W.C., Jaskiewicz K., Marasas W.F., Thiel P.G., Horak R.M., Vleggaar R., 
 Kriek N.P., (1988). Fumonisins - novel mycotoxins with cancer-promoting activity 
 produced by Fusarium moniliforme. Appl Environ Microbiol. 54: 1806-1811. 
 
Giambrone J.J., Davis N.D., Diener U.L., (1978). Effect of tenuazonic acid on young 
 chickens. Poult Sci. 57: 1554-1558. 

Gitterman C.O., (1965). Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid 
and congeneric tetramic acids. J Med Chem. 8: 483-486. 

 
Goldblatt L., (Eds.) (1969). Aflatoxin, scientific background, control, and implications. 
 Academic Press, New York, N.Y. 
 
Gouka R.J., Gerk C., Hooykaas P.J., Bundock P., Musters W., Verrips C.T., de Groot 
 M.J., (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-
 mediated homologous recombination. Nat Biotechnol. 17: 598-601. 

Gouka R.J., Punt P.J., van den Hondel C.A., (1997). Glucoamylase gene fusions alleviate 
 limitations for protein production in Aspergillus awamori at the transcriptional and 
 (post) translational levels. Appl Environ Microbiol. 63: 488-497. 
 
Granado J., Thürig B., Kieffer E., Petrini L., Fliessbach A., Tamm L., Weibel F.P., Wyss 
 G.S., (2008). Culturable fungi of stored 'golden delicious' apple fruits: a one-season 
 comparison study of organic and integrated production systems in Switzerland. 
 Microb Ecol. 56: 720-732.  



VI. References 
 

138 

Grewal H.S., Kalra K.L., (1995). Fungal production of citric acid. Biotechnol Adv. 13: 209-
 234. 

Griffin G.F., Chu F.S., (1983). Toxicity of the Alternaria metabolites alternariol, alternariol 
 methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Appl 
 Environ Microbiol. 46: 1420-1422. 

Guo L.-D., Xu L., Zheng W.-H., Hyde K.D. (2004). Genetic variation of Alternaria 
 alternata, an endophytic fungus isolated from Pinus tabulaeformis as determined by 
 random amplified microsatellites (RAMS). Fungal Divers. 16: 53-65.  
 
Häggblom P., Niehaus W.G., (1986). Light effects on polyketide metabolism in Alternaria 
 alternata. Exp Mycol. 10: 252-255. 
 
Häggblom P., Unestam T., (1979). Blue light inhibits mycotoxin production and increases 
 total lipids and pigmentation in Alternaria alternata. Appl Environ Microbiol. 38: 
 1074-1077. 

Harrison L.R., Colvin B.M., Greene J.T., Newman L.E., Cole J.R. Jr., (1990). Pulmonary 
 edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of 
 Fusarium moniliforme. J Vet Diagn Invest. 2: 217-221. 
 
Harwig J., Scott P.M., Stoltz D.R., Blanchfield B.J., (1979). Toxins of molds from 
 decaying tomato fruit. Appl Environ Microbiol. 38: 267-274. 

Hasan H.A.H., (1995). Alternaria mycotoxins in black rot lesion of tomato fruit: Conditions 
 and regulation of their production. Mycopathologia 130: 171-177. 

Hasija S.K., (1970). Physiological studies of Alternaria citri and A. tenuis. Mycopathologia. 
 130: 171-177. 
 
Hatta R., Ito K., Hosaki Y., Tanaka T., Tanaka A., Yamamoto M., Akimitsu K., Tsuge 
 T., (2002). A conditionally dispensable chromosome controls host-specific 
 pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics. 161: 59-70. 
 
Hetherington A.C., Raistrick H., (1931). Studies in the biochemistry of microorganisms. 
 Part XIV: On the production and chemical constitution of a new yellow colouring 
 matter, citrinin, produced from glucose by Penicillium citrinum THOM. Philos Trans 
 R Soc Lond B Biol Sci. 220: 269-295. 
 
Hiltunen M., Söderhäll K., (1992). Alternariol-O-methyltransferase from Alternaria 

alternata: Partial purification and relation to polyketide synthesis. Exp Mycol. 16: 44-
51. 

 
Hölker U., Höfer M., Lenz J., (2004). Biotechnological advantages of laboratory-scale solid-
 state fermentation with fungi. Appl Microbiol Biotechnol. 64: 175-186.  

Hradil C.M., Hallock Y.F., Clardy J., Kenfield D.S., Strobel G., (1989). Phytotoxins of 
 Alternaria cassiae. Phytochemistry. 28: 73-75. 

Hussein H.S., Brasel J.M., (2001). Toxicity, metabolism, and impact of mycotoxins on 
 humans and animals. Toxicology. 167 (2): 101–34. 
 



VI. References 
 

139 

Isaac C.E., Jones A., Pickard M.A., (1990). Production of cyclosporins by Tolypocladium 
niveum strains. Antimicrob Agents Chemother. 34: 121-127. 

Iwasaki S., Muro H., Nozoe S., Okuda, S., Sato Z., (1972). Isolation of 3,4–dihydro–3,4,8–
 trihydroxy–2(2H)–naphthalenone and tenuazonic acid from Pyricularia oryzae 
 Cavara. Tetrahedron Lett. 1: 13-16. 

Jong C.S., Birmingham J.M., Ma G., (1994). ATCC names of industrial fungi. Maryland, 
 USA: American Type Culture Collection. 
 
Jordan W.H., Carlton W.W., Sansing G.A., (1978). Citrinin mycotoxicosis in the rat. I. 
 Toxicology and pathology. Food Cosmet Toxicol. 16: 431-439. 
 
Jürgensen C.W., Madsen A., (2009). Exposure to the airborne mould Botrytis and its health 
 effects. Ann Agric Environ Med. 16: 183-196. 
 

Kameda K., Aoki H., Tanaka H., Namiki M., (1973). Studies on metabolites of Alternaria 
 kikuchiana Tanaka, a phytopathogenic fungus of Japanese pear. Agric Biol Chem. 37: 
 2137-2146. 
 
Keller N.P., Hohn T.M., (1997). Metabolic pathway gene clusters in filamentous fungi. 

Fungal Genet Biol. 21: 17-29. 
 
Keller N.P., Nesbitt C., Sarr B., Phillips T.D., Burow G.B., (1997). pH regulation of 
 sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytochemistry. 87: 
 643-648. 

Keller S.E., Sullivan T.M., Chirtel S., (1997). Factors affecting the growth of Fusarium 
 proliferatum and the production of fumonisin B1: oxygen and pH. J Ind Microbiol 
 Biotechnol. 19: 305-309. 

Keweloh H., (2006). Mikroorganismen in Lebensmitteln -  Theorie und Praxis der 
 Lebensmittelhygiene. 1. Edition, Pfanneberg Verlag. 
 
Kinoshita T., Renbutsu Y., Khan I.D., Kohmoto K., Nishimura S., (1972). Distribution of 
 tenuazonic acid production in the genus Alternaria and its phytopathological 
 evaluation. Annals of the Phytopathological Society of Japan. 38: 397-404. 
 
Klaffke H., (2010). Biotoxine und herstellungsbedingte Kontaminanten. In: Frede H. (Eds.). 
 Handbuch für Lebensmittelchemiker. 3. Edition, Springer Verlag Berlin Heidelberg. 
 
Koch K., Podlech J., Pfeiffer E., Metzler M., (2005). Total synthesis of alternariol. J Org 

Chem. 70: 3275-3276. 
 
Köppen R., Koch M., Siegel D., Merkel S., Maul R., Nehls I., (2010). Determination of 
 mycotoxins in foods: current state of analytical methods and limitations. Appl 
 Microbiol Biotechnol. 86: 1595-1612. 
 
Kohmoto K., Otani H., Tsuge T., (1995). Alternaria alternata pathogens. In: Kohmoto K., 
 Singh U.S., Singh R.P. (Eds.), Pathogenesis and host specificity in plant diseases: 



VI. References 
 

140 

 Histopathological, biochemical, genetic and molecular bases, Vol II, Eukaryotes. 
 Pergamon Oxford. 
 
Kohmoto K., Scheffer R.P., Whiteside J.O., (1979). Host-selective toxins from Alternaria 
 citri. Phytopathology. 69: 667-671. 

Kohut G., Adám A.L., Fazekas B., Hornok L., (2009). N-starvation stress induced FUM 
 gene expression and fumonisin production is mediated via the HOG-type MAPK 
 pathway in Fusarium proliferatum. Int J Food Microbiol. 130: 65-69.  
 
Kosiak B., Torp M., Skjerve E., Andersen B., (2004). Alternaria and Fusarium in 
 Norwegian grains of reduced quality--a matched pair sample study. Int J Food 
 Microbiol. 93: 51-62. 

Kossen, N.W.F., (2000). The morphology of filamentous fungi. Adv Biochem Eng 
 Biotechnol. 70: 1-33. 

Kuiper-Goodman T., Scott P.M., (1989). Risk assessment of the mycotoxin ochratoxin A. 
 Biomed Environ Sci. 2: 179-248. 

Kück U., Nowrousian M., Hoff B., Engh I., (2009). Schimmelpilze – Lebensweise, Nutzen, 
 Schaden, Bekämpfung. 3. Edition. Springer Verlag Berlin Heidelberg. 

Kütt M.-L., Lõiveke H., Tanner R., (2010). Detection of alternariol in Estonian grain 
 samples. Agronomy Research. 8: 317-322. 
 
Kwak M.Y., Rhee J.S., (1992). Cultivation characteristics of immobilized Aspergillus oryzae 
 for kojic acid production. Biotechnol Bioeng. 39: 903-906. 
 
Kwasna H.A., (1992). Ecology and nomenclature of Alternaria. In: Chelkowsky J., Visconti 
 A. (Eds.): Alternaria biology, plant diseases and metabolites, topics in secondary 
 metabolism. Vol. 3, Elsevier, Amsterdam. 
 
Lau B.P., Scott P.M., Lewis D.A., Kanhere S.R., Cléroux C., Roscoe V.A., (2003). Liquid 
 chromatography-mass spectrometry and liquid chromatography-tandem mass 
 spectrometry of the Alternaria mycotoxins alternariol and alternariol monomethyl 
 ether in fruit juices and beverages. J Chromatogr A. 998: 119-131. 
 
Lee C.K., Darah I., Ibrahim C.O., (2011). Production and optimization of cellulase enzyme 
 using Aspergillus niger USM AI 1 and comparison with Trichoderma reesei via solid 
 state fermentation system. Biotechnol Res Int. Epub 2010 Oct 11. 
 
Lehmann L., Wagner J., Metzler M., (2006). Estrogenic and clastogenic potential of the 
 mycotoxin alternariol in cultured mammalian cells. Food Chem Toxicol. 44: 398-408. 
 
Li F., Yoshizawa T., (2000). Alternaria mycotoxins in weathered wheat from China. J Agric 
 Food Chem. 48: 2920-2924. 
 
Li F.Q., Toyazaki N., Yoshizawa T., (2001). Production of Alternaria mycotoxins by 
 Alternaria alternata isolated from weather-damaged wheat. J Food Prot. 64: 567-571. 
 
Light R., (1970). Enzymic studies on the polyketide hypothesis. J Agric Food Chem. 18: 260-
 267. 



VI. References 
 

141 

Liu G.T., Qian Y.Z., Zhang P., Dong Z.M., Shi Z.Y., Zhen Y.Z., Miao J., Xu Y.M., 
 (1991). Relationships between Alternaria alternata and oesophageal cancer. IARC Sci 
 Publ. 105: 258-262. 

Liu G.T., Qian Y.Z., Zhang P., Dong W.H., Qi Y.M., Guo H.T., (1992). Etiological role of 
 Alternaria alternata in human esophageal cancer. Chin Med J (Engl). 105: 394-400. 
 
Lockhart C.L., Forsyth F.R., (1974). Alternaria alternata storage decay of pears. Can Plant 
 Dis Surv. 54: 101-102. 
 
Logrieco A., Visconti A., Bottalico A., (1990). Mandarin fruit rot caused by Alternaria 
 alternata and associated mycotoxins. Plant Dis. 74: 415-417. 
 
Logrieco A., Moretti A., Solfrizzo M., (2009). Alternaria toxins and plant diseases: an 
 overview of origin, occurrence and risks. World Mycotoxin Journal 2: 129–140. 
 

Lorenz K., Hoseney R.C., (1979). Ergot on cereal grains. Crit Rev Food Sci Nutr. 11: 311-
 354. 

Lucas G.B., Pero R.W., Snow J.P., Harvan D., (1971). Analysis of tobacco for the 
 Alternaria toxins, alternariol and alternariol monomethyl ether. J Agric Food Chem. 
 19: 1274-1275. 
 
Machado C.M., Oishi B.O., Pandey A., Soccol C.R., (2004). Kinetics of Gibberella 
 fujikuroi growth and gibberellic acid production by solid-state fermentation in a 
 packed-bed column bioreactor. Biotechnol Prog. 20: 1449-1453. 
 
Macris J.B., Kourentzi E., Hatzinikolaou D.G., (1996). Studies on Localization and 
 Regulation of Lipase Production by Aspergillus niger. Process Biochem. 31: 807-812. 
 
Magan N., Cayley G.R., Lacey J., (1984). Effect of water activity and temperature on 
 mycotoxin production by Alternaria alternata in culture and on wheat grain. Appl 
 Environ Microbiol. 47: 1113-1117. 

Magan N., Lacey J., (1984). Effect of temperature and pH on water relations of field and 
 storage fungi. Trans Br mycol Soc. 82: 71–81. 
 
Magan N., Lacey K., (1984b). Effects of gas composition and water activity on growth of 
 field and storage fungi and their interactions. Trans Br mycol Soc. 82: 305-314. 
 
Manabe M. (2001). Fermented foods and mycotoxins. Mycotoxins 51: 25-29. 
 
Marasas W.F.O., (2001). Discovery and Occurrence of the Fumonisins: A Historical 
 Perspective. Programme on Mycotoxins and Experimental Carcinogenesis, Medical 
 Research Council, Tygerberg, South Africa. 

Marasas W.F.O., Nelson P.E., Toussoun T.A., (1984). Toxigenic Fusarium species: 
 identity and mycotoxicosis. The Pennsylvania State University Press, University Park, 
 Pa. 
 



VI. References 
 

142 

Markey C.M., Michaelson C.L., Sonnenschein C., Soto A.M., (2001). Alkylphenols and 
 Bisphenol A as environmental estrogens. In Metzler M. (Eds.): The handbook of 
 environmental chemistry, Vol 3L: Endocrine disruptors. Springer Berlin Heidelberg. 
 
Mattern I.E., van Noort J.M., van den Berg P., Archer D.B., Roberts I.N., van den 
 Hondel C.A., (1992). Isolation and characterization of mutants of Aspergillus niger 
 deficient in extracellular proteases. Mol Gen Genet. 234: 332-336. 
 
Medina A., Mateo E.M., Valle-Algarra F.M., Mateo F., Mateo R., Jiménez M., (2008). 
 Influence of nitrogen and carbon sources on the production of ochratoxin A by 
 ochratoxigenic strains of Aspergillus spp. isolated from grapes. Int J Food Microbiol. 
 122: 93-99.  
 
Medina A., Valle-Algarra F.M., Mateo R., Gimeno-Adelantado J.V., Mateo F., Jiménez 
 M., (2006). Survey of the mycobiota of Spanish malting barley and evaluation of the 
 mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Int 
 J Food Microbiol.  108: 196-203. 
 
Megee R.D. 3rd, Kinoshita S., Fredrickson A.G., Tsuchiya H.M., (1970). Differentiation 
 and product formation in molds. Biotechnol Bioeng. 12: 771-801. 

Meronuck R.A., Steele J.A., Mirocha C.J., Christensen C.M., (1972). Tenuazonic acid, a 
 toxin produced by Alternaria alternata. Appl Microbiol. 23, 613–617. 
 
Mikami Y., Nishijima Y., Imura H., Suzuki A., Tamura S., (1971). Chemical studies on 
 brown-spot disease of tobacco plants. Part I. Tenuazonic acid as vivotoxin of 
 Alternaria longipes. Agric Biol. Chem. 35: 611-618. 
 
Miller F.A., Rightsel W.A., Sloan B.J., Ehrlich J., French J.C., Bartz Q.R., Dixon G.J., 
 (1963). Antiviral activity of tenuazonic acid. Nature 200: 1338-1339. 
 
Mirocha C.J., Gilchrist D.G., Shier W.T., Abbas H.K., Wen Y., Vesonder R.F., (1992). 
 AAL toxins, fumonisins (biology and chemistry) and host-specificity concepts. 
 Mycopathologia. 117: 47-56. 
 
Mislivec P.B., Dieter C.T., Bruce V.R., (1975). Mycotoxin-producing potential of mold 
 flora of dried beans. Appl Microbiol. 29:522-526. 
 
Moralejo F.J., Cardoza R.E., Gutierrez S., Martin J.F., (1999). Thaumatin production in 
 Aspergillus awamori by use of expression cassettes with strong fungal promoters and 
 high gene dosage. Appl Environ Microbiol. 65: 1168-1174. 
 
Motta S.D., Valente Soares L.M., (2001). Survey of Brazilian tomato products for 
 alternariol, alternariol monomethyl ether, tenuazonic acid and cyclopiazonic acid. 
 Food Addit Contam. 18: 630-634. 
 
Mücke W., Lemmen C., (2004). Schimmelpilze – Vorkommen, Gesundheitsgefahren, 
 Schutzmaßnahmen. 3. Edition. Edomed Verlag. 
 
Nawaz S., Scudamore K.A., Rainbird S.C., (1997). Mycotoxins in ingredients of animal 
 feeding stuffs: I. Determination of Alternaria mycotoxins in oilseed rape meal and 
 sunflower seed meal. Food Addit Contam. 14: 249-262. 



VI. References 
 

143 

Nees von Esenbeck C.G., (1917). Das System der Pilze und Schwämme. Ein Versuch. Band 
 1, Würzburg. 
 
Neergaard P., (1945). Danish species of Alternaria and Stemphylum. Oxford University 
 Press, London. 
 
Nishimura S., Kohmoto K., (1983). Host-specific toxins and chemical structures from 
 Alternaria species. Annu Rev Phytopathol. 21: 87-116. 
 
Olsen M., Visconti A., (1988). Metabolism of alternariol monomethyl ether by porcine liver 
 and intestinal mucosa in vitro. Toxicol In Vitro. 2: 27-29. 
 
Ostry V., (2008). Alternaria mycotoxins: an overview of chemical characterization, 
 producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin Journal. 
 1: 175-188.  
 
Oviedo M.S., Ramirez M.L., Barros G.G., Chulze S.N., (2010). Impact of water activity 
 and temperature on growth and alternariol and alternariol monomethyl ether 
 production of Alternaria alternata isolated from soybean. J Food Prot. 73: 336-343. 
 
Ozcelik S., Ozcelik N., Beuchat L.R., (1990). Toxin production by Alternaria alternata in 
 tomatoes and apples stored under various conditions and quantitation of the toxins by 
 high-performance liquid chromatography. Int J Food Microbiol. 11: 187–194. 
 
Panigrahi S., (1997). Alternaria toxins. In D´Mello J.P.F., (Eds.): Handbook of plant and 
 fungal toxicants. CRC Press, Boca Raton, Florida. 
 
Papagianni M., (2004). Fungal morphology and metabolite production in submerged 
 mycelial processes. Biotechnol Adv. 22: 189-259. 
 
Panigrahi S., Dallin S., (1994). Toxicity of the Alternaria spp metabolites, tenuazonic acid, 
 alternariol, altertoxin-I, and alternariol monomethyl ether to brine shrimp - (Artemia 
 salina L) larvae. J Sci Food Agric. 66: 493-496. 
 
Pariza M.W., Johnson E.A., (2001). Evaluating the safety of microbial enzyme preparations 
 used in food processing: update for a new century. Regul Toxicol Pharmacol. 33: 173-
 186. 
 
Patriarca A., Azcarate M.B., Terminiello L., (2007). Mycotoxin production by Alternaria 
 strains isolated from Argentinean wheat. Int J Food Microbiol. 119: 219–222. 
 
Pero R.W., Posner H., Blois M., Harvan D., Spalding J.W. (1973). Toxicity of metabolites 
 produced by the "Alternaria". Environ Health Perspect. 4: 87-94. 
 
Petrini L.E., Petrini O., (2008). Schimmelpilze und deren Bedeutung. 2. Edition. Cramer 
 Verlag, Berlin Stuttgart. 
 
Pfeiffer E., Eschbach S., Metzler M., (2007). Alternaria toxins: DNA strand-breaking 
 activity in mammalian cells in vitro. Mycotoxin Res. 23: 152-157. 
 



VI. References 
 

144 

Pitt J.I., Hocking, A.D., (2009). Fungi and food spoilage. 3. Edition. Springer Dordrecht 
 Heidelberg London New York. 
 
Pollock G.A., DiSabatino C.E., Heimsch R.C., Hilblink D.R., (1982). The subchronic 
 toxicity and teratogenicity of alternariol monomethyl ether produced by Alternaria 
 solani. Food Chemical Toxicology 20: 899-902. 
 
Porcel E.M.R., López J.L.C., Pérez J.A.S., Chisti Y., (2007). Enhanced production of 
 lovastatin in a bubble column by Aspergillus terreus using a two-stage feeding 
 strategy. J Chem Technol Biotechnol. 82: 58–64. 
 
Pose G., Ludemann V., Segura J., Fernandez-Pinto V., (2004). Mycotoxin production by 
 Alternaria strains isolated from tomatoes affected by blackmold in Argentina. 
 Mycotoxin Res. 20: 80–85. 
 
Pose G., Patriarca A., Kyanko V., Pardo A., Fernández Pinto V., (2009). Effect of water 
 activity and temperature on growth of Alternaria alternata on a synthetic tomato 
 medium. Int J Food Microbiol. 135: 60-63.  

 
Pose G., Patriarca A., Kyanko V., Pardo A., Fernández Pinto V., (2010). Water activity 
 and temperature effects on mycotoxin production by Alternaria alternata on a 
 synthetic tomato medium. Int J Food Microbiol. 142: 348-353.  
 
Pozzi C.R., Corrêa B., Xavier J.G., Direito G.M., Orsi R.B., Matarazzo S.V., (2001). 
 Effects of prolonged oral administration of fumonisin B1 and aflatoxin B1 in rats. 
 Mycopathologia. 151: 21-27. 
 
Pozzi C.R., Braghini R., Arcaro J.R., Zorzete P., Israel A.L., Pozar I.O., Denucci S., 
 Corrêa B., (2005). Mycoflora and occurrence of alternariol and alternariol 
 monomethyl ether in Brazilian sunflower from sowing to harvest. J Agric Food Chem. 
 53: 5824-5828. 
 
Prusky D., Ben-Arie R., Guelfat-Reich S., (1981). Etiology and histology of Alternaria rot 
 of persimmon fruit. Phytopathology 71: 1124-1128. 
 
Prusky D., Fuchs Y., Yanko U., (1983). Assessment of latent infections as a basis for control 
 of postharvest disease of mango. Plant Dis. 67: 816-818. 
 
Punt P.J., van Biezen N., Conesa A., Albers A., Mangnus J., van den Hondel C., (2002). 
 Filamentous fungi as cell factories for heterologous protein production. Trends 
 Biotechnol. 20: 200-206. 
 
Purschwitz J, Müller S, Kastner C, Fischer R. (2006). Seeing the rainbow: light sensing in 
 fungi. Curr Opin Microbiol. 9: 566-571.  
 
Raistrick H., Stickings C.E., Thomas R., (1953). Studies in the biochemistry of micro- 
 organisms. 90. Alternariol and alternariol monomethyl ether, metabolic products of 
 Alternaria tenuis. Biochem J. 55: 421-433. 
 



VI. References 
 

145 

Ramachandran S., Fontanille P., Pandey A., Larroche C., (2006). Gluconic Acid: 
 Properties, Applications and Microbial Production. Food Technol Biotechnol. 44: 
 185–195. 
 
Ramachandran S., Patel A.K., Nampoothiri K.M., Francis F., Nagy V., Szakacs G., 
 Pandey A., (2004). Coconut oil cake--a potential raw material for the production of 
 alpha-amylase. Bioresour Technol. 93: 169-174. 
 
Robinson T., Singh D., Nigam P., (2001). Solid-state fermentation: a promising microbial 
 technology for secondary metabolite production. Appl Microbiol Biotechnol. 55: 284-
 289. 
 
Robiglio A.L., López S.E., (1995). Mycotoxin production by Alternaria alternata strains 
 isolated from red delicious apples in Argentina. Int J Food Microbiol. 24: 413-417. 
 
Ross P.F., Rice L.G., Osweiler G.D., Nelson P.E., Richard J.L., Wilson T.M., (1992). A 
 review and update of animal toxicoses associated with fumonisin-contaminated feEds 
 and production of fumonisins by Fusarium isolates. Mycopathologia. 117: 109-114. 

Rotem J., (1994). The genus Alternaria: biology, epidemiology, and pathogenicity. 2. 
 Edition. Armer Phytophathological Society Verlag. 
 
Rowan N.J., Johnstone C.M., McLean R.C., Anderson J.G., Clarke J.A., (1999). 
 Prediction of toxigenic fungal growth in buildings by using a novel modelling system. 
 Appl Environ Microbiol. 65: 4814–4818. 
 
Saito M., Enomoto M., Tatsuno T., (1971). Yellow rice toxins: luteroskyrin and related 
 compounds, chlorine-containing compounds and citrinin. In Ciegler A., Kadis S., Ajl 
 S.J., (Eds.): Microbial toxins, vol VI: Fungal toxins. Academic Press, New York, N.Y. 
 
Sanchis V., Magan N., (2004). Environmenal conditions affecting mycotoxins. In Magan N., 
 Olson M., (Eds.): Mycotoxins in food. Detection and control. Woodhead Publishing 
 Limited, Cambrigde England. 
 
Sanchis V., Scott P.M., Farber J.M., (1988). Mycotoxin-producing potential of fungi 
 isolated from red kidney beans. Mycopathologia. 104: 157-162. 
 
Sandhya C., Sumantha A., Szakacs G., Pandey A., (2005). Comparative evaluation of 
 neutral protease production by Aspergillus oryzae in submerged and solid-state 
 fermentation. Process Biochem. 40: 2689–2694. 
 
Sauer D.B., Seitz L.M., Burroughs R., Mohr H.E., West J.L., Milleret R.J., Anthony 
 H.D. (1978). Toxicity of Alternaria metabolites found in weathered sorghum grain at 
 harvest. J Agric Food Chem. 26: 1380-1393. 
 
Saykhedkar S.S., Singhal R.S., (2004). Solid-state fermentation for production of 
 griseofulvin on rice bran using Penicillium griseofulvum. Biotechnol Prog. 20: 1280-
 1284. 
 
Schmidt-Heydt M., Baxter E., Geisen R., Magan N., (2007). Physiological relationship 
 between food preservatives, environmental factors, ochratoxin and otapksPV gene 
 expression by Penicillium verrucosum. Int J Food Microbiol. 119: 277-283. 



VI. References 
 

146 

Schmidt-Heydt M., Magan N., Geisen R., (2008). Stress induction of mycotoxin 
 biosynthesis genes by abiotic factors. FEMS Microbiol Lett. 284: 142-149.  
 
Schmidt-Heydt M., Rüfer C., Raupp F., Bruchmann A., Perrone G., Geisen R., (2011). 
 Influence of light on food relevant fungi with emphasis on ochratoxin producing 
 species. Int J Food Microbiol. 145: 229-237.  

Schobert R., Jagusch C., Melanophy C., Mullen G., (2004). Synthesis and reactions of 
polymer-bound Ph3P=C=C=O: a quick route to tenuazonic acid and other optically 
pure 5-substituted tetramates. Org Biomol Chem. 2: 3524-3529. 

Schön G., (2005). Pilze: Lebewesen zwischen Pflanze und Tier. 1. Edition, Beck Verlag 
 München. 
 
Schrader T.J., Cherry W., Soper K., Langlois I., Vijay H.M., (2001). Examination of 
 Alternaria alternata mutagenicity and effects of nitrosylation using the Ames 
 Salmonella test. Teratog Carcinog Mutagen. 21: 261-274. 
 
Schrader T.J., Cherry W., Soper K., Langlois I., (2006). Further examination of the effects 
 of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro. Mutat Res. 
 606: 61-71.  

Schroeder H.W., Cole R.J., (1976). Natural occurrence of alternariols in discolored pecans. J 
 Agric Food Chem. 25: 204-206. 
 
Schügerl K., Gerlach S.R., Siedenberg D., (1998). Influence of the process parameters on 
 the morphology and enzyme production of Aspergilli. Adv Biochem Eng Biotechnol. 
 60: 195-266. 
 
Scott P.M., Stoltz D.R., (1980). Mutagens produced by Alternaria alternata. Mutat Res. 78: 
 33-40. 
 
Scott P.M., Weber D., Kanhere S.R., (1997). Gas chromatography-mass spectrometry of 
 Alternaria mycotoxins. J Chromatogr A. 765: 255-263. 
 
Scott P.M., (2001). Analysis of Agricultural Commodities and Foods for Alternaria 
 Mycotoxins. J AOAC Int. 84: 1809-1817. 
 
Scott P.M., Kanhere S.R., (1980). Liquid chromatographic determination of tenuazonic acid 
 in tomato paste. J Assoc Off Anal Chem. 63: 612-621. 
 
Scott P.M., Kanhere S.R., (2001). Stability of Alternaria toxins in fruit juices and wine. 
 Mycotoxin Res. 17: 9-14. 

Scott P.M., (2004). Other mycotoxins. In Magan N., Olsen M., (Eds.): Mycotoxins in food. 
 Woodhead Publishing Limited, Cambridge, England.  
 
Scott P.M., Lawrence G.A., Lau B.P.-Y., (2006). Analysis of wines, grape juices and 
 cranberry juices for Alternaria toxins. Mycotoxin Res. 22: 142-147. 
 



VI. References 
 

147 

Seitz L.M., Sauer D.B., Mohr H.E., Burroughs R., (1975). Weathered grain sorghum: 
 Natural occurrence of alternariols and storability of the grain. Phytopathology. 65: 
 1259-1263. 
 
Semaskiene R., Mankeviciene A., Dabkevicius Z., Leistrumaite A., (2005). Toxic fungi 
 infection and mycotoxin level in organic grain. Botanica Lithuanica 7: 17-25. 
 
Shigeura H.T., Gordon C.N., (1963). The biological activity of tenuazonic acid. Biochem. J. 
 2: 1132-1137. 

Shimizu S., Akimoto K., Kawashima H., Shinmen Y., Yamada H., (1989). Production of 
 dihomo-γ-linolenic acid by Mortierella alpina IS-4. JAOCS 66: 237-241.  
 
Simmons E.G., (1992). Alternaria taxonomy: current status, viewpoint, status. In 
 Chelkowsky J., Visconti A., (Eds.): Alternaria biology, plant diseases and metabolites, 
 topics in secondary metabolism. Vol. 3, Elsevier, Amsterdam. 
 
Singh Y.P., Sumbali G., (2004). Occurrence of tenuazonic acid producing strains of 
 Alternaria alternata in natural rots of apple. Indian Phytopathology. 57: 68-69. 
 
Smith E.R., Fredrickson T.N., Hadidian Z., (1968). Toxic effects of the sodium and the 
 N,N'-dibenzylethylenediamine salts of tenuazonic acid (NSC-525816 and NSC-
 82260). Cancer Chemother Rep. 52: 5795-85. 
 
Smith J.E., Berry J.R., Kristiansen B., (1983). The filamentous fungi: Fungal technology. 
 Edward Arnold, London. 
 
Söderhäll K., Svensson E., Unestam T., (1978). Light inhibits the production of alternariol 
 and alternariol monomethyl ether in Alternaria alternata. Appl Environ Microbiol. 36: 
 655-657. 
 
Solfrizzo M., Girolamo A.D., Vitti C., Tylkowska K., Grabarkiewicz-Szczesna J., 
 Szopińska D., Dorna H., (2005). Toxigenic profile of Alternaria alternata and 
 Alternaria radicina occurring on umbelliferous plants. Food Addit Contam. 22: 302-
 308. 
 
Sommer N.F., (1985). Role of controlled environments in suppression of postharvest 
 diseases. Can J Plant Pathol. 7: 331-339. 
 
Stack M.E., Mislivec P.B., Roach J.A., Pohland A.E., (1985). Liquid chromatographic 
 determination of tenuazonic acid and alternariol methyl ether in tomatoes and tomato 
 products. J Assoc Off Anal Chem. 68: 640-642. 

Steyn P.S., Rabie C.J., (1976). Characterization of magnesium and calcium tenuazonate 
 from Phoma sorghina. Phytochemistry. 15, 1977–1979. 

Stickings C.E., (1959). Studies in the biochemistry of micro-organisms. 106. Metabolites of 
 Alternaria tenuis auct.: the structure of tenuazonic acid. Biochem J. 72: 332-340. 
 
Stickings C.E., Townsend R.J., (1961). Studies in the biochemistry of micro-organisms. 
 108. Metabolites of Alternaria tenuis Auct.: the biosynthesis of tenuazonic acid. 
 Biochem J. 78: 412-420. 



VI. References 
 

148 

Stinson E.E., (1985). Mycotoxins – Their biosynthesis in Alternaria. J Food Prot. 48: 80-91. 
 
Stinson E.E., Bills D.D., Osman S.F., Siciliano J., Ceponis M.J., Heisler E.G., (1980). 
 Mycotoxin production by Alternaria species grown on apples, tomatoes, and 
 blueberries. J Agric Food Chem. 28: 960-963. 
 
Stinson E.E., Moreau R.A., (1986). Partial purification and some properties of an alternariol-
 O-methyltransferase from Alternaria tenuis. Phytochemistry. 25: 2721-2724. 
 
Stinson E.E., Osman S.F., Heisler E.G., Siciliano J., Bills D.D., (1981). Mycotoxin 
 production in whole tomatoes, apples, oranges, and lemons. J Agric Food Chem. 29: 
 790-792. 

Stoessl A., (1969). Some metabolites of Alternaria solani. Can J Chem. 47: 767-776. 

Sudakin D.L., (2003). Trichothecenes in the environment: relevance to human health. 
 Toxicol Lett. 143: 97-107. 
 
Swart A.E., Holz G., (1994). Colonization of table grape bunches by Alternaria alternata 
 and rot of cold-stored grapes. S Afr J Enol Vitic. 15: 19-25. 

Terminiello L., Patriarca A., Pose G., Fernández Pinto V., (2006). Occurrence of 
 alternariol, alternariol monomethyl ether and tenuazonic acid in Argentinean tomato 
 puree. Mycotoxin Res. 22: 236-240. 
 
Torikata H., Ohkawa M., Sassa T., Yamada T., Ohkawa H., Tanaka H., Aoki, H., 
 (1969). Studies on resistance of Japanese pears to black spot disease fungus 
 (Alternaria kikuchiana) VIII. Alternariol and its monomethyl ether. Annals of the 
 Phytopathological Society of Japan. 35: 62-66. 

Torres A., González H.H., Etcheverry M., Resnik S.L., Chulze S., (1998). Production of 
 alternariol and alternariol mono-methyl ether by isolates of Alternaria spp. from 
 Argentinian maize. Food Addit Contam. 15: 56-60. 
 
Tournas V.H., Katsoudas E., (2005). Mould and yeast flora in fresh berries, grapes and 
 citrus fruits.  Int J Food Microbiol. 105: 11-17. 
 
Trucksess M.W., Tang Y., (2001). Solid phase extraction method for patulin in apple juice 
 and unfiltered apple juice. Methods Mol Biol. 157: 205-213. 
 
Tseng T.C., Liu C.Y., (1997). Occurrence of fumonisin B1 and B2 in corn-based foodstuffs 
 in Taiwan market. Mycopathologia. 137: 57-61. 
 
Tudzynski P., Correia T., Keller U., (2001). Biotechnology and genetics of ergot alkaloids. 
 Appl Microbiol Biotechnol. 57: 593-605. 
 
van den Hombergh J.P., Sollewijn Gelpke M.D., van de Vondervoort P.J., Buxton F.P., 
 Visser J., (1997). Disruption of three acid proteases in Aspergillus niger - effects on 
 protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur J 
 Biochem. 247: 605-613. 
 



VI. References 
 

149 

van Egmond H.P., Schothorst R.C., Jonker M.A., (2007). Regulations relating to 
 mycotoxins in food: perspectives in a global and European context. Anal Bioanal 
 Chem. 389: 147-157.  

van Egmond H.P., Speijers G.J.A., (1994). Survey of data on the incidence and levels of 
 ochratoxin A in food and animal feed worldwide. J Nat Toxins. 3: 125-144. 
 
Verdoes J.C., Punt P.J., van den Hondel C.A.M.J.J., (1995). Molecular genetic strain 
 improvement for the overproduction of fungal proteins by filamentous fungi. Appl 
 Microbiol Biotechnol. 43: 195-205.  
 
Vinas I., Bonet J., Sanchis V., (1992). Incidence and mycotoxin production by Alternaria 
 tenuis in decayed apples. Lett Appl Microbiol. 14: 284–287. 
 
Vinas I., Palma J., Garza S., Sibilia A., Sanchis V., Visconti A., (1994). Natural occurrence 
 of aflatoxin and Alternaria mycotoxins in oilseed rape from Catalonia (Spain): 
 Incidence of toxigenic strains. Mycopathologia 128: 175-179. 

Visconti A., Logrieco A., Bottalico A., (1986). Natural occurrence of Alternaria mycotoxins 
 in olives - their production and possible transfer into the oil. Food Addit Contam. 3: 
 323-330. 

Wan Norhasima W.M., Abdulamir A.S., Abu Bakar F., Son R., Norhafniza A., (2009). 
 The health and toxic adverse effects of Fusarium fungal mycotoxin, fumonisins, on 
 human population. Am J Infect Dis. 5: 283-291. 

White L.S., Fabian F.W., (1953). The pectolytic activity of molds isolated from black 
 raspberries. Appl Microbiol. 1: 243-247. 

Willke T., Vorlop K.D., (2001). Biotechnological production of itaconic acid. Appl 
 Microbiol Biotechnol. 6: 289-295. 

Wood G.E., (1992). Mycotoxins in foods and feEds in the United States. J Anim Sci. 70: 
 3941-3949. 

Woodings E.T., (1972). Process for producing zearalenone. United States Patent 3,661,714. 
 
Wu Q., Dohnal V., Huang L., Kuca K., Yuan Z., (2010). Metabolic pathways of 
 trichothecenes. Drug Metab Rev. 42: 250-267. 
 
Yang B., Shiping T., Hongxia L., Jie Z., Jiankang C., Yongcai L., Weiyi Z., (2003). Effect 
 of temperature on chilling injury, decay and quality of Hami melon during storage. 
 Postharvest Biol Technol. 29: 229-232. 

Yekeler H., Bitmiş K., Ozçelik N., Doymaz M.Z., Calta M., (2001). Analysis of toxic 
 effects of Alternaria toxins on esophagus of mice by light and electron microscopy. 
 Toxicol Pathol. 29: 492-497. 

Young, A.B., Davis N.D., Diener U.L., (1980). The effect of temperature and moisture on 
 tenuazonic acid production by Alternaria tenuissima. Phytopathology. 70: 607-609. 
 
Zhou B., Qiang S., (2008). Environmental, genetic and cellular toxicity of tenuazonic acid 
 isolated from Alternaria alternata. Afr J Biotechnol. 7: 1151-1156. 
 



VI. References 
 

150 

Zhou Y., Du J., Tsao G.T., (2002). Comparison of fumaric acid production by Rhizopus 
 oryzae using different neutralizing agents. Bioprocess Biosyst Eng. 25: 179-181. 
 



151 

�

� � � �� � �� � �� � �� � �� � �� � � �� � �� � �� � �� � �� � �� � � �� � �� � �� � � � � ������������ �
��	
�������

�������������

� �������������������

������

� � ��! ��"#� �

�$������

� %�&��'()�*�'%���%+,�)�-��

 
 

./���/�/��0�&���
 
 
Personal Details 
 
1�&���2����&���� � $�3�4�-5� "#��
6�����2����&��� � $����7�8����'3 
��&��'���&3��   8����'�

 
 
��������	
 
 �
�
��!��� ����������������������� ���������
� 83�'���/��������%��95�$���5�8����'3�� �
� �
 �!��� �7���!����� �������
��
��������

 
�/��:;'�<����&=&����/�5�8����'3�
���!���>�7���!����� ��������
��������&�&���.������2�8�'������'-�$���/������&�'3��
� �?.��'�'�� �'-� ����&���*�&��'� �2� ��&�'�:&39�� ��'��� �2� &�����

2�����'&�/��2/'�/�������������	��
����@�
�

 
���������	��
�������	��

�
��!�����7���!����5� � �����	�
 �������	�
 ��
 ���
 �����
 ��
  �	����
 �	�
 !��������

��!�����7���!����� � ����	�"
�/��:;'�<����&=&����/�5�8����'3�
    �



�4!�����7���!���#� !��#��
��
���
$	���	����	��
��#	�%
&�������
������
'$&�(


)�	�


 ���'&�2��.�:,��%����&�&��� �'�&�&/&���2�8�'�����$���)�����35�

A���-���:�������:;'�<����&=&�B�'�5�8����'3�
�
�
�>!���#�7��#!��  � � ���
���*���
at the Institute of Engineering in Life Sciences, 
    University Karlsruhe, Germany 
    Title: “Process development for the production of Alternaria 
    toxins in a bioreactor” 
 
10/2009 – 12/2009  $	���	����
��
����
��	�	����
+	��������
��
����	�����"
����


 
 
 
 ��,	"
�����
����� 
    Biocatalysis and Technical Biology Group of Prof. Burton 

 




152 

 

6/)���&��'��
 
 
Conference contributions – Oral presentations 
 
�����	�	�
��
����������	���������
�����	�
�	�
�����
���
�����	�����
���������	
�	
�����

��#�����
 �����	�����	-� ��� ��*�'%���%5� ��� ��/��''5� .�� �3�-�&%� C���"D�� ���%� �&� &��� ����
1E.FE$��B�����&��/'��-������&��'�����'5�$�''����5�8����'3��
�
�������
������%����	
��
�����	�����
���������	
,���
���
������	����
��	���
����������	
���������-� ��� ��*�'%���%5� ��� F�����'�5� ��� ��/��''5� .�� �3�-�&%� C�� �D�� ���%� �&� &��� �#��
1E.FE$��B�����&��/'��-������&��'�����'5�����'5�8����'3��

 
 
Conference contributions – Poster presentations 

 
 �
�����	����������	�
 �	�
 �����
 ������%����	
 ���
 ���
 ���������	
 ��
 ���
 ��������	

�����	�����
 ����
 ����������
 ���������
	 ��� ��*�'%���%5� ��� ��/��''5� .�� �3�-�&%� C���"D��
6��&����&�&���0��$��''/������&�'�����"5����/�5�8����'3��
�
�������	����
�����	��
���
���
	����	����	���%����	
��
�	
�	%���
�����	����
�	������
�	

���
�������
����#�����
��
#����
��	��-
���F�22��''5����G�'%���5������*�'%���%5����0���&�
C���"D��6��&����&���&�'3�H�$3����3����"5��'�,)��-5�;&��5�;����


�����	�	�
��
�����	����
�����	���
�����	�
�	�
�����
 ���
�����	�����
���������	
 �	
 �����

��#�����
�����	�����	-������*�'%���%5������/��''5�.���3�-�&%�C���"D��6��&����&�&���4�-�

.�'�������2�E/��9��'�$���)�������&��CAE$�D5�8�&��')/��5��,�-�'��
�
�����	�	�
��
�������	�
���#�	
�������
�	�
���
���,
�����
���
�����	�����
���������	
,���

�
	���������	�	
�����
��#�����
�����	�����	-����F�����'�5������*�'%���%5������/��''5�.��
�3�-�&%�C�� �D��6��&����&�&���1E.FE$��.�'2���'��I���9��*�������'&���&����'����'-����'?5�
�J�')���5�8����'3��


$��	���������	
 �	�
 ��������	
 ��
 ���
 �����	�����������������	�������
 �	
 ����������	

���������-������*�'%���%5�����&�99�5������/��''5�.���3�-�&%�C�� �D��6��&����&�&���0��$�
�''/������&�'���� �5�F�''�<��5�8����'3��
�
6������ �9&���*�&��'� �2� ��&��'������ 9��-/&��'� ,�&�� &��� 2�����'&�/�� 2/'�/�� ��&��'�����
��&��'�&��������*�'%���%5���F�����'�5�.�� �3�-�&%5������/��''� C��  D��6��&����&� &���0��$�
�''/������&�'����  5�������/��5�8����'3��
�

 
��#�������	�



���
 �	����	��
 ��
 �������	�
 ���#�	
 �	�
 	������	
 �������
 �	
 ��������	
 ���������	
 �	

����������	 ���������-
 ��� ��*�'%���%5� ��� F�����'�5� .�� �3�-�&%5� ��� ��/��''� C��  D��
�'&��'�&��'���B�/�'����2�A��-�$���)�����3� ���� ��: ����
�
�������
 ���������	�
 ���
 ���
 ����������	
 ��
 ��������	
 ��������	
 �	
 ����������	

���������-� ��� ��*�'%���%5� ��� F�����'�5� .�� �3�-�&%5� ��� ��/��''�� ;'-��� ��<��,� �'� �99���-�
$���)�����3��'-����&��'����3��
�






