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P R E FA C E

The flow of information is a fundamental aspect of the dynamics of finan-
cial markets. In particular, Ross [82] showed that the flow of information
can be measured by an asset’s realized volatility. Thus, the relation be-
tween the release of information and realized return volatility with respect
to various asset classes as well as different sources of information were
investigated.

For example, Ederington and Lee [29] notice that macroeconomic news
announcements account for much of the intra-day as well as inter-day
volatility of interest and foreign exchange futures markets. Their findings
are in line with the efficient market hypothesis. Fleming and Remolona
[35] argue that the release of macroeconomic news triggers a two stage
process in the US treasury market with nearly instantaneous price changes,
a reduction in trading volume and widening spreads in the first step and
persisting volatility as well as increased trading volumes in the second step.
Concerning the stock market Nikkinen and Sahlström [71] explore the im-
pact of scheduled domestic and US macroeconomic news announcements
on the implied volatility of the German and Finnish markets. They find
that German and Finnish news have a low signal to noise ratio whereas
the US employment report and the meeting of the Federal Open Market
Committee have significant impact.

Consequently, the first part of this thesis focuses on generic approxi-
mations of intra-day volatility using high-frequency data. This includes
explicit estimates for the immediate adjustments of volatility as well life-
times for various event classes. The corresponding high-order profile of
intraday dispersion is merged with classical GARCH models in order
improve the forecasting of intraday volatility, in particular, with respect
to backtesting Value-at-Risk which lies at the core of current regulatory
frameworks.

More precisely, the intraday dispersion as measured by realized absolute
returns on one minute time intervals of the US and Europe is examined.
For Europe, market fragmentation is taken into account by analysing
patterns on Euronext, London Stock Exchange and XETRA. Moreover,
both single stock as well as market patterns are investigated. For the latter,
two measures are applied. The first considers the realization of various
indices such as the Standard & Poors 500 (S&P500) as well as the German
blue chip index, the DAX. The second representation averages over the
single stock universe.
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A rank-k approximation of the intraday data is performed. This allows
to model pure intraday effects independently of inter-day effects. For ex-
ample, in the US the well-known profile which shows increased volatility
near the beginning and end of the continuous trading session is modi-
fied by the release of macroeconomic news. Considering Europe further
mechanisms related to the opening of the US market as well as market
mechanics are described.

Moreover, different types of information shock exist. Announced events
such as macroeconomic indicators or earning reports are anticipated by
investors and the corresponding volatility response may be estimated
in a robust fashion. However, without certain event-specific, exogenous
variables it is largely impossible to forecast unexpected events such as the
so-called Flash-Crash as well as their effects on financial markets. Therefore,
a method is proposed to identify effects triggered by external events in
the data and to remove them in an automatic fashion from the generic
intraday volatility profile.

Response patterns of the S&P500 and the DAX to macroeconomic news
releases are explored. To this end, immediate adjustments to the typical
intraday profile as well as characteristic lifetimes for specific events are
stated explicitly. In general, it is discovered that immediate adjustments are
stronger and lifetimes are longer with respect to the S&P500 as compared
to the DAX.

Subsequently, the high-order profile of intraday return dispersion is con-
structed using no future information in order to boost the performance of
classical GARCH models which were originally introduced by Engle [31],
and extended by Bollerslev [12]. To this end, realizations of the S&P500
and the DAX on time horizons ranging from 15 seconds to 10 minutes are
fitted to various GARCH models. Furthermore, boosted variants called
SVD-GARCH, SVD-EGARCH and SVD-GJR are introduced.

Thereby, the goodness-of-fit of various statistical distributions such as
the normal, the Student-t, the classical tempered stable and the variance-
gamma distribution of the innovation process are examined. In particular,
hetereoskedasticity of financial time series in part yields leptokurtic, un-
conditional return distributions as noticed by Mandelbrot [63]. However,
especially in the context of high-frequency data, the innovation process
still exhibits considerably high excess kurtosis. Stable Paretian distribu-
tions were successfully applied in finance, see, for example, Rachev and
Mittnik [77]. Both the need for finite second moments, e. g., in the context
of mean-variance portfolio theory [65], as well as debates over the actual
tail-behaviour of the empirical distributions have led to the introduction of
new models such as the classical tempered stable [81] and variance gamma
distributions [61]. In general, it is found that both the classical tempered
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stable and the variance gamma distribution describe high-frequency data
rather well.

In addition, the scaling behaviour of parameters of the variance gamma
distribution are investigated. It is found that the extraordinary increase
of kurtosis of the innovation process corresponding to the high-frequency
end of the spectrum, i. e., all data on time horizons below 1 minute, can be
explained by a non-vanishing autocorrelation function of the standardized
innovations.

Finally, one-step-ahead forecasts of volatility for the various models
on 1 minute time horizons are calculated. Concerning the SVD-GARCH
and SVD-GJR models a significant improvement with respect their clas-
sical variants as measured by the mean absolute percentage error can
be reported. However, for the EGARCH model no such improvement is
observed. Moreover, a Value-at-Risk backtest using Kupiec’s proportion of
failures and is conducted on the 1 minute time horizon. It is found that
SVD variants in general improve the acceptance rate whereas classical
GARCH formulations overestimate risk and, thus, are rejected.

The second part of this thesis examines the flow of information from a
point of view that focuses more on the actual information contained in
financial news. In 2007, mankind was able to communicate almost 2 · 1021
entropy maximized bytes [42]. Moreover, the globally stored information
grew by roughly 23%. As both the capabilities to store vast amounts of
data as well as the capacities to communicate increases so does the need
to process the information.

Over the last decade, text mining of news and its application to finance
were a vibrant topic of research starting with the pioneering work of
Wüthrich [90]. Generally, one transforms the unstructured data into a
set of numbers such that methods from statistical learning theory can
be applied. A concise review of the existing prototypes was written by
Mittermayer and Knolmayer [68].

However, the existing prototypes typically lack on one of the follow-
ing dimensions. In some cases features are used on the basis of expert-
compiled dictionaries. However, only rarely a proof of significance is given.
Moreover, no systematic investigation of the actual time scales of returns
that are related to ad-hoc news reporting on individual stocks exists. In
some cases the forecast of the respective machine learning is not even
compared to a random classification that uses only the inclusive target
probabilities. Even worse, future information cannot be excluded. Finally,
the profitability of various approaches is not stated.

The proposed framework tackles all of the aspects above. To this end,
times series of stocks that can non-ambiguously be linked to certain news
are investigated. The analysis is restricted to the European market. In
particular, appropriately normalized returns as well as return dispersions
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on one minute time horizons are considered. A low-rank approximation
of the data is performed that exhibits typical response patterns. It is found
that volatility adjustments are largest within the minute of release of new
information. However, for the dataset of roughly 1.4 million text-messages
there appears to be evidence that volatility adjustments both following as
well as proceeding the actual news release exists. No price adjustments
are observed on time horizons such as hours or days.

The response behaviour is consistent both for news that are released
during the continuous trading as well as for news published when mar-
kets are closed. Naturally, for information related to nightly news, the
corresponding response of the return can no longer be linked solely to
information contained within the single news but the effect is rather a
measure of the collective information aggregated over the non-trading
period.

With respect to a suitable representation of the news, an approach is
pursuit that allows to assess the relevance of individual features in an
automatic fashion. A transformation is applied that aims to preserve as
much of the original information while enhancing the statistical weight of
individual features. Ultimately, this leads to the term-frequency inverse-
document-frequency measure. Thereby, the importance of individual fea-
tures is measured leading and the most important words are stated explic-
itly.

Finally, various formulations of Support Vector Machines with varying
dimensions of the feature space as well as different time horizons following
the minutes of news publications are trained. Moreover, both linear as well
as non-linear kernels are considered. Compared to a random classification
that takes into account the global target distribution, it is found that the
out-of-sample accuracy of the classification is enhanced. Subsequently a
simple strategy is proposed that generates on average between 17.5bps
and 46.3bps per round-trip.

The remainder of this thesis is structured as follows. Chapter 1 reviews
some basic concepts of statistics which are applied in the thesis. A brief
introduction to statistical learning theory is given. Chapter 2 introduces
financial econometrics. In light of the vast amount of work conducted
over the last decades, we restrict the discussion to return distributions and
classical approaches of volatility modeling. Chapter 3 analyses patterns of
intraday volatility and applies the findings in order to enhance classical
GARCH models. Chapter 4 introduces a framework to forecast short-term
price movements on the basis of unstructured information contained in
financial news. The appendix reviews the most important probability
distributions as utilized throughout this thesis as well as various statistical
tests.
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Part I

I N T R O D U C T I O N





1
A B R I E F R E V I E W O F S TAT I S T I C S

This chapter on statistics and probability theory focuses on the most impor-
tant properties and ideas as employed in later chapters. We discuss basic
concepts of probability theory as well as quantities to characterize proba-
bility distributions. This is followed by sections on stochastic processes,
the central limit theorem and stability, basics of information theory and
parameter estimation. The chapter concludes with a compact introduction
to supervised learning theory including a discussion of model selection,
the Vapnik-Chervonenkis dimension and Support Vector Machines.

1.1 probability

Probability theory is based on investigations regarding the game of chance
which date back to early publications by Cardano [16], Huygens [43] and
Galilei [37]. At its core lies the notion of a random experiment, i. e., given
a number of a priori known outcomes the result of a single experiment is
not deterministic. However, one can repeat it under identical conditions.
Modern probability theory is predicated on Kolmogorow’s [53] axiomatic
formulation1 which introduces a non-empty set, the sample space Ω, of
possible outcomes ω. This set can be either countable, e. g., rolling a dice,
uncountable, e. g., the position of an elementary particle, or decomposable
into both. The sample space Ω is supplemented by a σ-field F, i. e., a set of
all possible unions of Ai ⊂ Ω called events. For example, all even numbers
of a dice might belong to an event.

Given a σ-field F defined by the following properties

Ω ∈ F (1.1)
A ∈ F → (Ω\A) ∈ F (1.2)
Ai ∈ F → (∪iAi) ∈ F (1.3)

1 Other theories on probability exist, among them Fuzzy sets [91] and negative probability
[25].
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22 a brief review of statistics

the space (Ω,F) is measurable [8]. Equipped with a probability measure P
one obtains a probability space (Ω,F,P). Hereby, the probability measure
P assigns a real number between 0 and 1 to every event Ai, such that

P(Ai) > 0, Ai ∈ F (1.4)
P(Ω) = 1 (1.5)

P(∪iAi) =
∑
i

P(Ai) if Ai ∩Aj = ∅, (1.6)

where {Ai} is countable. However, in practice one is faced with the need to
fix individual probabilities for certain events Ai. Unfortunately, different
interpretations of probability exist. Frequentists view probability to be the
result of infinite, independent repetitions of a random experiment under
identical conditions. That is, given k occurrences of an event Ai after
n trials the true probability emerges under limn→∞ k/n. Typically, the
assumption of identical and infinite repeatability are questioned by the
Bayesian approach that considers probability to be the result of real data
modified by a prior. Thus, probability reflects the available information of
the given system. This induces the possible notion of personal belief [46].

1.1.1 Discrete Probabilities

For a countable sample space Ω probability is assigned to every atomic
outcome ω of the random experiment. Thus, the probability of an event
Ai ∈ F is given by

P(Ai) =
∑
ω

P(ω), ω ∈ Ai. (1.7)

The conditional probability of two events Ai,Aj ∈ F, that is the probability
of an event Ai given another event Aj has occurred, is defined by

P(Ai|Aj) =
P(Ai ∩Aj)
P(Aj)

, (1.8)

with P(Aj) > 0. Two events are independent if P(Ai ∩Aj) = P(Ai)P(Aj),
with P(Aj) > 0, i. e., P(Ai|Aj) = P(Ai).

From equation 1.8 one then can deduce Bayes’ theorem using the sym-
metry property of sets

P(Ai|Aj) =
P(Aj|Ai)P(Ai)

P(Aj)
, P(Ai),P(Aj) > 0, (1.9)

where P(Ai|Aj) is the posterior probability, P(Aj|Ai) the likelihood and
P(Ai,j) the prior probability of the respective event. Thus, Bayes’ theorem
essentially allows the reversal of conditioning, i. e., given the probability for
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Ai under the condition that Aj has occurred one can deduce the probability
for Aj under the condition that Ai has occurred. However, there is long
lasting dispute about what are the statistical problems where one can
apply Bayes theorem (1.9). For a more exhaustive discussion we refer to
Carlin and Louis [17].

1.1.2 Continuous Probabilities

A continuous random variable maps the outcome of a random experiment
to the real numbers. Thus, the random variable X(ω) is a function X : ω 7→
R such that

{ω : X(ω) 6 x ′} ∈ F, x ′ ∈ R. (1.10)

The inverse X−1((−∞, x ′]) is an event, i. e., the corresponding measure
is induced by a Borel σ-algebra. For the space (Σ,F,P) the cumulative
distribution function (CDF) or probability mass function of the random
variable X(ω) is given by

FX(x
′) = P(X 6 x ′) =

∫x ′
−∞ dFX(x) (1.11)

where the integral is defined in the Lebesgue sense. Equation (1.4) to (1.6)
imply that the CDF is a càdlàg2 function. Furthermore, it is monotonically
non-decreasing and fulfills

lim
x ′→−∞ FX(x ′) = 0 and lim

x ′→+∞ FX(x ′) = 1. (1.12)

The inverse CDF3 reads

QX(p) ≡ inf
x∈R

{p 6 FX(x)}, p ∈ (0, 1). (1.13)

In particular, the median QX(1/2) is a robust parameter of the location
that divides the lower and upper half of the probability mass.

Due to the continuity of the CDF derivatives exist which results in the
definition of the probability density function (PDF) fX(x) = dFX(x)/dx.
Given the PDF fX(x) the corresponding PDF of Z = h(X) is given by

fZ(z) =

∣∣∣∣dxdz

∣∣∣∣ fX(x) = n(z)∑
i=1

∣∣∣h ′(h−1i (z))
∣∣∣−1 fX(h−1i (z)) (1.14)

with the Jacobian |dx/dz| and where h(x) = z has n(z) solutions.

2 Continu à droite, limite à gauche
3 Also called quantile function
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The generalization to n random variables is straightforward. For details
concerning measure theory we refer to [8]. For notational simplicity we
state the two dimensional case given random variables X and Y. The joint
probability is defined by

P(X 6 x ′, Y 6 y ′) ≡ FX,Y(x
′,y ′) =

∫x ′
−∞
∫y ′
−∞ fX,Y(x,y)dxdy, (1.15)

with the two dimensional density distribution fX,Y(x,y). Unconditional
probabilities for events from X average over outcomes of Y

P(X 6 x ′) ≡ FX(x ′) =
∫x ′
−∞
∫∞
−∞ fX,Y(x,y)dy︸ ︷︷ ︸

fX(x)

dx, (1.16)

with the marginal CDF FX(x) and the marginal density function fX(x) of
X. Furthermore, given (1.15) and (1.16) the conditional density fX(x|y) is
defined by

fX(x|y) ≡
fX,Y(x,y)
fY(y)

. (1.17)

However, the Borel-Kolmogorow paradox [44] – conditioning on events of
zero probability – implies that conditional density distributions are not
invariant under coordinate transformations of the dependent variable.

1.1.3 Expected Value and Higher Moments

The expected value E[X] of a random variable X is interpreted as a local-
ization parameter of the probability distribution

E[X] =

∫∞
−∞ xfX(x)dx. (1.18)

For discrete variants one replaces the integral over the distribution by a
weighted sum over the probabilities. The definition (1.18) implies that it is
a linear operator, i. e., given two random variables X and Y it holds

E(aX+ bY + c) = aE(X) + bE(Y) + c, a,b, c ∈ R. (1.19)

Furthermore, the expectation operator does not commute4 with arbitrary
(albeit convex) functions ψ

ψ(E[X]) 6 E[ψ(X)]. (1.20)

4 This is Jensen’s inequality.
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The conditional expectation of a random variable X conditioned on Y that
has taken a value y is given by

E[X|Y = y] =

∫∞
−∞ xf(x|y)dx. (1.21)

Using equation (1.17) and (1.21) one arrives at the law of iterated expecta-
tion

E[E[X|Y]] =

∫∞
−∞E[X|Y = y]fY(y)dy

=

∫∞
−∞
∫∞
−∞ x

fX,Y(x,y)
fY(y)

fY(y)dxdy = E[X]. (1.22)

Furthermore, the expected value of exp(itX), t∈R, is the characteristic
function

φX(t) ≡ E[eitX] ≡
∫∞
−∞ eitxfX(x)dx (1.23)

which is just the Fourier transform F(fX(x)) of the density function fX(x)
and thus completely describes the random variable X. From a theoretical
point of view the characteristic function is very interesting as it is uniformly
continuous on C which is very useful when considering sequences of
random variables (section 1.3).

The covariance of two random variables X and Y describes their linear
dependence and is defined by

Cov(X, Y) ≡ E[(X−E[X])(Y −E[Y])] = E[XY] −E[X]E[Y]. (1.24)

Thus, the expected value of the product of two random variables it not
equal to the product of the expectation values of two random variables
unless the probability density factorizes, i. e., the variables are independent.
Furthermore, covariance essentially can be interpreted as an inner product,
i. e., it is a symmetric and positive semi-definite bilinear form with the
following properties

Cov(aX+ bY + c,Z) = aCov(X,Z) + bCov(Y,Z) (1.25)
Cov(X, Y) = Cov(Y,X) (1.26)
Cov(X,X) > 0 (1.27)

with random variables X, Y and Z and a,b, c ∈R. The covariance of a
random variable with itself is the variance

σ2X = Var[X] ≡ Cov(X,X), (1.28)

with the standard deviation σX =
√

Var[X] of the random variable X. It
measures the spread of the probability distribution.
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In order to make the linear dependence of different random variables
comparable one introduces Pearson’s correlation coefficient defined by

ρXY = Corr(X, Y) ≡ Cov(X, Y)
σXσY

. (1.29)

Equation (1.29) can be interpreted as the covariance of two standartized
random variables. i. e., ρXY takes values between −1 and 1. While it is true
that the correlation coefficient is a good measure of linear dependence
for Gaussian random variables other measures are needed for random
variables from arbitrary distributions.

Some additional notes are in order. Given a conditional distribution
fX(X|Y) that has a nonlinear dependence on Y Pearson’s correlation coef-
ficient cannot capture the whole dependence. Even worse, for nonlinear
relationships different distributions might be mapped to the same correla-
tion coefficient. From (1.24) it follows that the covariance and hence the
correlation of statistically independent random variables is zero. However,
the reverse conclusion is not valid: vanishing correlation does not induce
statistical independence except for Gaussian random variables.

Expected value, variance and covariance are the leading (mixed) mo-
ments of a probability distribution. The expected value is the first absolute
moment which are generally defined by

E[Xk] =

∫∞
−∞ xkfX(x)dx. (1.30)

Central moments adjust for the expected value, i. e., µk ≡ E[(X−E[X])k].
It can easily be seen that the probability density function is uniquely
determined by all of their moments using the characteristic function (1.23)

E[Xk] = i−k
(

dk

dtk
φX(t)

)
t=0

(1.31)

given the k-th moment exists, that is the absolute moment E[|X|k] is finite.
Particular importance has the third and fourth standardized moments.

The former is also called skewness

γ1 = Skew[X] ≡ E[(X−E[X])3]

(E[(X−E[X])2])3/2
=
µ3
σ3

(1.32)

which reveals asymmetries of the probability mass with respect to its
expected value, whereas the latter is the kurtosis of the probability distri-
bution

β2 = Kurt[X] ≡ E[(X−E[X])4]

(E[(X−E[X])2])2
=
µ4
σ4

(1.33)
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In order to account for the notion that normal distributions are neither
leptokurtic, i. e., heavy-tailed, nor platykurtic, i. e., thinner tailed, one
introduces the excess kurtosis γ2 ≡ β2 − 3 which is zero for normal
distributed random variables.

Certain important probability distributions and their properties can be
found in appendix A.

1.2 stochastic processes

A stochastic process over a probability space (Ω,F,P) is a collection of
random variables

{Xt|t ∈ T }. (1.34)

Every ω ∈ Ω has a trajectory t 7→ Xt(ω). The parameter set T may be
discrete, e. g., T ⊂ Z or continuous T ⊂ R. If t represents the time we refer
to the former one as a time series.

Furthermore, given the probability space (Ω,F,P) and the finite and
ordered subset τ ⊂ T the distribution FX(τ) is called the finite dimensional
marginal distribution. The existence of a stochastic process given a family
of finite marginal distributions was proven by Kolmogorow [4].

The mean and covariance function are µX(t) ≡ E[Xt] and

ΓX(s, t) ≡ E[(Xs − µX(s))(Xt − µX(t))]. (1.35)

A stochastic process is said to be strictly stationary if a constant shift in the
indexed subset does not alter the result of the finite dimensional marginal
distribution. Thus, given the two subsets {t1, . . . , tn} and {t1 + t0, . . . , tn +
t0} it holds

FX(t1, . . . , tn) = FX(t1 + t0, . . . , tn + t0). (1.36)

A stochastic process is weakly stationary if mean and covariance function
are time independent. In this case the mean is constant µX(t) = µX(t+ t0)
and the covariance function depends only on time diferences ΓX(s, t) =
ΓX(s+ t0, t+ t0).

Examples of some important stochastic processes are in order. For
example, a stochastic process {Bt|t ∈ R+} is a Brownian motion if B0 = 0
almost surely, increments Bt − Bs, 0 6 s 6 t are IID, stationary and
normally disitributed Bt −Bs ∼ N(0, t− s). Furthermore, the process has
to exhibit continuous trajectories.

Another important example is the homogenous Poisson process {Nt|t ∈
R+} with rate λ defined by N0 = 0 almost surely, IID and stationary
increments k ≡ Nt −Ns, 0 6 s 6 t that are Poisson distributed, i. e.,

P(k) =
(λ(t− s))k

k!
e−λ(t−s), λ > 0, (1.37)
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The Poisson process is memoryless which is easily seen by noting

P(T > s+ t|T > s) =
e−λ(s+t)

e−λs
= e−λt = P(T > t). (1.38)

Given a Poisson process {Nt|t ∈ R+} and a set of IID random variables
{Yn|n > 1} the process Zt =

∑Nt
i=1 Yi with Z0 = 0 is called a compound

Poisson process.
A continuous time process {Mt|t ∈ R+} is a martingale with respect

to a family of σ-fields {Ft|t ∈ R+} if for every t ∈ R+ it holds that Mt is
measurable with respect to Ft, E[|Xt|] < ∞ and E[Mt −Ms|Fs] = 0, 0 6
s 6 t. The discrete case follows analogously.

Brownian motion, compound Poisson process and martingales are spe-
cial instances of a Lévy process which is a continuous-time process with
T = R+ for which X0 = 0 with independent and stationary increments
Xt −Xs, 0 6 s 6 t and where the trajectory is continuous.

All Lévy processes are infinite divisible and, vice versa, for every infinite
divisible process there exists a Lévy process. The Lévy-Khintchine theorem
establishes a relation for the characteristic function φXt(u) = e

Ψ(u) of every
infinite divisible and, hence, for every Lévy process [4]

Ψ(u) = imu−
1

2
σ2u2 +

∫
R∗

(eiux − 1− iux1|x|61)ν(dx), (1.39)

with m ∈ R, σ2 > 0, R∗ ≡ R\{0} and the indicator function 1. The
corresponding Lévy measure ν must fulfill∫

R∗
(1∧ x2)ν(dx) <∞. (1.40)

Moreover, a theorem due to Lévy and Itô states [4] that every Lévy process
can be decomposed

Xt = αt+ σBt + JT +Mt (1.41)

where Bt is a Brownian motion, Jt is an independent compound Poisson
process and Mt is a square-integrable martingale such that the Lévy
process can uniquely be specified by a triplet (α,σ2,ν), which can easily
be seen by reorganizing Ψ(u) such that each summand belongs naturally
to the exponent of the characteristic function of the corresponding process.

1.3 stability

A set of IID random variables X1, . . . Xn is said to be stable if it holds for
any positive integer n

X
d
= an(X1 ◦ · · · ◦Xn) + bn, (1.42)
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with an > 0 and d
= indicating equality in distribution. The componentwise

composition ◦ can be either additive, multiplicative or may involve mini-
mization or maximization [51]. Additive schemes lead to stable Paretian
laws for which an = n−1/α, with α ∈ (0, 2].

Furthermore, multiplicative schemes induce multiplication-stable dis-
tributions whereas minimization and maximization yield extreme value
distributions.

A special case of the additive schemes is given if the number of terms is
itself a random variable n = νp geometrically distributed with mean 1/p,
i. e.,

P(νp = k) = (1− p)k−1p, k = 1, 2, . . . . (1.43)

For example, generalized Laplace distributions are known to follow geo-
metrically stable laws [55].

Moreover, a sequence of IID random variables X1, . . . ,Xn is said to be in
the domain of attraction of a random Variable Z if

an(X1 + · · ·+Xn) + bn
d→ Z, (1.44)

as n→∞. In particular, for α = 2 and finite second moments the classical
central limit theorem is recovered which is proven considering the sum of n
standardized random variables Y =

∑n
i=1 Zi. The respective characteristic

function is given by

φY(t) = (φZ(t))
n ≈

(
1−

t2n

2n

)n
. (1.45)

In the limit n→∞ this becomes exp(−nt2/2) which is the characteristic
function of N(0,n). Due to Lévy’s convergence [36] theorem pointwise
convergence of the characteristic function implies convergence in distribu-
tion. There exists a variant of the theorem due to Lyapunov [8] that relaxes
the assumption of identical distribution.

Finally, a random variable Z is said to be infinite divisible with respect
to random variables X(n)

1 , . . . ,X(n)
n if

Z
d
= X

(n)
1 + · · ·+X(n)

n . (1.46)

Other, not necessarily equivalent, definitions of infinite divisibility exist. A
concise review is presented by Mittnik and Rachev [77].

1.4 information theory

For two discrete random variables X and Y and corresponding distinct
events xi∈FX and yi∈FY the joint probability is denoted by P(xi,yi). The
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probability to observe xi is given by P(xi) =
∑
yi∈FX P(xi,yi). The amount

of information is defined by log(1/P(xi)) = − log(P(xi)) [60]. Units of
information are fixed with respect to the basis of the logarithm. For
example one unit of information related to base 2 is called bit whereas nat
corresponds to the natural logarithm. Moreover, the expected information
of a random variable X is called self-entropy and is given by

H(X) ≡ E[− logP(x)] = −
∑
xi∈FX

P(xi) logP(xi). (1.47)

Self-entropy is a measure of uncertainty that X will take some specific
value. Naturally, it increases with the sample size and is large if distinct
observations are equally likely.

The mutual information measures the diference between the information
of the joint probability P(xi,yi) and the information if the random variables
were independent. Thus, it is defined as

M(xi,yi) ≡ log
P(xi,yi)
P(xi)P(yi)

. (1.48)

The expected mutual information, i. e., the reduction of uncertainty about
X or Y when the other is known reads

H(X, Y) ≡
∑
xi∈FX

∑
yi∈FY

P(xi,yi) log
P(xi,yi)
P(xi)P(yi)

) = H(X) −H(X|Y) (1.49)

which is naturally related to the Kullback-Leibler divergence DKL. For
example, the information gain with respect to Y due to the observation of
some event xi is

DKL(P(Y|xi)‖P(Y)) ≡
∑
yi∈FY

P(yi|xi) log
P(yi|xi)

P(yi)
. (1.50)

Thus, the relation between expected mutual information (1.49) and Kullback-
Leibler divergence (1.50) is

H(X, Y) =
∑
xi∈FX

P(xi)DKL(P(Y|xi)‖P(Y)). (1.51)

1.5 estimation

Estimation theory deals with the problem to abstract unknown parameters
as precise as possible from a function of the data. In principle different
paradigms have to be considered. While parametric estimation relies on
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the fact that observations are drawn from a probability distribution non-
parametric estimators do not need this assumption. Both paradigms can
be cast in a Bayesian or Frequentist framework.

In order to estimate parameters Θ ∈ Rn one defines a loss-function
generally given by

Lγ[Θ] ≡ E[|Θ− Θ̂|γ], (1.52)

with the estimate Θ̂∈Rn. The quadratic loss-function L2 is a conveniant
choice which can be decomposed into the squared bias and the variance

L2[Θ] = (E[Θ̂] −Θ)2︸ ︷︷ ︸
Bias2[Θ̂]

+Var[Θ̂]. (1.53)

equation (1.53) has important implications. Firstly, for unbiased estimators,
that is E[Θ̂] = Θ, L2 equals the variance of the estimator Θ̂. Secondly, one
can trade a little bias for reduced variance. Within the context of model
estimation (section 1.6) it is exactly this tradeoff that has to be optimized
with respect to the minimization of the out-of-sample error.

However, given an unbiased estimator Θ̂ and the regularity condition

E[∂Θi log(f(x|Θ)] = 0 (1.54)

it can be shown [79] that a minimum lower bound for the variance exists5.
To this end the Fisher information matrix I with elements

Iij(Θ) = −E
[
∂Θi∂Θj log f(x|Θ)

]
(1.55)

is introduced. If it is possible to rewrite the regularity condition (1.54) in
the form

∂Θ log f(x|Θ) = I(Θ)(h(x) −Θ), (1.56)

then Θ̂ = h(x) is an efficient estimator and the variance of its components
is given by the Cramér Rao bound (CRB)

Var[Θ̂i] = (I(Θ))−1ii . (1.57)

1.5.1 Maximum Likelihood

Due to its computational simplicity and its asymptotic properties the
maximum likelihood estimator (MLE) is often used in practice. Given the
joint density distribution f(x|Θ) with the random vector of observations x
and Bayes’ formula (1.9) one considers the probability of an infinite small
interval around Θ given observations x f(Θ|x) and varies Θ a way that
make the occurrence of x most probable. Thus, MLE are given by

Θ̂ML = argmaxΘf(Θ|x). (1.58)

5 This is the Cramér Rao bound (CRB).



32 a brief review of statistics

The estimator Θ̂ML is consistent limn→∞ Θ̂ML d
= Θ. Furthermore, it can

be shown that equation (1.58) yields an efficient estimator such that its
variance is given by the CRB (1.57) provided an efficient estimator exists.
Otherwise it is at least asymptotically efficient as

Θ̂ML
d−→ N(Θ, I−1(Θ)), (1.59)

as n→∞. Additionally, MLE are invariant under transformations, i. e., if
Φ = Ψ(Θ) it holds Φ̂ = Ψ(Θ̂).

If observations xi are iid the likelihood factorizes f(x|Θ) =
∏
i f(xi|Θ).

Then it is conveniant to minimize the negative log-likelihood

L ≡ −
∑
i

log f(xi|Θ) (1.60)

which is equivalent to (1.58) due to the monotonicity of the logarithm.

1.6 supervised statistical learning theory

In general the task in supervised learning is to approximate the functional
relationship between independent and dependent variables. Within the
context of machine learning independent variables are called inputs or
features and dependent variables are refered to as outputs. To this end
a set of training examples T ≡ {(xi,yi)} is presenetd to an appropriate
learning algorithm.

Regression, i. e., the prediction of a quantitative output, seeks an ap-
proximation f̂(X) to the underlying relationship Y = f(X) given a random
variable X ∈ Rm of features and a quantitative output Y ∈ R.

For a family of possible solutions the relationship is determined mini-
mizing the expected prediction error

E[Lγ] = E[|Y − f(X)|γ] =
∫
(y− f(x))γfX,Y(x,y)dxdy. (1.61)

Commonly used L2 errors and variational calculus, i. e.,

δE[L2]

δf(x)
= −2

∫
(y− f(x))fX,Y(x,y)dy (1.62)

yield the conditional expectation

f(x) = E[Y|X = x]. (1.63)

Thus, the best estimator for Y is the conditional mean at any point X = x.
For L1 errors this has to be replaced by the conditional median at any
point.
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For k categorical outputs the loss function (1.61) is replaced by a loss
matrix L∈Rk×k. Elements Lij indicate the cost induced by a misclassifi-
cation of an example classified as class i when it belongs to class j. The
expected test error is calculated with respect to the joint distribution of
the categorical variable and features X.

1.6.1 Model Selection

Models that are obtained from the training of machine learning algorithms
usually are used to predict outcomes of unknown data. Thus, one is
interested in the generalization ability on independent test data, instead
of the minimization of the error on the training sample. This is inherently
linked to the choice of an appropriate learning algorithm.

The generalization error is given by

Errγ ≡ E[Lγ(Y, f̂(X))|T] (1.64)

that is the error of a learning algorithm that produced f̂ trained on a set
of training examples T applied on an independent test sample using the
loss-function Lγ.

The training error is the mean loss over N training examples

εγ ≡
1

N

N∑
i=1

Lγ(yi, f̂(xi)). (1.65)

In general, the training error εγ decreases as the model complexity in-
creases. It vanishes as the number of parameters equals the number of
training examples which accounts to a re-parametrization of the training
sample. However, very complex models usually will not lead to the lowest
generalization error (1.64).

In particular, it can be shown [41] that more complex models yield lower
bias but higher variance with respect to the expected prediction error
E[Errγ] = E[Lγ(Y, f̂(X))]. The goal is to balance the model complexity with
respect to an optimal trade between bias and variance that minimizes the
generalization error.

In this thesis cross validation is used to estimate the expected out-of-
sample error, i. e., the data is divided into k equal-sized sub-samples. Then,
the prediction error is calculated for the i-th sub-sample using a model
that is fitted to the remaining data. The estimated prediction error due to
cross-validation is the average prediction error.

A common choice is 5-fold cross-validation. For example, if k is cho-
sen too large the training samples are quite similar such that one gets
an unbiased estimator for the test error with high variance. Thus, one
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estimates E[Errγ] but not (1.64). However, for small k considerably high
bias is introduced, especially for small training samples.

1.6.2 Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis (VC) dimension formalizes the concept of gen-
eralizability by introducing a measure of capacity, that is how wiggly a set
of functions can be. This stems from the fact one can demonstrate that the
number of free parameters is not a good measure of capacity. For example,
cos(fx) has only one free parameter. However, it can separate arbitrarily
points as one increases its frequency f.

The VC dimension is given by the largest number of points x ∈ Rn
that can perfectly be separated by a member of the function-class with
respect to an arbitrary assignment of binary outputs. For example, the VC
dimension of a hyperplane is 3. There are 23 possibilities to assign binary
outputs to 3 points that all can be separated when the class boundary is
linear. However, this does no longer work for 4 points.

Its importance for practical applications results from the fact that a
given VC dimension h allows to state upper bounds of the expected out-of-
sample error for regression and classification, i. e., for binary classification
Hastie et al. [41] state

ErrT,2 = ε2 +
κ

2
(1+

√
1+

4ε2
κ

), κ = a1
h(log(a2Nh + 1) − log(η4 )

N
, (1.66)

with probability 1− η and parameters a1 = 4 and a2 = 1 corresponding to
the worst-case. Thus, the correction to the training error6 increases with
the VC dimension h and decreases with the the size of the training sample
N.

1.6.3 Support Vector Classification

Support Vector Classifiers (SVC) induce a class boundary on an input-
space that maximizes the margin between members of different classes.
For example, given the training set T = {xi,yi} with N members xi ∈ Rn,
yi ∈ {−1, 1}, a hyperplane

xTw+ b = 0 (1.67)

6 Also called optimism
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is used to separate classes. If the problem is linearly separable, i. e., mem-
bers of different classes do not overlap in the input-space, the maximization
margin is equivalent to the convex optimization problem

min
w,b

wTw

subject to yi(xTiw+ b) > 1, i = 1, . . . ,N. (1.68)

The margin that separates the two classes has the width of 2wTw. Most
often it is convenient to allow some training examples to lie on the wrong
side of the class boundary. The introduction of slack variables ξ ∈ Rn
allows a certain degree of misclassification, i. e., ξi measures the relative
distance by which xi is misclassified in terms of wTw. The equivalent
convex optimization problem reads

min
w,b,ξ

1

2
wTw+C

n∑
i=1

ξi

subject to yi(xTiw+ b) > 1− ξi, (1.69)

with ξi > 0 and where the cost parameter C has to be calibrated such
that the cross-validation error is minimal. Observations xi for which the
constraint in (1.69) becomes yi(xTiw+b) = 1−ξi are called support vectors.
This means that observations that are located neither on the frontier nor
within the margin do not shape the decision boundary. Larger values of C
lead to smaller margins. Hence, they stress the importance of values near
the decision boundary.

The primal problem (1.69) can be transformed to the so-called dual
problem

min
α

1

2
αTQα− eTα

subject to yTα = 0, (1.70)

with 0 6 αi 6 C, e = (1, . . . , 1)T and a positive semi-definite matrix Q with
elements Qij = yiyjxTi xj. Note that the slack variables vanished within the
dual form. Solutions α̂ to equations (1.70) are transformed in terms of the
original problem by

ŵ =

N∑
i=1

yiα̂ixi. (1.71)

A class label is assigned due to the classification rule

ŷ = sgn
(
ŵTx+ b

)
= sgn

(
N∑
i=1

yiα̂ix
T
i x+ b

)
. (1.72)
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(a) Linear and separable SVC (b) Nonlinear and non-separable SVC

Figure 1: Support vectors in the separable case are given by all points that lie
exactly on the decision boundary. Given the non-separable case and the
introduction of slack variables support vectors can also lie within the
margin and on the wrong side of the decision boundary.

So far only linear decision boundaries are considered. Mapping the
inputs x to a space of higher dimension x 7→ h(x) ∈ Rm and applying the
linear SVC induces nonlinear decision boundaries in the original feature
space. To this end inner products xTi xj are replaced by kernel functions
K(xi, xj) = h(xi)Th(xj). Common choices are

• linear K(xi, xj) = xTi xj

• polynomials K(xi, xj) = (γxTi x+ b)
d, γ > 0

• radial K(xi, xj) = exp(−γ|xi − xj|2)

• sigmoid K(xi, xj) = tanh(γxTi xj + b)

where free parameters have to be calibrated within the model selection
phase. In particular, small margins due to large C may lead to serious
overfitting problems due increased flexibility of the class boundary.

Figure 1 is a sketch illustrating both (non)-separable and (non)-linear
decision boundaries.

Whenever, we train multiclass SVC with a one-against all approach
[52]. Thus, given k classes k(k+ 1)/2 classifiers are trained. For the final
classification a majority vote is used, i. e., every classifier votes for one
class and the one that aggregates most votes wins.

Furthermore, we can state upper bounds for the out-of-sample error due
to the existence of upper bounds of the VC dimension i. e., given that the
training set T fits into a sphere with radius r and |w|2 = ω it is given by
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h = (ωr)2. Thus, upper bounds of the test error are given with probability
1− η by

ErrT,2 = 4
h

N
(log(2N/h+ 1) − log(η/4)). (1.73)
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E C O N O M E T R I C S O F F I N A N C I A L M A R K E T S

The econometrics of financial markets involves modelling of time series
like prices, returns and interest rates. It is a quantitative field that relates
topics of economy to mathematics. In particular, financial modelling is set
up in a probabilistic world where the system in question takes a certain
state in the equivalent probability space.

There are various reasons for an increased demand in financial mod-
elling on an academic level as well as within finance industry. For example,
sophistication of modelling resulted in milestones such as Black and
Scholes famous work on option pricing [10], Merton’s equilibrium model
[67], heavy-tailed return distributions [63], the efficient market hypothesis
[33], Markowitz’s [65] efficient frontier and the capital asset pricing model
due to Sharpe [84] and others to name only a few.

This was accompanied by advancements of the information infrastruc-
ture which had without any doubt a sustainable impact on the develop-
ment of financial econometrics. For example, the possibility to collect and
store vast amounts of data, increasingly cheap computer systems powerful
enough to perform complex calculations even on the consumer level and
finally low-latency, broadband signal-processing.

The vast amount of work conducted over the last decades both on a
theoretical and empirical level renders it virtually impossible to give a
concise overview of the field. Thus, we rather focus on the most important
aspects as used in this thesis. For a comprehensive introduction to the
field we refer to Rachev et al. [78] and Campbell et al. [15].

The remainder of this chapter introduces the most basic definitions of
financial time series related to prices and returns after which we discuss
empirical characteristics of unconditional return distributions, in particular
heavy tails. This is followed by sections on modelling of conditional
volatility, in particular, GARCH models, their extensions and parameter
estimation.
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2.1 prices and returns

Given the time series of prices of any asset k that pays no dividends
{s

(k)
t }, t ∈ Z the rate of return, for simplicity also referred to as return, is

defined as

r
(k)
t ≡

s
(k)
t − s

(k)
t−1

s
(k)
t−1

. (2.1)

There are at least two reasons to prefer the evolution of returns rather than
that of prices. The return is scale-free as long as one does not consider
actual investing where the size of the position impacts the price. Even
more important, time series of returns often are stationary at least on local
time horizons.

Furthermore, we consider the rate of return for a portfolio r(p) of n
assets which is given by

r
(p)
t =

n∑
k=1

wir
(k)
t (2.2)

where the weights are subject to an appropriate normalization. Another fre-
quently used quantity is the log return also called continuously compound
rate of return defined by

y
(k)
t ≡ log

(
s
(k)
t

s
(k)
t−1

)
. (2.3)

It follows from the basic properties of logarithms that log returns on longer
time horizons are just the simple sum of log returns of their constituent,
shorter time horizons. However, due to the same property equation (2.2)
is no longer valid for continuously compounded returns.

Expressions (2.1) and (2.3) can be modified to incorporate the payment
of dividends dt in the interval between t− 1 and t, i. e.,

s ′t → st − dt. (2.4)

Additionally, it is often desired to compare the performance of an asset or
portfolio to the one containing low-risk securities or certain indices. Thus,
the excess return z(k)t is defined by

z
(k)
t ≡ x

(k)
t − x

(0)
t (2.5)

where x(k)t can be any of the above returns and x(0)t is the corresponding
return of the portfolio of reference securities.
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2.1.1 Distribution of Returns

Given the time series {x
(k)
t }t=1...T of an asset k and any of the above returns

(2.1) and (2.3) f(x(k)|Θ) denotes the unconditional, joint distribution of
returns and Θ uniquely determines the statistical distribution.

Historically important is Bachelier’s [6] introduction of the normal
distribution into finance. Assuming that price changes on the transaction
level are IID with finite variance the normal distribution follows from
the central limit theorem. Ever since, the normal distribution has played
a crucial role in many areas of modern finance including the classical
formulation of the mean-variance portfolio theory by Markowitz [65] or
the celebrated Black-Scholes formula [10].

However, as noticed by Mandelbrot [63] and subsequently promoted by
Fama [32] empirical return distributions exhibit rather strong excess kur-
toses. Not surprisingly the observation of volatility clustering, that is large
returns are most likely followed by large returns whereas small returns
are followed by small returns, violates the assumption of IID. Moreover,
the occurrence of extreme events as corresponding to rather abnormal
returns is much more likely as implicated by the normal distribution. For
example, in the context of GARCH modelling Kim et al. [48] conclude that
applying normal innovations a crash like the Black Monday 1987 would be
expected every 2.554 · 1039 years whereas such an event would be expected
every 37.26 years using the corresponding α-stable GARCH model. It is
worth mentioning that leptokurtic return behaviour is not a characteristic
of modern financial markets and, thus, could be linked to the arrival
of information technology but can also be found in financial markets of
the eighteenth century [40]. In his seminal paper Mandelbrot introduced
α-stable Paretian distributions into finance which are capable to model
both excess kurtosis and skewness. For an review see, for example, Rachev
et al. [77]. While α-stable distributions have nice theoretical properties
among them domains of attraction and stability, financial modelling often
requires finite second and higher moments which they do not exhibit due
to polynomial decaying Lévy densities [49].

Only recently this was overcome due to the introduction of tempered sta-
ble distributions [81], also called Carr-Geman-Madan-Yor (CGMY) model
[18] or truncated Lévy flights [54] and successfully applied to finance, in
particular, GARCH modelling and option pricing by Kim et al. [49].

Figure 2 illustrates the z-transformed, unconditional return distribution
of the S&P 500 on 10 minute time intervals from 3 March 2010 to 20 April
2011. While the normal distribution underestimates the probability of
extreme events in the tails both normal and t-distribution underestimate
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Figure 2: Empiral and theoretical unconditional return distributions for z-
transformed log returns of the S&P 500 on 10 minute time intervals.
The normal, the Student t and the classical tempered stable distribution
are fitted to the data. The normal distribution underestimates risk corre-
sponding to the central and tail region of the distribution. The classical
tempered stable distribution represent the entire empirical distribution
remarkably well.

the central region of the distribution, whereas the classical tempered stable
(CTS) achieves both.

Appendix A reviews some heavy- and semi-heavy-tailed distributions
which are used within this thesis.

2.1.2 Heavy Tails

In order to define the notion of fat tails more precisely we consider the
probability that some random variable X takes values larger than x, i. e.,
we consider the upper tail. A distribution is said to have Pareto tails if it
holds

P(X > x) =
L(x)

xα
, (2.6)

with the tail index α > 0 and a slowly varying function L(·) > 0 such that

lim
x→∞ L(cx)L(x)

= 1, c ∈ R+. (2.7)

Thus, Pareto type distributions decay like a power law, i. e., limx→∞ L(x)/xα =

0. In particular, this means that moments of the respective distribution ex-
ists only up to the tail index α with possible modifications of the statement
due to an appropriate choice of L(·).
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Under the assumption that the tail behaviour is governed by Pareto-like
distributions the tail index can be estimated via the Hill estimator [78]

α̂k =

(
1

k− 1

k∑
i=1

logX(n+1−i) − logX(n−k)

)−1

(2.8)

with the order statistics X(i), . . . X(n). In particular, α-stable Pareto distri-
butions and the Student t-distribution show asymptotic Pareto type tail
behaviour.

While it is generally accepted that the normal distribution cannot ac-
count for empirical return distributions as it has too light tails, i. e., it
drops faster than any exponential, there is no consensus about the correct
tail behaviour. In particular, the term semi-heavy tails was used in the
context of generalised hyperbolic distributions, e. g., Variance Gamma
(VG) distributions, in order to account for a tail behaviour that drops
slower than a normal distributions but where all moments may exist.

2.2 modeling conditional volatility

Ross [82] showed that volatility measures the information flow within fi-
nancial markets. Hence, there are many areas of modern finance including
portfolio theory and option pricing that depend on the concise estimation
of volatility.

Generally, it is accepted that volatility consists of a predictable and an
unpredictable part, with research typically focusing on one of these aspects.
Given the return yt from time t−1 to t of a certain financial instrument
the modelling of conditional volatility σ2t = Var[yt|It−1] parametrizes the
relation between the volatility and the filtration available It−1. Time series
of the unexpected return εt ≡ yt −E[yt|It−1] are also called news process
or just noise.

2.2.1 Empirical Evidence

Financial time series exhibit a number of stylized facts that a certain
model parametrization has to acknowledge. Figure 3 depicts returns of
the Standard & Poors 500 (S&P 500) from 3 March 2010 to 20 April 2011
on diferent time horizons.

As discussed in section 2.1.1 unconditional return distributions are more
heavy-tailed then expected for a normal distribution.

Additionally, the realized stock return volatility exhibits a hyperbolic
decay within its autocorrelation function [3], that is

lim
k→∞ ρ(k) ∼ L(k)k2d−1, d ∈ (0, 1/2), (2.9)
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(a) ∆t = 15s (b) ∆t = 600s

Figure 3: Realized intraday returns of the S&P500 from 3 March 2010 to 20 April
2011 for time horizons of 15s and 600s. Volatility clustering is observed
on both time horizons.

with k the lag number and and slowly varying function L(·). The cor-
responding long memory effect of volatility was refered to as volatility
clustering[63]. Thus, the assumption of homoskedasticity, i. e., constant
variance, is inadequate. To this end, Engle [31] introduced autoregressive
conditional heteroskedastic models (ARCH) originally to model infla-
tion rates of the UK. However, the clustering of volatility appears to be
generic and, subsequently, was confirmed over many asset classes and
time horizons.

Indeed, heavy tails of the unconditional return distribution can in part be
explained due to volatility clustering. However, with increasing frequency
of the time series the innovation process becomes more leptokurtic such
that volatility clustering cannot be the only source of heavy tails.

Furthermore, among others Black [9] provided evidence that financial
time series are asymmetric with respect to the response of volatility to good
and bad news, i. e., the increase in volatility is larger if the unexpected
return was negative. Black also discussed that the effect is too large to
explained by pure leverage effects, i. e., a firm with outstanding debt
becomes more leveraged if its value falls while stock volatility rises and
the total return stays constant. Nevertheless the term leverage is commonly
used in literature when referring to the asymmetry of volatility with
respect to past returns. To account for the notion, various ideas have
been proposed to model asymmetric dependencies of the news process εt
(section 2.2.4).

Moreover, the information flow is not uniform when using intraday
time series. For example, increased volatility after the open reflects the
information aggregated over the corresponding non-trading period. The
variance following weekends is not as high as one would expect if news
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arrived at a constant rate in comparison to two succeeding weekdays.
Ballie et al. [7] find that volatility is on average much higher during contin-
uous trading than during non-trading periods. However, the assumption
of constant arrival rates can be refuted as demonstrated in section 4.2.
Moreover, concerning high-frequent data one has to consider enhanced
volatility due to macroeconomic events and cross-market integration. This
will be discussed in detail in chapter 3.

2.2.2 ARCH Models

We consider a stochastic process {εt} in discrete time and the autoregressive
conditional heteroskedastic model (ARCH)

εt = σtzt, E[zt] = 0, Var[zt] = 1, σt > 0, (2.10)

where the conditional volatility σt needs a reasonable parametrization
due to the available filtration and zt is the independent and identical
distributed innovation term. If not stated otherwise and without loss of
generality we assume yt = a0 + εt given the rate of return yt i. e., the
expected value E[yt|It−1] = a0 is constant.

Often, it is conveniant to assume a normal distribution N(0, 1). In par-
ticular, using Jensen’s inequality it can be shown that normality of the
innovation term implies a leptokurtic news process εt, i. e.,

E[ε2t ] > E
2[σ2t ]E[z

4
t ]. (2.11)

However, in section 3.6 we show that for high-frequency data empirical
innovation distributions still exhibit leptokurtic behavior such that the
assumption of normality has to be rejected.

Furthermore, Engle [31] considers the following parametrization called
linear ARCH model of order p (ARCH(p))

εt = σtzt, σ2t = ω+

p∑
i=1

αiε
2
t−i (2.12)

with constant parameters αi > 0, ω > 0. The simple equation (2.12)
implies that conditional variance depends on past errors, that is past
information. From this it can be interfered that αi+1 < αi.

Some properties of ARCH(1) are in order. Due to E[zt] = 0 it follows that
the unconditional expectation value of εt vanishes. Furthermore, using
the geometric series the unconditional variance is

Var[εt] = E[ε2t ] = E[ω+α1ε
2
t−1] =

ω

1−α1
. (2.13)
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Given finite forth moments in εt, it can be shown [78] that the kurtosis is
given by

γ1[ε] = 3
1−α21
1− 3α21

> 3. (2.14)

An equivalent representation of equation (2.12) exists due to the time-
dependent p-th order moving average (MA(p)) model

εt = ω̃t +

p∑
i=1

α̃i,tε̃
2
t−i, (2.15)

where former coefficients are now IID stochastic processes with vanishing
mean and variance given by coefficients of the corresponding ARCH(p)

model.
Moreover, equation (2.17) can be written in terms of the lag-operator L

defined by Liyt ≡ yt−1 such that it is an AR(p) process

ε2t = ω+α(L)ε2t−1 + νt, (2.16)

where νt = ε2t − σ
2
t and α(L) is a p-th order polynomial in L which is

covariance stationary if all of its roots lie outside the unit circle [78].

2.2.3 Generalized ARCH Models

By adding a moving average term Bollerslev [12] introduced the general-
ized ARCH model GARCH(p,q)

εt = σtzt, σ2t = ω+

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i, (2.17)

where zt is a IID, standartized innovation. Compared to the linear ARCH(p)

the conditional variance depends on past realizations of itself, which ren-
ders it more flexible. In particular, a high order ARCH(p) model might
be replaced by a relatively low order GARCH(p,q) version. Moreover, in
practice it turns out that GARCH(1, 1) is a suitable parametrization of
the data. It can be shown that equation (2.17) is a well-defined process if
parameters αi, βj are nonnegative and ω is positive.

Again, using the lag-operator L equation (2.17) can be made equivalent
to the ARMA(max(p,q),q) model

ε2t = ω+ (α(L) +β(L))ε2t−1 −β(L)νt−1 + νt, (2.18)

with νt = ε2t − σ
2
t and the q-th order moving average polynomial β(L).

Ergodicity and strict covariance stationarity follows if all roots of α(L) +
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β(L) = 1 lie outside the unit circle. Bollerslev showed [12] that this is
equivalent to

p∑
i=1

αi +

q∑
i=1

βi 6 1. (2.19)

For the integrated GARCH (IGARCH) model due to Engle and Bollerslev
[30] inequality (2.19) becomes an equation. Thus, past noise persists for all
future time-horizons.

Given a strictly covariance stationary process {εt} its unconditional
variance reads

E[ε2t ] =
ω

1−
∑p
i=1 αi −

∑q
i=1 βi

. (2.20)

For the simple GARCH(1, 1) it can be shown [78] that

2α21 + (α1 +β1)
2 > 1 (2.21)

yields finite fourths moments of εt and
√
σ2t and leptokurtic hehaviour of

the corresponding unconditional distributions. Letting ω be a function of
time other stylized facts such as forecastable events or non-trading periods
can be incorporated.

2.2.4 Asymmetric GARCH

While the most prominent motivation for asymmetric models with respect
to the response of volatility on past shocks is rooted within the empiri-
cal work of Black [9], Nelson [70] lists further arguments that deem to
make modifications of the symmetric model necessary. For example, the
nonnegative constraints on the parameters within equation (2.17) render
random oscillations impossible. Moreover, concerning the question how
long shocks persist within the time series the choice of the criterion for
convergence in probability may have a suitable influence on the result.

Thus, given a model of the form

logσ2t = αt +
q∑
i=1

βig(zt−i) (2.22)

with a suitable function g(·), σ2t remains positive due to the use of the
logarithm, i. e., the constraint that parameters αt, βi have to be nonnegative
can be relaxed. One arrives at Nelson’s exponential GACRH (EGARCH)
model by introducing

g(zt) = Θzt + γ(|zt|+E[|zt|]). (2.23)

Equation (2.23) is linear with slope Θ+ γ on R+ and linear with slope
Θ− γ on R− which allows to account for the asymmetry effect. Typically,
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the coefficient γ is negative. Thus, negative news have a stronger impact
on the conditional volatility. For normally distributed innovations zt, the
expected value in (2.23) becomes

√
2/π whereas it reads

E[|zt|] =

√
ν− 2

π

Γ
(
ν−1
2

)
Γ
(
ν
2

) (2.24)

for a Student t-distribution with ν > 2 degrees of freedom.
Moreover, EGARCH addresses the above stated points of criticism. For

example, vanishing constraints such as the nonnegativity of the coefficients
allows oscillatory behaviour in σt. Additionally, it is a linear model in
logσ2t such that stationarity does not depend on the criterion of conver-
gence in probability. For example, Nelson [70] proves strict stationarity
and ergodicity by noting that logσ2t can be written as an ARMA(p,q)
process where the corresponding theorems on stationarity hold. Within
this thesis we abandon the original formulation and use

logσ2t = ω+

q∑
i=1

αi(|zt|+E[|zt|]) + γizt−1 +

p∑
i=1

βi logσ2t−1 (2.25)

instead. Another way to introduce asymmetries is the model

σ
γ
t = ω+

q∑
i=1

(αi|ε
γ
t−i|+ γi|ε

γ
t−i|1εt−i<0) +

p∑
i=1

βiσ
γ
t−i, (2.26)

with the indicator function 1. For γ = 2 equation (2.26) is known as the
Glosten Jagannathan Runke (GJR) model [39] which is well defined if
coefficients are nonnegative and αi + γi > 0. The symmetric GARCH
model (2.17) can essentially be interpreted as a GJR model with γ = 0.
Moreover, stationarity follows for

q∑
i=1

(
αi +

1

2
γi

)
+

p∑
i=1

βi < 1. (2.27)

2.2.5 Parameter Estimation in GARCH models

In practice parameter estimation within GARCH models might be per-
formed by applying a maximum likelihood approach. Let Θ be a vector
of parameters to be estimated, {yi}t=1,...,T the realized observations and
f(zt|Θ) the density distribution of zt = εt/σt. Then, one maximizes the log
likelihod

L(y1, . . . ,yt|Θ) =
T∑
t=1

Lt(yt|Θ) =

T∑
t=1

log f(zt|Θ) −
1

2
logσ2t . (2.28)
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Under the assumption of normal innovations the log-likelihood becomes

L(y1, . . . ,yt|Θ) = −
1

2

T∑
i=1

(
log 2π+ logσ2t(Θ) +

ε2t(Θ)

σ2t(Θ)

)
(2.29)

which is maximized with respect to Θ. However, as noted earlier most
models cannot remove leptokurtic behaviour from the unconditional dis-
tribution such that the innovation process still exhibits fat tails, especially
in the context of high-frequency data. This is acknowledged by applying
other distributions such as Student-t, CTS or VG.

Nevertheless, one may use Gaussian maximum likelihood estimation to
fit parameters of the GARCH model independent from the actual fitting
of the innovation distribution which is called quasi-maximum likelihood
estimation. The validity of the approach is justified by the notion that
quasi maximum likelihood estimates Θ̂QML are Fisher consistent [12], i. e.,
it holds

E [∂ΘL(y1, . . . ,yt|Θ)] = 0. (2.30)

From this it can be shown [89] that an estimate Θ̂QML is consistent and
asymptotically normal

lim
T→∞

√
T(Θ̂QML −Θ)

d
= N

(
0, J−1(Θ)I(Θ)J−1(Θ)

)
, (2.31)

with elements of matrices I(Θ) and J(Θ) given by Jij = −E[∂Θi∂ΘjLt] and
Iij = E[∂ΘiLt∂ΘjLt] that can be estimated consistently from the data.

Brooks et al. [14] give an overview of various implementations of
GARCH estimation and and their accuracy with respect to a benchmark.
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3
M O D E L I N G I N T R A D AY PAT T E R N S O F V O L AT I L I T Y

3.1 introduction

This chapter examines the intraday pattern of dispersion both for indi-
vidual stocks and the collective movement of a given universe in the US
and Europe. Stocks listed on the London Stock Exchange, XETRA and Eu-
ronext are taken into account. Strong integration for the given exchanges
is found apart from effects due to specific market mechanics, e. g., the
midday auction at XETRA. Subsequently, a method is proposed to identify
ex-post effects related to unpredictable events in the data and remove them
in an iterative fashion from a generic rank-k approximation of the intraday
return dispersion.

Locally increased volatility in the low-rank approximation of the intra-
day data can often be explained by the release of macroeconomic news
during the continuous trading. In the context of the US Treasury market
Fleming et al. [35] find a nearly instant reaction due to macroeconomic
events. This is confirmed by Bollerslev et al. [13] who analyse the 5 minute
return volatility of US Treasury bond futures. They observe enhanced
volatility due to the release of announced macroeconomic news such as
Humphrey-Hawkins testimony and the employment report. Ederington
et al. [29] investigate the response of macroeconomic news releases on
interest rate and FX markets. They conclude that there are several an-
nouncements that effect Treasury bond future prices, Eurodollar future
prices, and the DM/USD exchange rate. Concerning market efficiency
they constitute that the price adjustment due to news is largest within
the minute of publication and that the direction of subsequent returns are
independent from the immediate adjustment. However, returns are more
volatile for the 15 minutes following the release. Almeida et al. [2] detects
additional impact due to German policy decisions on DM/USD exchange
rates.

Hence, this thesis the impact of macroeconomic news releases on the
stock market is explored. Chen et al. [20] analyse the intraday response of
market returns as measured by the Dow Jones Industrial Average (DJIA).
They identify significant effects due to unexpected changes. Furthermore,
their evidence supports Cook et al. [23] who argue that the market re-
sponds only after 1979 due to a modification of the Fed’s policy. More
general macroeconomic news releases are studied by Wasserfallen [88]

51
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who spots only small influences due to macroeconomic news releases on
the stock market in Great Britain, Germany and Switzerland. However,
Nikkinen et al. [71] observe that the US employment report and Federal
Open Market Committee (FOMC) have impact on the European stock
market, whereas domestic news have no significance.

Results from the literature are supported. Moreover, it is found that 14
out of 15 event classes impact prices during the continuous trading within
the US. Additionally, 10 out of 12 events have a significant impact on the
DAX.

Subsequently, a generic low-rank profile is proposed that takes into
account mean corrections of the volatility due to the release of macroe-
conomic news. The corresponding intraday estimates are merged with
classical GARCH paradigms such as GARCH, EGARCH and GJR. The
respective boosted models are called SVD-GARCH, SVD-EGARCH and
SVD-GJR. The model performance is measured by backtesting Value-
at-Risk utilizing Kupiec’s proportion of failures test for one-step-ahead
forecasts of 1 minute returns of DAX and S&P500 data. It is found that
risk is properly assessed for boosted variants of classical GARCH whereas
classical variants overestimate risk leading to very conservative estimates.
Additionally, for SVD-GARCH and SVD-GJR the performance as measures
by the mean absolute percentage error (MAPE) is slightly improved.

Thereby, the goodness-of-fit as of various distributions such as the
normal, the Student t, classical tempered stable and variance gamma
distribution is examined on various time horizons. In particular, for high
frequency data classical tempered stable as well as variance gamma distri-
butions describe the data much better. Moreover, the scaling behaviour of
parameters of the variance gamma distribution are explored.

The remainder of this chapter is organised as follows: section 3.2 de-
scribes the data and define collective and single stock return dispersion.
Section 3.3 analyses ex-post intraday return dispersion within the US and
Europe. Black swan events that dominate the rank-3 approximation are
identified. Section 3.4 introduces an iterative rank-k model to account for
unpredictable events. Furthermore, the impact of macroeconomic news
releases on intraday return dispersion are explored. Section 3.6 focuses on
GARCH modeling. In particular, SVD variants of classical GARCH models
are introduced in section 3.6.1. The goodness-of-fit of various distributions
with respect to the innovation process is examined in section 3.6.2, the
scaling-behaviour of the variance gamma distribution is assessed in section
3.6.3 and the forecasting quality as well as risk backtests are investigated
in section 3.6.4. Finally, section 3.7 summarizes the findings.
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3.2 the data

Two sets of data are considered. The first encompasses high-frequency
data for the S&P 500 and the DAX from March 3, 2010 to April 20, 2011
on time intervals from 15 seconds to 10 minutes. The second dataset
contains individual stock data on 1 minute intervals from January 2, 2008
to 29 December 2010 for the US and Europe. The single stock dataset
of the US consists of time series of 465 different equities with market
capitalization ranging from approximately 1 to 348 billion Euros1, whereas
the European single equity dataset comprises of 170 companies with
market capitalization between 2 and 162 billion Euros. The data is adjusted
for dividend payments. Furthermore, all European equities are chosen
such that they are traded on XETRA, London Stock Exchange (LSE) and
Euronext which leads to homogeneous trading hours concerning the
continuous trading among the chosen exchanges. In order to account for a
different dynamic concerning the midday action of XETRA the European
market is divided into additional subsets for equities traded at Euronext
(63 stocks), LSE (70 stocks) and XETRA (37 stocks). While this significantly
reduces the statistic compared to the US. It is remarked that the only
criterion for picking individual stocks was their liquidity.

The continuously compounded return – henceforth referred to as the
return – at a time t is utilized

y
(k)
t ≡ log

(
s
(k)
t

s
(k)
t−1

)
, t = 1, . . . , T , (3.1)

where {s
(k)
t } denotes the time series of the price of security k, i. e., price

changes and no returns on investments are considered. Concerning time
series of individual stocks last prices to which a trade took place of the
corresponding trading minute are used.

Participants in the financial markets want to know the risk they are
exposed to and the risk they will face in the future in order to construct
optimal portfolios or price derivatives. Volatility, i. e., the second moment
of return, is a widely accepted measure of risk and directly related to
the information flow available within the market [82]. However, other
metrics exist [28]. In order to estimate risk in a robust fashion the mean
absolute deviation of the return y(k)t is used. In particular, the single stock
representation reads

C ≡ (σ
(k)
t )k=1,...,m t=1,...,T σ

(k)
t ≡ d1(y

(k)
it , 0) =

1

n

n∑
i=1

|y
(k)
i,t |

σ̂
(k)
i

√
T , (3.2)

1 As at 2 January 2008



54 modeling intraday patterns of volatility

with T time intervals of the trading day, securities k, intraday intervals t
and days i. Here, the intraday measure of risk is scaled by an estimator
of the daily volatility σ̂(k)i which is calculated as a 14-period exponential
moving average EMA14(ω) with

ω ≡ sup
{
|α−β| : α,β ∈ {open±, close±, high±, low±}

}
(3.3)

where ± accounts for realizations of succeeding trading days. In the face
of non-Gaussian returns the scaling may not be exact, however, it approx-
imately removes interday effects within an intraday volatility analysis.
Furthermore, it transforms intraday volatility to the same magnitude for
different dates and equities which is essential within the context of the
subsequent singular value decomposition.

Moreover, the collective representation for a market l is stated by

Dl ≡ (σi,t)i=1,...,n t=1,...,T σi,t =
1

m

m∑
k=1

|y
(k)
i,t |

σ̂
(k)
i

√
T . (3.4)

Index variants of expression (3.4) replace σi,t by realizations of the corre-
sponding index. Thus, matrices C and D are constructed such that rows
of C correspond to different equities, i. e., elements average over differ-
ent dates, whereas D measures risk for different indices k where rows
corresponds to different days. Notice that overnight returns are removed
explicitly from the analysis.

For the sake of a general intraday volatility profile linear independent
projections of the data that show the highest variance compared to all
other combinations have to be found. Indeed, it can be shown that the
singular value decomposition of any m×n matrix X = {x1, . . . , xn}

X = UΣVT (3.5)

serves the purpose. Here, U is an m×m orthonormal matrix, while V is
an n×n orthonormal matrix. Columns ui and vi are called left and right
singular vectors. In the context of matrices C and D one also refers to them
as eigenequites/dates and eigenminutes, respectively. The m × n diagonal
matrix Σ has elements si > si+1 called singular values. To specify our
introductory statement projections Xvi show the highest variance of the
data within the subspace orthogonal to

L ≡ span {v1, . . . , vi−1} . (3.6)

Furthermore, following a theorem due to Eckart and Young [27] the rank-k
approximation

Xk = UΣkV
T =

k∑
i=1

siuiv
T
i (3.7)
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minimizes the Frobenius norm ‖X − Xk‖F, which is equivalent to the
minimization of the average Euclidean error of columns xi with respect to
the chosen subspace.

3.3 historical volatility

3.3.1 Patterns in the US Stock’s Volatility Profile

Figure 4 depicts matrices C and D within the US. Figure 4a approximately
represents the collective risk with respect to the chosen stock universe.
Local and non-periodic enhanced volatility is most likely due to new
information which eludes predictability within efficient markets. In order
to estimate future market-risk one wants to identify these events reliably
and remove them in an iterative fashion from a generic model for the
intraday dispersion. The date averaged intraday dispersion for every stock
as illustrated in figure 4b is much smoother.

(a) Volatility for different dates averaged
over 465 equities.

(b) Volatility for different equities aver-
aged over 770 dates.

Figure 4: Matrices C and D for the US, time intervals of 1 minute for equities
with market capitalization that differ by a factor 436 over 3 years. The
color encoding is averaged over 10× 10 entries.

A reduction of dimension by applying a singular value decomposition
(3.5) to matrices C and D is performed.

The rank-1 approximation of the data s1u1vT1 equals the mean volatility
with respect to different dates and stocks. However, in the case of market
dispersion it accounts for only 14.2%, whereas mean risk as measured by
the single stock matrix C represents 60.3% of the variation among the data.
A more complex model such as a rank-3 approximation accounts for 16.7%
and 64.3%, respectively. Figure 6 exhibits components of the respective
rank-3 approximations. The mean intraday profile of volatility for both
market indices and individual stocks decays quickly from its maximum at
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(a) ΣD, s1/s2 = 9.67 (b) ΣC, s1/s2 = 22.87

Figure 5: Singular values si, i ∈ 2, . . . 11 for matrices D and C. First singular
values s1 are omitted as they are much larger in magnitude. The mean
represents 14.2% and 60.3% whereas the rank-3 model accounts for
16.7% and 64.3% of the variation among the data.

market open and reaches its minimum after roughly 200 minutes around
midday. Enhanced volatility in the price finding phase 30 minutes after
open are due to overnight news both for macroeconomic news (figure
6a) and corporate events (figure 6b). Additionally, a peak of volatility 30
minutes after trading begin due to the release of macroeconomic news
such as the Institute for Supply Management’s Manufacturing Index (ISM
Mfg), the Housing-Market Index or Consumer Confidence is observed.
After midday return dispersion rises again weakly.

The respective left singular vector (figure 6c) describing eigendates
exhibits two dominating components, one at October 10, 2008 and another
at May 7, 2010. The former corresponds to a market-situation governed
by fear that the financial crisis slides into a global recession with the
Dow Jones index loosing up to 5%. The latter refers to the day after the
so-called Flash-Crash. Interestingly, the intraday volatility pattern that day
resembles the average intraday volatility but with risk being much higher
in magnitude. Furthermore, the second singular-vector u2 is dominated by
two occasions. One at May 6, 2010 the already mentioned Flash-Crash, the
other is July 3, 2008 with markets closing early. Thus, the intraday profile
as represented by v2 mainly represents a superposition of both events.
Finally, s3u3vT3 is a superposition of the aftermath of the Flash-Crash at May
7, 2010 and of September 18, 2008, where actually two things influenced
the markets. To begin with, central banks agreed to infuse $180 billion into
global money markets. In addition, stocks rallied on the Paulson rumors
that government would absorb bad dept.

In contrast, the second and third eigenstocks correspond to a correction
of the mean volatility profile for a number of stocks mainly around the
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(a) eigenminutes of D (b) eigenminutes of C

(c) eigendates (d) eigenstocks ordered by market cap.

(e) eigenstocks ordered by sector

Figure 6: First three left and right singular vectors of matrices D and C in the
US. Eigenminutes exhibit enhanced volatility in the price finding phase
due to overnight news. In the last minute volatility decreases. The
announcement of macroeconomic news results in locally increased
return dispersion. Eigendates reveal the well-known volatility clustering.
The collective risk depends strongly on certain singular events such as
the Flash-Crash. Components of the single stock rank-3 model feature
neither a connection to market capitalization nor to sector affiliation.

first and last minutes of a trading day. In particular, some companies
dominating u2 exhibit lower return dispersion in the price-finding phase
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and increased volatility during the closing phase as compared to the
mean profile, whereas certain stocks extraordinary corrections to the
mean dispersion within the first and last trading minutes and increasing
volatility in the last trading hour. However, there is neither a relation to
market capitalization (figure 6d) nor to the sector affiliation (figure 6e). It
is remarked that events changing the volatility for the individual stock are
not detected due to the averaging over 770 dates.

3.3.2 Patterns in the European Stock Market Data

While some effects such as an increased return dispersion due to the
price-finding phase after open are comparable to results of the US market
analysis, a lot of features differ due to market mechanics and regula-
tory frameworks. Additionally, different trading hours result in different
information both available and anticipated.

The data sample containing European stocks is split into equities listed
on London Stock Exchange, Euronext and XETRA. A focus on these
trading venues results in homogeneous trading hours from 08 :00 to 16 :30
GMT.

London Stock Exchange data for matrices DLSE and CLSE is depicted
in figure 7. A singular value decomposition of the respective matrices
is performed. The mean of DLSE represents 12.3% whereas the mean
of CLSE constitutes 69.2% of the variation among the data. The rank-3
approximation accounts for 14.3% and 73.9%, respectively.

(a) DLSE (b) CLSE

Figure 7: Matrices C and D for London Stock Exchange, time intervals of 1 minute
for 70 stocks from January 2, 2008 to December 29, 2010. The color
encoding is averaged over 10× 10 entries.

The mean dispersion profile for both matrices DLSE and CLSE starts with
high volatility in the price finding phase lasting approximately 30 minutes
after the open. This effect due to overnight news is comparable to the US.
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(a) ΣDLSE , s1/s2 = 12.15 (b) ΣCLSE , s1/s2 = 24.97

(c) eigenminutes of DLSE (d) eigenminutes of CLSE

(e) eigendates (f) eigenstocks

Figure 8: Rank-3 approximation for the London Stock Exchange (14.3% and 73.9%
of the variation). Locally enhanced return dispersion is due to the
regular announcement of macroeconomic events. A barrier of volatility
is observed due to begin of continuous trading in the US. Volatility
rises within the last minutes of continuous trading. Singular events
dominating the decomposition can be linked to the financial crisis, the
Flash-Crash and Hungary’s debt problem. Return dispersion for the stock
representation is correlated to market capitalization of single stocks.

Then, enhanced volatility is observed periodically every 30 minutes due
to the announced macroeconomic news within Europe such as European
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(a) ΣDEu , s1/s2 = 12.70 (b) ΣCEu , s1/s2 = 39.42

(c) eigenminutes of DEu (d) eigenminutes of CEu

(e) eigendates (f) eigenstocks

Figure 9: Singular values si, i ∈ 2, . . . 11 and the first three left and right singular
vectors of intraday volatility at Euronext (77.78% and 15.47% of the vari-
ation). Both the mean profile of collective return dispersion and single
stock representation are strongly correlated to corresponding results at
LSE. This stays true for higher corrections at the collective dispersion
level rendering strong integration of the European market. However,
higher corrections to the single stock representation discriminate distinct
stocks which results in different profiles.

central banks rate decisions or consumer price indices. Locally enhanced
volatility after midday is due to macroeconomic news releases within the
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(a) ΣDX , s1/s2 = 12.34 (b) ΣCX , s1/s2 = 22.81

(c) eigenminutes of DX (d) eigenminutes of CX

(e) eigendates (f) eigenstocks

Figure 10: Singular values si, i ∈ 2, . . . 11 and the first three left and right singular
vectors intraday volatility at XETRA (82.30% and 14.54% of the vari-
ation). The mean profile for collective return dispersion, single stock
representation and higher market corrections are strongly correlated to
LSE and Euronext. Locally enhanced volatility around midday is due
to the intraday auction which also dominates the second eigenminutes
of the single stock representation.

pre-trade phase of the US and Canada. For example, the peak of volatility
at 13 :30 GMT (330 minutes after open) is linked to the Canadian quarterly
GDP or the US unemployment rate. Interestingly, the impact of announced
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news within the US on stocks traded at LSE is stronger than the effect
of European news. Furthermore, a barrier of volatility at 14 : 30 GMT
(390 minutes after open) is observed due to begin of continuous trading
within the US, i. e., European investor’s uncertainty about the impact US
overnight news is released. Increased volatility at 15 :00 GMT corresponds
the release of macroeconomic news in the US such as consumer confidence
or the ISM Mfg index. Interestingly, dispersion rises within the last minutes
of continuous trading due to the succeeding closing auction.

There are a number of events that dominate the respective right singular
vectors for DLSE, i. e., the mean dispersion profile roughly corresponds to
January 21 and 22, 2008 and May 7, 2010. While the latter can be linked
to the aftermath of the Flash-Crash, the former is connected to investors
worry about global recession. The Fed’s emergency cut on interest rates as
announced on January 22 further increased volatility within the markets.
The second right singular vector v2 constitutes further increased volatility
330 minutes after the begin of continuous trading at June, 4, 2010 due to
Hungary’s dept problem, whereas v3 again relates to January 21, 2008.

Interestingly, the average dispersion of returns s1u1vT1 depends linearly
on the market capitalization of chosen companies (figure 8f and 8d), i. e.,
return dispersion of big-cap companies is larger in magnitude over the
day as compared to small caps. Also, this means that the daily estimator
of volatility σd cannot capture the influence of overnight effects on daily
return dispersion.

Corrections of the mean dispersion profile due to second and third
singular components result in reduced return dispersion of small caps in
the price-finding and closing phase as compared to large caps.

Figure 9 and 10 illustrate components of the rank-3 approximation
of matrices C and D for stocks traded on Euronext and XETRA. The
respective rank-3 models account for 77.78% and 15.47% on Euronext as
well as 82.30% and 14.54% on XETRA of the variation among the data.
It is observed that the collective return dispersion both at Euronext and
XETRA is strongly correlated to the intra-daily profile at LSE, i. e., the
mean pattern as well as higher corrections of the rank-3 model resemble
those at LSE. However, for the market profile at XETRA one has to account
for the influence of the intraday auction around midday, i. e., during a pre-
specified interval one has only one price with the assigned dispersion being
larger due to concentrated liquidity. Additionally, the auction interval
differs for distinct stocks, e. g., those constituting the DAX, MDAX, SDAX
etc. Not surprisingly the single stock decomposition features varying
intraday auctions within the first and second component of the SVD.
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3.3.3 Indices

In order to verify if features of the analysis performed in section 3.3.1 and
3.3.2 merely depend on the choice of equities the investigation is repeated
using the S&P 500 performance index and the DAX on 1 minute time
intervals.

The 465 equities chosen in the US constitute more than 90% of the
S&P500, whereas the 37 equities traded on XETRA account for the blue
chips of the DAX and a few stocks from MDAX and TECDAX. Indices
are observed from March 3, 2010 to April 20, 2011 while the single stock
analysis is performed from January 2, 2008 to December 29, 2010 such that
effects due to external events may differ. However, in section 3.4 a method
is proposed to remove effects depending on singular events.

Figure 11 depicts the rank-3 approximation of the market representation
(3.4) for the respective indices. It indicates that high-order corrections
to the mean are more important compared to the simple average of the
single stock time series which is expressed due to the fact that s1/s2 is
much smaller. This might be due to the fact that many trading days of
the single stock analysis are governed by the recent financial crisis where
the correlation among different assets are stronger compared to non-crisis
times [45]. Thus, the rank-1 representation carries more explanatory power.
Concerning the market-representation of the S&P500 the first eigenminutes,
depicted in figure 11c, resemble those of the single stock analysis. However,
the decay of volatility in the price finding phase due to overnight news is
much steeper. The corresponding eigendate profile illustrated in figure 11e
is strongly influenced by the Greek dept crisis. In particular, May 19, 2010
to May 21, 2010 and May 25, 2010 effect the corresponding eigenminutes.
Additionally, it is observed that the first correction due to the second
eigenminutes v(2) increase volatility in the first minute of the continuous
trading which can be traced back to May 10, 2010, May 25, 2010, May 27,
2010, June 10, 2010 and March 15 to 16, 2011. Most likely it is linked to a
superposition of the aftermath of the Flash-Crash, the Greek dept crisis
and the Japanese nuclear crisis.

The rank-1 approximation of the DAX indicates that features of the
eigenminutes profile as found in the single stock analysis are conserved
(figure 11d).

For example, increased volatility due in the price finding phase, the
volatility barrier due to the open of the US market and peaks linked
to macroecononomic news releases – in particular, to news published
during the pre-trade phase of the US and Canada – are observed. The
first eigenminutes are influenced by March 15 to 16, 2011, the Japanese
nuclear crisis. Interestingly, the Greek crisis has a much weaker influence
as compared to the S&P 500.
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(a) ΣDS&P , s1/s2 = 5.88 (b) ΣDDAX , s1/s2 = 4.10

(c) eigenminutes of DS&P (d) eigenminutes of DDAX

(e) eigendates of DS&P (f) eigendates of DDAX

Figure 11: The rank-3 approximation for the S&P500 and DAX accounts for 10.6%
and 10.4% of the variation. First eigenminutes exhibit qualitatively the
same features as the corresponding single stock analysis perfomred
in section 3.3.1 and section 3.3.2. However, stronger characteristics
and varying corrections to the mean profile are due to different time
horizons, i. e., the former analysis is influenced by the recent financial
crisis whereas the index analysis is impacted by the Greek and Japanese
nuclear crisis.

It is concluded that the corresponding index representation as opposed
to the market-representation of single stocks exhibits qualitatively the
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same features. Variations are induced to different time intervals, i. e., the
single stock analysis is governed by the recent financial crisis whereas the
index investigation is influenced by different singular events such as the
Greek crisis, or the Japanese nuclear crisis.

3.4 iterative rank-k models

In order to improve the empirical model of intraday dispersion it is re-
marked that there are different kind of information shocks that drive the
stock market. Firstly, announced events such as certain macroeconomic
indicators, e. g., consumer confidence, and quarterly figures from compa-
nies are anticipated by investors. Secondly, it is rooted within the unique
structure of unexpected events that without certain event-specific exoge-
nous variables it is impossible to predict events such as the Flash-Crash.
Thus, their impact on the stock market is fundamentally different from
expected events. In order to account for this notion a framework is in-
troduced to identify unexpected events which are characterized by an
extraordinary high impact on the collective intraday return dispersion.
Events that are market moving will not only exhibit different market
volatility as compared to the mean intraday profile they will also result
in large outliers within components of the eigendates. Thus, a filter is
proposed that removes days for which it holds

|u
(i)
j | > mSu(i) , i = 1, . . . ,k, m ∈ N, (3.8)

with Su(i) the sample standard deviation of components j of the given ith

eigendate. It is emphasized that the filter (3.8) removes events that have
strong impact on the overall voltility profile but have nearly no significance
for a typical intraday profile of volatility.

For example, for m = 5, i. e., 5 standard deviations, and the single stock
analysis within the US as performed in section 3.3.1 it is identified days
that can be linked to the financial crisis of 2008 and the so-called Flash-
Crash. The virtue of the method lies in the fact that it identifies untypical
volatiliy profiles without the need to tie it to individual events. In this
sense volatility profiles prodcued by the filter (3.8) are robust.

Figure 12 depicts components of the iterative rank− 3 approximation
filtering data outliers with 3 standard deviations. This amounts to 13 dates
within to u1, 14 in u2 and 15 in u3. While the mean profile of return
dispersion is not affected due to singular events, their removal changes
higher corrections significantly, i. e., essentially they resemble orthogonal
polynomials.
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(a) eigenminutes (b) eigendates

Figure 12: Iterative rank-3 m = 3 approximation of the collective return dispersion
with a total of 42 days filtered from the data. Corrections to the mean
dispersion profile are essentially orthogonal polynomials. Deviations
are caused by macroeconomic news releases.

3.5 impact of macroeconomic news

In order to analyse if the peak in volatility 30 minutes after open of
the US market corresponds to the release of macroeconomic news those
days are removed from DUS for which news were announced. Figure
13 depicts components of rank-3 approximation for the corresponding
singular value decomposition. One observes that the locally increased
volatility is removed from eigenminutes of the collective return dispersion.

(a) eigenminutes (b) eigendates

Figure 13: Rank-3 approximation of the collective return dispersion with days
filtered that exhibit the release of macroeconomic news releases in the
US. Thus, locally enhanced volatility is removed from the eigenminute
profile.

Thus, the impact of the release of macroeconomic news in the US on the
S&P 500 and the DAX on time intervals of 15 seconds for release dates
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from March 3, 2010 to April 20, 2011 is considered. In general, news are not
released to the public earlier than the announced times due to the usage
of lock-up rooms that allow accredited journalists only at pre-specified
times to submit information to their agencies.

Events published during continuous trading are considered. Concerning
the S&P 500 15 different events with a total of 230 instances are examined.
Most of them are released at 10 :00 EST. However, a number of events is
distributed over the trading day. For example, Crude Inventories (10 :30
EST), the Fed’s Beige Book, Treasury Budget, Minutes of the FOMC (14 :00
EST), and Consumer Credit (15 : 00 EST). The same analysis is repeated
using the DAX on 15 second time intervals with 12 different events and
a total of 168 instances. There, all events occuring after the end of the
continuous trading are removed. However, one gains access to events that
fall into the pre-trade phase of the US (Retail Sales 8 :30 EST).

The market response due to the release of an announcement at date i by
is calculated according to

∆σit = σit −

3∑
j=1

sjui−1,jv
T
j , (3.9)

where ui−1,j accounts to the component of the jth left singular vector of
the previous day which is obtained by an iterative rank-3 m = 3 approxi-
mation of D. The rationale for doing so is rooted within the well-known
volatility clustering as noted by Mandelbrot [63]. Here, D is calculated
using intraday time series up to day i. However, time series that exhibit
the announcement of macroeconomic news are filtered. Essentially, this
means that background return dispersion is removed and the effect of
news releases on the collective return dispersion is explored.

Figure 14 displays the average response and the corresponding statistical
error of the S&P500 whereas figure 15 exhibits the reaction of the DAX
due to the announcements.

Both the response in volatility based on time series of the S&P 500

and the DAX show similar qualitative behaviour. That is the immediate
response is very strong and drops rapidly. No systematic drop in volatility
is observed in the 5 minutes preceding the release of the news. Concerning
the S&P 500 Treasury budget has no significant impact on the response
volatility. With respect to the DAX the announcement of retail sales is
insignificant. The latter one is published during the pre-trade phase of
the US such that European investor’s might await the opening of the
continuous trading in the US for which we have evidence due to the
volatility barrier within the general intraday profiles in Europe. Concerning
the release of crude inventories with respect to the reaction of the DAX
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Figure 14: Mean market volatility and statistical error of the S&P500 on 15 second
time intervals 5 minutes before and 10 minutes after an event takes
place. A dashed line indicates the event in question. Most events show
an immediate response due to the release. For some events such as
Minutes of FOMC Meeting the response in volatility exhibits long term
dependencies.

Figure 15: Mean market volatility and statistical error of the DAX on 15 second
time intervals. The qualitative behaviour of the response volatility is
comparable to that of the S&P 500 that is the immediate response is
high and decays very quickly. In particular, response due to leading
indicators, consumer confidence and new home sales ist very high. No
significant reaction is observed for retail sales.

it is observed that the market reaction is highest 30 seconds prior to the
offical relase.

In order to estimate the immediate response and lifetimes of certain
events announced at times tS a volatility pattern of the form

∆σit = 1t>τ (1+∆σtS exp(−λt)) (3.10)
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is assumed. Table 1 and table 2 list the instant market reaction due to the
news release ∆στ that is the deviation of the background volatility given
by the respective rank-3 approximation at times tS, rate parameters λ, the
corresponding estimation errors and t-statistics.

Returns are normed. Thus, concerning the S&P 500 it is found that
the immediate response in terms of added volatility to the background
model due to consumer confidence (683%) is biggest followed by the
Philadelphia Fed (582%) and leading indicators (543%). The the smallest
impact is related to Treasury budget (19%) and Minutes of the FOMC
meeting (84%).

Lifetimes τ = λ−1 are calculated for events that are found to have impact
on the intraday return dispersion. For example, leading indicators (27
seconds) and new home sales (23 seconds) exhibit rather short lifetimes,
whereas the Minutes of the Federal Open Market Committee (FOMC)
Meeting (401 seconds) and Factory Orders (258 seconds) have the biggest
long term impact.

With respect to the DAX it is noticed that both the immediate response
is stronger and lifetimes are shorter as compared to the respective events
of the S&P 500. Again it is found that Consumer Confidence (1374%) has
the strongest impact followed by leading indicators (945%). Very short
lifetimes exhibit Consumer Confidence (5 seconds) and New Home Sales
(8 seconds) whereas response volatility decays rather slow for Leading
Indicators (22 seconds) and the Philadelphia Fed (24 seconds). However,
they are in the same order of magnitude as the fastest adjustments of the
S&P 500.

3.6 garch modeling

In order to model and forecast the conditional volatility σ2t = Var[yt|It−1]
of a time series {yt} of log returns different GARCH paradigms utilized.
The data corresponds to high frequency data of the S&P500 and the DAX
from 3 March 2010 to 20 April 2011 on time horizons from 15 seconds to
10 minutes in steps of 15 seconds. In line with the previous analysis only
intraday returns are considered. Thus, all overnight returns are removed.

Concerning the model specification GARCH(1, 1), EGACRH(1, 1), and
GJR(1, 1) are applied as reviewed in section 2.2.3. Additionally, the SVD-
GARCH(1, 1), SVD-EGARCH(1, 1) and SVD-GJR(1, 1) are introduced. Es-
sentially, they take into account high-order, intraday patterns of volatility
due to a rank-k approximation of the intraday-time series. Additionally,
forecasts of the enhanced volatility due to macroeconomic news releases
are included. Corresponding model are discussed in detail in section 3.6.1.
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Figure 16 depicts the autocorrelogram for the standardized innovation
processes on 15 seconds and 1 minute time intervals.

(a) S&P500 15s (b) DAX 15s

(c) S&P500 60s (d) DAX 60s

Figure 16: Autocorrelation of the standartized innovation processes of various
models on 15 seconds and 1 minute time intervals for data of the
S&P500 and the DAX. Horizontal lines correspond to the 95% confi-
dence interval. For ultra-high frequency data the model cannot remove
the prevailing autocorrelation.

It is noted that the use of the above models of conditional volatility
yields a non-vanishing sample autocorrelation ρ̂ over the first k = 20 lags
ultra-high frequency data with respect to the 95% confidence interval. In
particular, the result is consistent over different data sets, i. e., the DAX
and the S&P500. However, as one proceeds to lower frequencies, e. g., 1
minute, the models remove the autocorrelation of the data much better.
Thus, for high frequent data the model might not remove heterosekasticity
from the data which in part may explain the extraordinary variation with
respect to the shape paramter of the CTS distribution below certain time
horizons. This will be discussed in detail in section 3.6.3.
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3.6.1 Introducing SVD-GARCH

A number of stylized facts are known about financial time series. For
example, the aggregation of information over the trading day is not uni-
form such that various intraday profiles may exist. Moreover, increased
volatility due to trading on overnight news is observed after the open of
the corresponding market. However, following weekends and holidays
the increase of volatility is not as high as one would expect if information
aggregated at an constant pace.

Additionally, different markets could be integrated, i. e., increased volatil-
ity is observed due to the open of the US market in Europe. Finally, the
announcement of macroeconomic news might be anticipated which re-
sults in a different market reaction as compared to news that are released
without prior knowledge of market participants.

Typically, these questions can be tackled relaxing the assumption that the
unconditional variance ω in equation (2.17) does not depend on the time.
The proposed approach is equivalent. However, intraday log returns yit
of day i and time t are transformed utilizing an estimator of the intraday
volatility, i. e., ỹit = yit/σ̂it.

To this end the rank-3 approximation is calculated using all intraday
time series up to day i with the constraint that no macroeconomic news
are announced a certain day. Thus, the mean intraday profile as well as
higher corrections are removed from the data. Concerning the S&P500

this essentially removes a volatility profile with increased volatility at the
beginning and the end of the trading session. In Europe also effects due to
the open of the US market and intraday auctions are taken into account,
additionally.

If macroeconomic news are announced at day i the event-specific mean
response curves are estimated. Thus, an estimator σ̂it for the intraday
volatility is calculated according to

σ̂it ≡
3∑
j=1

sjui−1,jv
T
j +

n∑
k=1

1t>τk (1+∆σtS exp(−λt)) , (3.11)

with the indicator function 1, n events k released at time τk. Of course,
the additional term due to the release of news becomes zero when there
are no news released during the trading day. Equation (3.11) essentially
preprocesses the actual GARCH modeling by removing parts of the hert-
eroskedasticity within the conditional volatility that are related to high-
order intraday profiles.



72 modeling intraday patterns of volatility

3.6.2 Fitting the Innovation Process

Describing the innovation process in terms of a parametric model might
have various reasons ranging from applications in risk measurement to the
theoretical understanding of microscopic processes that leads to the price
formation. Thus, different distributions such as the normal distribution,
the Student t- distribution, the standardized CTS distribution and the VG
distribution are utilized (section A). From table 3 and table 4 it can be
concluded that the normal distribution is inappropriate to describe the
innovation process on all time horizons from 15 seconds to 10 minutes, i. e.,
both the Kolmogorow-Smirnov as well as the Anderson-Darling goodness-
of-fit statistic is rejected on all confidence intervals.

Figure 17 and figure 18 depict maximum likelihood fits of the remaining
distributions, i. e., Student t, standardized CTS and VG with respect to in-
novation processes of the GARCH(1, 1) and SVD-GARCH(1, 1) on various
time horizons.

Most notably it is observed that the VG distribution overestimates risk
related to the central region of the distribution for data on 15 second
time intervals. However, as one proceeds to more low frequent data the
VG distribution approaches the empirical distribution and describes it
rather well. This appears to be consistent for various models. Both the
Student t-distribution and the standardized CTS distribution describe the
empirical distribution well in the central region. However, figure 17 and
figure 18 allow no quantitative assessment of the goodness-of-fit with
respect to the tails of the distribution.

To this end, the Anderson-Darling (AD) statistic as reported in table 5

and table 10 is investigated. Unfortunately, single outliers might have a
severe impact on the numerical optimization of the log likelihood. Thus,
no smooth dependency of the test statistic from time horizons is recovered.
However, the AD test statistic is widely improved for the Student t, the
CTS and the VG distribution with respect to the normal distribution. In
general, the test statistic is accepted for more low-frequent time intervals
with an increased probability. Especially, the DAX data as depicted in table
6 is described remarkably well except for the 30 seconds interval. However,
no improvement of goodness-of fit with respect to the usage of the class
of SVD-GARCH models can be reported.

Concerning the AD statistics of the CTS distribution on S&P500 data
it is observed that the data is well described for time horizons above 30
seconds with a few exceptions. Especially, no remarkable improvement of
the goodness-of-fit with respect to the SVD version of GARCH models are
observed. However, the goodness-of-fit is enhanced due to the utilization
of SVD-GARCH models on nearly all time horizons for the DAX data.
In particular, it is noticed that the p-value of the SVD-GARCH model on
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(a) 15s (b) 30s

(c) 60s (d) 120s

(e) 300s (f) 600s

Figure 17: Maximum likelihood fits of various theoretical distributions to the
innovation process of a GARCH(1, 1) model on different time hori-
zons. As the time horizons get longer the pronounced peak of the VG
distribution approaches the data. The Student t-distribution under-
estimates risk related to the central region slightly. Furthermore, the
excess kurtosis is much more pronounced for very short timescales.
The CTS distribution describes the data well on all time horizons above
30 seconds.

30 seconds time horizons is strongly improved compared to the classical
GARCH model with a p-value being roughly three times smaller. The
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(a) 15s (b) 30s

(c) 60s (d) 120s

(e) 300s (f) 600s

Figure 18: Maximum likelihood fits of the Student t, the CTS and the VG distri-
bution on the innovation process of the SVD-GARCH(1, 1) model for
various time horizons on data of the S&P500. Again, increased excess
kurtosis of very high frequent data yields probability estimates too
extreme in the central region of the VG distribution.

improvement is even better for the EGARCH model, where the p value
increases by roughly one order in magnitude on the 15 seconds time
interval which renders the CTS distribution possible to describe ultra-high
frequency data.
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Finally, the AD test statistics of the VG distribution is investigated. It
is emphasized that weights in the test statistic stress the importance of
the tails of the distribution. Thus, strong deviations of the VG distribution
from of high frequency innovations in the center of the distribution are
inhibited yielding very good results for the AD test indicating that the
VG distribution is capable to model the tail behaviour of the distributions.
However, if one takes into account the KS test statistic that considers the
single greatest deviation of theoretical and empirical distribution large
deviations around zero explain a bad test statistic.

In detail it is observed that the goodness-of-fit with respect to the
AD test statistic and S&P500 data is very well above the 15 seconds time
interval and improves for SVD-GARCH models with exception of the SVD-
GJR model. Concerning the DAX data goodness-of-fit improves which is
consistent with the behaviour of the t and CTS distribution.

With respect to the SVD-GARCH paradigm it is found that the goodness-
of-fit improves significantly even on the 15 seconds time interval compared
to the classical GARCH formulation.

Figure 19 indicates the goodness-of-fit for various models and innova-
tions, both for the S&P500 and the DAX data on 1 minute time horizons.

3.6.3 Random Scaling Behaviour

In this section the scaling behaviour of parameters of the VG distribution
fitted against the GARCH(1, 1) innovation and the corresponding SVD-
boosted model over varying time horizons are investigated.

It is found that ν describing the relative excess kurtosis of the VG
distribution drops very fast for time scales below 2 minutes. Moreover,
innovations of SVD boosted GARCH models exhibits less excess kurtosis as
innovations related to the classical GARCH paradigms. Parameters σ and
β corresponding to scale and skewness of the distribution show a nonlinear
dependence of time. Moreover, the scale of innovations of the SVD-GARCH
model diverges compared to simple GARCH formulations, i. e., on longer
time horizons innovations of SVD-GARCH exhibit a larger scale than
the classical GARCH equivalent. Finally, the skewness of the distribution
increases on lower frequent time horizons. However, no distinction with
respect to SVD-GARCH and GARCH models is possible.

3.6.4 Forecasting and Backtesting Value-at-Risk

In order to assess the forecasting quality of classical GARCH paradigms
and their corresponding SVD variants the models are fitted to 5000 obser-
vations of DAX and S&P500 data on 1 minute time horizons starting at 3
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(a) KS S&P500 (b) KS DAX

(c) AD S&P500 (d) AD DAX

Figure 19: KS and AD test statistics for various models, distributions and data to
the 1 minute time horizon.

March 2010. The one-step-ahead forecast σ̂τ is calculated for the next 5000
observations, i. e., the model is fitted to a moving frame where the oldest
observations gradually drop out.

The mean absolute percentage error (MAPE) is scale-free and given by

MAPE =
1

n

t+n∑
τ=t+1

∣∣∣∣ σ̂τ − στστ

∣∣∣∣ , (3.12)

with n the number of forecasts. Figure 21 depicts results for the DAX and
the S&P500 data. The overall performance as measured by equation (3.12)
is slightly better for the DAX data.

One observes that SVD-boosted variants of GARCH(1, 1) and GJR(1, 1)
have lower mean absolute percentage error than their classical variants.
However, such a behaviour is not found for the EGARCH(1, 1) model. In
particular, for S&P500 data classical EGARCH performes competitive to
boosted versions of GARCH and GJR and even better than its SVD variant.

The second paradigm to assess a model’s quality applied here is back-
testing Value-at-Risk (VaR) which is one of the most prominent methods
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(a) S&P500 (b) DAX

(c) S&P500 (d) DAX

(e) S&P500 (f) DAX

Figure 20: Random scaling behaviour of parameters ν, β, σ of the the VG distri-
bution. For short time scales ν representing the relative excess kurtosis
drops very fast. In particular, Parameters σ and β have a nonlinear
dependence from time. On longer time horizons

to measure risk and became an industry standard following J.P. Morgan’s
introduction of RiskMetrics [26].



78 modeling intraday patterns of volatility

Figure 21: MAPE of various GARCH models with respect to one-step-ahead
forecasts. In general, the accuracy with respect to DAX data is slightly
better than with respect to S&P500 data. The performance of SVD
variants of GARCH and GJR improves with respect to their classical
versions.

Value-at-Risk is a lower bound for the loss that hat to be expected with
a given probability η, i. e., for a random variable X VaR at the significance
level η is given by

VaRη(X) ≡ − inf
x∈R

{P(X 6 x) > η} (3.13)

which is just the quantile-function (1.13).
Despite its well-known points of criticism among them a lack of subad-

ditivity2, it is central to the current regulatory framework, Basel II, which
binds banks to hold market risk capital corresponding to the loss expected
in 1% of the time on a 10 day time horizon. Specifically, banks have to
calculate VaR estimates with respect to the previous 250 trading days and
the required market risk capital depends on max(VaRt,0.01, ρ̄t), with

ρ̄t = St
1

60

59∑
i=0

VaRt−i,0.01, (3.14)

that is the average VaR over the last 60 trading days and St depends on
the number of VaR exceptions k in the previous 250 trading days. The risk
factor St is given by the so-called traffic-light approach

St =


3, k 6 4 green

3+ 0.2(k− 4), 5 6 k 6 0 yellow

4, 10 < k red

(3.15)

2 VaR is not a coherent risk measure [5].
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which is motivated on basis of Kupiec’s proportion of failures (POF)
test (section B.4). Having sketched the prevailing framework one-step-
ahead forecasts of VaR estimates are calculated for the different models.
Presented results have a stronger statistical significance as compared to
the regulatory requirements. GARCH models are fitted on the recent 5000
historical observations. Moreover, the 5000 one-step-ahead forecasts are
calculated. Again, results are obtained for DAX and S&P500 data.

Figure 22 exhibits VaR estimates at the 0.01 significance level utilizing
CTS innovations.

(a) DAX (b) DAX

(c) S&P500 (d) S&P500

Figure 22: VaR estimates for various formulations for CTS-GARCH(1, 1), CTS-
EGARCH(1, 1), CTS-GJR(1, 1) and their SVD boosted variants on DAX
and S&P500 data and 1 minute time horizons starting at 3 March 2010.
Only the first 1000 observations are depicted.

The individual model quality is assessed using Kupiec’s proportion of
failures test. Table 12 and table 11 summarize our findings, with α corre-
sponding to the critical level of Value-at-Risk, k the number of exceptions,
Λ the test statistic and the chi-squared distribution with one degree of
freedom χ21 evaluated at the 95% confidence interval.

Concerning DAX data results of CTS and VG fitted distributions coin-
cide. Classical versions of the respective GARCH paradigms are generally
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rejected except for CTS and VG variants at a critical level of 0.01. Moreover,
t-EGARCH is accepted for all critical levels, i. e., 0.01, 0.05 and 0.1. SVD-
boosted variants of GARCH, EGARCH and GJR are found to be rejected
with repect to a critical value of 0.01 but accepted for the remaining critical
values except for the CTS/VG-SVD-EGARCH model.

With regard to S&P500 data it is found that classical GARCH, EGARCH
and GJR are rejected for all critical values except for the CTS/VG-EGARCH
model with critical values of 0.05 and 0.1 and the t-GARCH and t-GJR
model and critical values of 0.1. Acceptance rates of SVD variants are
improved compared to classical GARCH paradigms. In particular, all
models pass Kupiec’s proportion of failures test at the 0.01 VaR level. On
the 0.05 level all models except for the VG/CTS versions of GARCH and
GJR are accepted. On the 0.1 level only the t-SVD-GJR model is rejected.

Again, CTS and VG lead to a quite similar number of exceptions. More-
over, both for DAX and S&P500 data as well as SVD boosted and classical
versions of GARCH modeling a rejection is caused by a too conservative
VaR estimate, i. e., the number of exceptions are too small.

3.7 conclusion

This chapter analysed intraday volatility of single stocks as well as different
market representations in the US and Europe. Concerning the market
representation two approaches were utilized. The first ansatz was based
on ultra-high frequency realizations of broad market indices such as
the S&P500 and the DAX. The seconds ansatz averages over the single
stock universe on 1 minute time horizons. Moreover, sub-samples of the
single stock representation are investigated for equities listed on Euronext,
LSE and XETRA. To that end a low-rank approximation of the data is
performed.

It is found that volatility drops quickly in the price finding phase
corresponding to the first 30minutes of the continuous trading and reaches
its minimum around midday. In the second half of the trading session
volatility rises only weakly. Locally enhanced volatility is due to the release
of macroeconomic news. European volatility profiles are modified to to
the open of the US market resulting in a barrier of volatility and various
intraday auctions. Unlike the single stock universe in the US mean volatility
profiles in Europe depend linearly on the market capitalization. However,
no such relation can be reported for the sector affiliation.

Higher corrections to the low-rank approximation of the market repre-
sentation are impacted by black swan events that elude predictability in
efficient markets. A procedure is introduced to identify effects that are
related to external events which allows to improve generic intraday ap-



3.7 conclusion 81

proximations. As a result higher corrections to the mean profile resemble
orthogonal polynomials. For the US from 2 January 2008 to 29 December
2010 a number of events are identified, e. g., May 6 and 7, 2010 correspond-
ing to the so-called Flash-Crash and its aftermath as well as September 18,
2008 and October 10, 2008. The former corresponds to a market-situation
governed by the fear that the financial crisis slides into a global recession
and the latter is caused by central banks which agreed to infuse $180
billion into global money markets. Concerning Europe additional events
are identified. Fox example, June 4, 2010 which is related to Hungary’s
debt problem.

In order to quantify the impact of macroeconomic news releases in the
US on the S&P500 and the DAX a response model and corresponding
immediate corrections as well as lifetimes of various event classes are
estimated. It is found that 14 out of 15 events impact the S&P500 whereas
10 out of 12 events affect volatility of the DAX. More specifically, Consumer
Confidence as well as Leading Indicators have eminent impact. With
respect to the S&P500 response-volatility corresponding to the release
of macroeconomic news exhibit rather short lifetimes, e. g., , Leading
indicators (27 seconds) and New Home Sales (23 seconds). Minutes of
the FOMC meeting (401 seconds) has the biggest long-term impact. For
the DAX data it is found that response-volatility decays even faster. For
example, mean lifetimes of the quickest adjustments of the DAX are
Consumer Confidence (5 seconds) and New Home Sales (8 seconds).

Subsequently, the low-rank approximations of the intraday data and
models of response-volatility due to the release of macroeconomic news are
merged with classical GARCH paradigms. To this end, classical GARCH
models such as GARCH(1, 1), EGARCH(1, 1) and GJR(1, 1) are fitted to
S&P500 and DAX data on time horizons from 15 seconds to 10 minutes.
Thus, boosted GARCH variants called SVD-GARCH, SVD-EGARCH and
SVD-GJR that take into account low-rank approximations of intraday
volatility as well as response-volatility due to the release of macroeconomic
news are introduced.

It is found that both classical as well as boosted GARCH models ex-
hibit non-vanishing autocorrelation of the innovation process for ultra-
high-frequency data on time horizons below 1 minute. To this end the
goodness-of-fit of various distributions such as the normal, the Student
t, the classical tempered stable and the variance gamma distribution to
the innovation process of the respective GARCH model are examined.
It is found that only Student-t, classical tempered stable and variance
gamma distribution describe the empirical data. In particular, classical
tempered stable and variance gamma distribution characterize the ultra-
high-frequency data as assessed by the Anderson-Darling statistic. In
general, SVD-GARCH models lead to an improved goodness-of-fit with
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respect to the high-frequency time-scales. Moreover, the random scaling be-
haviour of the variance gamma distribution is investigated. It is found that
for time horizons below 2 minutes relative excess kurtosis increases in an
extraordinary manner. In part, this may be associated to the non-vanishing
autocorrelation of the innovation process.

Finally, the forecasting quality both of classical and SVD-GARCH mod-
els for different distributions and time horizons of 1 minute is analysed.
To this end the one-step-ahead forecasting performance of the various
models is measured by the mean absolute percentage error. It is found that
both for the DAX and the S&P500 the SVD-GARCH(1, 1) and the SVD-
GJR(1, 1) model perform better than their classical analogues. However,
no improvement can be reported for the EGARCH model. Additionally, a
Value-at-Risk backtest using Kupiec’s proportion of failures is conducted.
It is found that acceptance rates of Kupiec’s proportion of failures test
is improved for SVD-boosted variants of GARCH paradigms. In partic-
ular, most Value-at-Risk estimates are too conservative with respect to
classical GARCH models whereas SVD-GARCH models assess risk in an
appropriate manner.
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4
T E X T M I N I N G O F F I N A N C I A L N E W S

4.1 introduction

The retrieval of information from financial news is a vibrant topic both for
academia and professionals involved with financial markets. It touches
on questions regarding market efficiency and makes use of concepts from
various fields of research, e. g., computational linguistics, behavioural
economics and statistical decision theory.

Within the last decade various prototypes for financial news recommen-
dation aiming to predict short-term price movements have been proposed.
For example Wüthrich et al. [90] trained a number of machine learn-
ing algorithms using 423 expert-compiled features to predict whether or
not certain equity indices would increase or decrease by at least 0.5% or
stay below the given threshold. Input variables consisted of word tuples.
Overnight news were collected from web sites of the Financial Times or
Reuters. However, opening prices of the trading day following the release
of a given news article were replaced by the previous closing price. This
led to the use of future information that would not be available in real-time
applications.

Lavrenko et al. [57, 58] used a Naïve Bayes Classifier based on appropri-
ately weighted term-frequencies to categorize intraday trends of certain
US equities. They report a performance of 23bps per roundtrip on average.
However, only those stocks were considered showing the largest impact to
the release of news. Again the model is adjusted using future information
that is not available in realtime applications.

Mittermayer and Knolmayer [69] trained various machine learning al-
gorithms including Support Vector Machines with polynomial kernels
trained on words, tuple of words and phrases whether equities in the
US increase or decrease by 3% or stay below the respective threshold
following the 15 minutes after the release. They discard all news with
solely editorial character. Neglecting all implicit and explicit transaction
costs their strategy yielded a return of 27bps per roundtrip on average.

Emotions drive human decisions [24]. Moreover, behaviour finance
shows that collective emotions and feedback decisions influence the mar-
kets [72].

Only recently Bollen et al. [11] demonstrated that the public mood as
measured by the information content of Twitter messages can be used to
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improve the prediction accuracy of closing values of the Dow Jones Indus-
trial Average (DJIA) training a Self-Organizing Fuzzy Neural Network. To
this end they constructed features that indicate public mood levels such as
calm, alert, sure, vital, kind and happy using a large-scale corpus of tweets;
140 character messages from the social web. It is shown that the prediction
accuracy of the learning algorithm is improved compared with a training
that makes use of only the latest closing values of the DJIA. However, no
trading strategy is proposed implying that it remains ambiguous whether
or not actual profit can be deduced.

Further prototypes were proposed [86, 38, 73, 76]. A survey of the respec-
tive text mining systems was published by Mittermayer and Knolmayer
[68].

To the author’s knowledge existing prototypes generally lack one of the
following aspects. Usually the statistical significance of expert-compiled
features is unkwnown. Moreover, the use of phrases or tuples of words
is difficult to justify on a statistical basis. Some learning algorithms are
trained with respect to targets that have at best a very poor signal to noise
ratio. Additionally, the classification accuracy is usually not compared to
random forecasts that take only into account the target’s global proba-
bilities. Finally, some approaches lack a trading strategy. The following
approach handles all of the above points of criticism.

The remainder of this chapter is structured as follows: Section 4.2 intro-
duces the dataset. This is followed by an analysis of response patterns of
stocks that can be linked to individual news non-ambiguously (section
4.3). In particular, intraday as well as nightly news are taken into account.
Section 4.4 examines the transformation of unstructured data. In section
4.5 various Support Vector machines with linear as well as non-linear
kernels are trained. The out-of-sample accuracy is compared to a random
classification. Moreover, it is reported that a simple strategy yields 40bps
per roundtrip on average.

4.2 the financial news corpus

The data consists of 1.4 million realtime news from August 13, 2010 to
April 4, 2011 as received via Dow Jones Financial Wire. It covers over
13600 companies listed at global stock markets and includes ad-hoc news,
commentaries and analysis as well as economic indicators and political
events.

The data is received in a semi-structured way. Thus, the actual infor-
mation is encoded in a natural language. We receive messages in English.
However, some news are tagged with respect to the company they may
refer to by reporting the International Securities Identification Number
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(ISIN). Moreover, news are tagged with respect to various categories they
belong to. For example, some news report corporate actions such as divi-
dends, earnings or stock splits whereas others contain calendars or stock
comments.

Within the subsequent analysis we skip all news that cannot be linked to
a certain stock non-ambiguously. Thus, all news are discarded that carry
information about the economy as a whole or that refer to more than one
stock, This affects most acquisitions, for example. Moreover, the analysis
is limited to the European market.

Figure 23 depicts the logarithmic probability that a certain news is
published over the day. Times refer to the Central European time. One
observes peaks where an extraordinary number of news is published.
However, it cannot be resolved whether or not this is related to regularly
published news such as certain economic events or to the publication
policy of the service provider, e. g., for non-time-critical information such
as commentaries.

(a) Global coverage (b) European coverage

Figure 23: Probability that a certain news is published during the day. We report
logarithmic probabilities that a news corresponding to global and
European coverage is published.

Figure 23a depicts the probability to receive news concerning global
coverage. The probability to receive news is relatively low during the
night and increases prior to the opening of European markets. It rises
around 3pm and briefly after the close of the US market. The former time
corresponds to the pre-trade phase of the US market.

Figure 23b exhibits the logarithmic probability that a news concerning
a stock primarily listed at an European stock exchange is published. In
particular, the rate of news publications increases from roughly 6am to
8 :30am prior to the open of the continuous trading. This is followed by
a constant news rate during the continuous trading. The publication rate
drops again exponentially after the closing.
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4.3 response patterns

In order to design a text mining algorithm capable of predicting abnormal
returns one has to analyse the response of various equities due to the
release of new information. To this end we construct the matrices R and V

with the elements

Rit =
y
(i)
t

σ̂i

√
T , Vit = |Rit|, (4.1)

with T minutes per trading day and t ∈ [−τ, τ − 1 . . . , t0, 1, . . . τ]. Log-
returns are calculated for the midprice on 1 minute time horizons as
defined by equation (2.3). Moreover, σ̂i is an estimator of the daily volatility
of a certain equity at day i. It is calculated as a 14-day exponential moving
average of equation (3.3).

Eventually, rows of R correspond to the appropriately normalized 1
minute log-returns for the 2τ+ 1 minutes around a the release of certain
news at time t0. Furthermore, V is a metric for the response volatility also
referred to as the return dispersion.

Concerning the 1.4 million news from the dataset only those are chosen
that are published τ = 60 minutes after the opening and before the closing.
Additionally, news are selected that can be mapped non-ambiguously to
listed stocks. Moreover, a subset of 20000 news is picked randomly. Figure
24 displays the singular value decomposition of matrices R and V. Right
singular vectors are also called the eigenresponse whereas left singular
vectors are the eigennews.

The first singular values of R drop much slower than the singular values
of V. In particular the rank-3 approximation of R accounts for 5.23%
whereas the latter accounts for 11.67% of the variation among the data.
Eigenresponses of the return are strongly impacted by a few outliers of
the respective eigennews. For example, there are 153, 333 and 497 news
which deviate more than 3 standard deviations from the mean within the
corresponding eigennews profile of the return.

The first corrections to the rank-1 dispersion profile allow to distinguish
news that actually impact the return dispersion and those that do not.
Components of the third eigennews have both positive and negative
components which allows to adjust for the skewness of the response
dispersion, i. e., there are news for which the return dispersion is higher
after the official release with only a little response prior to the actual
release time and vice versa.

The eigenresponse of return and return dispersion as illustrated in figure
24c and 24d indicate that the reaction is strongest within the minute of
the release of new information which is in agreement with the efficient
market hypothesis. However, concerning some news we have evidence for
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(a) ΣR, s1/s2 = 1.23 (b) ΣV, s1/s2 = 2.55

(c) eigenresponse of R (d) eigenresponse of V

(e) eigennews of R (f) eigennews of V

Figure 24: Rank-3 approximation of matrices R and V. The dotted red line cor-
responds to the release of the corresponding news at time t0. The
response is strongest within the minute of the release. The eigenre-
sponse of the return is strongly influenced by a few outliers whereas
the eigenresponse of the dispersion indicates increased volatility for
some news preceding its actual release. Volatility corrections due to
higher rank approximations account for impact and skewness.

increased return dispersion with respect to minutes following/preceding
their release.
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For example, the first return dispersion profile increases 10 minutes
prior to the release of the news. Even though one has to consider the
appropriately weighted superposition of eigenprofiles to obtain the actual
response patterns there are news for which the weights of high-order
corrections to the rank-1 approximation are negligible. Thus, the existence
of the corresponding profile could be linked to the trading of non-public
information. Besides the effect cannot be explained due to inaccurate time
stamps, as the effect is largest within the minute of the release.

Additionally, the matrices Rn and Vn are constructed from news pub-
lished between the closing and the opening of two succeeding trading
days. In this context one refers to them as nightly news. Again 20000
news are picked randomly. A natural choice for the respective time series
selects the τ minutes following the opening of the continuous trading, i. e.,
minutes are discarded that precede the release of the news which had to
be mapped to the previous trading day. Figure 25 depicts the singular
value decomposition of Rn and Vn.

The rank-3 approximation accounts for 9.52% and 17.84% of the varia-
tion among the data. Complications arise due to the fact that responses no
longer can be mapped to the information content of single news but are
rather a measure of the collective information accumulated over the given
period. In particular, the rank-1 approximation of the return dispersion
accounts for 11.46% of the data. Singular values of eigenreturns drop
much slower compared to singular values of the eigendisperson. However,
the rank-1 approximation of Vn depicts the typical mean intraday profile
as discussed in section 3.3, i. e., the intraday volatility drops in the 30
minutes after the opening. Moreover, higher corrections to the intraday
profile can be associated with the collective news published about a certain
equity over the night. The corresponding response decays much faster.
For example, first-order corrections to the eigendispersion can be linked
to increased volatility within the first 5 minutes of the trading day. As
eigennews of the second corrections are distributed around zero the cor-
responding dispersion profile accounts for two aspects. Either the price
adjustment due to the news is immediate implying that volatility drops
sharply or the adjustment due to overnight news is delayed.

We stress that we have evidence for volatility adjustments due to news
only for the minutes around the release. Thus, any algorithms that aims to
predict price movements has to take into account the corresponding time
scales.
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(a) ΣRn , s1/s2 = 1.06 (b) ΣVn , s1/s2 = 3.42

(c) eigenresponse of Rn (d) eigenresponse of Vn

(e) eigennews of Rn (f) eigennews of Vn

Figure 25: SVD of Rn and Vn. News are published between the closing and
opening of two succeeding trading days. Minute 0 corresponds to the
opening of the following trading day. Concerning the return dispersion
the rank-1 approximation accounts for the well-known mean intraday-
profile following the minutes after the opening. High-order corrections
measure the corrections due to overnight news related to an individual
stock.

4.4 information retrieval from textual data

The problem to find a suitable representation of unstructured data such as
large corpora of text encoded in some natural language is common to many
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areas including computer science, mathematics, linguistics, psychology
and economics. A very popular approach reduces the textual information
of a document to a vector of real numbers. To this end a document
is tokenized into single words which will be discussed in section 4.4.1.
Further pre-processing steps include the transformation to word stems as
described in section 4.4.2.

The assumption that the order of the words within a document can be
neglected is also called bag-of-words hypothesis and induces exchangeabil-
ity of the corresponding random variables, i. e., words are assumed to be
conditionally IID. Of course removing the ordering of words destroys rele-
vant information. However, one of the major problems involving corpora
of documents is that the respective representation even with respect to the
bag-of-words model is very sparse.

There are a number of different approaches to measure the relevance of
an individual word. One of the most common approaches is the so-called
term frequency-inverse document frequency (tf-idf) measure that can
be motivated on empirical and information theoretic grounds [1]. Other
measures include simple term frequencies [59], signal-to-noise ratios [83]
or relevance weighted metrics [80].

Given a corpus of N documents D = {d1, . . . ,dN}, a vocabulary W =

{w1, . . . ,wM} of distinct terms contained in D and the frequency fij that a
word wi occurs in document dj the tf-idf measure is defined as

hij = fij log
(
N

Ni

)
, (4.2)

with Ni the number of documents that contain the word wi There exist
variants that normalize the term frequency by the total number of words
in a document and, thus emphasize the importance of single words in
shorter documents. The term related to the inverse document frequency
can be interpreted as an information measure, i. e., the logarithm of an
inverse probability. The use of equation (4.2) may also be motivated by the
fact that the simple term-frequency overemphasizes words that occur very
frequently but contain little information. However, measures that use only
the entropy over documents prioritizes terms that occur with a very low
frequency. The tf-idf measure, on the other hand, is a trade-off between the
two extremes. The above statement is formalized following the motivation
originally given by Aizawa [1]. Given random variables W and D over D
and W, the expected mutual information between W and D is calculated.
Thereby, it is found how well a document is described by words wi. The
self-entropy of D is given by

H(D) = −
∑
dj∈D

P(dj) log(dj) = −N
1

N
log

1

N
= − log

1

N
(4.3)
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where it is assumed that it is equally likely to select any of the documents
dj. The self-entropy of a subset D with Ni documents that contain the
term wi reads

H(D|wi) = −
∑
dj∈D

P(dj|wi) log(dj|wi) = − log
1

Ni
. (4.4)

Given the frequency fwi =
∑
dj∈D fij that the term occurs in the whole

corpus D and the total frequency F =
∑
wi∈W fwi of all terms in the corpus

the expected mutual information is

H(D,W) =
∑
wi∈W

P(wi) (H(D) −H(D|wi))

=
∑
wi∈W

fwi
F

log
N

Ni
=
∑
wi∈W

∑
dj∈D

fij

F
log

N

Ni

=
1

F

∑
wi∈W

∑
dj∈D

hij. (4.5)

Thus, the expected mutual information H(D,W) is the sum over the tf-idf
measure. This leads to the following interpretation: the inverse document
frequency measures the change of information observing the term wi
whereas the word frequency term estimates the probability to do so.

4.4.1 Tokenization

Tokenization refers to the segmentation of texts into subunits such as
words, phrases or sentences. More generally, a token is a sequence of
characters that carries information.

While tokenization with respect to white spaces and related control
characters as well as the removal of all punctuations might appear to be a
good idea a closer look reveals its difficulties.

For example, considering Asian languages such as Chinese or Korean no
whitespace boundaries between words or sentences may exist [64]. Other
languages introduce different subtleties, e. g., the German language uses
compound words that have to be split up whereas the French language
introduces reduced definite articles for words starting with a vowel.

Having established that algorithms the tokenization of text are strongly
dependant on the language to be processed we focus on English texts.

The English language makes use of apostrophes in order to contradict
or to indicate possession [64]. For example, within the sentence

Bernanke’s first name isn’t Benjamin.
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tokenization could be done with respect to whitespaces and apostrophes.
While this may work out for Benjamin | s it turns out to be a bad idea for
isn | t. Certainly, a better choice would be is | n’t or even is | not.

Moreover, hyphenation is used in miscellaneous ways, e. g., prefixes and
suffixes, splitting up vowels like anti-intellectual, word grouping hundred-
year-old or just compound names Anheuser-Busch. These cases have to be
handled differently, i. e., for prefixes one would remove hyphenations,
word groupings might be split up and compound names just stay the way
they are.

Additionally, tokenization with respect to whitespaces or non-alphanumeric
characters is complicated by names, dates and other cases where a certain
collocation of non-alphanumeric characters carries information that would
be reduced by a wrong tokenization. For instance, it is preferable to group
New York together as well as Aug 27, 2011 and someone@somewhere.com.

The proposed approach uses a two-step procedure. First text documents
are split into distinct sentences using the the unsupervised multilingual
sentence boundary detection algorithm due to Kiss and Strunk [50], i. e.,
much uncertainty about the boundary detection of sentences is resolved if
abbreviations within the sentence are identified reliably. To this end three
criteria are introduced that are independent of the respective language.
Firstly, abbreviations may be truncated words that end with a period.
Secondly, abbreviations are short. And finally, abbreviations may contain
internal periods. Moreover, it is important to identify initials and ordinal
numbers. Using the above heuristics the sentence boundary detections
outperforms other algorithms proposed in the literature.

After the identification of the sentence boundaries the Treebank tok-
enizer1 is applied.

In some applications it is common to remove a number of terms that
carry little information with respect to the target. Usually, one refers
to these terms as stopwords. Stopwords can be characterized by their
frequency of occurrence over the corpus of documents, i. e., common
stopwords like a, have or the lie at the upper end of the spectrum.

However, we note that within this framework the importance of com-
mon stopwords is decreased due to the use of weights that measure the
information gain.

The two-step procedure is exemplified with respect to the following
sentence2

The bank postponed its IPO in November because of market volatility,

particularly in financials, at the time. The company had planned

to sell 15 million shares at $14 to $16 each.

1 The heuristic is described in http://www.cis.upenn.edu/~treebank/tokenization.html
2 The example sentence is quoted from the dataset.
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leading to the tokenization as given by table 13.

the bank postponed its ipo in november
because of market volatility , particularly in

financials , at the time . the
company had planned to sell 15 million

shares at $14 to $16 each .

Table 13: Example of word tokenization using the Treebank algorithm. Note how
monetary units are grouped together.

4.4.2 Stemming

Stemming refers to the removal of suffices from words using an iterative
procedure. In particular, stemming maps words of a similar meaning
to the same term, not necessarily being the morphological stem of the
word. Thus, its use reduces the size of the vocabulary while increasing
the frequency of individual terms. The approach generally improves the
performance of an information retrieval (IR) task.

In many languages different forms of a word exist depending on its
grammatical use. For example, the English verb to be might come along
as am, was or is. Stemming builds on a number of heuristics that removes
endings of a word such as suffixes. However, unlike the so-caleld lemma-
tization it does not try to find the morphological stem of a word, i. e.,
the stemming of the word saw might lead to s whereas its lemmatization
would produce see or saw depending on its use as a verb or as a noun [64].

Stemming destroys a certain amount of information about the context
of the word. However, a major problem of text-mining is the statistical
weight related to features that are used in a machine learning algorithm,
i. e., most words occur only once or twice. Stemming tries to enhance the
statistical weight of certain terms.

Within this approach Snowball [75] is used, an open-source software
package with implementations of a number of stemming algorithms for
different languages. Additionally it presents a language to implement
customized stemming algorithms. We use the well known Porter algorithm
[74].

Any word may be written as a sequence of consonants and vowels with
the following ordering

[C](VC)m[V] (4.6)
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with the measure m ∈ N0, and an arbitrary consecution of consonants C
and vowels V . Rules of the stemming algorithm are stated in the form

(condition) : S1 → S2, (4.7)

where a suffix S1 is replaced by S2 if a certain condition involving, for
example, the measure m is met. While this approach is relatively easy a
large number of explicit rules are formulated that we do not repeat here.
However, their character is illustrated by a few examples

( ) : IES → I (4.8)
(m > 0) : EED → EE (4.9)

(∗v∗) : ING → (4.10)

where the empty condition ( ) is always true and (∗v∗) indicates that the
stem includes vowels.

the bank postpon it ipo in novemb becaus
of market volatil , particular in financi ,
at the time . the compani had plan
to sell 15 million share at $14 to

$16 each .

Table 14: Stemming of the example sentence. Terms such as postpon or compani
are no morphological stems.

The result of an application of the full Porter stemming algorithm to the
example sentence is summarized in table 14.

4.4.3 Feature Selection

The complexity of the approach is justified on the basis that the feature
space is automatically compiled trying to preserve as much information
about the original document as possible while acknowledging a certain
amount of statistical weight. Unlike other approaches we neither use
handcrafted dictionaries nor tuples of words of phrases.

In order to analyse word distributions in financial news we choose 40205
messages that can be linked non-ambiguously to European stocks. In total
the news contain roughly 7.2 million tokens with a vocabulary size of
124.676 different terms.

For demonstrative purposes we removed the list of stopwords that are
stated in table 15. Some of these are classical stopwords that occur very
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frequently while carrying no information. Others beglong to the footing of
the respective news provider. However, this was only done for illustration
purposes with respect to term frequencies. In particular, the application of
statistical learning algorithms is done with the full vocabulary.

The empirical word frequency diagram indicates that 48% of the words
occur only once or twice over the text corpus. The probability that words
occur exactly 3 times is already smaller than 10%.

- have for that on 2010 is are 2011

has it or as from at by this compani
dow jone an the - newsplus click newswir plc

Table 15: An demonstrative list of stopwords that are removed in order to illus-
trate he distribution of word frequencies among financial text news. The
list contains classical stopwords such as the as well as terms belonging
to the news footer added by the service provider.

Moreover, figure 26 indicates the most frequent words. Disregarding
stopwords the most frequent word is said with a probability of 0.008. This
is followed by words like market, rate and busi. This justifies the prior
notion on tuples of words. For example, an order of magnitude estimation
under the assumption of conditional independent word occurrences yields
a lower bound of 6.4 · 10−5 for the probability to observe a certain pair of
words .

Figure 26: Probabilites that a term occurs n times as well the most frequent
individual terms. The 40.205 news contained 124.767 different words
with a total of 7.208.220 terms.
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In order to analyse the overall discrimination capacity of various terms
we transform the corpus in a way that represents news as a vector with
entries given by the tf-idf measure. The F-score of the training set is
calculated. Moreover, the analysis is limited to the 50000 most frequent
terms as measured by their occurrence over the corpus. A 1−0 measure is
applied, i. e., if a word occurs in a given document it is counted only once.

Thus given the feature vector xj of the j-th training example and nk the
total number of training-instances in class k the F-score of the i-th feature
reads [21]

Fi =

∑l
k=1

(
x̂ki − x̂i

)2∑l
k=1

1
nk−1

∑nk
j=1

(
xkj,i − x̂

+
i

)2 (4.11)

with l the number of classes, the average of averages x̂i and x̂ki of the
respective dataset. Thus, the nominator is the inter-class variance whereas
the denominator sums the variances within each class. However, it is
well-known that the F-score is not capable to measure mutual information
among various features.

Figure 27 depicts the logarithmic, non-zero F-score of individual features
where targets are calculated with respect to normalized future 1, 5 and 10
minute log returns yt. The class map is given by

g(yt) =


yt < −1

|yt| 6 1

yt > 1

. (4.12)

The plot is truncated for features that show a vanishing F-score.
The F-score drops super-exponentially for the approximately 5000 fea-

tures with the highest F-score. This is followed by a region that is linear
with respect to log Fi. Only for features beyond the first 30000 their F-score
drops again super-exponentially. Table 16 lists the first 72 words that cor-
respond to the features with the highest F-score. It is read in a line by line
fashion, i. e., commentari has the highest F-score, followed by announc and
would.

However, while it is clear that the the importance of features in terms
of their F-score drops faster than exponentially for the first 5000 features
giving way to an exponential behaviour for the following 25000, it is not
obvious how to gauge the cut for the selection of features. Thus, various
formulations of Support Vector Machines are trained using a different
number of features. Finally, the version with the lowest out-of-sample
error is chosen.
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Figure 27: The logarithmic and non-zero F-score of individual features ordered by
magnitude drops faster then exponentially for the first 5000 features
which is followed by exponential behaviour. The F-score drops again
super-exponentially after the first 30000 features.

commentari announc would command estim analyst
conquer trend can minor invest billion

befor today analysi futur fix news
import busi follow most use mild
repair will bank reclam mode non-stat
expect more new equalis pricing million
work target perform inform addict valu
buy smart howev concern fun down

control focus ratio technolog trade rate

Table 16: Terms with highest F-score. Notice that the ordering is given in a line
by line fashion.

4.5 support vector machines and financial text mining

Having established the pre-processing steps that lead to a feature repre-
sentation which can be used by standard machine learning algorithms
and the relevant timescales for which news in the dataset have impact
on the time series of the return various formulations of Support Vector
Machines are applied. Targets are log returns of midprices across several
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minute time horizons that are standardized by a daily estimator of the
corresponding stock’s volatility, i. e.,

yt = log
(
st

st−1

) √
T

σ̂
(4.13)

with T being the intraday time interval and the estimator of the daily
volatility calculated as a 14 day exponential average σ̂ = EMA14(ω) where

ω = sup
{
|α−β| : α,β ∈ {open±, close±, high±, low±}

}
, (4.14)

and ± indicates succeeding trading days.
We use the 1, 5 and 10 minute returns following the release of the news,

i. e., for news published in the interval t0 ∈ [τ− 1, τ) returns are calculated
for the interval [τ, τ+∆t]. Moreover, a 3-class approach is pursued, i. e.,
class labels are assigned according to equation (4.12). Thus, news having
no impact larger than one standard deviation are discriminated from those
leading to a sharp increase or decrease of the future log return.

Three Support Vector Machines are trained, i. e., a one-against-one ansatz
is used [52]. The final class label is assigned using a majority vote. Inputs
are rescaled such that they lie in [−1, 1] which keeps features with a larger
numerical range from being overemphasized. Moreover, this prevents
numerical instabilities in the calculation of kernels [19].

Model selection, i. e., the adjustment of free parameters, such as C, is
done using a 5-fold cross validation. The model with the lowest cross-
validation error is chosen. To this end a simple grid-search is applied.
Only after this the corresponding machine learning algorithm is trained
using 2/3 of the chronologically ordered news dataset. The performance
of the Support Vector Machine is measured using the remaining news.
With respect to classification the out-of-sample accuracy is given by the
number of right classifications over the number of testing examples.

4.5.1 Linear and Nonlinear Classification

We start training a linear L2-regularized L2-Support Vector Classifiers
using LIBLINEAR [34] that solves the following primal problem

min
w

1

2
wTw+C

n∑
i=1

(
max(0, 1− yiwTxi)

)2
. (4.15)

The choice of linear kernels is based on the notion that the feature
dimension is very large. Thus, a nonlinear kernel does not improve the
out-of-sample error significantly. Figure 28 illustrates the out-of-sample
testing accuracy for various dimensions of the feature space and various
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Figure 28: Out-of-sample accuracy of L2-regularized L2-Support Vector Classifiers
using a different number features and forecasting horizons

forecast horizons. Best results corresponding to a cross-validation accuracy
of 85.14% are obtained for 10 minute time horizons and 50000 features.

The out-of-sample classification accuracy improves for larger input
dimensions, i. e., we achieve best results for the 50000 most frequent words
in the news corpus. Moreover, the accuracy is better for the 10 minute
interval than for the 1 minute interval.

While it is certainly true that without using any information whatsoever
the probability to assign the right label would be 33%, it is mandatory
to to consider the inclusive probabilities as given by the global target
distribution in order to decide whether the learning algorithm is capable
of individualizing its forecasts with respect to the information structure
encoded in the news.

In particular, concerning the 10 minute interval the inclusive probability
for |yt| < is 84.63%, for yt < −1 it is 7.46% and for yt > 1 it is 7.91%.
Performing a Monte Carlo simulation with n = 10000 repetitions the
classification accuracy itemized by its cost matrix is stated in table 29.

Truth/Prediction |yt| < 1 yt < −1 yt > 1

|yt| < 1 0.7090± 0.0016 0.0663± 0.0013 0.0668± 0.0012
yt < −1 0.0662± 0.0005 0.0062± 0.0004 0.0062± 0.0004
yt > 1 0.0668± 0.0005 0.0062± 0.0004 0.0063± 0.0004

Table 17: Classification accuracy if class labels are assigned according to the prob-
abilities induced by the global target distribution. Results are obtained
using a Monte Carlo simulation with n = 10000 repetitions.



114 text mining of financial news

Thus, the total classification accuracy is 72% given by the trace of the
cost matrix. Moreover, the probability to classifiy news with large impacts
correctly, i. e., |yt| > 1 is 50%.

This is compared with the cost matrix of the Support Vector Classifica-
tion using 10 minute log returns. The result is stated in table 18.

Truth/Prediction |yt| < 1 yt < −1 yt > 1

|yt| < 1 0.8120 0.0116 0.0116
yt < −1 0.0780 0.0026 0.0010
yt > 1 0.0795 0.0015 0.0023

Table 18: Classification accuracy for the linear L2-regularized L2-SVC on 10

minute forecast horizons. The total accuracy is 81.69%. The accuracy of
forecasts |yt| > 1 if the true returns also have large impact is 66.67%.

The total accuracy increases to 81.69%. Moreover, it is striking that the
accuracy to correctly predict |yt| > 1 if the news actually belongs to one of
the two classes is 66.67%.

In order to verify the introductory statement that the accuracy of linear
kernel Support Vector Classification approaches the accuracy of nonlinear
kernels as the dimension of the feature space increases, nonlinear SVCs are
trained. In particular, the open-source software libSVM [19] is used, i. e.,
we apply the formulation discussed in section 1.6.3 using radial kernel
functions

K(xi, xj) = exp(−γ|xi − xj|2) (4.16)

on 1 and 5 minute forecast horizons.
Figure 29 depicts the grid-search in the cross-validation phase in order

to obtain optimal parameters C and γ with respect to the out-of-sample
error.

Cross-validation accuracies of 84.37% and 84.55% are obtained, respec-
tively. Compared to 84.22% and 84.29% for the linear L2-regularized L2-
SVC on 1 and 5 minute time horizons no substantial improvement is
reported which supports our introductory statement.

As a result, a simple strategy is proposed. Given a trading signal |yt| > 1
the strategy goes long or short at the best bid and ask in the minute
following the publication of a certain news. Moreover, this new position is
evened up at market price at the end of the forecasting horizon. Constant
volumes and no trading costs (both implicit and explicit) are assumed. For
the 14124 news in the test sample 466 trading signals for the 1 minute time
horizon, 477 for the 5 minute horizon and 432 for the 10 minute horizon
are generated.
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Finally, a profit of 41.9bps, 17.5bps and 46.3bps per roundtrip can be
reported for the respective forecasting horizons.

4.6 conclusion

This chapter introduced a coherent approach to financial text mining. In
order to quantify relevant response patterns due to the release of news that
are non-ambiguously linked to certain equities a singular-value decompo-
sition of return and return dispersion matrices is performed. It is found
that for news published during the continuous trading in Europe time
series of return dispersion are impacted for the minutes around the release
with the strongest reaction immediately at the publication time. However,
for certain news an increased return dispersion as measured by the second
and third right singular vectors is observed both for the minutes prior as
well as after the release. Higher order profiles for log return time series
that can be mapped to equities for which news were published during the
respective non-trading period exhibit a similar pattern. However, response
patterns can no longer be mapped to the release of single news but are
rather a measure of the accumulated information over the non-trading
period.

Having established that response patterns are relevant only for the
minutes around the release of company-specific news an approach is
introduced to map textual information into a representation that can be
used by standard machine learning algorithms. To this end the tf-idf
measure is motivated on information theoretic grounds following Aizawa
[1]. Moreover, technical aspects such as the the tokenization of words and
word-stemming are relevant for an optimal feature representation. The
former problem is efficiently tackled applying a two-step procedure using
the unsupervised multilingual sentence boundary detection due to Kiss
and Strunk [50] which is followed by the Treebank word tokenization.
Stemming is performed using the well known Porter algorithm [74].

Given the resulting feature representation the bag-of-words model is jus-
tified by an analysis of the probabilities to observe single terms. Moreover,
the capactity to discriminate with respect to categorical targets is analysed
introducing the F-score of single features. A list of words with the highest
F-score is stated explicitly.

Various formulations of Support Vector Machines are trained. It is found
that the out-of-sample accuracy of variants using linear kernels approaches
the accuracy of non-linear kernels due to the high-dimensional feature
space. Additionally, the accuracy increases for 10 minute time horizons is
compared with 1 minute time horizons.
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Finally, a simple strategy is proposed that enters positions at constant
volumes omitting any transaction costs. A performance of 41.9bps, 17.5bps
and 46.3bps per roundtrip given the respective time horizons can be
reported.
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(a) ∆t = 1

(b) ∆t = 5

Figure 29: Grid search of the parameters C and γ in training a Support Vector
Classifier with radial kernels on 5 and 10 minute time horizons of
future log returns. The accuracy is given by the 5-fold cross-validation
error.
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A
P R O B A B I L I T Y D I S T R I B U T I O N S

a.1 the normal distribution

The multivariate Gaussian or normal distribution N(µ,Σ) of a random
variable X is given by

fN(x) =
1

(2π)n/2|Σ|1/2
exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
(A.1)

with µ ∈ Rn and a positive semidefinite matrix Σ ∈ Rn×n. We call µ the
location parameter and Σ the covariance matrix. The univariate density
function with mean µ and variance Σ = σ reduces to

N(µ,σ) ≡ fX(x|µ,σ) =
1√
2πσ2

e
−

(x−µ)2

2σ2 . (A.2)

Various location parameters such as median, mean and modus coincide.
It is the only distribution for which vanishing correlation of two random
variables implies independence. The normal distribution belongs to the
class of exponential distributions

fX(x|Θ) = h(x)e
ηT (Θ)T(x)−A(Θ) (A.3)

with h(x) = 1/
√
2π, the natural parameter η = (µ/σ2,−1/(2σ2))T , the

sufficient statistic Tσ(x) = (x, x2)T and the partition function A(η) =

−η21/4η2 + 1/2 ln |1/2η2|.
Its characteristic function is given by

φX(t|µσ) = e
iµt−12σ

2t2 (A.4)

which implies that all centralized moments exist. Moreover, Gaussian
random variables are closed under linear transformations, i. e., for inde-
pendent and Gaussian {Xi} it holds

α0 +
∑
i

αiXi
d
= N (µ̃, σ̃) , (A.5)

with µ̃ = α0 +
∑
i αiµi and σ̃ =

∑
i α

2
iσ
2
i . The reverse is also true. More

generally, the normal distribution is infinite divisible and stable with
α = 2.

121



122 probability distributions

a.2 student-t distribution

The Student’s t-distribution exhibits asymptotically Pareto-like tails. Its
density distribution is given by

fX(x|ν) =
Γ(ν+12 )
√
νπΓ(ν2 )

(
1+

x2

2

)−ν+12

(A.6)

with the Gamma function Γ(·) and the number of degrees of freedom ν.
As ν→∞ the Student t-distribution approaches the normal distribution.
Moreover, ν = 1 is the standard Cauchy distribution. The Student’s t-
distribution falls into the class of generalised hyperbolic distributions.

Its characteristic function is given by

φX(t|ν) =
K1
2ν
(
√
ν|t|)(

√
ν|t|)

1
2ν

Γ(12ν)2
1
2ν−1

, (A.7)

with the modified Bessel function of second kind Kλ(·). Thus, moments
of the distribution are defined for all k 6 ν. All odd orders vanish, in
particular, its expectation value and skewness. All even orders are given
by

E[Xk] =

k/2∏
i=1

2i− 1

ν− 2i
νk/2. (A.8)

The excess kurtosis is γ1 = 6(ν− 4)−1 assuming it exists.
Three parameter versions with a location and scale exist due to the

compounding with a normal distribution.

a.3 classical tempered stable distribution

Classical tempered stable (CTS) distributions are also known as truncated
Lévy flights [54] and the CGMY model [18]. Roskiński [81] generalized
them to the class of tempered stable distributions. The idea is to temper
the Lévy measure of a stable distribution using an exponentially decaying
function such that all moments exist.

Thus, the CTS distribution is given by the Lévy triplet (0,ν,γ) with

ν(dx) = (C+e
−λ+x1x>0 +C−e

−λ+|x|1x<0)
dx

|x|α+1
(A.9)

γ = µ−

∫
|x|>1

xν(dx) (A.10)

and γ ∈ R, C±, λ± > 0 and α ∈ (0, 2), α 6= 1. From the existence of a Lévy
triplet it follows that the distribution is infinite divisible.
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The characteristic function of a CTS distributed random variable X ∼

CTS(α,C±, λ±,m) is given by

φCTS(t) = exp(itm+C+Γ(−α)((λ+ − it)α − λα+)

+C−Γ(−α)((λ− + it)α − λα−)), (A.11)

with m ∈ R. Equation (A.11) can analytically be continued {t → z ∈ C :

−λ− 6 Im(z) 6 λ+} such that exponential moments exist. In partciular,
the CGMY distribution is obtained for C+ = C− whereas truncated Lévy
flights are recovered for λ+ = λ− [47].

Moreover, the CTS distribution with zero mean and unit variance called
standard CTS distribution is given by

m = −Γ(1−α)(C+λ
α−1
+ −C−λ

α−1
− ) (A.12)

C = C± =
1

Γ(2−α)(λα−2+ + λα−2− )
. (A.13)

Concerning the tail behaviaour Kim et al. [85] state upper and lower
bounds by

k
e−2λ̄x

λ̄xα+1
6 P(|X−m| 6 x) 6

K

x2
(A.14)

as x → ∞, with k and K being not a function of x and λ̄ = min(λ+, λ−).
Figure 30 depicts the behaviour of the density function of a CTS distributed
random variable. In particular, figure 30a illustrates the influence of a
varying α on the overall shape of the distribution whereas figure 30b
depicts the influence of different λ± on the skewness.

(a) Varying α with λ± = 1 (b) Varying λ± = 1±∆ and α = 0.5

Figure 30: CTS density distributions for m = 0 and C± = 1. Figure 30a illustrates
the effect of a varying shape parameter α whereas figure 30b depicts
the induced skewness due relative variations in λ±.
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a.4 variance gamma distribution

A Variance Gamma (VG) distribution is a normal distribution where the
variance itself is a random variable σ2V where V is gamma distrbuted and
σ2 ∈ R+. Thus, the density distribution of V is given by

fV(v|m,ν) =
(m
ν

)m2
ν v

m2

ν −1 exp(−m
ν v)

Γ
(
m2

ν

) , v > 0, (A.15)

with the expected value m. Moreover, we have m = 1 as the scale of the
corresponding VG distribution has already been factored out as σ2.

The unconditional density distribution of random variable X that is VG
distributed is given by

fVG(x|σ,Θ,ν) = EV [N(Θv,σ2v)|V]

=
1√
2πσ2

∫∞
0

1√
v

exp
(
−
(x−Θv)2

2σ2v

)
vν

−1−1 exp(− v
ν)

νν
−1
Γ(ν−1)

dv.

(A.16)

The skewness of the distribution enters via the parameter Θ whereas ν
controls for the kurtosis. In particular, negativeΘ induce negative skewness
and large ν increase the excess kurtosis. The density can be written in
closed-form to read

fVG(x|σ
2,Θ,ν) =

2 exp
(
Θx
σ2

)
√
2πσν1/νΓ(1/ν)

(
x2

2σ2ν−1 +Θ2

) 1
2ν−

1
4

K 1
ν−

1
2
(C)

(A.17)

C =
1

σ2

√
x2(2σ2/ν+Θ2)),

with the modified Bessel functions of seconds kind Kn(·). A symmetric
version of equation (A.17) was used by Madan and Seneta [61] to model
stock market returns.

Moreover, the measure of the Lévy process with VG distributed in-
crements has three representations in terms of a Brownian motion with
random time scales, the difference of two gamma processes and a measure
change to take into account relative risk aversion [62]. We state only the
first one as it corresponds to our motivation of the distribution. Hence.
given the Lévy triplet (σ,ν,Θ) the measure might read

kX(x)dx =
exp(Θx/σ2)

ν|x|
exp

(
−

√
2

ν
+
Θ2

σ2
|x|

σ

)
dx. (A.18)
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Madan et al. [62] applied the VG process in the context of option pricing
such that the Black-Scholes formula is a special case of a more general
representation. In particular, parameters to control for kurtosis and skew-
ness allow to take into account empirical facts such as volatility smiles
and skewness premia. We note that the VG process is a pure jump process
with no martingale component.

(a) Varying ν, β = 0 (b) Varying β, ν = 1
2

Figure 31: VG density distributions for µ = 0 and σ = 1. Figure 31a illustrates the
effect of different parameters ν, i. e., different excess kurtosis, whereas
figure 31b illustrates the influence the parameter β on the skewness of
the distribution.

The characteristic function is given by

φVG(t) =
(
1− iΘνt+ σ2t2ν/2

)−1/ν
. (A.19)

Thus, the first moments are E[X] = Θ, Var[X] = Θν+ σ2 and

E[(X−E[X])3] = 2Θ3ν2 + 3σ2Θν (A.20)

E[(X−E[X])4] = 3σ4(1+ ν) + 6σ2Θ2(2ν2 + ν) + 3Θ4ν2(2ν+ 1). (A.21)

Vanishing Θ implies both vanishing skewness and expected value. More-
over, for a symmetric VG distribution the kurtosis becomes κ = 3(1+ ν)

such that ν controls the relative excess kurtosis.
We note that equation (A.17) is not capable to control for location

and skewness independent of each other. In particular, non-zero location
implies skewness. Therefore, we use a slight modification leading to the 4
parameter density distribution

fVG(x|µ,σ,β,ν) =
(σ2 −β2)1/νeβ(x−µ)

√
πΓ(1/ν)(2σ)

1
ν−

1
2

|x− µ|
1
ν−

1
2 K 1

ν−
1
2
(σ|x− µ|) , (A.22)
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where µ is the location, σ the scale, β the skewness and ν amounts to the
shape. Expected value and variance are given by

E[X] = µ+
2β

ν(σ2 −β2)
(A.23)

Var[X] =
2

ν(σ2 −β2)

(
1+

2β2

σ2 −β2

)
. (A.24)

Figure 31 depicts various VG density distributions. For example, figure
31a exhibits the influence of the shape parameter ν whereas figure 31b
illustrates the induced skewness due to β.

Finally, a multivariate generalization can be found under the name
generalized, asymmetric Laplace distribution [55].



B
S TAT I S T I C A L T E S T I N G

Statistical testing addresses the question if a set of data is compatible with
a certain hypothesis. Thus, the null-hypothesis H0 is tested for statistical
significance, i. e., one assigns a probability to the occurrence of the data
given H0 is true. Statistical testing is possible both for the Frequentist
and Bayesian approach to statistics, where the latter tests for statistical
significance based on the posterior probability.

The typical approach is the following. A null-hypothesis H0 and one or
more alternative-hypotheses Hi, i > 0 are defined. With respect to H0 a
test statistic ζ is calculated. Given the confidence interval α and the density
distribution f(ζ) of the random variable ζ, H0 is rejected at the confidence
level α if it is larger than a critical value that separates the region that
contains the fraction 1−α of the probability mass of F(ζ).

Eventually, there are two kind of errors. Rejecting H0 in favor of an
alternative hypothesis is called error of first kind with a probability α.
Errors of second kind accept H0 if Hi, i > 0 is true. Hereby, probability for
errors of seconds kind β is given by the area below fHi(ζ) that falls into
the acceptance region of H0.

The remainder of this chapter describe the t, the Kolmogorov-Smirnov,
the Anderson-Darling and Kupiec’s proportion of failures test as applied
within the thesis.

b.1 student t-test

The one-sample t-test compares the sample mean x̄ of a normally dis-
tributed measurement {xi} to a certain theoretical location parameter µ.
The test statistic

t =
x̄− µ

s
√
n

(B.1)

with sample size n and sample standard deviation s follows a Student-t
distribution with n− 1 degrees of freedom. The corresponding p-value is
given by

P
(
t 6 1−

α

2

)
=

∫1−α/2
−∞ fn−1(t

′)dt ′ (B.2)

and the hypothesis H0 : x̄ = µ is rejected at the confidence level α if

|t| > P
(
t 6 1−

α

2

)
. (B.3)
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The above test describes the two-sided t-test. However. one-sided and two
sample as well as multivariate variants exist.

b.2 kolmogorov-smirnov-test

The one-sample Kolmogorov-Smirnov (KS) test checks whether an em-
pirical distribution is compatible with a certain theoretical distribution.
Kolmogorov proposed to calculate the test statistic as the maximal dis-
tance between corresponding quantiles of the empirical and theoretical
distribution, i. e.,

dn = sup
x

|Fn(x) − F(x)|, (B.4)

with the empirical distribution function Fn = 1/n
∑n
i=1 1xi6x for n obser-

vations xi. Hereby, 1 denotes the indicator function. The hypothesis H0
that the data follows a distribution is rejected with respect to p-values
that are calculated using Kolmogorov’s CDF. Values for finite samples are
calculated numerically according to [87]. An asymptotic form is given by

lim
n→∞ F(√ndn 6 x) =

√
2π

x

∞∑
i=1

exp
(
−
(2i− 1)2π2

8x2

)
. (B.5)

Concerning the ordered set {xi|xi 6 xj, i < j} Smirnov’s variant of the KS
test calculates the test statistic dn separately for the lower and upper part
of observations.

b.3 anderson-darling-distance

The Anderson-Darling (AD) is another goodness-of-fit test that can be
used to compare empirical and theoretical distribution. The test statistic
is calculated as the appropriately weighted squared area between the
empirical and theoretical distribution, i. e.,

An = n

∫∞
−∞w(x)(Fn(x) − F(x))2dx, (B.6)

with the empirical distribution Fn(x) = 1/n
∑n
i=1 1xi6x and weights that

penalise deviations in the tail of the distribution, i. e.,

w(x) =
1

F(x)(1− F(x))
. (B.7)

Inducing the ordered set {xi|xi 6 xj, i < j} the test statistic can be re-
expressed exploiting the staircase character of the empirical distribution
Fn(x) to read

An = −n−
∑
i=1

n
2i− 1

n
(ln (F(xi)) + ln (1− F(xn+1−i)) . (B.8)
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The hypothesis H0 that the measurement follows a theoretical distribution
is rejected with respect to p-values that are calculated numerically using
the method proposed in [66]. Asymptotic values are given by

lim
n→∞ F

(√
ndn 6 x

)
=

√
2π

x

∞∑
i=0

(
1
2

i

)
(4i+ 1) exp

(
−
(4i+ 1)2π2

8x

)
× (B.9)

∫∞
0
e

x

8(1+ω2)
−
ω2(4i+1)2π2

8x dω.

b.4 kupiec’s proportion of failures

One of the easiest test to verify if a number of VaR exceptions is compatible
with a certain confidence interval α is Kupiec’s proportion of failures
(POF) test [56]. Thus, given a number of losses k that exceed VaR at a
given significance level η and the total number of observations n the null
hypothesis

H0 : p̂ ≡
k

n
= α (B.10)

has to be tested. For example, at the 95% confidence interval one expects 5%
exceptions with feasible deviations due to the finite sample size. Moreover,
the number of exceptions k is a binomial distributed random variable. The
test statistic is calculated as a likelihood-ratio

Λ = −2 ln
(
(1−α)n−kαk

(1− p̂)n−kp̂k

)
. (B.11)

Given H0 is correct Λ is χ21-distributed with one degree of freedom. Thus,
one rejects the model if Λ is larger than fχ21(α).

However, one of the major drawbacks of Kupiec’s POF test is the uncon-
ditional treatment of exceptions. In particular, changes in volatility and/or
correlation might lead to clustered VaR exceptions which indicates that
the model cannot capture the new environment and has to be rejected.
A Test that takes into account conditional expectations is, for example,
Christoffersen’s interval forecast test [22].
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