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Introduction

This work is a result of a collaboration between the Karlsruhe Institute of
Technology’s chair of Statistics, Econometrics and Mathematical Finance and
Phi-T, a financial research company. In its key role, Phi-T operates as a signal
provider for the Lupus Alpha Neurobayes Short Term Trading Fund, a hedge fund
that relies on complex mathematical trading strategies.

In recent years, an increasing market share of stock trading falls into the re-
sponsibility of high-frequency and algorithmic trading (Itai and Sussmann (2009)).
In the recent past, especially automated trading was frequently accused of enforc-
ing price shocks at stock exchanges.1

As a consequence, increasing academic interest arises in order to understand
the complex phenomena and processes that dominate financial markets on short
time horizons. Not only are high-frequency phenomena important for the pure
theoretical understanding of the working principles of financial markets. Financial
firms that trade assets on high-frequency time scales also seek to extend their
knowledge about financial processes on short time intervals.

The possibility to analyze the procedures on financial markets on a tick-by-tick
basis, that is, every single move in a financial asset’s price is taken into account,
has only emerged during the past years. Up to that time, the analysis of daily
recorded prices (such as daily closing prices) was the most prevalent frequency on
which financial data was available. One of the most famous studies on financial
data is the work of Mandelbrot (1963), an analysis of cotton prices based on daily
records that led to a first discussion of heavy-tailedness in financial data, a phe-
nomenon that is still subject to today’s research (Rachev et al. (2005); Kim et al.
(2008a)). The widespread digitalization of the market places around the globe and
recent developments in computer technology opened the doors for the availability
of seamless streams of financial data.

This work consists of two parts dealing with financial aspects on high-frequency

1See, for example, “Calls for oversight of automated trading systems”, Financial Times, March
23, 2011
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time scales.2 The first part is concerned with intraday time series modeling and
risk forecasting whereas the second part deals with limit order execution proba-
bilities on short time horizons.

Part I

The development of econometric models that describe financial time series has
been subject to research for decades. In particular, conditional mean and variance
models were introduced and further developed in numerous studies (see, for ex-
ample, Engle (1982); Bollerslev (1986); Baillie et al. (1996)). Their main target
is not only to describe and understand the underlying stochastic processes of asset
price developments. They provide a means to forecast future return expectations
and their involved volatility.

Standard models in the financial industry include ARMA and GARCH models
as well as further developments thereof, such as FIGARCH models. In this thesis,
the focus is on the application of such models on high-frequency time series, such
as the S&P 500 Index on the shortest possible time intervals. Financial time series
features such as heavy tailedness and skewness need to be explicitly considered,
because these characteristics appear more intensified on high-frequency data (Sun
et al. (2008)).

Tempered infinitely divisible distributions are applied as potential candidates
to capture high-frequency time series idiosyncracies in the framework of ARMA-
GARCH and FIGARCH models. Their descriptive capabilities are compared to
frequently applied innovation distribution assumptions in the financial industry,
the normal- and the Student-t distribution.

Risk forecasting is an essential task for financial institutions and portfolio
managers (Basel Committee on Banking Supervision (2006)). Tempered infinitely
divisible distributions are compared in their risk forecasting capability to the normal-
and the Student-t innovation distribution assumption in the framework of ARMA-
GARCH models on short time intervals. Here, two common risk measures, Value-
at-Risk and Average Value-at-Risk are constructed from these models and com-
pared in a backtest (Beck et al. (2011)).

Part II

Order books on a tick-by-tick basis not only offer a way to obtain a much more
detailed picture about the continuous procedures in the stock trading process. In

2Throughout this thesis, the term high-frequency is used in order to denote phenomena on time
scales of seconds. It is not used to denote ultra-high-frequency, that is, sub-millisecond trading
activity.
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their essence, real-time order books provide the possibility to place passive limit
orders in a way such that the trading of stocks can be carried out most efficiently in
terms of real costs and opportunity costs (Harris and Hasbrouck (1996)). Devel-
opers of trading strategies that rely on the two fundamental order types, passive
limit orders and aggressive marketable orders, need to have a profound under-
standing of the prevailing advantages and disadvantages of the respective order
type in all market phases. In order to establish trading strategies that rely on these
order types, the execution probabilities of passive limit orders need to be quanti-
fied accurately (Cho and Nelling (2000)).

However, besides the large amount of information related to limit order exe-
cutions that is already contained in the order book, the execution behavior of limit
orders will in addition depend on quantities reflecting the market sentiment at the
present time of the order insertion. In order to deal with this enormous amount of
available information in an efficient way, a model is constructed and presented in
this thesis, capable of forecasting a limit order’s execution on a one minute time
horizon conditional on an arbitrarily large set of descriptive variables.

The derivation of this model was made possible by the development of a soft-
ware package as a part of this thesis. It provides the possibility to construct and
analyze limit order books and the limit order flow from financial data streams. Be-
sides its application in the scope of this thesis, it is used in various other research
projects at Phi-T.
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Chapter 1

Introduction

Trading volume in intraday and high-frequency trading has grown strongly
over the past few years (Itai and Sussmann (2009); Zhang and Riordan (2011)).
This statement is reflected in the market share of high-frequency equity trading,
which accounts for 73% in the United States.1 Along with the increasing market
activity in intraday trading comes greater demand for risk assessment on short
time scales. This entails research with the aim of providing robust and reliable
methods for the quantitative assessment of risk on high-frequency time intervals.

Quantitative risk assessment is a key task in all sorts of financial institutions.
A proper risk assessment is not only crucial for classifying assets into risk groups
and making investment decisions; it is especially important to understand and
quantify risk in order to build sustainable portfolios. Among the most common
methods for quantitatively assessing risk are Value-at-Risk (VaR) and Average
Value-at-Risk (AVaR). VaR backtesting is considered a standard tool for assessing
risk which is required by regulators for determining capital requirements (see, for
example, Basel Committee on Banking Supervision (2006)).

Sophisticated mathematical approaches are necessary in order to compute reli-
able VaR forecasts from historic financial data. Over the past years, a lot of effort
has been put into modeling financial time series with the goal of a better under-
standing of the complex phenomena and structures which are prevailing in finan-
cial markets. Conditional mean and variance models have been extensively stud-
ied and have become standard tools in financial modeling (Engle (1982); Boller-
slev (1986); Nelson (1991); Engle (2001)). Due to the limited scope of financial
data available to researchers, most of those studies were carried out on a daily
data basis (on daily closing prices, for example). As a result of the digitalization
of market places and plummeting costs for data storage facilities, tick-by-tick data
has become widely available to researchers. As the name indicates, tick-by-tick

1See “High-frequency trading under scrutiny“, Financial Times, July 28, 2009.
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18 CHAPTER 1. INTRODUCTION

data contains every single change in a financial asset’s price and offers the most
microscopic picture of price movements.

As many studies have shown since, intraday financial time series show a sub-
stantially different behavior from time series based on daily recorded data (see, for
example, Sun et al. (2008)). Prevailing phenomena in financial time series, known
as stylized facts, include fat-tails, skewness and volatility clustering. These effects
get pronounced in high-frequency time series and are observed along with addi-
tional features which typically arise, such as intraday volatility profiles (see, for
example, Lee et al. (2011)).

Researchers have been attempting to tackle the challenges in high-frequency
financial modeling by modifying and extending the standard methods. One essen-
tial question is how relative price changes (returns) can be described with respect
to the stylized facts on short time scales.

The normal distribution hypothesis for modeling logarithmic returns was fre-
quently applied in financial models. However, the empirical findings persistently
rejected this assumption (see, for one of the earliest examples, Mandelbrot (1963)).
As a consequence, several alternatives have been proposed and applied in em-
pirical studies (see, for example, Bollerslev (1987); Rachev and Mittnik (2000);
Hansen (1994); Rachev et al. (2005)). Recently, models based on fat-tailed in-
finitely divisible distributions have been applied in finance (see, for example, Kim
et al. (2008c, 2010a) and Kim et al. (2008b)). Not only is this type of distribution
capable of modeling daily and intra-daily stylized facts, it additionally exhibits
desirable attributes such as finite moments.

In this thesis, risk assessment on short time scales is carried out by comparing
three different innovation distributions in the framework of conditional mean and
variance models. More precisely, the commonly applied normal and Student-t re-
turn distribution assumptions are compared against the class of tempered fat-tailed
infinitely divisible distributions. It is empirically shown that the latter exhibits an
improved modeling and risk forecasting capability over the classical models. The
study is carried out on S&P 500 Index data, which is reported in a 15 seconds
periodicity during 9:30 - 16:00 Eastern Standard Time.

The remainder of Part I of this thesis is organized as follows. First, the id-
iosyncratic behaviors of financial time series, especially high-frequency phenom-
ena, are discussed. Financial models with a special focus on conditional mean
and variance models are then presented, followed by the innovation distribution
assumptions which are relevant in the context of this thesis. The theoretical survey
finishes with an introduction to commonly applied risk measures.

Following this, after empirically examining the S&P 500 Index’ high-frequency
idiosyncracies, the findings of modeling this stock index on short time scales with
different time series models are presented. Here, the focus is on ARMA-GARCH
and FIGARCH models with different innovation distribution assumptions. Model
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parameter dependencies on the return time interval are further investigated with
the aim of observing a characteristic scaling behavior. A Value-at-Risk backtest
is carried out in which the applied models are compared in their risk forecast-
ing capabilities. Finally, the risk measure Average Value-at-Risk is discussed and
compared between the applied time series models.
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Chapter 2

Theory of Time Series Modeling and
Risk Estimation

2.1 Financial Time Series’ Idiosyncracies
Financial Time Series have been subject to researchers in the financial indus-

try for decades. An overview of their idiosyncratic properties is provided in this
section. After presenting the most prevalent phenomena in financial time series
from daily recorded data (such as closing prices), high-frequency characteristics
are further presented and discussed.

Financial time series exhibit properties which seem to be persistently present
between different asset classes and markets. Those repeatedly observed phenom-
ena are known as stylized facts (see, for example, Cont (2001) and Bouchaud
(2002)). A selection of the most prevailing ones is presented in the following.

• Fat-Tail behavior of return distributions
Financial return distributions show a significant excess kurtosis (commonly
denoted as fat-tails, an exact definition hereof is given in Appendix A.2).
In other words, extreme price movements have a non-negligible likelihood
to occur. This phenomenon was first observed by Mandelbrot (1963) and
Fama (1965), who demonstrated that cotton price and common stock return
distributions possess fatter tails than the normal distribution allows for. The
expression tail-risk is used to refer to extreme negative price movements
which exceed the 3 standard deviation boundary of the underlying return
distribution and possess a higher likelihood to occur than expected from a
normal distribution assumption.1

1Since the financial markets meltdown in 2008, so-called tail-risk hedging was a widely dis-
cussed topic among market participants and has even lead to a new class of financial products, see,
for example, “Fat-tail attraction“, The Economist, March 24th, 2011.
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22CHAPTER 2. THEORY OF TIME SERIES MODELING AND RISK ESTIMATION

• Skewed return distributions
This property refers to the asymmetry which many financial return distri-
butions exhibit.2 A negative skew means that the distribution’s left tail is
longer than its right tail (i.e., there is more probability mass on the left hand
side of the density’s center). Negative Skewness is a frequently observed
phenomenon in financial time series.

• Volatility Clustering
Volatility clustering denotes the phenomenon that, if volatility is high, it is
likely to remain high. On the contrary, if it is low, it is expected to stay
low. The more general phenomenon heteroskedasticity (White (1980)) de-
notes changing variance over time (in contrast to homoskedasticity) and is
a prevailing feature in financial time series.

It is crucial in financial modeling and risk forecasting to find models that are
capable of properly describing the observed stylized facts. Omitting them may
potentially lead to unreliable and oversimplified models which may potentially
lead to implausible figures in risk assessment or other applications.

Especially the observation of fat-tailed and skewed return distributions leads
to the assumption that the normal distribution is generally not well suited in order
to model financial processes. In fact, many researchers have rejected the normal
hypothesis in their studies (see, for example, Mandelbrot (1963)).

2.1.1 Intra-daily Data and High Frequency Data
The term high-frequency is used by researchers in a broad range of meanings.

Generally, it is used in order to distinguish data that are recorded on intra-daily
frequencies from data that are recorded on daily, weekly, monthly or yearly pe-
riods. For example, Bollerslev et al. (2006) denotes 5 min return time series as
high-frequency data. Engle (2000) uses the term ultra-high-frequency in order to
describe the maximum possible level of disaggregation in financial time series,
such as provided by tick-by-tick data.3 Tick-by-tick data offers the most micro-
scopic picture of the price process. Especially, if order book information is avail-

2The skewness of a return distribution is reflected in its third central moment. The sample
skewness is constructed as

β̂3 =
µ̂3

σ̂3
=

1
n

∑n
i=j(xj − x)3(

1
n

∑n
i=j(xj − x)2

)3/2 (2.1)

3The term ”tick-by-tick” is used to refer to records which contain every price move for a
financial asset. Such data is generally available for electronic exchanges and some OTC trading
platforms.
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able on a tick-by-tick basis, a large number of time series can be constructed and
investigated in addition to the commonly applied examination of log-return time
series.4 This depth of information offers great research opportunities, which has
lead to a new field of research known as high-frequency-econometrics. Goodhart
and O’Hara (1997) summarize important features of intra-daily data and discuss
issues and methodologies which have to be considered when high-frequency data
is employed and analyzed.

2.1.2 Stylized Facts on Intra-Daily Data
After having examined stylized facts on daily time series, this section focuses

on phenomena observed on intra-daily time series. The most important stylized
facts observed on intra-daily data are listed below (see, as a reference, Sun et al.
(2008) and Goodhart and O’Hara (1997).

• Pronounced Volatility Clustering
Volatility clustering, which is also observed on low-frequency financial time
series, is intensified in high-frequency data.

• Autocorrelation
In contrast to data which is aggregated over relatively long time periods
(such as daily), high-frequency data may exhibit significant autocorrela-
tion (Cont (2009)). On the most disaggregated level, this can be explained
through the Bid-Ask-Bounce, a micro-structure effect which leads to neg-
ative first order correlation (Roll (1984)). The minimum price difference
between subsequently executed sell- and buy initiated trades is in the di-
mension of the bid-ask spread. Under the assumption that buy and sell
initiated trades occur randomly, the observed last transaction price fluctu-
ates between best bid and best ask price, leading to a negative first order
autocorrelation.

• Strong heavy tails
The heavy tail property of unconditional return distributions in intra-daily
data is even more pronounced than in daily data.

• Random Durations
High frequency data from single assets will usually be unequally spaced
in time (Engle and Russell (1998)). This results from the market partic-
ipants’ independent behavior, i.e., their actions do not underlie any fixed

4A list of examples could contain time series on the bid-ask-spread, the size of order book
levels, asymmetries in the level size between the bid- and the ask-side, etc.
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time frame and occur randomly distributed over time. This is an important
feature which has to be considered in time series modeling since many mod-
els rely on equally spaced time series.
Time series on indices (such as the S&P 500 Index) don’t show such irreg-
ularities because they are reported on fixed time schedules.

• Long Range Dependency
Long range dependency (LRD) in time series has first been described by
Hurst (Hurst (1951)). It denotes persistence in time series, i.e. non-negligible
autocorrelation between instances over long lags. LRD is observed if the au-
tocorrelation coefficients γ for a discrete time series {xt, t = 1...T} satisfy∑∞

k=0 γk → ∞, where k denotes the lag (Racheva-Iotova and Samorod-
nitsky (2011)). Typically, the γk decay hyperbolically in this case. On the
contrary, if the γk decay exponentially, LRD is non-existent. For financial
time series, it is widely assumed that LRD effects increase with increasing
frequency over which market data is collected (Sun et al. (2008)).

LRD is observed in return time series as well as in time series of squared
returns (Cont (2011)). The latter indicates that volatility changes at earlier
times t−i, i = 1...Nl, whereNl denotes the number of lags, will have a non-
negligible influence on the volatility at time t. To be more precise, changes
in volatility will have a long lasting impact on future volatility observations.

• Intraday Volatility Profile
Intra-daily data typically show a U-like volatility pattern (see, for example,
Lee et al. (2011)). This periodic pattern is comparable to seasonality effects,
as, for example, observed in daily data with repeating patterns over long
time spans. Intraday volatility is especially high during the morning hours,
due to the overnight information flow and the resulting market movements.
It is lowest around lunch time and increases again towards the end of the
trading day. Figure 2.1 shows a typical intraday volatility profile.5,6

2.2 Financial Econometrics
Financial Econometrics denotes the mathematical and empirical examination

of economic data. One import sub-field within econometrics is financial time
series analysis. As opposed to the laws of nature, findings in the field of finance

5This profile has been constructed from 15 seconds S&P 500 Index log-returns over a period
of 10 months (April, 2010 to January, 2011)

6This chart-type is known as profile plot and is explained in Appendix A.1.
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Figure 2.1: Intra-daily volatility profile for the S&P 500 index on 15 second log-
returns. The squared returns serve as a proxy for the unobserved volatility in this
chart.

do not have the intrinsic property of remaining valid over time. As a consequence,
financial models are subject to continuous revision and re-adoption.

One of the main targets of financial time series analysis is to find mathemat-
ical descriptions for price processes. The term Data Generating Process is used
in order to denote a mathematical formulation, depending on variables at earlier
times t′ < t, which explains the realization of a stock price at a time t, denoted as
St.

Most financial time series studies focus on the net return or the log-return of a
financial asset between two subsequent points of time, t and t− 1. The net return
is given by

R =
St − St−1

St
. (2.2)

It describes relative price changes between times t and t − 1. The log-return is
given by

rt = ln
St
St−1

≈ St
St−1

− 1 =
St − St−1

St
, (2.3)

where the Taylor expansion is valid if St/St−1 ≈ 1. This is especially true on
short time horizons where asset prices do not show large price movements. The
log-return is usually preferred in practical applications because it has two great ad-
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vantages over the net return. First, subsequent log-returns can simply be summed
up to construct the log-return over a longer time period, that is: rT =

∑T
t=1 rt.

Second, when modeling returns with probability distributions that allow for nega-
tive values (such as the normal distribution), using the log-return ensures that the
stock price St naturally remains positive at all times (this is not the case with the
net returnR).7 The log-return can be motivated from another point of view. If con-
tinuous compounding is assumed between two points of time t and t− 1, the rate
r at which the asset price grows in continuous time is given by St = St−1 exp(r).
The log-return is applied throughout this thesis. It is therefore also simply denoted
as return.

2.2.1 Randomness in the Data Generating Process

Randomness plays a crucial role in financial time series analysis. Conse-
quently, the theory of stochastic processes is an important element in time series
modeling. A stochastic process is a sequence of random variables {xt, t ∈ T}
defined on a probability space (Ω,F , P ). If the parameter set {T} is countable,
i.e. T ∈ N, the resulting process is denoted as discrete process whereas a time
continuous process results from T ∈ R≥0. In the case of time series, the parameter
t denotes the time and xt the state of the process at time t. A stochastic process is
denoted as real-valued, if xt ∈ R. In practical examples, such as stock prices, only
one realization or trajectory of a stochastic process is given. The mean and co-
variance function of a real-valued process with t ≥ 0 and the additional property
E[x2

t ] <∞ are given by

µx(t) = E[xt]

γk = cov(xt, x(t−k)), (2.4)

and, as a natural consequence, the unconditional variance is given by

σ2 = cov(xt, xt) = γ0. (2.5)

The autocorrelation function, that is, the linear correlation of the process with
itself at lag k, is given by

ρk =
γk
γ0

. (2.6)

As a reference, see, for example Rachev et al. (2007).

7Consider the net return R modeled with, for example, a normal distribution. Consequently,
there is certain likelihood that the asset price will become negative.
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Lévy Processes

Lévy processes are a type of time continuous stochastic processes which have
independent and identical (IID) increments, start at zero and are right continuous
with left limits. Independence indicates that the value of an increment at one
point of time t1 is in no way related to other values at times ti. Additionally,
the probability distribution of the increments must have the property of infinite
divisibility.

A real-valued random variable x is said to have an infinitely divisible distri-
bution, if, for any integer number n there exists a sequence of independently and
identically distributed (IID) variables such that the sum

sn
d
=xn1 + xn2 + xn3 + ...+ xnn (2.7)

is distributed like the xni. That is, the variable x can be decomposed into a sum of
n equally distributed variables. The stable property implies infinite divisibility.

The IID property indicates that the process is stationary in its increments,
that is, sequences of increments within a time series are equally distributed. This
is expressed as

(dt, dt+1, ..., dt+n)
d
= (dt+h, dt+h+1, ..., dt+h+n), (2.8)

for any h ∈ N, where dt denotes the increment at time t. In practical applications,
stationarity is often used to refer to stationarity with regard to the first and second
order moments of the increments’ distribution only. That is,

E[xt] = µ ∀t (2.9)
cov(xt, xt−h) = γh ∀t, h. (2.10)

This form of stationarity is commonly referred to as weak stationarity. Through-
out this thesis, the term stationary is used in order to refer to weak stationarity.

The Wiener Process The Wiener Process, a member of the class of Lévy-
Processes, is an important example of time-continuous stochastic processes. It
is given by the conditions:

1. W0 = 0

2. Wt is continuous

3. Wt has independent increments with Wt −Ws ∼ N (0, t− s),
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where N (0, t − s) denotes a normal distribution with a mean of zero and a
variance of t − s. A stochastic process based on the Wiener Process with drift µ
and volatility σ2 is given by

xt = µ+ xt−1 + σ2zt, zt ∼ N (0, 1). (2.11)

The Wiener Process fulfills the Markov property. That is, the conditional prob-
ability distribution of the following realization depends only on the present state
xt−1. In mathematical terms, this is expressed as

Ft|t−1,t−2,...,t−k(xt|xt−1, xt−2, ..., xt−k) = Ft,t−1(xt|xt−1), k ≥ 1 (2.12)

where Ft denotes the conditional probability distribution for the state of the pro-
cess at time t.

The Wiener Process with µ = 0 additionally fulfills the martingale property,
expressed as

E[xt|xt−1, xt−2, ..., x0] = xt−1. (2.13)

It states that the conditional expectation value of the future state is equal to the
current state of the process. This is the definition of a fair game.

The Wiener Process is a frequently applied model in research concerning fi-
nancial time series. Even though it does not take properties such as time varying
volatility, autocorrelation and other stylized effects into account, it is still a help-
ful tool in order to understand fundamental characteristics of data generating pro-
cesses. Note that the Wiener Process itself is not stationary. In order to achieve
a stationary time series from a Wiener Process, one frequently applied measure
in financial time series analysis is, to: (1) de-trend the process x′ = xt − µ; (2)
construct a time series of net- or log-returns. The stationarity property is one addi-
tional important reason for the utilization of the log-return in time series modeling
instead of the asset price.

2.2.2 Linear Time Series Models
In order to address the above mentioned features such as autocorrelation and

dependence, models which are more complex than the Wiener Process are con-
sidered. Especially if the markov property is not assumed to be fulfilled, that is,
future returns may depend on past realizations, dynamic models are applied which
take earlier returns into account. Very popular linear time series models include
Autoregressive (AR) and Moving Average (MA) models as well as their combina-
tion, denoted as ARMA models. They can be applied to discrete, equally spaced
and stationary time series in order to estimate the conditional mean of future return
distributions.
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The AR model of order p (commonly denoted as AR(p)), describes a data
generating process as

yt =

p∑
i=1

aiyt−i + εt

εt = σzt, zt ∼ IID(0, 1) (2.14)

where the ai are the parameters of the model. εt denotes a disturbance term which
introduces randomness to the process. It consists of a random variable drawn from
a distribution with zero mean (Et−1[xt] = 0) and unit variance (V art−1[xt] = 1).
Et−1[·] denotes the conditional expectation value whereas V art−1[·] stands for the
conditional variance, both at time t − 1. The unconditional variance σ of the
process is used to scale the innovation zt.

To summarize, yt is described as a weighted sum over the past p realizations
(yt−1, ...yt−p) plus an IID distributed disturbance term.

Similarly, MA processes of order q are defined as

yt =

q∑
i=0

bt−iεt−i, (2.15)

where yt consists of a weighted sum of the past q disturbances εt−1, ..., εt−q, plus
the disturbance term at time t: b0εt. The distribution of the disturbances ε is
defined in the same way as for the AR process. Generally, it is assumed that
b0 = 1.

The mixture of AR and MA processes results in an ARMA(p,q) process which
is given by

yt = a1yt−1 + a2yt−2 + ...+ apyt−p + εt + b1εt−1 + b2yt−2 + ...+ bqyt−q. (2.16)

With the definition of a lag-operator, L(yt) ≡ yt−1, the above expression can be
written in the more convenient form:

a(L)yt = b(L)εt, (2.17)

where a(L) =
∑p

i=1 aiL
i (the same definition holds for b(L)). Compared to

pure AR and MA models, ARMA models have the advantage of requiring less
parameters (a stationary ARMA process has an MA(∞) representation). This is a
crucial issue for parameter estimations.

Unit Roots in Time Series

A time series {xt, t = 1...T} with an autoregressive representation, given by

xt =

p∑
i=1

αiL
ixt + εt, (2.18)
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with εt = σzt, where zt ∼ IID(0, 1), can be written in the more compact form

φ(L)xt = εt

φ(λ) = 1−
p∑
i=1

λiαi. (2.19)

The characteristic polynomial of an autoregressive process is given by

1− α1λ− α2λ
2 − ...− αpλp = 0. (2.20)

The process is stationary, if the characteristic polynomial’s roots lie outside the
unit circle. Otherwise, the process exhibits a unit root and is not stationary. The
process is then said to be integrated. The order of integration corresponds to the
multiplicity of the unit root. Note that the roots of φ(λ) are in general complex
numbers. A stochastic process is not stationary if it contains a unit root and, as a
consequence, ARMA models can not be applied without differencing the process
in a preliminary step. As an alternative, ARIMA models can be applied. One
commonly applied method for testing a time series on unit roots is the Dickey-
Fuller-Test (Dickey and Fuller (1979)).

ARIMA Models

A more general representation are ARIMA (Integrated Autoregressive Mov-
ing Average) processes which can be applied to non-stationary time series. In this
case, the difference between subsequent elements of the stochastic process is con-
structed before the above describe ARMA model is applied. The original process
is reconstructed by integrating the resulting ARMA process.

There is a variety of modifications on ARMA models in order to capture ad-
ditional effects and to add additional information. For example, FARIMA models
are applied to time series which exhibit long range dependency (Hosking (1981);
Granger and Joyeux (1980)). Exogenous information, for example a time series on
interest rates, is considered in so-called ARMAX models, in which the exogenous
variables are regressed to the target variable.

2.2.3 ARCH/GARCH Models
As stated earlier, one frequently observed phenomenon in financial time series

is volatility clustering. This characteristic is encompassed in the more general
feature of heteroskedasticity in financial time series. Heteroskedasticity denotes
changing variance over time. Engle (1982) introduced a new class of stochastic
processes in order to capture time varying volatility and heteroskedasticity. These
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autoregressive conditional heteroskedastic processes are known as ARCH mod-
els and the generalization hereof, introduced by Bollerslev (1986), is known as
GARCH models.

The ARCH(r) model, as introduced by Engle (1982), describes the εt generat-
ing process as follows:

εt =
√
htzt, zt ∼ IID(0, 1) (2.21)

ht = w0 +
r∑
i=1

wiε
2
t−i, (2.22)

where the wi are the parameters of the model, which must satisfy w0 > 0 and
wi ≥ 0 for i = 1, ..., r. The function ht denotes the conditional variance of εt, con-
structed from a weighted sum over the squared past r disturbances, ε2t−1, ..., ε

2
t−r.

ht denotes the innovation at time t and is assumed to be IID distributed over time,
with mean zero and unit variance. The normal distribution assumption is in most
cases not appropriate for financial time series modeling. Typical distributions as-
sumptions are discussed in a later section of this thesis.

From Equation 2.22 it appears that volatility clustering can be captured with
the ARCH model: If the past errors εt−i, i = 1, ..., r have been large, this will be
reflected in a correspondingly large conditional variance ht. This in turn implies
that εt is expected to be large as well. Note that the sign of εt is not determined.

Note that the ARCH process with conditionally normal distributed errors leads
to a leptokurtic unconditional distribution (i.e. a heavy tailed unconditional distri-
bution). As a reference see, for example, Bollerslev (1987) and Bollerslev et al.
(1992). However, as Bai et al. (2003) point out, this implied unconditional kur-
tosis turns out to be too small in order to reconcile the sample kurtosis, which
is detected in financial time series. As as consequence, non-normal, leptokurtic
distributions appear inevitable in order to properly model the innovation process.

Bollerslev (1986) extended the ARCH model by appending a weighted sum
over the past s conditional variances hti for i = 1, ..., s. The resulting model
is known as generalized autoregressive conditional heteroskedastic model, or in
short, GARCH-model. Hence,

εt =
√
htzt, zt ∼ IID(0, 1) (2.23)

ht = w0 +
r∑
i=1

wiε
2
t−i +

s∑
j=1

vjht−j, (2.24)

where, again, ht denotes the variance conditional on information until time t,
It−1. In order for the process εt to be stationary within the GARCH-model frame-
work, the parameters wi and vi must satisfy the necessary and sufficient condi-
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tions:
∑r

i=1wi +
∑s

i=1 vi < 1 and wi > 0, vj ∀i ∈ {0, ...r} and j ∈ {1, ..., s}
(Bougerol (1992)).

In order to apply a GARCH model to a financial time series, it has to be en-
sured that the conditional return distributions are centered around zero. This can
either be achieved by de-trending the complete time series or by applying a con-
ditional mean model (e.g. an ARMA model).

The conditional variance process may exhibit persistence effects as well. To
capture this phenomenon, Engle and Bollerslev (1986) introduced the Integrated
GARCH (IGARCH) process. A GARCH process is integrated, if

∑
iwi+

∑
i νi =

1. Here, the current information remains important on all future time horizons.
As a consequence, volatility shocks have a permanent impact on the future condi-
tional variance.

2.2.4 FIGARCH Models

Following the development of GARCH (Bollerslev (1986)) and IGARCH (En-
gle and Bollerslev (1986)) models, (Baillie et al. (1996)) introduced FIGARCH
(Fractionally Integrated Generalized Autoregressive Conditional Heteroskedastic)
processes, which are capable of describing time series exhibiting persistence in
squared log-returns. They are useful tools when the correlations of subsequent
log-returns in a time series appear negligible but the time series’ volatility exhibits
long range dependency.

The FIGARCH(p,d,q) process for {εt} is defined by

φ(L)(1− L)dε2t = w + [1− β(L)]νt, νt = ε2t − h2
t ,

εt = htzt, zt ∼ IID(0, 1), (2.25)

where 0 ≤ d ≤ 1 as well as Et−1[zt] = 0 and V art−1[zt] = 1. For d = 0,
the above process corresponds to the well-known GARCH process whereas for
d = 1, Equation 2.25 describes an IGARCH(1) process ( So and Yu (2006)). The
calculation of the (1− L)d term has to be approximated in practical applications.
To this end, the term is Taylor-expanded around L = 0, leading to

(1− L)d =
∞∑
k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Lk

= 1− dL+
(1− d)(−d)

2
L2 + ... (2.26)

where Γ(·) denotes the gamma function. Usually, the sum in Equation 2.26 is
calculated up to the lag corresponding to k = 1000 (Baillie et al. (1996); So and
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Yu (2006)). For large k, applying Sterling’s formula to Γ(k − d)/Γ(k + 1) leads
to

Γ(k − d)/Γ(k + 1) ≈ k−d−1, (2.27)

indicating a hyperbolic decay in the polynomials coefficients. This, in turn, im-
plies that the effect of past innovations decays hyperbolically in the FIGARCH
model, given 0 < d < 1. In the case of d = 0, which corresponds to a GARCH(p,q)
model, the influence of past innovations decays exponentially, indicating no long
range dependency effects in financial market volatility.

2.2.5 ARMA-GARCH Models
In order to connect conditional mean and conditional variance models, ARMA

and GARCH models are often used in combination. The joint ARMA-GARCH
model is defined as

yt =

p∑
i=1

aiyt−i +

q∑
i=1

biεt−1 + εt (2.28)

εt =
√
htzt, zt ∼ IID(0, 1) (2.29)

ht = w0 +
r∑
i=1

wiε
2
t−1 +

s∑
i=1

viht−1, (2.30)

where the innovation process zt is assumed to be IID, with zero mean and unit
variance, i.e. Et−1[zt] = 0 and V art−1[zt] = 1.

2.3 Model Choice and Validation

2.3.1 Detecting the Autocorrelation and Dependence Structure
Before selecting a model to describe a time series, it is reasonable to investi-

gate the time series’ autocorrelation and independence structure. Two important
methods which allow to visually detect such patterns are the Sample Autocorrela-
tion Function (SACF) and the Sample Partial Autocorrelation Function (SPACF).
The respective structure of those two functions provide a means to estimate the
lag order and to motivate the employment of ARMA and/or GARCH models.
The SACF is defined as follows:

ρ̂k = corr(yt, yt−k) =
cov(yt, yt−k)

γ̂0

, k = 0, 1, ... (2.31)



34CHAPTER 2. THEORY OF TIME SERIES MODELING AND RISK ESTIMATION

where γ̂0 is the unconditional variance of the time series: γ̂0 = V ar(yt). ρ̂k
denotes the sample correlation coefficient between yt and yt−k. The SPACF is
constructed as

α̂k = corr(yt, yt−k|yt−1, yt−k+1). k = 1, 2, ... (2.32)

The SPACF describes the correlation between yt and yt−k after eliminating the
linear dependence between the realizations yt−1 through yt−k+1. In simple words,
the correlation between yt and yt−k is measured after removing the influence of
the realizations which occur intermediately.

When applying pure AR or MA models, these two methods can be directly
used in order to find the appropriate number of model parameters. In more general
cases, the SACF and SPACF are useful tools in order to detect non-stationarity
and long-range-dependence (LRD) effects in time series. LRD is indicated if the
SACF is declining slower than exponentially.

In addition to investigate a time series for autocorrelation, the dependence
structure between single instances may be of interest as well. One frequently
employed measure is the SACF constructed from a time series of squared re-
turns. SACF values which are significantly different from zero indicate that the
squared returns are correlated and suggests the application of GARCH models.
If the SACF of squared returns exhibits persistent behavior, that is, the correla-
tion between squared returns is not declining exponentially with increasing lag,
long range dependency is indicated which motivates the utilization of FIGARCH
models.

2.3.2 Testing Time Series on ARCH/GARCH Effects

Engle (1982) proposed a Lagrange multiplier (LM) test in order to examine
if a time series contains ARCH(q) disturbances. The null hypothesis in Engle’s
ARCH test is w1 = w2 = ... = wq = 0, which is tested against the alternative
hypothesis of {ε2t} following an ARCH(q) process.

A differentiable function h(·) is assumed which satisfies ht = h(ztw), where
zt = (1, ε̂2t−1, ..., ε̂

2
t−q). εt are the residuals after subtracting the mean process, and

w = (w0, w1, ..., wq)
′ is the set of ARCH-parameters. Under the null hypothesis

ht is a constant, denoted as h0.
The test statistic is constructed as

ξ =
1

2
f 0′z(z′z)−1′z′f 0, (2.33)

where z′ = (z′1, ..., z
′
T ) and f 0 =

(
ε̂2t
h0
− 1
)

with h0 = 1
T

∑T
t=1 ε̂

2
t .
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As Breusch and Pagan (1979) and Godfrey (1978) point out, the above test
statistic does not depend on h(·). This is a necessary condition for the application
of this test if the residuals are not assumed to be conditionally normal distributed.
The test statistic is asymptotically χq-distributed.

Engle’s ARCH-test is usually implemented in standard mathematical software
such as MATLAB.

2.3.3 Identifying the Lag Order
The identification of the lag order determines the number of free parameters in

a parametric model. In order to obtain a model with a good descriptive nature in
addition to reliable and robust forecasting qualities, it is quintessential to properly
adjust the set of free model parameters.

Simply speaking, a model with too many parameters will be able to capture
every random fluctuation in the data. In this undesired case, the model will per-
fectly describe the underlying time series but with a complete loss of the ability
to generalize and to produce reliable forecasts. This phenomenon is known as
overfitting. As a consequence, the number of parameters should be as limited as
possible.

There is a variety of selection criteria available in order to find the appropriate
set free parameters. In the case of ARMA(p,q) models, the most conservative
procedure is the Bayesian Information Criterion (BIC), proposed by Schwarz
(1978), which is defined as

BICp,q = ln σ̂p,q +
lnT

T
(p+ q), (2.34)

where σ̂p,q = 1
T

∑T
i=1 ε̂

2
t (p, q) is the mean variance of the residuals. As Equa-

tion 2.34 shows, the BIC scales down with decreasing mean variances σ̂p,q and
scales up with an increasing number of parameters p and q. The best estimate for
the number of free parameters under this criterion is received for the tuple {p, q}
that minimizes BICp,q.

2.3.4 Estimation of the Model Parameters
After a model has been selected its parameters have to be estimated. There

are two common procedures in order to perform the parameter estimation, Least-
Squares-Estimation (LSE) and Maximum-Likelihood-Estimation (MLE). This sec-
tion focuses on the MLE, which has been used throughout this thesis.8

8Detailed information of the Least-Squares Estimation method can be found in a variety of
textbooks about statistics or econometrics, such as in Rachev et al. (2007).
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Let {xt, t = 1...T} be a series of observed values. The underlying conditional
distribution function f(x|a) is assumed to be known, where a denotes a set of
parameters with unknown values.9 The purpose of the Likelihood estimation is to
find the unknown parameter set a which maximizes the likelihood of observing
the values {xt}.

The Likelihood function L is defined as

L(a) =
T∏
i=t

f(xt|a). (2.35)

It is a measure for the probability to observe the given values {xt} for the param-
eter set a. By optimizing this measure, is,

L(a)→ maximize, (2.36)

the parameter set a is chosen under which the observation of {xt} becomes most
likely.

In practical applications, − logL is minimized instead of L being maximized.
Due to the application of the log-function, the likelihood function decays into a
sum over all data points {xt}. This approach is generally more practical than
dealing with the product over many elements, especially when the product could
lead to values extremely close to zero. A minimization is carried out instead of
a maximization due to common conventions by which optimization algorithms
operate.

In general, multi-parameter log-likelihood functions can be highly nonlinear
and non-continuous. This complicates the optimization problem and classical al-
gorithms, such as the gradient descent or the Newton-Raphson method, will lead
to unsatisfying results since those methods will typically only find the next local
minimum. To this end, sophisticated algorithms are needed in order to achieve
reliable results. Nevertheless, it has to be noted that up to this date, no algorithm
is known which could guarantee to find the global minimum.

When estimating financial models where the actual conditional innovation dis-
tribution is not normal, the Normal-Maximum-Likelihood-Estimation may still be
used. The resulting parameter estimation is known as Quasi-Maximum-Likelihood-
Estimation (QMLE) (see, as a reference, Bollerslev and Woolridge (1992)).

2.4 The Innovation Process
The innovation process has to be capable of taking the stylized facts, as pre-

sented in Section 2.1, into account.
9It is important to note that

∫∞
∞ f(x|a)dx = 1 must hold for all sets of a.
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At first appearance, a stable distribution is desirable. For this proposition can
be argued from the point of view that the behavior of market participants, which
eventually determine the price (hence, the return) by their actions, are influenced
from a variety of quantitative and qualitative variables. The central limit theo-
rem, a fundamental principle in statistics, states that a sum of independent random
variables, drawn from different distributions, will converge towards a stable distri-
bution. In the special (and desirable) case that those distributions possess a finite
expectation value and a finite variance, the distribution of their sum will converge
towards a normal distribution.10

Another strong argument for the stable hypothesis is based on the construction
of log-returns. A log-return over a period of one day, can be constructed from
minutely observed log-returns by simply summing them up:

rd =
N∑
i=0

rmi , (2.37)

where N is the number of trading minutes withing one trading day and rmi is the
return of minute i. Consequently, if minutely returns rmi were independent and
exhibiting finite variance, the daily log-return distribution should be consistent
with the normal distribution assumption, following again the rules stated by the
central limit theorem. The normal probability density function is given by

f(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2.38)

It’s two parameters, µ and σ determine the location and the width of the distri-
bution. The normal distribution is employed in a wide scope of applications for
several reasons. First, the normal distribution is readily implemented in basically
every available statistical software package and there exist numerous ways of as-
sessing models which are based on the normal distribution. In addition, it has
been used by financial institutions for a long time, and as a consequence, its id-
iosyncratic behavior and its shortcomings are well known and well documented.

Even though this way of reasoning seems conclusive, empirical studies have
strongly rejected the normal distribution hypothesis in various cases. This is not
only true for unconditional return distributions but also for conditional distribu-
tions as obtained in the framework of ARMA-GARCH models. Excess kurtosis
and skewness are still prevailing characteristics in empirical innovation distribu-
tions which are extracted from financial time series.

This persistent question has been tackled by researchers by applying various
probability functions to empirically observed innovation distributions. Some of

10To be more precise, the Lindenberg Condition (Lindenberg (1921)) has to be satisfied.
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the most important theoretical distribution assumptions will be discussed in this
section. Their application in ARMA-GARCH models has been extensively stud-
ied and is well documented.

2.4.1 α-stable Distributions
In order to adhere to the stability approach as outlined above, the α-stable dis-

tribution family should be well-suited candidates for modeling the innovation pro-
cess, as Mandelbrot (1963) proposed. Even though α-stable distributions are very
adaptive and therefore capable of modeling excess kurtosis and skewness effects,
they have the severe drawback of not possessing finite moments (the only excep-
tion is the normal distribution). This leads to fundamental difficulties when port-
folio selection criteria are considered in which asset prices and the involved risk
rely on finite moments of the underlying distributions, such as Harry Markowitz’
modern portfolio theory (Markowitz (1952)) or the Black-Scholes equation for
option pricing (Black and Scholes (1973)).11

Stable distributions are attractors in the framework of the central limit theo-
rem. That is, as mentioned above, a sum of IID random variables, drawn from
different distributions, will converge towards a stable distribution.

A distribution is defined as stable, if for two independent random variables,
X1 and X2, drawn from the same distribution X, the following is true:

aX1 + bX2
d
= c ·X + d, (2.39)

for some real constants a, b, c and d.
The α-stable probability density function has no closed form expression in the

return space. It is defined in the frequency space by its characteristic function as

φstable(u;α, σ, β, µ) = E[eiuX ]

=


exp

(
iµu− |σu|α

(
1− iβ sign(u) tan

πα

2

))
, α 6= 1

exp

(
iµu− |σu|α

(
1 + iβ

2

π
sign(u) ln(|u|)

))
, α = 1

Its parameters α, σ, β and µ have the following interpretations and limits:

• µ ∈ (−∞,∞) is the localization parameter.

11Even though booth theories are based on the assumption of normally distributed returns their
key statements regarding risk assessment based on second order moments are still valid in a wide
scope.
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• σ ∈ (0,∞) determines the width of the distribution.

• β ∈ [−1, 1] describes the distribution’s skewness.

• α < 2 defines the asymptotic tail behavior.

The normal distribution is the special case for α = 2 and β = 0. All α-
stable distributions besides the normal one exhibit excess kurtosis and skewness
(if β 6= 0).

Benoit Mandelbrot (Mandelbrot (1963)) first employed α-stable distributions
in the context of financial modeling in order to describe empirical distributions
based on cotton prices.

GARCH models with α-stable innovations were introduced by Rachev and
Menn (Menn (2005) and Rachev and Mittnik (2000)).

2.4.2 Student-t Distribution
Due to the drawbacks and difficulties which come along with the use of the

α-stable distribution family, the Student-t distribution is widely used in financial
modeling. Even though this distribution is symmetric, that is, it is not capable of
describing skewness, it exhibits fat-tail behavior.

The Student-t probability density function is defined as follows:

f(x; ν) =
Γ(n+1

2
)

√
νπ ν

2

(
1 +

x2

ν

)− ν+1
2

. (2.40)

In this form, the Student-t distribution has only one parameter, namely, the
number degrees of freedom (DOF), denoted by ν in the above equation.

It’s second order moment, the variance, is given by

V ar[X] =
ν

ν − 2
, ν > 2. (2.41)

That is, the variance is only defined for ν > 2. The Student-t distribution interpo-
lates between the normal distribution (for ν → ∞) and the Cauchy-Distribution
(for ν = 1).

In order to apply the Student-t distribution to real world applications, such as
financial markets modeling, a frequently used modification of Equation 2.40 is the
non-central three parameter version:

f(x;µ, λ, ν) =
Γ(n+1

2
)

Γ(ν
2
)

√
λ

νπ

(
1 +

λ(x− µ)2

ν

)− ν+1
2

. (2.42)

In this three parameter form, the Student-t distribution is scalable in width and
can be located around the empirical distribution’s observed mean.
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2.4.3 Tempered Stable Distributions
Classical Tempered Stable (CTS) distributions are capable of describing both

skewness and excess kurtosis. In contrast to α-stable distributions (except the nor-
mal distribution), CTS distributions possess finite moments. This quality is crucial
for the employment of these distributions in asset pricing models which rely on
finite first and second order moments. CTS distributions are derived from α-stable
distributions with the essential difference that their tails fade out exponentially, as
Figure 2.2 illustrates. Tempered stable distributions possess, like α-stable distri-
bution, the infinite-divisibility property.

Tempered stable distributions have first been introduced by Koponen (1995)
as Truncated Levy Flights. They are also known as KoBol distributions (Bo-
yarchenko and Levendorskiǐ (2000)). In the same way as for the α-stable dis-
tribution, the tempered stable distribution family has no closed form expression in
the return space. It is defined through its characteristic function, which is given
by

lnφ(u;α,C+, C−, λ+, λ−,m) =

ium − iuΓ(1− α)(C+λ
α−1
+ − C−λα−1

− )

+ C+Γ(−α)((λ+ − iu)α − λα+)

+ C−Γ(−α)((λ− + iu)α − λα−). (2.43)

In the case when C = C+ = C− > 0, as throughout this thesis, these distributions
are also known as CGMY distributions (Carr et al. (2000)).

For modeling time series, it is convenient to employ the standardized classical
tempered stable distribution (stdCTS), with zero mean and unit variance. Due
to the predefined model’s mean and variance, the parameter set is reduced from
six to three parameters (under the additional assumption that C = C+ = C− >
0). Since the probability density’s representation in the return space has to be
constructed by employing a Fourier transform on the characteristic function φ,
the fixed second order moment is particularly advantageous for technical reasons,
(see Scherer et al. (2010)).

The standardized characteristic function of tempered stable distributions is
given by

log φstdCTS(u) =
2iu

α− 1
· λ

α−1
+ − λα−1

−

λα−2
+ + λα−2

−

+
1

(a− 1)a
·

(λ+ − iu)α − λα+ + (λ− + iu)α − (λ−)α

λα−2
+ + λα−2

−

(2.44)

where
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C = C+ = C− =
[
Γ(2− α)

(
λα−2

+ + λα−2
−
)]−1

m = 0 (2.45)

The interpretation and range of the parameters α, λ+ and λ− is given in the fol-
lowing enumeration:

• α determines the asymptotic tail behavior and the distribution’s shape around
the center region symmetrically.

• λ− defines how the left hand tail decays.

• λ+ defines how the right hand tail decays.

In combination, λ+ and λ− define the distribution’s skewness behavior. λ− > λ+

will result in a negatively skewed distribution, that is, more probability mass will
be located on the left hand side of the distribution’s center. In order to improve
the robustness of parameter estimations, the CTS-function can be re-parametrized.
The re-parametrization affects the parameters λ+ and λ−. They are transformed
as follows:

λ+ = λ− ∆

2

λ− = λ+
∆

2

−→ λ =
1

2
(λ− + λ+), λ > 0

∆ = λ− − λ+, ∆ < 2λ

The interpretation of the new parameters λ and ∆ is straightforward: λ de-
scribes the degree of symmetric tempering and ∆ influences the skewness. If ∆
is hold at zero, changing the parameter λ will result in symmetrically changing
the shape of the density function. Vice versa, holding λ constant and changing
the parameter ∆ from negative to positive values will result in the skewness of
the density function moving from negative values to positive values. The inter-
pretation of α remains unchanged. How differences between λ+ and λ− affect the
distribution’s skewness is depicted in Figure 2.3.

Note that the degree of skewness depends on all three parameters, α, λ and ∆.
That is, ∆ itself only determines the direction, in which the probability density
function is skewed, but not exclusively how pronounced the skewness is. This
can be shown by considering the cumulants cn(X) of a tempered stable random
variable X , which are given by
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Figure 2.2: The above figure demonstrates the impact on changes in the parameter
λ = λ+ = λ−. Increasing λ leads to a pronounced tempering effect. The y-log-
scale has been chosen to demonstrate the differences in the tail behavior.

cn(X) = Γ(n− α)C1λ
α−n
+ + (−1)nΓ(n− α)C2λ

α−n
− , for n ∈ N, n ≥ 2

c1(X) = µ+ Γ(1− α)C1λ
α−1
+ − Γ(1− α)C2λ

α−1
− . (2.46)

Since the third cumulant c3 corresponds to the third central moment (Abramowitz
and Stegun (1965)), it is clear that ∆ = λ− − λ+ itself can only indicate the
direction of the skewness.

Figure 2.2 illustrates how changing the parameter λ, as defined in Equation 2.46,
affects the shape of the CTS distribution. The parameters α and ∆ are held con-
stant. The approximately linear tail decay in this chart (with a logarithmic y-scale)
indicates an exponential decay on a linear y-scale. Note that the point at which
the tail behavior starts to change also depends slightly on λ.

For α→ 2 and λ+/− →∞, the CTS distribution converges towards a normal
distribution.

CTS innovations have been applied in financial modeling by, for example,
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(a) Negative Skewness

(b) Positive Skewness

Figure 2.3: The impact from differences in λ+ and λ− on the CTS-distribution’s
skewness. λ− > λ+ → ∆ > 0 leads to a positive skewness (and vice versa).
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Kim et al. (2008a,c), Kim et al. (2010b) and Beck et al. (2011). Comprehensive
studies on tempered stable distributions and their applications in financial markets
can be found in Kim et al. (2010c) and Bianchi (2009).

2.5 Goodness of Fit Tests
After a model has been chosen and applied to the data (i.e., the model’s pa-

rameters have been estimated) it is crucial to verify the model’s descriptive power.
This includes especially a goodness-of-fit examination for the employed innova-
tion distribution assumption. To this end, several statistical tools are available.
The proposed goodness of fit tests will result in a p-value which has to be com-
pared to a pre-defined confidence level, typically 95%, 99% or 99.9%. The hy-
pothesis that the considered model is consistent with the observed data is usually
denoted as Null Hypothesis (H0). If the resulting p-value falls below the pre-
defined level, the Null Hypothesis is rejected, otherwise, it is accepted.

A general issue which arises when using statistical tests are two specific error
types:

Type I Error: Rejecting the Null Hypothesis when it is actually true.

Type II Error: Accepting the Null Hypothesis when it is actually false.

The choice of the confidence level is a means to find a suitable compromise
between Type I and Type II errors. It is not possible to rule out both errors at
the same time. Being conservative in the acceptance of a model will reduce the
probability of Type II Errors but at the same time increase the probability of Type
I errors and vice versa. The 95% confidence level is rather conservative, thus
reducing the probability of Type II Errors whereas the 99.9% confidence level
reduces the probability of Type I Errors.

The goodness-of-fit tests which have been used in this thesis are presented in
this section.

2.5.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is a nonparametric test that assess if two
cumulative probability density functions (cdf) result from identical distributions
within statistically allowed boundaries (Massey (1951)).

The Null Hypothesis is defined as

H0 : F (x) = F̂ (x), (2.47)
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where F (x) denotes the empirical and F̂ (x) the theoretical distribution function.
The alternative hypothesis can be formulated as

H1 : F (x) 6= F̂ (x). (2.48)

The maximum difference between the two functions is used as test statistic and is
constructed by

KS =
√
n · sup

xi

|F (xi)− F̂ (xi)|, (2.49)

where F̂ (xi) denotes the empirical and F (xi) the theoretical cumulated distribu-
tion function (cdf).

The probability ofKS being smaller than some x is computed with the Kolmogorov-
Smirnov cumulative distribution function, given by

Pr(KS ≤ x) = 1− 2
∞∑
i=1

(−1)i−1e−2i2x2 =

√
2π

x

∞∑
i=1

e−(2i−1)2π2/(8x2). (2.50)

In addition to the above formula, tabulated values are available in, for example,
Miller (1956).

The resulting p-value is compared against the confidence level which is spec-
ified before the test is carried out. The test then either accepts or rejects the Null
hypothesis.

2.5.2 Anderson-Darling Test
The Anderson-Darling (AD) test is carried out by following a similar proce-

dure as compared to the KS test but with a modified test statistic (Anderson and
Darling (1954)). The way in which the KS test statistic is constructed, the corre-
sponding x-values will typically be found close to the center region of the distribu-
tion under investigation. That is, the KS test focuses on the goodness-of-fit in the
center region. In cases, where proper tail modeling is essential, the AD-test statis-
tic may be better suited for this purpose, since it focuses on the goodness-of-fit in
the tail regions. The AD test statistic is given by (Stephens (1974))

A2 = −n−
n∑
k=1

2k − 1

n
[ln(zk) + ln(1− zk)] . (2.51)

Here, the zk result from transforming the ordered observed values xk into a uni-
form distribution by applying the theoretical distribution function F . That is,
zk = F (xk).

The construction of the Anderson-Darling test’s related p-values is not as
straightforward as it is for the KS test. It can be constructed by following a proce-
dure developed by Marsaglia and Marsaglia (2004).
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2.5.3 Quantile-Quantile-Plot
Quantile-Quantile-Plots (QQ-Plots) are a statistical tool to visually detect if

two distributions correspond each other. QQ-Plots for two sample distributions
result from drawing the quantile positions for the two ordered samples against
each other. In those cases where the two distributions are statistically identical,
the corresponding quantile positions must coincide as well. The result is a QQ-
Plot with all quantile pairs on one diagonal line. Deviations from the diagonal
indicate that the two distributions do not coincide. The QQ-Plot allows to visually
locate the quantiles in which the distributions do not coincide.

Figure 2.4 illustrates a QQ-Plot, where the normal distribution hypothesis is
tested for its applicability on S&P 500 daily returns over the past ten years (2000-
2010). The blue bullets deviate clearly from the diagonal which is indicated as a
dashed red line, leading to the conclusion that the normal distribution is not well
suited to model S&P 500 daily return distributions properly. Applying the QQ-
Plot method allows to visually analyze a model’s performance and especially to
detect regions in which the empirical data is not well described.

2.6 Risk Measures Used by Financial Institutions
Financial Institutions which underlie the Basel Accords are obliged to deter-

mine their capital requirements by following the rules specified in the Basel II
Accords,12 a set of guidelines published by the Basel Committee of Banking Su-
pervision. Firms holding large amounts of risky assets must follow these specified
rules to assess the cumulated risk they are holding on their balance sheets. The
general idea behind those rules is to control the risk to which financial institutions
are exposed and, as a consequence, lower the risk of bankruptcies. According to
the indicators received from quantitative risk estimations, firms in the financial
industry are required to hold an adequate amount of capital. The Basel II Accord
recommends the use of Value-at-Risk (VaR) methods in order to quantitatively
estimate the risk in equity exposures (Basel Committee on Banking Supervision,
2006)(Part 2.III.H.11.ii.§527)).

2.6.1 Coherent Risk Measures
Risk measures used in order to determine capital requirements should satisfy

a set of axioms, as suggested by Artzner et al. (1999). The future uncertainty of
a portfolio A is usually described by a function X : Ω → R, where Ω denotes a
finite set of scenarios. In portfolio analysis, X will usually denote the value of a

12The development of Basel III is still in progress, see Moody’s Analytics (2011).
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Figure 2.4: Application of a normal distribution to S&P 500 Index daily returns
over a time period of ten years (2000-2010). The above QQ-Plot shows that the
quantile positions of the empirical distribution and the normal assumption do not
coincide. This indicates that the normal hypothesis is not well suited to model the
empirical return distribution properly.
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given portfolio which is constructed by a linear combination of functions taking
into account each element in Ω. A function ρ(X) is used to quantify the risk and
cash requirements which have to be added to the portfolio. The linear space of
functions X : Ω→ R is denoted as X .

In order to be defined as a coherent risk measure, ρ : X → R has to satisfy the
following requirements, with Y, Z ∈ X :

• Monotonicity: If Y ≤ Z, then ρ(Y ) ≥ ρ(Z).
If portfolio Y leads to worse results than portfolio Z in all scenarios, the
risk measure should be greater for Y .

• Sub-additivity: ρ(Y + Z) ≤ ρ(Y ) + ρ(Z).
If portfolios Y and Z are put together, the combined risk measure must not
be greater than the sum of the separate risk measures.

• Positive Homogeneity: For λ ≥ 0, ρ(λY ) = λρ(Y ).
By changing all positions in a portfolio by the factor λ while keeping the
relative proportions constant, the risk measure must change by the same
factor λ.

• Translation Invariance: If C ∈ R, then ρ(Y + C) = ρ(Y )− C.
By adding the amount C of cash to the portfolio, the risk measure, hence
the capital requirements, must decrease by the same amount.

2.6.2 Value-at-Risk
One of the most commonly applied risk measures by financial institutions is

Value-at-Risk (VaR), which has been introduced by J.P. Morgan, an investment
bank (Longerstaey and More (1995)). It depends on two parameters, a time hori-
zon T and a confidence level η. With VaR, financial institutions have a feeling
of what amount of money they are at least about to loose within a certain time
period T at a given certainty level η. In simple terms, VaR is the mathematical
description of the following formulation (cited from Hull (2007)):

“We are X percent certain that we will not loose more than V dollars in time T.“

For example, assume for a portfolioA a VaR(η = 5%,T = 1 day) figure of 10
Million Dollars. This means that portfolio A is expected to loose an amount of at
least 10 Million Dollars on one out of 20 days.

In mathematical terms, the definition of VaR at a confidence level of η% for a
random variable X is given by

VaR(X)η = −inf{x ∈ R|P (X ≤ x) > η}. (2.52)
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Figure 2.5: Visualization of the 5% VaR and AVaR levels for an exemplary
N (0, 1) return distribution.

Figure 2.5 illustrates the location of the 5% VaR level for a standardized
normal distribution N (0, 1). In the more general case of normal distributions
N (0, σ2), this level corresponds to −1.64σ, where σ denotes the standard devia-
tion.

Value-at-Risk figures for a portfolio can be constructed in several ways. Com-
mon methods include historical simulation, monte-carlo methods or variance-
covariance based approaches (Hull et al. (1998)). VaR figures can also be de-
termined in combination with conditional mean and variance models as carried
out in this thesis.

Even though Value-at-Risk is a frequently used risk measure by financial in-
stitutions, it’s application must be considered under the awareness that it exhibits
some severe drawbacks. Following the definition in Section 2.6.1, VaR is not a
coherent risk measure since the sub-additivity requirement is not generally satis-
fied.13

A risk measure, which satisfies all four criteria for being coherent is Average
Value-at-Risk (Acerbi and Tasche (2001)).

13Examples to demonstrate this fact can be easily constructed. See, for example, Hull (2007).
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2.6.3 Average Value-at-Risk
Average Value-at-Risk (AVaR), also known as Conditional Value-at-Risk (CVaR),

Expected Shortfall (ES) or Expected Tail Loss (ETL), is a risk measure which can
be used as an alternative to Value-at-Risk. Instead of just determining the min-
imum expected loss, as in Value-at-Risk, it is applied in order to calculate the
expected value of losses over a given period of time.

The definition of AVaR at the confidence level η is given by

AVaRη(X) =
1

η

∫ η

0

VaRε(X) dε, (2.53)

where VaRε(X) denotes the Value-at-Risk figure for a random variable X at the
confidence level ε. Figure 2.5 shows the location of AVaR for a N (0, 1) distribu-
tion at the η = 5% confidence level.

Besides being a coherent risk measure, AVaR has one further significant ad-
vantage over VaR: By using VaR in estimating monetary losses, the only infor-
mation received from this measure is the amount of money, which will at least be
lost for a certain confidence level η in a given time period. VaR does not indicate
what would happen in the worst possible scenarios. This information is provided
by Average Value-at-Risk since it is the weighted mean over all losses exceeding
the pre-defined confidence level.



Chapter 3

Empirical Analysis of High
Frequency Data

An empirical analysis of time series constructed from S&P 500 Index data on
high-frequency time scales is presented in this chapter.1 First, the dataset used for
this study is introduced. The transformation of the data which is applied to remove
the intraday volatility profile is described and empirically observed stylized facts
are reported. Subsequently, ARMA-GARCH and FIGARCH models with dif-
ferent innovation distribution assumptions are compared in their modeling capa-
bilities. The special case of tempered infinitely divisible innovation distributions
is investigated further to find dependencies between the corresponding parameter
values and the frequency on which log-returns are constructed. The forecasting
performance of the respective models is investigated in a Value-at-Risk backtest.

The empirical analysis was carried out by employing MATLAB, Python (Choirat
and Seri (2009)) and ROOT.2

3.1 The Dataset - S&P 500 Index
The S&P 500 Index (short for Standard&Poor’s 500 Index) is a North Amer-

ican stock market index which consists of the 500 biggest U.S. companies in ac-
cordance to their market capitalization. It is generally regarded as being repre-
sentative for the whole U.S. economy and therefore widely used in portfolio op-
timizations. The S&P 500 Index is published by Standard&Poor’s, a U.S. based
financial services company. It is maintained by the S&P 500 Index Committee

1This chapter is to a great extent based on the publication Beck et al. (2011) which resulted
from the empirical analysis carried out in the context of this thesis.

2ROOT is a data analysis framework developed by scientists at the European Organization for
Nuclear Research (CERN) in Geneva, Switzerland.
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Figure 3.1: Illustration of the S&P 500 Index during the analyzed time period
from March 3, 2010 to January 27, 2011.

who’s task is to ensure that the index reflects the risk and return characteristics for
the U.S. large cap market segment. To be regarded as a potential candidate for be-
ing taken into the S&P 500 Index, companies need to fulfill a number of specified
requirements. Likewise, companies can be removed from the S&P 500 Index if
they violate certain criteria.3

The S&P 500 Index’ value is constructed by applying a weighted sum of each
company’s market capitalization. The weight used in the index’ construction is
proportional to the number of publicly available shares. To have the index’ time
series free of distortions resulting from company removals, rights issues, issuances
etc., the index’ value is re-adjusted after such events.

The S&P 500 Index belongs to the group of price return indices. That is, div-
idend payments are not reinvested, as it is the case for total return indices. It was
first published in 1957 and is nowadays reported every 15 seconds between 9:30
and 16:00 Eastern Standard Time.

The dataset used in this study covers 15 second index values from March 3,
2010 to January 27, 2011 (227 trading days). Figure 3.1 depicts the S&P 500
Index over this time period with daily closing prices.

If gaps occur in the data, the missing values are obtained by linear interpo-
lation (see, for example, Sun et al. (2008)). Taking the criteria for excluding
days into account,4 the final dataset contains 166 trading days (that is roughly

3A detailed overview of these rules can be found at http://www.indices.standardandpoors.com.
4Some dates are excluded from the study where either the data was completely missing or large

gaps occured in the dataset. The exclusion criteria for one day are fulfilled if either more than 3%
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300 000 index values, which corresponds to about 1200 years of daily recorded
data). From these data, a time series of log-returns, rt = log St/St−1, is con-
structed by concatenating the respective time series of subsequent trading days.
To avoid overnight effects, the first return from each daily time series is cut off.
Subsequently, time series with returns on different time-intervals, ranging from
15 seconds to 300 seconds in steps of 15 seconds, are created. In the following,
the time intervals over which returns are calculated are denoted as δtr.

3.2 Transforming the Data by Removing the Volatil-
ity Profile

Intraday return time series exhibit a slightly U-shaped volatility pattern, sim-
ilar to the well-known shape in intraday trading-volume (Fraenkle (2010)). That
is, the volatility is generally higher in the opening and closing periods compared
to the time around noon. Before ARMA-GARCH models can be applied to the
intraday return series, the intraday volatility pattern, which can be thought of as
a seasonality effect on a daily basis, must be removed. Such a pattern cannot be
captured by applying an ARCH or a GARCH approach. On the contrary, if this
pattern is ignored, it could potentially destroy an underlying GARCH process as
demonstrated by Andersen and Bollerslev (1997).

The time series on different return time intervals δtr have to be treated indi-
vidually. For each of these time series, every trading day’s volatility profile has to
be forecasted.

For this purpose, Bollerslev et al. (2006) employ the sum over past squared
returns for each intraday time interval as a proxy for the unobserved volatility. In
this thesis, a slightly modified approach is applied. The volatility vd0,i for return
ri on day d0 is estimated by the following expression:

v2
d0,i

=

∑N
k=1 r

2
i,d−k
· exp(−τ · k)∑N

k=1 exp(−τ · k)
, (3.1)

where r2
i,d−k

is a proxy for the unobserved volatility5 belonging to the ith return
on the kth day before day d0. Due to this modification, the resulting volatility
measure will depend more heavily on those previous days, which are close to
the day under investigation. By this, the volatility measure adjusts more quickly
to persistent changes in the volatility profile’s structure and magnitude. In this

of the values are missing or if gaps occured which exceeded 1% of the expected number of values
for one day.

5Volatility itself cannot be observed. A common proxy for the unobserved volatility is the
squared return or absolute return, see, for example, Lee et al. (2011).
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exponential smoothing model, the parameters τ = 0.1 andN = 10 are used.6 The
weights on the past days are such that the older days are weighted less than the
days that are closer to the day under investigation. The parameter set as described
above will give the 10th day in the past a relative weight of 1/e.

Subsequently, all returns are transformed by r̂d,i =
rd,i
vd,i

, where r̂d,i denotes
the transformed return and rd,i denotes the ith observed return on day d in a time
series with timespan δtr. vd,i is the forecasted volatility for day d and is applied to
the ith return. This transformation is performed for each return time interval δtr.
The result are regularly spaced time series on different time scales δtr which are
free of intraday volatility profiles.

Figures 3.2a to 3.2c depict the transformed time series for the δtr = 15, 75 and
300 seconds return time interval with their corresponding return distributions. In
these figures, r̂ denotes the transformed return, that is, the return with removed
volatility profile. The following analysis are carried out on log-return time series
with removed volatility profiles.

3.2.1 Volatility Scaling Behavior

The volatility estimators defined in Equation 3.1 are further utilized in order
to investigate the volatility scaling behavior. Figure 3.3 shows the average esti-
mated volatility in dependence of the return time interval in a profile plot.7 The
blue curve in this figure depicts a square-root model whereas the red curve shows
a power law model with an estimated power of 0.58 ± 0.001. Figure 3.3 demon-
strates that the empirically observed volatility scaling structure exhibits slight de-
viations from the square-root model. In the framework of a Wiener Process, the
volatility would exhibit a square-root dependency on the return time interval.

3.3 Stylized Facts in High Frequency Data

It is essential to have a profound understanding of the prevailing features of a
given dataset in order to select and apply time series models appropriately. Sec-
tion 2.1.2 presents an overview of stylized facts which are observed in intra-daily
and high-frequency data. In this section, a comprehensive analysis for these styl-
ized facts is carried out on the dataset described above.

6N = 10 is chosen such that a time horizon of two business weeks is used to forecast the
volatility. τ = 0.1 has been chosen such that the 10th day still has a non-vanishing influence on
the volatility.

7Profile plots are explained in Appendix A.1.
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(a) r̂ for δtr = 15

(b) r̂ for δtr = 75

(c) r̂ for δtr = 300

Figure 3.2: The time series (black) and the corresponding distributions (blue) for
the log-return time series with removed intraday volatility profiles for the return
time intervals δtr = 15, 75 and 300 seconds.
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Figure 3.3: The volatility scaling behavior as a function of the return time interval
δtr. The blue curve shows a square-root model whereas the red curve depicts a
power law model.

3.3.1 Pronounced Excess Kurtosis

The excess kurtosis has been constructed from the realized returns for every
δtr and for every day in the dataset after the removal of the intraday volatility
profile. A profile plot is provided in order to illustrate the average excess kurtosis
for each δtr. This is shown in Figure 3.4.

The error bars for each data point result from averaging over each day’s excess
kurtosis. They indicate the estimated error on the mean of the excess kurtosis
distribution which is observed for each δtr.8 The red line in Figure 3.4 indicates
the daily excess kurtosis constructed from closing prices over the past ten years
(2000-2010). Its value has been found to be Kd = 7.58.

A power law model is suggested in order to describe the δtr-dependency of
the excess kurtosis:

K = κ · δt−αr + c (3.2)

The estimated model parameters are presented in Table 3.1.9

8The estimated error on a distribution’s mean is given by σ̂µ̂x = σ̂/
√
N , where N is the

number of values from which the mean µ̂x is constructed and σ̂ denotes the distribution’s standard
deviation.

9The quantity χ2/NDF denotes the mean variance for the model per data point and is an in-
dicator for the goodness-of-fit. In case when the measurements are independent, the expectation
value for this quantity is one. Here, the kurtosis estimations are positively correlated. Thus, the
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Figure 3.4: The excess kurtosis is shown in dependency of the return time interval
δtr. A power law model is suggested to describe this relation. The corresponding
parameter estimations are given in Table 3.1.
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It is clearly evident that the excess kurtosis is strongly intensified on short
timescales. The value of the suggested model’s constant c is very close to the
daily excess kurtosis Kd (c = 7.75). This implies that the suggested model will
approximately decay to Kd with increasing δtr.

κ α c NDF χ2 χ2/ NDF
1398.57 0.99 7.75 17 8.89 0.52

Table 3.1: Estimated parameters for model 3.2 in order to describe the excess
kurtosis dependency on δtr as illustrated in Figure 3.4.

3.3.2 Autocorrelation and Dependence
The sample autocorrelation function (SACF), the sample partial autocorrela-

tion function (SPACF) and the sample autocorrelation function of squared returns
of S&P 500 Index high-frequency data are discussed in this section. The examina-
tion of these functions allows to visually analyze autocorrelation and dependency
patterns in the time series.

Figures 3.5 and 3.6 illustrate the SACF and the SPACF for log-returns as well
as the SACF for squared returns for different time scales δtr.

Autocorrelation appears to be significantly present on the first few lags espe-
cially on the shortest return time intervals. Despite being significant, their values
remain quite low, thus only indicating weak autocorrelation effects.

Long range dependency effects do not seem to be existing since none of the
SACFs constructed from log-return time series exhibit persistent behavior.

The SACFs of squared returns show persistent instead of exponentially de-
creasing behavior. This leads to the conclusion that the squared log-returns, which
are proxies for the unobserved volatility, exhibit long range dependency effects.
This motivates the employment of FIGARCH models which are capable of cap-
turing those effects. This phenomenon is observed in all cases between δtr = 15
and δtr = 300.

3.4 Modeling Time Series with ARMA-GARCH Mod-
els

In this section, three different ARMA(1,1)-GARCH(1,1) models (as defined
in Section 2.2.5) are empirically compared in their capability in modeling intraday

value of χ2/NDF is expected to be smaller than one.
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(a) SACF for δtr = 15 (b) SACF for δtr = 30

(c) SPACF for δtr = 15 (d) SPACF for δtr = 30

(e) SACF of squared returns for δtr = 15 (f) SACF of squared returns for δtr = 30

Figure 3.5: The SACF and the SPACF for log-returns as well as the SACF for
squared log-returns for S&P 500 Index time series with δtr = 15 (left hand side)
and δtr = 30 (right hand side). They both exhibit significant autocorrelation as
well as significant and persistent dependency effects.
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(a) SACF for δtr = 75 (b) SACF for δtr = 300

(c) SPACF for δtr = 75 (d) SPACF for δtr = 300

(e) SACF of squared returns for δtr = 75 (f) SACF of squared returns for δtr = 300

Figure 3.6: The SACF and the SPACF for log-returns as well as the SACF for
squared log-returns for the S&P 500 Index time series with δtr = 75 (left hand
side) and δtr = 300 (right hand side). The autocorrelation effects on log-returns
are rather weak whereas the dependency effects appear pronounced as compared
to the charts for δtr = 15 and δtr = 30.
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S&P 500 Index log-return time series on high-frequency time scales. As shown
in Bollerslev et al. (1992), GARCH(1,1) models are an adequate choice in mod-
eling financial time series. Therefore, the focus in this analysis is on ARMA(1,1)-
GARCH(1,1) models. Commonly used innovation distributions were introduced
in Section 2.4. Here, the normal- and the Student-t distribution are compared to
the classical tempered stable (CTS) distribution. As mentioned in Section 2.1.2,
several stylized facts are pronounced in high-frequency data. Even based on daily
data, the classical distribution assumptions, such as normal and Student-t, have
been argued against in several studies. Hence, it is to assume that the statisti-
cal evidence for rejecting these hypothesis on high-frequency data will be even
stronger. The CTS innovation distribution is employed in the ARMA-GARCH
framework to present an alternative to the conventional models, especially for
high-frequency applications. For this analysis, time series on return time intervals
from δtr = 15 seconds to δtr = 300 seconds were used. The intraday volatility
profile is removed in all time series as described in Section 3.2.

Engle’s arch-test is carried out in order to detect conditional heteroskedasticity
in the log-return time series (Engle (1982)). The null hypothesis of no conditional
heteroskedasticity was rejected in all cases (δtr = 15, ..., 300) at the 5% confi-
dence level.

The charts in Figures 3.5 and 3.6 as well as Engle’s arch test results motivate
the employment of ARMA-GARCH models.

The (quasi-) maximum-likelihood method is used to estimate the model pa-
rameters (as introduced in Section 2.3.4).10 The CTS-ARMA-GARCH approach
is carried out in a way as described in Kim et al. (2010c): (1) estimate ARMA and
GARCH parameters using the t-ARMA-GARCH model; (2) extract innovations,
and; (3) fit the standard CTS parameters using the extracted innovations.

A comprehensive overview of the estimated parameters is presented in Ta-
ble 3.2. The corresponding 1σ parameter confidence intervals are given in brack-
ets.

In order to estimate the goodness-of-fits, Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) tests are applied. The results are summarized in the following enu-
meration.

• The normal-ARMA-GARCH model is rejected for all δtr even at the 99.9%
confidence level.

• The t-ARMA-GARCH model is rejected for all δtr at the 99% level (except
one case where δtr = 195).

• In both AD and KS tests, the CTS-ARMA-GARCH model is accepted in
all cases at the 99% confidence level and in almost all cases at the 95%

10For these studies, MathWorks MATLAB was employed.
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confidence level for time series with δtr > 60 s. For δtr ≤ 60 s, the CTS-
ARMA-GARCH model is rejected in all tests at the 99 % confidence level.

Table 3.3 provides a complete overview of each model’s KS and AD statistics
as well as the corresponding p-values.

The normal-ARMA-GARCH and t-ARMA-GARCH models clearly fail to
describe the underlying return time series. The models based on tempered sta-
ble distributions lead to significantly higher acceptance rates in the goodness-
of-fit tests than the normal- and t-ARMA-GARCH models. The CTS-ARMA-
GARCH model is capable of describing log-return time series in the case of the
S&P 500 Index for δtr’s from roughly one minute on to lower frequencies.

Figures 3.7a and 3.7b show the achieved p-values for the KS-Test and for the
AD-Test in dependence of the return time interval δtr. The 1% confidence level is
indicated by a black dashed line.

Table 3.3 as well as Figures 3.7a and 3.7b clearly indicate that the CTS dis-
tribution is a significantly more suitable model for the innovation distribution for
high-frequency financial data. Nevertheless, on the shortest times scales (δtr =
15 s to δtr = 60 s), the CTS models is rejected at the 1% confidence level in both
tests.

Figures 3.8a to 3.8f show the employed innovation distribution models to-
gether with the received parameter estimations for the normal-, t- and CTS-ARMA-
GARCH model for the return time intervals δtr = 75 and δtr = 300 seconds. The
corresponding QQ-Plots are depicted in Figures 3.9a to 3.9f.

3.4.1 Investigating the Significance of Mean Forecasts

The significance of the conditional mean forecasts which were utilized in the
VaR-backtest are analyzed in this section. The forecasted conditional mean val-
ues are generated by the ARMA part of the employed ARMA(1,1)-GARCH(1,1)
model, as given by Equation 2.30. If the forecasted conditional mean values are
significantly different from zero, the ARMA part provides a substantive influence
on the model’s performance. Usually a 95% or a 99 % confidence interval is used
in order to test this hypothesis. As a rule of thumb, the forecasted conditional
mean values should be at least three times their conditional standard error apart
from zero. Figure 3.10 illustrates the conditional mean forecasts in combination
with their corresponding conditional standard errors. It is clearly evident from
these charts that the conditional mean forecasts are not significantly non-zero.
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(a) AD Test

(b) KS Test

Figure 3.7: Figure 3.7a and Figure 3.7b show the achieved p-values for the Kol-
mogorov Smirnov (KS) as well as for the Anderson Darling (AD) test in depen-
dence of the return time interval δtr for the employed ARMA(1,1)-GARCH(1,1)
models. The black dashed line indicates the 1% confidence level.
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(a) normal, δtr = 75 (b) normal, δtr = 300

(c) Student-t, δtr = 75 (d) Student-t, δtr = 300

(e) CTS, δtr = 75 (f) CTS, δtr = 300

Figure 3.8: The above charts show the conditional innovation distributions for the
respective ARMA-GARCH models. The distributions are shown for δtr = 75 and
δtr = 300 seconds.
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(a) normal, δtr = 75 (b) normal, δtr = 300

(c) Student-t, δtr = 75 (d) Student-t, δtr = 300

(e) CTS, δtr = 75 (f) CTS, δtr = 300

Figure 3.9: The above graphs show QQ-Plots for δtr = 75 and δtr = 300 seconds
return time intervals for the three compared innovation distribution assumptions:
Normal, Student-t and CTS.
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(a) normal, δtr = 75 (b) normal, δtr = 300

(c) Student-t, δtr = 75 (d) Student-t, δtr = 300

Figure 3.10: The above figures illustrate the conditional mean forecasts with their
corresponding conditional standard errors. This is shown for the return time inter-
vals δtr = 75 and δtr = 300 and the normal- and t-ARMA-GARCH models.
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3.5 Model Parameter Dependencies on the Return
Time Interval

Using the CTS-ARMA-GARCH parameter estimation results from the previ-
ous section (summarized in Table 3.2), it is possible to investigate potential pa-
rameter dependencies on the return time interval δtr. This analysis is carried out
for δtr in the range from 75s to 300s, which corresponds to the δtr-range in which
the CTS-ARMA-GARCH model is accepted based on the AD and KS test results
from the previous section (see Table 3.3).

The re-parametrization of the CTS parameters, as described in Equations 2.46,
is used in this analysis in order to simplify the interpretation of the results. In the
following, the CTS and the GARCH parameters are investigated for potential de-
pendencies on δtr. The contribution of the ARMA-part to the forecasting capabil-
ity of the employed ARMA(1,1)-GARCH(1,1) model turns out to be negligible.
This is indicated by the relationship between the ARMA parameters: a1 ≈ −b1,
as shown in Table 3.2 and the conditional mean return forecasts which are not
significantly different from zero as indicated in Figure 3.10. Hence, the focus in
this analysis is on the GARCH parameters only.

3.5.1 CTS-Parameter Dependencies

The dependencies from the CTS-Parameters α,∆ and λ on the return time
interval δtr are examined in this section. The parameters are received from an
optimization algorithm, which not only provides the estimated parameter values
but also computes the respective standard errors.11 Error weighted trend lines are
added to each chart in order to highlight potential linear dependencies. Note that
the error bars’ size increases with growing δtr. This is due to the fact the num-
ber of return values decreases with growing δtr over a fixed period of time. This
change in sample size is reflected in the uncertainty of the parameter estimations.
The 95% confidence levels for the estimated parameters result from their corre-
sponding 1σ standard errors.

The CTS parameter dependencies are illustrated in Figure 3.11. The trend
line’s regression parameters are given in Table 3.4.

The relationship between α and δtr indicates that the heavy tailedness de-
creases with increasing δtr. This behavior was as well empirically observed on

11The parameters’ 1σ errors are illustrated with error bars and result directly from the opti-
mization algorithm. The optimization algorithm Minuit has been used in order minimize the log-
likelihood function. This optimizer is widely used in the field of high-energy physics, is open
source and has been developed at the CERN (European Organization for Nuclear Research). For
more details, see http://www.dnp.fmph.uniba.sk/cernlib/asdoc/minuit/minmain.html.
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Figure 3.11: Dependency from the CTS-Parameters α,∆ and λ on the return time
interval δtr using the results from Table 3.2.

unconditional returns in Section 3.3.1, where the dependency of the sample excess
kurtosis over the return time interval was examined. The parameter ∆ remains
negative for all δtr indicating a negative skewness. The linear correlation between
∆ and δtr is not straightforwardly interpretable since the magnitude of the skew-
ness depends on all three CTS-parameters. Thus, a linear dependency does not
necessarily indicate an increasing negative skewness. As the t-statistic and R2 for
the dependency of λ on δtr indicate, there is, if any, only a very slight dependency.
The slope’s 95% confidence interval indicates that the statistical evidence for the
slope being significantly different from zero is very weak. Thus, one could argue
that a constant model would be almost as well suited as a linear model in order to
describe the relationship between λ and δtr.

3.5.2 GARCH Parameter Dependencies
In the following, the CTS-GARCH parameters are examined for a potential

dependency on δtr, resulting from the model:

εt =
√
htzt, zt ∝ stdCTS(α, λ, δ) (3.3)

ht = w0 +
r∑
i=1

wiε
2
t−i +

s∑
j=1

vjht−j. (3.4)

The GARCH parameter dependencies are shown in Figure 3.12. Error weighted
trend lines are added to each chart in order to visualize potential parameter depen-
dencies. The respective linear regression parameters are given in Table 3.4. The
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Figure 3.12: Dependency from the GARCH(1,1)-Parameters w0, w1 and ν1 on the
return time interval δtr using the results from Table 3.2.

model’s constantw exhibits a slightly increasing dependency. Since all time series
have been normalized to an unconditional variance of one before the application
of the econometric models, this parameter is an indicator of how much of the con-
ditional volatility can be described with a constant. Even though the parameter
w1 increases slightly with growing δtr, it remains quite small (w1 < 0.1 ∀ δtr).
Consequently, ARCH effects play are rather subordinate role in this GARCH(1,1)
model. The slight decrease of ν1 over increasing δtr implies slightly decreasing
GARCH effects. Nevertheless, the parameter ν1 remains significantly high and
continues to be the most important model parameter. Thus, the model is domi-
nated from GARCH effects.
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3.6 Figarch Modeling of the S&P 500 Index
A FIGARCH(1,d,0) model, as defined in Section 2.2.4, is applied to the S&P 500 Index

time series on return time intervals ranging from 15 to 300 seconds. As shown in
Figures 3.5 and 3.6, the SACF and SPACF of squared log-returns show persistent
behavior, indicating long range dependency effects and motivating the employ-
ment of FIGARCH models. The corresponding function to calculate the condi-
tional variance for the proposed FIGARCH(1,d,0) model is given by

σ2
t = w + β1σ

2
t−1 + (1− β1L− (1− L)d)ε2t . (3.5)

By investigating Equation 3.5, it appears possible for the conditional variance to
result in negative values. Such a set of parameters is clearly unwanted. Baillie
et al. (1996) showed that the conditional variance is positive almost surely for all
t, if the conditions w > 0 and 0 ≤ β1 ≤ d ≤ 1 are fulfilled.

In this empirical analysis, normal, Student-t as well as CTS distributions are
employed as potential innovation distributions. In the case of Student-t innova-
tions, the corresponding log-likelihood is given by

lt = T ln
Γ((ν + 1)/2)√
(ν − 2)πΓ(ν/2)

− 1

2

T∑
t=1

[
lnσ2

t + (ν + 1) ln

(
1 +

ε̂2t
(ν − 2)σ2

t

)]
,

(3.6)
whereas the log-likelihood function for normal innovations is given by

ln =
1

2
T ln 2π − 1

2

T∑
t=1

[
lnσ2

t +
ε̂2t
σ2
t

]
. (3.7)

The respective model’s parameters are received by optimizing the corresponding
log-likelihood functions.

In the same way as CTS-ARMA-GARCH models were applied to time series,
CTS-FIGARCH models are employed by following the steps: (1) Estimate FI-
GARCH parameters with Student-t innovations; (2) Extract residuals; (3) Apply
the CTS model to the residuals.

The results of the parameter estimations are given in Table 3.5. The goodness-
of-fit test results from Anderson-Darling and Kolmogorov-Smirnov tests together
with the corresponding p-values are shown in Table 3.6. By comparing the num-
ber of acceptances between the three models, the CTS-FIGARCH model has the
highest rate of acceptances. The achieved AD and KS p-values for the respective
models are shown in Figure 3.13.

The significance of the parameter d is an indicator for the existence of long
range dependency effects in the time series of squared residuals. The values of
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d are significantly different from zero in all cases, as shown in Table 3.5. Thus,
the model actually captures effects of long range dependency. Note that the pa-
rameter d exceeds persistently the parameter β1 which ensures that the modeled
conditional variance is almost surely positive on all tested time series and models.

Potential parameter dependencies for the t-FIGARCH model with CTS inno-
vations (CTS-FIGARCH) is shown in Figure 3.14. Error weighted trend lines
are added to each chart in order to emphasize potential parameter dependencies.
The trend line’s parameter values are given in Table 3.7. Similar to the parameter
dependencies in the CTS-ARMA-GARCH model, the CTS parameter α increases
with growing δtr whereas the parameter ∆ declines. The parameter λ also shows a
slightly negative correlation to the return time interval, as observed in the analysis
on CTS-ARMA-GARCH parameter dependencies.

The FIGARCH parameter d appears rather constant but exhibits stronger fluc-
tuation than a linear model allows for (under consideration of the observed param-
eter’s standard errors). The parameterw, the model’s constant, shows a decreasing
behavior on growing δtr whereas the parameter β increases at the same time. The
two parameters β and d are comparable in magnitude.

Finally, the FIGARCH model’s descriptive performance is compared to the
previous ARMA-GARCH approach. More precisely, the CTS-FIGARCH model
is compared to the CTS-ARMA-GARCH model. Those model’s exhibited the
best performance in describing the underlying time series in the respective FI-
GARCH and ARMA-GARCH approaches.

The comparison is graphically carried out by visualizing the achieved p-values
on the utilized set of return time horizons. This is shown in Figure 3.15. The
black dashed line in these charts indicates the 1% confidence interval. The CTS-
FIGARCH model appears slightly better suited in describing time series on return
time intervals below 75 seconds. For lower frequencies however, the two com-
pared model exhibit the same acceptance rate when considering a 1% confidence
level.

3.7 Comparison of Risk Measures for ARMA-GARCH
Models

The findings from Section 3.4 and 3.6 indicate that conditional mean and vari-
ance models based on both the normal and the Student-t distribution assumption
fail in describing high-frequency S&P 500 Index time series in almost all tested
cases. In contrast to this, models based on the tempered stable assumption show
significantly improved descriptive power for the examined time series.

One of the most import applications in financial time series modeling is risk
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(a) AD Test

(b) KS Test

Figure 3.13: The above charts show the descriptive performance of the analyzed
FIGARCH models with normal, Student-t and CTS innovations by depicting the
achieved p-values in the AD and the KS tests. The black dashed lines indicate the
1% confidence level.
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(a) FIGARCH Parameters

(b) CTS Parameters

Figure 3.14: The above charts show the estimated CTS-FIGARCH model param-
eters in dependence of the return time interval δtr. Error weighted trend lines are
added in order to visualize potential parameter dependencies.
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(a) AD Test

(b) KS Test

Figure 3.15: The above charts compare the achieved p-values between the CTS-
FIGARCH model and the CTS-ARMA-GARCH model at the 1% confidence level
in the AD and KS tests. The CTS-FIGARCH model yields in the AD as well as in
the KS test slightly better goodness-of-fit results. The dashed black lines indicate
the 1% confidence level.
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estimation. The purpose of this section is to show the significant differences in the
distinctive model’s performance in estimating market risk. Here, the ARMA(1,1)-
GARCH(1,1) approach is chosen to investigate this issue.12

3.7.1 Value-at-Risk Backtesting
In this section, VaR backtests for the normal-, t-, and the CTS-ARMA-GARCH

model are discussed. Using ARMA-GARCH models, VaR for the return at time
t+ 1 with information given until time t can be defined as follows:

VaRt,η(yt+1) = − inf{x ∈ R|Pt(yt+1 ≤ x) > η},

where Pt(yt+1 ≤ x) is the conditional probability of yt+1 based on the information
until time t.

A VaR backtest is provided for a time period of 13 days (ranging from June
8, 2010 until June 24, 2010).13 It is carried out for all time series (δtr = 75
to δtr = 300), to compare the respective models’ performance on different time
scales.

A moving time-window of 10 days is used for the VaR backtest. This results
in 3120 return values in the case of δtr = 75 (which corresponds to roughly
12.5 years in daily data), the number of predicted returns is 936. In the case of
δtr = 300, the moving time window consists of 802 returns and the number of
predicted returns is 234.

The models’ risk estimation performance is compared for the 1% VaR Level.
In order to verify if the tested models are capable of forecasting VaR correctly, the
Christoffersen-Likelihood-Ratio test (CLR) (see Christoffersen (1998)) is applied.
A detailed explanation hereof is given in Appendix A.3. It consists of two parts,
the unconditional convergence test (UC), which corresponds to the Kupiec test
(Kupiec (1995)) and a test for independence (IND), which examines if violations
occur subsequently.

In addition to the CLR test, the Berkowitz-Likelihood-Ratio (BLR) test is ap-
plied (see Berkowitz (2001)). The Berkowitz test examines, how well an empirical
tail distribution is described under a proposed theoretical distribution function. A
detailed explanation of the BLR test is provided in Appendix A.4.

The CLR and BLR test results are summarized in Table 3.8 where the cor-
responding p-values are provided for each test. A graphical summary of the ac-
ceptances is given in Figure 3.16. This charts show the resulting p-values from
the CLR test and the BLR tests at different VaR levels. The results state that the

12This section is part of my publication Beck et al. (2011).
13The period has been chosen under the constraint that the period contains no dates with gaps

in the data.
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CTS-ARMA-GARCH model is the most reliable model in order to estimate VaR
for intraday U.S. market time series at the 1% level. It is important to note that the
CTS-ARMA-GARCH model shows the best performance in the BLR tests, indi-
cating that it models the empirical return distributions’ negative tail better than the
other two models. This is an important characteristic when Average Value-at-Risk
is considered, as in the following section.

The normal-ARMA-GARCH model fails in all BLR tests. That is, it fails
in describing the tail behavior correctly and is therefore not a reliable model to
forecast VaR on U.S. intra-daily market data. Its performance in the CLR test is
also well below those from the CTS- and t-ARMA-GARCH models.

The t-ARMA-GARCH model shows a similarly good VaR forecasting capa-
bility at the 1% level in the CLR as well as in the BLR tests. However, the 5%
BLR test indicates that the tail modeling capability is not as good as for the CTS-
ARMA-GARCH model. It is still significantly better than the normal-ARMA-
GARCH model.

3.7.2 Average Value-at-Risk Analysis
In this section, the risk measure Average Value-at-Risk (AVaR) is investigated

for the CTS-ARMA-GARCH model and compared to the AVaR for the normal-
ARMA-GARCH and the t-ARMA-GARCH model. The risk measure AVaR pro-
vides, unlike VaR, the expected potential loss at a certain probability level η (VaR
only gives an estimate for the smallest possible loss at a certain probability level
η). AVaR is therefore strongly depending on the shape of the respective tail func-
tion. For this reason, the distribution function which is used to model the empiri-
cal return distribution must be well suited to describe the empirical distribution’s
tail. This property was investigated for each distribution with the BLR test in the
previous section.

The risk measure AVaR is empirically compared on S&P 500 data between the
CTS-ARMA-GARCH, the normal-ARMA-GARCH and the t-ARMA-GARCH
model. The analysis is carried out for two return time intervals, δtr = 75 and
δtr = 300 seconds. This corresponds to the shortest and the longest return time
interval for which the CTS-ARMA-GARCH model was accepted in the AD and
KS tests (see Section 3.4).

AVaR is defined as

AVaRη(X) =
1

η

∫ η

0

VaRε(X)dε.

As shown in Kim et al. (2010c), the conditional AVaR for yt+1 with information
until time t is given by AVaRt,η(yt+1) = 1

η

∫ η
0
V aRt,ε(yt+1)dε. In the case of

ARMA(1,1)-GARCH(1,1) models, AVaRt,η(yt+1) is obtained by
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(a) 99% CLR Test

(b) 99%BLR Test

(c) 95 % BLR Test

Figure 3.16: The p-values in the CLR and BLR tests are shown in the above
charts. The CLR test is shown for the 1% VaR level whereas the BLR test results
are given at the 1% and 5% VaR levels. The black dashed line indicates the 5%
confidence level.
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AVaRt,η(yt+1) = −(c+ ayt + bσtεt) + σt+1AVaRt,η(εt+1).

Since εt+1 is independent to the information until t, AVaRt,η(εt+1) = AVaRη(εt+1).
AVaRη(εt+1) can be obtained in the case of tempered stable distributions, as de-
scribed in Kim et al. (2010c) and Kim et al. (2009), by

AVaRη(Y )

= VaRη(Y )− exp[−VaRη(Y )ρ]

πη
<
(∫ ∞

0

e−iuVaRη(Y )φY (−u+ iρ)

(−u+ iρ)2
du

)
,

where ρ > 0 has to be chosen such that |φY (−u+iρ)| <∞ for all u ∈ R. φY is the
characteristic function of the random variable Y. The AVaR figures for Student-t
and normal distributions can be computed with standard numerical methods.

Figure 3.17 shows VaR and AVaR at the 1% level for the ARMA-GARCH
model with CTS distributed innovations over the backtesting period. As a natural
consequence of the construction of AVaR, the line depicting AVaR estimations lies
below the VaR line.

Figure 3.18 illustrates the AVaR estimations for the three ARMA-GARCH
models used in this analysis, with normal, Student-t and CTS innovations at the
1% AVaR level.

To illustrate the idiosyncratic differences in the AVaR calculations for the dif-
ferent examined models, the following quantity is introduced to measure the dif-
ference:

dt = AVaRCTS
t − AVaRCM

t ,

where AVaRCTS
t denotes the AVaR which results from applying the CTS-ARMA-

GARCH model and AVaRCM
t refers to AVaR from either the normal-ARMA-

GARCH model or the t-ARMA-GARCH model. This quantity is illustrated over
the backtesting period from Section 3.7.1 in Figure 3.19 for η = 1%.

From these empirical comparisons, the following conclusions can be drawn:
The CTS-ARMA-GARCH is more conservative in estimating AVaR as the normal-
ARMA-GARCH model for η = 1%. The t-ARMA-GARCH model leads to
slightly more conservative AVaR values as the CTS-ARMA-GARCH model at the
1% level. Additionally, the difference in AVaR resulting from t-ARMA-GARCH
models fluctuates less than the difference in AVaR resulting from normal-ARMA-
GARCH models, as shown in Figure 3.19.

The findings from Section 3.4 and 3.7.1 state that models based on the normal
and the Student-t distribution assumption fail in modeling the innovation process
on high-frequency S&P 500 Index time series. This statement is supported by the
BLR test results from Section 3.7.1. This indicates that calculating AVaR from
normal or Student-t innovation assumptions will most likely lead to unreliable
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(a) 1% VaR-AVaR CTS, δtr=75

(b) 1% Var-AVaR CTS, δtr=300

Figure 3.17: AVaR and VaR estimates are depicted in this figure for the backtest-
ing period for the CTS-ARMA-GARCH model at the 1% level for δtr = 75 and
300 seconds.
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(a) 1% AVaR, δtr=75

(b) 1% AVaR, δtr=300

Figure 3.18: Illustration of 1% AVaR for three ARMA-GARCH models with nor-
mal, Student-t and CTS distributed innovations over the backtesting period for
δtr=75 and 300 seconds.
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(a) 1% AVaR difference, δtr=75

(b) 1% AVaR difference, δtr=300

Figure 3.19: AVaR differences for the examined models at the 1% level during the
backtest period where δtr = 75 and 300 seconds.
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estimates. This may potentially lead to under- or overestimated capital require-
ments.
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δtr Model UC 99% ID 99% BLR 95% BLR99%

75
CTS 0.156 0.295 0.441 0.506

normal 0.000 0.000 0.000 0.000
Student-t 0.048 0.106 0.092 0.129

90
CTS 0.010 0.025 0.055 0.030

normal 0.000 0.000 0.000 0.000
Student-t 0.010 0.025 0.014 0.022

105
CTS 0.000 0.000 0.064 0.027

normal 0.000 0.001 0.000 0.000
Student-t 0.005 0.015 0.035 0.015

120
CTS 0.951 0.938 0.100 0.980

normal 0.001 0.004 0.000 0.000
Student-t 0.951 0.938 0.019 0.954

135
CTS 0.253 0.459 0.115 0.091

normal 0.004 0.011 0.000 0.000
Student-t 0.061 0.141 0.002 0.089

150
CTS 0.161 0.326 0.003 0.911

normal 0.161 0.326 0.000 0.000
Student-t 0.883 0.937 0.000 0.933

165
CTS 0.722 0.884 0.013 0.699

normal 0.044 0.005 0.000 0.000
Student-t 0.422 0.665 0.008 0.427

180
CTS 0.322 0.558 0.185 0.210

normal 0.009 0.027 0.001 0.001
Student-t 0.322 0.558 0.100 0.393

195
CTS 0.835 0.936 0.011 0.971

normal 0.045 0.111 0.012 0.017
Student-t 0.484 0.729 0.002 0.680

210
CTS 0.725 0.895 0.122 0.784

normal 0.079 0.185 0.000 0.000
Student-t 0.725 0.895 0.036 0.864

225
CTS 0.006 0.012 0.109 0.543

normal 0.325 0.568 0.000 0.000
Student-t 0.945 0.969 0.126 0.331

240
CTS 0.963 0.968 0.067 0.771

normal 0.113 0.251 0.000 0.000
Student-t 0.548 0.789 0.066 0.686

255
CTS 0.478 0.733 0.512 0.952

normal 0.010 0.028 0.000 0.000
Student-t 0.478 0.733 0.156 0.770

270
CTS 0.808 0.937 0.079 0.905

normal 0.419 0.677 0.008 0.001
Student-t 0.808 0.937 0.119 0.588

285
CTS 0.738 0.911 0.413 0.935

normal 0.055 0.048 0.021 0.028
Student-t 0.761 0.939 0.568 0.843

300
CTS 0.322 0.571 0.487 0.493

normal 0.045 0.042 0.001 0.000
Student-t 0.045 0.042 0.046 0.131

Table 3.8: The results from the Value-at-Risk backtest are shown in this table.
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Chapter 4

Conclusion

Following a brief theoretical introduction to financial econometrics, the em-
pirical analysis in this first part of the thesis encompassed a thorough investigation
of the S&P 500 Index on high-frequency time scales.

Log-return time series were constructed from the highest possible frequency
(15 seconds return time interval) up to 300 seconds. In order to apply conditional
mean and variance models, the characteristic intraday volatility profile has been
removed from the time series.

After a detailed examination of the prevailing stylized facts on these time se-
ries, conditional mean and variance models have been applied. Here, the focus
was on ARMA(1,1)-GARCH(1,1) and FIGARCH(1,d,0) models. Three innova-
tion distribution assumptions, the normal, the Student-t and the Classical Tem-
pered Stable, have been employed in the framework of each model.

The assumption that the normal distribution is not capable of modeling the
intraday innovation process was empirically proven in all tested cases. The CTS
innovation assumption showed in both approaches, the ARMA-GARCH and the
FIGARCH, the best descriptive properties.

This conclusion was empirically supported by comparing the respective p-
values in statistical tests, such as the Kolmogorov-Smirnov and the Anderson-
Darling tests.

On the basis of the time series on return time intervals between 15 seconds and
300 seconds, potential parameter dependencies were further investigated. This
was carried out for both the CTS-ARMA-GARCH model as well as for the CTS-
FIGARCH model. In both cases, the CTS parameters showed a similar behav-
ior. Especially the parameter α increased with a growing return time interval,
indicating that the heavy tailedness of financial data increases with shorter time
scales. The investigation of the FIGARCH parameters led to the insight that the
conditional variance process in the S&P 500 Index exhibits effects of long-range-
dependence. This conclusion is indicated by the significance of the model param-
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eter d that expresses the degree of long-range-dependence.
Following this, a Value-at-Risk backtesting was carried out in order to com-

pare the risk forecasting capability of the three employed innovation distributions.
Here, the ARMA(1,1)-GARCH(1,1) framework was chosen in accordance with
my publication Beck et al. (2011).

The VaR backtesting was carried out on roughly 3000 high-frequency index
values, which is comparable to roughly 12.5 years in terms of daily return data.
Based on the Christoffersen-Likelihood-Ratio test and the Berkowitz-Likelihood-
Ratio test, the findings suggest that neither the normal nor the Student-t assump-
tions lead to reliable Value-at-Risk estimates on short intraday time scales. The
tempered stable innovation assumption, however, was accepted in most cases. In
accordance with this finding, modeling high-frequency S&P 500 Index log-return
time series with tempered stable innovation distributions leads to significantly im-
proved VaR forecasts compared to the normal- or the Student-t innovation as-
sumption.

The Berkowitz test results suggested that the CTS-ARMA-GARCH model ex-
hibits the most reliable tail modeling capability among the three examined innova-
tion distribution assumptions. This indicates that Average Value-at-Risk measures
will be most reliably forecasted with the tempered stable assumption.

Finally, the risk measure Average Value-at-Risk was provided for ARMA-
GARCH models with tempered stable innovations for the same time period as
in the Value-at-Risk backtest. This measure was compared to Average Value-
at-Risk values derived from ARMA-GARCH models with normal and Student-t
innovations. By investigating the difference in Average Value-at-Risk between the
distinct models, it turned out that both the models with normal and the Student-t
innovations do not lead to reliable estimates of Average Value-at-Risk.
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Chapter 5

Introduction

Stock trading around the world takes place on dedicated trading venues (mainly
stock exchanges) and is nowadays mostly performed electronically. Even though
each country provides an individual legal framework for the exchange operators
and the trading of stocks,1 the basic principles of the procedures on trading plat-
forms are very similar. The general purpose of a stock exchange is to form a
market place around potential buyers and sellers. A third party which is apparent
on most trading platforms are market makers. They are important participants in
the trading process in that they are obliged to provide liquidity to the market by
continuously quoting buy and sell offers.

The focus in this study is on markets that enable stock trading on the basis
of open limit order books. There exist two fundamental mechanisms in order to
participate in the stock trading process. One way is through submitting market
orders which are immediately executed (given enough liquidity in the market).
In the case of buy (sell) market orders, the trader pays (receives) the currently
available market price.

A second way to trade a stock is through placing passive limit orders. This
type of order signals the willingness to buy or sell a stock for a certain price.
The limit order may eventually be executed against an incoming market order
but the execution is not guaranteed. The obvious drawback of limit orders is the
uncertainty of execution. Passive limit orders are stored in the order book until
they are executed or deleted.

As a consequence, the choice between trading by market versus trading by
limit is one of the main issues in developing trading strategies (Cho and Nelling
(2000)).

The decision whether to place a limit or a market order is severely influenced

1The analysis in the following are conducted on the UK and the French Stock Exchanges. In
accordance to that, the Financial Services Authority (FSA) regulates and controls the UK financial
markets. In France, the responsible institution is the Autorité des marchés financiers (AFM).
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by the probability of the execution of a limit order. Recent research on limit
orders involves the investigation of the economic role of limit orders in electronic
order books, such as, for example, Glosten (1994). Furthermore, order placement
strategies have been extensively studied by, for example, Foucault (1999) and
Harris and Hasbrouck (1996). Biais et al. (1995) provide an empirical analysis
of the order flow at the Paris Bourse. Earlier studies attempting to derive models
for limit order execution probabilities or, closely related, modeling limit order’s
survival times involve Omura et al. (2000); Cho and Nelling (2000) and Lo et al.
(2000).

Trading strategies that are attempting to profit from intraday price movements
are less concerned about the execution of a limit order until the end of the trading
day. Particularly important for these strategies is the question whether a limit or-
der is going to be executed within a certain time interval. One obvious approach
for tackling this issue is by finding a mathematical model capable of calculating
execution probabilities for limit orders for a given time horizon. In order to pro-
duce exact results, such an approach will have to take prevailing stock market
characteristics as well as intrinsic order related quantities into account.

The goal of this thesis is to present an algorithm capable of forecasting con-
ditional execution probabilities for limit orders on short time intervals. The ap-
proach chosen is a combination of two techniques. First, a basic model is derived
containing the average execution probabilities for single stocks and their order
book levels. This covers the idiosyncratic unconditional execution probabilities
for stock-level pairs. Following on from this, a non-parametric approach (the
machine learning algorithm NeuroBayes R©) is applied which computes execution
probabilities conditional on variables such as volatility, order book asymmetries,
daytime, etc. Finally, the two models are combined and applied on two stock
exchanges, the London Stock Exchange (LSE) and the Euronext Paris Stock Ex-
change (EP).

The second part of this thesis is organized as follows. First, the principles
of stock trading are explained and the data set, on which the derived models are
constructed and verified, is introduced. Subsequently, NeuroBayes R© is introduced
together with its operating principles. Following on from this, the basic model,
denoted as Mean-Matrix-Model is derived. The application of NeuroBayes R© is
discussed and a selection of variables which exhibit strong dependencies on the
execution probability are further examined and discussed. The combination of
both models is presented and its forecasting capability is examined in an out-of-
sample test. Following this, the phenomenon of a fractional execution of limit
orders is further discussed and forecasted with NeuroBayes R©.



Chapter 6

Financial Markets and Data Sources

6.1 Stock Market Mechanics and Market Microstruc-
ture

This section introduces the mechanics of the open limit order book (denoted
in the following as order book) and discusses the rules and processes by which
order-driven-markets operate. First, the concept of market(-able) and limit orders
is introduced in a more comprehensive fashion.

As briefly stated in the introduction, market participants have two fundamental
possibilities in order to participate in the trading process:

• Through passive limit orders
Limit orders signal the intention to trade at a specific price. The limit order
is a binding offer as long as it remains in the order book. This type of
order may eventually be executed through an incoming marketable order.
Otherwise, it can be canceled on the investor’s demand. This order type is
in the following denoted as limit order or just order.

• Through aggressive market(-able) orders
A marketable order is either a market order or a bid (ask) limit order with
a limit price that is above (below) the currently best ask (bid) price. Given
enough liquidity, a marketable order is immediately filled at the currently
best available price.

Each limit order submitted to trade a stock consists of at least four basic pieces
of information: the intention to buy or sell, the limit price, the number of shares
which are intended to trade and the exact time stamp, when the order arrived. The
latter is crucial in order to determine which market participant’s order is privileged
when there exist two or more limit orders with the same limit price (this rule is
known as price-time-priority).
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In order to keep track of each market participants’ intentions to buy or sell a
specific stock, their limit orders are stored in two lists, one for potential buyers
(the bid-side) and one for potential sellers (the ask-side). The bid-side is sorted in
a descending order (the highest offer comes first) whereas the ask-side is sorted
in an ascending order (the cheapest offer comes first). This particular order cor-
responds to the succession in which limit orders are executed when marketable
orders arrive.

These two ordered lists for buy- and sell-orders form the limit order book
(Cont et al. (2008)). Usually, limit orders with equal prices are aggregated in
order book levels. Each level is defined through its price, the number of pending
orders and the accumulated number of shares.

Once a marketable order arrives it is matched against the existing orders in
the order book. As a natural consequence, the buyer’s and seller’s order lists
never overlap (except during auctions). The price gap which consequently exists
between the best-bid price and the best-ask price is called bid-ask-spread ct at
time t:

ct = Sat − Sbt , (6.1)

where Sat denotes the best-ask price and Sbt the best available bid-price at time t.
As a consequence, marketable orders are said to take liquidity whereas limit

orders provide liquidity. The execution of a marketable order differs in price com-
pared to the execution of a limit order by at least the bid-ask-spread. Additionally,
the respective costs incurred may differ between marketable and limit orders since
some exchange offer a rebate for providing liquidity.

Limit orders can be equipped with additional features such as, for example,
a validity time or a trigger for automatic cancelation. The scope in which those
options are available differs among exchanges.

Limit orders can be subject to partial execution. That is, if the size of a limit or-
der exceeds the size of an arriving marketable order, only the overlapping amount
of shares will change hands. The partially filled limit order will become modified
to the remaining size while its priority status is preserved.

Limit prices cannot be chosen from a continuous scale but rather from a dis-
crete price-grid. The minimal possible difference between two adjacent allowed
price levels is denoted as tick size (TS) and generates a quantization of the price
process. The tick size depends on the price at which a specific stock trades and
can be found in designated tables which are provided from the exchange opera-
tors. The minimum possible bid-ask-spread for a certain stock corresponds to the
stock’s tick size.

Markets which operate in the fashion as described above are denoted as order-
driven-markets. An illustration of the underlying market mechanics is presented
in Figure 6.1 (Smith et al. (2003)). In addition to that market type, there exist
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Figure 6.1: The above figure illustrates the mechanics of how an order-driven
market operates. The red boxes on left hand side visualize bid-orders whereas the
blue boxes on the right hand side represent ask-orders. The boxes’ height implies
the order size while the respective color’s intensity indicates the order’s priority.
Arriving limit orders have a lower priority than existing orders. Incoming mar-
ketable orders are illustrated in the center region of the chart. They are matched
against pending limit orders. Additionally, the mid-price and spread are indicated.

quote-driven-markets which are based on specialists through which the trading is
centralized (Handa and Schwartz (1996)).

Time series created from this most disaggregated level face the question of
how a price process is to be constructed, since several price measures are available
(bid-prices, ask-prices, transaction prices). One commonly utilized compromise
is to employ the mid-price, constructed as the mean between the best-bid and the
best-ask price:

Smt =
Sat + Sbt

2
. (6.2)

Many market places (such as the London Stock Exchange and the Euronext
Paris Stock Exchange) open and close the trading day with auctions in which
the resulting price is determined such that the traded number of shares is maxi-
mized (see, for example, Deutsche Boerse Group (2010); Beltran-Lopez and Frey
(2006); NYSE Euronext (2011)). The period in between the auctions is called
continuous trading period through which market participants can insert, modify
and delete their limit orders at any time. The following analysis on limit order
executions is carried out during the continuous trading phase.
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6.2 Data Sources and Historic Order Book Construc-
tion

The following analyses are based on the knowledge of the order book at all
times.1 In order to construct historic order books from recorded data, a tick-by-
tick data record with all order book relevant information is required. There exist
two common data formats in which order book information is published:

• Market-By-Limit (MBL): The aggregated level information is submitted as
soon as anything changes on a level (and those levels affected by this change).
This corresponds to a status update.

• Market-By-Order (MBO): Each individual order action is reported. This
applies for order inserts, modifications and cancelations. That is, all changes
in the order book are reported individually.

Obviously, the MBO format offers a more detailed picture about the microscopic
procedures on a stock market. However, compared to the MBL format it is more
prone to errors. As a consequence, some exchanges only offer their order book
information in the MBL format (such as the Deutsche Boerse) whereas other ex-
changes offer both data formats (such as NYSE-Euronext).

Here, the focus is on order books constructed from MBO data. The analyzed
stock universe consists of a selection of the most liquid stocks from the French
and British stock exchanges. Appendix B.3 lists all stocks which were utilized.
The time span over which the order information is analyzed is 6 months (Aug
2010 - Feb 2011), leading to a collection of millions of limit orders.

High data quality plays a crucial role when analyzing order book data since
missing data, especially in the MBO format, cannot be interpolated or reproduced.
In the worst case scenario, the loss of a few seconds of tick-by-tick data can cause
that the remainder of a trading day cannot be utilized any more.2 Hence, the data
set on which analyses like the following are conducted, has to be carefully chosen.

6.2.1 Construction of Additional Order Related Information
The basic information delivered when a limit order is inserted into the order

book is the order type (buy or sell), the price limit, the number of shares intended

1A software tool was developed in the scope of this thesis in order to construct and analyze
order books.

2Imagine, for example, that the cancelations of a few limit orders near the mid-price were
missed. This can easily lead to negative spreads and wrong mid-prices in the following order book
development.



6.2. DATA SOURCES AND HISTORIC ORDER BOOK CONSTRUCTION101

to trade and the arrival time. Additional order related information can be con-
structed from the knowledge of the structure of the order book at the time of the
order insertion. However, some of the information can only be computed in an
ex-post analysis of the data. The following order-specific information has been
collected for the later analysis:

1. Whether the limit order has been canceled by the owner’s intention or if
it has been executed. This also provides information whether a trade was
buyer- or seller initiated. Here, it is not distinguished between a partial and
a full execution of a limit order.

2. Conditional on the execution, the traded fraction of the limit order.

3. The lifetime of limit orders with millisecond precision.

4. The level and the position3 within the level in which the order has been
inserted.

5. The level and the position within the level from which the order has been
canceled.4

6. The number of shares which are in the order book with a higher price-time-
priority than a newly inserted limit order.

7. The value of the shares which are in the order book with a higher price-
time-priority than a newly inserted limit order.

Information 4) - 7) can easily be constructed from the current state of the order
book at the time of the order action. Limit order lifetimes are received by tracking
each order through its path through the order book. The lifetime is then received
by subtracting the arrival time from the time of cancelation. The question whether
a limit order has been canceled by the trader’s intention or by being executed
through an arriving marketable order requires the most attention, mainly due to
technical obstacles. The method used in this thesis is outlined in Appendix B.1.

Additional Data Sources

In addition to the order specific information, a data source has been employed
which contains information related to continuous trading characteristics, aggre-
gated on a one minute time grid. The quantities stored in this dataset include

3Here, the position denotes the number of pending limit orders in the same order book level
with a higher execution priority plus one.

4In the case when the order is executed, the limit order must have been canceled from the top
position in the order book.
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volatility measures, OHLC5-information for each minute, the number of trades
over the past minute (split into buys and sells), mid-price changes and many fur-
ther variables. The data source is constructed such that the quantities are computed
precisely when a new minute begins. The trigger to process the past minute is the
first incoming information of the following minute. If nothing happens during one
minute, the respective quantities are filled with pre-defined null-values.

In addition to the quantities aggregated over past minutes, variables are con-
structed which describe the state of the order book precisely at the minute change.
This information includes the bid-ask-spread, the population of the first bid- and
ask levels, bid- and ask prices and the tick size.

Additional variables have been constructed which reflect prevailing asymme-
tries in the order book such as the quantity Volume-Weighted-Mid-Price (VWMP ).6

Two different versions of the VWMP are introduced in this thesis, denoted as
VWMPt and VWMPs. They are defined as follows:

VWMPt =

∑1
j=0

∑10
i=1 e

−i vji pji∑1
j=0

∑10
i=1 e

−i vji
(6.3)

VWMPs =
1

2

(
1∑
j=0

∑10
i=1 e

−i vji pji∑10
i=1 e

−i vji

)
. (6.4)

Here, the index j denotes the order book side (j = 0: bid-side, j = 1: ask-side)
and the index i the order book level. vij stands for the number of shares in the
ith level on the jth order book side whereas pij indicates the corresponding price
level. The two quantities are comparable to a center of mass estimation where the
outer levels have a smaller weight than the inner levels. VWMPt calculates this
measure by taking both order book sides into account at once, whereas VWMPs
constructs each order book side’s center of mass individually and finally computes
the mean of both.

6.2.2 Collection of Limit Orders
The collection of limit orders which is used in the following analysis is pre-

sented here. In order to relate limit orders to the information which is available on
the one minute time grid, as described above, only limit orders are selected which

5OHLC stands for Open-High-Low-Close.
6The mid-price, a frequently applied measure, does not account for asymmetries within the

order book and is, depending on the application, not necessarily a meaningful quantity. Imagine a
situation where a very small-sized limit order is placed very aggressively in the order book. This
would shift the mid-price to a higher or lower position even though the limit order should not have
a significant economic impact on the price process due to its small size.
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have been inserted into the order book within one second after a new minute be-
gan. By that, the state of the order book and the collected trading data from the
previous minute will have a high probability to show significant contributions in
statistical analysis.

In order to derive a model to forecast whether a limit order will be executed
within one minute, the set of limit orders is filtered further by accepting only those
limit orders which fulfill the following conditions: (1) The limit order has been
executed within one minute, or (2) in the case it was not executed through an
arriving marketable order, it remained in the order book for at least one minute.
This selection is reasonable if the decision process of a trading strategy to cancel
or modify limit orders is on a one minute time grid as well. Letting the above
filtration aside, the resulting data set would contain a lot of noise, especially due
to ultra-high-frequency limit order actions. This is indicated in Figure 6.2 which
depicts the lifetime distribution of those limit orders which have been canceled
on the trader’s demand. The significant peaks in the left corners of these charts
visualize the increased frequency of limit orders with a lifetime of less than 1
second.

Only limit orders are considered which have been inserted up to the 5th order
book level. Additionally, all stocks in the collection are represented with roughly
the same amount of limit orders to avoid drawing conclusions from only a subset
of the analyzed stocks. Finally, the number of bid and ask orders is well bal-
anced intrinsically. This feature is preserved in the filtered data set. Limit orders
satisfying the above conditions are collected for the French Stock Exchange in
Paris (resulting in 1.34 Mio limit orders) and the UK Stock Exchange in London
(resulting in 2.04 Mio limit orders). This results in approximately 30,000 limit
orders per stock on both exchanges.
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(a) LSE (b) EP Stock Exchange

Figure 6.2: The distribution of limit order lifetimes up to 60 seconds is shown
in the above charts for the LSE and the EP Stock Exchange. The bin width in
these histograms corresponds to one second. Note the logarithmic y-scale, thus
the frequency of limit orders with a life time below one second strongly exceeds
the frequencies on longer lifetimes.
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NeuroBayes R© Technology

NeuroBayes R© is a statistical software package, developed and maintained by
Phi-T R©, a research and development company.1 It is constructed in order to solve
multivariate statistical inference problems in a robust and efficient fashion (Feindt
(2004)). Its main target is to carry out predictions under uncertainty, conditional
on a set of endogenous variables. The predicted quantity is referred to as target
variable. NeuroBayes R© belongs to the class of supervised learning algorithms.
That is, the algorithm’s parameters are adjusted on a data sample where the target
information is provided. This process is known as training. Subsequently, the
expertise which results from the training is used in order to predict the target
variable in cases where its actual value is not known. The field of applications for
NeuroBayes R© is manifold. It is used in high-energy physics experiments as well
as for various business intelligence problems.

The focus in this section is on classification problems, that is, binary problems
in which the target variable is either true or false. In mathematical terms, the
conditional probability

p(t = 1|x) (7.1)

is predicted, where x denotes the vector of endogenous variables.
A typical classification problem for a financial institution could be, whether

a bank loan will be fully repaid or not. NeuroBayes R© is constructed such that it
will produce the probability of the target event to occur. In the case of bank loans,
NeuroBayes R© would, based on historical customer information such as annual
income, crime records, etc, compute the conditional probability that a loan to this
customer will not be fully repaid.

The mechanisms by which NeuroBayes R© operates are presented in this sec-
tion. As stated above, NeuroBayes R© detects patterns in data samples of variables

1This company was founded by Professor M. Feindt, Institut fuer Experimentelle Kernphysik,
Karlsruhe Institute of Technology (KIT).
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which are in some way related to the target variable. The endogenous variables
on which the predictions are based are referred to as input variables. Generally,
large data sets are required in order to construct the expertise, that is, to learn
the relevant information from the input variables provided. A data set consists of
instances denoted as events, that is, entities which contain values for each input
variable as well as the target variable’s value. If the target variable is true, the
event is said to contain signal, otherwise, it contains background. Two impor-
tant measures in this context are the signal purity P and the signal efficiency S.
The signal purity measures the proportion of selected signal compared to the total
number of selected events. It is given by the following expression:

P =
Nsignal

Nsignal +Nbackground

. (7.2)

The signal efficiency denotes the proportion of a number of selected signal events
to the overall number of signals:

S =
Nsignal selected

Nsignal total

. (7.3)

A crucial step in order to construct a robust algorithm is to transform the input
variables in a way such that they are available in a pre-defined format, which
allows for an efficient further processing. This preliminary step is known as pre-
processing and is described in the following.

7.0.3 Preprocessing
Several obstacles arise when a set of raw input variables is to be compared

and combined in order to produce a prediction. First, the values of distinct input
variables may be present on hugely different numeric scales. This may eventually
lead to numerical problems when those variables are to be combined. Addition-
ally, outliers may be present within the set of detected values for one variable.
Outliers are extremely disturbing because they can potentially overshadow infor-
mation and dependencies which are contained in the bulk of the observed values.
Frequently utilized measures, such as mean values or correlation coefficients are
not robust against outliers (Blobel and Lohrmann (1998)). Furthermore, the rela-
tion between the values within one variable to the target usually contains statistical
fluctuations which have to be smoothed out.

In order to have a set of input variables x = (x(1), x(2), ..., x(N)) free of
these disturbing features, each input variable is treated separately in a first pre-
processing stage.

Generally, variables can exhibit fundamentally different characteristics which
have to be considered individually. For example, input variables can be
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• continuous (x ∈ R). For example, a volatility measure on a certain stock.

• discrete and unordered (x ∈ S, S = {Si|i ∈ 1, ..., N}, N ∈ N), where
the order of i does not indicate a certain sequence. For example, Si could
denote a color.

• discrete and ordered (x ∈ S, S = {Si|i ∈ 1, ..., N}, N ∈ N), where the
order of i indicates a certain sequence. For example, Si could denote an
order book level.

• contain delta values: A variable may potentially be undefined in some
events. In this case, the variable is set to a pre-defined delta value, which is
recognized by the algorithm and treated separately.

The pre-processing is carried out for both discrete and continuous input vari-
ables.

7.0.4 Selecting Input Variables
A general approach when using NeuroBayes R© for predictions is to provide

the algorithm in a first step with as much information as possible. The algorithm
is constructed such that it will automatically detect which input variables contain
statistically irrelevant or redundant information in accordance with a pre-defined
cut-off criterion. Those input variables will be ignored in the subsequent pro-
cesses. This step is especially important in order to avoid over-training, that is, to
prevent the algorithm from learning statistical fluctuations. Additionally, select-
ing only those variables which carry the most relevant information is crucial in
order to construct a time efficient algorithm.

7.0.5 Final Classification
Once the input variables have been preprocessed, their individual correlation

to the target is combined. The final result from the algorithm is a probability of
the target event to occur. Depending on this probability and some user defined
loss function, an event is classified to contain either signal or background. Taking
a low probability as the threshold for classifying an event as signal will lead to a
high signal efficiency. At the same time, the signal purity will remain rather low,
because a significant number of actual background events will be classified as
signal events as well. Adjusting the classification threshold to a high probability
will cause the inverse effect. Only few signals will be selected resulting in a high
signal purity.

The actual threshold depends on the application and the damage or loss that
either of the above mentioned errors will cause.
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7.0.6 Investigating the Algorithm’s Forecasting Capability
Before an algorithm is used in practical applications, its true forecasting capa-

bility should be thoroughly examined. For this purpose, there exist a number of
graphical and quantitative tools which are presented in this section.

Signal-Purity Plot

A typical visual tool which is applied in order to identify an algorithm’s sep-
arating quality is the Signal-Purity plot, depicted in Figure 7.1. It measures the
observed signal purity as a function of the forecasted probability. The probability
range over which the data points in this chart are spread is an indicator for the
separating capability between signal and background events. For the output of the
NeuroBayes R© algorithm to be interpreted as a probability, this dependency must
coincide with a diagonal through the origin with slope one.

Signal-Background Histogram

Signal-Background histograms are frequently applied measures in order to vi-
sualize an algorithm’s separating capability. This chart-type depicts signal and
background events separately, as shown in Figure 7.2. The red curve visualizes
the distribution of signal events whereas the black curve stands for events contain-
ing background. The more the two curves appear separated, the more pronounced
is the algorithm’s separating capability.

Lorenz-Curve and Gini-Coefficient

The Lorenz-Curve is constructed in order to measure the signal efficiency S
in dependence of the data efficiency SD. The data efficiency denotes the fraction
of the events under consideration which are sorted in a descending order in accor-
dance to their assigned probability p. To be more precise, the data efficiency SD
is calculated by

SD =
# events selected

total number of events
, (7.4)

where the dataset is sorted such that

D = {E1, E2, E3, ..., Ek|p1 ≥ p2 ≥ ... ≥ pk}. (7.5)

Ei denotes a single event and pi is the corresponding assigned probability of this
event’s target to be true. Due to the order in which the events occur in the dataset, it
is obvious that the signal efficiency must follow a monotonously increasing func-
tion. The curve which depicts this relation is indicated as a blue line in Figure 7.3.
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Figure 7.1: The Signal-Purity plot is depicted in this figure. It shows the signal pu-
rity in dependence of p, the estimated probability resulting from the NeuroBayes R©

algorithm. In order to interpret this measure as a probability, it has to be ensured
that the resulting data points are compatible with a diagonal through the origin as
shown in this case.

Figure 7.2: The figure shows the Signal-Background histogram. The red line
indicates the signal distribution whereas the black line shows the background dis-
tribution. An indicator of the forecasting capability of the algorithm is how well
the background and signal histograms are separated.
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The lower black line which confines the white area indicates the lower boundary
for any algorithm’s performance, i.e. where no distinction between signal and
background can be made. In contrast, the upper black line indicates the best per-
formance achievable, that is, a perfect separation between target and background
events. The realized Gini-coefficient is constructed by dividing the area which is
confined by the blue line and the lower black line by the area given by the lower
triangle. The maximum achievable Gini-coefficient is given by dividing the white
area by the lower triangle. This corresponds to 1 − Puc, where Puc denotes the
unconditional probability of the target event to occur.

Comparing these two values is an indicator of the algorithm’s capability of
separating signal and background events. The Gini-coefficient can range from 0
to 1, where 0 zero indicates no capability in separating signal and background
events whereas 1 indicates perfect separation capability. In the following, this
chart type is referred to as Gini-plot.

Efficiency-Purity Plot

In the Efficiency-Purity plot, the observed signal purity P is plotted in depen-
dence of the signal efficiency S. This can be achieved by moving through the
chart in Figure 7.2 from the right to the left corner while continuously monitor-
ing P and S in the overcoated interval. In the right corner, only few signals are
selected, thus, the signal efficiency is very low. At the same time, due to the al-
gorithm’s separating capability, the signal purity is the highest. When all events
are taken into account, the signal efficiency is one and the purity is equal to the
unconditional probability of the target to occur. This is indicated by the upper
curve in Figure 7.4. The more pronounced the curvature of this dependency is,
the better is the algorithm’s separating capability. The lower curve indicates the
above described process as well, but results from moving from the left to the right
corner.
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Figure 7.3: The chart illustrates an exemplary Lorenz-Curve. The maximally
achievable Gini-coefficient as well as the realized Gini-coefficient are shown
above the chart.

Figure 7.4: An exemplary Effiency-Purity plot. It demonstrates the algorithm’s
capability of separating signal and background events.
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Chapter 8

Forecasting a Limit Order’s
Execution

As stated in Section 6.1, traders have two fundamental possibilities of parti-
cipating in the trading process: through limit- and through market(-able) orders.
These two order types differ fundamentally in two aspects. First, marketable or-
ders come along with higher costs than passive limit orders. The price difference
between a market and a limit order is at least the bid-ask-spread, which can con-
sequently be thought of as an additional cost factor for market orders. Second,
market orders are executed immediately at the currently available best price (pro-
vided enough liquidity in the order book). As a consequence, there is practically
no uncertainty whether the desired amount of shares will change hands.

Limit orders, on the other hand, have lower costs incurred but are afflicted
from uncertainty regarding their execution. A trader must choose between the
two order types by considering their characteristic advantages and drawbacks.

Bottom line, limit orders are the preferable way of trading shares, in case there
is no need for guaranteed execution (Harris and Hasbrouck (1996)).

The uncertainty of execution, which arises when limit orders are used for trad-
ing, may be quantified further. The goal of this section is to present an algorithm
capable of determining the execution probability of a limit order on a one minute
time horizon within a given stock universe.

The algorithm is composed of two parts. First, a model is constructed based
on unconditional execution probabilities for each stock’s order book level, de-
noted as Mean-Matrix-Model. The second part involves the application of the
machine learning algorithm NeuroBayes R©, which was presented in Section 7.
NeuroBayes R© operates in this architecture as a means to find corrections to the
Mean-Matrix-Model conditional on a set of variables. Generally, NeuroBayes R©

could be provided with the order book level and the stock as input variables as
well. However, since the execution probability strongly depends on these vari-
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ables as will be shown in the next section, smaller effects could potentially be
overshadowed as consequence. For this reason, these two variables are treated in
an external model.

The final result of the consecutive application of both models is a probability
Pe for the execution of a limit order within one minute. This combined technique
is presented for two stock exchanges, the French Stock Exchange in Paris and the
UK Stock Exchange in London. Both stock exchanges are represented through a
selection of their most liquid assets, as given in Appendix B.3. The analysis is
carried out on a set of limit orders as described in Section 6.2.2.

The remainder of this section is organized as follows. First, a basic model, the
Mean-Matrix-Model, is developed. Subsequently, the application of NeuroBayes R©

is motivated and presented. Finally, the combined algorithm’s forecasting perfor-
mance is examined in an out-of-sample test. Following on from this, another
model based on NeuroBayes R© to forecast the full execution of a limit order is
presented.

8.1 The Mean-Matrix-Model
When a limit order is inserted into the order book, it will be sorted into the

corresponding price level (under consideration of the price-time-priority). As a
matter of priority, the execution probability will strongly depend on the according
order book level.

In the following, the execution probability of limit orders which are inserted
into the lth order book level is estimated from historic data as

P̂e,l = P̂e(t = 1|l) =
nl(t = 1)

nl (t ∈ {0, 1})
, (8.1)

where nl denotes the number of orders inserted into the the lth level and t is
a binary variable indicating whether the order was executed within one minute
(t = 1) or not (t = 0).

The estimated standard error on the quantity P̂e,l can be derived by comparing
the order execution process to a Bernoulli experiment with P̂e,l as the probability
of success. Thus, the probability of r executions out of n limit orders is given by
the binomial distribution:

f(r;n, P̂e,l) = P (R = r) =

(
n

r

)
P̂ r
e,l(1− P̂e,l)n−r, (8.2)

where R is the random variable denoting the realized number of executions. The
mean of the binomial distribution is given by nP̂e,l. The corresponding distribu-
tion’s variance is σ2

r = nP̂e,l(1 − P̂e,l). This leads to an estimated standard error
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Exchange α̂ κ̂ ĉ NDF χ2 χ2/NDF
LSE 2.42 3.35 0.005 2 2.55 1.27
EP 5.86 3.40 0.03 2 4.72 2.36

Table 8.1: The estimated parameters from model 8.4 are shown in this table to-
gether with goodness of fit parameters. The model has been applied to data from
the London Stock Exchange as well as to data from Euronext Paris.

of the execution probability of:

σP̂e,l =

(
P̂e,l(1− P̂e,l)

n

) 1
2

. (8.3)

In order to empirically investigate the execution probability’s dependency on
the order book level further, the probability estimation from Equation 8.1 is used.
This allows to derive a model which describes the behavior of the execution prob-
ability in dependence of the order book level. Figures 8.1a and 8.1b show this
dependency for the London Stock Exchange (LSE) and Euronext Paris (EP), re-
spectively.

A power law model is suggested to describe the observed dependency for the
order book levels 1-5. The 0th order book level, which denotes those limit orders
placed aggressively with a better price than available at the time of insertion, does
not fit into this model. This is indicated by a dashed line which is the extrapolation
of the model between levels 1-5.

The utilized power law model is given by

Pe(l) = κ · l−α + c, (8.4)

where l denotes the order book level and Pe the unconditional execution proba-
bility resulting from this model. The model’s estimated parameters are given in
Table 8.1.

The model parameter α is a measure for the dependence of the execution prob-
ability on the order book level. The higher this value is, the more pronounced is
this dependency. In accordance with the estimated parameter α̂, the change of the
execution probability over the first five order book levels is more intensified at the
EP as compared to limit orders at the LSE.

It has to be considered, though, that the meaning of an order book level may
fundamentally differ among the stocks. One of the reasons is the stock’s relative
tick size, given by TSr(t) = TS(t)/S(t), where S(t) denotes the stock price
at time t. The higher this value is, the bigger are the relative price differences
between adjacent levels.
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(a) LSE (b) EP

Figure 8.1: Execution Probabilities for the LSE and the EP in dependence of the
order book level. The 0th level does not fit into this power law model as indicated
by the dashed red line. For higher levels, the execution probability remains only
very slightly above zero.

Additionally, each stock has a characteristic average order book level popu-
lation with limit orders. As a consequence, order book levels are not straightfor-
wardly comparable between different stocks.

Hence, it is to assume that the execution probabilities for one distinct order
book level compared between different stocks will show some degree of disper-
sion. This is indicated in Figure 8.2. The observed unconditional execution prob-
abilities within one level are shown in differently colored histograms.

Given the execution probability’s strong dependency on the order book level
and the dispersion of this probability among different stocks, a basic approach is
chosen which treats each stock-level pair individually, denoted as Mean-Matrix-
Model. The execution probabilities in the Mean-Matrix-Model are derived in the
same way as given in Equation 8.1, but for each stock-level pair individually.
Thus, this model is given by

Pmm
e (s, l) = P̂

(s)
e,l , (8.5)

where P̂ (s)
e,l denotes the estimated execution probability of a stock-level pair, s is

used as an index to refer to a stock and l is used to index the order book level.
A significant difference in the unconditional execution probabilities between

bid- and ask limit orders is not detected in the utilized data sample. As a conse-
quence, the Mean-Matrix-Model is used as a basic model without distinguishing
the order type.
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(a) LSE

(b) EP

Figure 8.2: The dispersion of the execution probabilities in the stock universe
within one order book level is shown in the above figures. Each order book level
is shown in a different color. The widths of the respective distributions indicate
that the execution probabilities differ within one level among the stocks.
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8.2 Application of NeuroBayes R©

The Mean-Matrix-Model is taken as a starting point for the development of a
more sophisticated model based on the machine learning algorithm NeuroBayes R©.
The Mean-Matrix-Model contains the mean stock- and level related execution
probabilities. It is obvious, though, that the execution probability of a limit order
will in general depend on even more quantities than just those two. For example,
order book asymmetries, intraday volatility, trading volume, order book thickness,
etc. may play important roles as descriptive quantities as well. Based on these
assumptions, NeuroBayes R© is provided with a collection of potentially descriptive
variables, as outlined in Section 6.2.

In order to account for asymmetries in the order book, under which bid- and
ask-type limit orders will potentially exhibit a different behavior, NeuroBayes R©

is applied on either of the order-types separately.
More precisely, NeuroBayes R© is employed as a means to find corrections on

the execution probabilities from the Mean-Matrix-Model conditioned on a se-
lected set of such input variables. In a wider sense, probabilities are constructed in
a sample space, in which the new information is orthogonal to the Mean-Matrix-
Model. The resulting quantity of the NeuroBayes R© algorithm is a probability P c

i

which is to be interpreted as a correction term. The meaning of a value of P c
i = 0.5

is that no correction has to be carried out.1 That is, the execution of a limit order
is well estimated by the Mean-Matrix-Model. Thus, for the Mean-Matrix-Model
to be correct in average, the resulting probabilities should be centered around 0.5.

8.2.1 NeuroBayes R© Training Results

After applying NeuroBayes R© as a means to find corrections on the Mean-
Matrix-Model, the resulting probability corrections are investigated in this section.
The resulting additional classification capability of signal and background events
on the back of the Mean-Matrix-Model is shown in Figure 8.3 for both order types
separately as well as for the LSE and the EP.

These charts are an indicator for the learning capability of the NeuroBayes R©

algorithm. The red histogram illustrates the probability correction for those limit
orders which were executed by an arriving marketable order. Those limit or-
ders which were not executed within one minute and thus remained in the order
book are depicted by the black histogram. The red distribution is rather centered
around higher probability values whereas the black curve appears attracted to-
wards low probability values. This is an indicator for the separation capability of
the NeuroBayes R© algorithm.

1A prove of this statement is given in Section 8.3.
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(a) LSE Bid-Limit-Orders (b) LSE Ask-Limit-Orders

(c) EP Bid-Limit-Orders (d) EP Ask-Limit-Orders

Figure 8.3: The above charts show the distribution of the limit order execution
probability corrections on the Mean-Matrix-Model, resulting from NeuroBayes R©.
The gray histogram depicts the distribution of all resulting probabilities, which is
roughly centered around 0.5 in all charts. The actual mean value of the gray distri-
bution is indicated by the dashed blue line. The red histogram depicts only those
limit orders for which the target variable was true whereas the black curve illus-
trates the distribution of those probability corrections for which the target variable
was false. The red curve is more drawn towards high probabilities whereas the
black curve is rather centered around low probability values. This indicates the
separation capability of the NeuroBayes R© algorithm conditional on the given set
of input variables.

The gray histogram in these charts depicts the joint distribution of executed
and un-executed limit orders. It has to be centered around 0.5, indicating that
the Mean-Matrix-Model is correct on average. The actually observed mean value
of the joint distribution is indicated by a dashed blue line. Hence, this condition
is almost exactly fulfilled for limit orders at the LSE. For limit orders from the
EP, there appears to be a slight bias in the Mean-Matrix-Model towards lower
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execution probabilities. This effect is removed by applying the NeuroBayes R©

algorithm.

8.2.2 Discussion of Descriptive Variables

After having introduced the Mean-Matrix-Model in Section 8.1, NeuroBayes R©

was applied in order to find corrections to this model conditional on a large set of
input variables. A selection of those variables that exhibited strong dependencies
on the execution of a limit order is presented in this section. These dependencies
are to be understood as corrections on the Mean-Matrix-Model. A probability cor-
rection with a value of 0.5 indicates that no correction is to be carried out. Thus,
the observed dependencies on the execution probability are centered around 0.5,
indicating that the Mean-Matrix-Model is correct in average. Without the Mean-
Matrix-Model, the dependencies would potentially show a changed structure, but
not disproving the conclusions which are drawn from the observed patterns.

In order to have the examined quantities comparable between different stocks,
they are further normalized. The normalization which is carried out for each vari-
able individually is explained in the respective section.

Recall that NeuroBayes R© was applied to bid- and ask-type orders individu-
ally in order to detect impacts of asymmetries in the order book to the execution
probability. Hence, the dependencies listed below are shown for bid- and ask-type
limit orders individually.

Dependency on Price Asymmetries in the Order Book

The variable Volume Weighted Mid-price (VWMPs), as introduced in Sec-
tion 6.2, exhibits a significant correlation to the execution probability at both the
London Stock Exchange as well as the Euronext Paris Stock Exchange. This quan-
tity is further normalized in that the difference to the mid-price is constructed and
the resulting value is divided by a volatility measure defined on a one minute time
horizon. By this, the VWMPs becomes comparable between different stocks.

The dependency of the quantity VWMPs to the execution probability is de-
picted in Figure 8.4 for both the LSE and the EP as well as for both order types,
bid-type limit orders and ask-type limit orders.

A first observation is that the two order types exhibit a strong antisymmetric
behavior. This indicates that the two order types do not exhibit significant struc-
tural differences in their dependencies to the execution probability. In a model
where both order types are equally present, this and similar effects would not be
identifiable without particularly considering the antisymmetric behavior in a pre-
ceding step.



8.2. APPLICATION OF NEUROBAYES R© 121

(a) LSE Bid-Limit-Orders (b) LSE Ask-Limit-Orders

(c) EP Bid-Limit-Orders (d) EP Ask-Limit-Orders

Figure 8.4: The above figures illustrate the dependency of the execution prob-
ability on the quantity VWMPs for limit-orders of either bid- or ask-type. It
is clearly evident that the two order types show antisymmetric behavior. These
dependencies are depicted for both limit orders at the LSE as well as at the EP.

Differences are recognizable between the exchanges as well. The descriptive
quality of VWMPs appears to be stronger at the Euronext Paris stock exchange,
indicated by a more pronounced slope of the dependency and a wider dispersion in
the according execution probabilities. This is especially true for the lower bound-
ary which is at roughly 30% at the EP, whereas, at the LSE, the lower boundary is
at roughly 40%. The upper boundary is in both cases at approximately 55%.

Negative values of the normalized VWMPs indicate that the observed value
of the original quantity was below the mid-price. This, in turn, implies that more
liquidity was provided close to the mid-price on the bid-side than on the ask-side.
As a result, the execution probability of ask-type limit orders is increased when
more liquidity is available on the ask-side whereas the execution probability is
lower when more liquidity is on the bid-side. The contrary interpretation holds
for bid-type orders. This antisymmetry is detected on both the London and the
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Paris stock exchange. This phenomenon may be explained if the VWMPs is as-
sumed to be a more realistic market-price measure than the mid-price. If positive
differences between the VWMPs and the mid-price imply that the stock’s price is
going to be rising, ask-type limit orders would have a higher execution probability
as a result. That this effects actually exists is shown in Figure 8.5 for both, the
LSE and the EP.

(a) LSE (b) EP

Figure 8.5: The above charts show that the difference between the quantity
VWMP and the mid-price contains information about the future development of
the best-ask as well as the best-bid price. This is shown for both the LSE and the
EP.

Dependency on Liquidity Differences in the Order Book

A further descriptive variable is constructed which takes asymmetries in the
number of pending shares in the first ten order book levels into account. This input
variable is constructed as

NA = # of shares pending in the first 10 order book ask levels
NB = # of shares pending in the first 10 order book bid levels

∆AB =
NA −NB

NA +NB

(8.6)

This variable is a relative measure of how many shares are pending in the
order book levels on the ask-side as compared to the bid-side. It is therefore a
relative measure of the provided liquidity compared between the ask- and the bid-
side. Negative values of this quantity imply more pending shares on the bid-side
whereas positive values imply more shares on the ask-side. The dependency of
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(a) LSE Bid-Limit-Orders (b) LSE Ask-Limit-Orders

(c) EP Bid-Limit-Orders (d) EP Ask-Limit-Orders

Figure 8.6: The dependency of the execution probability on the descriptive vari-
able ∆AB is depicted in the above figures for bid- and ask-type orders separately.
The two order types exhibit a significant antisymmetric behavior. This is shown
for both the LSE and the EP.

the execution probability on this variable is depicted in Figure 8.6 for both the
LSE and the EP as well as for bid- and ask-type limit orders separately.

This variable is distinguished from the quantity VWMPs in that it does not
take the level-price distribution into account. It is a pure measure of the rela-
tive differences in the provided liquidity. The quantity VWMPs, however, is
constructed by first determining the weighted center-of-mass prices of each order
book side individually. Following this, the mean of these prices is computed. By
that, asymmetries in the overall provided liquidity between the bid- and ask side
are not contained in this measure. The VWMPs reflects the difference in the price
and volume distributions of the limit orders between the two order book sides.

The interpretation of this variable is somewhat opposed to the interpretation
of the quantity VWMPs. With increasing positive values, that is, more pending
shares on the ask-side than on the bid-side, the execution probability of ask-type
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limit orders is decreasing. The opposite is true for bid-type limit orders. This
relationship is prevalent on both the LSE and the EP.

This behavior is in line with the intuitive assumption that, the more shares are
already pending, the less likely it is for a newly arriving limit order to be executed
within a given time horizon. Note that the above charts consider limit orders on all
order book levels. Therefore, the effect might differ in strength between different
order book levels.

The interpretation of this variable is in line with the assumption that the short
term stock price development depends on the quantity ∆AB as well. This is em-
pirically shown in Figure 8.7. The ask- and bid-price log-returns of the following
minute are shown in dependence of ∆AB. Here, the stock price decreases in aver-
age with more liquidity on the ask-side. This statement is valid for both analyzed
stock exchanges.

(a) LSE (b) EP

Figure 8.7: The dependency of the one minute ahead touch (the best-bid and best-
ask price) development in dependence on the quantity ∆AB for both the LSE and
the EP.

Note that, if ∆AB = 0, the execution probability is roughly centered at 0.5,
that is, no correction to the Mean-Matrix-Model is carried out in this case. The
same statement holds for the quantity VWMPs. This implies that the Mean-
Matrix-Model is correct in average.

Dependency on the Trading Activity

The trading activity in this analysis is measured by the number of shares traded
within one minute. This quantity is normalized by dividing the traded quantity of
shares by the number of shares which are in the order book at the time when a limit
order under consideration is inserted. By this, the quantity becomes a measure
of how much of the provided liquidity was traded in the past minute. Since this
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(a) LSE Bid-Limit-Orders (b) LSE Ask-Limit-Orders

(c) EP Bid-Limit-Orders (d) EP Ask-Limit-Orders

Figure 8.8: The dependency of the trading activity is depicted in the above figures
for bid- and ask-type orders separately. This quantity contains bid- as well as ask-
side relevant information. Thus, both order types exhibit the same dependency.
This is shown for both the LSE and the EP.

variable is a quantity which is not sensitive to a distinct order book side, both order
types should exhibit the same dependency structure. Figure 8.8 illustrates the
relationship between the normalized trading activity and the execution probability
of both order types and for both exchanges.

It appears that no significant difference in the relation between the execution
probability and the order type is observable. The execution probability increases
with increasing trading activity for both order types equally. Additionally, both
exchanges show a very similar structure in the relation between the execution
probability and the trading activity. This implies that, in phases of strong activity,
the execution of a newly inserted limit order is more likely than in phases of weak
activity as one would intuitively assume.
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8.3 Investigation of the Combined Model
After the application of NeuroBayes R© as a correction algorithm to the Mean-

Matrix-Model, the resulting probabilities, Pmm
e and P c

i have to be combined to
receive the final execution probability P e

i , conditional on the variables employed
in the NeuroBayes R© algorithm. In the space of log-likelihood ratios, this corre-
sponds to an addition of the corresponding log-likelihood ratios. A likelihood ratio
is defined by LR(p) = ln(p/(1−p)). Thus, the final probability is constructed by

LR(P e
i ) = ln(P e

i /(1− P e
i )) = LR(Pmm

e ) + LR(P c
i ). (8.7)

Transforming this equation back into the probability space and solving the result
for P e

i leads to:

P e
i =

Pmm
e P c

i

Pmm
e P c

i + (1− Pmm
e )(1− P c

i )
. (8.8)

A derivation of the above formula is given in Appendix B.2.
By inserting 0.5 for P c

i in Equation 8.8, P e
i equals Pmm

e as a result. This is
indicating that a NeuroBayes R© result of P c

i = 0.5 does not change the Mean-
Matrix-Model, as qualitatively explained above.

8.3.1 Forecasting Performance of the Combined Model
After the application of NeuroBayes R© on a training-sample and combining

the expertise with the Mean-Matrix-Model, the resulting algorithm is applied to
forecast the execution of limit orders in an out-of-sample test. Here, the relevant
question is if the forecasting capability of the combined algorithm is comparable
to the forecasting capability in an in-sample test. By examining this question,
it can be proven that the algorithm is actually capable of forecasting the target
variable and is not just learning in-sample idiosyncracies.

This issue can be investigated by considering the charts which were introduced
in Section 7. Consequently, the resulting in-sample and out-of-sample forecasts
are compared by considering the Signal-Background histogram, the Signal-Purity
plot, the Efficiency-Purity plot as well as the Lorenz-Curve and the corresponding
Gini-coefficient. This collection of charts is presented for limit orders at the LSE
in Figure 8.9 for the in-sample test and in Figure 8.10 on out-of-sample data.
The respective charts for limit orders at the EP are shown in Figures 8.11 and
8.12. Note that these charts consider both bid- and ask-type limit orders. They are
constructed after merging the NeuroBayes R© results from both order types.

One first observation is that all Signal-Background histograms show that sig-
nal and background events are considerably separated. The resulting combined
model probability P e for a limit order to be executed within one minute is clearly
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well coinciding with a diagonal through the origin with slope one in all cases as
shown by the respective Signal-Purity plots. Considering these charts is espe-
cially important in the out-of-sample test in order to prove the interpretability of
the combined model’s output as a probability.

The blue line in the Gini-plots indicates the Lorenz-Curve of the combined
model. The maximally achievable Gini-coefficients are approximately equal among
the in-sample and out-of-sample data sources, indicating that the same uncondi-
tional distributions of the target variable were present in the respective samples.
The observed Gini-coefficients for the combined models, provided in Table 8.2,
appear to be approximately equal as well.

In-Sample Out-Of-Sample
Exch. Gini-Index Max. Possible Gini-Index Max. Possible
LSE 59.62 72.19 59.35 71.86
EP 54.04 63.27 53.38 62.51

Table 8.2: The Gini-Coefficients for the applied combined model are shown in
the above table for in-sample and out-of-sample tests for both the London Stock
Exchange and the Euronext Paris Stock Exchange.

Additionally, the added forecasting capability of the NeuroBayes R© algorithm
on the execution probability is measured in order to investigate if there could
be achieved a significant improvement to the Mean-Matrix-Model. This exami-
nation can be carried out by comparing the respective Lorenz-Curves and Gini-
coefficients. The probability range in which applying the NeuroBayes R© algo-
rithm leads to significant improvements can be detected by comparing the spread
between the two curves. The Lorenz-Curve of the Mean-Matrix-Model is visu-
alized by a green line in the respective Gini-plots in all Figures 8.9 to 8.12. The
curve depicting the combined model is in all cases above the green Mean-Matrix-
Model curve. This implies that applying the NeuroBayes R© algorithm improves
the forecasting capability on the Mean-Matrix-Model. The execution probabili-
ties received from the Mean-Matrix-Model have a high descriptive quality already.
This is due to the fact that it contains the two strongest effects, the order book level
dependency as well as the stock characteristics. A comparison of the respective
out-of-sample Gini-coefficients is provided in Table 8.3.

8.4 Forecasting a Limit Order’s Execution Fraction
After having addressed the question whether a limit order is at least going to

be partly executed, this issue is further investigated by considering the limit or-
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(c) Efficiency-Purity Plot (d) Gini-Plot

Figure 8.9: LSE — in-sample investigation of the forecasting capability of the combined model.
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(a) Signal-Background Distributions (b) Signal-Purity Diagonal

(c) Efficiency-Purity Plot (d) Gini-Plot

Figure 8.10: LSE — out-of-sample investigation of the forecasting capability of the combined model.
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(c) Efficiency-Purity Plot (d) Gini-Plot

Figure 8.11: Euronext Paris — in-sample investigation of the forecasting capability of the combined model.
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(a) Signal-Background Distributions (b) Signal-Purity Diagonal

(c) Efficiency-Purity Plot (d) Gini-Plot

Figure 8.12: Euronext Paris — out-of-sample investigation of the forecasting capability of the combined model.
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Gini-Coefficient
Exch. Combined Model Mean-Matrix-Model Max. Possible
LSE 59.35 56.04 71.86
EP 53.38 50.17 62.51

Table 8.3: The achieved out-of-sample Gini-coefficients are compared between
the combined model and the Mean-Matrix-Model. The respective values are
shown in the above table.

(a) Execution Fraction LSE (b) Execution Fraction EP

Figure 8.13: The above figures illustrate the unconditional execution fractions for
limit orders at the London Stock Exchange (LSE) and the Euronext Paris Stock
Exchange (EP). An execution fraction of 100% occurs most frequently.

der’s execution fraction. As stated in Section 6.1, limit orders may be only partly
executed by arriving marketable orders. Figures 8.13a and 8.13b depict the distri-
bution of these fractions for the London Stock Exchange (LSE) and the Euronext
Paris Stock Exchange (EP). By examining these charts it becomes clearly evident
that a full execution (Execution Ratio of 100%) occurs in most cases. This is in-
dicated by the strongly increased frequency of execution fractions at 100%. The
average execution ratios are ≈ 82% for limit orders at the LSE and ≈ 80% at the
EP. The unconditional probabilities for full execution are ≈ 70% at the LSE and
≈ 65% at the EP. In order to forecast whether a limit order is going to be fully
executed conditional on a set of market-descriptive variables, NeuroBayes R© can
be applied as in the previous section on limit order execution probabilities.

The unconditional probabilities for full execution do not show a strong depen-
dency on the order book level, as indicated by Table 8.5. Thus, the development of
a basic model, as carried out in the previous section, is not necessary. As a conse-
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(a) sr dependency LSE (b) sr dependency EP

Figure 8.14: The above charts show the dependency of the relative order size rs
to the probability of full execution.

quence, NeuroBayes R© can be applied without taking unconditional probabilities
as a basis.

By applying NeuroBayes R©, the question of full execution of a limit order can
be forecasted conditional on a set of descriptive variables (here, the same set of
input variables is used as in the analysis on forecasting a limit order’s execution).

The by far most important explanatory variable was found to be the relative
order size, constructed as

sr =
# of shares in the limit order

# of shares pending in the level of insertion
. (8.9)

For orders which are inserted into the 0th order book level, the number of pending
shares in the first order book level is taken as a reference.

Generally, distinct stocks have different characteristic average limit order sizes
and level sizes. Thus, using the plain size of a limit order may potentially result
in a training on stock characteristics, and not, as desired, a training on order sizes.
By weighting the order size with the number of shares which are pending in the
level in which the limit order is inserted, this input variable becomes comparable
among different stocks. The dependency of full execution to the relative order
size is shown in Figure 8.14 for both the LSE and EP.

The declining probability of the full execution with increasing relative order
size is in line with the intuitive assumption that the bigger a limit order is in
relative terms, the more likely it is to be executed by several marketable orders.
If the size of an inserted limit order coincides with the already existing quantity
of pending shares in the level of insertion, the unconditional probability of full
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execution shows a somewhat distinct behavior, indicated by the significant outlier
in both Figures 8.14a and 8.14b, where the relative order size is one.

The NeuroBayes R© machine learning algorithm is applied to a sample contain-
ing executed limit orders and their corresponding execution fraction. The target
variable in this training is whether a limit order is going to be fully executed or
whether only a fraction of it is going to be traded. As an indicator of the resulting
separation capability of the algorithm on the training sample, the corresponding
Gini-coefficients are provided in Table 8.4 for an in-sample as well as an out-of-
sample application of the obtained expertise.

In-Sample Out-Of-Sample
Exch. Gini-Index Max. Possible Gini-Index Max. Possible
LSE 10.0 30.2 9.47 30.14
EP 10.5 34.7 9.55 34.46

Table 8.4: The realized Gini-coefficients as well as the corresponding maximally
achievable Gini-coefficients are provided in this table for in-sample and out-of-
sample data.

The out-of-sample test is conducted in order to examine the algorithms fore-
casting capability for both the LSE and the EP. Here, it achieves a Gini-coefficient
of 9.47% (where 30.14%is maximally achievable) for limit orders at the LSE
whereas, for limit orders at the EP, it achieves 9.55% (where 34.46% is maxi-
mally achievable). These figures are in line with those of the training sample.
Since there is no severe loss in the forecasting capability in the out-of-sample test,
the algorithm turns out to present reliable forecasts.

The corresponding out-of-sample indicators for the algorithm’s forecasting ca-
pability are provided in Figures 8.15 and 8.16 for the LSE and the EP, respectively.
The Signal-Purity coincides in both cases with a diagonal through the origin, thus
indicating that the forecasted probability is reliable.
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(a) Signal-Background Distributions (b) Signal-Purity Diagonal

(c) Efficiency-Purity Plot (d) Gini-Plot

Figure 8.15: The above charts give an overview of the NeuroBayes R© algorithm’s forecasting capability whether a limit order
is going to be fully executed. The charts result from an out-of-sample test on LSE data.
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(c) Efficiency-Purity Plot (d) Gini-Plot

Figure 8.16: The above charts give an overview of the NeuroBayes R© algorithm’s forecasting capability whether a limit order
is going to be fully executed. The charts result from an out-of-sample test on EP data.
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Chapter 9

Conclusion

The subject of the second part of this thesis was the quantitative assessment of
execution probabilities and execution fractions of passive limit orders.

First, a technique to forecast the execution of a limit order on a one minute
time horizon was developed. One important prerequisite for this development
was the construction of a software capable of constructing and analyzing order
books from recorded historic data. This software was developed as a part of this
work.

Two of the strongest descriptive quantities, the order book level in which a
limit order is inserted and the stock which was intended to trade, were modeled
separately. This led to the development of the Mean-Matrix-Model. Based on
this approach, the machine learning algorithm NeuroBayes R© was applied as a
means to construct more sensitive probabilities for the execution of a limit order.
This second step is carried out with the aim of finding corrections to the Mean-
Matrix-Model conditional on observed market variables, order intrinsic properties
as well as order book parameters. In particular, variables that are sensitive to
asymmetries in the order book were found to contain strong dependencies on the
execution of passive limit orders. Strong antisymmetric behavior was observed
for the dependency of the execution probability between bid- and ask-type limit
orders on those variables. Other important descriptive quantities were found to be
variables sensitive to the trading activity shortly before a limit order is inserted.

This combined model was developed and tested on a collection of limit or-
ders, selected from an assortment of the most liquid stocks at the London Stock
Exchange as well as the Euronext Paris Stock Exchange. Altogether, 108 stocks
and roughly 3 million limit orders were used in order to derive and test this ap-
proach.

The constructed model was tested on out-of-sample data in order to prove its
capability of forecasting the execution of a limit order on data other than those
which were used for the training of the NeuroBayes R© algorithm. The resulting
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forecasts were found to be consistent with the forecasting capability observed on
the training sample. Hence, the combined model was proven to be applicable in
practice.

The impact of the conditional corrections to the Mean-Matrix-Model was also
examined in an in-sample and an out-of-sample analysis. In all cases, the applica-
tion of the NeuroBayes R© machine learning algorithm lead to significant improve-
ments of the forecasting capability.

Finally, the possibility of a fractional execution of limit orders was further in-
vestigated. Significant stock and order book level dependencies were not observed
in this case. Hence, the NeuroBayes R© algorithm was directly applied in order to
forecast the full execution of limit orders. It could be shown that the order size of
a limit order relative to the already pending volume in the level of insertion is the
most explanatory variable. An out-of-sample test was provided in order to prove
the applicability of this model to practical applications.

The algorithm developed may be used in order to develop intraday trading
strategies that rely on an accurate forecasting on limit order executions. Other time
horizons may be straightforwardly implemented by following the steps carried out
here but on a customized data set.
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Boyarchenko, S. I. and Levendorskiǐ, S. Z. (2000). Option pricing for truncated lÉvy processes.
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intra-daily data. In P. Bernus, J. Błażewics, G. Schmidt, M. Shaw, D. Seese, C. Weinhardt,
and F. Schlottmann (Eds.), Handbook on Information Technology in Finance, Springer Berlin
Heidelberg, International Handbooks on Information Systems. 543–585.

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity. Econometrica, 48(4), 817–838.

Zhang, S. S. and Riordan, R. (2011). Technology and Market Quality: The case of High Frequency
Trading. In Proceedings of the 19th European Conference on Information Systems. Helsinki,
Finland.



Appendix A

147



148 APPENDIX A.

A.1 Profile Plots
Profile plots are a class of chart, which allow to graphically analyze two di-

mensional data S = {(x, y)|x, y ∈ R} in a very practical fashion. They are
extremely useful tools in order to detect and visualize dependencies between two
variables in a cloud of scattered data points.1 Profile plots are comparable to scat-
ter plots with the additional property that the x-axis is divided into bins, that is,
equally spaced regions on the x-axis. The mean values and mean-errors of the
y-components of the data points within one bin are determined and visualized.

To be more precise, assume that the ith bin has the left and right boundaries
x = li and x = ri, (li, ri ∈ R). The data points which belong to this bin are
given by Yi = {y(x)|li ≤ x < ri}.

From this definition, the mean ȳi and the mean-error σ̂ȳi for the ith bin with
Ni data points are constructed as

ȳi = E[Yi] =
1

Ni

Ni∑
k=1

yk (A.1)

σ̂ȳi =

√
V ar[Yi]

Ni

=
1

Ni

√√√√ Ni∑
k=1

(yk − ȳi)2. (A.2)

This procedure allows to extract the most relevant information from the data.
An exemplary profile plot is shown in Figure A.1b. The profile plot is constructed
from the cloud of data points shown in Figure A.1a. It is clearly evident that
the dependency between x and y values can be easily observed in the right chart
whereas the left chart provides almost no obvious evidence for a relation between
the two quantities.

1In fact, there are situations, where it is impossible to visualize dependencies between x and
y without the use of profile plots. For example, assume that y ∈ {0, 1} and that x is a discrete
variable, x ∈ N. All one could observe in a scatter plot are data points at 0 and 1 for each x-value.
No visual information would be available about how many data points with y = 1 (y = 0) lie on top
of each other.
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(a) Data displayed in a scatter plot. (b) Data displayed in a profile plot.

Figure A.1: Figure A.1a shows a cloud of data points with no obvious correlation.
Figure A.1b shows the same data but aggregated in the fashion as described above.
This type of chart is known as profile plot. In the right picture, it is easy to visually
observe the dependency of y as a function of x.
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A.2 Fat-Tails and Excess Kurtosis
Fat-tails are a property of probability distributions whose tails decline slower

than exponentially (for example, by decaying hyperbolically). Fat-tail behavior
results in a significant excess kurtosis, i.e. a kurtosis which is significantly larger
than the normal distribution’s kurtosis.
An exact definition for fat-tail behavior is given by

lim
X→∞

eλxPr(X > x)→∞ ∀λ > 0.

Especially in the field of financial markets modeling, one common definition is:2

The extreme events are contained in the tail region and if they appear
with higher probability compared to that implied by the Gaussian dis-
tribution, we say that such a distribution possesses “fat tails“.

Fat-tails are observed in many fields, such as economics, physics, computer
sciences, etc. Their important implication in the field of financial markets is that
extreme events, such as large negative price movements, have a higher probability
to occur than suggested by the normal distribution assumption.

One way for observing fat-tailed behavior is by monitoring a distribution’s
excess kurtosis. The excess kurtosis, also known as Fisher Kurtosis, denotes the
fourth moment of a probability density function, normalized with its squared vari-
ance, minus 3 (the normal distribution’s kurtosis).

The sample kurtosis is constructed as follows:

β̂4 =
µ̂4

σ̂4
− 3 =

1
n

∑n
j=1(xj − x̄)4(

1
n

∑n
j=1(xj − x̄)2

)2 (A.3)

Various non-normal distributions can be applied in order to model fat-tailed
distributions, such as, for example, Student-t, Stable Paretian non-Gaussian and
tempered stable distributions. Figure A.2 compares the tail behavior for three
probability density functions, which are frequently applied in financial time series
modeling, namely, the normal distribution, the Student-t distribution and the stan-
dardized CTS distribution. These distributions, except for the normal distribution,
are capable of modeling fat-tail behavior.

2cited from Rachev et al. (2007))
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Figure A.2: The above figure compares the tail behavior for the normal, the
Student-t and the standardized CTS distribution. The normal distribution is
rapidly declining whereas the Student-t distribution’s tail decays hyperbolically
and decreases rather slowly. The standardized CTS distribution’s tail declines
slower than the Student-t distribution for small x values. It then continues to de-
cline more rapidly towards zero for higher x values and eventually crosses the
Student-t distribution’s tail function.
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A.3 Kupiec and Christofferson Likelihood Ratio Test
The Kupiec Likelihood Ratio Test Kupiec (1995) is used in order to determine

if an observed number of violations in a Value-at-Risk backtest is in conformity
with an allowed number of violations. This is commonly referred to as a test for
unconditional coverage of interval forecasts. A violation occurs if the observed
return exceeds a pre-defined value, usually the η = 1% or the η = 0.1% quantile
of the underlying return distribution. In the context of Value-at-Risk analysis, this
number is denoted as VaR(1%) or VaR(0.1%) (Value-at-Risk was introduced in
Section 2.6.2).

In a perfect world (or with an infinite number of trials), the underlying risk
model would be appropriate, if out of N observations, Nη would be counted as
violations while satisfying the following condition:

Nη

N
= VaR(η), (A.4)

where VaR(η) denotes the Value-at-Risk at the η% quantile.
In real world applications, every measurement and observation contains sta-

tistical fluctuations. Hence, depending on a confidence interval (usually 95% or
99%), a range of allowed violations is used in order to accept or reject a risk
model.

Applying the idea of Bernoulli’s Trial, the range of the allowed number of
violations can be constructed as shown in the following. In a Bernoulli trial, there
are two possible outcomes of an experiment, denoted as success and failure. If the
probability of a success is p, the probability q for a failure is consequently 1 − p.
The probability of observing k successes in an experiment with n trials is given
by the binomial distribution:

P (k;n, p) =

(
n

k

)
pk(1− p)n−k. (A.5)

Consequently, the empirically observed ratio p̂ = Nη
N

is tested against p in a like-
lihood ratio test, with the following test statistic:

LRuc = −2 ln
pNη(1− p)N−Nη(

Nη
N

)Nη (
1− Nη

N

)N−Nη . (A.6)

LRuc is asymptotically χ2 distributed with one degree of freedom. If the proba-
bility of observing LRuc is higher or equal to the pre-defined confidence interval,
the Kupiec test accepts the risk model.
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It−1 = 0 It−1 = 1
It = 0 n00 n01

It = 1 n10 n11

Table A.1: Overview of the counting variables which are employed for testing the
independence of violations in a Value-at-Risk backtest.

It has to be considered though, that the Kupiec test has two severe shortcom-
ings: First, if the sample size on which a VaR backtest is conducted is small,
the Kupiec test will not lead to reliable results.3 This problem can obviously be
circumvented by employing backtests with a longer history. Second, the Kupiec
test only counts the number of violations but does not test their independence
over time. That is, the Kupiec test is not sensitive for a clustered occurrence of
violations.

To overcome this second drawback, Christoffersen (1998) introduces a second
test statistic in order to cover the conditional occurrence of violations. To this end,
the variable It is introduced as

It =

{
1 if violation in t
0 if no violation in t.

(A.7)

Subsequently, It and It−1 are employed in order construct secondary auxiliary
variables in a way as described in Table A.1. nxx are counting variables which
get increased by one whenever the respective conditions regarding It and It−1 are
fulfilled.

Using the definitions

π0 =
n01

n00 + n01

(A.8)

π1 =
n11

n10 + n11

(A.9)

π =
n01 + n11

n00 + n01 + n10 + n11

, (A.10)

the test statistic in order to evaluate the conditional occurrences of violations is
constructed as

LRind = −2 ln

(
(1− π)n00+n10πn01+n11

(1− π0)n00πn01
0 (1− π1)n10πn11

1

)
. (A.11)

3This is the case within the current Basel II regulatory framework. It requires VaR backtests
over a backtesting period of one year of daily data, leading to a sample size of just roughly 250,
see Basel Committee on Banking Supervision (2006)(Part 2.II.3.ii.§178).
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This quantity is asymptotically χ2 distributed with one degree of freedom.
The joint likelihood ratio test statistic is constructed as

LRcc = LRuc + LRind. (A.12)

It is asymptotically χ2 distributed with two degrees of freedom. It has to be noted
that in the case of investigating the combined probability, a low likelihood ratio
in one test can conceal a high likelihood ratio in the other test. As a consequence,
both requirements, unconditional coverage and independence, should be satisfied
individually.

A comprehensive overview of backtesting methods is given in Campbell (2005).
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A.4 Berkowitz Likelihood Ratio Test
The Berkowitz Likelihood Ratio (BLR) test focuses not only on the accurate

forecasting of quantiles, such as the CLR tests. It rather tests a whole forecasted
distribution function for its accuracy. It can therefore be used in order to determine
if a probability distribution, which is applied in a financial model, will describe the
actual underlying return distribution properly, based on historic realizations. This
is especially of interest when considering the risk measure AVaR, since this risk
measure is defined as the expectation value of the tail region. Thus, it is extremely
sensitive to an appropriate modeling of the tail’s shape.

Using the Rosenblatt transform (Rosenblatt (1952)), all realizations are trans-
formed into an IID sequence of random variables. Rosenblatt’s transformation is
defined as

xt =

∫ yt

−∞
f̂(u)du = F̂ (yt), (A.13)

where yt is the realized portfolio return and f̂(·) is the forecasted probability den-
sity function at time t−1. Following Rosenblatt, the distribution of xt is IID and
uniform on the interval (0,1).

Berkowitz (2001) proposes the transformation of xt into a N (0, 1) distributed
variable:

zt = Φ−1

[∫ yt

−∞
f̂(u)du

]
= Φ−1

(
F̂ (yt)

)
. (A.14)

By testing zt for normality (for example by employing likelihood ratio tests),
Berkowitz shows that this test will discover inaccurate modeling of the actual
return series. In other words, correct density forecasts automatically lead to a
sequence of N (0, 1) distributed zt’s.

A.4.1 Focusing on Large Losses
It has to be noted that the vast majority of realized returns, especially on short

time scales, occurs in the center region of the underlying return distribution. On
very short time scales, this typically results in return distributions which are nar-
rowly peaked around the center region while exhibiting fat tails at the same time.
A model which is not capable of describing these effects but still models the tail
behavior accurately, should not be automatically rejected. It may still be extremely
useful in risk estimation application such as, for example, in the Average Value-
at-Risk framework.

For such cases, Berkowitz (2001) suggests a likelihood ratio test based on the
above transformation, but which is only sensitive to the tail behavior of the return
distribution. Consequently, all observations which do not fall in the tail region
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which is confined by a pre-defined VaR value will be cut off. The adjusted test
statistic is given by

z∗t =

{
zt if zt ≤ VaR

VaR if zt > VaR.

z∗t can be tested for normality in a likelihood ratio test framework, as prosed by
Berkowitz.
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B.1 Determining the Execution Status of a Limit Or-
der

Once a plain limit order (without additional attributes such as validity time
etc.) has been inserted into the order book it can either be canceled by the owner’s
intention or through an execution, that is, the limit order is matched against an
arriving marketable order. Especially the latter case is of interest if the conditional
execution probabilities of limit orders are investigated. A robust method is needed
in order to tag limit orders in an ex-post analysis to determine whether they have
been executed through incoming marketable orders. One approach which has
been utilized in recent research projects is to monitor the bid- and ask-prices over
a pre-defined time period. If the bid (ask) price hits or exceeds the limit price
of a bid (ask) limit order under investigation, there is a certain chance that this
order has been executed. This method is especially inaccurate when order book
levels are populated with more than one limit order. If no exact information about
the position of a limit within its level is available, such as within MBL data, this
method may be applied. Similar methods to determine order executions can be
found in, for example, Omura et al. (2000).

In contrast to the MBL data format, the MBO data format, as explained in
Section 6.2, allows for a very robust method to determine the cause of the order
removal. This method utilizes the microscopic order flow process and reported
trades. Since each order can be tracked individually, the exact time, when the
order under investigation is removed, can be extracted from the data. The time at
which a limit order is removed from the order book is compared to trades occur-
ring within a pre-defined time span ∆τ . This procedure is necessary since stock
exchanges usually do not synchronize the data feed over which trades are reported
with the data feed that updates the order book as a consequence of a trade.1 If a
limit order under consideration has been canceled from the first position in the
order book and if it matches in size and price with a reported trade within ∆τ , the
limit order has almost certainly been executed through this trade.2 Note that this
method is also very robust in order to determine if a trade was buyer- or seller-
initiated. Figure B.1 illustrates the mechanism for tagging limit orders whether
they have been executed or canceled.

1This phenomenon has been observed on London Stock Exchange and Euronext Paris data
provided from Morningstar, an investment research company, as of June 2011, when this thesis
was written.

2In fact, it is possible that two adjacent limit orders with exactly the same size are canceled
subsequently within a very short time period. If one of these orders has been executed, it is not
possible in this case to clearly distinguish which of one of them has been executed through the
arriving marketable order.
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Figure B.1: Illustration of the process of how limit orders are tagged whether they
have been executed or canceled by purpose.
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B.2 Combining two Models with Bayes’ Theorem
Bayes’ theorem states that, given two random variables a and b, the conditional

probability P (a|b) is given by

P (a|b) =
P (b|a)P (a)

P (b)
. (B.1)

This relationship is often applied in data analysis for P (t|x), where x denotes a
vector containing a set of observations and t denotes a target event. The applica-
tion of the theorem is then based on a Prior-Model which is reflected in P (t).

In Section 8.3, two models are to be combined by adding up the corresponding
likelihood ratios. This method is derived here by applying Bayes’ theorem.

The combined probability may be expressed as

P c(t|x) = P (t|x) =
P (x|t)P (t)

P (x)
. (B.2)

Here, P (t) describes the probability of the target to occur as a result from the
Mean-Matrix-Model. More generally, this could be any Prior-Model that is cor-
rect in average. Assume that P b denotes the probability resulting from corrections
on P (t). P b(x|t) itself can be transformed by applying Bayes’ Theorem, resulting
in

P b(x|t) =
P b(t|x)

P b(t)
P b(x). (B.3)

Since P b(t|x) is a conditional correction on the Prior-Model, the unconditional
target distribution must contain no information, that is, P b(t) = 0.5. Otherwise,
the Prior-Model would be systematically wrong.

The equations for P c(t̄|x) and P b(t̄|x) are constructed by simply replacing t
with t̄ in the above formulas. Substituting P b(x|t) from Equation B.3 into Equa-
tion B.2, leads to

P c(t|x) =
P b(t|x)

P b(x)
P b(t)

P (t)

P (x)
. (B.4)

Dividing P c(t|x) from Equation B.4 with P c(t̄|x) and considering that P b(t) =
P b(t̄) = 1− P b(t) = 0.5, leads to

P c(t|x)

P c(t̄|x)
=
P b(t|x)

P b(t̄|x)

P (t)

P (t̄)
. (B.5)

By applying the logarithmic function to both sides of the above equation, and, thus
constructing the likelihood-ratios, the above product decays into a sum, leading
to:

ln
P c(t|x)

P c(t̄|x)
= ln

P b(t|x)

P b(t̄|x)
+ ln

P (t)

P (t̄)
. (B.6)
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This can now be expressed in likelihood-ratios, leading to

LR(P c) = LR(P b) + LR(P ). (B.7)
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B.3 Stock Universe - Company Overview

Table B.1: Overview of the stocks used in the analysis on order execution prob-
abilities. The exchanges are abbreviated as follows: EP = France, Paris; LSE =
UK, London.

CompanyName Exchange Sector
AIR LIQUIDE EP Basic Materials
RHODIA SA EP Basic Materials
ALCATEL LUCENT EP Communications
VIVENDI (EX-SOFIEE) EP Communications
FRANCE TELECOM SA EP Communications
RENAULT EP Consumer
PEUGEOT EP Consumer
PPR EP Consumer
MICHELIN EP Consumer
AIR FRANCE-KLM EP Consumer
ACCOR SA EP Consumer
PERNOD RICARD EP Consumer
DANONE EP Consumer
SANOFI EP Consumer
CARREFOUR EP Consumer
LOREAL EP Consumer
LVMH MOET EP Diversified
TECHNIP COMMON STOCKPAR VALUE EP Energy
TOTAL SA EP Energy
COMPAGNIE GENERALE DE GEOPHYSI EP Energy
NATIXIS EP Financial
AXA EP Financial
CREDIT AGRICOLE EP Financial
UNIBAIL - RODAMCO EP Financial
BNP PARIBAS EP Financial
SOC GENERALE EP Financial
LAFARGE EP Industrial
EUROPEAN AERONAUTIC DEFENSE EP Industrial
SCHNEIDER ELECT EP Industrial
ST.GOBAIN EUR16 EP Industrial
VALLOUREC EP Industrial
BOUYGUES S EP Industrial
ALSTOM EP Industrial
VINCI EP Industrial
CAP GEMINI EP Technology
VEOLIA ENVIRONNEMENT EP Utilities
GDF SUEZ EP Utilities
ELECTRICITE DE FRANCE EP Utilities
LONMIN PLC LSE Basic Materials
BHP BILLITON PLC LSE Basic Materials
RIO TINTO PLC LSE Basic Materials
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VEDANTA RESOURCES PLC LSE Basic Materials
KAZAKHMYS PLC LSE Basic Materials
XSTRATA PLC LSE Basic Materials
ANGLO AMERICAN PLC LSE Basic Materials
ANTOFAGASTA PLC LSE Basic Materials
YELL GROUP PLC LSE Communications
PEARSON PLC LSE Communications
BT GROUP LSE Communications
BRIT SKY BROAD LSE Communications
REED ELSEVIER PLCORD LSE Communications
WPP GROUP PLC LSE Communications
CABLE WIRELESS LSE Communications
VODAFONE GROUP LSE Communications
KINGFISHER PLC LSE Consumer
WOLSELEY PLC LSE Consumer
MITCHELLS BUTLERS PLC LSE Consumer
MARKS AND SPENCER GROUP PLC LSE Consumer
PERSIMMON LSE Consumer
PUNCH TAVERNS PLC ORD SHS LSE Consumer
INTERNATIONAL CONSOLIDATED AIR LSE Consumer
HOME RETAIL GROUP LSE Consumer
BARRATT DEV LSE Consumer
CARNIVAL PLCORD LSE Consumer
COMPASS GROUP PLC LSE Consumer
NEXT GROUP LSE Consumer
IMPERIAL TOBACCO LSE Consumer
RECKITT BENCKISER PLC LSE Consumer
SAB MILLER PLC LSE Consumer
SAINSBURY J PLC LSE Consumer
SHIRE PLC LSE Consumer
BRITISH AMER TOBAC LSE Consumer
ASTRAZENECA PLC LSE Consumer
MORRISON W SUPMARTORD LSE Consumer
DIAGEO PLC LSE Consumer
SMITH NEPHEW PLC LSE Consumer
ASSOC BRIT FOODS LSE Consumer
TESCO PLC LSE Consumer
GLAXOSMITHKLINE PLC ORD LSE Consumer
UNILEVER PLC LSE Consumer
TULLOW OIL ORD LSE Energy
BG GROUP LSE Energy
CAIRN ENERGY PLC LSE Energy
BP PLC LSE Energy
BARCLAYS LSE Financial
STANDARD CHARTERED LSE Financial
BRITISH LAND CO PLC LSE Financial
RBS LSE Financial
ICAP PLC LSE Financial
3I GROUP PLC LONDON LSE Financial
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HAMMERSON PLC LSE Financial
LAND SECURITIES GROUP LSE Financial
LEGAL GENERAL GROUP LSE Financial
LLOYDS BANKING GROUP PLC LSE Financial
MAN GROUP PLC LSE Financial
CAPITAL SHOPPING CENTERS GROUP PLC LSE Financial
OLD MUTUAL PLC LSE Financial
PRUDENTIAL LSE Financial
AVIVA PLC LSE Financial
HSBC HOLDINGS LSE Financial
BAE SYSTEMS PLC LSE Industrial
ROLLS ROYCE GROUP LSE Industrial
SMITHS GROUP PLC LSE Industrial
UNITED UTILITIESGROUP PLC LSE Utilities
SCOTTISH SOUTHERN ENERGY LSE Utilities
CENTRICA PLC LSE Utilities
NATIONAL GRID PLC LSE Utilities
INTERNATIONAL POWER PLC LSE Utilities
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