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Abstract

Ein Riss im Rotor ruft eine lokale Steifigkeitsänderung hervor. Die vorliegende Dissertation
ermittelt die Steifigkeitsänderung einer angerissenen Welle. Dazu wird ein Kohäsivzonen-
modell eingesetzt. Das Modell wurde für die erste Rissöffnungsmode bei ebenem Verzer-
rungszustand in Abhängigkeit der Mehrachsigkeit des Spannungszustandes (Triaxialität)
entwickelt. Dafür wird ein elastisch-plastisches Kohäsivgesetzt verwendet. Aufgrund von
Finite-Elemente (FE) Simulationen und experimentellen Ergebnissen des Rissfortschritts
einer angerissenen Welle wird die Rissform als parabolische Form modelliert. Solange das
Risstiefenverhältnis klein ist, lässt sich eine geradlinige Rissform ansetzen. Um lediglich
den Einfluss des Risses abzubilden, wird ein starr gelagerter Rotor angenommen. Außer-
dem wird das Kohäsivzonenmodell bei einem eindimensionalen Kontinuumsrotor als FE
Modell ausgeführt. Dafür werden zwei verschiedene FE Modelle vorgeschlagen und disku-
tiert, ein FE Modell mit lokaler Steifigkeit infolge des Risses, sowie ein FE Modell mit
Elementen mit Breite Null aber mit kohäsiven Eigenschaften. Um die Gültigkeit des Riss-
formmodells abzuschätzen, werden die Ergebnisse mit dem Verlauf des Rissöffnungsmech-
anismus für einen Rotor aus FE- und Mehrkörpersimulationen verglichen. Es zeigt sich,
dass das gradlinige Rissformmodell für kleine Risstiefen akzeptable Ergebnisse liefert. Für
eine realistischere und genauere Modellierung des Rissöffnungsmechanismus ist das Kohä-
sivzonenmodell geeignet.
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1 Introduction

Shafts are amongst components subjected to perhaps the most arduous working conditions
in high performance rotating equipment used in process and utility plants. Although
usually quite robust and well designed, shafts in operation are sometimes susceptible to
serious defects that develop without much apparent warning. They are prime candidates
for fatigue cracks because of the rapidly fluctuating nature of bending stresses, the presence
of numerous stress raisers and possible design or manufacturing flaws. The mechanism
leading to cracks in rotors, which are considered to be of primary importance, include high-
cycle fatigue, low-cycle fatigue, severe heat-related stress cracks, corrosion-related stress
cracks, creep-related high temperature alloy rotor cracks and probably other mechanism,
not yet well identified shown in Figure 1.1.

Figure 1.1: Physical phenomena leading to rotor cracks [91]



1 Introduction

1.1 Motivation for the research

Presence of cracks in shafts is considered as one of the most important factors that limit
the safe and reliable operation of rotating machinery. Multiple catastrophic failures of
machines, caused by cracked rotors, have increased the interest in early detection of rotor
cracks. In general, non destructive testing is used in inspection intervals to prevent such
failures, but recently vibration analysis has received much attention in trying to continu-
ously monitor the condition of machines. In particular, the crack depth and its location
along the rotor are important parameters, which indirectly would provide information that
can be used in early detection of cracks.

Until today, the greatest difficulty in crack detection and identification remains the quan-
titative evaluation of the crack parameters and distinction between a developing crack
from other faults such as imbalance, shaft misalignment, asymmetric shaft, bearing fail-
ure, looseness of bolts and nuts or a range of other nonlinearities [70], [136]. The key issues
in developing an accurate modeling technique of a cracked rotor are the reduced stiffness
of the cracked cross section, the variation of stiffness over one revolution due to opening
and closing of the crack and the complexity in geometry of the rotor, in particular in the
region of the developing crack.

Cracks perpendicular to the shaft axis are known as transverse cracks. These are the
most common and most serious as they reduce the cross-section and thereby weaken the
rotor. Most past and current research focuses on the detection of such cracks. Cracks
perpendicular to the shaft introduce a local flexibility in the stiffness of the shaft due to
strain energy concentration in the vicinity of the crack tip [116]. Due to shaft self-weight
and the rotation of the rotor, the crack opens and closes during a complete revolution of
the rotor. Hence, the stiffness of the shaft varies. Cracks which open when the affected
part of the material is subjected to tensile stresses and close when the stress is reversed
are known as breathing cracks. The stiffness of the component is most influenced when
under tension. Usually, shaft cracks breathe when crack sizes are small, running speeds
are low and radial forces are large [47]. Most theoretical research efforts are concentrated
on transverse breathing cracks due to their direct practical relevance.

The breathing mechanism of the crack comes from the fact that the static deflection of the
shaft is much greater than the deflection due to the dynamic response of the cracked rotor.
The presence of a transverse crack in a structural member introduces local flexibility, which
can be mathematically modelled by a local compliance (flexibility) matrix. Theoretically,
coefficients of the compliance matrix of the crack in bending can be computed based on
available expressions for stress intensity factors (SIFs) and associated expressions of the
strain energy density function over the opened crack surface by using linear elastic fracture
mechanics (LEFM). These changes, in turn, affect the dynamics of the system: natural
frequency of the vibrations and the amplitudes of forced vibrations are changed. There
were a number of publications in the literature dealing with the influence of a transverse
crack on the vibration of a rotating shaft.
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1.1 Motivation for the research

Generally, three different crack states have been introduced in order to investigate the
dynamic behaviour of cracks in rotors. The first one is the opening crack: if the vibra-
tion amplitudes due to any out-of-balance forces acting on a rotor are greater than the
static deflection of the rotor due to gravity, then the crack will remain open (or closed)
depending on the size and location of the unbalance masses. When the crack is assumed to
remain open during the revolution, the system does not differ from the general case of the
anisotropic rotor. The rotor is then asymmetric and this condition can lead to stability
problems [107]. The other one is the switching crack (also known as hinge model) where
the crack is assumed to open and close fully following a square pulse function. This be-
haviour is connected to a rather small crack, while a deep crack could be associated with
a harmonic variation. Another one is the regularly periodic breathing crack for heavier
rotors, where the vibration due to any out-of-unbalance forces acting on a rotor is less than
the deflection of the rotor due to gravity. This crack may open and close during rotation.

Breathing crack and switching crack models differ clearly from each other. For the breath-
ing crack model, the open part of the crack continuously changes with the shaft rotation,
thereby accounting for the partial open and close state of the crack. In contrast, in the
switching crack model, the crack is assumed to be in either fully open state or fully closed
state, partial opening and closing of the crack is not accounted for. In real rotors, the
stiffness variation is likely to be gradual and the assumption of abrupt sudden stiffness
switching is not appropriate [104]. In general, two different approaches can be distin-
guished to model the behaviour of a breathing crack in rotating structures. The first
approach is based on the fact that the presence of a crack in a rotating shaft reduces the
stiffness of the structure, hence reduces the natural frequencies of the original uncracked
shaft. The second approach is the response-dependent breathing crack model, which esti-
mates the status of the crack closure using a force acting on the crack section, and thereby
evaluates the stiffness of the cracked section.

During the last four decades, great attention has been paid by several scientists to the
diagnosis of cracks in rotating machinery. The challenge of modelling a crack is one of
the most significant issues in this area. The theory of strain energy release rate and SIFs
combined with rotordynamics built the foundation of the dynamic analysis for crack rotors
based on LEFM. However, this theory has two major limitations, namely, it can only be
used if there is an initial crack and the fracture process zone must be small compared
to the dimensions of the shaft. Many researchers have used the theory of strain energy
release rate combined with rotordynamics in order to investigate the dynamic behaviour
of breathing crack on the rotor. Due to geometrical complexity, some simplifications had
been made for the crack profile, such as straight-edged, circular and elliptical crack model
to analyze such problems. Many works using cross-section of a straight-edge crack can be
found in the literature. Since there are not available stress intensity factors for an edge
crack in a rotating circular cross section, the shaft is considered to be a sum of elementary
independent rectangular strips and the stress intensity factors, known for the rectangular
beam are integrated along the crack tip.
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In the above crack models, the crack tip is supposed to be formed by the boundary between
the cracked areas and the uncracked areas for the regions in which the breathing crack is
open, which is correct. However, the SIF will not appear at the boundary between the
closed cracked areas and the open cracked areas. Furthermore, many approaches assume
stress and strain distributions with same values along directions parallel to the applied
bending moment axis (as they are in rectangular cross sections), and no interaction be-
tween parallel rectangular strips in which the circular cross section have been divided. The
cracked cross section is no longer planar, but distorted. This is not taken into account by
the LEFM approach [9].

LEFM has proven a useful tool for investigating the dynamics of a cracked rotor when the
nonlinear zone ahead of the crack tip is negligible. However, for ductile materials, the size
of the nonlinear zone due to plasticity or microcracking is not negligible in comparison with
other dimensions of the cracked geometry. In addition, the presence of an initial crack is
needed for LEFM to be applicable. This means that shafts with notches but without crack
can not be analyzed using LEFM. Furthermore, in reality, neither the idealized sharp crack
nor the linear elastic material does exist. Although there are many works on modelling
of cracked rotor based on LEFM reported in the literature, they are still until now not
completely closed. The direct motivation of this research stems from the alternate method
in order to model the dynamics of a cracked rotor instead of LEFM.

Nowadays, the cohesive zone model (CZM), a model which can deal with the nonlinear
zone ahead of the crack tip due to plasticity or microcracking, has been widely used in-
stead of fracture mechanics based on SIFs. The CZM describes material failure on a more
phenomenological basis (i.e. without considering the material microstructure). The gen-
eral advantage of CZM when compared to LEFM is that the parameters of the respective
models depend only on the material and not on the geometry. This concept guarantees
transferability from specimen to structure over a wide range of geometries.

The origin of the cohesive zone concept can be traced back to the strip yield model in
which the narrow zone of localized deformation ahead of the crack tip was substituted by
cohesive traction between the bounding surfaces. The constitutive behaviour which causes
the cohesive elements to open and eventually to fail is described by the so called traction-
separation law (TSL). It relates the traction vector to the displacement jump across the
interface. Various functions have been chosen for the shape of the TSL. Common to all
shapes is that they contain two model parameters, namely the maximum traction sustain-
able by the element and a critical separation at which the element finally fails. The energy
dissipated by the element until total failure is derived as the integral of the TSL. However,
the TSL depends on the stress state, which can be characterised by the triaxiality, which
is the hydrostatic stress divided by the von Mises equivalent stress. The effect of triaxi-
ality on conventional cohesive parameters is well predicted as peak stresses are known to
increase while the cohesive energy decreases with triaxiality.
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1.1 Motivation for the research

The CZM, originally applied to concrete and cementitious composites, can be used with
success for other materials, such as ductile materials. This model is able to adequately
predict not only the behaviour of cracked structures but also of uncracked structures in-
cluding notches. Furthermore, it avoids non-realistic stress singularities near the crack tip.
More powerful computer programs and better knowledge of material properties may widen
its potential field of application. The other advantage of the CZM lies in the fact that it
considers plasticity and that crack propagation can be easily included in the analysis. To
the best of the author’s knowledge, CZMs have been used to simulate the fracture process
only in static structures and application of this model on a cracked rotor has not been
studied yet.

There are various tools and methodologies to be applied to model a cracked rotor. Each
methodology has specific advantages. Important questions with regard to modelling may
be summarized as follows:

• Crack breathing mechanism plays an important role in analysis of dynamic behaviour
of a cracked rotor. This phenomenon must be modelled accurately to analyze the
crack in a rotor. Although there are many models published in literature, how
accurate is the prediction model?

• The presence of a transverse crack in a structural member introduces local flexibility,
which can be mathematically modelled by a local compliance (flexibility) matrix.
Theoretically, coefficients of the compliance matrix of the crack in bending can be
computed based on available expressions for SIFs and associated expressions of the
strain energy density function over the opened crack surface by using linear elastic
fracture mechanics. Nevertheless, direct application of the LEFM method is not
possible, because solutions for the SIF, for a cylindrical shaft with an edge crack,
are not available. Is there another technique which can be used to analyse such
problems?

• The CZM was used by various researchers to predict the generation and propagation
of a crack in structure. This propagation mechanism may be modelled so that the
early failure of the structure may be detected. Can this model be applied in a
dynamic problem such as a rotating shaft instead of LEFM?

• Finite element method (FEM) is a better choice and applied by various researchers to
analyze the dynamic behaviour of a shaft having different kind of cracks, for example,
transverse crack, two cracks, slant crack, and so forth. The crack element must be
accurately discretized to depict the real behaviour of a cracked rotor. Can CZM
along with FEM provide a contribution to the cracked rotor model?
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1.2 Literature review

1.2.1 Cracked rotor

A breathing crack in the transverse direction of a shaft can cause dangerous damage in
rotor dynamic systems. The breathing mechanism of the crack comes from the fact that
the static deflection of the shaft is much greater than the deflection due to the dynamic
response of the cracked rotor. A crack in the rotor causes local changes in stiffness. These
changes, in turn, affect the dynamics of the system: natural frequency of vibrations and
the amplitudes of forced vibrations are changed. The influence of a transverse crack on the
vibration of a rotating shaft has been in the focus of many researchers. A comprehensive
literature survey of various crack modelling techniques, system behaviour of cracked rotor
and detection procedures to diagnose fracture damage was given by Wauer [147]. He sur-
veyed 162 papers and also reviewed the non-rotating, crack structural elements which are
relevant to the crack rotor problems. Extensive reviews of the dynamic response of cracked
rotor systems were published by Dimarogonas [34]. He cited more than 350 papers and
reviewed the vibration of stationary cracked beams and plates, the continuous crack beam
and bar, crack identification in beams, vibration of cracked rotors, the closing crack and
also described list of topics of interest for further research in vibration of cracked structures.

Sabnavis et al. [116] reviewed various crack detection techniques and diagnosis. They
grouped the current research which is published after 1990 into three categories: vibration-
based methods which can be sub-classified into signal-based and model-based methods,
modal testing and changes in system modal characteristics, such as changes in mode shapes
and system natural frequencies, response to specially applied excitation for crack detec-
tion. The last category is non-traditional methods such as neural networks, fuzzy logic,
borescopes inspection and sophisticated signal processing techniques, e.g. wavelet and
Wigner-Ville transforms. Kumar and Rastogi [74] cited more than 60 papers and surveyed
various methods like Wavelet transform, FEM, non linear dynamics, Hilbert-Huang trans-
form, and analysis of cracked rotor through various other techniques. More recent studies
have been reviewed by Bachschmid et al. [10]. They noted that the breathing mechanism
of cracks in rotating shafts is accurately investigated by means of 3D non-linear models.
The behaviour is then modelled by means of a much simpler approximated approach, which
allows also to calculate the stiffness variation of the cracked shaft.

Dimarogonas and Papadopoulos [35] reviewed the analytical method for the computation
of the dynamic response of cracked Euler-Bernoulli beams. They modelled the cracked
region as a local flexibility found with fracture mechanics method which is discussed in
textbook by Dimarogonas [33]. Gasch [40] considered the non-linear mechanism of a clos-
ing crack with different flexibilities for the open and closed crack. He derived the equation
of motion in the rotating and stationary coordinate systems. These equations were solved
in an analog computer and the crack flexibility was measured by experiment. He also
reported the sub-harmonic resonance at approximately half and one third of the bending
critical speed of the rotor to be the prominent crack indicators. Mayes and Davis [89] per-
formed a detailed analytical and experimental investigation for turbine shafts with cracks.
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They derived a rough analytical estimation of the crack compliance based on the energy
principle of Paris and measured it on a test rig. They obtained analytical solutions by
considering an open crack, which leads to a shaft with dissimilar moments of inertia in
two perpendicular directions, a problem with a known analytical solution. Grabowski [49]
argued that in shafts of practical interest the shaft deflection due to its own weight is
orders of magnitude greater than the vibration amplitude. Therefore he suggested that
non-linearity is not affecting the shaft response since the crack opens and closes regularly
with the rotation. Therefore the equations of motion can be considered linear with variable
coefficients.

A very simple model of a flexible rotor is the so called de Laval rotor, sometimes also
called Jeffcott rotor. This rotor system has historical meaning due to the fact that Jeffcott
published the theory about this system in 1918, while de Laval investigated experimentally
the self centering effect of the rotor already in 1883. [122], [112]. Today, the Jeffcott rotor
is often used in order to explain the basic dynamic behaviour of a flexible shaft with a
mass located in the shaft center. Dimarogonas and Papadopoulos [35] investigated the de
Laval rotor with an open crack. They carried out analysis of cracked rotors neglecting
the non-linear behaviour of the crack by assuming constant stiffness asymmetry. Further-
more, analytical solutions are obtained for the closing crack under the assumption of large
static deflections. The computation of the local flexibility was based on the plane strain
assumptions for the shaft and they used the stress intensity factors for the plane strip,
since such factors are not available for the transverse crack on a rotating cylindrical shaft.
Gasch [41] demonstrated that opening and closing of the crack during rotation is mainly
due to shaft self-weight. He provided a simple but comprehensive survey of the stability
behaviour of a rotating shaft with a transverse crack, and of the forced vibrations due
to imbalance and to the crack. By utilizing a single parameter ’hinge’ crack model, he
assumed weight dominance and employed a perturbation method into his analysis. Mayes
and Davies [89] analysed experimentally and theoretically the effects of a transverse crack
on a rotor. They calculated the dynamic response of a cracked shaft and concluded that
its non-linear response depends on the phase between unbalance and position of the crack.
Mayes and Davies [90] introduced a model which is more practical for deep cracks than a
hinged model and this model is called Mayes’ steering function. They suggested sinusoidal
stiffness variation to model the breathing in a more accurate if the crack opens and closes
gradually due to gravity.

Jun et al. [66] derived the equations of motion for a simple rotor with a breathing crack
based on LEFM, and the breathing crack model is further simplified to a switching crack
model. By using the switching crack model, the conditions for crack opening and closing
are derived. They proposed a response dependent breathing crack model. The model it-
eratively estimates the status of the crack closure using forces acting on the crack section,
and thereby evaluated the stiffness of the cracked section. In this way, the model accounts
for partial opening and closing of crack. Patel and Darpe [104] devoted nonlinear dynamics
of the flexible cracked de Laval rotor on simple rigid supports. Their work examined the
non-linear character of the cracked rotor in the subcritical speed range, using two well-
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known crack models; switching crack and breathing crack. They reported that unbalance
phase, unbalance level, depth of crack and damping in the system have significant influence
on the nonlinear vibration features of the cracked rotor with switching crack but have no
influence on the rotor with breathing crack.

There are obviously many different approaches to the problem of cracked rotor dynamics
studies the coupling between lateral, longitudinal, and torsional vibrations. Papadopoulos
and Dimarogonas [101], [100], [103] extensively addressed the issue of coupling of vibrations
due to a crack. They proposed the presence of either of bending, longitudinal or torsional
mode natural frequency in the vibration spectra of the other modes as a potential indicator
of a crack in the shaft. For this purpose they used harmonic sweeping excitation. The ex-
citation, however, is given to non-rotating shaft. The other authors discussed some recent
issues in coupled vibrations due to the crack are Chasalevris and Papadopoulos [18], Dado
and Abuzeid [28], Sekhar [124], [123], Sekhar and Prabhu [126] and Sekhar and Prasad
[129].

Ostachowicz and Krawczuk [98] presented the influence of transverse cracks on the cou-
pled torsional and bending vibrations of a rotor. They developed the stiffness matrix
for a beam element containing a single-sided open crack using finite element (FE) and
fracture mechanics technique. Sekhar and Prabhu [127] used FE model for the cracked
rotor with open crack and studied possibility of backward whirl and fluctuation of bending
stresses due to crack. Darpe et al [30] presented accounts for coupling between longitudi-
nal, lateral and torsional vibrations for a rotating cracked shaft using a response-dependent
non-linear breathing crack model. By including the axial degree of freedom in their anal-
ysis, the stiffness matrix formulated is an extension of the one developed by Ostachowicz
and Krawczuk [98]. They used a refined breathing crack model that accounts for partial
opening and closing of crack through sign of SIF at the crack edge. In addition, they also
proposed a concept of crack closure line to be able to study the flexibility variation with
amount of crack opening. They assumed that the crack closure line is an imaginary line
perpendicular to the crack edge.

Muszynska et al. [92] discussed rotor cross coupled lateral and torsional vibrations due to
unbalance, as well as due to shaft asymmetry under a constant radial preload force. In
their experiment, an asymmetric shaft was used to simulate the behaviour of a crack. Wu
and Meagher [154] investigated the vibration response of cracked and asymmetric shafts.
Non-dimensional analytical models of extended de Laval rotors are derived from Lagrange’s
equations taking into consideration the lateral/torsional vibration coupling mechanism in-
duced by a breathing crack or a geometry asymmetry.

Many different approaches to model the behaviour of a crack in rotating structures have
been proposed and published. In the first one, the crack is assumed to open and close fully
following a square pulse function (Jun et al. [66], Patel and Darpe [104]). This behaviour
is connected to a rather small crack, while a deep crack could be associated with a har-
monic variation (Papadopoulos [99]). Another model is the regularly periodic breathing
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crack model for heavier rotors. This crack may gradually open and close during rotation.
A common model of this behaviour can be found in Mayes and Davies [90], Gasch [41],
Sinou and Lees [136], [137], where the opening and closing of the crack is described by a
cosine function. The cosine function model assumes that the gravity force is much greater
than the unbalance force. Furthermore, no direct relationship between the shaft stiffness
and the material properties of the shaft exist.

Another approach is the breathing crack model using SIFs (Jun et al. [66], Papadopoulos
and Dimarogonas [101], [103], Darpe et al. [30], Arem [7], Daoud et al. [29], Kisa et
al. [73], Qian et al. [110]. In general, the equations of motion for a simple rotor with a
breathing crack were derived using the local flexibility concept and the fracture mechanics
approach for its computation (Dimarogonas and Papadopoulos [35]). A crack in a rotor
is often simulated using the switching crack model, also known as hinge model, or the
breathing crack model. In real cracked rotors, the stiffness variation is likely to be grad-
ual, the assumption of abrupt stiffness switching is not appropriate. Hence, the switching
crack model might adequately represent very shallow cracks and should be used with care
to predict the vibration characteristics of the cracked rotor, particularly for deeper cracks,
which can cause chaotic and quasi periodic vibrations [104]. In contrast, in the breathing
crack model, the amount of open part of the crack continuously changes with the shaft
rotation, thereby partial opening and closing of the crack are accounted.

Chondros et al. [23] developed a consistent continuous cracked beam theory. They used
LEFM methods to model the crack as a continuous flexibility in the vicinity of the crack
region investigating the displacement field. They also proposed that LEFM allows the
development of a consistent cracked beam vibration theory without assumptions for the
stress field. Penny and Friswell [106] used a simplistic model of the non-linear behaviour
of a beam with a closing crack. Bachschmid and Tanzi [9] investigated the deflections of
a beam with circular cross-section presenting a transverse crack of 50% depth caused by
various loads. The characteristic breathing behaviour of the cracked area was also analysed
and compared to that obtained with a rather simple one-dimensional model, which was
compared to experimental results. They emphasized the differences between experimen-
tal results and computational predictions based on LEFM. Georgantzinos and Anifantis
[47] studied the effect of the crack breathing mechanism on the time-variant flexibility
due to the crack in a rotating shaft considering quasi-static approximation. The effect of
friction is also considered in the cracked area. Portions of crack surfaces in contact are
predicted, and direct and cross-coupled flexibility coefficients are calculated by applying
energy principles. Kisa and Brandon [72] developed a FE model, the component mode
synthesis method and the LEFM theory to compute the eigensystem for a cracked beam
for different degree of closure. In addition, contact phenomena when a crack opens and
closes during vibration are taken into account. Boubolas and Anifantis [15] developed a FE
model in order to study the vibrational behaviour of a beam with non-propagating edge
crack. The beam is discretized into FEs while the breathing crack behaviour is treated as
a full frictional contact problem between the crack surfaces.
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Since analytical SIFs for an edge crack in a rotating cylinder are not available, the shaft
is considered to be a sum of elementary independent rectangular strips (Andrieux and
Varé [5]) and no interaction between them is assumed to take place (Chasalevris and
Papadopoulos [19]). The geometric functions used that describe the strain energy density
are often not accurate enough, due to the fact that the crack passes from stress state caused
by the vertical moment to that of horizontal moment. Then, the compliance is obtained
by integrating along the crack tip. If the crack depth exceeds the radius of the shaft, then
the elements of the compliance matrix present a divergence. This is due to a singularity
that the strain energy release rate method has near the edges of the crack tip, giving thus
the infinite values. It was reported by Papadopoulos [99], that divergence does not reflect
reality. Furthermore, the relative crack depth or crack depth ratio is the only parameter
of the crack geometry for governing the SIF in the reference cited above. During crack
growth, the relative crack depth is not enough to describe the crack geometry. Shih and
Chen [131], [132], develop a two parameter relationship between SIF and crack geometry
which accounts for crack aspect ratio (ratio between crack depth and crack length) and
relative crack depth. Two issues related to the critical speed of a cracked rotor have been
emphasized [21]. One of these is the stability of a cracked rotor near its critical speed ([8],
[62], [58], [128], [125], [135], [102], [20], and [157]). The other is the transient response
when the rotor passes through its critical speed ([108], [31], [128]).

1.2.2 Cohesive zone model

The CZM describes material failure on a phenomenological basis (i.e. without considering
the material microstructure). The advantage of this model when compared to LEFM is
that the parameters of the respective models depend only on the material and not on the
geometry. This concept guarantees transferability from specimen to structure over a wide
range of geometries. Furthermore, CZMs are surfaces of discontinuities where displace-
ments are allowed to jump. A specific constitutive law relating the displacement jumps
and proper traction defines the CZM. Within the cohesive zone approach crack nucleation,
propagation, and arrest are a natural outcome of the theory. The latter is in contrast to
the traditional approach of fracture mechanics where stress analysis is separated from a
description of the actual process of material failure. The origin of the CZM can be traced
back to the strip yield model proposed by Dugdale [37] and Barenblatt [14] in which the
narrow zone of localized deformation ahead of the crack tip was substituted by cohesive
traction between the bounding surfaces. Dugdale used the concept of a simple fracture
process zone, where the closing stress is assumed to be constant, to model the plane stress
plastic zone at a tip of a crack as a fictitious extension to the real crack using the condi-
tion of smooth closure to find the extent of the plastic zone. Barenblatt was the first to
formulate fracture mechanics in terms of a fracture process zone. Considering an elastic-
brittle material, he proposed that there was an inner zone to the crack where the atomic
cohesive forces, dependent on the opening, were important. The difference between Baren-
blatt and Dugdale was that the former was modelling the interatomic forces at the crack
tip and the latter using the concept of a fracture process zone to model plastic deformation.
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The fracture process zone model into two main versions is classified by Cotterell [26],
namely the fictitious crack model pioneered by Hillerborg and the crack band model pro-
posed by Bažant. He presented that modelling the fracture process zone with the classic
one parameter models of elastic and plastic fracture have been very successful, but they
have two major limitations: they can only be used if there is an initial crack, and the frac-
ture process zone must be small compared with the dimensions of the specimen. Classic
elasto-plastic models have a third limitation, only small crack growth can be modelled.
Elices et al. [38] reviewed the cohesive process zone model, a general model which can deal
with the nonlinear zone ahead of the crack tip due to plasticity or microcracking present in
many materials. They described that LEFM has proven a useful tool for solving fracture
problems provided a crack like notch or flaw exists in the body and the nonlinear zone
ahead of the crack tip is negligible. This is not always the case, and for ductile metals, the
size of the nonlinear zone due to plasticity or microcracking is not negligible in compari-
son with other dimensions of the cracked geometry. Moreover, even for brittle materials,
where the process zone can be lumped into a single point, the presence of an initial crack
is needed for LEFM to be applicable. This means that bodies with blunt notches but no
cracks cannot be analysed using LEFM.

The constitutive behaviour which causes the cohesive elements to open and eventually to
fail is described by the so called TSL. It relates the traction vector to the displacement
jump across the interface. Various functions have been proposed for the shape of the TSL.
Common to all shapes is that they contain two model parameters, namely the maximum
traction sustainable by the element and a critical separation at which the element finally
fails, that was reported by Hutchinson and Evans [59]. The energy dissipated by the ele-
ment until total failure is derived as the integral of the TSL. Volokh [146] examined the
fracture prediction done by four different CZMs considering a block-peel test. He con-
cluded that the role of the shape of the CZM is essential in describing the fracture process.
Jin and Sun [63] investigated a comparison of CZM and fracture mechanics based on near
tip stress field for mode III crack. A review of the theory concerning CZM applications
to various materials was made by Siegmund and Brocks [133]. CZMs have been used to
simulate the fracture process in a number of material systems including metallic materials,
ceramic materials, concrete, polymer and fiber reinforced plastic composites. They have
been used to simulate fracture under static, dynamic and cyclic loading conditions. Xu
and Needleman [155] used the CZM to study the void nucleation at the interface of particle
and matrix material, Tvergaard and Hutchinson [145] used a trapezoidal shape of the TSL
to calculate the crack growth resistance in elastic-plastic materials.

Shet and Chandra [130] analyzed energy balance when using CZM to simulate fracture
processes. Li and Chandra [79] analyzed crack initiation and crack growth resistance in
elastic plastic materials, dominated by crack tip plasticity with the crack modelled as a
CZM. Geubelle and Baylor [48] utilized a bilinear CZM to simulate spontaneous initiation
and propagation of transverse matrix cracks and delamination fronts in thin composites
plates subjected to low-velocity impact. Turon et al. [144], [143] used the bilinear CZM
to determine the constitutive parameters for the simulation of progressive delamination
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(or interfacial cracking between composite layers). Their procedure accounts for the size
of a cohesive FE and the length of the cohesive zone to ensure the correct dissipation of
energy. Alvano and Sacco [4] proposed a new method to combine interface damage and
friction in a CZM. Cornec et al. [25] proposed a method for practical application of the
CZM with emphasis on metallic material. The method used consists of a defined shape of
the TSL, determination of the parameters for the TSL, and suggestions for FE analysis.
In addition, they implemented the CZM using the programming language FORTRAN as
a user defined element within the FE code ABAQUS.

The crack growth in elastic-plastic materials that exhibit ductile fracture, i.e. induced
by void growth and void coalescence was reported by Scheider [118]. There exist two ap-
proaches to the modelling of material failure Gurson-Tvergaard-Needleman (GTN) model
and CZM with constant parameters (numerically fitted to the experiments) and triaxiality
dependent parameters (determined from GTN unit cell). However, the TSL depends on the
stress state, which can be characterised by the triaxiality, which is the hydrostatic stress di-
vided by the von Mises equivalent stress. This issue was first investigated by Siegmund and
Brocks [134]. The approach was extended to simulation of dynamic ductile crack growth
by Anvari et al. [6]. Banerjee and Manivasagam [13] proposed a versatile CZM to predict
ductile fracture at different states of stress. The formulation developed for mode-I plane
strain accounts explicitly for triaxiality of the stress-state by using basic elastic-plastic
constitutive relations combined with two model parameters, which are independent of the
stress-state. The importance of the CZM concept for describing fracture in a wide range of
engineering materials has been recognized over the past few decades. However, its proper
numerical implementation has caused problems. Essentially, the CZM is a discrete model
and cannot be implemented readily in standard, continuum-based FEM. Crack paths are
normally not known in advance. To partly circumvent this difficulty, proposals have been
made to insert interface elements between all continuum elements, to carry out remeshing
procedures or to use mesh-free methods. A consistent extension to dynamic problems is
possible.

1.3 Objectives

The purpose of this dissertation is to address the application of CZM of a cracked rotating
shaft and to analyze the dynamic behaviour of a shaft with transverse breathing crack.

The present study is organized to tackle the following questions and issues.

• What are advantages from using CZM in dynamic problems such as vibrations of a
rotating shaft instead of fracture mechanics approach?

• It is known that stiffness of a cracked rotating shaft varies with time due to breathing
mechanism. Can the stiffness variation of a cracked shaft be modelled using CZM?,
and how is the result compared to the breathing crack model based on LEFM?
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• How is the stability of a rotor system affected by a transverse breathing crack?

• How can CZM in conjunction with FEM be implemented for a cracked rotor model?

• Which parameters have significant influence on the breathing mechanism during
rotation of a shaft?

In Figure 1.2, a flow chart of the conducted research is presented. Contributions of this
research are expected to provide progress in modeling of cracked rotor and to provide more
accurate and meaningful results.

Figure 1.2: Research design
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1.4 Structure of the dissertation

The dissertation is organized into seven chapters, and structured in a way to meet the
objectives of the study. In particular:

In Chapter 1, motivation of research on the application of the CZM to the analysis of a
rotor with a transverse crack is presented. Literature on dynamics of cracked rotor and
CZM concepts is also reviewed. Objectives of the research including research design and
method and structure of the dissertation are formulated systematically.

Chapter 2 introduces the definitions and theorems of the fracture process zone and CZM
such as basis of the models, location of crack tip, then kinematic and constitutive relation
of CZMs. The FE implementation including one cohesive element test, stress distribution
on a cracked plate, simulation of delamination and energy balance concept are presented.
This chapter also deals with the triaxiality dependent cohesive zone in ductile materials
and emphasizes formulation of triaxiality dependent model and TSL for ductile materials.
In the last section, an implementation of the CZM for a cracked shaft under rotating load
is introduced. This chapter provides a theoretical background for the dissertation.

In Chapter 3, some different approaches of breathing steering function during rotation of
shaft are discussed. Several breathing crack shape models reported in literature are also
presented. The simple cracked rotor model or a de Laval rotor is extended to account for
the changes of stiffness during rotation. First, shaft stiffness variation due to the breathing
crack during rotation based on LEFM is reviewed. Then, the CZM is applied to estimate
the shaft stiffness variation on the cracked rotor. Breathing crack shape is modelled by a
parabolic line for deep crack and by a straight line for a shallow crack.

The instability due to parametric excitation of simple cracked rotor models treated in pre-
vious chapter are investigated in Chapter 4. Perturbation method to obtain the boundaries
of stability regions is applied. In this chapter is also shown that some small damping in
the system is very helpful to guarantee stability.

Chapter 5 presents FE modelling of the cracked shaft based on equivalent beam using
CZM. Two FE models one dimensional continuum rotor are proposed. The first model is
based on different asymmetric area moments of inertia of the cross section due to the crack.
The other model is based on the TSL using one cohesive element with zero thickness which
is placed between the continuum elements. Chapter 5 also deals with the implementation
of CZM in FE to predict and to analyse the dynamic behaviour of cracked rotor. The re-
sults are compared with the classical analytic method; Timoshenko beam theory for open
cracked shaft without disk. Dunkerley’s equation and Rayleigh’s method are also used to
estimate lower and upper bounds of the fundamental natural frequency from CZM for a
cracked shaft with disk.
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In Chapter 6, the breathing mechanism of a simple cracked shaft on rigid supports has been
investigated. An integrated simulation process of FE and multi-body simulation (MBS) is
employed. At the first step, an elastic cracked shaft with various relative crack depths is
modelled by FE. The analysis deals with the natural frequencies and mode shapes of the
cracked rotor and the uncracked one. Furthermore, breathing crack under rotating load
(non-rotating shaft) is also investigated. At the second step, the FE model of an elastic
cracked shafts are exported into MBS in order to analyze the dynamic loads, due to the
crack, unbalance and inertia force acting during rotation at different rotating speeds. The
effect of orientation angle of the unbalance mass on the cracked rotor has also been demon-
strated. Finally, the vibration responses in the centroid of the shaft obtained from MBS
have been exported into FE to observe the breathing mechanism. In the last section of
Chapter 6, the proposed model for breathing crack in Chapter 3 is validated by comparing
to the breathing mechanism obtained by an integrated simulation process of FE and MBS.

Chapter 7 concludes the dissertation by advancing a framework on application of CZMs
for the investigation of the dynamic behaviour of a transverse cracked rotor and outlining
the contribution to theory, limitations, directions for future research, as well as some im-
plications of the findings for practice.

In Figure 1.3, the organization of core chapters is presented along with the interaction
between chapters and their subsections.
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1 Introduction

Figure 1.3: Structure of the dissertation and corresponding chapters
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2 Cohesive zone models

This chapter presents some basic aspects of fracture process zone. Three types of ap-
proaches to model the fracture process zone are introduced namely; fracture mechanics,
cohesive zone model (CZM) and damage mechanics. A large section of this chapter is
devoted to the values of the elastic limit and failure threshold, as well as an overview of
CZM for brittle and ductile materials. Fundamentals of CZM and location of crack tip,
further, the mechanical behavior of CZM, basic of one dimensional kinematics and consti-
tutive relation of CZM are introduced. This chapter aims at the implementation of CZM
in modeling of a cracked rotor with a breathing crack, and it is essential to understand the
basics and fundamentals of CZM. The CZM using TSL is implemented in the FE model-
ing. In order to test the accuracy of FE programming, firstly a simulation of one cohesive
element is investigated. Another implementation, stress distribution on a cracked plate
based on LEFM, the Irwin’s model, the Dugdale’s model and the CZM are explored. These
simulations are made to show that the presence of cohesive elements in a zone ahead of
the crack tip has stresses lowering due to the softening of cohesive elements. Simulation of
delamination in the double cantilever beam (DCB) and the mixed-mode bending (MMB)
test are included for investigating influence of interface stiffness parameter. Other section
of this chapter examines how the external work flows as recoverable elastic strain energy,
dissipated plastic energy and cohesive energy. The CZM allows the energy to flow into the
fracture process zone.

This chapter also includes a section on triaxiality dependent CZM for ductile materials
and discusses TSLs for ductile materials. In particular, implementation of the CZM for a
cracked shaft is introduced using the FE with a rotating loading. Although in this chapter
the dynamic behavior of a cracked rotor is not yet discussed, the breathing mechanism of
non rotating cracked shaft under rotating loading is demonstrated and compared to the
results in literature. Two approaches of the open crack model based on change in second
moment of area and change in local stiffness are introduced in order to compare with the
breathing crack mechanism of a non rotating shaft based on CZM.

2.1 Fracture process zone

Fracture mechanics in general is used to understand and predict structural failure due to
the presence of macroscopic cracks, which could not be captured by classical theories of
elasticity and plasticity. The theory of fracture mechanics is strongly based on the theory
of elasticity and many empirical solutions to simple problems have been derived for gen-
eral use. General application of empirical solutions requires simplification of the actual
problem to match the empirical basis, often leading to uncertainty in the accuracy. The



2 Cohesive zone models

crack tip as addressed in fracture mechanics is a mathematical idealisation, but in reality, a
region of material degradation exists ahead of a micro-crack, the so-called fracture process
zone, where finally new surfaces are created. Identifying the micro-mechanisms occurring
in the fracture process zone is crucial for a fundamental understanding and modelling of
macroscopic fracture.

The fracture process zone can be modelled using the following three approaches [16];

1. Fracture Mechanics. LEFM is applied when the fracture zone is surrounded by
an elastic region that can be characterized by stress intensity factors in case of linear
elasticity or J-integrals in case of nonlinear elasticity. The process zone is a point,
where stresses and strain may become singular. Fracture mechanics parameters like
J-integral, or crack-tip opening displacement (CTOD) are introduced, which under
certain conditions dominate the crack-tip field. No splitting of dissipation into global
plasticity and local separation is possible. Numerical simulation of crack extension
is based on node release following an R-Curve, J(∆a) or δ(∆a), where ∆a is the
macroscopic crack extension. Fracture mechanics has been used to model crack
problems on the assumption of the existence of initial defects or cracks and cannot
be applied directly without initial defects or cracks.

2. Cohesive Zone Model. Separation of surfaces is admitted, which is governed by
a special cohesive law. The process zone is now a two-dimensional surface, and pa-
rameters like cohesive strength and separation energy characterise the local material
failure. Dissipation can be split into contributions by global plasticity and local ma-
terial separation. Respective cohesive elements are introduced at the interfaces of
continuum elements. Whereas these interface elements obey a special TSL the ma-
terial outside is described by conventional constitutive equations of elasto-plasticity.
These models relate traction to the relative displacement or separation at an inter-
face, where a crack may occur. Crack or damage initiation is related to an interfacial
strength, i.e. the maximum traction on the traction-separation curve. When the
area under this curve is equal to critical fracture energy, the traction is reduced to
zero and complete crack surfaces are formed.

3. Damage Mechanics. A softening constitutive behaviour accounting for damage is
quantified by internal variables like porosity, micro-crack density, etc. The process
zone is a volume. Damage models describe the evolution of degradation phenomena
on the microscale from initial (undamaged or predamaged) state up to creation of a
crack on the mesoscale (material element). From a physical point of view, damage
is always related to plastic or irreversible strains and more generally to a strain
dissipation either on the mesoscale, the scale of the representative volume element,
or on the microscale, the scale of the discontinuities. Lemaitre and Desmorat [78]
classified the level of damage as follows: in the first case (mesolevel), the damage is
called ductile damage if nucleation and growth of cavities in a mesofield of plastic
strains under static loading occurs. It is called creep damage when it occurs at
elevated temperature and is represented by intergranular decohesions in metals. It
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2.1 Fracture process zone

is called low cycle fatigue damage when it occurs under repeated high level loadings,
inducing mesoplasticity. In the second case (microlevel), it is called brittle fracture,
or quasi-brittle damage, when the loading is monotonic. It is called high cycle fatigue
damage when the loading is a large number of repeated cycles. In all cases, there are
volume defects such as microcavities, or surface defects such as microcracks.

Fracture mechanics studies are usually carried out under several idealized conditions, as
in case of LEFM or in case of small scale yielding. Details of the local crack tip fields are
uniquely characterized by a single macroscopic parameter such as the SIFs or correspond-
ing energy release rates. These global parameters are related to the corresponding material
parameters (typically the fracture toughness or critical energy release rates) that deter-
mine the critical conditions of initiation of crack growth. When the crack tip experiences
plastic yielding, the above concepts based purely on the theory of elasticity are not valid
and have led to the introduction of a path independent J-Integral, which is strictly valid
for a nonlinear elastic material. The property of path independence is lost if the energy
near the crack tip region is converted into significant inelastic energy due to plasticity or
when the material locally unloads during the propagation process. Fracture mechanics
analysis assumes the existence of an infinitely sharp crack leading to the singular crack tip
fields. However, in real materials neither the sharpness of the crack nor the stress levels
near the crack tip region can be infinite.

Recently, the CZM has emerged as a powerful tool for investigating the fracture processes
in materials and structures. The origin of cohesive zone concept can be traced back to the
strip yield model by Dugdale [37] and Barenblatt [14] in which the narrow zone of local-
ized deformation ahead of the crack tip was substituted by cohesive traction between the
bounding surface. Dugdale and Barenblatt proposed the concept of CZM as an alternative
approach to the singularity driven by fracture mechanics approach. In the CZM model,
a finite stress distribution in the vicinity of the crack tip involving interaction between
the crack faces is considered instead of just the singular crack tip. CZM has evolved as
a preferred method to analyze fracture problems in material systems not only because it
avoids the singularity but also because it can be easily implemented into an existing FE
code via an interface element. The CZM represents a narrow band of localized deforma-
tion and is idealized as a pair of surfaces on which cohesive tractions act. The cohesive
traction is defined as a function of the separation displacement in the form of TSL or
cohesive law. The Traction-separation relations for the interface are such that with in-
creasing interfacial separation, the traction across the interface reaches a maximum, then
decreases and eventually vanishes, permitting a complete decohesion. There is common
belief that CZM can be described by two independent parameters (Hutchinson and Evans
[59], Elices et al. [38]). These parameters may be two of the three parameters, namely the
cohesive energy, and either of the cohesive strength (traction) or the separation (relative
displacement). In general, cohesive energy is obtained from experiments and is believed to
be equivalent to the work of fracture; the latter quantity identified as, for example critical
strain energy release rate or cohesive energy GIC or critical J-energy or fracture energy JIC .
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2 Cohesive zone models

2.2 Ductile and brittle fracture

Elastic material is defined as the material that returns to its original configuration when
deforming forces removed. Although no real material is perfectly elastic, a brittle material
is simply one that behaves elastically up until the point where it fractures. In contrary
to an elastic material, a plastic material will not return to its previous configuration once
deforming forces have been removed. As stated before, real materials do not behave per-
fectly elastic. Real materials can be deformed only to a limited extent before they will no
longer return to their previous configuration. This limit is known as the elastic limit or
yield limit. When the elastic limit has been exceeded, the material enters a plastic regime
and begins to experience plastic flow. Eventually, at the failure threshold, it fractures.

The terms brittle and ductile relate to the relative values of the elastic limit and failure
threshold. If the failure threshold nearly coincides with the elastic limit, then the material
will experience only negligible plastic deformation before fracture. The term brittle refers
to such a material. In contrast, for a ductile material the failure threshold is significantly
larger than the elastic limit so that as the material deforms it experiences an elastic regime,
followed a plastic regime, and then finally fracture.

The significance of the distinction between ductile and brittle materials arises because
elastic deformation stores energy whereas plastic deformation dissipates it. When a brittle
material is deformed to its failure threshold, the majority of the energy used to deform it
is stored as elastic potential. When fracture occurs, the energy is released and it tends to
drive the fracture crack into the material. Thus, even though a large or small force may
be required to start a crack in a brittle material (depending on its toughness), once the
crack is started only a small amount of energy is required to push it further. In contrary to
the ductile material requires significantly more work to propagate a crack because energy
is being absorbed by plastic deformation. As a result, brittle materials tend to break at
or shortly past their elastic limit (almost no plastic deformation), while ductile materials
deform at stress levels beyond their elastic limit. In general the underlying causes of plas-
ticity are fairly complicated and they give rise to a number of phenomena. For example,
the energy absorbed by plastic deformation does not simply vanish and it may result in
effects such as fatigue weakening.

Ramberg and Osgood [111] introduced an equation to describe the non linear relationship
between stress and strain in materials near their yield limit, which can show whether the
materials are ductile or brittle. It is especially useful for metals that harden with plastic
deformation (strain hardening), showing a smooth elastic-plastic transition, and it has the
form

ε =
σ

E
+K

( σ

E

)n

(2.1)

where ε is strain, σ is stress and E is modulus of elasticity.
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2.3 Cohesive zone model

The first term on the right side σ/E, is equal to the elastic part of the strain, while the
second term K(σ/E)n accounts for the plastic part. Parameters K and n are constants
that describe the hardening behavior of the material and depend on the material being
considered. Introducing the yield strength of the material σY , and defining a new parameter
αm related to K as αm = K(σY /E)n−1, it is convenient to rewrite the last term of the
right side as follows

K
( σ

E

)n

= αm

σY

E

(

σ

σY

)n

(2.2)

Substituting Eq.(2.2) into Eq.(2.1), the Ramberg-Osgood equation can be written as

ε =
σ

E
+ αm

σY

E

(

σ

σY

)n

(2.3)

2.3 Cohesive zone model

2.3.1 Basis of the models

In the CZM, fracture nucleates as discontinuity surface able to transmit tensile load before
opening above a given displacement. Formation and extension of this surface require that
the maximum principal stress reaches a given value, namely the cohesive strength of the
material. When this occurs, the surface initiates or grows perpendicularly to the direction
of the maximum principal stress. The two faces of the surface exert on each other equal
and opposite tensile stresses (cohesive stresses) whose value is a unique function f(δ) of
the separation δ between the faces. When the separation reaches another given value (the
critical separation, δc or δsep), the cohesive stress vanishes and fracture takes place. Frac-
ture consists of the initiation and propagation of a crack produced by the opening and
advance of the cohesive zone (the zone where the cohesive stresses act) ahead of the crack
tip as shown in Figure 2.1.

Figure 2.1: Fracture process zone model
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2 Cohesive zone models

The fracture behaviour of each material is described by the cohesive traction as a function
σn = σmaxf(δ), where σmax is the peak value of traction (Figure 2.2). Besides the cohesive
strength and the critical separation, a key value of this curve is the cohesive energy GIC

(for mode I) the area enclosed under the curve. The mechanical behaviour of the bulk
material is independent of the softening function and can be described by any constitutive
equation.

Figure 2.2: Traction separation law for brittle materials

2.3.2 Location of crack tip

The fracture process in CZM is shown in Figure 2.3, where the fracture process zone can be
defined as the region within the separating surfaces where the surface traction values are
nonzero. This also implies that processes occurring within the process zone are accounted
for only through the traction-separation relations. In fracture mechanics, the crack growth
problem is identified as a moving boundary value problem in which the primary unknown
is usually the trajectory of a single point referred to as crack tip. CZM represents a
zone or a region where material separates, the location of a crack tip within the cohesive
process zone cannot be uniquely identified. There are a number of traction-separation
forms available in literature [130], [79], [146]. In this work, the concept of identifying the
location of the crack tip, by Shet and Chandra [130] is adopted. They proposed to assume
the location of a cohesive crack tip at point (δ0, σmax) in order to interpret the numerical
result. There seems to be no standard way of identifying the tip of the crack from traction
and separation curve.
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2.3 Cohesive zone model

Figure 2.3: Fracture process in cohesive zone model

2.3.3 Kinematics and constitutive relation of cohesive zone models

The displacement jump across the interface of the material discontinuity required in the
constitutive model JuiK, can be obtained as a function of the displacement of the points
located on the top and bottom side of the interface u+

i and u−i , respectively

JuiK = u+
i − u−i (2.4)

where u±i are the displacements with respect to the fixed Cartesian coordinate system. A
co-rotational formulation is used in order to express the components of the displacement
jumps with respect to the deformed interface. The coordinate x̄i of the deformed interface
can be written as

x̄i = Xi +
1

2

(

u+
i − u−i

)

(2.5)

where Xi are the coordinates of the undeformed interface. The components of the dis-
placement jump tensor in the local coordinate system on the deformed interface, δm are
expressed in terms of the displacement field in global coordinates

δm = ΘmiJuiK (2.6)

where Θmi is the rotation tensor.

The constitutive operator of the crack interface, Dij relates the element tractions σj to the
displacement jumps δi

σj = Dijδi (2.7)

This constitutive damage model was previously proposed by Turon et al. [142].
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2 Cohesive zone models

The free energy density per unit surface of the interface ψ is defined as

ψ (δ, d. ) = (1 − d. )ψ0 (δ) (2.8)

where d. is scalar damage variable and ψ0(δ) is the free energy per unit surface defined as

ψ0 (δ) =
1

2
δiD

0
ijδj i = 1, 3; j = 1, 3 (2.9)

The constitutive equation obtained by differentiating the free energy with respect to the
displacement jumps is given as

σi =
∂ψ

∂δi
= (1 − d. )D

0
ijδj (2.10)

where D0
ij is the undamaged stiffness tensor and defined as

D0
ij = Kpδij (2.11)

and Kp is a penalty stiffness.

2.4 Finite element implementation

In a FE model using the CZM approach, the complete material description is separated
into fracture properties captured by the constitutive model of the cohesive surface, and the
properties of the bulk material are captured by the continuum regions. The model shown
in Figure 2.4 is implemented into a commercial FE code ABAQUS with its user element
UEL subroutine coded in FORTRAN.

Figure 2.4: Representation of the fracture process using CZM in FE model
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2.4 Finite element implementation

2.4.1 One cohesive element test

To examine the accuracy of finite element programming, first one cohesive element and one
continuum element are used. The FE model shown in Figure 2.5 is composed of one 4-node
plane strain element connected by a 4-node cohesive element representing the interface.
The material properties used in the model were modulus of elasticity E, critical strain
energy release rate GIC , cohesive strength σmax and penalty stiffness Kp.

Figure 2.5: Simulation of one cohesive element

The load is applied in one step only in the normal direction (y-axis). Both traction
and separation increased, till the traction reaches the peak value (σmax) at a characteristic
separation δ0, as shown in Figure 2.6. Further, separation increases and traction decreases,
until it vanishes completely, implying the creation of two new traction-free surfaces, i.e.
crack growth. The energy required to create new surfaces in the area under the traction-
separation curve, namely the cohesive energy is given as [97]

GIC =
1

2
σmaxδsep (2.12)

=
1

2
Kp δ0 δsep (2.13)

The material separation and the damage of the structure are described by interface ele-
ments at the boundaries of the undamaged continuum elements. Thus, the mechanical
behaviour of the material is split in two parts, the continuum with any elastic-plastic con-
stitutive law and the CZM specifying material damage and separation. For opening crack
propagation mode or mode I, the function σ(δ) using bilinear TSL is described by

σ =











Kpδ for 0 < δ < δ0,

Kp (1 − d. ) δ for δ0 < δ < δmax,

0 for δ ≥ δmax.

(2.14)

where d. is scalar damage of the material.
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2 Cohesive zone models

Figure 2.6: Bilinear traction separation law written in subroutine

The FE results using ABAQUS are the traction-separation curves (σ [N/mm2] vs. δ [mm])
and the area GIC [N/mm] are shown in Figure 2.7. The results show that, when the
maximum separation reached, the traction vanishes and the continuum element initially
connected by the cohesive element is disconnected. The area of the traction-separation
curve represents the cohesive energy as shown in Figure 2.6.

Figure 2.7a-c show the variation of cohesive strength σmax. As can be seen, the maxi-
mal traction due to the load reaches until the peak value σmax then decreases. All of the
traction-separation curves in Figure 2.7a-c have the same areas as Figure 2.6. Figure 2.7d-f
represent the different values of cohesive energy GIC . If the cohesive energy increases, the
area of the traction-separation curve does too. Variation of penalty stiffness Kp is depicted
in Figure 2.7g-i (detail about penalty stiffness influence will be discussed in the next sec-
tion). Figure 2.7j-l display the various values of applied displacement or separation δ while
the other parameters are constant. In case applied displacement is greater than maximum
separation δc, traction vanishes and no traction again until applied displacement reached.

26



2.4 Finite element implementation

Figure 2.7: Finite element results of one cohesive element for different values of parameters,
σmax, GIC , Kp and δ
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2 Cohesive zone models

2.4.2 Stress distribution on a cracked plate

In a second implementation, a thin steel plate of width b = 1 m containing length of edge
crack of 0.2 m is subjected to a stress σ = 97.6 MPa normal to the crack plane as shown
in Figure 2.8. The yield stress and the critical SIF are assumed to be 250 MPa and 66
MPa

√
m, respectively.

Figure 2.8: Thin steel plate contains an edge crack subjected to normal stress

2.4.2.1 Linear elastic fracture mechanics (LEFM)

In design, we would like to know the applied stress that causes fracture. This leads to an
approach to LEFM that uses the SIF as the describing parameter. The SIF KI , represents
the amplitude of the crack tip stress singularity and is dependent on the body geometry,
crack size, load level, and loading configuration.

The SIF for a cracked plate with crack length a for an applied stress σ is given by [45]

KI = σ
√
πa (2.15)

In a region near the crack tip, the stress is concentrated at the tip of a crack,

σy =
σ
√
πa√

2πx
=

KI√
2πx

(2.16)

where x is the distance ahead of the crack as shown in Figure 2.9.

For a single edge cracked plate under uniform tension, there is a geometry factor F (a/b),
which has to be taken into account in order to correct the SIF [50]

KI = σ
√
πa

√

2b

πa
tan

πa

2b

0.752 + 2.02a
b

+ 0.37
(

1 − sinπa
2b

)3

cosπa
2b

(2.17)

Figure 2.9 shows the elastic crack tip stress distribution in front of the crack tip. The
above equation is valid only in the crack tip region in which the stresses are dominated by
the singularity.

28



2.4 Finite element implementation

Figure 2.9: Elastic stress distributions at the crack tip

2.4.2.2 Elastic-plastic fracture mechanics (EPFM)

A. Irwin’s model [61]

Irwin presented a simplified model for the determination of the plastic zone surrounding
the crack tip under small-scale yielding. He focused only on the extent along the crack
axis and not on the shape of the plastic zone. As a result of the crack tip plasticity, the
displacements are larger and the stiffness of the plate is lower than that for the elastic case.

The length of the plastic zone c in front of the crack for plane stress is given by

c =
1

π

(

KI

σY

)2

(2.18)

where σY is the yield stress. The effective crack has a length

aeff = a+
1

2
c (2.19)

Thus, the effective SIF for a effective length of crack aeff is

KI = σ
√
πaeff

√

2b

πaeff

tan
πaeff

2b

0.752 + 2.02
aeff

b
+ 0.37

(

1 − sin
πaeff

2b

)3

cos
πaeff

2b

(2.20)

An iterative process is needed for determining the effective SIF according to Irwin’s model.
Finally, the stress distribution directly ahead of the crack σy is calculated from the following
equation

σy =
σ
√
πaeff√
2πx

=
KI eff√

2πx
(2.21)

Figure 2.10 shows the elastic crack tip stress distribution in front of the crack tip based
on Irwin’s plastic zone correction.
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Figure 2.10: Stress distribution of Irwin’s model ahead of the crack tip

B. Dugdale’s model [37]

A simplified model for plane stress yielding which avoids the complexities of a true elasto-
plastic solution was introduced by Dugdale [37]. The model applies to very thin plates
in which plane stress conditions dominate, and to materials with elastic-perfectly plastic
behaviour which obey the Tresca yield criterion.

Length of the plastic zone c is determined from the condition at which the stress distribu-
tion at the tip of the effective crack should remain bounded and equal to the yield stress.
Length c in front of the physical crack carries the yield stress σY tending to close the crack.
(The part c is not really cracked, the material can still bear the yield stress [17]). Size of
c is proposed such that the stress singularity disappears. Figure 2.11 presents the elastic
crack tip stress distribution in front of the crack tip based on Dugdale’s plastic zone model.

c =
π

8

(

KI

σY

)2

(2.22)

Figure 2.11: Dugdale’s approach ahead of the crack tip
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C. Cohesive zone model

In the FE approach, the CZM can be implemented as interface elements that are compatible
with solid FEs. The cohesive elements are composed with zero thickness connected together
with four-node solid elements (Figure 2.12).

Figure 2.12: Schematic of an edge crack using CZM in FE model

For the sake of comparison, the elastic-plastic stress distributions based on Irwin’s model
and Dugdale’s model are shown in Figure 2.13. As results, the Irwin’s model underesti-
mates the length of plastic zone by about 20%, compared to the Dugdale’s model, but the
CZM gives rather different results which depend on the plasticity parameter of material
such as hardening exponential and shape of TSL. Figure 2.14 depicts the variation of the
dimensionless quantities Keff/KI and σy/σY using different approaches.

In the presence of CZM elements, the normal stresses drop in the region where normal sep-
aration has exceeded critical separation causing softening. When the separation between
cohesive surfaces reaches maximum value for elements nearest to the crack tip, the stresses
developed are lower within the softening zone. For distances beyond the softening zone,
the presence of CZM elements does not influence the stress field as shown in Figure 2.13.
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Figure 2.13: Stress distributions in front of the crack tip using LEFM, EPFM and CZM
[82]

Figure 2.14: Normalised stress intensity factor versus normalised applied stress
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2.4.3 Simulation of delamination

Delamination is a mode of failure for composite materials. Delamination, or interfacial
cracking between composite layers, is one of the most common types of damage in lami-
nated fibre-reinforced composites due to their relatively weak interlaminar strengths [144].
Eight-node cohesive elements are used to simulate mode-I crack growth on the double
cantilever beam (DCB) and mode I-II crack growth on the mixed-mode bending (MMB).
Both simulated models are 100 mm-long, 25 mm-wide and 2 x 1.5 mm-thick arms. The
interface elements open according to some decohesion law and finally loose their stiffness
so that the adjacent continuum elements are disconnected. Thus, the crack can propagate
only along the element boundaries. If the direction of crack extension is not known in
advance, the finite element mesh has to allow for different crack paths.

Cohesive FEs have been developed to capture the initiation and propagation of delamina-
tion cracks uses a bilinear relation between traction and separation or displacement jump.
A bilinear TSL is similar to the softening law of the CZM but with an initial linear elastic
response before crack initiation. This linear elastic part is defined using a penalty or in-
terface stiffness parameter Kp, that ensures a stiff connection between the surfaces of the
material discontinuity. The penalty stiffness should be large enough to provide connections
but small enough to avoid numerical problem in a FE analysis. A reasonable choice for
the value of penalty stiffness suggested by Zou et al. [160] is as follows

Kp =
(

105 ÷ 107
)

τmax (2.23)

where τmax is shear strength in N/mm2 and the values of (105÷ 107) in mm−1.

Turon et al. [144] proposed the penalty stiffness of the CZM for delamination

Kp =
αpE

t
(2.24)

where αp is parameter much larger than 1 but smaller than 50, E is modulus of elasticity
and t is thickness of the material.

If the interface is represented using a penalty stiffness parameter, the tractions can be
reasonable obtained before damage initiates, although the separation or relative displace-
ment do not have any physical meaning, as they can be affected significantly by the initial
stiffness of the interface. Special attention must be paid to the choice of the traction
threshold, i.e. the maximum value of the traction σmax on the traction-separation curve
for a single mode. It has been demonstrated in literature that, within a relatively large
range, the maximum traction has little effect on the prediction of crack growth. However,
it may influence the computational efficiency of a FE simulation.

In contrary, Shet and Chandra [130] reported that the maximum tractions significantly af-
fect the crack growth, namely due to plasticity around the fracture process zone. Usually,
the higher the traction threshold is, the more refined must be the mesh around the crack
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front and smaller load increments are required in order to avoid numerical problems. The
load displacement curves obtained in the simulation are shown in Figure 2.15 together with
a comparison with experimental results. It can be seen that the FE predictions almost
match the experimental results.

Results presented in Figure 2.15 show that there are some differences between numerical
and experimental results at the region of maximum displacement, which may be caused
due to penalty stiffness, length of cohesive elements and also mesh size. The numerical
solution of the DCB and MMB using CZM is directly related to the mesh characteristic.
The coarser mesh size tends equilibrium points in harsh snap backs. Consequently, finer
mesh size might results in the higher computational duration. Beside the mesh size, con-
vergence is greatly being affected by the penalty stiffness. The penalty stiffness should
be large enough to provide a reasonable stiffness but small enough to reduce the risk of
numerical problems such as spurious oscillations of the tractions in an element.

2.5 Energy balance concept

When fracture proceeds, energy must be supplied by external loads. The bounding material
undergoes elasto-plastic deformation involving elastic energy and plastic dissipative energy.
In addition to plasticity, energy is supplied to the fracture process zone in form of cohesive
energy that is dissipated within the cohesive elements. The cohesive energy is the sum of
the surface energy and all dissipative processes that take place within the crack tip regime.
For the present problem, a perfect energy balance between external work W and the sum
of elastic energy Eel, plastic dissipative energy Epl, cohesive energy Ecoh and any other
inelastic energy Einel, for example damage/void growth will be assumed [130]. The energy
balance is given by

W = Eel + Epl + Ecoh + Einel

W =

t
∫

0





∫

V

σ : ε̇el dV



 dt+

t
∫

0





∫

V

σ : ε̇pl dV



 dt+

t
∫

0





∫

S

σn : δ̇ dS



 dt+ Einel (2.25)

where σ, ε̇el, ε̇pl, σn and δ̇ are nominal stress tensor, elastic strain rate, plastic strain
rate, cohesive traction and cohesive separation rate, respectively (including the terms for
specimen volume V and the internal specimen surface S). The external work due to applied
force is given by

W =

t
∫

0

(∫

S

t · v dS

)

dt+

t
∫

0

(∫

V

b · v dV

)

dt (2.26)

where v is velocity field vector, t is exterior surface traction vector and b is body force
vector.
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2.5 Energy balance concept

Figure 2.15: Numerical simulation and experimental data [142] for a Mode-I DCB test and
mixed mode I-II MMB test
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2 Cohesive zone models

During FE analysis of crack growth, the amount of external work, elastic work, plastic
work and other dissipative work are calculated. It is always seen that energy balance given
by Eq.(2.25) is maintained in all FE computations.

2.5.1 Simulation of crack growth

As a first test case, a crack growth of a simple two-dimensional plate of width b = 10 cm
and thickness t = 1 cm will be analyzed. The plate contains an edge crack of length a0 =
20 mm and is subjected to a constant displacement in perpendicular direction to the crack
plane. The plate is made from steel with physical properties given in Table 2.1.

Table 2.1: Mechanical properties of steel

σU σY E ν ρ KIC

MPa MPa GPa - kg/m3 MPa
√
m

400 250 210 0.30 7 850 66

The material of the plate is characterized by an elasto-plastic model. The uniaxial stress-
strain response of the material is specified by

σ = σY +Kεn (2.27)

where σY is yield strength, K and n are the strength coefficient and strain hardening ex-
ponent, respectively.

The cohesive energy GIC is usually taken to be the fracture toughness of the material,
which in the present case is based on the value KIC with a corresponding energy of

GIC =
K2

IC

E

(

1 − ν2
)

(2.28)

The penalty stiffness parameter Kp that ensures a stiff connection between the continuum
elements and the cohesive elements is defined by Eq.(2.23). However, large values of the
penalty stiffness may cause numerical problems. A bilinear TSL is used and has mechanical
properties shown in Table 2.2.

Table 2.2: Mechanical properties of cohesive element

σU = σmax GIC Kp δsep δ0

MPa J/m2 N/m3 µm µm

400 19 231 105 × 1013 96 0.4
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2.5 Energy balance concept

Some investigators changed boundary conditions of the crack tip node directly to obtain a
free or fixed node. A common approach used to change the boundary conditions consists
of connecting two springs to each boundary node. For free nodes, the spring stiffness is
set equals to zero, and for the fixed ones an extremely large values of stiffness is assigned.
To overcome the numerical difficulties resulted from large values of stiffness, Wu and El-
lyin [153] use truss elements composed of a linear elastic material for simulating the crack
extension. They connect truss elements to boundary nodes and a pair of contact surfaces
on the crack line.

In the present work, four node elements based on CZM concepts have been developed and
implemented as user defined elements within ABAQUS. In order to study the distribu-
tion of elastic, plastic, and cohesive energies in the fracture process zone, 100 continuum
elements are used along the crack propagation path, namely 1 mm-side element and 50
cohesive elements in 1 continuum element or 0.02 mm-side cohesive element. A linear
multi point constraint (MPC) is used to connect 50 cohesive elements with 1 continuum
element. This scheme has several advantages, first, it is simple and does not need an extra
subroutine. Second, it is efficient, namely it does not need too many continuum elements.
Furthermore, several cohesive elements can be released simultaneously. This scheme yields
accurate results in energy balance as to be discussed later on. The energy balance results
obtained from the simulation are shown in Table 2.3.

Table 2.3: Energy balance for a single-edge crack plate

External work Elastic strain energy Plastic dissipative energy Cohesive energy

W [J ] Eel [J ] Epl [J ] Ecoh [J ]

13.959 40 13.579 00 0.079 93 0.300 48

This fracture energy is dissipative in nature, hence in an analysis using CZM, even for
an elastic material the entire fracture energy of JIC = GIC is dissipated through cohesive
elements. For the case of elasto-plastic material, two distinct dissipation mechanisms can
be identified, one due to plasticity within the bounding material, and another due to
micro-separation processes in the fracture process zone. Note that

• Using Eq.(2.28), the cohesive energy is GIC = 19 231 J/m2.

• Thus, the crack growth of one continuum element (1 mm-long and 1 cm thick) needs
energy GIC 1element = 0.192 31 J.

• The length of crack for cohesive energy obtained from FE results (Table 2.3) is (0.300
48 J) / (0.192 31 J/mm2)×(1 mm length of element) = 1 mm with rest of energy
0.108 17 J, which is used by the neighbour from cracked cohesive elements.

• Hence the length of crack is a0 + 1 mm = 21 mm. The rest of the energy is used for
’partial crack growth’ on a length of 5 mm by neighbour cohesive elements as shown
in Figure 2.16.
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2 Cohesive zone models

Figure 2.16: Geometry of the crack growth using cohesive elements

This calculation is very approximate, since yielding leads to stress redistribution and mod-
ifies the size and shape of the plastic zone. Initially the crack blunts due to deformation at
the crack tip. Eventually, the material at the tip of the crack fails and the crack begins to
advance. The initiation point is often difficult to determine. Furthermore, the approach
of cohesive energy and critical SIF using Eq.(2.28) is commonly used for brittle material.

In order to be able to compare the results, let us consider the case of LEFM. The SIF KI

for a single edge crack plate is determined from Eq.(2.20).

• Using the cohesive energy 30 048 J/m2 (0.300 48 J/(0.001 m-length of element × 0.01
m-thickness of element)), the SIF can be calculated as KI = 82.5 × 106 MPa

√
m.

• Using iterations with tolerance of crack length 0.000 1 mm, the effective length of
crack aeff computed from iterations Eq.(2.20) is 26.5 mm.

2.5.2 Energy distribution in purely elastic material

The numerical results indicates that during fracture growth process from initial crack
length a0 = 20 mm until a = 28.4 mm (b = 10 cm), recoverable elastic work Eel constitutes
most of the external work, ranging from 96.5 to 99.5%, as shown in Figure 2.17.
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2.5 Energy balance concept

2.5.3 Energy distribution in elasto-plastic material

Since elastic work is used in the entire body and not just for the crack tip region, this
work depends on the geometry of the body. The plastic work occurs primarily in the
crack tip region and hence is influenced by cohesive parameters. Though there are many
parameters that can affect plasticity, the strain hardening exponent n and the cohesive
strength σmax (where σmax > σY ) have the major influence. In general, the plastic work
can be represented as

Epl = f (σmax, n) (2.29)

Figure 2.18 represents the relationship between elastic strain energy, plastic dissipative
energy and cohesive energy compared with the external work for σmax/σY = 400/250 =
1.6. The plastic energy represents about 0.7% of the overall energy.

Figure 2.19 depicts the relationship between plastic dissipative energy and cohesive en-
ergy compared with the external work for different values of σmax/σY namely, 1.6, 1.8, 2.0
and 2.5. For the value σmax/σY = 1.6 which represents small scale plasticity, the plastic
energy represents about 25% of the overall energy dissipated. In other words, the error
encountered when plastic work is not accounted for in the dissipative processes is of the
order of 25% when small scale plasticity is observed. Increasing levels of plastic energy
as a part of total dissipation when the values of σmax/σY ≥ 1.8 gives significantly higher
and is almost 100 to 250% as that of the cohesive energy. These results show that during
crack growth with significant levels of plasticity, along amount of the external work will
be used for plastic dissipative energy and the rest for the fracture process as cohesive energy.

The second parameter that affects the energy distribution during fracture process is the
strain hardening exponent n. It should be noted that the hardening exponent is the pa-
rameter used to describe the hardening behaviour of the bounding material outside of the
cohesive zone. In these simulations the crack is modelled using σmax/σY = 1.6. The value
of n is selected as 0.26, 0.30, 0.40 and 0.50 to study the effect of n on the distribution
plasticity dissipative energy and cohesive energy. Figure 2.20 gives information for all val-
ues of n, a small plastic zone is always generated before the crack initiates. Increased the
strain hardening exponent tends to increase the plastic dissipative energy and reduces the
cohesive energy.
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2 Cohesive zone models

Figure 2.17: Variation of elastic strain energy and cohesive energy for pure elastic material

Figure 2.18: Variation of elastic strain energy, plastic dissipative energy and cohesive en-
ergy for elasto-plastic material
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2.5 Energy balance concept

Figure 2.19: Variation of plastic energy and cohesive energy for different σmax/σY ratio

Figure 2.20: Variation of plastic energy and cohesive energy for different strain hardening
exponent n
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2 Cohesive zone models

2.6 Triaxiality dependent cohesive zone model

2.6.1 Introduction

The main failure mechanism in ductile metals consists of the nucleation of voids and
their growth and coalescence that initiates at the inclusions and second phase particles.
Central to the growth of these voids is the triaxiality of the stress state known to greatly
influence the amount of plastic strain which a material may undergo before ductile failure
occurs. In ductile fracture of structures, triaxiality of the stress state depends on whether
the structure is un-notched, notched or pre-cracked, as shown in Figure 2.21 [13]. The
triaxiality of the stress state is given as the ratio of hydrostatic or mean stress to the
effective stress (von Mises equivalent stress), mathematically

χ =
σm

σeq

(2.30)

Figure 2.21: Triaxiality parameter χ at initiation of ductile fracture in different geometries

If material failure is due to ductile fracture, i.e. induced by void growth and void coales-
cence, there exist two approaches to model the material separation:

• One approach that can reflect the local of stress carrying capacity is the introduction
of a CZM where the tractions in the process zone are related to the magnitude of
material separation. Hillerborg et al. [56] and Needleman [94] incorporated the
cohesive zone concept in the FEM by devising CZM’s which obeyed an assumed
TSL.
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2.6 Triaxiality dependent cohesive zone model

• Ductile crack growth due to nucleation of voids and subsequent growth and coa-
lescence has been analyzed by a porous plasticity model (GTN model) introduced
by Gurson and improved by Tvergaard and Hutchinson [145]. The porous material
model uses an approximate yield condition which depends on the triaxiality of the
stress state as well as the current void volume fraction. Material failure is assumed to
occur at a critical value of void volume fraction. The processes of nucleation, growth
and coalescence of voids, each require a set of parameters which may not be unique.
A commonly encountered problem models based on micro-mechanics is that, even
though they provide into insight the basic physics of the problem they involve far
too many parameters to describe the macroscopic behaviour, and hence, are difficult
to apply for practical purposes.

Siegmund and Brocks [133] investigate debonding of two elastic-plastic blocks by a ductile
failure mechanism. The bond line between the two blocks is specified either as a strip of
a material described by the modified Gurson constitutive equation or by a CZM. Special
consideration in their paper is given to the influence of the triaxiality of the stress state
on the cohesive material parameters. The process zone bonding the two blocks together is
described in two different ways as shown in Figure 2.22.

Figure 2.22: Visualization of the two approaches used for description of the bonding region

2.6.2 Constitutive behaviour of the continuum (undamaged
material)

The mechanical behaviour of the bulk material is independent of the softening function
and can be described by an unrestricted constitutive equation. The parent material or
continuum is taken to be power law strain hardening such that the uniaxial stress-strain
curve is represented by
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2 Cohesive zone models

ε =







σ
E

for σ ≤ σY ,

σY

E

(

σ
σY

) 1

n

for σ > σY .
(2.31)

where E is the modulus of elasticity, σY the initial yield stress and n is the strain hardening
exponent.

Ideally, the model within the cohesive zone should be able to replicate the constitutive
behaviour of the undamaged material: linear elastic followed by strain hardening, until
the conditions for a softening process due to damage are reached. The softening process
representative of increasing material degradation is triggered by rapid growth of voids as
consequence of highly triaxial state of stress. The model is proposed for ductile metals in
which the fracture process is localized in a thin layer which has thickness of a void spacing
(Siegmund and Brocks [134], Anvari et al. [6], Scheider [118], Banerjee und Manivasagam
[13]).

The TSL is linear up to the separation limit δ1, exhibits strain hardening up to δ2 and
softening as shown in Figure 2.23. Each part of the curve as well as the limiting separation
parameter δ2, are dependent on the triaxiality parameter χ as expressed in the next section.

Figure 2.23: Traction separation law for ductile materials
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2.6 Triaxiality dependent cohesive zone model

2.6.3 Formulation of triaxiality dependent Model

This section is concerned with crack growth in elasto-plastic materials that exhibit ductile
fracture, i.e. induced by void growth and void coalescence. There exist two approaches to
model material failure [118]

• Gurson-Tvergaard-Needleman (GTN) model [51], [145]), [95]

• Cohesive zone model (CZM) [37], [14] with

– constant parameters (numerically fitted to the experiments) or

– triaxiality dependent parameters (determined from GTN unit cell)

The triaxiality of stress state as ratio of hydrostatic stress (mean normal stress) to the ef-
fective stress (von Mises equivalent stress) from Eq.(2.30), under conditions of plane strain
and developed during elastic deformation can be calculated from a elastic constitutive
relationship to be

χel =
1
3
(σ1 + σ2 + σ3)

1√
2

√

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

(2.32)

where σ1, σ2 and σ3 are the first, second and third principal stresses, respectively.

For a state of plane strain,

σ3 = ν (σ1 + σ2) (2.33)

and the stress ratio,

rσ =
σ1

σ2

(2.34)

Substituting Eqs.(2.33) and (2.34) into Eq.(2.32) yields

χel =
(1 + ν)(1 + rσ)

3
√

(r2
σ + 1)(ν2 − ν + 1) + rσ (2ν2 − 2ν − 1)

(2.35)

where ν is Poisson’s ratio. In the material limit of incompressible deformation (ν = 0.5),
the triaxiality parameter reaches its extreme value from Eq.(2.35)

χpl =
1 + rσ√
3 (1 − rσ)

(2.36)

Hancock and Brown [54], [53] have investigated fracture of different geometries, for which
there is a single failure locus of the effective plastic strain ε̄pl at fracture initiation as a
function of the triaxiality parameter. It was found that represents ductile fracture of all
different specimens.
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2 Cohesive zone models

The triaxiality dependent failure locus is given by

ε̄pl = Ke−
3

2
χ (2.37)

where K is a material dependent non-dimensional parameter.

For any deformation beyond initial yield the triaxiality in absence of any damage to the
material would increase from the elastic value to its extreme value χpl. However, at large
ratios (rσ > 0.5), after the onset of yield as the triaxiality χ increases from its elastic limit,
the void nucleation and growth would correspondingly increase. This would imply that
the extreme value of triaxiality χpl, is never realized as the material will fail at a lower
value of triaxility χ. To incorporate this effect, Banerjee and Manivasagam [13] propose
a saturation limit of the triaxiality parameter χsat, for which the equivalent plastic strain
for failure due to void growth is

χsat = −2

3
ln

(

ε̄pl

K

)

(2.38)

= −2

3
ln

(

SσY

CE

)

(2.39)

where E is the modulus of elasticity, σY the initial yield stress, S a non dimensional multi-
plicative factor of the elastic strain at yield and C is a non dimensional material constant
of the order of the material constant K.

Banerjee and Manivasagam [13] propose that the ductile failure of material is not at the
extreme value of the triaxiality parameter χpl, but at an effective triaxiality parameter
χeff . The effective triaxiality parameter is taken to be such that at low stress ratio. It
follows χpl while for higher stress ratio it saturates to the saturation limit of Eq.(2.39),
and is of the form

χeff =
1

2
(χpl + χsat) −

1

2
(χpl − χsat) tanh

(

rσ − rσcr

0.1

)

(2.40)

where rσ cr is the critical value of stress ratio rσ, which indicates the onset of the saturation
of effective triaxiality calculated using Eq.(2.36), hence

χsat =
1 + rσ cr√
3 (1 − rσ cr)

⇔ rσcr =

√
3χsat − 1√
3χsat + 1

(2.41)

For proportional loading in plane strain condition, the dependence of the triaxiality pa-
rameters χel and χpl on the stress ratio rσ, is shown in Figure 2.24.

• For lower stress ratio (rσ < 0.3), the difference between the triaxiality parameters in
the elastic limit and plastic limit is not as significant as when rσ tends to unity.

• While χpl tends to infinity, χel remains finite.
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2.6 Triaxiality dependent cohesive zone model

Figure 2.24: Dependence of triaxiality parameter on a fixed applied stress ratio under plain
strain

• The effective triaxiality parameter follows the plastic limit of triaxiality until the
stress ratio reaches the critical value rσcr, when it starts to saturate to χsat.

• Figure 2.24 also shows effective triaxiality at failure χeff depend on the ratio S/C.

2.6.4 Traction-Separation Law

Since the CZM is a phenomenological model, various formulations for defining the shape
of the TSL and the cohesive parameters are in use [94], [155], [38], [130], [59]. Among
these definitions, the one introduced by Scheider [118], Scheider et al. [119], [121], [120],
[25] have been used to calculate damage and failure of the unit cell by a cohesive element.
Their TSL has two shape parameters δ1 and δ2. In addition to the cohesive parameters
already introduced consists of three parts: increasing, constant and decreasing traction
(decohesion). The traction as function of the separation in their model is

σn = σmax



















2
(

δ
δ1

)

−
(

δ
δ1

)2

for 0 < δ < δ1,

1 for δ1 < δ < δ2,

2
(

δ−δ2
δc−δ2

)3

− 3
(

δ−δ2
δc−δ2

)2

+ 1 for δ2 < δ < δc.

(2.42)
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By changing δ1 and δ2, one can have a variety of TSL shapes (see Figure 2.25). The
cohesive energy is written as

GI = σmax





δ1
∫

0

[

2

(

δ

δc

)

−
(

δ

δc

)2
]

dδ +

δ2
∫

δ1

dδ





+ σmax





δc
∫

δ2

[

2

(

δ − δ2
δc − δ2

)3

− 3

(

δ − δ2
δc − δ2

)2

+ 1

]

dδ



 (2.43)

= σmax

(

1

2
δc −

1

3
δ1 +

1

2
δ2

)

(2.44)

In this formulation, the maximum separation occurs at

δc =
2GI

σmax

1

1 − 2δ1
3δc

+ δ2
δc

(2.45)

Figure 2.25: TSL shape proposed by Scheider [118]
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Another formulation was introduced by Banerjee and Manivasagam [13]. They proposed a
versatile cohesive zone model to predict ductile fracture at different states of stresses. The
formulation developed for mode-I plane strain accounts for triaxiality of the stress-state
explicity by using basic elasto-plastic constitutive relations combined with two stress-state
independent new model parameters. They compared their model with available predictions
of CZMs based on porous plasticity damage models too, and proposed TSL that has three
distinct regions of constitutive behaviour: the traction separation law is linear up to the
separation limit δ1, exhibits strain hardening up to δ2 followed by softening curve:

σn =



















(

1 +
√

3χeff

)

2E
3
δ for 0 < δ < δ1,

(

1 +
√

3χeff

)

σY√
3

(

2E√
3σY

δ
)n

for δ1 < δ < δ2,

σmax exp

(

−0.01
(

δ−δ2
δ2

)4
)

for δ2 < δ < δc.

(2.46)

The linear behaviour of the CZM exists until the separation limit defined by von Mises
yield condition is reached

δ1 =

√
3σY

2E
(2.47)

Further separation results in strain-hardening up to

δ2 =

√
3

2

(

Ce−
3

2
χeff +

σY

E

)

(2.48)

As comparison with available predictions of CZMs based on porous plasticity damage mod-
els from Scheider [118], is shown in Figure 2.26.

Figure 2.26: TSL shape proposed by Scheider [118] compared to Banerjee [13]
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The difference of both proposed TSL shapes may be caused by their difference approaches.
Scheider [118] used a simple 2D axisymmetric single-element test for the identification of
the TSL and defined the specific GTN parameters while Banerjee and Manivasagam [13]
proposed their TSL shapes explicitly by using basic elasto-plastic constitutive relations
combined with two stress-state independent new model paramaters. One has to keep in
mind that the validity of the GTN model is limited, first of all with respect to the fail-
ure mechanism, but also with respect to stress triaxiality. The known problems with low
triaxialities, for example, make the proposed identification procedure only applicable for
high constraint structures unless a more sophisticated void growth model is utilised. In
the case that many layers of cohesive elements are introduced to the FE model, e.g. for
the numerical prediction of the crack path, then the initial stiffness has a strong influence
on the structural response.

The TSL proposed by Banerjee and Manivasagam [13] is shown in Figure 2.27 for steel
and aluminium with the effect of the applied stress ratio in the range rσ = 0, 0.1, 0.2,
0.4 and 0.6. In the figures, as the stress ratio is increased, the corresponding higher tri-
axiality of the stress state inhibits plastic deformation. As a result, onset of yielding is
at a higher normal traction and the peak stress is higher as well. While higher triaxiality
inhibits plastic deformation, it promotes void nucleation, growth and coalescence. Thus,
the softening behaviour begins at lesser separation for higher stress ratios. In summary,
for higher stress ratios the TSL curves tend to be steeper and narrower.

The effect of a non dimensional material constant (model parameter) C is shown in Figure
2.28 for steel. As the stress ratio of the applied stress-state increases the peak stress value
rises up to a saturation value corresponding to rσ. The effect of C is to increase the peak
stress level for the entire range of stress ratio. The dependence of the cohesive parameters
σmax/σY on stress triaxiality as depicted in Figure 2.29 is obtained from Eq.(2.46) and for
cohesive energy is calculated from the area under the curve in Figure 2.27.

In summary, the formulation and validation of a versatile CZM proposed by Banerjee and
Manivasagam [13] is well presented which incorporates triaxiality explicitly, while the con-
ventional cohesive parameters, peak stress and cohesive energy are not material constants
as they depend on the triaxiality of the stress state.
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Figure 2.27: Traction-separation for different stress ratios rσ for steel and aluminium
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Figure 2.28: Effect of stress ratios rσ on peak stress for steel

Figure 2.29: Dependence of the normalised cohesive parameters: cohesive strength
σmax/σY and cohesive energy GI/σY on the triaxiality for steel
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2.7 Implementation of the cohesive model for a

cracked shaft

2.7.1 Classification of cracks

Based on geometry of cracks on a rotor, cracks can be broadly classified as follows [116]:

Transverse crack Cracks perpendicular to the shaft axis are known as transverse cracks.
Most past and current research focuses on the detection of such cracks. They intro-
duce a local flexibility in the stiffness of the shaft due to strain energy concentration
in the vicinity of the crack tip.

Longitudinal crack Cracks parallel to the shaft axis are known as longitudinal cracks.

Slant crack Cracks at an angle to the shaft axis are known as slant or helicoidal cracks.
These cracks are also encountered, but not very frequently. Slant cracks influence the
torsional behaviour of the rotor in a manner quite similar to the effect of transverse
cracks on the lateral behaviour. Their effect on lateral vibrations is less than that of
transverse cracks of comparable severity.

Breathing crack Cracks that open when the affected part of the material is subjected to
tensile stresses and close when the stress is reversed are known as breathing cracks.
The stiffness of the component is most influenced when under tension. Shaft cracks
breath when crack sizes are small, running speeds are low and radial forces are large.

Open or gaping crack Cracks that always remain open are known as gaping cracks.
They are more correctly called notches.

Surface crack Cracks that open on the surface are called surfaces cracks. They can
normally be detected by techniques such as dye-penetrant, or visual inspection.

2.7.2 Breathing crack under rotating load

In this section, the breathing crack of a circular cross-section shaft is presented using CZM.
Figure 2.30 shows the isometric view of the model with a relative crack depth a/d = 0.1.
Length and diameter of shaft are 1.0 m and 0.08 m, respectively. The breathing mecha-
nism is generated by a bending load due to external load, and shown over one cycle 2π rad
(360o) by increasing the angle by steps of π/6 rad (30o). The observation of opening crack
is repeated for all different angular positions of the cracked shaft specimen. The breathing
mechanism is observed by the nodes displacement around the crack.

The FE model of shaft shown in Figure 2.30 has more than 5 000 elements, have been used
for the analysis of the cracked cylindrical beam. The cohesive elements along the crack
surfaces are implemented as interface elements that are compatible with solid FEs. The
CZM approach to model the breathing crack can be used accurately due to the fact that
the crack tip is supposed to be formed by the boundary between the cracked areas and the

53



2 Cohesive zone models

Figure 2.30: Breathing crack model of the non rotating cracked shaft subjected to rotating
load

uncracked areas. It is correct when the crack is partially open by the boundary between
the closed cracked and the open cracked areas because the CZM approach is based on the
TSL. The cohesive energy will appear when the crack opens and will not appear when the
crack closes.

Figure 2.31 represents breathing mechanism results obtained over one revolution of the
rotating load. As can be seen the crack opens more slowly at the beginning, but increases
its opening at π/3 rad (60o). It is more open and at 5π/6 rad (150o) it is already completely
open. The crack closes again at 4π/3 rad (240o) and increases its closing at 3π/2 rad (270o).
The crack is already completely close at 11π/12 rad (330o). Breathing crack results under
rotating load (Figure 2.31) has limitation due to quasi static condition. These issues will
be discussed detail in Chapter 6.

2.7.3 Breathing versus open crack: change in second moment of
area

In order to analyse real cracked shaft behaviour, the open cracked models will be used to
compare to the lower natural frequency of the breathing crack results approximated by FE
model. This section represents the open crack model results approximated by using Mayes’
model which represents the fractional change in the second moment of area as measured at
the crack face. Mayes and Davis [90] related the change in second moment of area (∆I/I)
to the relative crack depth (a/d) as

∆I
I

1 − ∆I
I

=
r

L

(

1 − ν2
)

F
(a

d

)

(2.49)

where r, L, I and ν are shaft radius, length of the section with reduced properties, second
moment of area and Poisson’s ratio, respectively. F (a/d) is a function independent of all
other parameters and is a universal function for a given shape of crack. In principle, the
function F (a/d) can be derived from the appropriate stress concentration factor.
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2.7 Implementation of the cohesive model for a cracked shaft

Figure 2.31: Breathing crack of the non rotating cracked shaft under rotating load for
relative crack depth a/d=0.1
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2 Cohesive zone models

It was shown that to a very good approximation to this function is just equal to the
fractional change in the second moment of area as measured at the crack face. F (a/d) is
a non linear function of relative crack depth a/d. A crack may be represented by reducing
the second moment of area at the crack section by ∆I. From Eq.(2.49), the function
F (a/d) can be plotted as shown Figure 2.32 [77].

Figure 2.32: Variation of function F (a/d) vs. relative crack depth a/d

Consider a simply supported cracked shaft with length 1.0 m and diameter 0.08 m. Material
of shaft with Young’s modulus, density and Poisson’s ratio are 210 GPa, 7 850 kg/m3 and
0.3, respectively. The relative crack depth a/d = 0.1 is in the middle of the shaft as shown
in Figure 2.33.

Figure 2.33: Rotor with an open crack simply supported on both ends

Using Figure 2.33 and Eq.(2.49), we obtain moment inertia of the open cracked shaft

Icr =
I

1 + d
2L

(1 − ν2)F
(

a
d

) (2.50)
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2.7 Implementation of the cohesive model for a cracked shaft

Using Euler-Bernoulli beam theory, the first three natural frequencies of

ωcrn
=
(nπ

L

)2

√

EIcr
ρA

n = 1, 2, 3, . . . (2.51)

where for a/d = 0.1, ∆I/I = 0.003 75 or Icr = 2,0031 × 10−6 m4.

In order to compare the results using the change in second moment of area from Mayes’
model, FE model using software ABAQUS is applied with the same material and geometry.
Table 2.4 represents results of the natural frequency of uncracked and cracked shaft at rest.

Table 2.4: Natural frequencies of uncracked and cracked shaft a/d=0.1 at rest in [rad/s]
Uncracked shaft Uncracked shaft Cracked shaft Cracked shaft

Mode Theoretic FEM Mayes’ model FEM

1 1 020.9 1 019.7 1 019.1 1 017.8
2 4 083.8 4 081.3 4 076.2 4 068.5
3 9 188.5 9 123.3 9 171.4 9 164.2

2.7.4 Breathing versus open crack: change in local stiffness

The second approach is introduced by Dimarogonas and Papadopoulos [35]. They used
local stiffness cL that is approximated from dimensionless local flexibility c̄ which varies
with the relative crack depth. A continuous cracked shaft model is assumed with an open
crack model. It was noted that, in case of a horizontal rotor, the dead weight bending
plays an important role in the dynamics. At any stage of the cycle, the crack may be open
or close depending on the operating conditions, indeed if operating very close to a critical
speed, the crack may remain open throughout a full shaft revolution if the unbalance is
very high. However, for modest levels of unbalance and away from critical speeds, the
equations governing the shaft motion may be linearised by observing that the bending
moment due to dead weight bending will dominate over inertial terms. It is assumed that
only the open portions of the crack change the stiffness of rotors.

A continuous model is presented for vibration analysis with an open crack, which is based
on assumptions that the cracked rotor is an Euler-Bernoulli beam with circular cross sec-
tion and that the crack region is modelled as a local flexibility. The dimensionless local
flexibility c̄ is calculated with fracture mechanics method proposed by Dimarogonas and
Papadopoulos [35]. Moreover, the explicit natural frequencies of an open cracked shaft
based on fracture mechanics can be calculated by Euler-Bernoulli beam theory (Dong et
al. [36], Dharmaraju et al. [32], Chondros et al. [24], [23] and Rizos et al. [114]. The
continuous model of the cracked shaft is shown in Figure 2.33.
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2 Cohesive zone models

The equation of motion of a uniform shaft based on Euler-Bernoulli beam theory in the
well known form

EI
∂4y(z, t)

∂z4
+ ρA

∂2y(z, t)

∂t2
= 0 (2.52)

Using the separation of variables, the partial differential equation can be solved by intro-
ducing

y(z, t) = Y (z) sin (ωt) (2.53)

Substituting, one obtains

Y iv(β) − λ4Y (β) = 0 (2.54)

where

β =
z

L
(2.55)

λ4 = ω2ρAL
4

EI
(2.56)

The general solution is given by

Y1(β) = A1 cosh(λβ) + A2 sinh(λβ) + A3 cos(λβ) + A4 sin(λβ) if β ∈ [0, β) (2.57)

Y2(β) = B1 cosh(λβ) +B2 sinh(λβ) +B3 cos(λβ) +B4 sin(λβ) if β ∈ (β, 0] (2.58)

where

β =
zcrack

L
(2.59)

zcrack is crack location along the rotor, Ai and Bi (i = 1, 2, 3, 4) are arbitrary constants to
be determined from the following eight boundary conditions

Y1(β)|β=0 = 0 (2.60)

Y ′′
1 (β)|β=0 = 0 (2.61)

Y2(β)|β=1 = 0 (2.62)

Y ′′
2 (β)|β=1 = 0 (2.63)

The continuity at the crack position is as follows

Y1(β)|β = Y2(β)|β (2.64)

Y ′′
1 (β)|β = Y ′′

2 (β)|β (2.65)

Y ′′′
1 (β)|β = Y ′′′

2 (β)|β (2.66)
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2.7 Implementation of the cohesive model for a cracked shaft

The compability condition due to the local flexibility is

Y ′
2(β)|β − Y ′

1(β)|β = cL
EI

L
Y ′′

2 (β)|β (2.67)

Substituting the eight of boundary conditions and writting the resulted equation in a
matrix form, one obtains

























1 0 1 0 0
1 0 −1 0 0
0 0 0 0 coshλ
0 0 0 0 coshλ

cosh(λβ) sinh(λβ) cos(λβ) sin(λβ) − cosh(λβ)
cosh(λβ) sinh(λβ) − cos(λβ) − sin(λβ) − cosh(λβ)
sinh(λβ) cosh(λβ) sin(λβ) − cos(λβ) − sinh(λβ)
sinh(λβ) cosh(λβ) − sin(λβ) cos(λβ) ψλ cosh(λβ) − sinh(λβ)

0 0 0
0 0 0

sinhλ cosλ sinλ
sinhλ − cosλ − sinλ)

− sinh(λβ) − cos(λβ) − sin(λβ)
− sinh(λβ) cos(λβ) sin(λβ)
− cosh(λβ) − sin(λβ) cos(λβ)

ψλ sinh(λβ) − cosh(λβ) −ψλ cosh(λβ) + sin(λβ) −ψλ sinh(λβ) − cos(λβ)
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= 0 (2.68)

where

ψ = cL
EI

L3
(2.69)

The characteristic equation can be obtained by expanding the determinants of the co-
efficient matrix given in Eq.(2.68) to zero. The local stiffness cL is approximated from
dimensionless local flexibility of the cracked section c̄ which varies with the relative crack
depth a/d (Dimarogonas and Papadopoulos [35]), as shown in Figure 2.34.

For a/d = 0.1, from Figure 2.34 we get the dimensionless local flexibility c̄ ∼= 0.2, then the
local stiffness cL can be calculated from

c̄ = cLE

(

1

2
d

)3

(2.70)

The eigenfrequencies can be obtained numerically using the secant method to solve the
characteristic equation (Eq.(2.68)). After iteration, the values of λ1 = 3.1406, λ2 = 6.2812,
and λ3 = 9.4218 are obtained with an accuracy of 10−5. The eigenfrequencies of the open
cracked shaft ωcr can be determined

ωcr =

(

λi

L

)2
√

EI

ρA
i = 1, 2, 3, . . . (2.71)
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2 Cohesive zone models

Figure 2.34: Dimensionless flexibility of the cracked section for load direction normal to
crack edge

Hence
ωcr1

= 1 020, 305 1 rad/s = 162.386 6 Hz
ωcr2

= 4 081, 220 5 rad/s = 649.546 4 Hz
ωcr3

= 9 182, 746 1 rad/s = 1 416.147 9 Hz

Finally, for comparison purpose, the first three natural frequencies of the cracked shaft are
calculated using Mayes’ model, local flexibility and CZM are presented in Table 2.5.

Table 2.5: Natural frequencies of uncracked shaft at rest in [rad/s]

Mode Uncracked Cracked shaft Cracked shaft Cracked shaft
shaft Mayes’ model local flexibility based on CZM

1 1 020.9 1 019.1 1 020.3 1 017.8
2 4 083.8 4 076.2 4 081.2 4 068.5
3 9 188.5 9 171.4 9 182.7 9 164.2

The first three natural frequencies of cracked shaft using CZM are lower than for the other
open crack models due to the following reasons:

• in front of the crack tip cohesive zone element may be open partially and this may
reduce the natural frequencies slightly;

• convergence of the FE solution plays an important role. Here, more continuum and
cohesive elements could be used, but the calculation is time consuming.
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3 Rotor with breathing transverse

crack

This chapter deals with the modeling of a de Laval rotor with a transverse breathing crack.
The stress intensity factor (SIF), used in fracture mechanics is valid only for open cracks.
To model transition in cracks from open to close (breathings), much research has been
devoted and many researchers have published a lot of studies and investigation, to study
switching mechanism, i.e. from open to close. In this study, different approaches to model
the breathing steering function during the rotation of a shaft, with different crack shape
models that are available in the literature will be presented.

This chapter emphasisses on the dynamics of cracked de Laval rotors. First, by studying
the shaft stiffness variation due to the breathing mechanism during rotation of a shaft
based on linear elastic fracture mechanics (LEFM) and by adopting some reported ex-
perimental results of the crack propagation on a cracked shaft, the breathing crack shape
during rotation of a shaft can be modelled. The breathing crack shape is modelled by
a parabolic shape, that opens and closes due to bending stresses. It will be shown that
the parabolic breathing function is considerably more general and accurate than the pre-
viously used functions in the literature [11], [47]. It can be noted that as long as the
relative crack depth or crack depth ratio a/d ≤ 0.2, the model of breathing crack parallel
to crack front line or straight line may be used while the parabolic line should be used
in case of deep crack, i.e. a/d ≥ 0.2. Cohesive zone model (CZM) is applied to estimate
the shaft stiffness variation on a cracked rotor. This method is valid for breathing cracks
and is more simple than the other models which are based on LEFM. Furthermore, the
CZM can be implemented easily in conjunction with FE models. The aim of this Chapter,
is to find the actual time-periodic breathing steering functions which can be used in for-
mulating the time-varying stiffness in the equations of motion of the cracked de Laval rotor.

3.1 Breathing crack modeling

There are many approaches reported in the literature for modeling breathing cracks in
shafts. The breathing mechanism occurs in the cracked rotor when the vibration is dom-
inated by the static deflection of the shaft. Almost all studies on cracked rotors with the
assumption of weight dominance have identified little change in the form of the equations
of motion of cracked rotors [21]. Figure 3.1 shows an end view of the whirling of de Laval
rotor, with coordinate that describe its motion. The center of mass of the unbalanced disk
is S. The point G locates the geometric center of the disk. Thus, the amount of static



3 Rotor with breathing transverse crack

unbalance or the mass eccentricity is denoted ε = GS, and the shaft bending deflection
due to the dynamic loads is OG. The stationary coordinate are O-xyz while the rotating
coordinate is O-ηξζ and based on the crack direction, which rotates at the shaft rotational
speed Ω. Ωt is the rotation angle, δ is the unbalance rotation angle and a is the transverse
crack depth in a shaft. The rotating coordinate has an advantage of giving the synchronous
whirl solution in terms of constants that are readily interpreted.

Figure 3.1: Stationary and rotating coordinate system of the cracked shaft

In general, the equations of motion of a cracked rotor with a constant rotation speed Ω can
be obtained by applying Newton’s Second Law to the disk and using stationary coordinates
[22], [43], [44], [156]

[

m 0
0 m

]{

ÿ
ẍ

}

+

[

c 0
0 c

]{

ẏ
ẋ

}

+

{

fky

fkx

}

= mεΩ2

{

cos (θ + δ)
sin (θ + δ)

}

+

{

mg
0

}

(3.1)

or in vector form, the general equations of motion of a cracked rotor can be written as

Mq̈ + Cq̇ + Fk = Fub + Fg (3.2)

where M and C are the mass and damping matrices (including gyroscopic effects), respec-
tively. Fk is the the vector of elastic force due to deformation of the shaft. Fub and Fg

are the centrifugal force vector of the unbalanced mass and weight force vector, respectively.

With the assumption of weight dominance, the breathing crack behaviour in the equations
of motion has been expressed mostly in three forms [21], [34], [41], [99]

• The breathing crack is represented by a periodic time varying system and the gov-
erning equations of the cracked rotor are bilinear equations [41], [128], [159]
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3.1 Breathing crack modeling

{

fkξ

fkη

}

=

[[

k 0
0 k

]

− f (t)

[

∆k 0
0 0

]]{

ξ
η

}

(3.3)

Frot
k = [K − f (t) ∆K] qrot (3.4)

where Frot
k and qrot are vector of elastic force and vector of displacement in rotating

coordinate, respectively. f(t) is breathing steering function which will be discussed in
the next section. From Figure 3.1, the transformation matrix between the stationary
and the rotating coordinate can be directly obtained

{

ξ
η

}

=

[

cos θ sin θ
− sin θ cos θ

]{

y
x

}

(3.5)

qrot = T (θ)q (3.6)

where q is the displacement in stationary coordinate. Thus, the elastic force of the
shaft in the stationary coordinate is written as

Fk = TT (θ)Frot
k = TT (θ) [K − f (t) ∆K] T (θ) q (3.7)

{

fky

fkx

}

=

[[

k 0
0 k

]

− f (t)∆k

[

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

]]{

y
x

}

=

[[

k 0
0 k

]

− 1

2
f (t)∆k

[

1 + cos 2θ sin 2θ
sin 2θ 1 − cos 2θ

]]{

y
x

}

(3.8)

• The breathing crack is multiplied by the stiffness matrix of the shaft directly [117],
[154], [85], [107]

{

fkξ

fkη

}

=

[[

k 0
0 k

]

− f (t)

[

∆kξ 0
0 ∆kη

]]{

ξ
η

}

(3.9)

Frot
k = [K − f (t) ∆K] qrot (3.10)

The elastic force of the shaft in the stationary coordinate is written as

Fk = TT (θ)Frot
k = TT (θ) [K − f (t) ∆K] T (θ) q (3.11)

{

fky

fkx

}

=

[[

k 0
0 k

]

− f (t)

[

∆kξ cos2 θ + ∆kη sin2 θ
(

∆kξ − ∆kη

)

sin θ cos θ
(

∆kξ − ∆kη

)

sin θ cos θ ∆kξ sin2 θ + ∆kη cos2 θ

]] {

y

x

}

=

[[

k 0
0 k

]

−
1

2
f (t)

[

∆k1 + ∆k2 cos 2θ ∆k2 sin 2θ

∆k2 sin 2θ ∆k1 + ∆k2 cos 2θ

]] {

y

x

}

(3.12)

where

∆k1 = ∆kξ + ∆kη (3.13)

∆k2 = ∆kξ − ∆kη (3.14)
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3 Rotor with breathing transverse crack

• The breathing crack is modeled by the variation in the stiffness of the cracked shaft
which is expressed by a truncated cosine series. The elastic force is assumed as a
function of the rotation speed Ω

Fk = [K − f (Ωt) ∆K] q (3.15)

Sinou and Lees [137], [135] suggested f (Ωt) by a finite Fourier series with respect to
Ω

Fk = Fk0 +
m
∑

k=1

{Fck cos Ωt+ Fsk sin Ωt} (3.16)

Papadopoulos and Dimarogonas [102], Pennacchi et al. [105] expressed the stiffness
as a truncated cosine series

Fk = K (Ωt)q = {K0 + K1 cos Ωt+ K2 cos 2Ωt+ K3 cos 3Ωt+ K4 cos 4Ωt} q (3.17)

where K1, K2, K3, and K4 are the stiffness matrices which depend on the uncracked
condition, a fully open crack and a half-open and half-closed crack, respectively.
These suggested elastic forces are suitable only in the case of weight dominance.

3.1.1 Breathing steering functions

Three breathing crack models and open crack model are introduced and compared [88].
The crack may remain open throughout a full shaft revolution if the unbalance is very high.
Only the open portions of the crack change the stiffness of rotor and hence the stiffness
will be a function of the orientation of the rotor. In this case the crack does not breath
and it is assumed to be open all the time, and breathing steering function can be written
as

f (Ωt) = 1 (3.18)

If the crack remains open, the rotor is then local asymmetric and this condition can lead
to instability problems. If a cracked shaft rotates slowly under the load of its own weight,
then the crack will open and close once per revolution, it is called breathing crack. Mayes
and Davies [89] proposed a breathing crack model in which the opening and closing of
the crack was described by cosine function and intended for deep cracks. The breathing
steering function [89] is defined as

f (Ωt) =
1

2
(1 + cos (Ωt)) (3.19)

The simplest model of an opening and closing crack is the hinge model proposed by Gasch
[40]. In this model, the crack is assumed to change from its closed to open state abruptly
as the shaft rotates. Thus, in the hinge model the breathing steering function is defined
as

f (Ωt) =

{

1 −π
2
≤ Ωt < π

2
crack closes;

0 π
2
≤ Ωt < 3π

2
crack opens

(3.20)
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3.1 Breathing crack modeling

When the crack is closed, shaft stiffness is equal to an undamaged shaft. The Gasch’s
model is a step function, presumably for shallow depth cracks. Step function of Gasch’s
model can be approximated mathematically as the finite truncated Fourier series [88]

f (Ωt) =
2

π

(

π

4
+ cos (Ωt) − 1

3
cos (3Ωt) +

1

5
cos (5Ωt) − 1

7
cos (7Ωt) + · · ·

)

(3.21)

The hinge model suffers from the defect that there is no direct relationship between the
shaft stiffness and the depth of crack. The Mayes’ model does provide a method to deter-
mine the reduction in stiffness from crack depth [106]. Furthermore, for deeper cracks, the
Mayes’ model is better than the Gasch’s model on the unstable zone, because the Mayes’
model includes the cross flexibility, which the hinge model ignores [41].

The other breathing steering function is proposed by Yang et al. [158]. They suggested
breathing steering function where the relative crack depth a/d (a is crack depth and d is
diameter of shaft) influence is strongly accounted. Its expression is as follows,

f (Ωt) =

(

1 + cos (Ωt)

2

) 2a
d

(3.22)

Figure 3.2: Open crack model and various breathing function models

In Figure 3.2, a comparison between the three breathing steering function models and the
open crack model. Comparing Mayes’ and Yang’s models, have the same values for the
case of deep cracks, but for the shallow cracks Yang proposed model becomes apart and
deviates further from Gasch model as shown in Figure 3.3.

3.1.2 Breathing crack shapes

Cracks perpendicular to the shaft axis are known as transverse cracks. Most of the re-
search focuses on the detection of these most dangerous cracks. Due to shaft self-weight
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3 Rotor with breathing transverse crack

Figure 3.3: Comparison between open, Mayes’ and Yang’s crack model for different relative
crack depth a/d

and the rotation of the rotor, the crack opens and closes during a complete revolution
of the rotor and the stiffness of the shaft varies. Cracks which open when the affected
part of the material is subjected to tensile stresses and close when the stress is reversed
are known as breathing cracks. Usually, shaft cracks breathe when crack sizes are small,
running speeds are low and radial forces are large [47]. Most theoretical research efforts
concentrate on transverse breathing cracks due to their direct practical relevance. Most
of the published literature on breathing crack model has considered some assumptions in
modelling the breathing crack during rotation of shaft. Different assumptions have been
used in the literature for modelling the transverse crack in rotating shafts e.g. a crack
front line that is perpendicular to the crack front extensively addressed by Darpe et al.
[30]. This breathing crack shape was also used by Jun et al. [66], and Sinou and Lees [136]
(Figure 3.4). An elliptical shape has been proposed by Shih [131], Bachschmid et al. [11]
(Figure 3.5).

The equivalent crack model is suggested by Lees and Friswell [77]. They calculate the
area of open crack at each orientation of the rotor. The compliance functions in the two
orthogonal directions are then evaluated by assuming equivalence with the effective area.
Figure 3.6 shows graphically the open and closed portions for a particular crack depth and
orientation their model.

Al-Shudeifat and Butcher [2] represent a breathing function for transverse breathing crack.
They demonstrate, as the shaft starts to rotate, that the locations of the centroid and the
neutral axis of the crack element are changed with time during rotation as shown in Figure
3.7. The tension stress field exists below the neutral axis which tends to keep the crack
open. The compression stress field that exists above the neutral axis tends to compress
the crack to be closed as represented in the Figure 3.7.
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3.1 Breathing crack modeling

Figure 3.4: Crack state variations during rotation: perpendicular to crack front line model
[30], [66], [136]

Figure 3.5: Crack state variations during rotation: elliptical crack model [131], [11]
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3 Rotor with breathing transverse crack

Figure 3.6: Crack state variations during rotation suggested by Lees and Friswell [77]

Another model is introduced by Liong and Proppe [80], [83] where the crack opens and
closes parallel to the crack front line as long as the crack depth is small (Figure 3.8). This
breathing crack model is based on an elliptical crack model. Details of this model will be
discussed in the next section.

Implementation of the CZM to study breathing crack using FE model is presented in Sec-
tion 2.7. As can be seen there are some relevant differences with respect to the model used
by Darpe et al. (Figure 3.4) and used by Shih and Chen (Figure 3.5). In the FE model,
the crack opens more slowly at the beginning, but increases its opening speed at 60o and at
90o it is more open and at 150o it is already completely open. The limitation these results
are due to quasi-static condition. One revolution of the shaft is divided in angular steps
of 30o, a bending load is applied and the calculation is repeated for all different angular
positions of the cracked shaft specimen, which at each step the open crack condition is
observed. Almost identical results can be found in Figure 3.9 [10] presented by using FE
model.

Bachschmid et al. [11], [12] reported that crack, which are propagating due to bending
stresses in rotating shafts, have often an elliptical shape as long as the depth is small. They
presented their results in Figure 3.10 and 3.11 to illustrate the shapes of cracks, which were
obtained by applying static bending moment to rotating shaft specimen, respectively in a
very early propagation state and after the crack has propagated to a consistent depth. In
both shafts crack initiation was obtained by means of a small cut (notch) visible in both
figures. Furthermore, Lorentzen et al. [86] developed a theoretical method for calculating
the SIF for a cracked shaft subjected to a constant moment load. They also conducted
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3.1 Breathing crack modeling

Figure 3.7: Crack state variations during rotation represented by Al-Shudeifat and Butcher
[2]

some experiments using 2D and 3D photoelasticity to predict the critical crack depth,
crack shape and load configuration. Their experimental results are shown in Figure 3.12
and showed good agreement with the experimental results reported by Bachschmid et al.
[11], [12]. Härkegard et al. [57] investigated growth of naturally initiated fatigue cracks in
gas turbine rotor. They used cylindrical test specimen with semi elliptic and proposed the
crack growth rates for the cracked rotor.

Based on FE and MBS (Chapter 6) and some reported experimental results (Figure 3.12)
and in order to model more realistically the breathing crack mechanism during rotation
of rotor, the breathing crack shape is modelled by a crack closure parabolic shape, that
opens and closes due to bending stresses as shown in Figure 3.13. It will be shown that the
crack closure parabolic line model introduced in this section is considerably more general
and accurate than the previously used functions in the literature. It can be noted that as
long as the relative crack depth is small (a/d ≤ 0.2), the model of breathing crack parallel
to crack front line or crack closure straight line (Figure 3.8) may be used while the crack
closure parabolic line should be used in case of deep crack (a/d ≥ 0.2).
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3 Rotor with breathing transverse crack

Figure 3.8: Crack state variations during rotation: parallel to crack front line model [80],
[83]

3.2 Dynamics of cracked rotors

3.2.1 Mathematical formulation

Refering to the end view of the de Laval rotor shown in Figure 3.1, the shaft has a bending
stiffness k carrying an unbalanced disk at its midspan. The disk has a mass of m and air
drag on the rotating disk and shaft is approximated by a viscous damping coefficient of
c. The shaft is assumed to be with negligible mass and have a transverse crack of crack
depth a at its midspan. The shaft is supported radially by rigid bearings and the crack
opens in the direction of ξ as shown in Figure 3.1.

The equations of motion can be expressed in rotating coordinates as
{

y
x

}

=

(

cos θ − sin θ
sin θ cos θ

){

ξ
η

}

(3.23)

In stationary coordinates

r = y + jx = lej(θ+δ) (3.24)
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3.2 Dynamics of cracked rotors

Figure 3.9: Crack state variations during rotation reported by Bachschmid et al. [10]

Figure 3.10: Crack in early propagation state [11]

and in rotating coordinates

ρ = ξ + jη = lejδ (3.25)

where

r = lejθejδ = ρejθ (3.26)

ṙ = (ρ̇+ jθ̇ρ)ejθ (3.27)

r̈ = (ρ̈+ 2jθ̇ρ̇− θ̇2ρ)ejθ (3.28)

An assumption of δ constant yields synchronous whirl, hence

θ = Ωt (3.29)

71
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Figure 3.11: Deep propagated crack [11]

Figure 3.12: Experimentally determined crack propagation patterns [86], [11]
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3.2 Dynamics of cracked rotors

Figure 3.13: Crack closure parabolic line model for various relative crack depths a/d

Thus

mr̈ + cṙ + kr = mεθ̇2ej(θ+δ) +mgejπ (3.30)

m(ρ̈+ 2jθ̇ρ̇− θ̇2ρ)ejθ + c(ρ̇+ jθ̇ρ) + kρejθ = mεθ̇2ejθejδ +mgejπ (3.31)

Real and imaginary parts are

mξ̈ − 2mθ̇η̇ −mθ̇2ξ + cξ̇ − cθ̇η + kξξ = mεθ̇2 cos δ −mge−jθ (3.32)

mη̈ + 2mθ̇ξ̇ −mθ̇2η + cη̇ + cθ̇ξ + kηη = mεθ̇2 sin δ −mge−jθ (3.33)

The equations of motion are obtained as

m(ξ̈ − 2θ̇η̇ − θ̇2ξ) + c(ξ̇ − θ̇η) + kξξ = mεθ̇2 cos δ −mg cos θ (3.34)

m(η̈ + 2θ̇ξ̇ − θ̇2η) + c(η̇ + θ̇ξ) + kηη = mεθ̇2 sin δ +mg sin θ (3.35)
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3 Rotor with breathing transverse crack

3.2.2 Equations of motion of the de Laval rotor with breathing
crack

The typical breathing behaviour in the form of continuous change in the stiffness of the
cracked rotor is due to the opening and closing of the crack under the effect of gravity
acting on the horizontal rotor. Due to the presence of gravity, the upper portion of the
cracked rotor at the start of the rotation is under compression and the crack is closed. As
the rotor continues to rotate and the gravity direction being constant, the upper part now
comes in the lower tensile region causing the crack to open. The process repeats and a
periodic crack opening and closing phenomenon called crack breathing results.

In most works the reduction of stiffness due to crack opening is considered along the weaker
axis only, but it is well known that the stiffness also reduces along the stronger axis as the
crack propagates. Many investigators used a step function to express the change of stiff-
ness, assuming a sudden occurrence of crack opening and closing or a function (1+cos θ)/2,
θ = Ωt being the angle between the crack and the force due to gravity, in order to allow
partial crack opening or closing. In order to analyse the effects of a crack in the shaft the
equations of motion should be formulated with consideration of the stiffness modification.
In this section, the cross-coupled stiffnesses as well as the direct stiffnesses are estimated by
fracture mechanics concepts in order to consider the partial opening and closing behaviour
of a breathing crack.

m(ξ̈ − 2θ̇η̇ − θ̇2ξ) + c(ξ̇ − θ̇η) + kξξ + kξηη = mεθ̇2 cos δ −mg cos θ (3.36)

m(η̈ + 2θ̇ξ̇ − θ̇2η) + c(η̇ + θ̇ξ) + kηη + kηξξ = mεθ̇2 sin δ +mg sin θ (3.37)

When a well balanced horizontal rotor with a transverse crack rotates, the crack breathes,
opening and closing once per revolution due to the gravitational force. Numerical sim-
ulation results in [66] showed that the direct stiffnesses tend to decrease as the crack
starts opening and tend to increase as the crack starts closing, whereas the cross-coupled
stiffnesses vanish at the completely open and closed states and take maximum values some-
where in between the completely opened and closed states.

In the present study, the following assumptions are made:

1. The location of the crack is assumed to be known at the mid-span of the shaft, i.e.
at the maximum deflection point.

2. Only a single transverse crack has been considered.

3. Plane strain condition is considered at the crack front due to the geometry constraint.

4. The shaft is rigidly supported at both ends (flexible rotor).

5. The structural damping is constant.
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3.3 Stiffness estimation based on linear elastic fracture mechanics

6. The shaft has uniform cross-section A, length L = 1.0 m and diameter d = 0.08 m
of the shaft.

7. The material of the shaft is considered to be homogeneous and isotropic. Modulus of
elasticity E, Poisson’s ratio ν and mass density ρ are 210 GPa, 0.3 and 7 850 kg/m3,
respectively. The power law strain hardening rule is used for plasticity with yield
strength and ultimate strength of material 250 MPa and 400 MPa, respectively.

3.3 Stiffness estimation based on linear elastic fracture

mechanics

The breathing crack model proposed by Jun et al. [66] and Darpe et al. [30] is discussed.
In the bent shaft while rotating, the forces Qξ and Qη acting along the ξ and η axes on
the cross-section containing the crack as shown in Figure 3.14 induce deflections of the
solid shaft. The additional deflections due to the crack are estimated by using fracture
mechanics concepts. When the forces Qξ and Qη exist, the stress may have different values
along the crack front. Hence the SIF is expressed as a function of crack width w (Figure
3.15).

Figure 3.14: Model of shaft with a transverse crack

Since the longitudinal (z-axis) length of the shaft is very large compared to α′, the SIF
KI

Qξ due to the forces Qξ (the superscript I denotes the mode-I in fracture mechanics) is
approximately equal to the value for the crack under pure bending. The effect of shear
stress is negligible.

The SIF KI
Qξ is then given by

KI
Qξ = σξ (w)

√
παF

( α

α′

)

(3.38)

σξ (w) =

(

1
4
QξL

)

1
2
α′

I
(3.39)
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3 Rotor with breathing transverse crack

Figure 3.15: Geometry of the cracked shaft

where

I =
π

64
d4 (3.40)

F
( α

α′

)

=

√

2α′

πα
tan
(πα

2α′

)0.923 + 0.199
[

1 − sin
(

πα
2α′

)]4

cos
(

πα
2α′

) (3.41)

α′ =

√

d2 − (2w)2 (3.42)

For the transverse force Qη acting on the same strip, the SIF KI
Qη due to Qη is considered.

In a similar manner to the case of KI
Qξ

KI
Qη = ση (w)

√
παF

( α

α′

)

(3.43)

ση (w) =

(

1
4
QηL

)

w

I
(3.44)

F ′
( α

α′

)

=

√

2α′

πα
tan
(πα

2α′

)0.752 + 2.02
(

α
α′

)

+ 0.37
[

1 − sin
(

πα
2α′

)]3

cos
(

πα
2α′

) (3.45)

The total SIF KI is given by

KI = KI
Qξ +KI

Qη (3.46)
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3.3 Stiffness estimation based on linear elastic fracture mechanics

where the strain energy density function is given by

J (α) =
1

E

(

KI
Qξ +KI

Qη

)2

=
1

E

(

σ2
ξπαF

( α

α′

)2

+ σ2
ηπαF

′
( α

α′

)2
)

+

1

E

(

2σξσηπαF
( α

α′

)

F ′
( α

α′

))

=
64L2α′2α

Eπd8
Q2

ξF
( α

α′

)2

+
256L2w2α

Eπd8
Q2

ηF
′
( α

α′

)2

+

256L2α′wα

Eπd8
QξQηF

( α

α′

)

F ′
( α

α′

)

(3.47)

The additional deflection ûi, due to the crack is given by

ûi =
∂

∂Qi

[∫

J (α) dα

]

(3.48)

then

ûξ =
∂

∂Qξ

[∫

J (α) dα

]

=

∫ [

128L2α′2α

Eπd8
QξF

( α

α′

)2

+
256L2α′wα

Eπd8
QηF

( α

α′

)

F ′
( α

α′

)

]

dα (3.49)

ûη =
∂

∂Qη

[∫

J (α) dα

]

=

∫ [

512L2w2α

Eπd8
QηF

′
( α

α′

)2

+
256L2α′wα

Eπd8
QξF

( α

α′

)

F ′
( α

α′

)

]

dα (3.50)

The flexibility due to the crack is now defined as

gi =
∂ûi

∂Qi

(3.51)

then

gξ =
∂ûξ

∂Qξ

=

∫∫

128L2α′2α

Eπd8
F
( α

α′

)2

dα dw (3.52)

gη =
∂ûη

∂Qη

=

∫∫

512L2w2α

Eπd8
F ′
( α

α′

)2

dα dw (3.53)

gξη =
∂ûξ

∂Qη
=

∫∫

256L2α′wα

Eπd8
F
( α

α′

)

F ′
( α

α′

)

dα dw = gηξ =
∂ûη

∂Qξ

(3.54)
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3 Rotor with breathing transverse crack

Adding flexibility of uncracked shaft to additional flexibility due to the crack, the following
flexibility coefficients are obtained, which for completely open crack, the area integration
is explicitly performed by

gξ =
L3

48EI
+

∫

√
a(d−a)

−
√

a(d−a)

∫ a−
(

d
2
−
√

( d
2
)
2−w2

)

0

128L2α′2α

Eπd8
F
( α

α′

)2
dα dw (3.55)

gη =
L3

48EI
+

∫

√
a(d−a)

−
√

a(d−a)

∫ a−
(

d
2
−
√

( d
2
)
2−w2

)

0

512L2w2α

Eπd8
F ′
( α

α′

)2
dα dw (3.56)

gξη = gηξ =

∫

√
a(d−a)

−
√

a(d−a)

∫ a−
(

d
2
−
√

( d
2
)
2−w2

)

0

256L2α′wα

Eπd8
F
( α

α′

)

F ′
( α

α′

)

dα dw (3.57)

By adding the deflection without the crack to the deflection due to the crack, the total
deflection can be written as

∆ξ = Qξgξ +Qηgξη = ξ (3.58)

∆η = Qξgηξ +Qηgη = η (3.59)

or

Qξ =
gηξ − gξηη

gξgη − g2
ξη

(3.60)

Qη =
gξη − gξηξ

gξgη − g2
ξη

(3.61)

Using the above flexibility values, the following stiffness values are obtained

kξ =
gη

gξgη − g2
ξη

(3.62)

kη =
gξ

gξgη − g2
ξη

(3.63)

kξη = kηξ
=

−gξη

gξgη − g2
ξη

(3.64)
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3.4 Stiffness estimation based on cohesive zone model

3.4 Stiffness estimation based on cohesive zone model

As discussed in the section 3.1, the crack shape is modelled by either straight or parabolic
line, and the crack opens and closes due to bending stresses in rotating shafts as shown
in Figure 3.13. As long as the relative crack depth is small (a/d ≤ 0.2), the model of a
breathing crack parallel to the crack front line or crack closure straight line (Figure 3.8)
may be used. If the crack depth is small, the crack closure line follows very closely a straight
line while for larger crack depths the crack closure line becomes more curved (Figure 3.13).
This Section is dedicated to provide the crack closure straight line for shallow cracks. It
is known from the literature, that the existence of a transverse crack in a shaft induces a
local compliance that differs in each direction. A cracked shaft under two bending loads
acting in the vertical direction and the horizontal direction is shown in Figure 3.16. As the
shaft rotates, the crack takes on different angular positions at the cracked section (Figure
3.17). From the transverse forces Qξ, Qη acting on the same strip, the nominal stresses
are given by

σξ =
(1

4
QξL)(1

2
d− a+ α)

π
64
d4

=
16QξL(1

2
d− a+ α)

πd4
(3.65)

ση =
(1

4
QηL)(1

2
w)

π
64
d4

=
16QηL

√

(d− a+ α)(a− α)

πd4
(3.66)

Figure 3.16: Geometry of the crack closure straight line model

In order to obtain the stiffness variation, the concept of crack closure line is applied. The
crack closure line is a line parallel to the crack edge. It separates the open and closed parts
of the crack as shown in Figure 3.17. It is assumed that if a well balanced horizontal rotor
with a transverse crack rotates, the crack breathes, opening and closing once per revolution
due to the gravitational force. Moreover, when unbalance exists in a cracked rotor, the
crack may breathe, remain completely open or closed, depending on the magnitude and
phase of the unbalance and the crack possible always opens and one can use the open crack
model [66].
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3 Rotor with breathing transverse crack

Figure 3.17: Breathing condition under rotation due to bending moment of gravity

In the bent shaft while rotating, the forces Qξ and Qη acting along the ξ and η axes on
the cross-section containing the crack as shown in 3.14, induce deflections of the solid
shaft. The additional deflections due to the crack are estimated using the CZM. When the
forces Qξ and Qη exist, the stress may have different values along the crack front. From
Castigliano’s theorem û = ∂U/∂Q, where U is the total strain energy, that is U = U0 +Uc,
here U0 and Uc are the strain energy of the uncracked shaft element and the strain energy
due to the crack, respectively.

Paris equation [35] gives the additional deflection, due to a crack depth a in the i-th
direction, as

ûi =
∂

∂Qi

∫ a

0

J(α) dα (3.67)

where J(α) is the strain energy density function and Qi the corresponding load. Using
Castigliano’s theorem, the additional deflection ûi, due to the crack in the i-th direction
can be determined

ûi =
∂

∂Qi

∫ a

0

GI(α) dα =
∂

∂Qi

[∫ a

0

(∫ δ1

0

σn dδ

)

dα

]

(3.68)

where GI(α) is the strain energy density function and δ1 the elastic limit of cohesive ele-
ment.

In the elastic region, one has

σn =
(

1 +
√

3χeff

) 2E

3
δ (3.69)

then

ûi =
∂

∂Qi

[∫ a

0

(∫ δ1

0

(

1 +
√

3χeff

) 2E

3
δ dδ

)

dα

]

(3.70)
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3.4 Stiffness estimation based on cohesive zone model

The additional deflection due to the crack can be formed

ûi =
∂

∂Qi

[

∫ a

0

(

∫ δ1

0

(

1 +

√
3

2

(

1 + rσ√
3 (1 − rσ)

− 2

3
ln

(

SσY

CE

))

)

2E

3
δ dδ

)

dα

]

=
∂

∂Qi

[∫ a

0

Eδ21
3

(

1 +
1

2

(

1 + rσ
1 − rσ

− 2√
3

ln

(

SσY

CE

)))

dα

]

(3.71)

where the principal stress are defined by

σ1,2 =
σx + σy

2
±

√

(

σx + σy

2

)2

+ τ 2
xy (3.72)

τxy = 0 (3.73)

and

σ1 = ση (3.74)

σ2 = σξ (σ1 < σ2) (3.75)

Then the stress ratio is

rσ =
σ1

σ2

≤ 1 (3.76)

The stress ratio can be written as

rσ =
σ1

σ2

=
ση

σξ

=

√

(d− a+ α) (a− α)
1
2
d− a+ α

Qη

Qξ

=
Qηp

Qξq
(3.77)

where

p =
√

(d− a+ α) (a− α) (3.78)

q =
1

2
d− a+ α (3.79)

Therefore, the additional deflection is given by

ûi =
∂

∂Qi

[∫ a

0

Eδ2
1

3

(

1 +
1

2

Qξq +Qηp

Qξq −Qηp
− 1√

3
ln

(

SσY

CE

))

dα

]

(3.80)

For ξ and η direction, this expression can be written as

ûξ =
Eδ2

1

6

∫ a

0

(Qξq −Qηp) q − (Qξq +Qηp) q

(Qξq −Qηp)
2 dα

=
Eδ2

1

6

∫ a

0

−2Qηpq

(Qξq −Qηp)
2 dα (3.81)
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ûη =
Eδ2

1

6

∫ a

0

(Qξq −Qηp) p− (Qξq +Qηp) (−p)
(Qξq −Qηp)

2 dα

=
Eδ2

1

6

∫ a

0

2Qξpq

(Qξq −Qηp)
2 dα (3.82)

The flexibility due to the crack is defined as ĝi = ∂ûi/∂Qi

ĝξ =
∂ûξ

∂Qξ

=
2Eδ2

1

3

∫ a

0

Qηpq
2

(Qξq −Qηp)
3 dα (3.83)

ĝη =
∂ûη

∂Qη

=
2Eδ2

1

3

∫ a

0

Qηp
2q

(Qξq −Qηp)
3 dα (3.84)

Adding flexibility of the uncracked shaft to additional flexibility due to the crack, one
obtains

gξ =
L3

48EI
+

2Eδ2
1

3

∫ a

0

Qηpq
2

(Qξq −Qηp)
3 dα (3.85)

gη =
L3

48EI
+

2Eδ2
1

3

∫ a

0

Qξp
2q

(Qξq −Qηp)
3 dα (3.86)

Using the above flexibility values, the stiffness values can be obtained directly.

As an illustrative example for crack depth a = 0.1d, adding flexibility to uncracked shaft
to additional flexibility due to the crack, one obtains

ĝξ =
2Eδ21
3m2g2

∫ 2π

0

√

0.25d2 −D2
θ D

2
θ sin θ

(

−Dθ cos θ − sin θ
√

0.25d2 −D2
θ

)3

(

−9d sin θ

Dθ

dθ

)

(3.87)

ĝη =
2Eδ21
3m2g2

∫ 2π

0

(

0.25d2 −D2
θ

)

Dθ cos θ
(

−Dθ cos θ − sin θ
√

0.25d2 −D2
θ

)3

(

−9d sin θ

Dθ

dθ

)

(3.88)

where

Dθ = 0.05d
√

82 + 18 cos θ (3.89)

Finally, after numerical integration by using composite Simpson’s rule in Eqs.(3.87) and
(3.88), the stiffnesses of the cracked shaft are obtained as the inverse of the flexibility.
Figure 3.18 shows the normalised stiffness variations for relative crack depth a/d = 0.1 in
rotating coordinates. The normalised stiffness is compared with the model of Jun et al.
[66]. For the proposed stiffness estimation based on CZM, the result is a nearly harmonic
change of stiffness. However, in Jun’s model, the stiffness change is not exactly harmonic,
which is due to the fact that the partial opening and closing behaviour of the crack is
linked to the sign of the SIFs.
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3.4 Stiffness estimation based on cohesive zone model

Figure 3.18: Normalised shaft stiffness variations of a cracked rotor with a breathing crack
for relative crack depth a/d = 0.1

The curve fitting of the normalised shaft stiffnesses shown in Figure 3.19 yield the following
relations

fξ(Ω.t) = 0.9883 + 0.0123 cos (Ω.t) (3.90)

fη(Ω.t) = 0.9957 + 0.0051 cos (Ω.t) (3.91)

Figure 3.20 shows the normalised shaft stiffness with various relative crack depths a/d,
which are calculated similarly. It is shown that shaft stiffness variation increases nonlin-
early with crack depth.

The normalised shaft stiffness can be presented in the fixed coordinates as shown in Figure
3.21 using coordinates transformation based on Figure 3.1.

{

Fy

Fx

}

=

[

cos θ − sin θ
sin θ cos θ

]{

Fξ

Fη

}

(3.92)

[

ky kyx

kxy kx

]{

y
z

}

=

[

cos θ − sin θ
sin θ cos θ

] [

kξ kξη

kηξ kη

]{

ξ
η

}

(3.93)
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3 Rotor with breathing transverse crack

Figure 3.19: Curve fitting of normalised shaft stiffness for relative crack depth a/d = 0.1

Using Eq.(3.6), the stiffness coefficients in fixed coordinates can be written as
[

ky kyx

kxy kx

]

=

[

cos θ − sin θ
sin θ cos θ

] [

kξ kξη

kηξ kη

] [

cos θ sin θ
− sin θ cos θ

]

(3.94)

or
[

ky kyx

kxy kx

]

= T
−1

[

kξ kξη

kηξ kη

]

T (3.95)

where the transformation matrix is

T =

[

cos θ sin θ
− sin θ cos θ

]

(3.96)

Substituting curve fitting results described by Eq.(3.90) and (3.91) into equations of motion
of the system Eq.(3.34), the system is parametrically excited because the excitation appears
in the coefficients of the governing differential equations. Figures 3.22 and 3.23 illustrate
free vibration responses in rotating coordinates of Eq.(3.34) and Figure 3.24 represents
steady state orbital responses compared to responses based on Mayes’ model which the
breathing function is described by cosine function (Eq.(3.19)).
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3.4 Stiffness estimation based on cohesive zone model

Figure 3.20: Normalised shaft stiffness vs. various relative crack depths a/d in rotating
coordinates
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3 Rotor with breathing transverse crack

Figure 3.21: Normalised shaft stiffness vs. various relative crack depths a/d in fixed and
rotating coordinates
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3.4 Stiffness estimation based on cohesive zone model

Figure 3.22: Vibration response in rotating coordinates for a/d = 0.1, Ω = 500 rad/s

Figure 3.23: Vibration response in rotating coordinates for a/d = 0.1, Ω = 1000 rad/s
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3 Rotor with breathing transverse crack

Figure 3.24: Steady state orbital responses in rotating coordinates for relative crack depth
a/d = 0.1, Ω = 500 rad/s and 1000 rad/s
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3.5 Breathing crack with large crack depth (a/d > 0.2)

3.5 Breathing crack with large crack depth (a/d > 0.2)

In order to obtain the stiffness variation for large crack depth (a/d ≥ 0.2), the crack clo-
sure parabolic line model is applied [84]. The geometry of parabolic line is modelled as
shown in Figure 3.25 where the parabolic line in half revolution of the shaft is divided in
9 lines, obtaining angular steps of π/8. This partition has been found to yield sufficiently
accurate results. At the beginning (n = 1), crack is fully open, the parabolic line is a
parallel line, and the crack width is maximum. At the end (n = 9), crack is fully closed
and the parabolic line vanishes. For partially open crack 1 < n < 9, the crack closure
parabolic line propagates along ξ-axis.

Figure 3.25: Geometry of crack closure parabolic line of the breathing cracked shaft

The breathing parabolic function is defined by

ξP =

(

R− 9

8
a

)

+
1

8
a · n+

1

8
a · (n− 1)

(ηP

R

)2

n = 1, 2, . . . , 9 (3.97)

where n is divided in 9 lines according angular steps of π/8 and radius of shaft R = 0.5d.
Crack depth in the radial direction along ξ-axis can be written

α′ =

(

R− 9

8
a

)

+
1

8
a · n+

1

8
a · (n− 1) n = 1, 2, . . . , 9 (3.98)

Crack width in the parallel direction along η-axis is determined by intersection between
parabolic line Eq.(3.98) and equation of circular shaft

w2 + α′2 = R2 (3.99)

w2 +

[(

R− 9

8
a

)

+
1

8
a · n+

1

8
a · (n− 1)

(w

R

)2
]2

= R2 (3.100)
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3 Rotor with breathing transverse crack

Table 3.1: Crack states for half angle rotation Ωt = 0 ÷ π for a/d = 0.2

n Ωt State of crack Crack depth Crack width w
%Acr = Acr/A α′ w2 + α′2 = R2

1 π Fully open : 5.20%A 0.800 R 0,6 R
2 7π/8 Partially open : 4.28%A 0.825 R 0,533 774 R
3 3π/4 Partially open : 3.40%A 0.850 R 0,505 579 R
4 5π/8 Partially open : 2.59%A 0.875 R 0,463 980 R
5 π/2 Partially open : 1.85%A 0.900 R 0,400 996 R
6 3π/8 Partially open : 1.20%A 0.925 R 0,342 177 R
7 π/4 Partially open : 0.65%A 0.950 R 0,275 271 R
8 π/8 Partially open : 0.23%A 0.975 R 0,191 786 R
9 0 Fully closed : 0%A R 0

Table 3.1, gives example for some states of crack during half rotation of shaft using the
crack closure parabolic line for relative crack depth a/d = 0.2.

As the shaft rotates, the crack takes on different angular positions at the cracked section.
From the transverse forces Qξ and Qη acting on the same strip, the nominal stresses are
given by

σξ =
16QξL

πd4
α′ (3.101)

ση =
16QηL

πd4
w (3.102)

In the bent shaft while rotating, the forces Qξ and Qη acting along the ξ and η axes on
the cross-section containing the crack induce deflections of the solid shaft. The additional
deflections due to the crack are estimated using the CZM. Similarly procedure as in crack
closure straight line model (Section 3.4) is applied to estimate the stiffness variation of the
cracked shaft.

The stress ratio can be written as

rσ =
σ1

σ2

=
ση

σξ

=
Qηw

Qξα′ (3.103)

The crack is fully closed at α′ = R and w = 0, and the crack is fully open at α′ = R − a
and w = wmax. Therefore, the additional deflection is given by

ûi =
∂

∂Qi

[∫ a

0

Eδ2
1

3

(

1 +
1

2

Qξα
′ +Qηw

Qξα′ −Qηw
− 1√

3
ln

(

SσY

CE

))

dα

]

(3.104)
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3.5 Breathing crack with large crack depth (a/d > 0.2)

In ξ and η direction, this expression can be written as Eqs.(3.85-86), then the flexibility
due to the crack is defined as ĝi = ∂ûi/∂Qi and addding flexibility of the uncracked shaft
to the additional flexibility due to crack yields

gξ =
L3

48EI
+

2Eδ2
1

3

∫ R

R−a

Qηwα
′2

(Qξα′ −Qηw)3 dα (3.105)

gη =
L3

48EI
+

2Eδ2
1

3

∫ R

R−a

Qηwα
′2

(Qξα′ −Qηw)3 dα (3.106)

Using the above flexibility values, the shaft stiffness can be obtained in each direction of ξ
and η axes. After numerical integration, the stiffness of the cracked shaft (the inverse of
the flexibility) can be calculated. Figure 3.26 represents the normalised stiffness variations
for relative crack depth a/d from 0.1 to 0.4 in rotating coordinates using crack closure
parabolic line model. The normalised shaft stiffnesses based on crack closure parabolic
line model are compared with the normalised shaft stiffnesses based on straight line crack
closure line model discussed in Section 3.4. For the crack closure straight line model, the
result is a nearly harmonic change of stiffness. However, for the crack closure parabolic
line model, the varying stiffness is not exactly harmonic, except for shallow cracks.
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3 Rotor with breathing transverse crack

Figure 3.26: Normalised shaft stiffnesses for relative crack depth a/d = 0.1 ÷ 0.4
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4 Stability analysis of a rotor with a

transverse breathing crack

Presence of cracks in rotors leads to instability problems due to the local aymmetry in-
troduced by the breathing mechanism of a crack. This chapter deals with the stability
of simple rotor system (de Laval rotor) due to a breathing crack. To focus on crack
influence alone, crack-disk imbalance interaction and internal damping are ignored and
the perturbation method is used to obtain the boundaries of stability regions. It can be
observed that some small damping in the rotor system is very helpful to guarantee stability.

4.1 Stability of rotor systems

All definitions of stability are concerned with the response of a system to certain distur-
bances and whether or not the response stays within certain bounds. If a linear, stationary
rotor has symmetric, positive definite mass, stiffness and damping matrices, it will be sta-
ble and all external perturbations will decay back to the reference state. A shaft becomes
asymmetric when a crack appears and grows, and it is of interest to know the consequences.
For simple rotor systems there are three basic reasons for instability: asymmetric shaft
stiffness, internal damping and cross-coupling stiffness and damping of bearings.

• Analysis shows that the symmetric component of the stiffness matrix produces con-
servative restoring forces and its element are properly called stiffnesses. The skew-
symmetric component produces non-conservative tangential forces that can insert
power into the rotor during each revolution and hence it can be destabilizing [96].

• Internal damping is due primarily to friction at rotor component interfaces. When
the power inserted by internal damping exceeds the power extracted by external
damping (support bearing damping), the rotor will become unstable.

• Fluid stiffness and damping cross coupling occurs in many bearings and some seals.
The force associated with cross coupling stiffness can insert power into the rotor
and if this power exceeds the power extracted by the direct fluid damping forces, the
rotor will become unstable. Bearing clearance plays an important role in the stability
of rotors. Increasing bearing clearance reduces the cross-coupling stiffnesses but it
also reduces the external damping, making internal damping more of an instability
threat.



4 Stability analysis of a rotor with a transverse breathing crack

To focus the crack influence alone on stability, rigid bearings are used and the internal
damping interaction is ignored. When the symmetric shaft on rigid bearings is considered,
it is easier to write the equations in rotating coordinates. However, when the bearing forces
are to be combined to the asymmetric shaft, it becomes useful to write the equations in
fixed coordinate system [113].

4.2 Instability due to parametric excitation

In order to analyse the effects of a crack in the shaft, the equations of motion should be
formulated with consideration of the stiffness modification. Here, the direct stiffnesses kξ

and kη, are considered only. The cross-coupled stiffnesses remain relatively small compared
with the direct stiffness [66], [76]. In this section, the boundaries of the stability regions of
periodic solutions of linear rotor-system equations are obtained. The equations of motion
for the rotor with a breathing crack which are discussed in previous chapter (Eqs.(3.36-37))
can be written

m
(

ξ̈ − 2θ̇η̇ − θ̇2ξ
)

+ c
(

ξ̇ − θ̇η
)

+ kξξ = 0 (4.1)

m
(

η̈ + 2θ̇ξ̇ − θ̇2η
)

+ c
(

η̇ + θ̇ξ
)

+ kηη = 0 (4.2)

For simplicity, it is assumed that damping is neglected and for synchronous whirl θ̇ = Ω,
hence

ξ̈ − 2Ωη̇ − Ω2ξ +
kξ

m
ξ = 0 (4.3)

η̈ + 2Ωξ̇ − Ω2η +
kη

m
η = 0 (4.4)

From Eqs.(3.90-91) for relative crack depth a/d = 0.1

kξ

m
= (aξ + bξ cos Ωt)

k

m
= (0.988 + 0.012 cos Ωt)

k

m
(4.5)

kη

m
= (aη + bη cos Ωt)

k

m
= (0.995 + 0.005 cos Ωt)

k

m
(4.6)

Therefore

ξ̈ +

[(

aξ

k

m
− Ω2

)

+ bξ
k

m
cos Ωt

]

ξ − 2Ωη̇ = 0 (4.7)

η̈ +

[(

aη

k

m
− Ω2

)

+ bη
k

m
cos Ωt

]

η + 2Ωξ̇ = 0 (4.8)
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4.2 Instability due to parametric excitation

By introducing

ω2
0ξ = aξ

k

m
− Ω2 (4.9)

ω2
0ξϕξ = bξ

k

m
(4.10)

ω2
0η = aη

k

m
− Ω2 (4.11)

ω2
0ηϕη = bη

k

m
(4.12)

Finally, the linear-coupled Mathieu-equations can be written

ξ̈ + ω2
0ξ (1 + ϕξ cos Ωt) ξ − 2Ωη̇ = 0 (4.13)

η̈ + ω2
0η (1 + ϕη cos Ωt) ξ + 2Ωξ̇ = 0 (4.14)

The stability problem for the linear coupled Mathieu-equations has been studied by many
authors (Hansen [55], Mahmoud [87], Takahashi [139], Ikeda and Murakami [60] and Wet-
tergren and Olson [150]). It is known that for the instability domains corresponding to
the natural frequencies, the boundary curves can be found by searching for the periodic
solutions of Eqs.(4.13-14). In the literature [52], [93], [151] the stability of the Mathieu-
equations are investigated directly by using Floquet theory and any one of the following
techniques: perturbations, Fourier analysis or numerical integration. In this work, the
boundaries of stability regions for periodic solutions of linear-coupled Mathieu equations
are obtained by second-order perturbation method.

Consider now the case that ϕ small (Eqs.(4.13-14)) in which the perturbation method is
applicable. By substituting

Ωt = 2τ (4.15)

where

ξ̇ =
dξ

dt
=

dξ

dτ

dτ

dt
=

1

2
Ωξ′ (4.16)

ξ̈ =
d2ξ

dt2
=

d

dt

(

dξ

dt

)

=
d

dt

(

1

2
Ωξ′
)

=
1

4
Ω2ξ′′ (4.17)

and similar with η̈ and η̇ with (·) as d ( )/dt and ( ′ ) as d ( ) /dτ , then

ξ′′ +
4ω2

0ξ

Ω2
(1 + ϕξ cos Ωt) ξ − 4η′ = 0 (4.18)

η′′ +
4ω2

0η

Ω2
(1 + ϕη cos Ωt) ξ + 4ξ′ = 0 (4.19)
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4 Stability analysis of a rotor with a transverse breathing crack

Define

δξ =

(

2ω0ξ

Ω

)2

(4.20)

δη =

(

2ω0η

Ω

)2

(4.21)

εξ =

(

2ω0ξ

Ω

)2

ϕξ (4.22)

εη =

(

2ω0η

Ω

)2

ϕη (4.23)

Finally, the linear-coupled Mathieu equations can be written in the form

ξ′′ + (δξ + εξ cos 2τ) ξ − 4η′ = 0 (4.24)

η′′ + (δη + εη cos 2τ) η + 4ξ′ = 0 (4.25)

These equations are investigated directly by considering solutions of Eqs.(4.24-25) which
oscillate with the unperturbed frequencies [52], for the solution

δξ = n2 + εξδξ1 + ε2
ξδξ2 + · · · (4.26)

δη = m2 + εηδη1 + ε2
ηδη2 + · · · (4.27)

and the solution can be written as a series expansion in ε

ξ (τ) = ξ0 (τ) + εξξ1 (τ) + ε2
ξξ2 (τ) + · · · (4.28)

η (τ) = η0 (τ) + εηη1 (τ) + ε2
ηη2 (τ) + · · · (4.29)

As an example the case n = m is investigated, as other values of n and m can be similarly
treated. The approximate stability regions are valid only for small value of parameter
ε (ε < 0.2). Suppose that the damping coefficient is of order ε2, i.e. h = 4 in Eqs.(4.24-
25) is of order ε2, then we can write h = ε2

ξh1 = ε2
ηh2, where h1 and h2 have maximal value

about 100. Substituting from Eqs.(4.28-29) into Eqs.(4.24-25), yield

ξ”
0 + εξξ

”
1 + ε2

ξξ
”
2 + · · · +

(

n2 + εξδξ1 + ε2
ξδξ2 + · · · + εξ cos 2τ

)

(

ξ0 + εξξ1 + ε2
ξξ2 + · · ·

)

− ε2
ξh1η

′

0 = 0 (4.30)

η”
0 + εηη

”
1 + ε2

ηη
”
2 + · · · +

(

m2 + εηδη1 + ε2
ηδη2 + · · · + εη cos 2τ

)

(

η0 + εηη1 + ε2
ηη2 + · · ·

)

− ε2
ηh2ξ

′

0 = 0 (4.31)
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4.2 Instability due to parametric excitation

Equating like powers of ε yields a doubly infinite hierarchy of equations at order εj, for ξj
and ηj, j=0,1,2,. . ., as follows

ξ”
0 + n2ξ0 = 0 (4.32)

ξ”
1 + n2ξ1 = −δξ1ξ0 − ξ0 cos 2τ (4.33)

ξ”
2 + n2ξ2 = −δξ1ξ1 − δξ2ξ0 − ξ1 cos 2τ + h1η

′

0 (4.34)

η”
0 +m2η0 = 0 (4.35)

η”
1 +m2η1 = −δη1η0 − η0 cos 2τ (4.36)

η”
2 +m2η2 = −δη1η1 − δη2η0 − η1 cos 2τ − h2ξ

′

0 (4.37)

Case n = 1

Solution to Eq.(4.32) and Eq.(4.35) can be written as

ξ0 = a cos τ + b sin τ (4.38)

η0 = a sin τ − b cos τ (4.39)

Inserting Eq.(4.38) into Eq.(4.33), we have

ξ”
1 + ξ1 = −δξ1 (a cos τ + b sin τ) − (a cos τ + b sin τ) cos 2τ

=

(

−δξ1 −
1

2

)

a cos τ +

(

−δξ1 +
1

2

)

b sin τ

− 1

2
a cos 3τ − 1

2
b cos 3τ (4.40)

In order to eliminate secular terms, we must have

−δξ1 −
1

2
= 0 (4.41)

or

−δξ1 +
1

2
= 0 (4.42)

As a result, in order to avoid ξ0 being the zero solution, we must have δξ1 = ±1
2
, then

ξ”
1 + ξ1 = −1

2
a cos 3τ − 1

2
b sin 3τ (4.43)

and the solution is

ξ1 =
1

16
(a cos 3τ + b sin 3τ) (4.44)
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4 Stability analysis of a rotor with a transverse breathing crack

Finally, inserting Eqs.(4.44) and (4.39) into Eq.(4.34), we obtain

ξ”
2 + ξ2 =

1

32
(a cos 3τ + b sin 3τ) − δξ2 (a cos τ + b sin τ) −

1

16
(a cos 3τ + b sin 3τ) cos 2τ + h1 (a cos τ + b sin τ)

=

(

−δξ2 −
1

32
+ h1

)

a cos τ +

(

−δξ2 −
1

32
+ h1

)

b sin τ +

1

32
a (cos 3τ − cos 5τ) +

1

32
b (sin 3τ − sin 5τ) (4.45)

As a result, in order to avoid a nonzero ξ0, we must have

δξ2 = − 1

32
+ h1 (4.46)

Then, we get

ξ”
2 + ξ2 =

1

32
a (cos 3τ − cos 5τ) +

1

32
b (sin 3τ − sin 5τ) (4.47)

and the solution is

ξ2 =
1

256
(a cos 3τ + b sin 3τ) − 1

768
(a cos 5τ + b sin 5τ) (4.48)

Therefore

δξ = 1 ± 1

2
εξ +

(

− 1

32
+ h1

)

ε2
ξ

= 5 ± 1

2
εξ −

1

32
ε2

ξ + O
(

ε3
ξ

)

(4.49)

We also have either

ξ (τ) = ξ0 (τ) + εξξ1 (τ) + ε2
ξξ2 (τ) + · · ·

= a cos τ +
1

16
εξa cos 3τ +

1

768
ε2

ξa (3 cos 3τ − cos 5τ) + O
(

ε3
ξ

)

(4.50)

or

ξ (τ) = b sin τ +
1

16
εξb sin 3τ +

1

768
ε2

ξb (3 sin 3τ − sin 5τ) + O
(

ε3
ξ

)

(4.51)
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4.2 Instability due to parametric excitation

Case n = 2

Solution to Eq.(4.32) and Eq.(4.35) can be written as

ξ0 = a cos 2τ + b sin 2τ (4.52)

η0 = a sin 2τ − b cos 2τ (4.53)

Inserting Eq.(4.52) into Eq.(4.33), we have

ξ”1 + 4ξ1 = −δξ1 (a cos 2τ + b sin 2τ) − (a cos 2τ + b sin 2τ) cos 2τ

= −δξ1a cos 2τ − δξ1b sin 2τ − 1

2
a− 1

2
a cos 4τ − 1

2
b cos 4τ (4.54)

In order to eliminate secular terms, we must have

δξ1 = 0 (4.55)

As a result

ξ”
1 + 4ξ1 = −1

2
a− 1

2
a cos 4τ − 1

2
b sin 4τ (4.56)

and the solution is

ξ1 = −1

8
a+

1

24
(a cos 4τ + b sin 4τ) (4.57)

Inserting Eqs.(4.57) and (4.53) into Eq.(4.34), we have

ξ”2 + 4ξ2 = δξ1

(

−1

8
a+

1

24
a cos 4τ +

1

24
b sin 4τ

)

− δξ2 (a cos 2τ + b sin 2τ) −
(

−1

8
a+

1

24
a cos 4τ +

1

24
b sin 4τ

)

cos 2τ + h1 (2a cos 2τ + 2b sin 2τ)

=

(

−δξ2 +
5

48
+ 2h1

)

a cos 2τ +

(

−δξ2 −
1

48
+ 2h1

)

b sin 2τ −

1

48
a (cos 6τ + b sin 6τ) (4.58)

As a result, in order to avoid a nonzero ξ0, we must have

δξ2 =
5

48
+ 2h1 (4.59)

or

δξ2 = − 1

48
+ 2h1 (4.60)
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4 Stability analysis of a rotor with a transverse breathing crack

Then, we obtain

ξ”
2 + 4ξ2 = − 1

48
(a cos 6τ + b cos 6τ) (4.61)

and the solution is

ξ2 =
1

1536
(a cos 6τ + b sin 6τ) (4.62)

Therefore

δξ1 = 22 − 1

48
ε2

ξ + 8 + O
(

ε3
ξ

)

(4.63)

δξ2 = 22 +
5

48
ε2

ξ + 8 + O
(

ε3
ξ

)

(4.64)

We also have either

ξ (τ) = ξ0 (τ) + εξξ1 (τ) + ε2
ξξ2 (τ) + · · ·

= a cos 2τ +
1

24
εξa (−3 + cos 4τ) +

1

1536
ε2

ξa cos 6τ + O
(

ε3
ξ

)

(4.65)

or

ξ (τ) = b sin 2τ +
1

24
εξb sin 4τ +

1

1536
ε2

ξb sin 6τ + O
(

ε3
ξ

)

(4.66)

Case n = 0

Solution to Eq.(4.32) and Eq.(4.35) can be written as

ξ0 = a+ bτ (4.67)

η0 = a+ b
(

τ − π

2

)

(4.68)

Inserting Eq.(4.67) into Eq.(4.33), we have

ξ”
1 = −δξ1a− a cos 2τ (4.69)

In order to eliminate secular terms, we must have

δξ1a = 0

⇔ δξ1 = 0 (4.70)

As a result

ξ”
1 = −a cos 2τ (4.71)

ξ1 =
1

4
a cos 2τ (4.72)
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4.2 Instability due to parametric excitation

Inserting Eqs.(4.72) and (4.68) into Eq.(4.34) yields

ξ”
2 = −δξ1 (0) − δξ2a−

(

−1

4
a cos 2τ

)

cos 2τ + h1 (0)

= −δξ2a−
1

8
a− 1

8
a cos 4τ (4.73)

As a result, in order to avoid a nonzero ξ0, we must have

−δξ2a−
1

8
a = 0 (4.74)

⇔ δξ2 = −1

8
(4.75)

Then, we obtain

ξ”
2 = −1

8
a cos 4τ (4.76)

and the solution is

ξ2 =
1

128
a cos 4τ (4.77)

Therefore

δξ = −1

8
ε2

ξ + O
(

ε3
ξ

)

(4.78)

We also have either

ξ (τ) = ξ0 (τ) + εξξ1 (τ) + ε2
ξξ2 (τ) + · · ·

= a+
1

4
εξa cos 2τ +

1

128
ε2

ξa cos 4τ + O
(

ε3
ξ

)

(4.79)

Expression of Eq.(4.49), Eqs.(4.63-64) and Eq.(4.78) are plotted as solid curve in Figure
4.1. The approximate stability regions are valid only for small value of parameter ε (ε
< 0.2). Since practically the values ωξ and ωη are very close to each other and since the
rotational speeds Ω = ωξ and Ω = ωη must be avoided as operational speeds.

According Eqs.(4.49), (4.63-64), (4.78), (4.20) and (4.9) for ε ∼= 0, we have

n = 0, Ω ≈ ωn (4.80)

n = 1, Ω ≈ 0.67ωn (4.81)

n = 0, Ω ≈ 0.50ωn (4.82)

Figure 4.2 depicts the instability regions at Ω/ωn = 1
2
, 2

3
, 1 are very small. As soon as

we have some damping, they will disappear. Some small damping in the system is very
helpful to guarantee stability, concerning this compare the width of the unstable zones
for damping and undamping regions in Figure 4.2. In real rotating machines, damping is
normally sufficient to avoid the instability when a crack is present [12].
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4 Stability analysis of a rotor with a transverse breathing crack

Figure 4.1: Approximations to the boundary between stability and instability of the linear-
coupled Mathieu equations for n=0, 1 and 2

Figure 4.2: Borderlines of stability with a damping of 5%
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5 Finite element model of the

cracked shaft

This chapter presents the finite element (FE) modelling of a breathing cracked rotor, using
an approach that has been developed by considering one dimensional continuum of shaft
(equivalent beam), in which Timoshenko beam approach is used and the different second
moment of area of the cross section is introduced. This approach is obviously approxi-
mated, but comparison with 3D calculation results show very good agreement, as long as
single cracks with regular shapes (rectilinear or elliptical) are considered [11]. Also, the
approach based on a zero thickness cohesive element as a model of fracture process zone.

In the first section, the cracked shaft without disk has been investigated. This condition
is called "weight governed breathing" where the stresses due to dynamic loads are small
with respect to those due to static loads, and therefore it can be neglected. Then, the
breathing becomes a function of the angular position θ = Ωt of the shaft only. Therefore
the stiffness variation becomes periodical and independent of rotating speed and of exciting
forces. Only horizontal and vertical displacement and angular deflection around horizontal
and vertical axes are considered. The expressions for a constant section shaft element are
considered taking into account transversal and rotational inertia and shear deformation.
The elastic shaft is modelled including gyroscopic effects and the bearings are assumed as
rigid supports in order to focus on crack influence.

The aims of this chapter is to model the cracked shaft based on CZM in conjunction with
the FE. Two FE models using CZM are proposed, the first model is based on different
asymmetric area moments of inertia of the cross section due to the crack, which depend
on the breathing function in terms of the angular position obtained by curve fitting, as
discussed in Chapter 3. The other model is based on the TSL using one element having
zero thickness which is placed between the continuum elements. Results obtained from
CZM are compared with those obtained from the proposed cosine function model by Mayes
and Davis [89]. The analytical results based on the Timoshenko open cracked shaft are
also reported. The last section of this chapter deals with FE modelling of the cracked
rotor supported by rigid bearing with disk. It can be seen that the synchronous response
has two contributions, one caused by the crack and one by the unbalance. The resultant
of this superposition depends on the angular position between eccentricity and crack. The
analytical result based on Dunkerley’s equation and Rayleigh’s method for open cracked
shaft are also described. These methods are convenient to estimate the lower and upper
bound of the natural frequencies and can be used as a reference in order to validate the
proposed FE results.



5 Finite element model of the cracked shaft

5.1 Model of the rotor supported by rigid bearings

In most models used to study the vibrational behaviour of rotors, the actual continuous
media system is modelled by a discrete assemblage. Thus, the governing partial differen-
tial equation embodying the applicable physical principles of the continuous structure is
approximated by a set of ordinary differential equations. The fundamental reason is due
to the fact that most governing partial differential equations can be derived only for the
simplest geometric of shapes and are not suited to account for the complex shapes and
configurations either for shafts-rotors or supports.

The system to be analysed consists of three main parts: rotor, disk and bearings. The
rotor shaft is considered to be a flexible body with distributed mass and elasticity. The
disk is assumed to be thin and rigid. Bearings are assumed to be rigid supports (very
high value of stiffness) in order to focus on crack influence and to be able to compare with
some published results. In order to develop the governing equations for the cracked rotor
system, the equations for these components are first derived, and then the total system of
equations is obtained by assembling the equations of the individual components.

5.1.1 Shaft model

The rotor is composed of a rotor shaft with a single rigid disk with an unbalance mass.
The rigid disk can be placed along position on the shaft. The rotor shaft is modelled and
discretized into 11 Timoshenko beam elements with four degrees of freedom at each node
as shown in Figure 5.1.

Figure 5.1: Rotor with a single rigid disk supported on both ends and coordinate system

The shaft element is modelled by 2-node beam elements, which have 8 degrees of freedom
(2 translations and 2 rotations at each node), hence the dimension of the element matrix
is 8 × 8.
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5.1 Model of the rotor supported by rigid bearings

• The displacements and rotations in horizontal and vertical direction are denoted by u,
v, θ, φ, respectively. It is assumed that no displacements occur in the axial direction
and ui, vi, θi, φi represent the displacement and rotation at node i, respectively.

• The shaft geometry is described by the length L and diameter d.

• The shaft material properties is defined by density ρ, modulus of elasticity E, shear
modulus G and Poisson’s ratio ν.

• The beam rotation about Z-axis with constant rotational speed Ω.

Model of the cracked shaft is shown in Figure 5.1. The nodal displacement of beam element
is defined by

q =
[

ui φi vi θi uj φj vj θj

]T
(5.1)

The shaft is represented as a beam with a circular cross-section and is characterized by
kinetic energy and strain energy. The general formulation of the kinetic energy for the
length dz of the element (Figure 5.2) [46], [75], [112], [27] and [39].

dT =

[

1

2
ρA
(

u̇2 + v̇2
)

+
1

2
ρId

(

θ̇2 + φ̇2
)

+
1

2
ρIpΩ

2 + ρIpΩφ̇θ

]

dz (5.2)

The first term of Eq.(5.2) is the expression for the kinetic energy of a beam in bending,
the second term is the effect of rotational inertia and the third term is a constant due to
constant rotational speed and has no influence on the equations. The last term represents
the gyroscopic effect. Ip is the mass polar moment of inertia about the rotor axis and Id is
the diametral moment of inertia about any axis perpendicular to the rotor axis as shown
in Figure 5.2.

Figure 5.2: Geometry of cylindrical shaft element
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5 Finite element model of the cracked shaft

Ip =
1

2
mR2 (5.3)

Id =
1

12
m
(

3R2 + h2
)

(5.4)

As the length dz (h ∼= 0) is vanishingly small, it follows that

I = Id =
1

2
Ip (5.5)

The expression for the strain energy can be written as

dU =
1

2

[

EI

{

(

dθ

dz

)2

+

(

dφ

dz

)2
}

+
GA

κ

{

γ2
xz + γ2

yz

}

]

dz (5.6)

where E, G, A and κ are modulus of elasticity, shear modulus, shaft cross section area and
shear coefficient, respectively. The shear deformations γ are related to the displacements
and rotations through the following relations

γxz = −φ− dx

dz
(5.7)

γyz = −θ − dy

dz
(5.8)

The displacement x, y and rotations θ, φ of each node of the element can be written as
functions of the displacements at the nodes, such that

{qx} = {u1 − θ1 u2 − θ2}T (5.9)

{qy} = {v1 − φ1 v2 − φ2}T (5.10)

By the expressions

x = [N1] {qx} (5.11)

y = [N1] {qy} (5.12)

θ = − [N2] {qy} (5.13)

φ = [N2] {qx} (5.14)

Here, a cubic shape function is proposed for y and a quadratic shape function is proposed
for θ. The shape function coefficients are determined by requiring them to exactly satisfy
both of the constraints. The resulting explicit form of two shape functions [N1] and [N2]
are given in [1], [46]
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5.1 Model of the rotor supported by rigid bearings

[N1] =
1

1 + ϑ









1 + ϑ (1 − ς) − 3ς2 + 2ς3

le
(

ς + 1
2
ϑ (ς − ς2) − 2ς2 + ς3

)

3ς2 − 2ς3 + ϑς
le
(

−1
2
ϑ (ς − ς2) − ς2 + ς3

)









T

(5.15)

[N2] =
1

(1 + ϑ) le









6 (−ς + ς2)
le (1 − 4ς + 3ς2 + ϑ (1 − ς))

−6 (−ς + ς2)
le (−2ς + 3ς2 + ϑς)









T

(5.16)

where le is the length of element and ς the nondimensional z coordinate defined as

ς =
z

le
(5.17)

ϑ is the ratio of the beam bending stiffness to the shear stiffness given by

ϑ =
12

l2e

(

EI

κGA

)

=
24

l2e

(

I

κA

)

(1 + ν) (5.18)

where ν is Poisson’s ratio.

The integration of Eqs.(5.2) and (5.6) yields directly the kinetic and strain energy of the
element, respectively

T =
1

2
ρAI

[∫ 1

0
{q̇x}T [N1]

T [N1] {q̇x}dς +

∫ 1

0
{q̇y}T [N1]

T [N1] {q̇y}dς

]

+

1

2
ρIle

[∫ 1

0
{q̇x} [N2]

T [N1] {q̇x}dς +

∫ 1

0
{q̇y}T [N2]

T [N2] {q̇y}dς

]

+

ρIΩ2le − 2ρIΩle

1
∫

0

{q̇y}T [N2]
T [N2] {q̇x}dς (5.19)

U =
EI

2le

[∫ 1

0
{qx}T d

dς
[N2]

T d

dς
[N2] {qx}dς +

∫ 1

0
{qy}T d

dς
[N2]

T d

dς
[N2] {qy}dς

]

+

EI

2le

[

12

ϑ

∫ 1

0
{qx}T [N3]

T [N3] {qx}dς +

∫ 1

0
{qy}T [N3]

T [N3] {qy}dς

]

(5.20)

where the shape function [N3] is defined as

[N3] = [N2] −
1

le

d

dς
[N1] (5.21)

The equation of motion of the i-th element can be obtained from Lagrange equation

d

dt

(

∂ (T − U)

∂q̇i

)

− ∂

∂qi
(T − U) = 0 (5.22)
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5 Finite element model of the cracked shaft

Introducing the complex coordinates

{q} = {qx} + j {qy} (5.23)

and differentiating Eq.(5.19) and Eq.(5.20) using Lagrange equations yields

0 = ρAI

1
∫

0

[N1]
T [N1] {q̈}dς + ρIle

1
∫

0

[N2]
T [N2] {q̈}dς − 2jρIleΩ

1
∫

0

[N2]
T [N2] {q̇}dς

+
EI

le





1
∫

0

(

d

dς
[N2]

T d

dς
[N2]

)

dς +
12

ϑ

1
∫

0

(

[N3]
T [N3]

)

dς



 {q} (5.24)

The equation of motion can be written in matrix form

([MT ] + [MR]) {q̈} − jΩ [G] {q̇} + [K] {q} = 0 (5.25)

The expressions of the consistent matrices appearing in Eq.(5.25) can be obtained by
performing the integrals of Eq.(5.24), which yields

• Translational inertia matrix mT

mT = [MT ] =
ρAle

420 (1 + ϑ)2









m1 lem2 m3 −lem4

l2em5 lem4 −l2em6

m1 −lem2

sym l2em5









(5.26)

m1 = 156 + 294ϑ+ 140ϑ2 (5.27)

m2 = 22 + 38.5ϑ+ 17.5ϑ2 (5.28)

m3 = 54 + 126ϑ+ 70ϑ2 (5.29)

m4 = 13 + 31.5ϑ+ 17.5ϑ2 (5.30)

m5 = 4 + 7ϑ+ 3.5ϑ2 (5.31)

m6 = 3 + 7ϑ+ 3.5ϑ2 (5.32)

• Rotational inertia matrix mR

mR = [MR] =
ρI

30le (1 + ϑ)2









m7 lem8 −m7 lem8

l2em9 −lem8 −l2em10

m7 −lem8

sym l2em9









(5.33)

m7 = 36 (5.34)

m8 = 3 − 15ϑ (5.35)

m9 = 4 + 5ϑ+ 10ϑ2 (5.36)

m10 = 1 + 5ϑ− 5ϑ2 (5.37)
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5.1 Model of the rotor supported by rigid bearings

• Gyroscopic matrix g

g = [G] =
ρIp

30le (1 + ϑ)2









m7 lem8 −m7 lem8

l2em9 −lem8 −l2em10

m7 −lem8

sym l2em9









(5.38)

Because I = Id = 1
2
Ip (Eq. (5.5)), then

g = 2mR = [G] =
ρI

15le (1 + ϑ)2









m7 lem8 −m7 lem8

l2em9 −lem8 −l2em10

m7 −lem8

sym l2em9









(5.39)

• Stiffness matrix k

k = [K] =
EI

l3e (1 + ϑ)









12 6le −12 6le
(4 + ϑ) l2e −6le (2 − ϑ) l2e

12 −6le
sym (4 + ϑ) l2e









(5.40)

Damping is assumed to be proportional to the mass and stiffness matrix (Rayleigh damp-
ing) and expressed by a damping factors αc and βc

c = αc (mT + mR) + βck (5.41)

αc and βc are identified from considering the damping ratio versus frequency.

Hence, the equation of motion of the complete uncracked shaft model can be written as

(mT + mR) q̈ + (c + Ωg) q̇ + kq = 0 (5.42)

5.1.2 Disk model

The rigid disk has four degrees of freedom and the generalized coordinates are two trans-
lations of the mass centre and two rotations of the plane of the disk. The governing
equations for the disk are derived in a similar fashion as the shaft element, therefore its
nodal displacement vector is [u φ v θ]T . If the rotor has a rigid disk, the mass centre of
each rigid disk is located at the node that is shared between two elements of the shaft as
shown in Figure 5.3.

If the disk is placed at node i of mass md, thickness Ld, outer radius Rout−d, and inner
radius Rin−d as shown in Figure 5.3, then the mass polar moments of inertia about the
rotor axis is [3]

Ip−disk =
1

2
md

(

R2
out−d +R2

in−d

)

(5.43)
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5 Finite element model of the cracked shaft

Figure 5.3: Geometry of rigid disk

and the diametral moment of inertia about any axis perpendicular to the rotor axis is
given by

Id−disk =
1

12
md

(

3R2
out−d + 3R2

in−d + L2
d

)

(5.44)

Hence, the equations of motion of the disk at node i are given by

Mdq̈i + Gdq̇i = 0 (5.45)









md 0 0 0
0 Id−disk 0 0
0 0 md 0
0 0 0 Id−disk























ü

φ̈

v̈

θ̈















+ Ω









0 0 0 0
0 0 0 −Ip−disk

0 0 0 0
0 Ip−disk 0 0























u̇

φ̇

v̇

θ̇















=















0
0
0
0















(5.46)

where the first and second matrices are the mass matrix and the gyroscopic matrix of the
disk, respectively and Ω is the shaft rotational speed. Since the disk is assumed to be rigid,
the stiffness matrix of the disk vanishes.

The expression of the mass matrix which is the summation of the translational mT and
rotational mass matrices mR, the stiffness matrix k, the external damping matrix which is
assumed as proportional damping c = αck (the internal damping has been neglected) and
the skew-symmetric gyroscopic matrix g is written in Eq.(5.39). The mass and gyroscopic
matrices for the rigid disk are given by Eq.(5.45). Hence, the FE equation of motion of
the shaft element including rigid disk is given by

Mq̈ + (C + ΩG) q̇ + Kq = Fub + Fg (5.47)

where M and G are the mass and gyroscopic matrices of the shaft and rigid disk. C and K
are the external damping and stiffness matrices of the shaft. Fub and Fg define the vector
of unbalance force and gravity force for the degree of freedom [u φ v θ]T and is given by
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5.2 Model of the cracked shaft

Fub =









mubεΩ
2 cos (Ωt+ δ)

0
mubεΩ

2 sin (Ωt+ δ)
0









(5.48)

Fg =









0
0

−mg
0









(5.49)

where mub and ε are mass unbalance and eccentricity, respectively. δ defines the initial
angular position with respect to the Z-axis and m is the mass for each element of the
shaft.

5.2 Model of the cracked shaft

5.2.1 Published models of cracked shaft

A FE model for the cracked rotor proposed by Sinou and Lees [136], [137], [135] is in-
troduced. The numerical results of this model will be compared to the FE model of the
cracked rotor using CZM. The transverse crack in the rotor system is modelled as a breath-
ing crack that opens and closes in a synchronous manner as the shaft rotates. When the
crack opens, there is a reduction in the cross sectional area moment of inertia of the ele-
ment. The cracked element stiffness matrix kcr based on Timoshenko beam theory is given
by Sinou and Lees [136]. Note that ratio of crack depth to the shaft radius µ = a/R is
used where a defines the crack depth and R the shaft radius. Furthermore, Aucr defines
the rest of uncracked area of the cross section and d̃ is the distance from the axis X to the
centroid of the cross section (Figure 5.4) where ĨX and ĨY are the area moments of inertia
about the X and Y axes, respectively.

Figure 5.4: Cross section of the cracked shaft
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5 Finite element model of the cracked shaft

ĨY =
1

4
R4
[

(1 − µ)(1 − 4µ+ 2µ2)
√

2µ− µ2 + arccos(1 − µ)
]

(5.50)

ĨX =
π

4
R4 +R4

[

2

3
(1 − µ)(2µ− µ2)

3

2 +
1

4
(1 − µ)(1 − 4µ+ 2µ2)

√

2µ− µ2

]

−R4

[

1

4
arcsin

√

2µ− µ2

]

(5.51)

Aucr = R2
[

(1 − µ)
√

2µ− µ2 + arccos(1 − µ)
]

(5.52)

d̃ =
2R3

3Aucr

(

2µ− µ2
) 3

2 (5.53)

The area moments of inertia of the cracked element cross-section about its centroidal axes
are written as

IX = ĨX − Aucrd̃
2 (5.54)

IY = ĨY (5.55)

Hence, the stiffness matrix due to the transverse crack kcr can be obtained at the crack
location

kcr =
E

L3























12Ix 6LIx 0 0 −12Ix 6LIx 0 0
6LIx (4 + ϑ)L2Ix 0 0 −6LIx (2 − ϑ)L2Ix 0 0

0 0 12Iy −6LIy 0 0 −12Iy −6LIy

0 0 −6LIy (4 + ϑ)L2Iy 0 0 6LIy (2 − ϑ)L2Iy

−12Ix −6LIx 0 0 12Ix −6LIx 0 0
6LIx (2 − ϑ)L2Ix 0 0 −6LIx (4 + ϑ)L2Ix 0 0

0 0 −12Iy 6LIy 0 0 12Iy 6LIy

0 0 −6LIy (2 − ϑ)L2Iy 0 0 6LIy (4 + ϑ)L2Iy























(5.56)

After assembling the different shaft elements, adding the element of the rigid disk and the
bearing forces, the complete cracked rotor equation is given by

Mq̈ + (C + ΩG) q̇ + (K − f(Ωt)Kcr)q = Fub + Fg (5.57)

The assembling schema of the complete cracked rotor system is displayed in Figure 5.5.
The deflection of the slowly rotating shaft is softly and continuously changing with Ωt.
In case of a small crack (a/d ≤ 0.20), the crack opens and closes rather abruptly. The
transition is less abrupt in case of deeper cracks. Mayes and Davis [90] suggested that the
continuous breathing steering function f(Ωt) for deeper cracks, because it comes closer to
reality. This usual model has been adopted by many researchers [3], [2] where the opening
and closing of the crack is described by a cosine function by assuming that the gravity
force is much greater than the unbalance force and given by

f (Ωt) =
1

2
(1 ± cos (Ωt)) (5.58)
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5.2 Model of the cracked shaft

Figure 5.5: Assembling of the complete cracked rotor system

The plus sign of the cosine term in this function is used when the crack is fully open and
symmetric with the negative Y -axis at t=0 while the negative sign is used when the crack
is fully open and symmetric with the positive Y -axis at t=0. The sign change of the cosine
term only rotates the whirl orbit by π radian without affecting its shape. The deflection
of the slowly rotating shaft is softly and continuously changing with Ωt. The transition is
less abrupt in case of deeper cracks.

5.2.2 Model based on asymmetric area moments of inertia

Here, the crack stiffness element is modelled using the CZM. Two FE one dimensional
continuum rotor models using CZM are proposed:

1. Model based on asymmetric area moments of inertia due to the crack is modelled by
the breathing steering function obtained in Chapter 3 instead of Mayes’ model.

2. Model based on the direct TSL using one zero thickness element, which is placed
between the continuum elements. This model is discussed in the next section.

If there is a crack in element-j, the new cracked element stiffness matrix kj
ce can be ex-

pressed based on the stiffness matrix due to the transverse crack kcr at the crack location
(Eq.(5.56)) and is written

kj
ce = fcoh (Ωt)kj

cr (5.59)

where kj is the 8 × 8 element stiffness matrix when the crack is fully closed (Eq.(5.40)) and
fcoh (Ωt) expresses the breathing steering function modelled by CZM obtained by curve
fitting (Eqs.(3.90-91)).

In case rotor without disk, the equation of motion yields

Mq̈ + Cq̇ + Kcq = 0 (5.60)
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5 Finite element model of the cracked shaft

where the global stiffness matrix is

Kc =





· · · · · · · · ·
· · · kj

ce · · ·
· · · · · ·



 (5.61)

The breathing crack is included in the model, i.e. when the equivalent cracked beam having
a reduced cross section and a suitable length is inserted in the FE model of the rotor, the
stiffness matrix will have variable values in the 8 × 8 elements that correspond to the
cracked beam element, which may vary between a maximum stiffness (corresponding to
closed crack) and a minimum stiffness (corresponding to open crack), instead of constant
values. After assembling the different shaft elements, the first proposed FE model of the
cracked rotor using CZM is shown in Figure 5.6.

Figure 5.6: Assembling of the cracked rotor system: first proposed FE model

Eq.(5.60) can be rewritten in the form of a state equation

p = q̇ (5.62)

ṗ = q̈ (5.63)

Substitution Eqs.(5.62-63) into Eq.(5.60) yields

ṗ = −M−1Cp − M−1Kq (5.64)

Introducing

r =

{

q
p

}

(5.65)
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5.2 Model of the cracked shaft

Thus, the state equation of the cracked rotor is

ṙ = Ar (5.66)

where A is the system matrix and is defined by

A =

[

0 I
M−1K −M−1C

]

(5.67)

Eq.(5.66) can be solved by any numerical procedures to obtain the response of the system
[109], [152].

5.2.3 Finite element results

Only the static bending moment is considered, because the bending moment due to the
inertia force distribution associated to the rotor vibration usually gives a small contribution
with respect to the static bending moment (often only near the rotor critical speeds it can
become significant). This assumption is generally acceptable for heavy horizontal rotating
machines. Hence, the linear approach for this case is suitably accurate.

5.2.3.1 Natural frequencies

Based on the assembling of the complete cracked rotor system as shown in Figure 5.5 and
Figure 5.6, the lower eigenfrequencies of the breathing cracked shaft can be determined.
In Table 5.1, the physical and geometrical parameters of the cracked shaft is listed.

Table 5.1: Shaft parameters
Symbol Parameter Value

d Diameter of the rotor shaft 0.08 m
L Length of the rotor shaft 1.0 m
a Crack depth 0.008 m
E Modulus of elasticity 210 GPa
ν Poisson ratio 0.3
ρ Density 7 850 kg/m3

A Cross section area 0.005 03 m2

I Area moment of inertia 2.01 × 10−6 m4

r0 Radius of gyration 0.020 m
ms Mass of the shaft 39.458 4 kg

Figure 5.7 shows the first three natural frequencies of the uncracked and cracked rotor
without disk. Shifts are observed for the third natural frequency. In particular, the third
natural frequency of the cracked rotor is significantly lower than those corresponding to
the uncracked rotor. The absolute percentage differences for three frequencies are 1.62%,
0.38% and 3.74%, respectively.
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5 Finite element model of the cracked shaft

Figure 5.7: Natural frequencies for the uncracked and cracked rotor without disk

5.2.3.2 Mode shapes

Figure 5.8 illustrates that mode shapes for the first three natural frequencies of the cracked
and uncracked rotor without disk are rather similar. Shifts are observed for the third
natural frequency. In particular the crack depth does not affect significantly the first and
second natural frequencies of the cracked rotor. However, the crack depth affects slightly
the third natural frequency.

5.2.3.3 Effect of crack depth

Figure 5.9 displays the ratio of the first natural frequency of the cracked rotor to the
first natural frequency of the corresponding uncracked rotor as a function of the relative
crack depth a/d. The natural frequencies of the cracked rotor are lower than the natural
frequencies of the corresponding uncracked rotor, as expected. The reduction in natural
frequency is due to the local flexibility introduced by the crack and as a result that the
stiffness is decreased. These differences increase with the depth of the crack which are
obtained from Figure 5.10.
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5.2 Model of the cracked shaft

Figure 5.8: Variation of mode shapes of the uncracked and cracked rotor for the first three
natural frequencies for relative crack depth a/d=0.1 and 0.4
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5 Finite element model of the cracked shaft

Figure 5.9: First natural frequency ratio for different crack depths

5.2.3.4 Comparison of results

The FE results in the previous section are compared with the analytical results based on
the Timoshenko beam theory given in Appendix A.1. The Timoshenko beam theory can
be used to derive a mathematical model for the open crack only and the results can be
used as a rough estimation to validate the FE results. Using the eigenfrequencies of the
undamaged shaft Eq.(A.29)

ω2
i =

1
EI

[

(

nπ
L

)2 (EIρ

κG
+ ρAr2

0

)

+ ρA
]

2
ρ2Ar2

0

EIκG

±

√

1
(EI)2

[

(

nπ
L

)2 (EIρ

κG
+ ρAr2

0

)

+ ρA
]2

− 4
ρ2Ar2

0

EIκG

(

nπ
L

)4

2
ρ2Ar2

0

EIκG

(5.68)

Substituting the shaft parameters listed in Table 5.1, the first three natural frequencies are

• ω1 = 1 015,9 rad/s = 161.7 Hz

• ω2 = 4 005,8 rad/s = 637.5 Hz

• ω3 = 8 810,9 rad/s =1 402.3 Hz

In Table 5.2, a comparison between the results obtained from FE and Timoshenko beam
theory is presented for the uncracked shaft.
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5.2 Model of the cracked shaft

Figure 5.10: First of three natural frequencies for different crack depths of shaft without
disk for relative crack depth a/d from 0.1 to 0.4

119



5 Finite element model of the cracked shaft

Table 5.2: Natural frequencies of uncracked shaft without disk at rest in [Hz]

Mode Timoshenko FE
beam-theory

1 161.7 160.1
2 637.5 635.1
3 1 402.3 1 400.1

The natural frequencies of the open cracked shaft can be determined according to Mayes’
model which relates the change in second moment of area to the relative crack depth a/d
(Eq.(2.50) and Figure 2.32) for a/d = 0.1, substitute Icr into I, we have

• ωcr1
= 1 000,6 rad/s = 159.3 Hz

• ωcr2
= 3 806,1 rad/s = 605.8 Hz

• ωcr3
= 7 967,0 rad/s =1 268.0 Hz

Table 5.3 summarizes the results for the natural frequencies of the cracked shaft using
Timoshenko beam theory and FE.

Table 5.3: Natural frequencies of cracked shaft without disk at rest in [Hz]

Mode Timoshenko FE
beam-theory

1 159.3 157.5
2 605.8 632.7
3 1 268.0 1347.8
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5.2 Model of the cracked shaft

5.2.4 Model based on zero-thickness element

In the second model, one element having zero-thickness is placed between the continuum
elements. The stiffness of zero-thickness element is defined by the stiffness of cohesive
element which is defined by TSL law according to the rest of uncracked area [84].

kj
coh = Kp [A− (A− Aucr) f (Ωt)] (5.69)

where A = π
4
d2 and Aucr are area of cross section without crack and the remains uncracked

area of the cross section (Eq.(5.52)), respectively. f (Ωt) expresses the continuous breathing
steering function obtained from curve fitting and Kp the penalty stiffness which either can
be obtained directly from the TSL

Kp =
σn

δ1
(5.70)

or can be estimated from element stiffness. Here, Kp = (1012 ÷ 5 · 1013) N/m3 is used that
ensures a stiff connection between the surfaces of the material discontinuity. The penalty
stiffness should be large enough to provide connection between the two elements but small
enough to avoid numerical problem in a FE analysis. A first value of the penalty stiffness
is obtained from estimation of the element stiffness as follows

Kp =
48EI/l3el
Ael

=
48 · 210 · 109 π

64
0.084/0.13

π
4
0.082

= 4.032 · 1012 N/m3

where shaft is discretized into 10 elements, so that lel = 0.1L.

The other estimate of the penalty stiffness is based on the TSL. The applied cohesive law
has mechanical properties as discussed in Chapter 2 for steel with maximum traction σn =
250 MPa which is assumed to be the same as the yield strength of material. The maximum
separation at the end of the elastic zone is assumed to be δ1 ∼= 10µm. The TSL is shown
in Figure 5.11.

From Eq.(5.69), it is clear that if the crack is fully closed said f (Ωt) = 0 and area of the
cross section is A, while if the crack is fully open f (Ωt) = 1 and area of the cross section
is the remaining of uncracked area of the cross section Aucr (Figure 5.4). The material
properties of the cohesive elements are assumed to be isotropic, i.e. the direct stiffness of
cohesive element in x and y direction are the same. Further, the coupling stiffnesses are
also assumed to be constant and same as the direct stiffnesses.

F u
coh = ku

cohu+ kuv
cohv (5.71)

F v
coh = kv

cohu+ kuv
cohu (5.72)
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5 Finite element model of the cracked shaft

Figure 5.11: Traction-separation law in FE computation

Since ku
coh = kv

coh = kuv
coh = kcoh, thus, the local element stiffness matrix at the cohesive

crack is

kj
coh =









kj
coh 0 kj

coh 0
0 0 0 0

kj
coh 0 kj

coh 0
0 0 0 0









(5.73)

In case of a rotor without disk, the equation of motion yields

Mq̈ + Cq̇ + Kcohq = 0 (5.74)

where Kcoh is the global element stiffness matrix,

Kcoh =





· · · · · · · · ·
· · · kj

coh · · ·
· · · · · ·



 (5.75)

The assembling schema for the FE cracked rotor model is shown in Figure 5.12.

Figure 5.12: Assembling of the cracked rotor system: second proposed FE model
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Table 5.4: First natural frequencies of cracked shaft without disk in [Hz]

a/d=0.10 a/d=0.20 a/d=0.25 a/d=0.30 a/d=0.35 a/d=0.40

Mayes’model 159.1 151.3 147.7 145.1 140.1 137.5
1st FE Model of CZM 157.5 150.1 147.1 144.7 140.1 136.8
2nd FE Model of CZM 159.2 152.4 149.2 147.2 142.5 140.3

Table 5.5: Second natural frequencies of cracked shaft without disk in [Hz]

a/d=0.10 a/d=0.20 a/d=0.25 a/d=0.30 a/d=0.35 a/d=0.40

Mayes’model 633.9 625.3 620.3 616.0 607.5 602.1
1st FE Model of CZM 632.7 625.1 620.8 615.9 606.2 602.1
2nd FE Model of CZM 630.2 624.8 620.2 615.3 606.1 602.3

Figure 5.13 and Tables 5.4-5.5 show the first two natural frequencies of the cracked rotor
without disk based on Mayes’ model and two proposed FE models using CZM. Shifts are
observed for the second FE model, for which the first natural frequencies are always smaller
than Mayes’ model. This can be caused by the partial opening of the cohesive elements
around the fracture process zone near the crack tip. In particular, the second natural
frequency of two FEs of CZM are obviously in good agreement, although the amplitude of
the second FE model is significantly lower than Mayes’ model.
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5 Finite element model of the cracked shaft

Figure 5.13: Natural frequencies for the cracked rotor without disk based on Mayes’ model,
and two proposed FE models
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5.3 Cracked rotor supported by rigid bearings with disk

5.3 Cracked rotor supported by rigid bearings with disk

5.3.1 Finite element results

Based on the assembling of the complete cracked rotor system as shown in Figure 5.5, the
first three natural frequencies of the uncracked and cracked rotor with disk are estimated.
Here, the first proposed FE is used. The shaft and disk parameters are shown in Table 5.1
and Table 5.6, respectively.

Table 5.6: Disk parameters
Symbol Parameter Value

Dout−d Outer diameter of the disk 0.15 m
Din−d Inner diameter of the disk 0.08 m
Ld Length of the disk 0.10 m
E Modulus of elasticity 210 GPa
ρ Density 7 850 kg/m3

Ip Mass polar moment of inertia 0.035 69 kg.m2

Id Diametric moment of inertia 0.026 20 kg.m2

md Mass of disk 9.926 3 kg
ε Eccentricity of the unbalance 0.070 m
mub Mass unbalance 0.05 kg

Figure 5.14 represents the vertical and horizontal amplitude as a function of rotating
frequency for the cohesive cracked and the uncracked rotor with disk. The first three
frequencies of the uncracked and cracked rotor with disk are rather close. The absolute
percentage differences for three frequencies are 0.40%, 3.68% and 1.69%, respectively. In
comparison to the frequencies of the uncracked and cracked rotor, the values of natural
frequencies for rotor with disk are generally lower.

5.3.2 Comparison of results

Two approximations have been used to estimate the critical speed of rotor. Rayleigh’s
method and Dunkerley’s equation are suitable for estimating the fundamental frequency
by hand calculation and are presented in Appendix A.2 and A.3. In general, Rayleigh’s
method overestimates and Dunkerley’s equation underestimates the natural frequency.
Dunkerley advanced a method to approximate the fundamental frequency of multirotor
systems. It gives good results if damping is negligible. In the following, the natural fre-
quencies of the uncracked shaft obtained from the FE model are compared with the fun-
damental natural frequencies calculated by Dunkerley’s equation and Rayleigh’s method.
Table 5.7 shows the result of the natural frequencies for a cracked rotor without disk. It
can be seen that the FE result is between the lower natural frequency estimation and the
higher one. Further, it is accurate to use 11 elements in order to estimate the fundamental
of natural frequency.
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5 Finite element model of the cracked shaft

Figure 5.14: Natural frequencies for the uncracked and cracked rotor with disk

By using Dunkerley’s equation Eq.(A.48), the lower bound of the first natural frequency
of the undamaged shaft is

ω2
1 ≥ EI

L3
(

ρAL

97.417
+ md

48

) (5.76)

The natural frequency of uncracked shaft can be approximated and using Figure 2.32,
for relative crack depth a/d = 0.1, ∆I/I=0.003 75 or Icr=2.003 1 × 10−6 m4. Thus, the
natural frequency of cracked shaft which is modelled by open cracked model are

ωucr =

√

√

√

√

1
(

7850·π
4
0.082·1

97.417 + 9.926 3
48

)

210 × 109 · π
640.084

13
= 830.72 rad/s (= 132.21 Hz)

ωcr =

√

√

√

√

1
(

7850·π
4
0.082·1

97.417 + 9.926 3
48

)

210 × 109 · 2.0031 × 10−6

13
= 829.16 rad/s (= 131.96 Hz)
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5.3 Cracked rotor supported by rigid bearings with disk

Table 5.7: Natural frequencies of uncracked shaft with disk in [Hz]

Mode Dunkerley’s Rayleigh’s FE
equation method

1 132.21 132.53 132.37

By using the Rayleigh’s method Eq.(A.59), the upper bound of the first natural frequency
of the undamaged shaft is

ω2
1 ≤ π4

ms + 2md

EI

L3
(5.77)

The natural frequency of uncracked shaft can be approximated and using Figure 2.32,
for relative crack depth a/d = 0.1, ∆I/I=0.003 75 or Icr=2.003 1 × 10−6 m4. Thus, the
natural frequency of cracked shaft which is modelled by open cracked model are

ωucr =

√

π
4

39.4584 + 9.9263

210 × 109 · π
640.084

13
= 832.73 rad/s (= 132.53 Hz)

ωcr =

√

π
4

39.4584 + 9.9263

210 × 109 · 2.0031 × 10−6

13
= 831.18 rad/s (= 132.29 Hz)

Table 5.8 gives approximations for the natural frequency of the cracked rotor with disk.
For the calculation of the fundamental natural frequency using Dunkerley’s equation and
Rayleigh’s method, it is assumed that the crack is always open which leads to a reduction
in the cross sectional area moment of inertia as described by Eq.(2.50). In comparison
with the first natural frequency of the open crack model from both methods, the natural
frequency for the breathing crack is slightly higher than the natural frequency estimated
by Dunkerley’s equation.

Table 5.8: Natural frequencies of cracked shaft with disk in [Hz]

Mode Dunkerley’s Rayleigh’s FE
equation method

1 131.96 132.29 131.84
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5 Finite element model of the cracked shaft

The main results of the FE numerical investigation in this chapter are the following:

1. Two FE model approaches based on equivalent beam using CZM have been proposed.
Comparison with the results in literature show good agreement, as long as a single
crack with regular shape, i.e. rectilinear shape is considered.

2. Stiffness variation is defined by the function of the TSL corresponding to the stress
acting in the crack. In the first FE model, breathing crack is modelled by a function of
the angular position that is called the cohesive breathing steering function, obtained
by curve fitting as discussed in Chapter 3. The second FE model implemented one
zero thickness cohesive element which is placed between continuum elements. The
continuous straight line for shallow crack and parabolic line in case of deep crack are
used.

3. The second FE model is more realistic since the deflection line of a shaft with a crack
in tension zone is given by the superposition of two parts: the deflection line of the
uncracked shaft and the additional deflection caused by the local compliance of the
crack. This additional part cannot be found from the elastic beam theory, because
for the beam theory, a crack is the weakening of the bending stiffness on a zero length
[42]. Therefore, using zero thickness cohesive element in FE is reasonable.

4. Disadvantage is the cost in terms of computation time, i.e. for FE model without
CZM the computing time is about four times lower than FE model with CZM.

5. With realistic damping values the linear approach is suitably accurate and effect of
unbalance is correctly predicted, even if the breathing mechanism is governed by the
vibration.
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6 Breathing crack simulation

The presence of a crack in a rotor reduces the stiffness of the system and the variable part
of the rotor stiffness varies between a minimum (for open cracks) and a maximum (for
closed cracks), depends on the so-called breathing mechanism. The breathing mechanism
is known when the open and closed parts of the cracked area are known at all angular
positions of the rotor. Non-linear behaviour of cracked rotor occurs when the breathing
crack is not anymore determined by the static forces, but by the dynamic forces associated
to the vibration or response of the system.

Generally the vibration response of the cracked rotor is small, so that the bending moment
due to the dynamic forces (external forces and inertia forces) is smaller than the static
bending moments due to the external forces (such as the weight and any other station-
ary force, in horizontal heavy rotors of industrial plants [11]). Therefore, the breathing
mechanism is dominated by the static bending moment and the dependence of the stiffness
variation on the vibration response can be neglected. Breathing mechanism with weight
dominance during rotation is shown in Figure 6.1.

Figure 6.1: Breathing crack with weight dominance [21]



6 Breathing crack simulation

Figure 6.2: Principle of the simulation using an integration of FE and MBS [81]

In this chapter, the breathing mechanism of a cracked shaft de Laval rotor on rigid sup-
ports has been investigated. An integrated simulation process of finite element (FE) and
multi-body simulation (MBS) is used. First, an elastic cracked shaft with various relative
crack depths is modelled by FE software. The analysis deals with the natural frequencies
and mode shapes of cracked and uncracked rotor. Furthermore, breathing crack under
rotating load (non-rotating shaft) is also investigated. A bending load is applied and re-
peated for all different angular positions of the cracked shaft specimen. At the second step,
the FE model of elastic cracked shafts is exported into MBS software in order to analyze
the dynamic loads, due to the crack, unbalance and inertia force acting during rotation
at different rotating speeds. The analyses consist of cracked shaft loaded by weight only
and by weight and unbalance. The effect of orientation angle of the unbalance mass on
the breathing crack behaviour has also been investigated. The case where an unbalance
is located on the crack side, and the other case where the unbalance is located on the op-
posite side of the crack have been studied. In this work, three combinations of unbalance
mass and crack depth have been discussed; the deep crack with large and small unbalance
mass and the shallow crack with large unbalance mass. Finally, the vibration responses
in the centroid of the shaft obtained from MBS have been exported into FE software to
observe the breathing mechanism. The principle of the simulation using an integrated FE
and MBS is summarized and presented in Figure 6.2.
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6.1 Finite element model of flexible cracked shaft

The transverse crack model (for circular cross-section shaft) uses cohesive elements and
is modeled by various relative crack depths for a/d= 0.1 to 0.5. Length and diameter of
shaft are 1.0 m and 0.08 m, respectively. About 5 000 continuum elements and 100 cohesive
elements have been used. The cohesive elements along the crack surfaces are implemented
as interface elements as shown in Figure 6.3.

Figure 6.3: Finite element model of a flexible cracked shaft

The natural frequencies and mode shapes of a cracked shaft at rest (rotating speed Ω=0)
have been investigated. The methodology is to vary the relative crack depth from un-
cracked shaft (a = 0) until the deepest relative crack depth (a/d = 0.5) in discrete steps.
At each step (or, value of the relative crack depth), the normalised natural frequencies
or ratio between natural frequency of the cracked shaft and natural frequency of the un-
cracked shaft can be determined directly. The variations of the first three normalised
natural frequencies ωcr i/ωn i, i = 1, 2, 3 with relative crack depth are shown in Figure
6.4. The change in the first normalised natural frequency with crack present is significant
whilst the change in the second normalised natural frequency is quite small because the
crack location is close to the anti-nodal point of the first mode. It can also be seen that
for a given relative crack depth, the change in the third normalised natural frequency is
moderate and monotonically decreases with the increment of the relative crack depth.

The corresponding mode shapes of the first three natural frequencies are shown in Figure
6.5. For shallow crack depth a = 0.1d, all of its mode shapes almost coincide with the mode
shapes of uncracked shaft. At deep crack a = 0.5d, the only difference to the mode shapes
of the uncracked shaft occurs for the third only. That means that the differences between
the cracked and uncracked mode shapes are very small and very difficult to detect in prac-
tice. These results have a very good agreement with the mode shape results (Figure 5.8)
obtained by using FE of one dimensional continuum rotor model as discussed in Chapter 5.
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6 Breathing crack simulation

Figure 6.4: Normalised natural frequencies versus relative crack depth

Figure 6.5: Comparison of the mode shapes between cracked and uncracked shaft
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6.2 Dynamic behaviour of rotating flexible cracked

shaft

The FE model of the elastic cracked shaft is exported into MBS in order to analyze the
dynamic loads, due to the crack, unbalance and inertia force acting during rotation at
different rotating speeds. The elastic cracked shafts are supported by two rigid bearings
as shown in Figure 6.6. The dynamic analyses consist of cracked shaft loaded by weight
only and by weight and unbalance. The effect of orientation angle of the unbalance mass
on the breathing crack behaviour has also been investigated. The case where an unbalance
is located on the crack side, and the case where the unbalance is located on the opposite
side of the crack have been investigated. Darpe et al. [31], Cheng et al. [21], Yamamoto
and Ishida [156] reported that the breathing behaviour and the peak response are strongly
influenced by the unbalance orientation angle relative to the crack direction. In this work,
three cases of unbalance masses have been studied; the deep crack with large and small
unbalance mass and the shallow crack with large unbalance mass.

The aim of the study is to analyse the additional deflection due to the breathing crack
during one revolution of the shaft and to study the effect of different unbalance orientation
angles. Using MBS, the dynamic effects can be observed and taken into account. In the
next section, the transverse vibration response results are used as deflection input for the
FE model in order to predict the breathing mechanism during rotation of shaft.

Figure 6.6: FE model of the elastic cracked shaft supported by rigid bearings in MBS

6.2.1 Flexible cracked shaft loaded by weight only

The deflection line of a shaft with a crack in tension zone is given by superposition of two
parts: the deflection line of the uncracked shaft and the additional deflection caused by
the local compliance of the crack as shown in Figure 6.7 [42]. This additional part cannot
be found from the elastic beam theory, because a crack is the weakening of the bending
stiffness on a zero length.
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6 Breathing crack simulation

Figure 6.7: Deflection line due to contributions of the uncracked shaft and the local crack
compliance

The breathing mechanism is the result of the stress and strain distribution around the
cracked area [12], which is due to:

1. static loads like weight,

2. dynamic loads, due to the inertia force and the unbalance force.

The present analysis investigates the breathing modelled by means of FE (Figure 6.8) with
the relative crack depth a/d=0.1 (shallow crack) and a/d = 0.5 (deep crack) at midspan
between two rigid bearings.

The methodology is to vary the rotating speed from low speed to a very high speed in
discrete steps using MBS software MSc.Adams. At each value of the rotating speed, the
amplitudes in both lateral directions are observed. Figure 6.9 shows the vibration ampli-
tude of a cracked shaft due to weight in lateral-vertical direction. As can be seen from
Figure 6.9, by comparing the breathing crack with relative crack depth a/d=0.1 (shal-
low crack) to a/d=0.5 (deep crack), amplitude of shallow cracked shaft increases slowly
by increasing rotating speed. The main difference with respect to the deep crack is that
the increasing of amplitude in case of deep crack is non-linear and breathing behaviour is
strongly influenced by the vibration and is not governed by weight. This may be due to
the fact that at high rotating speed, the crack does not close completely once per revolution.

As the rotation speed increases, the vibration amplitude also increases whilst the static
deflection remains constant which can be depicted by steady state orbital response at var-
ious speeds in Figure 6.10.
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6.2 Dynamic behaviour of rotating flexible cracked shaft

Figure 6.8: FE model of elastic cracked shafts loaded by weight only

Figure 6.9: Vibration amplitude of flexible cracked shaft loaded by weight only at various
rotating speeds
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6 Breathing crack simulation

Figure 6.10: Steady state orbital responses of flexible cracked shaft loaded by weight only
at various rotating speeds
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6.2 Dynamic behaviour of rotating flexible cracked shaft

6.2.2 Flexible cracked shaft loaded by weight and unbalance

Aim of this sub-section is to study not only the effect of weight but also the effect of
unbalance, especially the effect of different unbalance orientations in case of a deep and
a shallow crack with large and small mass unbalance. Two extreme cases of unbalance
orientation are discussed. One is the case where an unbalance is located on the crack side,
and the other is the case where this unbalance is located on the opposite side of the crack.

6.2.2.1 Case 1: Deep crack a/d = 0.5, large unbalance mass

The mass of the shaft and disk are selected to be 39.287 kg and 3.9287 kg, respectively.
The unbalance is modelled by large unbalance mass, i.e. 1 kg and is mounted on the
shaft at midspan between the two rigid bearings. As a first case, a symmetric elastic
cracked shaft with deep crack (a/d = 0.5) is studied. The model of the elastic cracked
shaft and its geometry is displayed in Figures 6.11 and 6.12, respectively. For comparison,
a symmetrical shaft without crack is also investigated.

A symmetrical shaft
without crack

Cracked shaft: unbalance on
the crack side

Cracked shaft: unbalance on
the opposite side of the crack

Figure 6.11: FE model of elastic uncracked and cracked shaft with unbalance in MBS

Figure 6.12: Geometry of cracked shaft model for relative crack depth a/d=0.5 with large
unbalance mass
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6 Breathing crack simulation

Vibration amplitude as function of rotating speed is shown in Figure 6.13. In case of large
unbalance mass, the vibration amplitude of cracked rotor changes significantly, depending
on the direction of the unbalance. If an unbalance is located on the same side as the crack,
the vibration amplitude increases stronger than the vibration amplitude of the uncracked
rotor. In contrast, if the unbalance is on the opposite side of the crack, the vibration
amplitude is lower than the vibration amplitude of the uncracked rotor. This may be
caused by the fact that the vibration amplitude due to the crack is opposite in direction
to the vibration amplitude due to the unbalance force.

Figure 6.13: Vibration amplitude of flexible uncracked and cracked shaft loaded by weight
and large unbalance at various rotating speeds: relative crack depth a/d=0.5

6.2.2.2 Case 2: Deep crack a/d = 0.5, small unbalance mass

Mass of shaft and disk are the same as in the previous simulation (mdisk/mshaft = 0.1),
but now the unbalance is modelled by a small unbalance mass, i.e. 0.1 kg. In this case,
a symmetric elastic cracked shaft with deep crack (a/d = 0.5) is used. As comparison, a
symmetrical shaft without crack is also investigated.

Figure 6.14 depicts the vibration amplitude as a function of the rotating speed. In case of
a small unbalance mass, the vibration amplitude of the cracked rotor changes also with the
direction of the unbalance. If the unbalance is located on the same side as the crack, the
vibration amplitude increases significantly stronger than the vibration amplitude of the
uncracked rotor. In case of an unbalance on the opposite side of the crack, the vibration
amplitude increases also stronger than that of an uncracked rotor. This is because the
breathing mechanism is governed by the weight than by the unbalance force.

138
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6.2.2.3 Case 3: Shallow crack a/d = 0.1, large unbalance mass

In the third case, as for the first case, the mass of the shaft and the disk are the same
and the unbalance is modelled by a large unbalance mass, but here a symmetric elastic
cracked shaft with shallow crack (a/d = 0.1) is presented. In case of a shallow crack with
large unbalance mass, both an unbalance located on the same side as the crack and on the
opposite side of the crack, the vibration amplitude of cracked rotor increases always a little
bit larger with increasing rotating speed than the vibration amplitude of the uncracked
rotor. The small or shallow crack plays a minor role and has nearly no effect on the vibra-
tion amplitude. Thus, in this case the breathing mechanism is governed by vibration due
to unbalance force rather than by the crack. Figure 6.15 shows the vibration amplitude
curve as function of rotating speed.

In summary, the main results of the MBS of the reduced FE system in these two sections
are the following:

1. In case of a shaft without unbalance mass, the breathing mechanism for a shallow
crack (a/d = 0.1) is strongly governed by weight. On contrary, for a deep crack (a/d
= 0.5), the breathing mechanism is governed by vibration rather than by weight.

2. In case of a shaft with unbalance mass, the vibration amplitudes strongly depend on
unbalance orientation with respect to the crack.

3. The analyses are based on a rotating shaft, where crack opening and closing occurs
and the crack breathes governed by rotation and vibration due to the inertia force.
Implementation of the breathing mechanism using every node at the crack surface
during rotation is more complicated and leads to a considerable CPU time. The
breathing mechanism is known when the open and closed parts of the crack have been
identified for any angle rotation. To investigate the breathing mechanism during one
revolution of the shaft, the FE model is therefore used again. This study will be
discussed in the next section.
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6 Breathing crack simulation

Figure 6.14: Vibration amplitude of flexible uncracked and cracked shaft loaded by weight
and small unbalance at various rotating speeds: relative crack depth a/d=0.5

Figure 6.15: Vibration amplitude of flexible uncracked and shallow cracked shaft loaded by
weight and large unbalance at various rotating speeds: relative crack depth
a/d=0.1
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6.3 Breathing mechanism in finite element simulation

The breathing mechanism can be predicted by means of 3D FE models by applying load
conditions and evaluating deflections. The investigation requires a fine mesh to take into
account the geometry of the crack, which will be time consuming. The 3D FE model
allows obviously calculating deflections and strains, by taking into account the breathing
mechanism. In this section, the investigation of the breathing crack mechanism is inves-
tigated using two methods, namely breathing crack under rotating loading (non rotating
shaft) and breathing crack under rotating shaft (under inertia force).

6.3.1 Breathing crack under rotating loading

Transverse cracked shafts with relative crack depth a/d = 0.1 and 0.2 are considered, length
and diameter of shaft are 1.0 m and 0.08 m, respectively. The breathing mechanism is
generated by the bending due to external load (weight) by increasing the angle by steps
of 15o (π/12 rad), i.e. 24 divisions for one revolution (i.e 24 steps in FE programm). The
observation of opening crack is repeated for all different angular positions of the cracked
shaft specimen. The breathing (open and closed crack areas are evaluated in each angular
step) is observed by the nodal displacement and the stress distribution (tensile or com-
pressive stress) around the crack.

Figure 6.16: Evaluation of displacement and stress criteria for state of crack
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6 Breathing crack simulation

The prediction of the breathing mechanism was performed according following steps:

• Rotating load due to heavy weight shaft is realized by increasing the angle by steps
of 15o (π/12 rad).

• Stress distribution due to bending moment is known over the cross section.

• Closing crack is defined that due to compressive stresses, contact forces appear and
the crack area element is closed. Crack opens while zero or very small numerical
value of stresses appear at which there is no contact force.

• Displacements and stresses can be observed around crack surfaces.

• In order to avoid local deformations due to the application of loads, the deflection
and stress distribution at each of the element crack area muss be evaluated as shown
in Figure 6.16. That means two nodes defining crack have not only the same value
of displacement with opposite direction but also have small positive or zero stress.
If these two conditions at the node occur, it means the crack is open.

Figures 6.17 and 6.18 represent some results obtained during one cycle rotating load for
a non-rotating shaft with relative crack depth a/d = 0.1 and 0.2, respectively. As can be
seen the crack opens more slowly at the beginning, but increases its opening at π/3 rad
(60o). At 5π/6 rad (150o) it is already completely open. The crack closes again at 4π/3
rad (240o) and increases its closing at 3π/2 rad (270o). The crack is already completely
closed at 11π/6 rad (330o). As can be seen there are some relevant differences with respect
to the proposed crack model discussed in Chapter 3. It can be noted that this method
is not accurate because the observation has not taken into account the influence of whirl
during shaft rotation.
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6.3 Breathing mechanism in finite element simulation

Figure 6.17: Breathing crack of the non rotating cracked shaft under rotating load for
relative crack depth a/d=0.10
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Figure 6.18: Breathing crack of the non rotating cracked shaft under rotating load for
relative crack depth a/d=0.20
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6.3.2 Breathing crack during rotation of the shaft

The breathing mechanism generated by the rotating bending load discussed in previous
section has some limitations. Due to the presence of inertia forces, the dynamic behaviour
of rotating structures is different from those of static structures. Although in case of
weight dominance, the amplitude vibration response due to inertia force is smaller than
due to weight forces, elastic forces and presence of a crack (shaft is assumed to be bal-
anced). Computating the inertia force into account will yield more accurate results. The
idea is that the vibration responses in the centroid of the shaft obtained from MBS soft-
ware are exported into the FE software in order to analyse the breathing mechanism,
as schematically shown in Figure 6.19. The opening crack is simulated for one cycle of
revolution of the cracked shaft specimen in steady state condition. The breathing mech-
anism is generated using same technique as in the case of cracked shaft under rotating load.

Figure 6.19: Export the vibration responses from MBS into FE

Both lateral vibration amplitude and steady state orbital responses of cracked shaft in
case of relative crack depth a/d=0.1 at rotating speed 600 rpm (10 Hz) are displayed in
Figures 6.20 and 6.21, respectively. Both amplitudes in lateral direction are employed in
FE model by using step increment during one revolution of the rotor.
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Figure 6.20: MBS result: Lateral vibration responses of a cracked rotor during rotation

Figure 6.21: MBS result: Steady state orbital responses of a cracked rotor during rotation
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Figure 6.22: Breathing crack of the rotating cracked shaft for relative crack depth a/d=0.10

147



6 Breathing crack simulation

Table 6.1: Comparison simulation results of breathing mechanism between rotating shaft
and rotating load for relative crack depth a/d=0.1 at rotating speed Ω=600 rpm

Characteristic Case Case
rotating shaft rotating load

Crack will start to π/6 rad (30o) π/4 rad (45o)
appear and begin to open

Crack depth opening different stages of direct to amount of
crack depth crack depth

Direction crack opening inclined to perpendicular to
the crack front the crack front

Velocity of quite constant its increase its opening
crack opening opening crack area crack area at π/3

Completely open 3π/4 rad (135o) 5π/6 rad (150o)

Crack begins to close 5π/4 rad (225o) 4π/3 rad (240o)

Completely closed 23π/12 rad (345o) 11π/6 rad (330o)

Figure 6.22 displays the resulting breathing mechanism during half revolution of a rotating
shaft (from closed crack to open crack). It can be observed that the simulation results of
breathing mechanism under rotating shaft (Figure 6.22) and under rotating load (Figure
6.17) demonstrates some relevant differences and are summarized in Table 6.1. Figure 6.23
shows the simulation results under the influence of weight when the cracked shaft is rotated
and the shaft whirls are taken into account. O is the bearing centerline, G is the shaft
geometry center, OG is static deflection of the shaft due to its weight and OC is static
deflection of the shaft due to its weight and due to presence of the crack. The shaft rotates
along the red orbit line. The differences of the simulation results of breathing mechanism
between rotating shaft and rotating load are caused by inertia force acting during shaft
rotation.
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Figure 6.23: Rotating cracked shaft during one revolution
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6.4 Validation of the breathing crack model

In comparison with the crack closure straight line model in Chapter 3, the simulation re-
sults are only different for rotation angles less than π/2 rad (90o). Figure 6.24 displays the
comparison between the simulation results and the crack closure straight line model for
shallow crack a/d=0.1, from the beginning until the crack opens completely. As discussed
before in Chapter 3, crack opening of the crack closure straight line model increases with
the same amount for every step of angle of rotation, i.e. a (θ) = a θ/π where a is crack
depth and θ angle of rotation until half revolution (π rad). It can be observed that crack
opening of the straight line model increases faster than the simulation results until rotation
angle 5π/12 rad (75o). Crack opening of the straight line model is in good agreement with
crack opening of the simulation results between angles 5π/12 to 5π/6 rad (75o to 150o).
After that, crack opening of the simulation results opens more rapidly than the straight
line model. These results were also obtained when crack closes.

It has been shown that the simulation results of breathing mechanism in rotating shafts
can be accurately generated by integrated simulation process of FE models and MBS. The
simulation results are based on transverse vibration responses of a rotating shaft from
MBS, by reducing the number of degrees of freedom of a FE model. Nevertheless, the
proposed model can be used for calculating the variation of the stiffness of a cracked shaft
during one revolution accurately.
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Figure 6.24: Comparison between the crack closure straight line model and the simulation
results of breathing mechanism for relative crack depth a/d=0.1
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7 Conclusions

7.1 Major results

The main objective of this work is the application of the cohesive zone model (CZM) to
analyze and study the vibrational behaviour of a rotor with a transverse breathing crack.
In this regard, four aspects have been investigated and proposed:

1. An explicit breathing steering function using CZM to estimate stiffness variation of
cracked shaft during rotation.

2. Two breathing crack shapes, namely crack closure straight line and parabolic line are
proposed for shallow crack and deep crack, respectively.

3. Two 1D FE models for cracked rotors based on CZM are proposed. The first model is
based on an asymmetric matrix of area moment of inertia using a breathing steering
function derived from a CZM, while the second one is based on zero thickness cohesive
element between continuum elements.

4. An integrated simulation process of FE and MBS is developed to investigate the
breathing mechanism of a cracked shaft.

In Chapter 2, the CZM is used to study the fracture process zone. This approach is based
on energy balance and has the advantage that it can be implemented easily in any numerical
procedure. The presented numerical applications demonstrated the efficiency of the CZM
in simulating the crack problems properly. In the first case, one-cohesive element shows
that the interface elements open when damage occurs and loose their stiffness at failure
so that the continuum element is disconnected. In the second case, stress distribution
on a cracked plate based on LEFM, Irwin’s model, Dugdale’s model and the CZM are
compared. These simulations are made to show that the presence of cohesive elements in a
zone ahead of the crack tip generates stresses that are lower than that in LEFM due to the
softening of cohesive elements and due to the fact that the CZM can avoid stress singularity
near crack tip. Furthermore, an implementation of 3D cohesive elements for delamination
predictions coincides nearly with experiment results. The energy balance method, which
was implemented for crack growth and crack propagation of a cracked plate, shows that
the external work flows as recoverable elastic strain energy, inelastic strain energy, plastic
dissipative energy and cohesive energy are the energy consuming mechanisms within the
fracture process zone.



7 Conclusions

The main failure mechanism in ductile metals consists of the nucleation of voids and their
growth and coalescence that initiates at the inclusions and second phase particles. Central
to the growth of these voids is the triaxiality of the stress state. On the basis of a triaxial-
ity dependent CZM, the changes of direct stiffnesses of the cracked shaft during rotation
have also been investigated in Chapter 2. To determine the stiffness variations during one
revolution of the cracked shaft, the transverse crack is assumed to be at the mid span
of the shaft. The additional deflections in the rotating coordinates due to the crack are
determined using Castigliano’s theorem, where a versatile cohesive zone model to predict
additional deflections at different states of stress is proposed. This model is developed for
mode-I plane strain and accounts for triaxiality of the stress state explicitly by using CZM
relations. For a particular angle of rotation, the CZM is introduced as a function of shaft
geometry, shaft modulus of elasticity and yield strength, crack depth, lateral force and pa-
rameters of CZM. The proposed numerical solutions are compared to the breathing crack
model based on LEFM. Since breathing crack modeled by LEFM has some limitations,
the CZM gives more realistic results because it is based on cohesive energy which is valid
as crack opens and closes.

In Chapter 3, based on FE models and the reported experimental results [11], [12], the
breathing crack mechanism during rotation was modelled by a parabolic shape, which is
the more realistic model. It was then shown that the parabolic breathing crack shape
is considerably more general and accurate than the previously used functions in the lit-
erature. It can be noted that as long as the relative crack depth is small, the model of
breathing crack parallel to crack front line or crack closure straight line may be used while
the crack closure parabolic line should be used in case of deep crack.

During rotation of the rotor, a crack will open and close. As the crack opens, the shaft
is locally asymmetric and this condition can lead to instability problems. The stability
of a simple rotor system (de Laval rotor) due to a breathing crack has been investigated
in Chapter 4. To focus on crack influence alone, crack-disk imbalance interaction and
internal damping are ignored. In order to obtain the boundaries of stability regions the
perturbation method has been applied. It is noticed that some small damping in the rotor
system is very helpful to guarantee stability.

In Chapter 5, two FE model approaches of a cracked rotor based on equivalent beam using
CZM have been proposed. Comparison with the results in literature show good agreement,
as long as a single crack with regular shape, i.e. rectilinear shape is considered. Stiffness
variation is induced by crack breathing which is function of the TSL. In the first proposed
FE model, breathing is modelled by a function of the angular position that is called the
breathing steering function, obtained by curve fitting. The second proposed FE model im-
plemented one zero thickness element which is placed between continuum elements. The
properties of zero thickness element is defined by the TSL. The crack closure straight line
for shallow crack and parabolic line in case of deep crack are used which describes the
cracked area during one revolution of the shaft. The second proposed FE model is more
realistic than the first FE model since crack is the weakening of the bending stiffness on a
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7.1 Major results

length zero [42]. Therefore, using zero thickness cohesive element in FE model is reason-
able and more realistic. Results obtained from CZM are compared with those obtained
from the proposed model by Mayes and Davis [90], in which they used the cosine function.
It seems that the CZM for cracks in a rotor is sufficiently accurate for health monitoring
purposes and it can provide useful and robust information for crack identification.

The breathing mechanism of a simple cracked shaft on rigid supports has been studied in
Chapter 6. An integrated simulation process of FE and MBS is employed. The idea is
that an elastic cracked shaft with various relative crack depths is modelled by FE. Here,
a breathing crack under rotating load (non-rotating shaft) is investigated. Then, the FE
model of elastic cracked shafts is exported into MBS in order to analyze the dynamic
loads, due to the crack, unbalance and inertia force acting during rotation at different
rotating speeds. The effect of orientation angle of the unbalance mass on the breathing
crack behaviour has also been investigated. Finally, the vibration responses in the centroid
of the shaft obtained from MBS software have been exported again into FE software to
observe the breathing mechanism. The main results of the 3D FE simulation in MBS
software are the following:

Flexible cracked shaft loaded by weight and unbalance for a deep crack In case of
a rotor without unbalance mass, the breathing mechanism for a shallow crack (a/d
= 0.1)is strongly governed by weight. On contrary, for a deep crack (a/d = 0.5),
the breathing mechanism is governed by vibration rather than by weight. In case of
a rotor with a large unbalance mass, the vibration amplitudes strongly depend on
unbalance orientation with respect to the crack. If an unbalance is located on the
same side as the crack, the vibration amplitude increases stronger than the vibration
amplitude of the uncracked rotor. In contrast, if the unbalance is on the opposite side
of the crack, the vibration amplitude is lower than the vibration amplitude of the
uncracked rotor. This may be caused by the fact that the vibration amplitude due
to the crack is opposite in direction to the vibration amplitude due to the unbalance
force. In case of a rotor with a small unbalance mass, the vibration amplitude of the
cracked rotor changes also with the direction of the unbalance. If the unbalance is
located on the same side as the crack, the vibration amplitude increases significantly
stronger than the vibration amplitude of the uncracked rotor, while for the unbalance
on the opposite side of the crack, the vibration amplitude increases also stronger than
that of an uncracked rotor. This is because the breathing mechanism is governed
rather by weight than by unbalance force.

Flexible cracked shaft loaded by weight and unbalance for a shallow crack In case
of a shallow crack with large unbalance mass, on the same side as the crack or on
the opposite side of the crack, the vibration amplitude of the cracked rotor increases
always a little bit larger with increasing rotating speed than the vibration amplitude
of the uncracked rotor. The small or shallow crack plays a minor role and has nearly
no effect on the vibration amplitude. Thus, in this case the breathing mechanism is
governed by vibration due to unbalance force rather than by the crack.
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7 Conclusions

Breathing mechanism in FE-MBS simulation The simulation results have shown that
the breathing mechanism is influenced by the vibration due to inertia forces, by
rotating speed and by relative crack depth. It is shown that the relative crack
depth during crack opening should be understood not as linear increasing. It can be
noted that as long as the relative crack depth is small, the model of breathing crack
parallel to crack front line (crack closure straight line model) may be used. The main
difference with respect to the crack closure straight line is that the opening crack in
the simulation results is not constant at the beginning. These results are also similar
obtained when crack closes. The simulation results is in good agreement with the
crack closure straight line model between rotation angles π/3 rad (60o) and 5π/6 rad
(150o).

7.2 Recommendations and further analysis

In light of the presented results and the conclusions, the following ideas can be recom-
mended for future research that may extend the research presented in this work.

• CZM could be extended to consider plasticity and crack propagation of the cracked
shaft. One important point on which the knowledge could be improved is the pre-
diction of crack propagation on cracked rotor and residual life estimation from static
loads and from the dynamical behaviour of cracked rotors.

• CZM has the advantage of its easiness of implementation in FE model to analyze
the dynamic behaviour of a cracked shaft. It is recommended to use CZM to study
different types of cracks such as longitudinal and slant cracks.

• Some other parameters such as internal damping, unbalances and thermal transients,
could be studied to obtain results for their effect on breathing mechanism as well as
stability of vibration.

• Further analysis on crack morphology is extremely important to understand the
dynamic behaviour of cracked shaft. This would include shallow and wide cracks.

• Effect of rotating speed on breathing mechanism could be of interest.
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A Analytical methods for rotating

shafts with open crack

A.1 Timoshenko beam theory for rotating shaft

There are some different assumptions corresponding to theories of transverse vibrations
of beams in literature [69], [149]. The most popular of fundamental theories is the Euler-
Bernoulli beam-theory (1744). This theory takes into account the inertia forces due to the
transverse translation and neglects the effect of shear and rotary inertia. Furthermore,
this elementary beam theory is valid only when the height of the beam is small compared
with its length. Another one is Rayleigh beam-theory (1877) which takes into account the
effect of rotary inertia. Bress beam-theory (1859) and Volterra beam-theory (1955) take
into account the rotational inertia, shear deformation and their combined effect. Differ-
ence between these theories, the bending stiffness of the beam according to the Volterra
theory is (1 − ν2)

−1 times greater than that given by the Bress theory, where ν is Poisson
ratio. This is because transverse compressive and tensile stresses are not allowed in the
Volterra theory. Ambartsumyan beam-theory (1956) allows the distortion of the cross-
section. Timoshenko beam-theory (1953) takes into account the rotational inertia, shear
deformation and their combined effects. The fundamental difference between the Rayleigh
and Bress theories, on one hand, and the Timoshenko theory, on the other, is that the
correction factor in the Rayleigh and Bress theories appears as a result of shear and rotary
effects, whereas in the Timoshenko theory, the correction factor is introduced in the initial
equations.

An approach for bending vibration based on the Euler-Bernoulli beam theory has lim-
itations because the analysis does not include the rotary inertia and shear deformation
of the cross section. The effect of the rotary inertia and shear deformation reduces the
fundamental natural frequency by 0.3% in a uniform beam with a radius-to-length ratio of
1:20, and the effect is bigger for higher modes [65]. The larger the radius-to-length ratio,
the bigger the effect of the rotary inertia and shear deformation is on the fundamental
natural frequency. Thus, the Timoshenko beam theory is applied to a general rotating
shaft for an accurate analysis. The explicit natural frequencies of an open cracked shaft
based on fracture mechanics can be calculated by Timoshenko beam theory (Chasalevris
and Papadopoulos [19], Jun and Gadala [64], Jun and Kim [65] and Tsai and Wang [141]).
Wauer [148] studied the dynamic of a cracked, distributed parameter rotor component by
using a rotating Timoshenko shaft. He proposed an analytical approach to generate model
equations which can be used as a subset within an extensive system of equations of motion
for a complex multi-shaft, multi-bearing rotating machine.
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A Analytical methods for rotating shafts with open crack

The equations of motion of a rotating uniform shaft based on Timoshenko beam theory,
including the effect of the rotary inertia, transverse shear, gyroscopic moments and axial
or tangential follower torque are [76], [65].

EI
∂4y
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∂4y

∂z2∂t2
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(A.2)

where x and y are the displacements in the horizontal and vertical directions and z the
axial coordinate, respectively (Figure 5.1). E, G, and ρ are modulus of elasticity, shear
modulus and mass density, respectively. A and I are the area and area moment of inertia
of the cross-section, r0 the radius of gyration, κ the form factor or shear coefficient, T the
torque on each end of the shaft and Ω the rotating speed.

It is noted that κ is the shear coefficient occurring in Timoshenko’s differential equation
for flexural vibrations of beams. Many authors [71], [138], [115], [140] used the shear factor
for Timoshenko’s beam with circular cross section

κ =
6 (1 + ν)

7 + 6ν
(A.3)

Kaneko [67], [68] reported that expressions of κ for circular cross section are tabulated.
The validity of the shear coefficient has been experimentally tested using a large number of
cylindrical beams. He also presented that his experimental result seems to assure constancy
of the shear coefficient over a fairly wide frequency range. It is pointed out that the
expression of κ for a circular cross section is

κ =
6 + 12ν + 6ν2

7 + 12ν + 4ν2
(A.4)

where ν is Poisson’s ratio. For ν = 0.3 yields κ = 0.925.

Since the equations are coupled, the solution of y and x cannot be obtained simply. To
avoid solving the coupled equations the dynamic behaviour in the y-z and x-z planes can
be expressed by one equation in terms of the following complex variable

u (z, t) = y (z, t) + jx (z, t) (A.5)
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A.1 Timoshenko beam theory for rotating shaft

where y (z, t) and x (z, t) are the vertical and horizontal of the axial coordinate z and time
t. Substituting Eq.(A.5) into Eqs.(A.1) and (A.2) one obtains
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Reordered according to the order of the derivatives with respect to z
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which is a fourth order partial differential equation of u (z, t)

The boundary conditions are expressed in terms of the displacement, slope of the shaft,
bending moment, and shearing force as follows

displacement : u(z, t) (A.8)

slope :
∂u

∂z
(A.9)

bending moment : EI
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(A.10)
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The fourth order partial differential equation can be solved analytically by separation of
variables. The time-dependent harmonic motion of natural frequency ω can be separated
in the variable u (z, t) as

u (z, t) = U(z)ejωt (A.12)

Substituting Eq.(A.12) into Eq.(A.7) results in the following equation
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which is a fourth order ordinary differential equation of a complex variable U and complex
coefficients in the following form
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+ a4U = 0 (A.14)
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A Analytical methods for rotating shafts with open crack

where

a1 = − jT
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Eq.(A.14) has solutions of the form

U = peλz (A.16)

Substituting Eq.(A.16) into Eq.(A.14) yields the fourth order polynomials of λ, which is
also complex

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (A.17)

For T = 0, we have
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Define

r1 =
1

2

(

a2 −
√

a2
2 − 4a4

) 1

2

(A.20)
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1
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2 − 4a4

) 1

2

(A.21)

We obtain the solution

U (z) = p1e
k1z + p2e

k2z + p3e
k3z + p4e

k4z

= p1e
−jr1z + p2e

−jr2z + p3e
jr1z + p4e

jr2z

= C1 cos r1z + C2 cos r2z + jC3 sin r1z + jC4 sin r4z (A.22)

For initial value simply supported

U (0) = U ′′ (0) = 0 (A.23)

U (L) = U ′′ (L) = 0 (A.24)
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A.1 Timoshenko beam theory for rotating shaft

Substituting initial values Eqs.(A.23-24) into Eq.(A.22) and its second derivative, we have

(
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2
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or
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Then, we have the final equations
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For Ω = 0, the frequency equation can be simplified
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Finally the eigenfrequencies of the undamaged shaft can be determined
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A Analytical methods for rotating shafts with open crack

A.2 Dunkerley’s equation

The Dunkerley equation gives the lower bound of the fundamental frequency of vibration of
a composite system in terms of the frequencies of vibration of the system’s partial systems.
The influence coefficient is linear (angular) deflection of the point due to the unit force
(moment) being applied at the same point. Consider the free vibration of an undamped
system. By the method of influence coefficients, we have

{q} = [dij] {−mq̈} (A.30)

where {q} is the displacement vector, [dij] the flexibility matrix, and {−mq̈} the vector
of inertia forces. At a principal mode of vibration, the deflections {q} are harmonics with
{q̈} = {−ω2q}. Substituting this in the Eq.(A.30) gives

{q} = [dij]
{

ω2mq
}

(A.31)

Let us illustrate the method for a two-degree-of-freedom system, from Eq.(A.31) we have
{
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Dividing by ω2 and rearranging, we obtain
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Hence the frequency equation is
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Assume ω1 and ω2 are the natural frequencies. The factored form of Eq.(A.35) yields
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Equating the coefficients of the 1
ω2 terms in Eqs.(A.35) and (A.37) yields

1

ω2
1

+
1

ω2
2

= d11m1 + d22m2 (A.38)
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If the fundamental frequency ω1 is much lower than that of the harmonic ω2, we have
1

ω2

2

≪ 1
ω2

1

and

1

ω2
1

∼= d11m1 + d22m2 (A.39)

Eq.(A.39) is called as Dunkerley’s equation. The corresponding equation for a multi-
degree-of-freedom system is

1
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n
∑
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diimi (A.40)

The influence coefficient dii is the deflection at station i of the system due to a unit force
applied at the same location. The quantity diimi is due to mi acting alone, that is, the
inertial effect of all other masses is not considered. Since dii is the reciprocal of the stiffness
kii we have

diimi =
mi

kii

=
1

ω2
ii

(A.41)

where ωii is the natural frequency of an equivalent mass-spring system with mi acting
alone at station i. Hence an alternative form of Dunkerley’s equation is the relationship
between the fundamental frequency of the actual system and partial frequencies
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Note that the estimated fundamental frequency is always lower than the exact value, since
the harmonics are neglected in the equation.

Critical speed due to deflection from shaft weight only

ω2
s = π4 EI

msL3
≈ 97.417

EI

ρAL4
(A.43)

Critical speed due to deflection from load (disk) only
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Critical speed for rotor
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A Analytical methods for rotating shafts with open crack

A.3 Rayleigh’s method

Rayleigh’s method assumes that the system is conservative, and at a principal mode, the
maximum potential energy of the system is equal to its maximum kinetic energy. It is
necessary to assume the dynamic mode shape, or the modal vector, in order to estimate
the natural frequencies. Generally, Rayleigh’s method is used to find the fundamental
frequency, since the modal vectors for the higher frequencies are more difficult to estimate.
If an exact mode shape is assumed, the frequency calculated will be exact. If the assumed
mode shape is not the exact dynamic mode shape, it is equivalent to the application of
additional constraints to the vibratory system. Hence the calculated frequency is higher
than the true value. Thus, Rayleigh’s method tends to give a higher value for the estimated
frequency.

Usually the dynamic deflections are estimated from the static deflections. The potential
energy of the system is the strain energy in the bent shaft, which is the work done by
static loads. The maximum potential energy Umax is
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1

2
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1

2
g

n
∑
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where mig is the static load due to a rotor and yi is the deflection at the rotor. For
harmonic oscillation, the maximum kinetic energy Tmax due to rotors is
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ω is the frequency of oscillation. Equating Umax and Tmax and simplifying, we obtain
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Note that the equation is derived from the lateral beam deflection of a shaft. The fre-
quency for the transverse vibration of the system is also the critical speed at which the
shaft whirl takes place.

For a continuous shaft system where the mass of the shaft is not ignored, the maximum
potential of the shaft can be written as

Umax =

L
∫

0

EI

(

d2y

dz2

)2

dz (A.52)

the maximum kinetic energy Tmax of the shaft is

Tmax =

L
∫

0

(ωy)2 dm = ω2

L
∫

0

ρA (y (z))2 dz (A.53)
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A.3 Rayleigh’s method

Hence the Rayleigh quotient for shaft vibration is

ω2 =

∫ L

0
EI
(

d2y

dz2

)2

dz
∫ L

0
ρA (y (z))2 dz +

∑

mi (yi (z))
2

(A.54)

A mode shape function is assumed to be

y (z) = y0 sin
(πz

L

)

(A.55)

which satisfies the boundary conditions: y (0) = y (L) = 0 and y′′ (0) = y′′ (L) = 0.

Potential and kinetic energy of shaft

Us =
1

2

L
∫

0

EI

(
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)2
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1

4
y2

0
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(A.56)

Ts =
1

2

L
∫

0

z2 dm =
1

4
y2

0ms (A.57)

Kinetic energy of disk

Td =
1

2
mdy

2

(z=L
2
) =

1

2
mdy

2
0 (A.58)

Rayleigh-Quotient:

ω2
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1
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The presence of a crack reduces the 
mean stiffness of the rotor system and 
introduces a stiffness variation during 
the revolution of the shaft. How the va-
riable part of the rotor stiffness varies 
between a minimum (for a closed crack) 
and a maximum (for an open crack), de 
pends on the breathing mechanism.
A method is proposed for the evaluation 
of the stiffness losses in the cross section 
that contains the crack. This method is 
based on a cohesive zone model (CZM) 
instead of linear elastic fracture mecha-
nics. The CZM is developed for mode-I 
plane strain conditions and accounts ex-
plicitly for triaxiality of the stress state by 
using constitutive relations. The CZM is 
also implemented in a one-dimensional 
continuum rotor model by means of fini-
te element discretization in order to ana-
lyse the dynamic behavior of a cracked 
rotor. 
An integrated simulation process of fini-
te element and multi-body simulation is
introduced to observe the breathing me-
chanism. This proposed technique provi-
des a useful tool for the analysis of rotor 
systems containing cracks and helps in-
vestigating the dynamic behavior of cra-
cked shafts.
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