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A Unified, Machine-Checked Formalisation
of Java and the Java Memory Model?

Andreas Lochbihler

Karlsruher Institut für Technologie
andreas.lochbihler@kit.edu

Abstract. We present a machine-checked formalisation of the Java mem-
ory model and connect it to an operational semantics for Java source
code and bytecode. This provides the link between sequential seman-
tics and the memory model that has been missing in the literature. Our
model extends previous formalisations by dynamic memory allocation,
thread spawns and joins, infinite executions, the wait-notify mechanism
and thread interruption. We prove the Java data race freedom guarantee
for the complete formalisation in a modular way. This work makes the
assumptions about the sequential semantics explicit and shows how to
discharge them.

1 Introduction

A memory model (MM) specifies how shared memory behaves under concurrent
programs. The most intuitive one is sequential consistency (SC) [15], which as-
sumes interleaving semantics, i.e., threads execute one at a time and all threads
immediately see all writes of all other threads. For efficiency reasons, modern
hardware implements only MMs weaker than sequential consistency to allow for
local caches and optimisations [1]. Similarly, many compiler optimisations that
are correct for sequential code lead to unexpected results in concurrent code.
Consider, e.g., the two threads in Fig. 1 that share locations x and y. Under se-
quential consistency, the result r1 == 2, r2 == 1 is impossible. However, if the
compiler or the hardware reorders the independent statements in each thread —
not being aware of the other thread — this outcome is in fact possible. Weak
MMs relax interleaving semantics such that such optimisations become correct.

For the typical programmer, weak MMs like the Java Memory Model (JMM)
[10,21] nevertheless provide intuitive SC semantics for an important class of
programs – a property known as the data-race freedom (DRF) guarantee [2]:
Two accesses to the same (non-volatile) location conflict if they originate from
different threads and at least one is a write. A data race occurs if two conflict-
ing accesses may happen concurrently, i.e., without synchronisation in between.
Then, if no SC execution contains data races, the JMM promises that the pro-
gram behaves like under SC semantics. In other words: If a programmer protects
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initially: x = y = 0;

1: r1 = x;
2: y = 1;

3: r2 = y;
4: x = 2;

1: (t1, R x 2)

2: (t1, W y 1)

3: (t2, R y 1)

4: (t2, W x 2)

Fig. 1. Example program with data races from [21] (left) and (part of) its JMM exe-
cution for the result r1 == 2, r2 == 1 (right)

all accesses to shared data via locks or declares the locations volatile or in an-
other way makes sure there are no data races, she can forget about the MM and
assume interleaving semantics. In the above example, the read of x in l. 1 races
with the write in l. 4 (and similarly l. 3 and l. 2 for y), i.e., the DRF guarantee
does not apply.

In practice, the DRF guarantee is the most relevant part of the JMM. For
type safety and security promises, the JMM also gives semantics to programs
with data races, which is the main cause for its complexity. While the DRF
guarantee is stated concisely and formally, only test cases [23] underpin these
promises about type safety and security, and it is unclear whether the JMM
actually provides the latter. Moreover, the JMM inadvertently and unnecessar-
ily disallows certain program transformations that Java virtual machines (JVM)
and the hardware regularly perform [9,26,29].1 Hence, it fails to provide enough
flexibility to compiler writers and implementors. Therefore, it is even more im-
portant that at least the DRF guarantee holds.

Given the technical complexity of the JMM and Java, it is crucial that all
claims are mechanically checked – as a series of false claims about the JMM and
their subsequent disproof demonstrates [21,9,26,29]. Moreover, such a JMM for-
malisation needs to be linked with a sequential semantics for Java, which several
authors [4,9,11] have criticised as missing. Since the proof of the DRF guarantee
makes assumptions about the sequential semantics, this is a prerequisite to show
that Java actually provides it.

To that end, we extend our previous work JinjaThreads [16,17,19], a formal-
isation of multithreaded Java in the proof assistant Isabelle/HOL [22] as part of
the Quis Custodiet project [25]. It models a substantial subset of multithreaded
Java source code and bytecode, defines an interleaving semantics for them, and
verifies a non-optimising compiler from source code to bytecode — all assuming
sequential consistency.

Contributions In this work, we formalise the JMM in the proof assistant Is-
abelle/HOL [22], connect it to JinjaThreads, and prove the DRF guarantee. To
our knowledge, this is the first unified, machine-checked model for Java and the
JMM. All definitions and proofs have been checked by Isabelle and are available
online in the Archive of Formal Proofs [18].

1 It is inadvertent because the JMM’s designers claimed that it allows such transfor-
mations [21], but were later proven wrong [9,26]. It is unnecessary as neither the
DRF guarantee nor Java type safety nor its security promises would be broken.
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First, we present a consistent formalisation of the JMM based on the op-
erational JinjaThreads semantics for Java source code and bytecode (§2). Our
model covers dynamic memory allocation, thread spawns and joins, infinite exe-
cutions, the wait-notify mechanism and interruption, all of which previous JMM
formalisations [4,11] have omitted. Dynamic allocation and the special treatment
of memory initialisation in the JMM force us to deal with infinite executions (see
§1.1 for an informal JMM explanation).

Our model establishes a solid link between the semantics for sequential Java
and the JMM by associating Java statements with their JMM inter-thread ac-
tions. In novel examples, we show that the Java Language Specification (JLS)
[10] and the Java API define communication channels between threads that the
JMM does not cover. Covert channels make the behaviour of one thread depen-
dent on another thread’s without synchronisation or memory access. We extend
our model accordingly (§§2.1,2.2). Following [8,9], we interleave all threads and
reconstruct the fundamental notions of the JMM a posteriori (§2.3).

Second, we prove the DRF guarantee (§3) for source code and bytecode.
Our proof resolves the inconsistencies with initialisations of locations in pre-
vious proofs [21,11]. To bridge the gap between the axiomatic JMM and the
operational semantics, we identify the assumptions of the DRF proof (§3.1) and
prove that the semantics satisfies them (§3.2). Although these assumptions are
intuitive, they surprisingly require a full subject reduction proof for sequentially
consistent executions. In particular, we explicitly construct sequentially consis-
tent executions for a given prefix by corecursion. Again, initialisations turn out
to be the main complication in the proofs.

1.1 An Informal Introduction to the JMM

In this section, we informally explain the ideas of the JMM – see §2 for the for-
malisation. Aiming for independence from concrete hardware and implementa-
tions, the JMM [10, §17.4] consists of axiomatic rules that determine a posteriori
whether a given execution is an allowed behaviour of a given program. To that
end, it abstracts concrete thread operations to (inter-thread) actions:

– reading (R) from, writing (W) to and initialising (I) heap-based locations,
– locking (L) and unlocking (U) a monitor,
– thread start (S) and finish (F),
– interrupting (Ir) a thread and observing that it has been interrupted (Ird),2

– spawning (Sp) of and joining (J) on a thread, and
– external actions (E) – for I/O, for example.

Actions in the JMM only deal with heap locations, i.e., object fields and array
cells. Access to local variables, method parameters, and type information does
not generate any inter-thread actions and is thus unaffected by the JMM.

In a given execution, the actions of a single thread are totally ordered by
the sequence in which they would occur according to the intra-thread semantics,

2 The JMM misses the actions Ir and Ird for thread interruption (see §2.4).
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the so-called program order. Being consistent with this total order, the happens-
before order provides a notion of time relative to a given action. It partitions the
other actions into three groups: those that must have happened before it, those
that must happen after it, and those that may happen concurrently. Synchro-
nisation actions, which are all inter-thread actions except for external actions
and reads from and writes to non-volatile locations, introduce happens-before
relationships between actions of different threads.

The right-hand side of Fig. 1 shows the essential part of the execution with
the unexpected result using the following notation (see Fig. 5 in App. C for the
complete execution): Statements are abstracted to their actions labelled with the
thread ID. The solid arrows represent program order, transitive relationships
are not shown. Dotted arrows used in later examples denote synchronisation
(synchronises-with relationships); as there is no synchronisation, happens-before
coincides with program order. Hence, l. 1 and l. 2 may happen “concurrently”
with l. 3 and l. 4. The dashed arrows denote the flow of values from writes to
reads. An execution assigns to each read action the write action it sees, e.g., l. 1
sees the write from l. 4.

The JMM requires that the write must not happen after the read. However,
if only happens-before determines visibility of write actions, values may appear
out of thin air. Consider, e.g.,

initially: x = y = 0;
1: r1 = x;
2: y = r1;

3: r2 = y;
4: x = r2;

1: (t1, R x 42)

2: (t1, W y 42)

3: (t2, R y 42)

4: (t2, W x 42)

The reads in ll. 1 and 3 may see the writes in ll. 4 and 2, resp., as they may
happen concurrently. If both writes write 42, both reads may read 42. Since the
program cannot normally produce 42, 42 appears out of thin air.

For type safety and security guarantees, it is vital that values do not appear
out of thin air [24]. To preclude this, the JMM adds a causality condition: Reads
that see concurrent writes must be committed, i.e., there must be a justifying
execution that writes the same value, but the read action sees a write that hap-
pens before it. We omit the technical details in the presentation, as they are not
relevant for understanding this work, but we have formalised them similarly to
previous work [4,11]. In the above example, causality forbids r1 == 42 because
no execution can produce the value 42 without performing both reads from con-
current writes. The important thing to note is that at the basis of any sequence
of justifying executions, there is one in which all reads see writes that happen
before them.

This is where initialisations come into play. The JMM assumes that all lo-
cations are initialised to their default value at the start of the execution. By
definition, these initialisations happen before any other action. Thus, there is al-
ways at least one suitable write that happens before a given read, which ensures
that such a basis for justifying executions exists.

The requirement that the JMM initialises heap locations at the start (instead
of when the location is allocated) has been one of the main complications in our
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class A { int f; } initially: x = y = null

1: r1 = x;
2: if (r1 != null) r2 = r1.f;
3: r3 = new A();
4: y = r3;

5: r4 = y;
6: x = r4;

(t1, S)

1: (t1, R x l)

2: (t1, R l.f 0)

3: (t1, I l.f)

4: (t1, W y l)

(t2, S)

5: (t2, R y l)

6: (t2, W x l)

Fig. 2. Program with a legal execution in which a read sees the initialisation which
occurs later in the program text

DRF proof – which previous formalisations have omitted. Since initialisation
actions originate from dynamic allocation, we must consider complete executions,
which may be infinite, instead of finite prefixes [4] – at least for the single-thread
semantics. Consider, e.g., the program and one of its (legal) executions in Fig. 2.
Note that the initialisation for the field f of the object created in l. 3 at location
l happens before all other actions although the single-thread semantics executes
it only after ll. 1 and 2. Suppose we take the prefix of this execution up to
l. 2. If (t1, I l.f) is not part of the prefix, the prefix is an ill-formed execution
because l. 2 sees no write. Hence, we must include the initialisation actions in
prefixes. As the single-thread semantics produces initialisation actions only at
allocations, we must run the program to completion, because we cannot decide
at intermediate states whether we have collected all initialisation actions. Thus,
our formalisation must deal with infinite executions.

1.2 Related Work

A lot of work has been devoted to hardware MMs, see [1] for an overview. We
focus on programming language MMs, which are looser than hardware MMs,
because they should be efficiently implementable on various hardware and allow
as many compiler optimisations as possible.

Huisman and Petri [11] have formalised the JMM and the proof of the DRF
guarantee in Coq. They have already noted that initialisations break the proof,
but added an axiom to avoid the problem. They set out at the abstract level of
threads in isolation, without connection to an operational semantics.

Aspinall and Ševč́ık [4] have formalised parts of the JMM relevant for the
DRF guarantee and proved the latter in Isabelle/HOL — which we have found
very helpful in extending the DRF guarantee proof. Since they omit dynamic
allocation, they need to consider only finite prefixes of executions, which consid-
erably simplifies their proofs, as they do not need to assume that sequentially
consistent continuations of executions exist. They do not provide an intra-thread
semantics; instead, they model a program as an unspecified predicate that checks
whether a trace of memory accesses and synchronisation operations represents
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a valid execution of the thread. This does not suffice to model the hidden com-
munication channels between threads that the JLS specifies (see §§2.1, 2.2).

For a kernel language, Cenciarelli et al. [9] define an interleaving small-step
semantics that generates configuration structures of actions which an axiomatic
theory constrains. On paper, they show that they only generate behaviours that
the JMM allows, but it is unknown if they produce every allowed behaviour and
if their model satisfies the DRF guarantee.

Torlak et al. [29] developed a model checker for axiomatic memory models.
Using whole-program analysis, they derive JMM executions from small Java
programs that are restricted to a small (finite) number of heap locations and
finite state; loops are unrolled. Thus, their algorithm can compute all actions
and memory allocations in advance. They focus on checking small test cases
rather than providing a full semantics and proofs.

Jagadeesan et al. [13] define an operational semantics for weak MMs with
speculative computations similar to the JMM. Instead of validating executions
a posteriori, their semantics explicitly encodes permitted reorderings and specu-
lation. Yet, their model is neither machine-checked nor comparable to the JMM
for programs with data races and synchronisation.

Boyland [8] formalises in Twelf a semantics for a simple language with allo-
cation, synchronisation, volatiles, thread spawns and joins, which may raise an
error upon a data race. He shows that a program never raises such errors iff it is
data-race free in the JMM sense. For programs with data races, the semantics
misses many behaviours that the JMM allows, e.g. reorderings as in Figs. 1,2,
whereas our semantics deals with the full JMM.

The recent standard C++11 [12] considers programs with data races ill-
formed and assigns undefined semantics to them, but it offers finer shades of
synchronisation than Java. Boehm and Adve [7] describe the MM and prove the
DRF guarantee for programs which use only strong synchronisation primitives.
They show that such programs are characterised more intuitively as never hav-
ing conflicting accesses adjacent in any interleaving. For the JMM, this equiva-
lence does not hold since threads can communicate without introducing happens-
before relationships (§2.1). Batty et al. [6] have formalised the MM with a focus
on rigorously defining the semantics, but do not report on any proofs.

Ševč́ık et al. [27] have verified the CompCert compiler backend with respect
to the formal MM for x86 processors by Sewell et al. [28], which is the first formal
correctness proof for an optimising compiler backend w.r.t. a weak MM. They
expose the x86-TSO model in the programming language, which is considerably
stronger than the JMM and also provides a DRF guarantee.

2 From Sequential Java to the Java Memory Model

This section introduces JinjaThreads (§2.1) and connects it (§2.2) to our JMM
formalisation (§2.3). We discuss deviations from and suggestions for the original
JMM in §2.4.
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2.1 Single-Thread Semantics

source code bytecode

6 JMM

5 complete interleavings

4 interleaved small-step

3 thread start & finish actions

statements call stacks c

2 & exception handling b

expressions single instruction a

1 native methods

Fig. 3. Stack of JinjaThreads source
code and bytecode semantics

JinjaThreads is a complex model of Java
that supports a broad spectrum of con-
cepts: local variables, objects and fields,
inheritance, dynamic dispatch, recursion,
arrays and exception handling; for details
see [14,16,17]. It uses a stack of small-
step semantics to give meaning to pro-
grams (Fig. 3). As source code and byte-
code share the same program structure ex-
cept for method bodies, they share most
of the levels. The stack falls into two parts:
the multithreaded semantics at levels 4 to
6, which we defer to §2.2, and the sequen-
tial small-step semantics at levels 1 to 3.
Source code and bytecode differ only on level 2, which defines the semantics of
the language primitives. For bytecode, this level consists of three sub-levels 2a
through 2c.

Before we look at the individual levels, we discuss the general form t `
〈x, T 〉 as−→ 〈x′, T ′〉 of the single-thread semantics. Local states of thread t are
denoted by x and x′, and T , T ′ are the (global) type information that all threads
share (see §2.2). Similarly to the JLS [10], the multithreaded semantics abstracts
from the concrete steps of the single-thread semantics and uses only lists as of
inter-thread actions. Reductions can generate multiple actions in one step. When
the wait method suspends the thread to the wait set, e.g., it also tests for the
monitor lock and for not being interrupted. Reductions without actions, i.e.,
as = [], are called τ -moves.

Unfortunately, the actions from §1.1 are insufficient to correctly implement
the JLS, because the JLS (and the Java API) introduce other communication
channels between threads. Consider, e.g., the following program in which two
threads race for spawning the same thread:

initially: x = null;
1: r1 = new Thread();
2: x = r1;

3: r2 = x;
4: r2.start();

5: r3 = x;
6: r3.start();

(P1)

Suppose both reads in ll. 3 and 5 see the write at l.2. Then, either l. 4 or l. 6
must throw an IllegalThreadStateException, but not both. Hence, both l. 4
and l. 6 must be allowed to fail in some executions. Thus, the two right-most
threads may just start, read the address of the Thread object (then fail with
the exception, but the JMM has no action for that), and then finish. Hence,
if each thread were run in isolation, they both would be allowed to fail, too.
Since this contradicts the specification of the start method, there is a covert
communication channel.3

3 For the start method, the JMM specifies synchronisation only between a successful
call and the first action of the spawned thread [10, §17.4.4]. A JVM implementation
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t ` 〈(ad, start), T 〉 [Sp ad (method C run)]−−−−−−−−−−−−−−−→ 〈unit, T 〉 Spawn

t ` 〈(ad, start), T 〉 [TS ad]−−−−−→ 〈throw IllegalThreadStateException, T 〉 SpawnF

Fig. 4. Semantics of the methods start and isInterrupted for class Thread. All rules
have the preconditions typeof T ad = bCc and C :≤ Thread, which have been omitted.

Therefore, we introduce the following additional inter-thread actions: (i) De-
tect that a thread has already been started (TS), (ii) wait in a monitor (Wait),
(iii) notification (N, NA), (iv) clearing an interrupt (CIr), (v) testing for a thread
not being interrupted (NIrd), and (vi) test whether the current thread does (not)
hold a lock (HL, NL). Technically, the last group is only a convenience, because
this way, a thread need not remember in its local state which locks it holds.

Now, let us return to the single-thread semantics. Most of Java concurrency
hides in (native) library methods, in particular in classes Thread and Object.
Hence, we provide at the bottom of the stack a hard-wired semantics for some
native methods. We focus on concurrency-related methods such as wait, notify,
notifyAll in Object or start, join, interrupt in Thread, but also include
ordinary methods like hashCode.

Figure 4 gives a flavour of the semantics rules; the full definition can be
found online [18]. If address ad has type C (notation typeof T ad = bCc) and
C is a subtype of Thread (notation C :≤ Thread), calling start on ad either
(i) successfully spawns the new thread ad whose initial state becomes C’s run

method Spawn, or (ii) fails with an IllegalThreadStateException SpawnF.
The single-thread semantics is non-deterministic here, but the reductions gen-
erate different actions; the concurrent semantics ensures which of these actions
can actually happen. In particular, the new action TS in SpawnF is necessary.

The second level specifies the semantics for the language primitives. In source
code, this is a standard small-step semantics. In bytecode, sub-level 2a executes
single instructions, calls to native methods are delegated to level 1. Sub-level
2b adds exception handling, 2c joins everything together into the semantics of a
single thread.

All actions originate on level 2 except for thread start and finish actions
and those generated by native methods. For example, synchronized blocks or
monitorenter and monitorexit instructions generate lock and unlock actions,
field accesses via getfield and putfield produce read and write actions. Field
read expressions and instructions such as getfield non-deterministically read
any value, irrespective of the dynamic location type. Primitives like instanceof

that do not produce any action yield τ -moves. The shared type information
grows when objects and arrays are allocated and remains unchanged otherwise.

On level 3, we add artificial start and finish actions to each thread. This
ensures that the start action of a thread precedes all its other actions.

might add additional synchronisation, but our semantics must not, since such syn-
chronisation might eliminate data races from programs, i.e., it could wrongly certify
programs with data races as DRF.
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The semantics on level 3 defines the sequential small-step semantics, on which
levels 4 to 6 build. In the remainder, we use → to refer to either source code or
bytecode semantics of level 3.

2.2 Complete Interleavings

In this section, we build the multithreaded semantics on top of the sequential
(levels 4 and 5 in Fig. 3).

The JMM is only concerned about values, not types and array lengths.
Checked type casts, virtual method calls, and reading the length of an array
are not part of the inter-thread actions and thus not affected by the JMM; read-
ing types and array lengths must always return the correct data [10, §17.4.5].4

However, since objects and arrays are dynamically allocated, the type of an ob-
ject at a given address (or the type and length of an array at that address)
is determined only after allocation. For types and array lengths, we adopt se-
quential consistency, i.e., allocations immediately update type information of all
threads. This directly solves a problem pointed out by Aspinall and Ševč́ık [4]:
What does it mean for an address being fresh for memory allocation?

Technically, the global type information T is like a global shared state that
contains only type information and array lengths, but no data values. Then, an
address is fresh in state T iff T contains no type information for it. Java’s type
safety then ensures that it has not yet been used in any thread, so we can safely
use it when allocating new memory.

Threads also communicate via types and array lengths – unnoticed by the
JMM. For example,

initially: x = 0; y = null;
1: r1 = x;
2: r2 = (r1 == 0 ? new A() : new B());
3: y = r2;

4: x = 1; 5: r3 = y;
6: r4 = r3.f();

(P2)

Suppose that classes A and B inherit from an interface I which declares a method
f() and that their objects may be allocated at the same address. Then, dynamic
dispatch at l. 6 tells the thread on the right about the left thread’s local variable
r1. However, from the JMM point of view, the thread on the right only reads
an address (in fact the same value in both cases), but behaves differently. An
analogous problem occurs if we use array lengths instead of types or declare x
and y as volatile.

Hence, threads cannot execute in isolation, as the JMM suggests. Instead,
we compute their interleavings with type information as shared state, which
guarantees sequential consistency. Our interleaving semantics also takes care of
mutual exclusion for locks and manages the monitor wait sets and notifications.

In the rest of this section, we formally define the interleaved semantics (level
4) and complete interleavings (level 5). Remember that we must consider com-
plete interleavings because the JMM treats initialisations specially (see §1.1).

4 Although the JLS specifies that every array has a final field length [10, §6.4.5] that
stores its length, the JMM treats array lengths specially [10, §17.4.5].
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Since threads in the single-thread semantics can only communicate via type in-
formation or inter-thread actions, the following is independent of the concrete
single-thread semantics.

A thread pool ts is a finite map from a thread’s ID to its local state x, the
multiset L of locks it holds, its interrupt status i, and its wait set status w (none,
waiting in a monitor, notified, interrupted, reacquiring the locks). We define the

interleaved small-step semantics 〈ts, T 〉 (t, as)
====⇒ 〈ts′, T ′〉 as

ts(t) = b(x, L, i, w)c t ` 〈x, T 〉 as−→ 〈x′, T ′〉 ts `t as
√

ts
t, as, x′7−−−−−→ ts′

〈ts, T 〉 (t, as)
===⇒ 〈ts′, T ′〉

where b c denotes definedness of a finite map. The predicate ts `t as
√

checks
whether t may perform all actions in as in the current system state ts. It imple-
ments the wait-notify and interruption mechanism, and ensures mutual exclusion

for locks and that each thread is spawned at most once. ts
t, as, x′7−−−−−→ ts′ inserts all

threads spawned in as into ts and updates t’s locks, wait set status, and local
state to x′, which yields ts′. For details, see [16,17].

A complete interleaving E is a potentially infinite list of pairs of thread
ID and inter-thread action. The relation 〈ts, T 〉 ⇓ E characterises all complete
interleavings E that start in 〈ts, T 〉, which we define as

〈ts, T 〉 ⇓ E :⇔ ∃E′. 〈ts, T 〉 ↓ E′ ∧ E = concat(E′) (1)

where concat(E′) concatenates all lists in E′ and 〈ts, T 〉 ↓E′ (defined coinduc-
tively)5 collects the list of lists of inter-thread actions.

〈ts, T 〉 6⇒
〈ts, T 〉 ↓ []
========== Stop

〈ts, T 〉 (t, as)
===⇒ 〈ts′, T ′〉 〈ts′, T ′〉 ↓ E′

〈ts, T 〉 ↓ obst(as) : E′
====================================== Step

where 〈 , 〉 6⇒ characterises stuck configurations and obst(as) collects all JMM
inter-thread actions in as (as defined in §1.1) and pairs them with the thread ID
t. That is, it removes the additional actions from above, as they are irrelevant
for the JMM.

Note that the detour via a list of action lists is necessary. If we had de-
fined 〈ts, T 〉 ⇓ E directly with the above coinductive rules Stop and Step (i.e.,
prepending obst(as) to E instead of consing), we could have derived every trace
E for a state 〈ts, T 〉 that can perform an infinite sequence of τ -moves, because
obst(as) = [] for all τ -moves. Our approach works fine since obst(as) : E is
productive and concatenating the infinite list of empty lists yields [].

The initial state 〈ts0, T0〉 for a program is specified by a class, a method
name, and the list of parameters it takes. Its thread pool ts0 consists of a single
thread t0 that holds no locks and is about to execute the specified method with
the given parameters. T0 has pre-allocated the t0 Thread object and certain

5 We use double bars to distinguish coinductive definitions from inductive ones.
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system exceptions. The list as0 of start-up actions contains t0’s start action and
initialisations for the fields of the pre-allocated objects.

For the JMM, we identify a program with the set E of complete interleavings
that start in the initial state, prefixed with as0. Formally:

E = {obst0(as0) ++ E | 〈ts0, T0〉 ⇓ E }

where ++ concatenates two lists. E contains many ill-formed executions, because
read operations may read arbitrary values (see §2.1), even not type-conforming
ones that no write operation of the program can ever produce. Since they have
no write-seen function, the JMM on level 6 discards them. For instance, see Ex. 1
in App. C.

2.3 The Java Memory Model

In this section, we formally derive the orders of the JMM (level 6) from a com-
plete interleaving E ∈ E . For the intuition behind them, see [21,10,11,4]. The
JMM notions of well-formed and legal executions are standard [4,10], we only
explain them informally. For completeness, App. A contains their definitions.

Since an action can occur multiple times in E, we use the index in E to assign
a unique identifier to an action. In the following, we identify an action with its
index, i.e., AE = {a ∈ N | a < |E|} denotes the set of actions for E. This already
provides the induced total order ≤E = ≤|AE

over AE , where R|A restricts the
binary relation R to elements from A. Since the JMM requires initialisation
actions6 to be ordered before the threads’ start actions, we introduce the (total)
execution order ≤E

eo on AE :

a ≤E
eo a

′ :⇔ if initE a then ¬ initE a′ ∨ a ≤E a′ else ¬ initE a′ ∧ a ≤E a′

where initE a predicates that a is an initialisation action in E.
The program order ≤E

po restricts ≤E
eo to actions of the same thread. The syn-

chronisation order ≤E
so restricts ≤E

eo to synchronisation actions. Synchronisation
actions are all initialisation actions, reads from and writes to volatile locations,
locking and unlocking, thread spawns and joins, thread start and finish actions,
and the interruption actions Ir and Ird. The synchronises-with order ≤E

sw re-
stricts ≤E

so to release-acquire pairs of actions. (a, a′) is a release-acquire pair iff

1. a unlocks monitor m and a′ locks m,
2. a writes to a volatile location that a′ reads,
3. a spawns a thread whose start action is a′,
4. a is a thread’s finish action on which a′ joins,
5. a is an initialisation action and a′ is a thread start action, or
6. a interrupts a thread t and a′ observes that t has been interrupted.

6 When the single-thread semantics allocates memory, it produces initialisation actions
for the new locations. This records that the executing thread has generated them.
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The happens-before order ≤E
hb is the transitive closure of ≤E

po and ≤E
sw. VE a

denotes the value that the write action a ∈ AE writes – initialisation actions
write default values (0, false, or null, resp.); for normal write actions, E contains
the value written.

An execution (E,ws) consists of a complete interleaving E and a write-
seen function ws on AE that assigns to every read action in AE the write
action it sees. This yields the JMM notion of an execution [10, §17.4.6] as
(E ,AE ,≤E

po,≤E
so, ws,VE ,≤E

sw,≤E
hb).

An execution is well-formed (written ` (E,ws)
√

) iff every thread has a
thread start action that ≤E-precedes its other actions except for initialisation
actions (denoted E

√
start) and ws is a proper write-seen functions for all reads in

E as specified by the JMM well-formedness conditions 1 (each read sees a write
to the same location), 4 (≤E

hb consistency) and 5 (≤E
so consistency for volatiles)

in [10, §17.4.7]. (E,ws) meets conditions 2 (≤E
hb is a partial order) and 3 (intra-

thread consistency) by construction. E is well-formed iff ` (E,ws)
√

for some
ws.

A legal execution is a well-formed execution (E,ws) that is justified by a se-
quence of justifying executions (Ei, wsi). As §1.1 explains, it serves to ban values
appearing out of thin air. The concrete definition is tedious, but uninteresting
for the rest of this work. It can be found in App. A.

2.4 Discussion of our JMM formalisation

Our formalisation shows how to connect a Java semantics with the JMM, which
has been missing in the literature [4,9,11]. The main insight is that action traces
of isolated threads do not suffice to obey the JLS and Java API. The examples
(P1) and (P2) present hidden communication channels between threads that the
JMM inter-thread actions do not capture – although they only use Java features
that the JMM mentions. To expose these channels, we have introduced new
actions – and our semantics shows that they suffice for the features that Jin-
jaThreads models except for type information and array lengths. We conjecture
that further actions for allocations would also lift this restriction (see below).

Most obviously, the JMM misses actions for thread interrupts. It predicates
that Thread.interrupt “synchronises-with the point where any other thread [...]
determines that [the thread] has been interrupted” [10, §17.4.4], but there are no
designated actions for neither thread interruption nor “that point”. Hence, we
have added the synchronisation actions Ir and Ird (§1.1), and their duals for non-
interruption CIr and NIrd (§2.1). Similarly, the API of class Thread requires new
actions to query a thread’s state, e.g., TS predicates that it has been started.
Previous JMM formalisations [4,8,11] did without these new actions, because
they omitted interruption and wait sets, but a realistic formalisation cannot.

The interesting question is which of these new actions should participate
in synchronisation and happens-before order. We follow the original JMM in
that only Ir synchronises with Ird; obst( ) removes the others. In particular,
the others do not synchronise with any action and need not be committed or
justified. Hence, they do not affect the writes that a read may see. We consider
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this sensible, because we have found it very hard to construct programs that
can exploit such additional synchronisation to avoid data races (see, e.g., P3
in App. C). Typically, other schedules exhibit races in such programs. Counter-
intuitively, this may also disallow some behaviours, since adding synchronisation
may allow new behaviours for programs with data races [3,21].

We do not use actions to broadcast type information, but interleave the
execution to obtain sequential consistency for types. This also solves the problem
of finding a fresh address for memory allocation, as the shared type information
stores which addresses are fresh. Although complete interleavings introduce a
global notion of time, we do not use it to constrain the write that each read sees,
because the JMM order relations abstract from it.

However, we see two approaches to avoid the interleaving. One could include
actions for producing and querying type information for locations and array
lengths. In a well-formed execution, these actions have to be matched, but they
do not interact with other thread actions. Alternatively, one could partition the
address space by type and array length like in [13]. Then, however, every read
of a reference value would implicitly transfer all type information associated
with it, which is unrealistic for implementations. In either approach, allocation
actions subsume initialisation actions such that allocation returns an arbitrary
address and the JMM ensures that every address is allocated at most once.

There are also a few technical changes to the JMM that we briefly review:
First, for the DRF guarantee, all initialisation actions must be synchronisation
actions, not only those for volatile locations, which follows Aspinall and Ševč́ık
[4]. In contrast to them [4], we do not need a special initialisation thread (which
might run infinitely in the case of an infinite execution), but assign initialisation
actions the thread’s ID which created the object. This change is relevant for the
final field semantics extension to the JMM, which requires to know which thread
created which object [10, §17.5.1].

Second, happens-before for the wait method arises not only from the asso-
ciated unlock and lock actions [10, §17.4.5], but also calling interrupt on the
waiting thread synchronises with throwing the InterruptedException. When
a thread in a wait set is both interrupted and notified, our semantics always
respects happens-before, although the JLS does not require this [10, §17.8.1].

Third, we do not model thread divergence actions. The JMM introduces them
to “model how a thread may cause all other threads to stall and fail to make
progress” [10, §17.4.2]. Our construction achieves the same via the coinductive
trace definition (Stop, Step), which then gets filtered for τ -moves (1).

Finally, JinjaThreads models neither final fields nor garbage collection and
finalisation. Hence, we do not model that part of the JMM [10, §17.5].

3 The Data Race Freedom Guarantee

The JMM promises that correctly synchronised programs exhibit only sequen-
tially consistent behaviours. First, we recapitulate the definitions and identify
the assumptions of this guarantee (§3.1). Next, we show that source code and
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bytecode indeed satisfy these assumptions (§3.2); the proofs can be found in
App. B. In §3.3, we discuss our formalisation and its implications.

3.1 The DRF Guarantee

In this section, we formally state the DRF guarantee and prove it. Two actions of
an execution are conflicting if they are read or write actions to the same location
with at least one being a write. Two conflicting actions constitute a data race if
they are not ordered by happens-before.7

An execution (E,ws) is sequentially consistent (SC) iff every read action
a ∈ AE sees the most recent write action, i.e., ws(a) ≤E

eo a, and a′ ≤E
eo ws(a) or

a ≤E
eo a

′ for all write actions a′ to the location that a reads from.8

The program E is correctly synchronised (data race free, DRF) iff no SC
execution in E contains a data race. Formally: Whenever E ∈ E , ` (E,ws)

√
and

(E,ws) is SC, then a ≤E
hb a

′ or a′ ≤E
hb a for all conflicting actions a, a′ ∈ AE .

For the DRF guarantee, it is important that we only have to check that SC
executions do not contain a data race. Otherwise, it would fail its purpose be-
cause the programmer would have to understand the whole JMM to see whether
his program is correctly synchronised and the DRF guarantee applies to it.

Our proof of the DRF guarantee (Thm. 1) adapts the others’ [21,4,11] to deal
with memory allocation and initialisations (see §3.3 for a discussion). The key
idea in all of them is that in a DRF program, a well-formed execution (E,ws)
is SC if every read sees a write that happens before it (Lem. 1) – which includes
program order. Then, the legality constraints ensure that all legal executions are
SC.

Lemma 1. Let E be correctly synchronised, E ∈ E such that ` (E,ws)
√

. If
ws(a) ≤E

hb a for every read a in AE, then (E,ws) is sequentially consistent.

To exploit correct synchronisation in a proof of Lem. 1 by contradiction, one
first obtains a SC execution (E′, ws′) from (E,ws) as follows: E′ starts like E
until the first non-SC read a in E and continues SC from there on. Then, it
suffices to find a data race between a, ws(a), and ws′(a) in E′, and for this, we
use Lem. 2 to transfer happens-before relationships between E and E′ on their
common prefix.

7 As the happens-before order approximates time, it serves to identify data races.
More intuitively, two conflicting actions race iff they can happen “concurrently” in
an execution, i.e., they are adjacent in an interleaving and the location is not marked
volatile. For simple models of happens-before, these are equivalent [7], but not for
Java with implicit communication channels between threads (see (P3) in App. C).
Still, every data race in the latter sense is also one in the happens-before sense.

8 The JMM only requires that ≤po is extended to a total order over all actions to
determine most recent writes [10, §17.4.3]. Aspinall and Ševč́ık [4] showed that,
to respect mutual exclusivity of locks, the total order must also extend ≤so. Our
execution order ≤eo extends both by construction.
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Lemma 2 (≤hb-prefix lemma). Let E and E′ be two complete interleavings
such that their first n actions differ only in the values read or written, and let
a, a′ < n. If E′

√
start and a ≤E

hb a
′, then a ≤E′

hb a
′.

Theorem 1 (DRF guarantee). If the program P is correctly synchronised
and (E,ws) a legal execution, then (E,ws) is sequentially consistent.

The proof closely follows [4, Thm. 1], it uses Lem. 1. Both Thm. 1 and Lem. 1
implicitly rely on two assumptions about E :

A1 For every sequentially-consistent prefix of a well-formed execution (E,ws)
with E ∈ E , there is a well-formed complete interleaving E′ ∈ E with the
same prefix and a write seen-function ws′ such that (E′, ws′) is SC. If E
immediately continues with a read after the prefix, E′ also continues with a
read from the same location.

A2 Every execution initialises every location at most once.

The first assumption ensures that E′ as required in the proof of Lem. 1 does
exist, the second is a standard well-formedness condition. In §3.2, we prove that
JinjaThreads source code and bytecode satisfy these by explicitly constructing
SC executions. Moreover, Lem. 2 requires that all initialisation actions synchro-
nise with thread start actions, i.e., they are synchronisation actions (see (P4) in
App. C for an example).

3.2 Sequentially Consistent Completions

In the previous section, we have shown the DRF guarantee under two assump-
tions on the set E of complete interleavings. Now, we discharge them for source
code and bytecode by descending the stack of semantics (Fig. 3) and adapting
the assumptions. They act like an interface between the levels and ensure that
we can share the proofs for all levels that source code and bytecode share.

We start with complete interleavings. The JMM definition of SC is not
amenable to the coinductive definition of 〈 , 〉 ↓ as it relies on the notions
of write-seen function and most recent write, which are only defined for com-
plete interleavings. Therefore, we introduce a coinductive version of SC.

Let h denote a snapshot of a sequentially consistent heap, i.e., a finite map
from locations to values. The function mrw(h, a) updates the heap h if a is a
write or initialisation action, else leaves h unchanged. The function mrws folds
mrw over action lists. An action list as is sequentially consistent (SC’) for the
heap h (denoted h ` as

√
sc) iff

h ` []
√
sc

========
mrw(h, a) ` as

√
sc a = R l v =⇒ h(l) = bvc
h ` a : as

√
sc

===============================================

i.e., the empty list is SC’ for all heaps, and a : as is SC’ for h iff as is SC’ for
the updated heap mrw(h, a) and if a reads the value v from location l, then the
heap h must store v at l.

The next theorem shows that ∅ `
√
sc adequately models SC, where ∅ denotes

the empty map. Thus, we can use coinduction to show an execution being SC.
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Theorem 2. Let initialisations ≤E-precede reads and E
√
start. Then, ∅ ` E

√
sc

iff there is a ws such that ` (E,ws)
√

and (E,ws) is SC.

This equivalence holds only if the initialisation of any location l occurs be-
fore the first read from l in the complete interleaving. For example, the execution
[(t1,S), (t1,R l.x 0), (t1, I l.x 0)] is SC for ws(t1,R l.x 0) = (t1, I l.x 0), but not
SC’. The problem is real: Figure 2 shows a (non-SC) execution of a type-correct
program that violates this assumption. In order to exploit this equivalence, we
must show that initialisations ≤E-precede reads in SC prefixes of complete in-
terleaving (see below).

Prior to this, we construct a sequentially consistent completion scc(〈ts, T 〉, h)
that starts with a thread pool ts, global type information T , and a heap h. We
define scc by corecursion as follows, where ε denotes Hilbert’s choice operator.

scc(〈ts, T 〉, h) :=

if 〈ts, T 〉 6⇒ then []

else let (t, as, ts′, T ′) = ε(t, as, ts′, T ′). 〈ts, T 〉 (t, as)
====⇒ 〈ts′, T ′〉 ∧ h ` as

√
sc

in obst(as) : scc(〈ts′, T ′〉,mrws(h, as))

In order to prove anything about scc(〈ts, T 〉, h), we must make sure that the
predicate to the ε-operator is satisfiable for all reachable configurations. Hence,
we presume for now that the interleaving semantics satisfies the cut-and-update

property (C&U), namely whenever 〈ts, T 〉 (t,as
′)

====⇒〈ts′, T ′〉 and wf(〈ts, T 〉, h), then

there are as′′, ts′′, and T ′′ such that (i) 〈ts, T 〉 (t,as′′)
====⇒〈ts′′, T ′′〉, (ii) h ` as′′

√
sc,

and (iii) h ` as′ ≈ as′′. The predicate wf ensures well-formedness of the state
and conformance of heap; for source code and bytecode, we define wf below and
prove that their semantics satisfy C&U. Conditions (i) and (ii) predicate that
non-stuck states always have a reduction with actions as that are SC’ w.r.t. the
current heap h; they suffice to prove that scc does compute an SC’ interleaving
(Lem. 3). Condition (iii) denotes that as′ and as′′ consist of the same actions
upto the first SC’ inconsistent read in as′ and as′′ continues with a read from
the same location. With this condition, given a complete interleaving that is SC’
up to a read r, we can cut the interleaving after r, change r to read the most
recent value, and continue the interleaving SC’.

Let us further assume that wf(〈ts, T 〉, h) holds for the initial state (ts0, T0)
with the initial heap h0 := mrws(∅, as0), and is preserved by all SC’ reductions.
Then, scc computes an SC’ execution (Lem. 3). By the equivalence of SC and
SC’ (Thm. 2), we can then discharge the main assumption of the DRF proof
(Thm. 3).

Lemma 3.
If wf(〈ts, T 〉, h), then 〈ts, T 〉↓scc(〈ts, T 〉, h) and h ` concat(scc(〈ts, T 〉, h))

√
sc.

Theorem 3 (SC completion). Let E ∈ E, ` (E,ws)
√

, (E,ws) be SC up to
a read action (t,R l v), say E = E1 ++ (t,R l v) :E2 with ws(r) being the most
recent write for all reads r ∈ AE1

. Then, there are E3, v′, and ws′ such that
E∗ := E1 ++ (t,R l v′) : E3 ∈ E, ` (E∗, ws′)

√
, and (E∗, ws′) is SC.
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We have now replaced the assumptions A1 and A2 of §3.1 by the following,
which are simpler and no longer refer to JMM notions.

B1 Every execution initialises every location at most once.
B2 If a complete interleaving has an SC’ prefix as followed by a read from l, as

must initialise l.
B3 wf is preserved by SC’ reductions and wf(〈ts0, T0〉, h0) holds.
B4 The interleaving semantics satisfies C&U.

Next, we tackle these proof obligations. They naturally translate to the levels
below the interleaving semantics, so we do not expand on them in detail. The
actual proofs decompose the semantics on levels 4 down to 1, perform induction
on the semantics (source code) or case analysis on the individual instructions
(bytecode), resp., and lift everything back to level 4. Here, we only present the
main arguments.

For B1, remember that only memory allocations generate initialisation ac-
tions. When an allocation returns an address, it was fresh before, but afterwards,
it is allocated, i.e., not fresh. Hence, it suffices to prove that the semantics cor-
rectly keeps track of all memory allocations in the inter-thread actions, as ini-
tialisation actions refer to the address.

For B2, not only must we show that the program cannot make up arbitrary
addresses, but also that it accesses only the declared fields of objects. To that
end, we define the well-formedness predicate wf(〈ts, T 〉, h) to denote that

(i) for all allocated addresses a, T contains type information and h contains
type-conforming values for all fields and array cells of a,

(ii) all addresses in thread-local states of ts and in h’s range are allocated, and
(iii) all thread-local states in ts are language-specifically well-formed.

For source code, the latter states that all values in the local store are of correct
type and the statement is runtime-typeable. For bytecode, the operand stack and
registers must conform to the well-typing as computed by the bytecode verifier.
Type correctness ensures that the semantics stays within the safe state space,
e.g., it does not get unexpectedly stuck or yields undefined behaviour about
which nothing can be proven.

Preservation for wf (assumption B3) relies on the JinjaThreads type safety
proofs [16,17,14]. The subject reduction proofs require that reads only return
type-conforming values. This holds because the semantics correctly keeps track
of all reads in the inter-thread actions, which are by assumption SC’, and the
heap contains only type-conforming values. By the type safety proofs, all values
written to the memory are type-conforming, too. Moreover, we show that the
single-thread semantics cannot generate new addresses other than via memory
allocation. Hence, wf ensures that addresses cannot appear out of thin air in an
SC’ execution. For the initial state, wf(〈ts0, T0〉, h0) holds by construction.

From this, B2 follows. By preservation, wf holds for the state after the prefix
as. Hence, type safety ensures that the read accesses an allocated location.

Finally, showing that the semantics satisfies C&U (assumption B4) is tedious,
but uninteresting because reads may return arbitrary values.
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Theorem 4. The JMM DRF guarantee holds for source code and bytecode.

This follows from Thm. 1, 3 by the above argument that their assumptions hold.

3.3 Discussion

The DRF guarantee for Java (§3.1) has been formalised before [4,11] – in fact,
we employ the same key ideas in §3.1. The novel aspects are that (i) our JMM
formalisation covers dynamic allocation with explicit initialisation actions and
infinite executions, and (ii) we identify the assumptions of the DRF guarantee
on the sequential semantics and discharge them for source code and bytecode.
The key insights are the following:

1. Our new actions and different kinds of synchronisation do not affect the
DRF proof. This suggests that other means of synchronisation that we do
not cover, e.g. atomics in java.util.concurrent, do not affect it either.

2. We must find better ways to handle initialisations, as the JMM way severely
complicates the proofs.

3. Our proofs show that the treatment of initialisations is irrelevant for the
DRF guarantee, i.e., we are not constrained when searching for better ways.

Insight 3 a posteriori justifies Aspinall’s and Ševč́ık’s simpler approach of
considering finite prefixes for the purpose of formalising the DRF guarantee.
However, it is still insufficient when dealing with the full JMM. For example,
the JMM allows the execution in Fig. 2, but not some of its prefixes.

Similarly, our DRF proof shows that it would be safe to restrict read opera-
tions to type-conforming values – for correctly synchronised programs. Subject
reduction and preservation proofs would become significantly easier. However, it
would disallow some legal executions of programs with data races such as Fig. 2.

Technical considerations Our work in §3.1 differs from [4,11,21] mainly in the
proof of the key Lem. 1. We adapt the others’ in two respects to deal with
initialisation actions. First, the others topologically sort ≤E

po [21] or ≤hb [4,11]

first to obtain ≤eo, and then take {a | a ≤E
eo r} as the prefix for the sequentially

consistent execution. We omit the sorting and use the induced total order ≤E

(rather than ≤E
eo), which we started with and which does not move initialisation

actions to the program start.
Second, Manson et al. [21] and Huisman and Petri [11] require a sequentially

consistent completion E′; so do we. However, the former ignore that different
initialisation actions in the suffix might change the ≤hb relation on the prefix.
The latter note this problem, but add an axiom that ≤hb remain unchanged. We
solve the issue by using ≤E instead of ≤E

eo. Hence, ≤hb on the prefix becomes
independent of later initialisations (Lem. 2). Aspinall and Ševč́ık [4] completely
avoid it by restricting their model to finite prefixes of executions – which causes
problems when dynamic allocation creates initialisations (§1.1).

Initialisations also complicate the construction of sequentially consistent com-
pletions. We failed to construct them directly, as due to the special treatment
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of initialisations, ill-formed programs might not have such, see, e.g., (P5) in
App. C. Hence, we would need appropriate constraints that the semantics pre-
serves, but the JMM notion of execution is unsuitable for preservation proofs.
Instead, we proved that sequential consistency w.r.t. happens-before is the same
as for interleaving semantics – if initialisations do not interfere (Thm. 2).9 Being
operational, interleaving semantics is much more amenable to reduction invari-
ants and their preservation proofs than the JMM. While it is still challenging to
show properties about scc, most proofs follow the well-known pattern of preser-
vation.

Faithfulness of the semantics Aspinall and Ševč́ık [4] suggested to weaken legality
to enable more optimisation without sacrificing the DRF guarantee. Since our
proof follows theirs, our proof also works for their weaker notion of legality. We
have not formally checked that our semantics validates all JMM test cases by
Pugh et. al. [23]. Torlak et. al. [29] have shown that the original JMM does
not validate test cases 19 and 20, but the fix by Aspinall and Ševč́ık [4] does.
Since none of the test cases uses dynamic allocation, spawning nor interruption
of threads, nor wait and notify, our formalisation should perform equivalent
to the original JMM. With the fix by Aspinall and Ševč́ık, our formalisation also
validates test cases 19 and 20.

4 Conclusion and Future Work

Our machine-checked model of multithreaded Java spans from a realistic subset
of Java source and bytecode via statement and instruction-level operational se-
mantics to the axiomatic JMM. We have proven that our semantics provides the
DRF guarantee, the most important property of the JMM for programmers.

Our DRF result is not limited to Java. The key lemma (Lem. 1) plays a similar
role in other DRF guarantee proofs, e.g. [2,7]. They all postulate sequentially
consistent completions of prefixes, which we have constructed formally for a
realistic language. For Java, this surprisingly requires a full subject reduction
theorem, but this need not be a restriction for other languages. C and C++,
e.g., assign such type-unsafe programs undefined semantics and exclude them
from the DRF guarantee.

For this work, it was essential to separate the MM from the operational se-
mantics. This way, we were able to define the JMM and prove the DRF guarantee
on the abstract level of complete interleavings in about 2.5kLoc of definitions
and proof scripts. Similarly, this clear interface allows to reuse the same JMM
formalisation for both source code and bytecode. Still, connecting the opera-
tional semantics to the JMM and discharging the DRF assumptions was tedious
(7.2kLoc), since every lemma must be lifted over the whole stack of semantics.
In particular, the complete interleavings from §2.2 turned out very unwieldy as
they connect operational semantics with inductive and coinductive definition and

9 Interestingly, Batty et al. [5, §4] found that initialisations of atomics cause problems
in the DRF proof for C++11, too.

19



proof principles to the world of abstract orders. Consequently, we achieved only
little proof automation there; it was much better for the interleaving semantics
and the abstract JMM specification.

Initialisations and the special way the JMM handles them caused most com-
plications in our proofs. In this work, we willingly stayed as close to the JMM
as possible, but we will investigate simpler ways of initialising locations. More-
over, we have shown type safety only for SC executions, i.e., correctly synchro-
nised programs. Since the JinjaThreads compiler correctness proof relies on type
safety, we hope to show that every legal execution is type safe. Type safety of
the MM, when no explicit constraints trivially enforce it, is a necessary condi-
tion for the absence of out-of-thin-air values. This will hopefully provide a better
understanding of this notion, which has so far only been illustrated by exam-
ples. Ultimately, it will be interesting to explore the tension between the safety
guarantees that a MM provides and the compiler transformations it allows.
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A Definitions for the JMM

This section defines the notions of well-formed and legal execution for the JMM.

Definition 1 (Well-formed execution). An execution is well-formed (writ-
ten ` (E,ws)

√
) iff every thread has a thread start action that ≤E-precedes its

other actions except for initialisation actions (denoted E
√
start) and for all read

actions a ∈ AE (to location l),

W1 ws(a) is a write action to l,
W2 a reads the value VE(ws(a)),
W3 a 6≤E

hb ws(a),
W4 for all write actions a′ to l, if ws(a) ≤E

hb a
′ ≤E

hb a, then a′ = ws(a), and
W5 if a is a volatile read, then a 6≤E

so ws(a) and for all write actions a′ to l, if
ws(a) ≤E

so a
′ ≤E

so a, then a′ = ws(a).

The JMM constrains ≤E
so to be an ω-order for well-formed executions. As

Aspinall and Ševč́ık [4] already noted, in an infinitely running program, infinitely
many initialisation actions for volatile variables synchronise with thread start
actions, which violates this constraint, i.e., the JMM would allow no behaviour
at all. To remedy this, we drop this constraint. Note that ≤E is of order at most
ω by construction, hence ≤E

so is of order at most ω+ω by definition. In contrast,
our construction restricts ≤E

po to an at most ω + ω-order, with the first ω being
initialisation actions only.

Definition 2 (Legal execution). An execution (E,ws) is legal iff (E,ws)
is a well-formed execution (E,ws) that is justified by a sequence of justifying
executions (Ei, wsi) with committed actions Ci ⊆ AEi

and action renamings
ϕi.An action renaming ϕi injectively maps committed actions in Ci to E, thereby
preserving the action except for the values written or read. A justification must
satisfy the following constraints for all i:

L1 ` (Ei, wsi)
√

L2 C0 = ∅, ϕi(Ci) ⊆ ϕi+1(Ci+1),
⋃

j≥0 ϕj(Cj) = AE

L3 Ci ⊆ AEi

L4 ≤Ei

hb

∣∣∣
Ci

= ϕ−1i (≤E
hb)
∣∣
Ci

L5 ≤Ei
so

∣∣
Ci

= ϕ−1i (≤E
so)
∣∣
Ci

L6 For all write actions a ∈ Ci, VEi(a) = VE(ϕi(a)).
L7 For all read actions a ∈ Ci,

ws(ϕi(a)) = ϕi+1(wsi+1(ϕ−1i+1(ϕi(a)))).

L8 For all read actions a ∈ AEi+1
, if ϕi+1(a) /∈ ϕi(Ci), then wsi+1(a) ≤Ei+1

hb a.
L9 For all read actions a ∈ Ci+1, if ϕi+1(a) /∈ ϕi(Ci), then ϕi+1(wsi+1(a)) ∈

ϕi(Ci) and ws(ϕi+1(a)) ∈ ϕi(Ci).
L10 Whenever a ∈ Ci and a′ ≤Ei

hb a for an external action a′, then a′ ∈ Ci.

where a ϕ−1i (R) b iff ϕi(a) R ϕi(b) for a binary relation R.

22



Since we identify actions with their position in the execution, a justifica-
tion must also provide a sequence of action renaming functions ϕi that map
committed actions in the justifying executions to their counterparts in AE .

Constraints L1 and L2 model the basic requirement for commit sequences.
The others are exactly the JMM legality conditions 1 to 7 and 9 [10, §17.4.8]
with explicit renaming of actions. We omit condition 8 for two reasons: First,
it relies on the transitive reduction of ≤Ei

hb , which need not exists for infinite
executions. Second, Torlak et al. [29] showed that it is irrelevant for all JMM
test cases.

B Proofs for the DRF Guarantee

In this section, we illustrate how the proofs for the theorems and lemmas in
the main text proceed and the statements fit together. Isabelle has machine-
checked all of them; the full proofs which take care of every gory detail of the
formalisation are available online [18].

Lemma 4. Let E
√
start and a, a′ ∈ AE such that initE a and ¬ initE a′. Then

a ≤E
hb a

′.

Proof. Let S be the start action of a′’s thread. By definition, a ≤E
sw S ≤E

po a
′.

Lemma 2 (≤hb-prefix lemma). Let E and E′ be two complete interleavings
such that their first n actions differ only in the values read or written, and let
a, a′ < n. If E′

√
start and a ≤E

hb a
′, then a ≤E′

hb a
′.

Proof. By induction on the transitive closure. In the induction step, we may
assume a, a′′ < n, a ≤E

hb a
′, a′ ≤E

po a
′′ or a′ ≤E

sw a
′′, and the induction hypothesis

if a′ < n, then a ≤E′

hb a
′. If initE a

′ and ¬ initE a′′, then initE a, too (by induction

on a ≤E
hb a

′). By assumption, initE′ a and ¬ initE′ a′′, so a ≤E′

hb a
′′ by Lem. 4.

Else, we easily deduce a′ < n and use the induction hypothesis.

Lemma 1. Let E be correctly synchronised, E ∈ E such that ` (E,ws)
√

. If
ws(a) ≤E

hb a for every read a in AE, then (E,ws) is sequentially consistent.

Proof. By contradiction. Suppose that (E,ws) is not SC. Note that ≤E
eo is well-

founded by construction. Let r ∈ AE be the ≤E
eo-minimal read action (from

location l) such that ws(r) is not the most recent write (denoted w) for r in E.
Hence, w 6≤E

hb ws(r) and w ≤E
hb r. Then, ¬ initE w, as otherwise ¬ initE ws(r),

because E initialises every location at most once, and thus w ≤E
hb ws(r) by

Lem. 4. We show that ws(r) ≤E
hb w, contradicting the well-formedness condition

W4. If initE ws(r), then ws(r) ≤E
hb w by Lem. 4. So, suppose ¬ initE ws(r). Then,

w,ws(r) ≤E r. By requirement A1 in §3.1, we obtain a well-formed execution
(E′, ws′) that starts with E up to r and continues SC, with r being a read from
l in E′. As w,ws(r) ∈ AE′ are conflicting and (E′, ws′) is SC, w ≤E′

hb ws(r) or

ws(r) ≤E′

hb w. By Lem. 2, w ≤E
hb ws(r) or ws(r) ≤E

hb w, but w 6≤E
hb ws(r).
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Lemma 5. Let (E,ws) be justified by (Ei, wsi, Ci, ϕi). For any committed read
action a ∈ Cn, we have wsn(a) ∈ Cn and ws(ϕn(a)) ∈ ϕn(Cn).

Proof. By induction on n. Base case n = 0: Trivial as C0 = ∅. Induction step
n 7→ n + 1: If a is newly committed, constraint L9 ensures this. Else, a has a
counterpart a′ in Cn with ϕn(a′) = ϕn+1(a), to which the induction hypothesis
applies. Legality constraint L7 transfers this from En to En+1.

Theorem 1 (DRF guarantee). If the program P is correctly synchronised
and (E,ws) a legal execution, then (E,ws) is sequentially consistent.

Proof. The proof closely follows [4, Thm. 1], it uses Lem. 1 and 5. We only add
explicit renaming for actions, which is tedious, but no technical challenge.

Theorem 2. Let initialisations ≤E-precede reads and E
√
start. Then, ∅ ` E

√
sc

iff there is a ws such that ` (E,ws)
√

and (E,ws) is SC.

Proof. Since initialisations ≤E-precede reads, the most recent write w (w.r.t.
≤E

eo) exists for every read r, and w ≤E r.
Suppose ∅ ` E

√
sc. Let ws(r) be the most recent write for r (on location l).

Then, (E,ws) is SC by definition. For ` (E,ws)
√

, only condition W2 of Def. 1,
i.e., r reads VE(ws(r)), is non-trivial. Let as be the prefix of E up to r. From
∅ ` E

√
sc, we obtain that r reads the value mrws(∅, as)(l). Since ws(r) is the

most recent write for r in E, and thus also in as, mrws(∅, as)(l) = bVE(ws(r))c.
For the other direction, suppose ` (E,ws)

√
and (E,ws) is SC. Let r ∈ AE

read v from location l. Since ` (E,ws)
√

, v = VE(ws(r)) by well-formedness con-
dition W2. Since ws(r) is the most recent write for r, we also have mrws(∅, as)(l) =
bVE(ws(r))c = bvc. As this holds for all reads r, ∅ ` E

√
sc follows by coinduction.

Lemma 3. Let wf(〈ts, T 〉, h). Then, (i) 〈ts, T 〉 ↓ scc(〈ts, T 〉, h) and (ii) h `
concat(scc(〈ts, T 〉, h))

√
sc.

Proof. We show (i) by coinduction with wf(〈ts, T 〉, h) as the coinduction invari-
ant. If 〈ts, T 〉 is stuck, then scc(〈ts, T 〉, h) = [] and we are done by Stop. Other-
wise, conditions (i) and (ii) of C&U ensure that the predicate to Hilbert’s choice

is satisfiable. Hence, it does pick an SC’ reduction step 〈ts, T 〉 (t,as)
===⇒〈ts′, T ′〉 and

updates h to h′ := mrws(h, as). Note how this mimics Step. Since the reduction
is SC’, wf(〈ts, T 〉, h) holds by preservation of wf. This concludes the coinductive
step.

For h ` concat(scc(〈ts, T 〉, h))
√
sc, the standard coinduction rule is too weak

because concat is unproductive for any number of consecutive τ -moves. We derive
a custom coinduction rule for `

√
sc (Lem. 6), which allows to defer the next

step if we decrease in a well-founded relation. Taking as measure the length of
the maximal prefix of scc(〈ts, T 〉, h) that consists of empty lists, we show (ii)
with the same invariant as for (i).

Lemma 6. Let (Rq)q∈Q be a family of predicates over heaps and lists of inter-
thread actions indexed over a set Q with a well-founded order ≺. Suppose that
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for all q ∈ Q and (h, as) ∈ Rq, either as = [], or there is a q′ with q′ ≺ q and
(h, as) ∈ Rq′ , or as can be split in as′, as′′ such that as′ 6= [] and h ` as′

√
sc and

if as′ is finite, there is a q′ such that (mrws(h, as′), as′′) ∈ Rq′ or mrws(h, as′) `
as′′
√
sc. If (h∗, as∗) ∈ Rq∗ for some q∗ ∈ Q, then h∗ ` as∗

√
sc.

Proof. By well-founded induction on ≺, we prove that the union R of all Rq

satisfies the following: For all (h, as) ∈ R, either as = [], or as can be split in as′,
as′′ such that as′ 6= [] and h ` as′

√
sc and if as′ is finite, (mrws(h, as′), as′′) ∈ R

or mrws(h, as′) ` as′′
√
sc. Then, we show h∗ ` as∗

√
sc by coinduction on `

√
sc

with coinduction invariant R(h∗, as∗).

Theorem 3 (SC completion). Let E ∈ E, ` (E,ws)
√

, (E,ws) be SC up to
a read action (t,R l v), say E = E1 ++ (t,R l v) :E2 with ws(a) being the most
recent write for all reads r ∈ AE1 . Then, there are E3, v′, and ws′ such that
E∗ := E1 ++ (t,R l v′) : E3 ∈ E, ` (E∗, ws′)

√
, and (E∗, ws′) is SC.

Proof. Construct E3 as follows: First, identify the reduction 〈ts, T 〉 (t,as)===⇒〈ts′, T ′〉
that generates (t,R l v). Let E′1 be the prefix of E up to as exclusively, which is
also a prefix of E1. Since all reads in E1 (and thus E′1) see the most recent write,
E′1 is SC’ by Thm. 2. Since wf(〈ts0, T0〉, h0) and SC’ reductions preserve wf,
wf(〈ts, T 〉, h1) holds for h1 = mrws(h0, E

′
1), too. Hence, by C&U, there are as′′,

ts′′, and T ′′ such that 〈ts, T 〉 (t,as′′)
====⇒ 〈ts′′, T ′′〉, h1 ` as′′

√
sc, and h1 ` as ≈ as′′.

From the latter, we know that as and as′′ are the same up to the read action
(t,R l v) in as, which is (t,R l v′) in as′′ for the SC’-correct value v′. Now, choose
E3 to be the rest of as′′ followed by concat(scc(〈ts′′, T ′′〉,mrws(h1, as

′′))).
With Lem. 3, we get that E∗ is SC’ and E∗ ∈ E . Theorem 2 yields the

required ws′.

C Further Examples

Example 1 (Set of executions). In this example, we show how to obtain the
set of complete interleavings E the legal JMM executions from the source code
semantics for the example from Fig. 1. Suppose there is a bootstrapping thread
t0 that creates and spawns the two threads t1 and t2 in the example as follows:

class T0 {

static int x, y;

public static void main(String[] args) {

Thread t1 = new T1();

Thread t2 = new T2();

t1.start();

t2.start();

}

}

class T1 extends Thread { public void run() { int r1 = T0.x; T0.y = 1; } }

class T2 extends Thread { public void run() { int r2 = T0.y; T0.x = 2; } }
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Let In denote the list of initialisation actions for fields of the Thread object
that is associated with ti (i ∈ { 0, 1, 2 }), all of which t0 executes. Let SX denote
the list of initialisations for the system exceptions, which t0 executes, too. Let as
denote the following list of actions, which starts with the bootstrapping actions
as0:

[(t0,S)] ++ I0 ++ SX︸ ︷︷ ︸
=as0

++ [(t0, I T0.x), (t0, I T0.y)] ++

I1 ++ I2 ++ [(t0,Sp t1 (method T1 run))]

i.e., as starts t0 first, then initalises t0’s fields, the system exceptions, and the
global fields T0.x and T0.y, then allocates threads t1 and t2, and finally spawns
t1. All complete interleavings in E , i.e., for this program, start with as and
continue in 210 structurally different ways. Of them, we present two E1, E2 ⊆ E :

E1 = { as++
[(t0,Sp t2 (method T2 run)), (t0,F),
(t1,S), (t1,R T0.x v), (t1,W T0.y 1), (t1,F),
(t2,S), (t2,R T0.y w), (t2,W T0.x 2), (t2,F)] | v, w ∈ V }

E2 = { as++
[(t1,S), (t1,R T0.x v), (t0,Sp t2 (method T2 run)), (t2,S),
(t1,W T0.y 1), (t2,R T0.y w), (t1,F), (t2,W T0.x 2), (t2,F)] | v, w ∈ V }

E1 contains all interleavings in which thread t0 completes first, then t1 runs to
completion, and finally t2 executes. They only differ in the values v and w that
t1 and t2 read from T0.x and T0.y, respectively, where v and w may be any
value in the set of values V, i.e., integers, booleans, addresses, etc. Of these, only
four are well-formed, namely for v ∈ { 0, 2 } and w ∈ { 0, 1 }; for the others, there
is no write-seen function. In particular, v = 2 and w = 1 yield the unexpected
behaviour from Fig. 1. Similarly, the interleavings in E2 are well-formed for the
same values v and w. Note the adjacent conflicting accesses to T0.y in E2.

In terms of the JMM, all these interleavings collapse to four well-formed
executions as shown in Fig. 5 (where we have omitted the initialisation actions for
Thread objects for clarity). The write-seen arrows are labelled with conditions
on v and w for which they apply. All well-formed executions are legal in this
example.

Example 2 (Race on Thread.start). In the program (P3), two threads commu-
nicate by racing on invoking a thread’s start method. Suppose the thread on the
left executes first.

initially: x = new Thread(); y = 0
1: y = 1;
2: x.start();

3: try { x.start();
4: } catch (IllegalThreadStateException e) { r = y; }

(P3)

The read in l. 4 executes only if the left thread has spawned x before, which
happens after the write to y in l. 1. Yet, l. 1 does not happen before l. 4 according
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(t0, I T0.x)

(t0, I T0.y)

(t0, S)

(t0, Sp t1 . . . )

(t0, Sp t2 . . . )

(t0, F)

(t1, S)

(t1, R T0.x v)

(t1, W T0.y 1)

(t1, F)

(t2, S)

(t2, R T0.y w)

(t2, W T0.x 2)

(t2, F)

v = 0

w = 0

v = 2w = 1

Fig. 5. Well-formed executions for Example 1

to the JMM (and our semantics), i.e., the program is not correctly synchronised,
because l. 3 does not generate any synchronisation actions. However, there is
no sequentially consistent interleaving with adjacent conflicting actions. This
demonstrates that the intuitive notion of data race freedom [7] does not coincide
with the JMM’s.

We think that (P3) should not be DRF because thread spawns are a degen-
erate form of synchronisation. In [7], Boehm and Adve have a similar problem
with trylock in C++. They restore the equivalence by allowing trylock to fail
spuriously. Analogously, we could tweak the start method to fail spuriously,10

but this would violate Java semantics (see (P1)).

Example 3. Program (P4) demonstrates that Lem. 2 requires that all initiali-
sation actions synchronise with thread start actions. Figure 6 shows two (well-
formed) complete interleavings for

The thread on the left (t1) initialises x = 0;
1: r1 = x;
2: if (r1 == 0)
3: r2 = new Object() {
4: volatile int v; };

5: x = 1;
(P4)

They both share the prefix [(t1, S), (t1, I x), (t2, S)]. If only initialisations for
volatile locations synchronised with thread start actions (as Manson suggested
[20]), (t1, I x) would not synchronize with (t2, S), i.e., there would not be such
a dotted arrow in Fig. 6. For E1, we would still get (t1, I x) ≤E1

hb (t2,S) (since

(t1, I x) ≤E1
po (t1, I v) ≤E1

sw (t2,S)), but not (t1, I x) ≤E2

hb (t2,S).

10 In that case, we would no longer need the action TS as SpawnF would be a τ -move.
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E1: [(t1, S), (t1, I x), (t2, S), (t1,R x 0),
(t1, I l.v), (t2,W x 1), (t1,F), (t2,F)]

(t1, S)

(t1, I x)

(t2, S)

1: (t1, R x 0)

4: (t1, I l.v)

5: (t2, W x 1)

(t1, F)

(t2, F)

E2: [(t1, S), (t1, I x), (t2, S), (t2,W x 1),
(t1,R x 1), (t1,F), (t2,F)]

(t1, S)

(t1, I x)

(t2, S)

5: (t2, W x 1)

1: (t1, R x 1)

(t1, F)

(t2, F)

Fig. 6. Two well-formed complete interleavings for program (P4)

Example 4 (No sequentially consistent completion). This program demonstrates
that ill-formed programs can have sequentially consistent prefixes which cannot
be completed sequentially consistently. Consider the program

initially: x = 0
1: print l1.length;
2: x = 1;

3: r1 = x;
4: new int[r1];

(P5)

with the following execution

(t1, S)

(t1, I x 0)

1: (t1, E 1)

2: (t1, W x 1)

(t1, F)

(t2, S)

3: (t2, R x 1)

4: (t2, I l1[0] 0)

(t2, F)

In this execution, the read in l. 3 sees the write from l. 2, but the most recent
write would be the initialisation of x. Suppose that l. 3 is scheduled after l. 1,
but before l. 2. Then, the prefix up to l. 1 is sequentially consistent, but has no
sequentially consistent completion when l. 3 executes next.

In this example, the problem is that t1 literally contains the address l1 that
an allocation of the other thread t2 returns. The proof of the DRF guarantee
relies on the fact that a thread only knows an address if it has allocated it itself
or it has read it from memory.
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