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1  Abstract of the Dissertation 

In this thesis we use explorative empirical procedures for grouping financial 

assets into homogeneous groups or clusters. The assets are solely represented 

by their return time series. The clustering is developed from the data without 

any background model so it differentiates from other models of asset classifi-

cation (like defining industry sectors a priori) which are often subjective and 

exhibit model risk. The explored structures are called Asset Clusters and they 

are very helpful in risk management and portfolio optimization. For example, 

the Asset Clustering can be used to identify assets with very different return 

structures, compared to the bulk of assets. Asset Networks can be designed in 

a similar way as Asset Clusters and provide an even richer set of applications 

to optimize and risk manage financial portfolios. Although these networks are 

called complex due to their non-regular and non-random topology, they re-

duce complexity of financial portfolios in a way that is favourable for risk 

management and portfolio optimization.  

In this dissertation, we present new potential approaches based on the cluster-

ing and network procedures. There are portfolio management applications to 

an equity portfolio consisting of the stocks of the German DAX. Also, there 

are risk management applications to a large mixed portfolio of a commercial 

bank that can be embedded into the risk management process and into the 

internal capital adequacy assessment process (ICAAP). The applications are 

enriched by powerful visualization techniques of the portfolio structures based 

on the cluster and network technology so it is possible to intuitively retrace 

the mechanisms of the approaches. Also, the visualization techniques take 

advantage of human cognitive strengths and amplify intelligence of decision-

makers like portfolio and risk managers. We have developed several software 

prototypes that visualize important portfolio interactions, indicate optimiza-

tion and risk management potential, and even recommend concrete portfolio 

and risk management initiatives. As a byproduct, we analyse the network 

based time evolution of the banking sector of the DAX index (year 2005 to 

http://dict.leo.org/ende?lp=ende&p=HpZR0yYAA&search=internal&trestr=0x1001
http://dict.leo.org/ende?lp=ende&p=HpZR0yYAA&search=capital&trestr=0x1001
http://dict.leo.org/ende?lp=ende&p=HpZR0yYAA&search=adequacy&trestr=0x1001
http://dict.leo.org/ende?lp=ende&p=HpZR0yYAA&search=assessment&trestr=0x1001
http://dict.leo.org/ende?lp=ende&p=HpZR0yYAA&search=process&trestr=0x1001
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2010) and show that it has for some time lost its central position in the Ger-

man economy since the financial crisis. Finally, we show further potential of 

our approaches in other financial applications and illustrate future promising 

research directions. To the best knowledge, our pioneering approaches to risk 

management and portfolio optimization have never been presented in scien-

tific literature or used in practice before. This empirical work contributes to 

the current stream of research in the direction of new economic thinking view-

ing economy and financial markets as complex systems and networks. 
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2 Introduction and Background of the Dis-

sertation 

 

The latest and most dramatic financial crisis has once more highlighted that 

current concepts in financial economics like efficient markets, rational expec-

tations and general equilibrium may be too dogmatic and axiomatic. It is often 

suggested that the focus should be more on data and empirical approaches. In 

July 2010 for example, “The Economist” writes that conventional economic 

models failed to foresee the financial crisis and that The Institute for New 

Economic Thinking has attacked many of the assumptions, including efficient 

financial markets and rational expectations, on which these models are predi-

cated.
 1

 

In this context, an excerpt from a speech titled “Reflections on the nature of 

monetary policy: non-standard measures and finance theory” by Jean-Claude 

Trichet, President of the European Central Bank (ECB), on November 18, 

2010 is very remarkable: “I would very much welcome inspiration from other 

disciplines: physics, engineering, psychology, biology. Bringing experts from 

these fields together with economists and central bankers is potentially very 

creative and valuable."
2
  

Popular science magazines like Nature and Science have come up with contri-

butions to this topic. Authors propose that “there should be a change of mind-

set in economics and financial engineering, that should move away from 

dogmatic axioms and focus more on data, orders of magnitudes, and plausible, 

albeit non rigorous, arguments” (Bouchaud 2008). Schweitzer et al. (2009) 

suggest that “the current economic crisis illustrates a critical need for new and 

fundamental understanding of the structure and dynamics of economic net-

                                                 
1
 http://www.economist.com/node/16636121, „Agents of Change, Jul 22nd 2010  

2
 http://www.ecb.int/press/key/date/2010/html/sp101118.en.html 

http://www.economist.com/node/16636121
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works. Economic systems are increasingly built on interdependencies, imple-

mented through trans-national credit and investment networks, trade relations, 

or supply chains that have proven difficult to predict and control. We need, 

therefore, an approach that stresses the systemic complexity of economic net-

works and that can be used to revise and extend established paradigms in eco-

nomic theory.”  

Major central banks have recently propagated interdisciplinary approaches 

between Economics and Biology/Ecology, Physics, and Mathemat-

ics/Engineering. Examples are the conference “New directions for understand-

ing systemic risk” organised by the Federal Reserve Bank of New York (NY 

Fed) and the US National Academy of Sciences in May 2006, and the confer-

ence “Alternative Approaches to Modeling Systemic Risk” organized by 

ECB, NY Fed and the Center of Financial Financial Studies (CFS). Also, 

there has been an ECB report in 2010 that shows recent advances in modelling 

systemic risk using network analysis”.
3
  

However, it is important that researchers from natural science with non-

economical background do not overshoot the mark and that for every problem 

there must be chosen the right tool as Farmer/Geanakoplos (2009) point out: 

“On the one hand, we worry that physicists often misunderstand the equilibri-

um framework in economics, and fail to appreciate the very good reasons for 

its emergence.[…] In other cases where the cognitive task is extraordinarily 

complex, such as the pricing of a new firm, or where estimation problems are 

severe, such as portfolio formation, human models may diverge significantly 

from rational models, and the equilibrium framework may be a poor approxi-

mation. For good science one must choose the right tool for the job, and in 

this case the good scientist must use an assortment of different tools. Close-

mindedness in either direction is not likely to be productive. As we have 

stressed, equilibrium theory is an elegant attempt to find a parsimonious mod-

                                                 
3
 European Central Bank Report (2010): “Recent Advances in Modelling Systemic Risk 

Using Network Analysis“, 

http://www.ecb.europa.eu/pub/pdf/other/modellingsystemicrisk012010en.pdf?d216f976f3587

224bcc087cc8149ed49 
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el of human behaviour in economic settings. It can be criticized, though, as a 

quick and dirty method, a heroic attempt to simplify a complex problem. Now 

that we have begun to understand its limitations, we must begin the hard work 

of laying new foundations that can potentially go beyond it. “ 

Our contribution in this thesis is to propose new methods like data-driven 

complex networks in risk management and portfolio optimization and inte-

grate them into the real world context of risk managers and portfolio optimiz-

ers in financial institutions. We are now going to present the main idea of the 

thesis. 

 

Diversification is fundamental in finance 

Diversification in finance is a risk management technique that mixes a wide 

variety of investments within a portfolio. It is the spreading out dissimilar 

investments to reduce risk. The standard mathematical formulation of this 

problem is the well known Markowitz mean-variance approach where the (co-

)variances of assets determine the degree of portfolio diversification. Marko-

witz (1959) comments in his fundamental work about portfolio selection: 

“Like most economic quantities, the returns on securities tend to move up and 

down together. This correlation is not perfect: individual securities and entire 

industries have at times moved against the general flow of prosperity. […] To 

reduce risk it is necessary to avoid a portfolio whose securities are all highly 

correlated with each other.” 

This idea can already be observed when plotting the wealth function of some 

stocks from the German index DAX from 2008 to 2011. The following figure 

shows the paths followed by stocks from the automotive sector in green and 

by the financial sector in red. 

http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Portfolio_%28finance%29
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Figure 2-1: Automotive stocks from the DAX in green and stocks from the financial 

sector in red. 

 

It is interesting to shed some light on this famous quotation from a new and 

very different perspective and we would like to contribute to his statement 

“individual securities and entire industries have at times moved against the 

general flow of prosperity” from a data-driven and explorative point of view. 

It is obvious that for risk management and portfolio optimization it is advan-

tageous to know which assets move individually or in certain groups like in-

dustries or in other words: which assets show collective behaviour? However, 

we argue that clustering is a proper method to find those groups as objects in a 

cluster are similar to each other and also very dissimilar to objects outside the 

cluster, particularly objects in other clusters. 

 

What drives the collective behavior of assets? 

Farrell (1974) is one of the first to use cluster analysis in portfolio manage-

ment. He builds indices of stocks that are homogeneous in the sense that they 

are significantly correlated within their own grouping and, at the same time, 

generally independent of other groups. He stresses the importance of cluster-
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ing in portfolio management and gives article references to the relevance of 

homogeneous groups in different topics in finance. His insight is that grouping 

stocks in multi-index approaches based on industry sectors often failed due to 

possible collinearity of industries.  

According to Onnela et al. (2003), there might be several reasons why an in-

dustry classification fails: for example, the industry classifications might be 

outdated or there are companies or conglomerates that are engaged in multiple 

industries (like Siemens or General Electric). Also, there are industries de-

pendent on other industries or there are sectors like banks and insurance com-

panies can be connected to all sectors.  

Farrel's method can be characterized as subsuming industries into broader 

categories, just as King (1966) shows that companies can be grouped into 

broader categories than the method of industry classification. The evidence of 

significant co-movement among industry groupings implies that there is an-

other factor, broader than the industry factor and in co-existence to the general 

market and company specific risk drivers. In particular, he uses a broader 

classification to see if the price action of stocks conforms to this classification 

and finds that his stock groupings were homogeneous, stocks within each 

group were highly correlated and the inter-group relationship showed near 

independence. These procedures were further developed to a multiple factor 

risk model by Arnott (1980) who also describes applications of this approach 

to stock classification, portfolio optimization and performance measurement.
4
  

The approaches presented by Farrell and Arnott require hypothesized stock 

categories like growth, cyclical and energy. The classification procedure is 

supervised as there is some apriori economical classification structure im-

posed which implies some model risk and is subject to personal opinion and 

subjectivity. Also, as financial markets are socio-economical systems, there 

are psychological factors at work (see for example Onnela et al. 2003). Final-

                                                 
4
 We would like to thank Frank J. Fabozzi for drawing our attention to this part of literature 

(Farrell, King, Arnott). He also gave other very helpful and valuable advice.  
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ly, financial markets can be hit by exogenous shocks like news impact or by 

endogenous shocks with no obvious economic explanation. Also, there are 

institutionalized reasons for collective behaviour of asset returns. Examples 

are similar trading patterns of hedge funds according to the use of similar 

models like coordinated deleveraging of similarly constructed portfolios (see 

for example Khandani/Lo 2007) or there are market constellations that trigger 

action of numerous investment management firms in order to follow their le-

gal and institutional investment constraints.  

Being confronted with this bulk of explanations why asset prices exhibit col-

lective behaviour there must be another way of consistently modelling these 

phenomena. A solution might be data-driven explorative methods like cluster-

ing. Theses methods do not require any economical, causal, institutional, or 

psychological explanation (or a mixture thereof) which is subject to potential-

ly unsafe assumptions. In contrast, machine learning tasks like clustering are 

specialized in finding and describing complex structures in high-dimensional 

and often noisy data. Various machine learning algorithms have been devel-

oped for data analysis and decomposition problems such as regression, rank-

ing, classification, clustering, factor modelling, dimension reduction, feature 

selection and de-noising. They are applicable in several areas of financial data 

analysis including, e.g. risk analysis, portfolio construction and optimization, 

hedging, pricing, and trading strategies, where the identification and quantifi-

cation of hidden relationships within and between many time series forms an 

essential part. However, it has to be stated that these methods will always find 

patterns in data no matter if these are really existing or not. So after the ma-

chine learning step there has to be a validation step. Fortunately, there are 

numerous mathematical validation techniques which are able to provide sig-

nificance estimations concerning the patterns and structures found and some 

of them will be presented and applied in this work.  

Another drawback of time series based explorative methods is the historical 

focus. It should be clear that prediction based on past data is very difficult if 
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not impossible. However, there are many applications based on historical data 

which are quite successful in finding some elementary structures in data 

which are valid and persistent for some time in the future. Having addressed 

some drawbacks of time series clustering, it has to be stated once more that 

there is no a priori knowledge of the structures required as a model input so 

there is a potential outperformance in the application of explorative approach-

es compared to classical approaches. 

Recently, there are more and more approaches to financial applications from 

the fields of statistical physics, network theory, econophysics, complex sys-

tems, and agent based models. Since the end of the 1990s, correlation based 

clusters and networks have become present in academic finance literature and 

publications whereas one of the most cited works is Mantegna (1999). We 

believe that there is even more potential for those kinds of methods in finance, 

especially after the observation of some classical models in finance to fail in 

times of crisis. The approaches presented in the latest academic works show a 

high degree of methodological maturity. 

Another insightful aspect of explorative methods is their assessment against 

their counterparts from the assumptions-based modelling world, i.e., mathe-

matically validated outcomes of explorative methods can be compared to eco-

nomical models. An example is the clustering of market taxonomies and ex-

plorative sector constructions compared to economically defined industry sec-

tors. There is often large correspondence between the two models which indi-

cates that the coincidental part of both very different approaches is properly 

modelled. A matter of particular interest is the non-coincidental part which 

shows that at least one of the models is less precise. If there is reason to be-

lieve that the results of the explorative method are more reliable this non-

coincidental part carries a lot of additional information. 

Another advantage of using correlation based clustering and networks is an 

effective filtering of the correlation matrix. Estimates of correlations are often 

noisy and unreliable as estimation horizons are always finite. Optimization 



 13 

programs like the Markowitz approach suffer from theses estimation errors 

and clustering/networks may act as a filtering procedure whose outcomes are 

more reliable. These aspects are well documented in literature (see for exam-

ple Mantegna/Stanley 2000 and Tumminello et al. 2010).  

Many scientific works about clusters and networks in finance deliver spectac-

ular new insights to financial markets and asset return modelling. However, 

only few address the classical problems arising both in academical and practi-

cal finance. So it is important to integrate the available technologies like clus-

tering and networks into the practical requirements of financial risk manage-

ment and portfolio optimization. Having shown the modelling advantages of 

clustering and network techniques, we would now like to fill some gap be-

tween the technical aspects of these methods and concrete applications in fi-

nance. 
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3 Presentation of the Methods  

In this chapter we will describe the methods used throughout this work. There 

will be a categorization of different clustering methods and a way to find a 

proper clustering method for the task at hand. Clustering is often based on 

some distance measure between the objects. It is very important to analyse the 

combination of distance measures and clustering methods as both together 

form the unsupervised classification task. Finally, we will show how filtered 

networks can be generated from certain types of cluster algorithms.  

 

3.1 Approaches to Clustering 

Custer analysis is a multivariate statistical data analysis used in many fields, 

including machine learning, data mining, pattern recognition, and bioinfor-

matics. It is a so-called unsupervised classification method whereas in con-

trast, discriminant analysis is supervised classification (see Jain at al. 1999). 

Cluster analysis is the formal study of methods and algorithms for grouping, 

or clustering, objects according to measured or perceived intrinsic characteris-

tics or similarity (see Jain 2010). The goal of clustering is to objectively or-

ganize data into homogeneous groups where the within-group-object similari-

ty is minimized and the between-group-object dissimilarity is maximized.  

Clustering algorithms can be broadly divided into two groups: hierarchical 

and partitional. Accoring to Jain (2010), hierarchical clustering algorithms 

recursively find nested clusters either in agglomerative mode (starting with 

each data point in its own cluster and merging the most similar pair of clusters 

successively to form a cluster hierarchy) or in divisive (top-down) mode 

(starting with all the data points in one cluster and recursively dividing each 

cluster into smaller clusters). Compared to hierarchical clustering algorithms, 

partitional clustering algorithms find all the clusters simultaneously as a parti-

tion of the data and do not impose a hierarchical structure. Hierarchical clus-
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tering builds a cluster hierarchy or a tree of clusters, also known as a dendro-

gram. Such an approach allows exploring data on different levels of granulari-

ty. 

Representing the data by fewer clusters necessarily loses certain fine details, 

but achieves simplification. This simplification can of course be done more 

ore less efficient and one success factor is the number of parameters. Accord-

ing to Keogh et al. (2004), two main dangers of working with parameter-laden 

algorithms are the following: First, incorrect settings may cause an algorithm 

to fail in finding the true patterns. Second, a perhaps more insidious problem 

is that the algorithm may report spurious patterns that do not really exist, or 

greatly overestimate the significance of the reported patterns. This is especial-

ly likely when the user fails to understand the role of parameters in the data 

mining process. In their opinion, data mining algorithms should have as few 

parameters as possible, ideally none. A parameter-free algorithm would limit 

the ability to impose prejudices, expectations, and presumptions on the prob-

lem at hand, and would let the data speak for themselves.  

It is obvious that there is a very important parameter in partitional clustering: 

the number of clusters. If practitioners are required to deliver such an im-

portant input parameter it seems to contradict the paradigm of letting the data 

speak for themselves. For this reason, there have been researchers who devel-

oped clustering algorithms that do not require a priori knowledge of the num-

ber of clusters making it real “cluster-mining” algorithms (an example is the 

U*C clustering algorithm in Ultsch 2007). 

However, it is not clear if real cluster mining approaches are “best” since each 

clustering algorithm imposes a structure on the data either explicitly or implic-

itly. Since the structure of the data is not known a priori, one needs to try 

competing and diverse approaches to determine an appropriate algorithm for 

the clustering task at hand. This idea of no best clustering algorithm is partial-

ly captured by the impossibility theorem (Kleinberg 2002), which states that 

no single clustering algorithm simultaneously satisfies a set of basic axioms of 
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data clustering (see Jain 2010). Kleinberg identifies three properties that one 

may expect all clustering functions to satisfy, but then proves no function can 

satisfy all three properties. Zadeh/Ben-David (2009) circumvent Kleinberg's 

impossibility theorem by relaxing one of his axioms and restricting the atten-

tion to clustering algorithms that take the number of clusters to be created as 

part of their input. It is known that such a restriction suffices to render the 

resulting set of axioms consistent and one interpretation of Kleinberg's impos-

sibility result is that if one does not give algorithms the number of clusters 

they are to return, then the algorithm must be performing some unintuitive 

operations. Carlsson/Mémoli (2010) show in a similar spirit to Kleinberg's 

theorem, that in the context of hierarchical methods, one obtains uniqueness 

instead of non-existence. They emphasise that their result can be interpreted as 

a relaxation of the theorem proved by Kleinberg, by allowing the output of 

clustering methods to be hierarchical so hierarchical clustering seems to be a 

good choice for complex data. In 1962, Nobel laureate Simon wrote: “the cen-

tral theme that runs through my remarks is that complexity frequently takes 

the form of hierarchy, and that hierarchic systems have some common proper-

ties that are independent of their specific content. Hierarchy, I shall argue, is 

one of the central structural schemes that the architect of complexity uses”. 

According to Murtagh (2004), ultrametricity is a natural property of sparse, 

high-dimensional spaces and it emerges as a consequence of randomness and 

the law of large numbers.  

 

3.2 Hierarchical Clustering of Financial Time Series  

The explorative risk management and portfolio optimization applications pre-

sented in this work require time series of asset returns as input. Hierarchical 

clustering is a collection of procedures for organizing objects into a nested 

sequence of partitions on the basis of data on the similarity or respectively 

dissimilarity among the objects. It is the fitting of a high dimensional space 
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into a tree-like structure which is depicted in dendrograms. The dissimilarity 

between objects is measured by a distance matrix D whose components dij 

resemble the distance between two points xi and xj. The hierarchical clustering 

procedure is a two-stage process: 

1. choice of a distance measure and 

2. choice of the cluster algorithm, 

whereas both choices together define the whole clustering outcome. Distance 

measures of asset return time series focus on the dissimilarity between the 

synchronous time evolutions of a pair of assets. The matrix of pairwise dis-

tances will be the input of the hierarchical cluster algorithm that uses some 

linkage rule to determine a hierarchical structure. The choice of clustering 

procedure, also in combination with the distance measure of assets has to be 

carefully made as it is a critical part of our approaches. 

Agglomerative hierarchical clustering algorithms produce nested series of 

partitions based on merging criterions. Each partition is nested into the next 

partition of the sequence. After the proximity index has been defined and a 

distance matrix has been calculated, the hierarchical clustering can be carried 

out by a suitable clustering algorithm. The clustering algorithm specifies how 

the distance matrix is processed in order to merge two elements/clusters until 

a single cluster containing all elements is created Jain et al. (1999). 

In hierarchical clustering a bijection is defined between a rooted, binary, 

ranked, indexed tree, called a dendrogram, and a set of ultrametric distances 

(Murtagh (20004). The “strong triangular inequality” or ultrametric inequality 

is  ),(),,(max),( zydyxdzxd   for any triplet of points zyx ,, . Deriving the 

dendrogram from the raw data involves several steps (Jain/Dubes 1988, Jain at 

al. 1999): 

1. Data collection (e.g. returns of daily closing prices) 

2. Representation (proximity index in the form of a distance matrix) 
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3. Clustering the data set 

4. Validation (validating the quality of the dendrogram). 

The structure that was imposed on the distance matrix by the clustering algo-

rithm is captured in the cophenetic/ultrametric matrix. The cophenetic matrix 

records the value at which a clustering is formed - or more precisely: the co-

phenetic proximity matrix indicates at which level (distance) two objects first 

appear in the same cluster. It therefore usually contains many ties. It has per-

fect hierarchical structure. The higher the degree of agreement between the 

cophenetic matrix and the distance matrix, the better does the hierarchical 

structure fit the data. The goal of a clustering algorithm is to find a perfect 

hierarchical structure that is as close to the distance matrix as possible. This 

insight will play a crucial role when determining the Cophenetic Correlation 

Coefficient (CPCC) that helps us determine the quality of the clustering Jain 

et al. (1999). As clustering algorithms will always find a clustering structure 

one has to determine to which extent the clustering could have evolved from a 

random structure or is itself random (Jain et al. 1999, Jain and Dubes 1988). 

The CPCC is defined as  
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Four clustering algorithms will be used in the analysis: single-linkage, aver-

age-linkage, complete-linkage and Ward's method. The single-link and com-

plete-link algorithms follow two very basic concepts that are oftentimes used 

to derive different algorithms. The idea behind single-linkage is to form 

groups of elements, which have the smallest distance to each other (nearest 

neighbouring clustering). This oftentimes leads to large groups/chaining. The 

complete-linkage algorithm tries to avoid those large groups by considering 

the largest distances between elements. It is thus called the farthest neighbour 
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clustering. The average-linkage algorithm is a compromise between the sin-

gle-linkage and complete-linkage algorithm (Jain and Dubes 1988). Ward's 

method joins elements/clusters that do not increase a given measure of hetero-

geneity too much thus tries to create groups within clusters that are as homog-

enous as possible. A basic agglomerative algorithm is presented in Tan et al. 

(2005), Jain et al. (1999): 

 

It becomes clear, that the fundamental difference in many hierarchical cluster-

ing algorithms is the definition of ''closest clusters''. A more detailed descrip-

tion of the most important clustering algorithms will shed some light on their 

basic idea and understanding of ''what is similar''. 

 

Single-Linkage 

The single-linkage clusters are characterized by maximally connected sub-

graphs. The algorithm is clustering the elements, which are nearest to each 

other first, thus is often referred to as the ''nearest neighbour'' or ''minimum 

algorithm''. Its basic idea can also be used to construct minimal spanning trees 

to which the single-linkage algorithm is closely related as will be shown later. 

The single-linkage takes the minimum distance between two elements/clusters 

of the current (updated) proximity matrix to merge the next elements/clusters. 

It can thus be described as pseudo code in the following form 
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The following example shows a correlation matrix of four German stocks. The 

correlation matrix is transformed to a distance matrix and this in turn is trans-

formed into the ultrametric or cophenetic matrix by the single linkage hierar-

chical clustering. The height of the dendrogram indicates the distances at 

which clusters were agglomeratively merged together.  

 

 

 

Figure 3-1: Example of single linkage hierarchical clustering. 

 

The ultrametric distance c  resulting from the single link method is such that 

ijij
dc   always. It is also unique with the exception of ties. It is also termed 

the subdominant or maximal inferior ultrametric.  
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In the single-linkage clustering algorithm, objects to be merged just need to be 

neighbours thus they tend to experience ''chaining''.  

 

 

Figure 3-2: Single linkage clustering of the DAX data from 2003 to 2011. Colour codes 

are according to industry classification. 

 

Figure 3-3: Color codes of an industry classification for DAX stocks. 
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Figure 3-4: Unordered correlation matrix as input to the hierarchical clustering algo-

rithm. High correlations are purple. 
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Figure 3-5: Ordered correlation matrix according to the single linkage hierarchical clus-

tering algorithm. High correlations are purple. Clusters of high correlations can already 

be observed visually. 

 

Complete-linkage 

The complete-link clusters are more restrictive with respect to the pairs of 

clusters that are merged in a round. All pairs of objects are related before the 

cluster is formed. The minimum of those distances indicates, which clusters or 
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objects to merge next. It is thus less vulnerable with respect to noise and outli-

ers. However, it can break large clusters and lead to globular shapes. It is fur-

thermore usually more compact than the single-link algorithm. For many prac-

tical applications, the complete-link clustering provided better results than 

single-link (Jain 1999). The clustering algorithm is in its design very similar 

to the single link, with the exception of the merging operation: 

 

 

 

Figure 3-6: Complete linkage clustering of the DAX data from 2003 to 2011. Colour 

codes are according to industry classification. 
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Average-linkage 

The average-link clustering algorithm is a combination between the complete-

link and single-link as it does not take the minimum or maximum distance 

between pairs of clusters but the group average. The distance used to deter-

mine, which clusters are to be merged next is thus defined as: 

 

The clustering algorithm is the same for the average linkage as for single link 

or complete link with the only difference of the definition of ''most similar 

pair of clusters''.  

 

Figure 3-7: Average linkage clustering of the DAX data from 2003 to 2011. Colour codes 

are according to industry classification. 
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Ward's method 

Whereas single-linkage, complete-linkage and average-linkage can be classi-

fied as graph-based clustering algorithms, Ward's method has a prototype-

based view in which the clusters are represented by a centroid. For this reason, 

the proximity between clusters is usually defined as the distance between clus-

ter centroids. Whereas in the clustering approaches discussed earlier, the 

''farest'', ''closest'', etc. distances between clusters or elements was used to de-

rive the next merging operation, in Ward‟s method the increase of the ''sum of 

the squares error'' (SSE) is determined. The SSE is the sum of errors of every 

data point. The error of every data point is its distance from its closest cen-

troid. The SSE can be calculated as (Tan et al. 2005): 

 

The centroid (mean) of any cluster i is defined as: 

 

Just like the K-Means (partitioning clustering algorithm), Ward's method tries 

to minimize the squared errors from the mean (objective function is similar). 

However, it differs in the way that Ward's method is a hierarchical algorithm, 

where elements are merged together. The element or cluster, which is merged 

next is determined by the change of the SSE. Even though it may appear 

based on the objective function and goal of Ward's method, that it is closer 

related to K-Means than to other hierarchical methods, it can mathematically 

be shown, that Ward's is very similar to the average-linkage when the proxim-

ity measure is the Euclidean distance (Tan et al. 2005). Ward's method can 

nevertheless be understood as the hierarchical representation of K-Means. 

An often-cited downside of the centroid methods is that the clusters that are 

formed at each step of the algorithm do not represent local minima with re-
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spect to total SSE. Ward's has, unlike the other hierarchical clustering algo-

rithms mentioned earlier, furthermore the (oftentimes cited undesirable) prop-

erty of possible inversions. That means that clusters merged at a later step may 

in fact be more similar than clusters merged in an earlier step (Jain/Dubes 

1988). 

 

Figure 3-8: Ward linkage clustering of the DAX data from 2003 to 2011. Colour codes 

are according to industry classification. 

 

Summary of the clustering methods 

A theoretical comparison of clustering algorithms is not feasible, as it is prac-

tically impossible to describe the different approaches mathematically in a 

way that can be compared (Jain/Dubes 1988). Different distance measures 

further complicate the problem. Instead, a rough comparison in terms of ''what 

is intended'' with the algorithms is given and thus leaves the ultimate choice to 

the user.  
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The single-link algorithm oftentimes forms clusters that are chained together 

and leaves large clusters. It can probably be best understood as a way to give a 

''more robust'' estimation of the distance matrix and furthermore preserves the 

original structure as much as possible. Elements departing early from the tree 

can be interpreted as ''different'' from the overall dataset. In terms of applica-

tion, the single-link clustering algorithm is very useful to gain insights in the 

correlation structure between assets and separates assets that were very differ-

ent from the rest. If this separation is preferred and high weights should be put 

on ''outliers'' the single link certainly is a good choice.  

The complete-link algorithm has a different idea: elements should be grouped 

together in a way that they are not too different from each other when merged 

in a cluster. It thus has a much stronger definition of ''similar pair of clusters''. 

The complete-link algorithm therefore seems suitable for investors interested 

in grouping stocks that are similar in one cluster.  

The average-linkage algorithm offers a trade-off between the complete-link 

and single-linkage algorithm. With respect to Ward's method, the clustering of 

stocks according to industries or sectors is even clearer and more meaningful 

than with the complete-link algorithm.  

 

3.3 Properties of Distance Measures 

According to Keogh, there are four categories of similarity measures for nu-

meric time series: 

 shape-based methods compare the overall appearance of the time se-

ries,  

 feature-based methods extract time independent aspects of the series 

that are compared with static distance functions, 

 model-based methods require a model of the data and measure the 

similarity by comparing model-based distances, and  
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 compression based methods analyze how well two time series can be 

compressed alone and together. 

The Euclidean distance is the most widely used shape-based distance for the 

comparison of numeric time series (Keogh/Kasetty 2002). Feature-based 

methods and model-based methods require rather long time series in order to 

calibrate the features and models. However, they can handle different time 

series‟ lengths. One example of rather general features is the use of the first 

four moments of the empirical probability distribution of the data and the first 

order differences (Nanopoulos et al., 2001). Additional features based on 

trend, seasonality, and self-similarity is used in (Wang et al. 2004). Since the 

method clusters using extracted global measures, it reduces the dimensionality 

of the time series and is much less sensitive to missing or noisy data.  

The model-based representations assume that the time series have been pro-

duced by a certain model. A popular choice for numeric time series is statisti-

cal modelling with ARMA models, e.g., (Kalpakis et al. 2001, Xiong/Yeung 

2003). The statistical features extracted in Nanopoulos et al. (2001) and Wang 

et al. (2006) can also be interpreted as a model of the process generating the 

time series. Other models for time series could be regime switching, change 

point analysis, hidden Markov models and structural breaks.  

The compression-based similarity of time series is inspired by computational 

theory. Keogh et al. (2007) define a distance measure based on the conditional 

Kolmogorov complexity called Compression-Based Dissimilarity Measure 

(CDM). The Kolmogorov complexity is the length of the shortest program 

that is able to generate the given data. The basic idea is that concatenating and 

compressing similar data should give higher compression ratios than doing so 

with very different data. Similar to model-based methods, they are allowed to 

have different lengths. 

The proximity matrix is the single input to most clustering algorithms and 

contains all the information relevant for the clustering procedure. It can either 
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measure similarity of dissimilarity (Jain et al. 1999, Jain/Dubes 1988). Since it 

is most common to refer to the similarity between patterns through their dis-

similarity we will refer to the proximity measure more precisely with the term 

distance measure, especially when dissimilarity is a metric (Jain et al. 1999). 

The information of all asset return time-series is therefore reduced to a matrix 

with 2/)1( nn  distinct entries. The usual properties of a metric or distance 

measure are: 

 

The second property shows that if there are two assets are completely corre-

lated )1( 
ig

  they are not separated by any distance )0( 
ig

d .  The sym-

metry property reflects the symmetry of the correlation matrix. The triangular 

inequality expresses the Pythagorean equation in the Euclidean space.  

 

3.4 Selection of Distance Measures 

This section will explain some basic distance metrics and a related correlation 

based metric. We denote the price of a stock i  at time t  as )(tp
i

. The loga-

rithmic return can be written as )(ln)(ln),( tpttpttr
iii

 . In this work 

we use daily returns.  

The Minkowski metric satisfies all conditions of a distance metric. The gen-

eral form of the Minkowski metric is defined as:  
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If 1p  the Minkowski metric becomes the Manhattan distance, for 2p  the 

Euclidean distance. For p  the metric becomes the ''sup'' distance. This 

work will focus on the most common case, the Euclidean distance. It has an 

intuitive appeal and is oftentimes used when the proximity of objects has to be 

determined  in two- or three dimensional spaces. A commonly cited drawback 

of the Minkowski metric is that largest-scale features tend to dominate other 

features. Since only one feature (the return) is analyzed in this work, the stated 

problem does not really apply in this context. However, it is true that the Eu-

clidean distance attributes weight to outliers of a data set. The Euclidean dis-

tance is used in several papers for financial cluster analysis (e.g. Lisi/Corazza 

2008, or, Zhang/Maringer 2010). 

 

Correlation Based Distance 

The correlation based metric has found widespread use among practitioners of 

clustering in financial applications (see for example Lisi/Corazza 2008, Man-

tegna 1999, Tola et al. 2008, Tumminello et al. 2010, Dose/Cincotti 2005). 

The Pearson correlation coefficient is widely used as a measure of strength of 

linear dependence between two variables: 
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However, the correlation coefficient of a pair of asset returns cannot be used 

as a distance because it does not fulfil the axioms that form a metric. A real 

metric can be designed using a function of the correlation coefficient  . It can 

be rigorously determined by a transformation of the correlation coefficient so 



 31 

that the distance between variables is directly proportional to the correlation 

between them (Gower 1966): 

 

)1(2),(
ij

jid   

It can be shown that this distance fulfils the usual metric properties including 

the triangle relation (see Mantegna 1999).  

 

3.5 Networks in Finance 

There exist numerous applications of networks in science and business such as 

social networks, internet traffic and biology with methods and algorithms 

drawn from statistical physics, computer science, complexity theory and oth-

ers. Most real world networks display non-trivial topological features, with 

patterns of connection between their elements that are neither purely regular 

nor purely random. An example is a scale-free network whose node degree 

distribution asymptotically follows a power law.  

According to Porter et al. (2009), a network‟s structure may exhibit a compli-

cated set of hierarchical and modular components. The term module or com-

munity is typically used to refer to a single “cluster” of nodes. Intuitively, a 

community is a cohesive group of nodes that are connected “more densely" in 

comparison to other nodes of the network. Porter et al. (2009) give an over-

view of the current research and applications of communities in networks and 

Lancichinetti/Fortunato (2009) develop benchmarks for testing community 

detection algorithms.  

The collective behaviour of assets returns can be analysed by means of the 

construction of topologically constrained graphs from cross-correlation matri-

ces. Given a connected, undirected graph, a spanning tree of that graph is a 

http://en.wikipedia.org/wiki/Degree_distribution
http://en.wikipedia.org/wiki/Degree_distribution
http://en.wikipedia.org/wiki/Power_law
http://en.wikipedia.org/wiki/Connected_graph
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Spanning_tree_%28mathematics%29
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subgraph that is a tree and connects all the nodes/vertices together. So a span-

ning tree is the maximal set of edges of a graph that contains no cycle, or as a 

minimal set of edges that connect all vertices.  

A single graph can have many different spanning trees. An attractive candi-

date is the minimal spanning tree (MST) because it provides an arrangement 

of assets which selects the most relevant connections of each element of the 

set resulting in n-1 edges. In our case these are the highest correlations (or 

lowest correlations distances, respectively, which leads to the expression min-

imal spanning tree). Finally, the minimal spanning tree gives the subdominant 

ultrametric hierarchical organization of the assets of the investigated portfolio 

so a weighted graph‟s MST closely corresponds to the single linkage cluster-

ing (see Mantegna 1999).  

According to Aste et al. (2010) the following intuitive algorithm can be ap-

plied to construct the MST: 

 

Step 1: Make an ordered list of all edges i,j in a fully connected network rank-

ing them by decreasing correlation 
ij

  (first the largest and last the smallest). 

Step 2: Take the first element in the list and add the edge to the graph. 

Step 3: Take the next element and add the edge if the resulting graph is still a 

forest or a tree; otherwise discard it. 

Step 4: Iterate the process from step 3 until all pairs have been exhausted. 

 

The following example uses the same data as in the single linkage clustering 

in order to show the relation to MSTs. 

http://en.wikipedia.org/wiki/Subgraph
http://en.wikipedia.org/wiki/Tree_graph
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
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Figure 3-9: Building the MST showing the relation to the single linkage clustering.  

Using the single linkage clustering on the left hand side of the figure the den-

drogram helps to construct the MST stepwise according to the following pro-

cedure: 

At each step (defined by a mark on the height of the dendrogram) the linkage 

algorithm merges together two clusters (or two points or a point and a cluster). 

A link is then added to the emerging tree that connects the new node(s) to 

where the distance is the smallest (minimum distance; single linkage). The 

procedure stops at the topmost level of the dendrogram when all nodes/links 

have been added. 

 

Properties and metrics of MSTs 

Often related methods to the MST are spectral analysis and Random Matrix 

Theory (see for example Heimo et al. 2007). The MST is full of information 
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concerning the backbone dependence structure of the financial assets. There 

are numerous graph-based measures quantifying and visualizing the backbone 

dependence structure of the assets in static and dynamic context. The funda-

mentals of these metrics are the edge lengths or paths and the distribution of 

edge degrees.  

Real life networks for example form hard or social sciences often exhibit a 

scale-free structure meaning that their edge degree distribution of the network 

nodes has power-law tail behaviour with tail index between 2 and 3. This in-

dicates that there is a huge amount of nodes with very few degrees and a small 

amount of nodes with high edge degree making the edge degree distribution 

fat-tailed. The following power law distribution describes this phenomenon  


 ckkP )( , 

where )(kP  is the fraction of nodes in the network having k  connections,   

is the tail exponent, and c  some constant.  

Also, the moments of the asset correlations can be compared to the edge 

weights of the MST. The mean correlation is computed as 
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The average edge length L of the MST which is also called normalized tree 

length is defined as: 
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where only those 
ij

d  of the amount of MST edges )(MSTE  are averaged. The 

average edge length of the MST can be transformed into the average of the 

MST correlations transforming it back to a correlation by the correlation dis-

tance measure: 
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Each node or vertex can be characterized by its relative position in the net-

work. For example, nodes can be rather central or rather eccentric concerning 

the network topology. An example measure for centrality is the “betweenness 

centrality” of the network: 
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ij
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with 
ij

nsp (v) as the number of shortest paths from node i to j going through 

node v and with )(MSTV  as the quantity of nodes of the MST. Other exam-

ples for centrality and eccentricity measure definitions can be found in finan-

cial applications in Aste et al. (2010), for example.  

 

Visualization 

There are forced-based algorithms like the one by Fruchterman/Reingold 

(1991) or Kamada/Kawai (1989) which draw graphs in an aesthetically pleas-

ing way. Their purpose is to position the nodes with nearly equal length and as 

few crossing edges as possible. These algorithms assign physical forces 

among the edges and nodes: edges could be springs and nodes could exhibit 

electric repulsions, for example. The layout algorithm simulates the different 

forces at work and it is terminated when some mechanical equilibrium step is 

reached. 



 36 

ADIDAS-SALOMON

ALLIANZ

BAYERBASF SE

BEIERSDORF

BMW STAMM
COMMERZBANK

DAIMLER AG
DEUTSCHE BANK

DEUTSCHE BOERSE AG

LUFTHANSA

DEUTSCHE POST AG

DEUTSCHE TELEKOM

E.ON AG

FRESENIUS MED. CARE ST
FRESENIUS AG

HEIDELBERGER ZEMENT STAM

HENKEL KGAA

INFINEON TECHNOLOGIES AG

K+S AG

LINDE

MAN AG - STAMMAKTIEN

METRO STAMM

MERCK KGAA

MUENCHENER RUECKVERSICH.

RWE AG

SAP STAMM

SIEMENS AG

THYSSEN KRUPP

VOLKSWAGEN VORZUG

 

Figure 3-10: The MST of the DAX (2003-2010) with industry colour codes. 

 

Community detection 

In the network it is interesting to identify dense connections between the 

nodes within modules but sparse connections between nodes in different mod-

ules. For this reason there are community/module detection algorithms that 

reflect the concentration of nodes within modules compared with a random 

distribution of links between all nodes regardless of modules (random null 

model as a randomized realization of a particular network which is used as a 

reference and often exhibits the same edge degree distribution). An example is 

the community detection algorithm by Newman/Girvan (2004) which opti-

mizes the measure of modularity. It is defined as the fraction of the edges that 

fall within the given groups minus the expected such fraction if edges were 

distributed at random. It is defined between [-1,1] whereas it is positive if the 

number of edges within groups exceeds the number expected on the basis of 

chance. Newman/Girvan (2004) iteratively remove edges (esp. weak links) 

from the original graph and measure modularity at each step. The partition 
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with the highest modularity is chosen and defines the community structure. In 

graph visualization it seems a good idea to combine force-based layout algo-

rithms with colour coded nodes referring to the community membership.  
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Figure 3-11: The MST of the DAX (2003-2010) with community colour codes. 
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Figure 3-12: The MST of the DAX (2003-2010) with community colour codes and node 

sizes corresponding to edge degrees. 
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Dynamic MSTs 

Observing the MST topology at different time snap shots by using a fixed 

moving calibration window reveals certain dynamics of the backbone depend-

ence structure. Measures like average tree correlation or network centrality 

evolving in time as well as time dynamic merges of communities deliver new 

insight to the market dynamics. For example, measuring the relative centrality 

of one sector in comparison to the others and plotting this measure in time 

shows how industry sectors change their role in the structure in time.  

There are special measures like edge survival or T1-distance (used for exam-

ple in Aste et al. 2010) that focus on the edge rewiring of the snapshot MSTs 

in time. The one step edge survival is defined as  


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where t
E  refers to the set of edges of the MST at time t and the   opera-

tion intersects the two MSTs. So it is simply the fraction of surviving edges to 

all edges. This measure plotted in time indicates if there are major edge rewir-

ings due to market disruptions.  

The T1 measure compares formerly first neighbours in time t-1 with the path 

length between them in time t. For example, formerly first neighbours in t-1 

are second neighbours in t, then T1 = 1 for this single edge. We average the 

T1 distances across all edges and use it as a dynamic measure of structural 

breaks.  

 

Applications of networks in portfolio context  

Correlation structures in complex systems can alternatively be analysed by 

means of threshold methods which will keep only the strong interactions and 
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disconnecting the part that is less correlated than the threshold from the sys-

tem. A graph-filtering method can instead describe the entire structure by also 

keeping some weaker correlations but simultaneously filtering out redundan-

cies in the highly correlated part (Onnela et al. 2003). However, it has to be 

stated that the number of weak correlations is not too high when forcing a 

correlation matrix into an MST. This aspect is closely connected to the ro-

bustness, significance and validity analysis of MSTs which we will show be-

low. 

The MST of a portfolio of assets exhibits properties which are very valuable 

for portfolio optimization and risk management. First, there are graph 

measures characterising the global function of each node in the network. For 

example, there are nodes in the MST which are more central or more periph-

eral than others, or few nodes exhibit a large number of connections whereas 

others are very isolated. Second, there are numerous algorithms to detect 

communities in graphs. Combining both methods conveys important relations 

in portfolios and the graph measures and communities can be functionally 

visualized. 

One of the most popular quality functions for community detection algorithms 

is modularity which measures how well partitions of a network are. For ex-

ample, in a first step, communities are detected by progressively removing 

edges from the original graph (Newman/Girvan 2004). The end result of the 

Girvan–Newman algorithm is a dendrogram. In a second step, the dendrogram 

is cut at a position to optimize the modularity measure.  

Correlation based networks have been found very useful in the elucidation of 

economic properties of stock returns traded in a financial market. In finance 

literature there are already some approaches to portfolio management based 

on correlation based networks. For example, there are approaches to analyze 

the location of Markowitz optimal portfolios on MST-layouts and to deter-

mine the general diversification potential of a market (Onnela et al. (2004). 

These approaches define a central node based on some centrality measure like 
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edge degree and each asset then exhibits a distance level from this “centre of 

market gravity”. The levels of each asset can then be weighted either by the 

same weights in order to compute the mean occupation layer or they can be 

weighted by Markowitz‟ or Minimum Variance weights in order to receive the 

weighted portfolio layer. An important observation of these tree measures is 

that the different branches of the tree often belong to different business sectors 

and it can be conjectured that the location of assets in the tree and in a tree 

branch are important for risk management and diversification.  

A non-local measure of centrality can be inferred by computing the number of 

shortest paths that pass through a given node: the larger the number of paths, 

the more central the node. It is called edge betweenness. An opposite kind of 

measure is the eccentricity, which is the largest distance between a node and 

any other node in the graph. Some papers also focus on the dynamics of mar-

ket correlations and analyze structural changes in the market by means of fil-

tered graphs (see overview of these papers below). For example, the time evo-

lution of the system is continuously monitored by repeatedly constructing 

MSTs from moving fixed time windows. It can be observed that some edge 

connections remain stable in time and some are loose. Also, the community 

structure changes over time as well do the centrality and peripherality 

measures. This can be explained when correlation is understood as a dynam-

ical concept. 

An example is Onnela at al. (2002) who constructs MSTs sampled at different 

points in time and find topological shrinking and strong reconfiguration of the 

trees during stock market crises. They demonstrate that the assets of the opti-

mal Markowitz portfolio lie practically at all times on the outskirts of the tree 

and that different tree branches reflect diversification potential. They also 

show that the tree topology and the general investment diversification poten-

tial coincide. Tumminello et al. (2007) investigate correlation based networks 

of equity returns sampled at different time horizons ranging from 5 minutes up 

to one trading day. Their analysis confirms that the selected stocks compose a 



 41 

hierarchical system progressively structuring as the sampling time horizon 

increases and that the cluster formation can be quantitatively associated to 

economic sectors. Di Matteo et al. (2010) use dynamical networks to detect 

the hierarchical organization of financial market sectors. Their analysis is 

based on measures for centrality and peripherality like edge degree, between-

ness, eccentricity and closeness. Aste et al. (2010) construct topologically 

constrained graphs from cross-correlation matrices and report significant sta-

tistical signatures of the „credit crunch‟ financial crisis that unfolded between 

2008 and 2009. They test the stability, statistical significance and economic 

meaningfulness of these graphs evolving in time. The results show an intri-

guing trend that highlights a consistently decreasing centrality of the financial 

sector over the last 10 years. Song et al. (2011) analyse the evolution of 

worldwide stock markets by means of correlation based graphs. They discover 

that the correlation among market indices presents both a fast and a slow dy-

namics. The slow dynamics reflects the development and consolidation of 

globalization. The fast dynamics is associated with critical events that origi-

nate in a specific country or region of the world and rapidly affect the global 

system. They define a measure for link co-occurance in order to detect the 

graph dynamics in a quantitative way.  
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4 New Approaches to Equity Portfolio 

Management 

 

We now introduce a new approach to portfolio optimization that addresses the 

diversification problem by means of clustering. Stocks of the German index 

DAX are grouped according to a nested hierarchical structure that is solely 

explored from the daily stock return data without any a priori model assump-

tions.
5
 The automatic classification can be verified and tested based on hy-

potheses. Therefore, it is not necessary to employ a model to group stocks 

according to industry sectors, factors or other classification approaches which 

are often subject to model risk. 

This high quality classification is then used to derive a diversified portfolio in 

a way that portfolio weights are balanced across the clusters. We test the risk-

adjusted performance of the diversification scheme against other well-known 

portfolio construction approaches like mean variance optimization. The result 

is that the cluster diversification outperforms even though it has no infor-

mation about the stocks' individual risk/return profile. The comparisons con-

sider investment constraints, trading costs and individual investor preference. 

Based on the good performance level of the diversification scheme, arbitrary 

estimation approaches of the stocks' risk/return characteristics can still enter 

the model in order to further increase risk-adjusted performance. This applica-

tion has important potential implications on portfolio construction. Our ap-

proach is unique in how the properties of hierarchical clustering are used for 

diversification purposes. It is very straight forward in solving the diversifica-

tion problem, is very tractable and transparent from an investment and visuali-

zation perspective, and is economically viable due to the hierarchical cluster-

ing representing data-driven economic sectors. 

                                                 
5
 Data source: Yahoo! Finance - Business Finance, Stock, Market, Quotes, News, 

www.yahoo.com/finance 
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4.1 Overview of Clustering in Portfolio Management 

Mean-variance efficient portfolios are engineered to deliver the highest return 

for a given the level of risk. Modern portfolio theory (MPT) argues that the 

mean-variance optimization (MVO) portfolio is engineered to achieve the best 

diversification for a given investment universe subject to the returns and risk 

forecasts as inputs. The traditional mean-variance approach uses expected 

returns and covariance estimates as inputs, while weights and the resulting 

risk contributions of the optimal portfolio are the output; risk contributions 

simply reflect the inputs to the optimization. 

However, these desirable properties in portfolio optimization cause some 

practical problems. Estimation of expected returns and covariance is rather 

difficult due to the lack of data and according to short estimation horizons the 

covariance matrix is often very noisy (Laloux et al. 1999). Also, it is even 

more difficult to estimate means than covariances of asset returns (e.g. see 

Merton 1980) and MVO techniques are known to be very sensitive to differ-

ences in expected returns so they actually “maximize'” estimation error. 

A portfolio construction that completely circumvents the parameter estimation 

problem is the equally weighted (EW) portfolio. It is probably the simplest 

portfolio construction approach in an attempt to achieve diversification and it 

does not need any optimization. In terms of MVO, these portfolios would im-

ply assets with identical expected returns and volatilities as well as zero corre-

lations. However, these rather unrealistic assumptions may achieve an aston-

ishingly good out-of-sample performance when simply used as an “investment 

strategy”'. In their extensive study of different asset allocation models applied 

to several datasets of the global equities universe, De Miguel et al. (2009) find 

that none of the theoretically sound asset allocation approaches (MVO and 

modifications) are consistently better out of sample than the heuristic 1/N 

equally weighted rule. They explain that “allocation mistakes” caused by us-

ing the 1/N weights can turn out to be smaller than the error caused by using 
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the weights from an optimizing model with inputs that have been estimated 

with error. Kritzman (2010), however, point out that the dataset chosen may 

be beneficial to the 1/N strategy. Also, its diversification effects are portfolio 

dependent and not at all guaranteed. Finally they conclude that the longer the 

estimation horizons the more potential for the MPT to beat the 1/N strategy on 

a range of datasets. Also, Martellini (2008) finds evidence that improved mo-

ment estimators may outperform equally weighted schemes. Consequently, 

the EW portfolio is more of a performance benchmark rather than an invest-

ment strategy.   

A recent academic research has focused on minimum-variance portfolios, 

which rely solely on estimates of covariances and thus are less vulnerable to 

estimation. Examples are the latest approaches in risk parity and diversifica-

tion from Choueifaty/Coignard (2008) and Maillard et al. (2010). However, 

some authors raise several conceptual and practical concerns. An example is 

Lee (2011) who concludes that there is no theory to predict, ex-ante, that any 

of the risk-based approaches should outperform. Also, these approaches are 

only optimal if and only if one assumes that all stocks have the same Sharpe 

ratios (and the same pairwise correlations) which seems rather unrealistic 

from an empirical point of view. 

At present, many authors attempt to put the focus back on the only truly opti-

mal weighting scheme consistent with modern portfolio theory (see for exam-

ple Martellini 2008) and they ague that using improved robust estimators for 

the variance-covariance matrix of stock returns, as well as for their expected 

returns, might rehabilitate MPT. However, strong assumptions such as nor-

mally distributed asset returns need to be made before one can conclude that 

they are truly optimal portfolios. As a result, portfolio managers need to con-

sider whether assumptions and objectives behind each concept are compatible 

with their views and needs before employing MPT to construct portfolios.  

Criticism of the normality of asset return assumption was first empirically 

challenged by Mandelbrot (1963) and subsequently supported by Fama (1963) 
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Also, risk in general is a rather abstract term for financial loss potential and  

(co-)variance in the MVO may not be an adequate measure for risk and diver-

sification. For example, variance is not a downside risk measure and correla-

tion implies only linear dependence due to the normal distribution assumption. 

For these reasons, models incorporating stylized facts of empirical asset re-

turns such as excess kurtosis, skewness, volatility and copula tail dependence 

effects were developed by Rachev/Mittnik (2000) and Rachev et al. (2007 and 

2008). Although the parameters of these models are difficult to estimate, effi-

cient parameterization methods have been recently developed so as to make 

implementation of these models practical. An example of such an approach 

and its application to credit risk management in general and for price calibra-

tion and hedging of correlation dependent credit derivatives is Papenbrock et 

al. (2009).  

Existing literature on clustering in portfolio management often categorize as-

sets by means of clustering and using these clusters to create portfolios. Ex-

amples are Zhang/Maringer (2010) who propose a clustering criterion which 

groups market assets to maximize the Sharpe ratio of portfolios and 

Dose/Cincotti (2005) who limit the number of stocks in a portfolio by consid-

ering a subset derived from clusters and then setting the weight of each stock 

as a result of an optimization process. 

Other authors think of clustering as a means of filtering and improving param-

eter estimation. An example is Tola et al. (2008) where the number of correla-

tion coefficients in the matrix is reduced by a hierarchical clustering approach. 

This can be seen as a filtering procedure in which the number of distinctive 

elements in the correlation matrix is reduced. The resulting ultrametric and 

original metric correlation matrices are then used to build the portfolio in a 

Markowitz approach. The authors find that the cluster-based filtering shows 

better results than RMT filtering.  

Since the beginning of this millennium, hierarchical clustering is shown in 

many studies about financial markets to be able to explicatively reproduce 
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some economic structure (see e.g. Mantegna 1999 and Tumminello et al. 

2005) and is able to deliver some theoretical description of financial markets. 

The gathered hierarchically embedded set of clusters can be visualized accord-

ing to the tree layout and this renders possible meaningful economic interpre-

tations of the clusters as well as economic plausibility checks of the unsuper-

vised learning of hierarchies. Tumminello et al. (2010) for example, find that 

hierarchical clustering is able to detect clusters of stocks belonging to the 

same sectors or sub-sectors of activities without the need of any supervision of 

the clustering procedure and they develop a nested factor model based on hi-

erarchical clustering.  

We pursue a similar approach but without the necessity to derive nested fac-

tors. Rather, the hierarchical clustering is directly used for diversification by a 

mechanism that distributes capital weights evenly across the hierarchically 

nested clusters. The necessary hierarchically nested structure is automatically 

explored by standard clustering algorithms so it is not necessary to construct a 

model for the hierarchical structure of sectors which may be subject to addi-

tional model risk. The straightforward portfolio construction based on the ex-

plorative clustering can be seen as a benchmark for diversification and this 

information. It can be combined with knowledge of the stocks' individual 

risk/return profiles whereas the single stock risk and return prospects can be 

derived from any arbitrary model. For example, more coherent risk measures 

than variance can be used here.  

Stocks with favourable risk/return profiles can be picked and at the same time 

the diversification scheme indicates which stocks are very isolated far away 

from the bulk of stocks. These should ideally receive a higher weight as they 

are contributors to diversification. The whole process can be visualized based 

on the hierarchical tree layout. We analyze in detail different hierarchical clus-

ter algorithms in order to find adequate set-ups for portfolio management. For 

convenience, we focus on the correlation–based distance but it has to be re-

marked that a variety of linear and non-linear (dis-)similarity measures could 
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be used here. The variety of combinations from similarity measures and hier-

archical clustering procedures not only clear the way for adequate diversifica-

tion processes but also for meeting investment constraints and individual in-

vestors' preferences. 

It has to be stated that explorative clustering is basically an intelligent reduc-

tion of information and complexity. Unfortunately, it seems that in many pa-

pers the validation of the clustering structures is either non-existent or still 

leaves many questions unanswered. The difficulties arising from processing 

large datasets and deriving clustering structures without proper validation may 

explain the limited use in practice. As Jain/Dubes (1988) and Tan et al. (2005) 

note, clustering algorithms will always find clustering structures - no matter 

whether they are existent or not so there is always a need for cluster validation 

and cluster stability tests. 

 

 

4.2 The Cluster Based Waterfall Approach 

We proposed a weighting scheme that distributes capital weights according to 

the tree layout and its nested structure as can be seen in the following graph: 

 

 

Figure 4-1: The cluster-based waterfall weighting scheme. 



 48 

Step 1: split the capital invested into two equal halves at the first bisection in 

the tree at d=1. 

Step 2: split the remaining 50% capital of each branch at its next bisection. 

Step 3: continue step 2 for each branch until there are no more bisections. 

 

The hierarchically nested structure is automatically explored by standard clus-

tering algorithms so it is not necessary to construct a model for the hierar-

chical structure of sectors which may be subject to additional model risk. The 

diversification scheme identifies stocks which are very isolated and just sur-

rounded by small clusters far away from the bulk of stocks. These should ide-

ally receive a higher weight as they are contributors to diversification. 

The chaining effect in the single linkage clustering may result in very high 

weights of single stocks. In contrast, the naïve strategy gives weights with the 

same investment fraction. In between these two extremes there are several 

hierarchical clustering procedures with respective waterfall weights: 

 

Figure 4-2: Varying the weight concentration by using trees with different symmetry 

properties in the cluster-based waterfall approach. 
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Ex-post Analysis of Risk and Performance 

An ''ideal risk metric'' is not used in the portfolio construction process of the 

hierarchical weights strategy. The aim is to ''diversify'' investments. However, 

as investors are interested in the return they get and are either bound to certain 

risk thresholds or may need to measure an investment strategy in terms of risk 

and ex-post risk-adjusted performance. The following section shall thus give a 

short overview of the risk-metric and performance measures that were used to 

evaluate the strategies ex-post. 

There is vast literature on the topic of risk measures and risk metrics. The 

properties, advantages and disadvantages of those shall not be part of the dis-

cussion of this work. Several measures of risk that have become popular in the 

financial industry will be used for the analysis of return series. 

 -Systemic risk: The systematic risk of a strategy is expressed with  . For 

a sufficiently large set of assets, the idiosyncratic risks are diversified away 

and only the systematic risk remains. It is the basis of the first asset-pricing 

model derived from economic theory and was subsequently used in the one-

factor CAPM-model. It can be empirically determined: 

 

and 

 

In this context, ),cov(
Mi

RR  denotes the covariance between an asset return 

i
R  and the market index return 

M
R . The term 2

M
  is the variance of the mar-
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ket index return and 
i

w  the weight of the respective asset in the investment 

strategy. The market index will be the DAX.  

 

Variance: As already mentioned, using the variance as a measure to assess 

risk can be quite problematic. It is nevertheless often used, especially because 

it is closely tied to the MVO-approach of Markowitz. The annualized portfolio 

standard deviation can thus easily be calculated. It is assumed that one year 

has 260 trading days: 

 

Value-at-Risk: Value at Risk (VaR) measures the worst loss that can be ex-

pected to a certain confidence level  . The confidence level for the daily loss 

is usually set to 95% or 99%. In this case, VaR will only be calculated ex-

post. There are generally two ways to determine the VaR from a given dataset: 

Either the 95th or 99th percentile of a sufficiently large ordered dataset is se-

lected, or a distribution is determined for which the VaR is determined ac-

cordingly. In this work the 99th percentile is selected from historical data, as 

more than 1,300 data-points exist for the 6-year ex-post analysis.  

CVaR: As VaR and variance were under harsh criticism for their shortcom-

ings with respect to risk measurement in portfolio management, the more 

meaningful Conditional Value at Risk (CVaR) is oftentimes used for this 

task.
6
 CVaR is a significant improvement over VaR, since the expected loss 

beyond the confidence level is also included in this metric. Furthermore it 

satisfies all  properties of a coherent risk measure (including sub-additivity, 

                                                 
6
 In a section below dealing with credit risk, the CVaR will be termed the VaR for credits and 

is not be mixed up with Conditional Value-at-Risk which is also named Expected Shortfall 

(ES) or Average VaR (AVaR). 
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which is violated by VaR). CVaR can thus better capture diversification ef-

fects in a portfolio. It is defined as: 

 

Even though two time series may have the same VaR at a given confidence 

level, the one may be much riskier than the other because of the heavier tail of 

its distribution (or lack of diversification with respect to heavy tailed as-

sets).The advantages of the CVaR risk measure over the VaR become appar-

ent when the underlying distributional model is skewed. This also holds true 

for the advantages of CVaR over the variance or standard deviation.  

Maximum DrawDown: The maximum drawdown measures the decline from 

a historical peak of a time series. The analysis furthermore includes the Max-

imum DrawDown per month as an indicator of what an investor had to deal 

with in terms of maximum loss during any given month of the respective in-

vestment strategies.  

Number of negative months: The number of negative months gives an idea, 

in how many months the strategies would have destroyed value. 

Average loss per month: The average incurred loss at the end of every month 

bearing a loss is calculated.  

 

Measuring Performance 

The importance of the ex-post valuation of the performance of an investment 

strategy was already pointed out. Several performance measures exist for this 

task. The goal of this work should not be to find a suitable performance ratio 

or risk-adjusted performance measure, but shortly describe the most wide-
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spread measures, which are then subsequently used to evaluate the respective 

investment strategies. 

Annual Geometric Return: The return of the investment strategies on a year-

ly basis are not computed using the arithmetic mean, as the returns are com-

pounding, but with the geometric return. The annual geometric return of a 

strategy is computed as: 

 

Sharpe Ratio: The Sharpe ratio is used to relate the excess return of an in-

vestment strategy measured against its total risk exposure. The total risk is 

measures in terms of standard deviation. Higher Sharpe ratios are usually 

preferable to lower Sharpe ratios. It is often used in the MVO-optimization, 

where the maximization of the Sharpe ratio may be the goal of the optimiza-

tion. The resulting portfolio would tangent the MV-efficient frontier. The 

Sharpe ratio is calculated as: 

 

In this context, 
P

r  denotes the annual return (geometric mean), 
F

r  denotes the 

risk free rate and 
P

  is the standard deviation of the portfolio. 

Modigliani Risk-Adjusted Performance: Whereas the Sharpe Ratio is not to 

be considered a risk-adjusted return measure, the Modigliani Risk-Adjusted 

Performance is measuring the risk-adjusted returns of a portfolio against a 

benchmark. Whereas the Sharpe Ratio is dimensionless, the 2
M  is measured 

in units of return. It is more intuitive to interpret. It is computed in the follow-

ing way: 
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From the equation, it immediately becomes obvious, why the Sharpe Ratio is 

only a ratio, whereas the 2
M  is a true risk-adjusted performance measure: 

The relative performances of portfolios are calculated with respect to the mar-

ket risk. The return of the portfolios that are to be compared is thus calculated 

on the assumption that the portfolios would carry the same risk as the market. 

It is therefore relatively easy to infer, which portfolio is superior. 

Treynor Ratio: It is very similar to the Sharpe Ratio with one important dif-

ference: Whereas the SR measures risk in terms of standard deviation (total 

risk), the Treynor Ratio measures risk in terms of systemic risk or market risk 

 It thus ignores specific risk and is only useful as a performance ratio, if the 

idiosyncratic risks of a portfolio are ''diversified away''. It is computed in the 

following way:  

P

FP
rr

TR



 . 

In this context, 
P

r  denotes the annual portfolio return (geometric mean), 
F

r  

denotes the risk free rate and 
P

  is the systemic risk or market risk of the 

portfolio. 

Jensen's  : The economic interpretation of Jensen's    is the intercept of the 

portfolio to the CAPM-line. Jensen's   thus measures the over- or underper-

formance of a portfolio with respect to its systematic risk compared to the 

market. It is oftentimes used by fund managers to express their superior per-

formance over the market - potentially totally neglecting the idiosyncratic 

risks of their investments. Ignoring any error terms, Jensen's   is calculated 

as: 
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Results of the cluster-based waterfall investment strategy 

In order to test this simple strategy, we implement a rolling window invest-

ment strategy with monthly rebalancing and estimation windows ranging from 

130 to 260 and 390 trading days. We operationalize the waterfall strategy for 

the four clustering procedures and compare their performance to the DAX 

benchmark, to the Markowitz portfolio (with no short-selling) and to the naïve 

1/n strategy. The following table compares the different strategies for the 130 

days estimation window whereas performance, risk, and turnover are ex-

pressed in terms of the usual realized measures such as return per annum, 

standard deviation, maximum draw down, Jensen‟s  , Sharpe ratio and aver-

age monthly weight change:
7
 

 

Figure 4-3: The result of the different investment strategies based on 130 days of in-

sample-data for the period of 2005-2010.  

 

 

 

Figure 4-4: The result of the different investment strategies based on 390 days of in-

sample-data for the period of 2005-2010.  

                                                 
7
 Results and especially rankings are similar when using different sampling horizons, transac-

tion costs and weight constraints. 
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Figure 4-5: A more detailed overview of several performance, risk and risk-adjusted 

performance related numbers and ratios. No Trading costs are assumed, no additional 

asset constraints are imposed. The in sample estimation of parameters has a length of 

390 days of trading data. 

 

It can be stated that the Single-Linkage and Ward-Linkage hierarchical 

weighting strategies show superior performance with respect to the dimen-

sions return and risk-adjusted performance. The concentration of asset weights 

is very different for both strategies. Ward-Linkage will be most helpful for 

investors seeking high risk-adjusted performance and well balanced portfolios 

with little concentration on individual assets. The Ward- Linkage strategy is to 

some extent comparable to the 1/N approach but has the advantage that weight 

concentrations in sectors are generally avoided. The Single-Linkage strategy 

shows the highest performance and favours assets showing little correlation to 

the other assets in the asset universe. This strategy is only helpful for investors 

willing to take high stakes in single assets. The following graph shows a typi-

cal performance of the Single-Linkage clustering (blue) in comparison to 

Markowitz (red), 1/n (green) and the DAX (black): 
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Figure 4-6: The Single-Corr approach (blue) does show better risk-adjusted perfor-

mance than 1/N (green), Markowitz (red) or a simple investment in the Benchmark 

(DAX, black). 

 

Figure 4-7: The Ward-Corr approach (blue) does show better risk-adjusted perfor-

mance than 1/N (green), Markowitz (red) or a simple investment in the Benchmark 

(DAX, black). 
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Figure 4-8: The two strategies over time. Sing-Corr is depicted in blue and Ward-Corr 

in green. 

Finally the next three figures show the weight distributions in time of the sin-

gle linkage, the Ward clustering, and the Markowitz strategy. 

 

Figure 4-9: Visualization of the weights changing in time using single linkage clustering. 
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Figure 4-10: Visualization of the weights changing in time using Ward clustering. 

 

 

Figure 4-11: Visualization of the weights changing in time using Markowitz. 

Conclusions of the Asset Clustering Approach 

The following advantages can be attributed to the clustering approach: 

 Proof of concept for data-driven diversification strategy 

 Superior return and risk-adjusted performance based on a simple and 

weighting heuristic 

 Implementation complexity is low 

 Different investor choices among the linkage types of the clustering 

algorithms are possible in order to implement different strategies 

 The results are just based on the correlation coefficient so that individ-

ual risk measures like variance or reward measures like expected re-

turn can still enter the model 
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The following disadvantages can be observed: 

 The waterfall rule is static and there is not much room for weight ad-

justments (e.g. investment constraints) 

 Some clustering algorithms tend to suggest extreme weighting 

schemes and especially the single linkage clustering tends to empha-

size extreme market phases 

 Turnover rates can be higher than in benchmark models 

 Dendrogram heights have not yet been incorporated 

Finally it has to be stated that the parameter estimation horizon is just chosen 

arbitrarily and that the validation of clustering has not been carried out. In the 

next step we will show a similar approach based on networks which exactly 

deduces an ideal estimation window size and delivers statistically validated 

results. It is related to the clustering approach and uses networks for several 

data mining tasks. 
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4.3 The Asset Network Approach 

In this section we will start with an analysis of the correlation dynamics of the 

DAX with the help of evolving MSTs. In the time period under investigation, 

the DAX exhibits slow and fast correlation dynamics as can be seen from the 

following upper figure where average DAX correlations are plotted in time (x-

axis) using different parameter estimation windows (y-axis), whereas high 

average correlation is red and low average correlation is yellow: 

 

 

Figure 4-12: Average correlation of the DAX from 2005 to 2010. High correlations are 

red and the y-axis represents different parameter estimation windows ranging from 

short to long. Below is the DAX index curve (red) with index return (grey). 
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The figure below shows the corresponding DAX curve (red) from beginning 

of 2005 to mid 2010 and the DAX‟s daily return in grey. It can be observed 

that in crash times return volatility increases and that the corresponding 

changes in average correlation are best captured when using shorter estimation 

windows. When a long estimation interval is used, successive estimations of 

average correlations are not independent and therefore localized jumps are 

smeared out over a long time period (see also Song et al. 2011). However, it 

has to be stated that the shorter the choice of the time window the noisier the 

correlation estimations. Therefore it is necessary to test the significance of the 

correlation coefficients as well as the significance of the MST against the null 

hypothesis which we will do in the following section. The black line in the 

upper figure shows our choice of estimation window (100 trading days) for 

the subsequent analyses which resembles a good trade off between capturing 

large parts of the short correlation dynamics on the one hand and significance 

of the correlation coefficient and the MST on the other hand.  

 

4.3.1 Significance of the Correlation Coefficients and the 
MST 

For the dynamic temporal analysis of the DAX universe we define 40 equally 

spaced observation points in the time range from the beginning of 2005 to mid 

2010. This is a good choice as the subsequent analyses can be clearly present-

ed with this number of observation points and more or less observation points 

don‟t fundamentally change the results. Just before each observation point we 

define a time windows dating backwards 100 trading days in order to con-

struct a frequency distribution of pair wise asset return correlations and an 

MST of this period. Also, for each time window, we construct a set of random 

time series by using the original time series with shuffled order eliminating in 

this way any real temporal correlation and preserving the distribution parame-

ters of each time series (see also Aste et al. 2010).  Random, uncorrelated data 

should result in zero correlation coefficients but for return series of finite win-
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dow sizes there will be some residual finite non-zero correlations. The residu-

al correlations between the shuffled series act as a threshold value to construct 

a “null hypothesis” as we assess how often a pair of real correlation coeffi-

cients is larger in absolute value than the corresponding correlation form the 

set of shuffled coefficients. The following figure shows the bars of a frequen-

cy distribution of the real pair wise correlations at one of the 40 time observa-

tion points: 

 

Figure 4-13: Histogram of the correlations in blue. Red bars are fraction of non-

significant correlations and yellow is the MST correlation fraction. 

Originally, the frequency distribution of the real correlations is completely 

blue whereas the red bars show the fraction of the non-significant correlations 

of the blue bars at 99% confidence level. It can be seen that the higher correla-

tions are significant. If the estimation time window was longer than 100 trad-

ing days, the fraction of red bars could be expected to be smaller. The yellow 

bars show the fraction n-1 associated with the MST as a reduction of the n*(n-

1)/2 correlations. It can be seen that a large part of the highest correlations 

was chosen by the MST algorithm and that all MST correlations are signifi-

cant at 99% confidence level (there are in the blue area and not in the red 

one).  

Finally, it has to be mentioned that the same figure was produced for each of 

the 40 time observation points and that the one presented corresponds to the 
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histogram where the non-significant bars were nearest to the MST correlations 

(red bars very near to the yellow bars). From this analysis we conclude that 

for the dynamic MST analysis it is sufficient to use time windows of 100 trad-

ing days – at 99% confidence level.  

This analysis could be confirmed by construction the “ultrametric hypothesis” 

based on the close relation of the MST to single linkage hierarchical cluster-

ing. For this analysis we use the same set of shuffled time series for the same 

time window as in the analysis just before and build the frequency distribution 

of the cophenetic correlation between the correlation-based distance matrix 

and the ultrametric distance matrix based on single linkage clustering. Both 

distance matrices are based on the same set of 100 shuffled series and the blue 

bars in the following figure show the distribution of the corresponding 100 

cophenetic correlation coefficients: 

 

 

Figure 4-14: Histogram of the CPCC based on the shuffled data (blue) and the CPCC 

based on the real empirical matrix (red). 

 

If the cophenetic correlation coefficient between the real correlation-based 

distance matrix and the real ultrametric distance matrix based on single link-

age clustering (red dot in the figure above) is larger than a certain significance 

threshold (quantile of the blue frequency distribution) then the hierarchical 

clustering is significant. This was not only the case for this observation point 
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being shown in the figure but the case for all observation points so the single 

linkage hierarchical structure is significant throughout the whole analysis. 

This implicates that the MSTs for all observation points are plausible graph 

filterings.  

 

4.3.2 The Fall of the German Banks in the Financial Crisis: A 
Dynamic Analysis 

After the validation and significance tests we now proceed to the core of the 

dynamical analysis of the DAX universe. The evolution of the MSTs is stud-

ied in order to outline the anatomy of the market crash in conjunction with the 

financial crisis 2008/2009. As developed in the section before, we use 40 ob-

servation points and fixed estimation windows of 100 trading days. 

Average correlation of the DAX stocks evolves in accordance with market 

eruptions as can be seen in the following figure: 

 

Figure 4-15: Average correlation of the DAX stocks evolving in time. It is never above 

0.6 and never below 0.25. 
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Average correlation resembled by the sum of the MSTs‟ edge weights exhibits 

a very similar shape whereas average correlation of the MSTs‟ is on a general-

ly higher level as can be seen in the scales of the y-axes in both plots: 

 

Figure 4-16: Average tree correlation of the filtered DAX network evolving in time. It is 

never below 0.5. 

This shows that the MST captures the correlation dynamics quite well as was 

expected after the validation and significance tests. The evolving cophenetic 

correlation coefficient (CPCC) shows a consistently high level above 0.7 

which is another indicator of the hierarchical organization of the DAX, espe-

cially during/after the crisis: 

 

Figure 4-17: The CPCC of the filtered DAX network evolves in time at a high level  

(correlation of > 0.7)  
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The dynamic MSTs show the typical behaviour of asset trees in stock markets 

which exhibit scale-free behaviour of edge degrees (the power law exponent is 

in the range 2.05 to 2.30): 

 

Figure 4-18: Time evolution of the tail index of the power law edge degree distribution 

of the filtered DAX network. The distribution exhibits fat tails indicating scale-free net-

works.  

During the financial crisis, there are large structural disruptions in the MST 

topology as was deduced from the T1. We simply sum the T1 distances of all 

nodes between two consecutive time observation points which results in the 

following figure: 
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Figure 4-19: Structural breaks of the filtered DAX network as observed by a measure 

based on T1 distance.  

 

Aste et al. (2010) comment that with respect to the dynamic T1 edge rewiring 

there is a need for frequent restructuring to make maximum use of diversifica-

tion benefits.  

Some disruptions can even be observed even before the crisis being an early 

warning indicator. The disruptions even starting before the crisis can also be 

observed in the temporal change of average centrality and average. For exam-

ple, the average betweenness as a measure of centrality seems to have risen 

since 2007 which may be a trend to more integrated markets and globaliza-

tion: 
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Figure 4-20: Average betweenness of the DAX stocks in time. 

The same applies to the peripherality expressed by eccentricity: 

 

Figure 4-21: Average eccentricity of the DAX stocks in time.  

 

It is interesting that since 2007 the market seems to have moved to extremes 

in two ways and has not yet recovered: it is more centralized on the one hand 

and also more eccentric on the other. Also, it is clear that the two banks of the 
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DAX “Deutsche Bank” and “Commerzbank” have lost their former central 

position in the German economy for some time after the major crash in Octo-

ber 2008. Throughout the beginning of the crash in 2008, these banks are very 

central. The following graph shows the relative betweenness of the two banks 

in comparison to the other DAX members: 

 

Figure 4-22: The middle chart is the timeline of the relative average betweenness of the 

German banks Deutsche (blue) and Commerzbank (yellow) in comparison to the other 

DAX stocks.  The red curve shows the DAX index. Snapshots of the networks are taken 

in March 2006 and December 2009. It can be observed that the banks have become de-

centralized.  

 

In the years 2005 to 2007 especially Deutsche Bank together with Allianz had 

been one of the most central nodes in the German economy. Since the crisis, 

the two banks “Deutsche Bank” and “Commerzbank” seem to be rather eccen-

tric for some time which can be observed relative to the other DAX members: 
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Figure 4-23: Relative eccentricity of the banking sector in time. 

 

There might be some economical interpretation of this banking phenomenon 

as Aste et al. (2010) explain: “This might be a consequence of the increasingly 

speculative nature of the financial activity that […] has relatively reduced its 

original role of service and support to other firms. An interpretation could be 

that after the financial crisis banks started fighting with market eruptions, the 

debt crisis and legal proceedings and are thus decoupled from the rest of the 

economy.  

Especially in times of crises banks are very network central. Also, the early 

drop of centrality before the financial crisis can be seen as an early warning 

indicator before the crisis.  

Finally, other companies and sectors than banks could be analysed by this 

dynamic analysis of the DAX as support for economical studies of the Ger-

man stock market structure and the German economy.  

Each MST of the different time observation point can be plotted by means of a 

layout. This is the layout at observation point August 2006 with the banks 

highlighted by larger nodes: 
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Figure 4-24: DAX MST in August 2006. 

The squared shape of Deutsche Bank shows that its node exhibits the highest 

number of edge degrees in the DAX. The two banks are in the centre of the 

DAX network. The same layout algorithm used for the observation point Jan-

uary 2009 can be seen here: 

 

Figure 4-25 DAX MST in January 2009. 

Now Daimler is at the centre of the network whereas the two banks are even 

further away than a stock like Lufthansa.  



 72 

The colours in the network layouts correspond to the community detection 

algorithm of Newman and Girvan (2004). It is interesting to see that some of 

the colour codes correspond to classical industry classification schemes – and 

some exactly don‟t. This is the ideal case to show the potential of explorative 

methods and can be interpreted in the following way: as outlined at the outset, 

explorative cluster or community detection is just derived from the data with-

out using any economical classification approach. There are some obvious 

relations like 

 Deutsche Bank, Commerzbank and Allianz being in one community 

(financials), 

 Daimler and BMW being in one community (automotive), 

 EON und RWE being in one community (energy), 

and numerous other examples for correspondence to industry sectors. This is 

successfully replicated by the data-driven approach so it produces economi-

cally reasonable results. Having replicated some of the economically explain-

able relations it is not necessary to ideally replicate traditional industry classi-

fications by explorative methods as these traditional classifications exhibit 

some drawbacks as outlined above. Rather it is the deviation from the norm of 

the explorative methods that are of major interest as these are useful hidden 

pieces of information.  

It this section it was shown that dynamic MST analysis is able reveal complex 

market activities and major market dynamics including delivering a detailed 

picture of the anatomy of market eruptions and crashes. The presented meth-

ods and analyses will now be consolidated in the final section about our new 

approach in risk management and portfolio optimization. 
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4.3.3 Portfolio Optimization Based on Asset Networks 

In our approach we plan to apply MST analysis and its graph based measures 

and community detection algorithms and combine it with further information 

concerning risk and reward measures in order to create an intelligence ampli-

fication system for decision makers in risk management and portfolio optimi-

zation.  

As an example, we will start with an MST in January 2005 with the modules 

colour coded and the assets with large variance (as some other risk measure) 

visualized with large node size: 

 

Figure 4-26: DAX MST with community colour codes and node size according to vari-

ance. 

We would expect a portfolio optimization program to avoid large risk nodes 

as well as to spread the weights across the different modules equally (module 

diversification). At the same time, we would expect that weights are posi-

tioned at the outer branch nodes avoiding a too centralized weighting as too 

much weight at the centre nodes would reduce diversification benefit.  
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In approach we test the waterfall approach based on the single linkage cluster-

ing:  

 

Figure 4-27: DAX MST with community colour codes and node size according to the 

cluster-based waterfall approach. 

The waterfall approach puts strong weight on decentralized nodes and also 

spreads across different modules. It suggests extreme and eccentric weighting 

schemes as expected. Also, it has no information about the variance so a large 

fraction of the weighting volume is put on a large variance node (yellow) 

which might explain some market exaggeration of the waterfall approach. The 

following weighting scheme might be another good starting point: 
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Figure 4-28: DAX MST with community colour codes and node size according to the 

Minimum-Variance optimization approach. 

It is the Minimum Variance portfolio. It can be observed the weights are posi-

tioned at the outskirts of the graph, and that weights are spread across the dif-

ferent modules, and that large variance nodes are avoided. This scheme al-

ready fulfils most of the requirements of a low risk portfolio. A similar 

weighting scheme results form the Mean-Variance-(Markowitz)-Approach: 

 

Figure 4-29: DAX MST with community colour codes and node size according to the 

mean-variance (Markowitz) approach. 
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However, both the Minimum Variance approach as well as the Markowitz 

approach exhibit crude allocation errors as can be seen from the following 

examples: 

 The outer yellow node has some weight although it has the highest 

variance, 

 the red module as source of diversification is neglected, 

 high weights can be found near the centre node, and 

 assets directly connected and thus highly correlated exhibit large 

weights (especially in the blue and dark blue modules). 

These allocation errors might be explained by the outlined “error maximiza-

tion” properties due to parameter estimation problems of the approaches. Al-

so, variance as a central optimization parameter in these approaches might not 

be a proper choice of a risk measure as variance estimates rather means “re-

turn potential” (in both directions up and down) and also it is no coherent fi-

nancial risk measure like Expected Tail Loss.  

For these reasons we suggest a decision support system for portfolio optimiza-

tion and risk management with the following visual appearance for suggesting 

optimal portfolio weights: 
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Figure 4-30: DAX MST with community colour codes and node size according to eccen-

tricity (left) and example of a DAX MST based on some just-adjusted performance 

weighting scheme (right). 

The upper network in the upper illustration shows different modules with ec-

centric or decentralized nodes being large. The purpose is to distribute the 

weights evenly across the modules and push them into the most eccen-

tric/decentralized nodes. This weighting scheme is combined with the lower 

network of the illustration which exemplarily highlights assets with a high 

potential for future risk-adjusted performance based on quantitative or qualita-

tive models. In summary, the large nodes of both network illustrations in 

combination should receive high weights. This can be accomplished with the 

support of a simple ranking scheme or rules based engines. Finally, the 

weights could be adjusted for constraints like institutional investment con-

straints, or subjective adjustments by the portfolio manager, or adjustments by 

other automatic model-based approaches. The respective MST constructions 

can be validated and tested for significance with the methods presented. The 

result is a highly diversified portfolio with large weights put on high perfor-

mance assets, meeting investment constraints.  

Alternatively, this approach can be used as a warning tool for other portfolio 

construction systems in that potentially dangerous allocation schemes are 

identified in the way we showed the errors of the Mean Variance or Marko-
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witz approaches. Finally, the dynamic MST analysis can be used as an early 

warning tool for major market disruptions and this information could also be 

used in the asset allocation process. 
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5 New Approaches to Credit Portfolio Risk 

Management 

 

Banks and other financial institutions are required to manage their risk con-

centrations, especially when risk exposures are on a low diversification level. 

Concentrations of credit risk are usually measured by first defining sectors 

like industry or geographical regions and then identifying the amount of risk 

per sector. Other standard approaches determine the risk distribution across 

names. According to Deutsche Bundesbank (2006), risk concentration in cred-

it portfolios arise from an uneven distribution of credit exposures to individual 

borrowers (addresses/ names), and as sector concentration in terms of indus-

trial and service sectors, or in geographic regions and countries. Another cate-

gory of concentration risk is derived from business-linked and intertwined 

borrowers. The resulting risk of contagion in a credit event of one of these 

borrowers, however, has only received attention in recent research and is 

probably hard to model due to complexity and lack of information.  

International risk management standards have already been supplemented by 

the risk perspective concentrations and regional supervisory authorities have 

already concretised the importance of concentration risk in their latest 

amendments. This can for example be seen in the "Minimum Requirements of 

Risk Management" (MaRisk) for German banks.
8
 Similar minimum risk man-

agement requirements with respect to risk concentration were enacted for in-

surance companies and asset management firms (see for example MaRisk 

(VA) und MaRisk (Inv)
9
).  

According to MaRisk, risk concentrations have to be paid attention for in the 

business and risk strategy of the institution. The reason for this can be found 

                                                 
8
 Bundesanstalt für Finanzdienstleistungsaufsicht [Hrsg.] (2010): Rundschreiben 11/2010 

(BA) - Mindestanforderungen an das Risikomanagement – MaRisk. 
9
 To be found as “Rundschreiben” on http://www.bafin.de. 
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in many business models of banks and other financial institutions that perma-

nently build up risk concentrations, for example due to special expertise in 

certain financial instruments, products, and regions. Risk concentrations 

should also be embedded in every part of the risk management cycle (identifi-

cation, assessment, management and monitoring of risks) and should be in-

cluded in risk reporting, stress testing, limitations of credit risk, and in institu-

tion-wide scenario analysis. Finally, financial regulation requires to prove that 

an institution‟s capital endowments are sufficient to bear risk concentrations 

and to bear stress tests being based on risk concentration results. So from the 

regulatory as well as from the internal risk management perspective of a bank 

it is fundamental to adequately measure risk concentrations. 

A prerequisite for the measurement of sector concentration risk is an appro-

priate sector definition. The definition of sectors should ideally be association 

with respective risk factors. In simple terms, a sector classification is ideal if 

asset correlations within a sector are high and low between various sectors.
10

  

Practical approaches to the measurement of sector concentration start with 

definitions of sectors like industry, regions, products, etc. These sector defini-

tions were not primarily intended for the purpose of risk measurement and do 

not necessarily fulfil a major criterion: the adequate grouping of borrowers 

into specific sectors, whose credit risk depends on the same risk factor. When 

measuring the risk of all products associated with credit risk in a large com-

mercial bank it is not clear which sector should be chosen when measuring 

risk concentrations.  For example, when distinguishing sector risk concentra-

tion by industry or region, the two kinds of sector concentration risk distin-

guished differ from a theoretical point of view: The exposure concentration in 

industries is a typical corporate credit risk, while country risk plays a role in 

the credit risk of governmental borrowers like public finance business as well 

as in private borrowing and retail business. Hence, in concentration measure-

ment with respect to the whole bank's credit portfolio or the banking book, 

                                                 
10

 In standard approaches like the structural model by Merton (1974), the term pair wise asset 

correlation is the correlation of value change of two companies. 
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differentiating just by industry or region is less precise as there are very dif-

ferent products like retail, asset backed securities, loans, bonds, public fi-

nance, commercial real estate, even credit derivatives and many others. An-

other example is the ambiguous definition of industry sectors as several indus-

tries can be strongly connected or a single borrower operates in several indus-

tries. This effect is quite similar when partitioning the credit portfolio for ex-

ample according to country as several countries could be politically intercon-

nected. So the definition of sectors like industry or region requires some kind 

of causal model which is subject to economical assumptions and thus model 

risk (also see explanations in the chapters above).  

As a result, standard measurement approaches to sector risk concentration 

according to industry or region are rather incapable of finding the underlying 

risk factors in the bank's whole credit portfolio. It is indicated to develop a 

holistic risk measurement approach whereas the sector definitions are model 

free and result from a data-driven approach in order to discover the underlying 

risk concentrations. It is thus useful to explore the hidden connections among 

the obligor names to identify credit risk concentrations. We present several 

approaches based on Credit Clusters and Credit Networks to find an adequate 

formation of sectors of the credit portfolio and to model the global mechanics 

as well as the microstructure of risk concentrations.  

As a basis, we use a standard credit portfolio model incorporating both credit 

exposure size as well as diversification effects. When combining the cluster 

and network approach with the credit portfolio model it is possible to identify 

those loans which exhibit little contribution to general portfolio diversification 

and to formulate concrete risk management initiatives. Since the implementa-

tion of the Basel II Capital Accord, banks using the Advanced Internal Rating 

Based Approach (IRBA) often run an Asymptotic Single Risk Factor (ASRF) 

model based on internal ratings and the structural approach (Merton 1974) in 

order to quantify their regulatory and capital requirements.  
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Some commercial banks employ sophisticated internal portfolio models in 

order to quantify their economic capital more precisely than just using the 

regulatory capital computations. These models are often based on several cor-

related systematic factors, incorporate some group/conglomerate structure and 

measure risk coherently based on Expected Shortfall (ES). 

The approach assumes some process of the firm value 
i

V  of company i  and 

when its value drops below some barrier 
i

D  there is a default event. That is 

the point where all equity is used up.  

 

 

Figure 5-1: The firm value has dropped below the default barrier in time T. 
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The expected loss (EL) of a loan portfolio is the product of PD, EAD (expo-

sure at default) and LGD (loss given default): LGDEADPDEL ** . The 

Credit Value-at-Risk (CVaR) is the maximal loss at a certain confidence level 

 . Roughly described, in the one-factor model of Basel II the unexpected loss 

UL is defined as ELCVaR   and it has to be smaller than 8% of the risk-

weighted assets (RWA): 

%8*),(*%8* LGDPDRWEADRWAUL  , 

where RW is a risk weight function with PD and LGD as inputs. There are 

capital requirements to cover the UL. The risk weight is constructed as a very 

bad outcome of the systematic factor (change of the macro economy in the 

magnitude of the 99,9% quantile) so the following formular holds 
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5.1 From Concentrations to Risk Concentrations 

Standard approaches to measuring risk concentrations combine a coefficient 

measuring distributional concentration with some sort of risk measure in order 

to express risk concentration as some unequal degree of risk volume distribu-

tion.
11

 The new approach is to consider the standard risk concentration 

measures in combination with data-driven sector definitions instead of the 

generally known industry or country classification.  

Prominent representatives of sector concentration measures are the Herfindahl 

Hirschman Index, the Gini coefficient and Concentration Ratio. If the input of 

the concentration measure is related to risk then the risk concentration can be 

simply measured based on the concentration measures. 

The Lorenz curve is a graphical representation of the cumulative distribution 

function of the empirical probability distribution of risk across segments. The 

                                                 
11

 See for example Deutsche Bundesbank (2006). 
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Gini coefficient is the area between the line of perfect equality and the ob-

served Lorenz curve L, as a percentage of the area between the line of perfect 

equality and the line of perfect inequality: 


1

0
)(21 dXXLG . 

The higher the coefficient, the more unequal the distribution is. The standard-

ized Gini coefficient is defined between 0 and 1.  

The input to the volume concentration measures could be credit exposure, EL, 

RWA, Economic Capital (EC) and CVaR as they can be summed up per sec-

tor. An example is a commercial bank measuring the portfolio risk concentra-

tion in terms of CVaR: the Gini coefficient is 0 when total equality is reached 

and a value of 1 for maximal inequality. This allows computing the amount of 

misallocated risk budget which may be defined as the distance from an equal-

ly distributed portfolio. 

The measures presented above just give a general idea of the risk concentra-

tion of a portfolio. It would be favourable instead to identify the risk concen-

tration drivers on micro level in order to address just a few obligors who are 

responsible for most of the risk concentration. After their identification it 

would be possible to introduce some risk mitigation technique or even sell 

those assets in order to manage risk concentrations. Most prominent candi-

dates are of course loans with very high exposure or high CVaR but in practi-

cal applications it is not possible to easily mitigate or even sell such large loan 

entities. Also, there may be a large quantity of smaller loans which are highly 

correlated and thus jointly “behave” like a single large synthetic loan. It is 

desirable to find small groups of loans that are responsible for large CVaR 

marginal contributions also called „jumps” of the portfolio CVaR as these are 

the drivers of risk concentration. 

In the following section we will analyse a data set of a loan portfolio from a 

commercial bank with the help of networks and clusters in order to measure 
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general portfolio risk concentration and in order to identify the risk concentra-

tion drivers. 

 

5.2 Practical Application: Detection of Credit Risk 

Concentrations  

The test data set is completely artificial but exhibits some real life characteris-

tics. It includes the asset correlation matrix and the CVaR contributions of 

1000 loans. The loans originate from diverse credit products, countries, indus-

try sectors and other economic classifications in order to analyse a very heter-

ogeneous portfolio. We introduce two different economic classifications like 

the one listed before and compare it to a data-driven classification. There are 

29 sectors in classification scheme 1 and 30 sectors in classification scheme 2. 

The CVaR model is based on a few tens of systematic factors and the asset 

correlation matrix is estimated on the basis of data time windows of several 

years. We construct an MST from the asset correlation distance which results 

in the following distribution of edge weights in comparison to the distribution 

of asset correlations: 
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Figure 5-2: Distribution of the asset correlations averaging to 20 % and distribution of 

the MST edge weights averaging to 44%. 

Again, the network in our analysis is laid out with the Fruchterman/Reingold 

algorithm. In the following picture, the network is colour coded according to 

two different classification schemes and the node size corresponds to CVaR 

amount per loan: 
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Figure 5-3: Network visualization with a force-based network layout and colour codes 

according to the sectors of classification 1. 

  

Figure 5-4: Network visualization with a force-based network layout and colour codes 

according to the sectors of classification 2.  
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From the colour codes it can be seen that classification 2 matches the network 

structure better than classification 1 as dense regions of the network mostly 

consist of a single colour. This is quite informative as it shows that dense re-

gions of the network are economically meaningful assuming that the classifi-

cation 2 is economically meaningful. Furthermore, assuming that the data-

driven structure may even be a better classification for a heterogeneous port-

folio than classification 1 or 2, the errors of the latter can be observed in net-

work regions with mixed colours. The following example shows the colour 

codes resulting from the community detection algorithm of Newman and Gir-

van (2004). The number of detected communities is 19. 

 

Figure 5-5: Network visualization with a force-based network layout and colour codes 

according to the network communities.  
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It can be clearly seen that the data-driven community detection matches the 

network structure very well with only a few attribution errors. These insights 

are underpinned by measuring the modularity of the three classifications: 

 

Classification Scheme Modularity  

Classification 1 0.05301498 

Classification 2 0.6470625 

Community/Module 0.8903278 

The modularity measure expresses what has already been observed visually: 

classification 2 is better than classification 1, and the community structure is 

better than the two standard classifications. The following graph shows how 

CVaR is distributed according to the two classifications and the community 

structure: 

 

Figure 5-6: Distribution of Credit Value-at-Risk amount for the sectors of classification 

scheme 1, the sectors of classification scheme 2 and for the communities.  
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With the explored community structure it is now possible to measure general 

portfolio risk concentration more adequately. The following graph compares 

the Gini coefficient of the portfolio CVaR distribution according to the two 

classification schemes and the community structure: 

 

Figure 5-7: Lorenz curve and Gini coefficient for the 29 sectors of classification scheme 

1, for the 30 sectors of classification scheme 2 and for the 19 graph-based communities. 

It can be observed that the data-driven risk concentration measure is much 

lower (Gini: 0.4) than the risk concentration measurements based on classifi-

cation 1 and 2 (Gini 0.633 and 0.608). An explanation could be that the bank‟s 

portfolio management has of course not been solely based on reducing sector 

risk based on classification 1 or 2 but on more sophisticated risk management 

approaches which is better captured by the data driven risk concentration 

measurement approach. Also, it is interesting that there are only 19 distinct 
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sector in the data-driven approach but 29 or 30 for classification 1 or to, re-

spectively. This could mean that some classes are actually so interconnected 

that they collapse to one cluster or module. 

Summarizing, we showed that in heterogeneous loan portfolios it is not ade-

quate to report sector risk concentration according to sectors like country, in-

dustry or product. Rather, the sectors should be discovered by data-driven 

methods. 

Finally, it is possible to report the substructure of each module by hierarchical 

clustering as in the following example: 

 

Figure 5-8: Identifying a certain module (colour red in the network) and drawing den-

drograms of this community, once colour coded by classification scheme 1 and once by 

classification scheme 2. This shows the dominance of few sectors, countries and products 

within each community.  
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The first hierarchical tree is coloured according to classification scheme 1 and 

the second according to classification scheme 2. Once again, it can be ob-

served that the clusters are mostly arranged in line with the economical classi-

fications according to single colours in most clusters. 

 

5.3 The Effect of Eliminating Risk Concentration 

Drivers 

The network topology and the community detection offer concrete hints which 

loans are hardly contributing to portfolio diversification effects and rather 

resemble risk concentration drivers. For example, very central nodes with a 

large number of edge degrees are predestined to exhibit changes in company 

value in synchronicity with many other loans. This applies to the whole net-

work as well as to each community.  

It seems straightforward to use centrality measures like edge degree and edge 

betweenness in order to find very special nodes in the network as well as in 

each community. We filter the central degrees in the network and in each 

community by different measures and gather a list of 22 with 14 distinct en-

tries. These are highlighted in the following network graphics, whereas the 

layout is the same as before:  
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Figure 5-9: Nodes with highest centrality are colour coded in blue and may be candi-

dates for risk concentration driving forces.  

The CVaR sum of the 14 loans is the theoretical optimum that could be saved 

if these loans were eliminated (for example sold) from the portfolio. In reality, 

the CVaR reduction will be less as eliminating loans will reduce portfolio di-

versification effects. Taking this information into account, a test can be de-

signed of how successful the network detection of risk concentration is: the 

nearer the CVaR reduction is to the theoretical optimum the better the method. 

This is empirically tested against loans of similar size which are arranged in a 

decentralized and isolated way, thus contributing to diversification. As ex-

pected, the elimination of the concentration drivers (central nodes) from the 

portfolio resulted in the higher portfolio CVaR reduction than eliminating the 

diversification drivers (decentralized nodes). The presented method can natu-

rally be reversed in order to find “diversification helpers” in the portfolio. 

Exposures of those helpers could be increased marginally without compromis-

ing general portfolio diversification. 
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5.4 Scenario Based and Dynamic Analysis of Risk 

Concentrations 

As we showed in the approach for the equity portfolio optimization, risk con-

centrations can be analysed dynamically in time. For example, it is of interest 

which edges are maintained in the MSTs and which change over time, or if 

risk concentration drivers are always the same or change over time. Also, 

modularity and the corresponding explored sectors may stay the same or 

evolve in time. It can be stated, that a dynamic analysis of the networks can be 

a valuable contribution to risk management.  

In financial stress testing applications and scenario analysis it is common 

practice to apply historic risk parameters to the current portfolio situation. 

Accordingly, it is possible to use historic asset correlations (e.g. estimated in 

times of crises and recession) as current credit portfolio parameters in order to 

construct historical stress test scenarios. Examples like these show the poten-

tial of cluster and network approaches to even more sophisticated risk man-

agement applications.  

Both dynamic analyses of the commercial banking portfolio as well as stress 

testing are currently investigated. Since the latest MaRisk amendment it is 

required to consider risk concentrations in stress testing and scenario analysis. 

It would be an interesting approach to use dynamic network analysis in this 

integrated view.  
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An example is the analysis of the Credit Value-at-Risk of the portfolio in time 

(yellow line in the figure below), the average correlation (orange), the average 

centrality of the MST and the number of modules/communities.  

 

Figure 5-10: The number of communities shrinks in times of stress and crisis.  

It can be seen that the risk measure and the correlation rise during the finan-

cial crisis. Also, there are fewer modules and there is lower centrality. The 

network statistics have answers to the following questions: 

1. Which clusters merge during the crisis? What are the loan characteris-

tics of those super clusters?  

2. Which clusters remain isolated?  

3.  Which clusters are born? 

There is a saying in finance that in times of crisis correlation tend to 1. As this 

“rule” is too simple, the dynamic community analysis in contrast gives a de-

tailed picture which loans really group and which groups remain isolated.  
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6 Further Potential of Clustering and Net-

works in Finance 

 

Besides using Asset Clustering and Asset Networks for the optimization of 

equity portfolios or for the management of credit portfolio risk there can be 

imagined several other applications of these technologies to related problems 

in finance. Here is a list of possible applications: 

 data-driven classification of assets 

 (multi-) asset allocation and portfolio construction 

 analysis of the diversification potential of markets and investment uni-

verses 

 integrated approaches of qualitative and quantitative information in 

portfolio optimization 

 analysis of market dynamics and integration into limit allocation and 

early warning systems of financial institutions 

 data-driven nested factor modelling 

 cost reduced replication of (diversification) indices 

 data-driven attribution of risk budgets 

 classification and analysis of different investment styles and trading 

strategies 

 enhancement of fundamental economic analyses of markets and in-

vestment universes 

 analysis of exogenous and endogenous market shocks and anatomical 

studies of market crashes 

The potential of visualization techniques of clusters and networks at different 

time observation points has already been shown. However, adapting static 

layout procedures to dynamic tasks is not a trivial problem and there have to 

be used metrics and statistics to assess and identify change and evolution 
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across networks. The main concern in working with dynamic graphs is to 

maintain a stable view of the layout. For the most part, algorithmic work on 

network layouts has been devoted to static graphs. The design of algorithms to 

analyse and generate visualisations of dynamic networks poses both a tech-

nical and perceptual problem. We have experimented with a modified version 

of the Kamada/Kawai spring embedder layout algorithm (see Kamada/Kawai 

1989) which is implemented in the open-source project SoNIA (Social Net-

work Image Animator) described in Bender-deMoll/McFarland (2006). The 

results are “movies” of the dynamic asset tree evolving in time. Our impres-

sion is that these visualization technologies have enormous potential for in-

depth dynamical analysis of evolving investment universes and financial port-

folios.  

Other topics for future research of networks for risk management and portfo-

lio optimization are the following: 

 using different filtering techniques like planar maximally filtered 

graphs as described in Tumminello et al. (2005) and Di Matteo et al. 

(2010) 

 using more sophisticated community structure detection algorithms 

like those described in the benchmark analysis in Lancichinet-

ti/Fortunato (2009) 

 using different distance measures incorporating non-linearities like for 

example GARCH-distance, mutual information, etc. 

 test much more applications in market analysis, risk management and 

portfolio optimization 

 check usability in crisis analysis and early warning  

 use high-frequency data 

 try other distance measures based on extremes and econometrics 

 dynamic application (structural breaks, regime switches, etc.) 

 dynamic visualization 

 big data and big visualization 

 application in scenario analysis and stress testing 

http://sonia.stanford.edu/
http://sonia.stanford.edu/
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