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“Insight is not the same as scientific
deduction, but even at that it may be more

reliable than statistics.”

Anthony Standen, “Science is a sacred cow”.





Synopsis

In recent years, B0
s meson decays into non-leptonic CP specific final states ha-

ve received considerable interest in the heavy flavor physics community. This
is primarily due to the rich phenomenology inherent in the rapidly oscillating
B0

s − B̄0
s system, and the possibility to probe observables that are directly linked

to fundamental parameters of the underlying Kobayashi-Maskawa (KM) model.
Being embedded in the Standard Model (SM) of elementary particle physics, the
Kobayashi-Maskawa mechanism describes quark flavor transitions through char-
ged currents of weak interaction. While certain observables even offer the chance
to reveal manifestations of physics beyond the Standard Model, others point to
strongly KM-dominated processes that barely leave any room for competing new
physics processes. Nevertheless, the latter provide important complementary in-
formation in order to constrain the associated parameter space.

A prominent example for the latter category of observables is given by the CP
decay width difference ∆ΓCP

s , which is a measure of the lifetime difference between
the CP-even and CP-odd B0

s eigenstate. Standard Model predictions suggest that
the lifetime difference is unusually high compared to the neutral B0

d − B̄0
d meson

system, which has very similar mass and mean lifetime though. However, the size
of ∆ΓCP

s has not yet been experimentally established beyond doubt. In the Standard
Model scenario ∆ΓCP

s equals the decay width difference ∆Γs, which is a measure
for the lifetime difference between the light and heavy B0

s mass eigenstate. The
mass eigenstates immediately follow from the B0

s−B̄0
s mixing and decay eigenvalue

problem in the framework of the KM model. In scenarios excluded by the Standard
Model, the light and heavy B0

s mass states are no longer eigenstates of CP, and
∆ΓCP

s can be regarded as an important input parameter to constrain the allowed
parameter range of new physics models. Among other options, an interesting
possibility to estimate ∆ΓCP

s – and hence ∆Γs in the Standard Model scenario – is
by measuring the partial decay widths of those decays mainly responsible for the
decay width difference being non-zero.

It has been suggested that a measurement of the branching fraction of the B0
s

decay into the inclusive combination of D+(∗)
s D−(∗)

s final states (throughout this the-
sis these will be referred to as “semi-inclusive” decays to distinguish this sub-class
from the full ensemble of final state combinations) may provide a reasonable esti-
mate of the relative decay width difference ∆Γs/Γ in the B0

s − B̄0
s system: assuming
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the mainly CP-even decay B0
s → D(∗)+

s D(∗)−
s to dominate over other CP-specific

B0
s − B̄0

s final states and taking CP violation in the B0
s − B̄0

s system to be negligibly
small, its branching fraction is directly sensitive to ∆Γs/Γ through

∆Γs

Γs
�

2B(Bs → D+(∗)
s D−(∗)

s )

1 − B(Bs → D+(∗)
s D−(∗)

s )

Among other theoretical pre-conditions, the size of a potentially non-zero CP-odd
admixture in D+(∗)

s D−(∗)
s is critical to the applicability of the latter relation.

The purpose of this thesis is threefold: Firstly, new measurements of both
the exclusive and semi-inclusive partial decay widths of B0

s → D(∗)+
s D(∗)−

s meson
decays are presented. Secondly, the feasibility of extracting the unknown polari-
zation components in B0

s → D∗+s D∗−s by partial reconstruction of this pseudo-scalar
to vector-vector decay in a Monte Carlo driven analysis scheme is studied. Fi-
nally, based on the suggestions contributed by the theory community this study
discusses how a measurement of the branching fraction of semi-inclusive deca-
ys B0

s → D(∗)+
s D(∗)−

s can contribute to gain insight about the relative decay width
difference in the B0

s − B̄0
s meson system.

The measurement of the exclusive branching fractionsB(B0
s → D+

s D−s ),B(B0
s →

D∗+s D−s ), B(B0
s → D∗+s D∗−s ), and the semi-inclusive branching fraction B(B0

s →

D(∗)+
s D(∗)−

s ) is performed based on full reconstruction of the decay B0
s → D+

s D−s
and partial reconstruction of B0

s → D∗+s D−s and B0
s → D∗+s D∗−s from a hadronic data

sample 6.8 fb−1 in size. The data used in this thesis were collected by the CDF II
detector at the pp̄ collider Tevatron located at the Fermi National Accelerator Labo-
ratory near Chicago, Illinois, USA. Absolute branching fractions are determined
by measuring ratios of branching fractions using B0

d → D+D−s as normalization
channel:

fD(∗)
s D(∗)

s
=

fs

fd

B(B0
s → D(∗)+

s D(∗)−
s )

B(B0
d → D+D−s )

The branching fraction ratio is multiplied by the ratio of the quark fragmenta-
tion fractions fs/ fd to account for the different probabilities of B0

s and B0
s meson

production at the Tevatron pp̄ collision energy.
The analysis described in this thesis contains several improvements over

previous measurements: in the estimation of efficiencies for the reconstruction
of the intermediate D+

s meson from two narrow mass bands of K+K−π+ phase
space for the first time the full underlying Dalitz structure of D+

s → K+K−π+ is
accounted for. Furthermore, for efficiently separating signal from the vast amount
of combinatorial background a neural network based multivariate approach is
used. Observables are directly extracted from all studied decay channels simulta-
neously by using a maximum likelihood based parameter estimation model that is
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optimized towards describing the complicated multi-component structure of the
selected invariant mass spectra in a consistent manner. This is mainly achieved
by consistently sharing common parameters across the full fit function. In doing
so, correlations among free fit parameters are already accounted for at the fitting
stage and the effort of systematic studies is reduced considerably.

The thesis outline is as follows: In the first chapter, we motivate this analysis
in the light of the conceptual framework of the Kobayashi-Maskawa model, and
provide an overview of relevant experimental studies. Chapters 2 and 3 give a
brief technical description of the experimental apparatus the used data were col-
lected with. After detailing pre-processing of real data samples and production of
simulated data in Chapter 4, Chapter 5 specifies the selection of signal candidates
based on a multivariate analysis technique. In Chapter 6 a parametric model is set
up to extract the figures of interest from data. To estimate systematic uncertainties,
in Chapter 7 model assumptions made are scrutinized, followed by a presentation
of branching fractions results and an estimate of the observable ∆Γs/Γs in Chap-
ter 8. Chapter 9 concludes by summarizing the achievements of this study and
pointing to the limitations of the ∆Γs/Γs estimation. In this context an outlook on
complementary experimental strategies that might be realized in the near future
is given.
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1
Conceptual Framework and

Motivation

1.1 Preface
In the Standard Model of elementary particle physics (see e.g. [1] for a pedagogical
review), quarks, the fundamental constituents of hadronic matter, never appear
isolated, but in bound states only. This phenomenon, that is referred to as quark
confinement, is a consequence of gluons, the massless gauge bosons mediating the
strong force, carrying color charge themselves. When two quarks are separated,
the energy density in the “gluon tubes” connecting the two quarks increases
continuously, and at some point it becomes energetically more favorable to form a
new quark-antiquark pair out of the vacuum. This process is called hadronization.

Compound hadronic objects made up of three quarks are called baryons,
while mesons consist of a quark-antiquark pair. While for a long time baryons
and mesons have been regarded as the only manifestations of bound quark states
realized in nature, only very recently the first tetra-quark state was experimen-
tally established through the observation of the Z+ particle [2]. As a consequence
of confinement, the properties of quarks and the phenomenology of their par-
ticipation in the three elementary forces embraced by the Standard Model – the
strong, the electromagnetic, and the weak force – can not be studied on the ba-
sis of isolated objects, but indirectly at hadron level only. However, whenever
self-interaction among the hadron constituents can be neglected the observations
made at hadron level can be attributed to one individual quark, while the other
quark(s) – depending on whether one is dealing with a baryon or a meson – can
be considered as not participating in the interaction. The latter quarks are then
called spectator quarks.

1



2 1. Conceptual Framework and Motivation

Because of the short lifetime of the top quark, the heaviest quark capable of
forming hadronic objects existing for a measurable time duration is the bottom
(or beauty) quark b. According to the commonly used naming convention the
combination (b̄q) is called Bq meson, while the antiparticle B̄q consists of (bq̄),
where q is any of the other quarks lighter than the b quark. With a typical lifetime
at the scale of 10−12 s, B mesons are relatively long-living and thus provide an
excellent laboratory to study the phenomenology of the weak interaction. As all
neutral mesons, B0

q mesons do not only decay, but in addition periodically change
from one flavor state into another. This phenomenon, that is commonly called
B0

q − B̄0
q mixing or oscillation, introduces further physical observables that allow to

overconstrain and confirm the parameters of the Standard Model, or to search
for hints of processes beyond this exceptionally successful theoretical framework.
The character of related experimental studies is somewhat subtle, since they are
less concerned with the direct detection of new particles, but rather how decay
processes and related observables are influenced by them.

In recent years, a great deal of attention has particularly been paid to the
properties of the neutral B0

s meson. The reasons for these scientific efforts are
twofold: First of all, compared to B0

d meson decays the list of verified B0
s final states

is still relatively fragmentary [3]. Secondly, the B0
s−B̄0

s meson system has predicted
– and partially confirmed – properties considerably different from those of the B0

d−

B̄0
d meson system. While the rapid B0

s − B̄0
s oscillation frequency has already been

verified at the 5σ level [4], the expected sizable difference between the lifetimes
of the light and heavy B0

s mass eigenstates has not yet been established beyond
doubt. Apart from that, considerable focus is currently placed on the possible
violation of the symmetry against simultaneous charge and parity transformation
in the B0

s − B̄0
s system, as this would clearly point to new physics.

This introductory chapter is organized as follows: In Section 1.2 the Charge,
Parity, and Time transformation are formally introduced. Section 1.3 outlines the
mechanism of quark flavor exchange in the conceptual framework of the Standard
Model, while Section 1.4 motivates the measurement carried out by introducing
the key observables of the B0

s − B̄0
s meson mixing and decay eigenvalue problem.

We conclude this chapter by briefly reviewing existing measurements (Section
1.6) and defining the scope of the present study (Section 1.7).
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1.2 Charge, Parity, and Time Symmetry
In natural science, symmetries play a special role. The reason for this is that
according to Noether’s theorem [5, 6] every invariance under a symmetry trans-
formation is directly linked to an associated conserved quantity. In the field of
particle physics three symmetry transformations are of particular interest:

• The Charge transformation induced by the C operator. Under C, all internal
quantum numbers of quantum mechanic state are conjugated, Q → −Q,
converting a particle into its antiparticle,

C |Ψ(p)〉 = |Ψ̄(p)〉 , (1.1)

where Ψ is a particle’s wave function and p its momentum.

• By application of the Parity operator P the handedness of space is inverted
by mirroring all spatial coordinates, ~x→ −~x:

P |Ψ(p)〉 = |Ψ(−p)〉 (1.2)

• The Time transformation T induces a reversion in time, t → −t. Due to p̂ =

(1/i)∇ → −(1/i)∇, momentum is inverted and the wave function complex-
conjugated:

P |Ψ(p)〉 = |Ψ(−p)〉∗ (1.3)

The invariance of a physical state under the simultaneous application of all three
operators, CPT, is postulated as a fundamental law in current physical models.
The CPT symmetry theorem was first proved by G. Lüders and W. Pauli [7], and
up to the present day all observations indicate that CPT indeed is a preserved
symmetry.

The situation is different for the separate action of C, P, and T: The weak
interaction separately violates C and P in a maximal way. While the concatenation
CP is preserved in most weak processes, it is violated in certain neutral meson
systems. CP violation was for the first time discovered in 1964 through the
observation of the 2π decay of the neutral K2 meson [8]. No other fundamental
force considered in the Standard Model is known to violate C, P, or T. Violation of
the C and CP symmetries is one of the three necessary conditions proposed by A.
Sakharov [9] to explain baryogenesis within existing cosmological models. The
size of all CP violating effects in the weak sector is, however, by far not enough
to explain the matter-antimatter imbalance that we observe in today’s universe.
Finding evidence of sizable sources of C and CP violation is therefore one of the
most important fields of investigation in particle physics. For a compact summary
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of the phenomenology and history of CP violation in meson decays in general the
interested reader may refer to the review in Ref. [10].

Throughout the description of the B0
s − B̄0

s mixing and decay eigenvalue prob-
lem in Section 1.4 we will introduce states that are invariant under the CP trans-
formation by construction, i.e. that are eigenstates of CP.

1.3 Cabibbo-Kobayashi-Maskawa Matrix
The Kobayashi-Maskawa mechanism [11] has been proven to be a consistent and
very successful phenomenological model to describe both quark-mixing and CP
violation in terms of Yukawa couplings. Quark mixing describes the phenomenon
of the transition of a given quark flavor into a different one. Within the Standard
Model description of the weak interaction [12, 13, 14], the only flavor changing
process is the charged-current W± coupling to the physical left-handed up-type
antiquarks uLi and down-type quarks dLj, where i and j label the quark generation.
The charged current of weak interaction is described by the Lagrangian

LW± = −
g
√

2
uLi γ

µ (VCKM)i j dLj W†

µ + h.c. (1.4)

= −
g
√

2
(uL, cL, tL)γµ (VCKM)i j


dL

sL

bL

 W†

µ + h.c.

while the coupling strengths are given by the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix VCKM [11, 15]. Here, g denotes the weak
coupling constant and γµ the Dirac matrices. In the Standard Model, just as the
masses, mixing of quarks originates from Yukawa interactions with the scalar
Higgs field φ. The interaction term of the Yukawa Lagrangian LY reads

LY = −Yd
ij QI

Li φ dI
Rj − Yu

ij QI
Li εφ

∗ uI
Rj + h.c. (1.5)

where ε is the 2 × 2 antisymmetric tensor and Yu,d are general complex-valued
3 × 3 matrices. The quark fields QI

Li are left-handed doublets, while dI
R and uI

R are
right-handed singlets in the weak-eigenstate basis. The CKM matrix arises from
the diagonalization of Yu,d by virtue of four unitary transformation matrices, Vu,d

L,R,

yielding the quark mass terms M f
diag = V f

L Y f V f†
R (v/

√
2), f = u, d. The factor

(v/
√

2) stems from the φ vacuum expectation value 〈φ〉 = (0, v/
√

2). The CKM
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matrix has the explicit form

VCKM ≡ Vu
LVd†

L =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.6)

and the weak eigenstates of the down-type quarks, d′j, can be represented as linear
superpositions of the mass eigenstates of down-type quarks d j,

d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d
s
b

 . (1.7)

Being a unitary 3 × 3 matrix, VCKM depends on three real parameters and
six phases. The parameter freedom is substantially reduced by the possibility of
arbitrarily redefining the phases of the quark mass eigenstates, leaving one single
phase only. The four remaining parameters are interpreted as three real rotation
angles and the Kobayashi-Maskawa phase. In the Standard Model, the latter is
the only source of all CP-violating phenomena in flavor changing processes.

For further discussions, it is worthwhile introducing an explicit parameter-
ization of VCKM. Having three angles θi j and a complex phase δ, a manifest
parameterization is [16]

VCKM =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ
−c12s23 − s12c23s13eiδ c23c13

 , (1.8)

where si j and ci j stand for sinθi j and cosθi j, respectively. This parameterization of
VCKM can be substantially simplified by using the Wolfenstein parameterization
[17], which takes advantage of the experimentally known hierarchy s13 � s23 �

s12 � 1. With

s12 =λ =
|Vus|√

|Vud|
2 + |Vus|

2
� 0.22, s23 = Aλ2 = λ

∣∣∣∣∣Vcb

Vus

∣∣∣∣∣ ,
s13eeδ =V∗ub = Aλ3(ρ + iη) =

Aλ3(ρ̄ + iη̄)
√

1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

(1.9)

one can write the CKM matrix up to O
(
λ3),

VCKM�


1−λ2/2 λ Aλ3 (ρ−iη

)
−λ 1−λ2/2 Aλ2

Aλ3 (1−ρ−iη
)
−Aλ2 1

+O
(
λ4

)
(1.10)
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where in this notation the traditional representation in terms of ρ and ηwas used.
For a geometrical representation of VCKM in the complex plane, that is briefly
discussed in the next section, ρ̄ + iη̄ = −(VusV∗ub)/(VcsV∗cb) is a more common
choice.

From (1.10) the hierarchy of coupling strengths among the quark generations
becomes easily visible: The highest quark transition probability (O(1)) is found for
quarks belonging to the same generation. The coupling strengths among the first
and the second quark generation is still of the order λ, while it is O

(
λ2) among

quark generations two and three. In contrast, transitions from the first to the third
quark generation are suppressed by a factor of ∼ λ3.

1.3.1 Geometrical Interpretation

The unitarity condition of the CKM matrix,

3∑
i=1

Vi jV∗ik = δ jk,
3∑

j=1

Vi jV∗kj = δik, k = 1, 2, 3, (1.11)

manifests in six vanishing relations, where three arise from the scalar products of
two out of the three columns, and three relations from row products. The column
products have the explicit form

(23) : VusV∗ub + VcsV∗cb + VtsV∗cb = 0 (1.12)

(13) : VudV∗ub + VcdV∗cb + VtdV∗tb = 0 (1.13)

(12) : VudV∗us + VcdV∗cs + VtdV∗ts = 0 (1.14)

Each of these equations can be geometrically interpreted as a triangle in the
complex plane, where the length of each side represents the strength of the quark
couplings, and the angles correspond to the relative phases among them. The
area of each of the triangles equals J/2, where J is the Jarlskog invariant [18], and
is identical for all triangles. Using the Wolfenstein parameterization, the triangle
basis has an exact length of 1 and phase 0, and the other two sides meet in the
apex (ρ̄, η̄). A general goal of flavor physics is to find observables that help to
overconstrain the CKM elements. The graphical representation of CKM unitarity
provides a convenient way to illustrate and compare results and to do consistency
checks.

For the following discussions of B0
s meson mixing and decay, we focus on the

first unitarity condition, equation (1.12), which is the scalar product of the second
and the third column. The left plot of Figure 1.1 displays the associated unitary
triangle, while in the right hand plot the same unitarity triangle is shown in the
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(a) (b)

Figure 1.1: (a): Graphical representation of the unitarity condition (1.12), called
“unitary triangle”. (b) The same unitary triangle rotated into the (ρ̄, η̄) plane.

complex (ρ̄, η̄) plane. From this representation the three angles can be read off:

φ1 ≡ β = arg
(
−

VcsV∗cb

VtsV∗tb

)
(1.15)

φ2 ≡ α = arg
(
−

VtsV∗tb
VusV∗ub

)
(1.16)

φ3 ≡ γ = arg
(
−

VusV∗ub

VcsV∗cb

)
, (1.17)

where “arg” denotes the argument or phase of the complex number, so e.g. for
(VcsV∗cb)/(VtsV∗tb) the phase β is defined by

VcsV∗cb

VtsV∗tb
= −

∣∣∣∣∣∣VcsV∗cb

VtsV∗tb

∣∣∣∣∣∣ eiβ (1.18)

In the Standard Model, the phase β is close to zero. Therefore, in contrast to the
symbolic depictions of Figure 1.1 the unitarity triangle associated with (1.12) is
almost degenerate.

1.4 Bs Meson Mixing and Decay Eigenvalue Problem
Throughout this section, different bases of eigenstates used to describe the B0

s − B̄0
s

meson mixing and decay problem are often referred to. The flavor eigenstates
reflect the flavor of the quark content of the B0

s meson, where we follow the
common convention

|Bs〉 = |b̄s〉 , |B̄s〉 = |bs̄〉 (1.19)

The flavor eigenstates are not invariant under the concatenation of the Charge C
(1.1) and Parity P (1.2) operation,

CP |Bs〉 = − |B̄s〉 . (1.20)
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Bs and B̄s are hence no eigenstates of CP, yet their linear combinations

|BCP+
s 〉 =

1
√

2

(
|Bs〉 − |B̄s〉

)
, and |BCP−

s 〉 =
1
√

2

(
|Bs〉 + |B̄s〉

)
, (1.21)

by construction are eigenstates of CP. CP+ and CP− label the even and odd CP
eigenstate, respectively. The factor of 1/

√
2 ensures normalization.

The mass eigenstates BL
s (light) and BH

s (heavy) do not coincide with the flavor
eigenstates either, but are as well linear superpositions of them:

|BL
s 〉 = p |Bs〉 + q |B̄s〉 , and |BH

s 〉 = p |Bs〉 − q |B̄s〉 , (1.22)

with the normalization condition
∣∣∣p∣∣∣ 2 +

∣∣∣q∣∣∣ 2 = 1. While the CP eigenstates are
constructed by symmetry considerations, the mass eigenstates (1.22) immediately
follow from the mixing and decay eigenvalue problem formulated for the B0

s − B̄0
s

system.
As a compound object consisting of the elementary quark material, the flavor

of a meson that is a B0
s at time t = t0 can change over time by virtue of weak

charged currents. This manifests in three ways : Either by decay into a different
particle, or, being a neutral meson, by transition into its own anti-particle B̄0

s ,
where the latter phenomenon is referred to as B0

s − B̄0
s mixing, and thirdly by

first mixing into B̄0
s and decaying afterwards. There is a wealth of pedagogical

literature [19, 20, 21] concerning the mixing and decay of neutral B0
q − B̄0

q meson
systems the following discussion is extracted from.

The evolution in time of a B0
s − B̄0

s system driven by both mixing and decay
can be described in the Schrödinger formalism,

i
d
dt

|Bs (t)〉
|B̄s (t)〉

 =
(
M −

i
2
Γ
) |Bs (t)〉
|B̄s (t)〉

 , (1.23)

using a 2 × 2 non-Hermitian effective Hamiltonian H which is constructed as the
sum of the complex Hermitian matrices M and Γ

H =
(
M −

i
2
Γ
)

=

M11 −
i
2Γ11 M12 −

i
2Γ12

M∗

12 −
i
2Γ∗12 M22 −

i
2Γ22

 . (1.24)

M and Γ are identified as the mass (or mixing) matrix and the decay matrix,
respectively. While the diagonal elements M11 = M22 = M and Γ11 = Γ22 = Γ

correspond to flavor-conserving transitions, only the off-diagonal elements M12 =

M∗

21 and Γ12 = Γ∗21 cause a change in flavor. To lowest order, (b̄s) − (bs̄) transitions
are mediated by flavor changing charged current loops with at least two W±

bosons involved. These lowest order Feynman diagrams are commonly illustrated
by so called box diagrams (Figure 1.2). As far as Γ12 is concerned, the dominant
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(a) (b)

Figure 1.2: Lowest order Feynman diagrams, so called box diagrams, illustrating
B0

s − B̄0
s mixing. The main loop contribution is given by the top quark.

b c(u)

d,s,νl

u,c,l

W

Vcb(Vub)

Figure 1.3: Feynman diagram displaying tree level b decays in the Standard Model.
The main contribution stems from b → cc̄s.

contribution stems from CKM-favored b → cc̄s tree-level decays (Figure 1.3) into
CP-specific final states [22]. Owing to the small couplings VubV∗us, the doubly
Cabibbo-suppressed b → uūs contributions can safely be neglected.

Using (
q
p

)2

=
M∗

12 − (i/2)Γ∗12

M12 − (i/2)Γ12
, (1.25)

diagonalizing H yields the complex eigenvalues

ωL,H = (M −
i
2

Γ) ±
q
p

(M12 −
i
2

Γ12), (1.26)

and the associated eigenvectors, i.e. the mass eigenstates |BH
s 〉 and |BL

s 〉, that were
introduced by (1.22). The real parts mL,H and the negative half of the imaginary
parts (i/2)ΓL,H of ωL,H,

ωL,H = mL,H −
i
2

ΓL,H (1.27)

are interpreted as the masses and the widths of the light and the heavy mass
eigenstate. The relation between the partial widths ΓL,H and the total width Γ is
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given by

Γ =
1
τB0

s

=
ΓH + ΓL

2
, (1.28)

where τB0
s

is the mean B0
s lifetime. The splittings in mass and width are defined as

∆ms ≡ mH −mL =<(ωH − ωL) (1.29)

∆Γs ≡ ΓL − ΓH = −2=(ωL − ωH) (1.30)

∆m is positive by definition, while ∆Γs is made positive by convention. The
physical meanings of ∆m and ∆Γs are the following: While the mass difference
determines the frequency the B0

s − B̄0
s system oscillates with, considering (1.28) a

decay width difference reflects the fact that the distinct mass eigenstates have dif-
ferent lifetimes. Or, to phrase it differently, the decay width difference is non-zero
if there are more final states accessible to one of the two mass eigenstates than to
the other. The size of mass splitting has been measured with high precision by the
CDF experiment as ∆m = 17.77 ± 0.10 ± 0.07 ps−1 [4], a value which corresponds
to rapid oscillations when compared to the B0

s lifetime. With the consistent result
∆m = 17.63 ± 0.11 ± 0.04 ps−1 the LHCb experiment [23] has already achieved a
similar level of precision. Both results are in good agreement with the theoretical
prediction ∆m = 17.3 ± 2.6 ps−1 [24]. Despite the naming scheme using the at-
tributes “light” and “heavy”, it is worth noting that the mass difference expressed
in the energy dimension is tiny, as low as ∆m = (1.170 ± 0.008) × 10−2 eV [3]. In
contrast to the precise state of knowledge with respect to ∆m, the size of the decay
width difference is experimentally still not well established at a reasonable preci-
sion level, as will be highlighted later by Table 1.2. The theory prediction for the
relative decay width difference [25],

∆Γs

Γs
= 0.147 ± 0.060, (1.31)

has large uncertainties though as well.
By a closer examination of the M − (i/2) Γ eigenvalue problem and using

|Γ12| � |M12|, one finds that these observables are directly connected to the off-
diagonal elements of the mass and decay matrix:

∆ms = 2 |M12| (1.32)

∆Γs = 2 |Γ12| cosφs = ∆Γs
CP cosφs, (1.33)

where in (1.33) one takes advantage of the fact that b → cc̄s decays into CP-specific
final states constitute the dominant contribution to Γ12, implying 2 |Γ12| = ∆Γs

CP. As
pointed out in Refs. [22, 24] it must be stressed that the possibility to relate |Γ12| to
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the measurable quantity ∆Γs
CP crucially depends on the fact that Γ12 is dominated

by a single weak phase. Omitting b → uūs transitions involving a weak phase
different from b → cc̄s introduces a theoretical uncertainty of about 5%. In (1.33),
φs is the relative phase of the complex off-diagonal elements M12 and Γ12, the
phases of which are defined by

M12 = |M12| eiφM (1.34)

Γ12 = − |Γ12| eiφΓ (1.35)

Dividing (1.34) by (1.35) yields the relative phase φs

M12

Γ12
= −

∣∣∣∣∣M12

Γ12

∣∣∣∣∣ ei(φM−φΓ) = −

∣∣∣∣∣M12

Γ12

∣∣∣∣∣ eiφs . (1.36)

While the phases in (1.34) and (1.35) are convention-dependent, the combination
φs = φM − φΓ has physical meaning. φs is the measure of the size of CP violation
in the interference between mixing and decay. This classification of CP violation
describes the phenomenon that the absolute amplitude of the interference between
a mixed and an unmixed B0

s decay into a CP final state f does not equal the one
of the B̄0

s into a opposite CP final state f̄ :∣∣∣〈 f | B̄0
s → B0

s 〉 + 〈 f | B
0
s 〉
∣∣∣ , ∣∣∣〈 f̄ | B0

s → B̄0
s 〉 + 〈 f̄ | B̄0

s 〉
∣∣∣ (1.37)

In the Standard Model, the phase φs is predicted to be close to zero, φs = 0.22◦ ±
0.06◦ [24], corresponding to a vanishing CP violation in the B0

s − B̄0
s system. The

measurement of a sizable non-zero phase φs would therefore be an unambiguous
hint to new physics beyond the CKM mechanism. Since Γ12 is strongly dominated
by CKM-favored tree-level processes that barely leave any room for competing
new physics processes, one expects that any observed deviation in φs is due
to new contributions in mixing. This, plus the poor knowledge of the decay
width difference, led the B physics community focus their research efforts on
measurements aiming at constraining relation (1.33), or even find a “smoking gun”
for sizable CP violation in B0

s − B̄0
s . One of the most promising decay channels to

pursue this goal is the decay of B0
s → J/ψφ, which in recent years has been subject

to intensive studies carried out by both the Fermilab experiments CDF [26] and
DØ [27], and the LHCb experiment [28] located at CERN. This “golden” decay
channel allows to probe the decay width difference and a potential sizable new-
physics phase φNP

s simultaneously. However, this measurement is experimentally
elaborate, since it requires angular and time-dependent analysis techniques plus
tagging the flavor of the B0

s meson at production time. New physics scenarios are
not favored by the most recent results, can however not yet be ruled out given the
current statistical precision.
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Out of the B0
s − B̄0

s mixing and decay observables ms, ∆ms, Γs, ∆Γs and φs, in the
following we will focus on the decay width difference ∆Γs only and discuss how
this observable can be accessed experimentally. In this regard, the measurement
of the branching fraction of a yet another type of b → cc̄s decays, B0

s → D(∗)+
s D(∗)−

s

is motivated.

1.5 Accessing ∆Γs

To access a decay width difference basically two distinct experimental strategies
requiring different analysis techniques may be pursued: Through lifetime mea-
surements of final states common to B0

s and B̄0
s by performing fits to decay time

distributions, or by measuring relative partial decay widths – also referred to as
branching fractions – by quantifying signal yields. Both approaches require a final
state to be unambiguously identified as CP-even or odd. Assuming the Standard
Model scenario in which the phase φs is tiny, the CP eigenstates coincide with the
mass eigenstates, and equation (1.33) implies that the CP width difference ∆ΓCP

s

equals the decay width difference ∆Γs. In this sense, the terms “CP eigenstate”
and “mass eigenstate” can be used interchangeably. Lifetime-related analysis
methods comprise:

i Measurement of the lifetimes τCP+ and τCP− by fits to the decay time distri-
butions of pure CP-even and odd final states. The decay width difference is
then given by ∆Γs = 1/τCP+ − 1/τCP− = 1/τL − 1/τH. Promising candidates
are the pure CP-even final state B0

s → D+
s D−s and the pure CP-odd decay

B0
s → J/ψ f0, where for the latter decay both CDF [29] and LHCb [30] recently

provided first results.

ii Extracting τCP+,CP− out of one single B0
s decay with the final state not be-

ing pure with regard to its CP content, but a mixture of CP-odd and even
components, that can be disentangled by angular analyses. Typical decay
modes are the P → VV (pseudo-scalar to vector-vector) decays B0

s → J/ψφ
and B0

s → D∗+s D∗−s .

Further constraints can be introduced by fitting decay time distributions of flavor-
specific decays. This technique directly determines the mean B0

s decay width Γs.
Depending on the final state and data recording methods, decay time measure-
ments and angular analyses can get very challenging though, if not impossible.
At CDF, this particularly applies to B0

s → D∗+s D∗−s , for two reasons: Firstly, the
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event recording trigger (see Section 3.6) places requirements on kinematic quan-
tities highly correlated to the decay time, that introduce a significant lifetime
bias. Secondly, owing to their low energies, the neutral particles emanating from
de-excitation of the D∗+s meson have a very low detection efficiency. By that, a
data-driven angular analysis of B0

s → D∗+s D∗−s cannot be carried out using CDF
data.

Branching fraction measurements represent an interesting alternative to direct
lifetime measurements to infer ∆Γs. Specifically, the methods we consider are:

i Determining the partial decay widths of all possible CP-specific final states
common to B0

s and B̄0
s . While this method relies on the least assumptions and

gives a very precise estimate of the relative decay width difference ∆Γs/Γs,
it is experimentally most tedious. Furthermore, for modes involving an
admixture of CP-odd and CP-even components, again angular analyses are
required to separate these eigenstates.

ii This method is a special case of (i): If there is one CP-specific class of decay
modes that place the main contribution on ∆Γs, measuring its semi-inclusive
partial decay width should give a reasonable estimate of ∆Γs. This method,
however, requires more stringent assumptions: All other contributions need
to be regarded as negligible, and the given final state must have one well-
defined CP content.

As already indicated, each category comes with its own theoretical and experi-
mental challenges. The combination of both however offers the chance to draw a
consistent picture of the decay width observable.

This thesis focusses on branching fraction-based measurements, in particular
on the special case (ii). It has been argued [31] that B0

s → D(∗)+
s D(∗)−

s is a promising
candidate to adopt the latter experimental method. In the following sections the
key assumptions that allow to infer ∆Γs/Γs from a branching fraction measurement
of B0

s → D(∗)+
s D(∗)−

s are summarized, while pointing to the pitfalls of this approach
at the same time.

1.5.1 Accessing ∆Γs/Γs Using B0
s → D(∗)+

s D(∗)−
s

Decays of B0
s → D(∗)+

s D(∗)−
s proceed via strongly CKM-favored b → cc̄s tree tran-

sitions, where the strange quark s is regarded as spectator not participating in
the weak current. Figure 1.4 shows the associated Feynman diagram. Although
other final states like B0

s → J/ψφ or B0
s → J/ψη have the same quark content as

B0
s → D(∗)+

s D(∗)−
s , they are suppressed by kinematics and a color factor of 3. Color
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Figure 1.4: Feynman diagram displaying the decay of a neutral Bs (b̄s) into the charged
mesons D+(∗)

s (cs̄) and D−(∗)
s (c̄s). The strange quark is regarded as spectator quark not

participating in the weak interaction process.

suppression in weak currents is a consequence of mesons being color-neutral ob-
jects and weak interaction being color-conserving. As a consequence, neglecting
multi-body decays with final states involving more than two particles, D(∗)+

s D(∗)−
s is

the dominant final state triggered by b → cc̄s tree transitions. If this final state can
furthermore be shown to be a pure CP eigenstate, it would provide an excellent
laboratory for probing the decay width difference ∆Γs in the B0

s − B̄0
s meson system.

While the exclusive decay B0
s → D+

s D−s is intrinsically a pure CP-even final
state, the CP content of B0

s → D∗+s D−s and B0
s → D∗+s D∗−s can only be approximated

to be even under certain assumptions [31]: Under the Shifman-Voloshin (SV) limit
[32] mc,b →∞with mb − 2mc → 0, and under the limit of infinite colors Ncolor →∞,
it can be shown that both BCP−

s → D∗+s D−s and BCP−
s → D∗+s D∗−s vanish and ∆ΓCP

s is
saturated by Γ(BCP+

s → D(∗)+
s D(∗)−

s ). Thus, with Γ(BCP−
s → D(∗)+

s D(∗)−
s ) = 0, the CP

width difference equals the CP-even decay width:

∆ΓCP
s = Γ(BCP+

s → D(∗)+
s D(∗)−

s ). (1.38)

The partial decay width of the semi-inclusive decay B0
s → D(∗)+

s D(∗)−
s therefore

gives an estimate on the full decay width difference, or to phrase it in terms of the
branching fraction B [22],

2B(B0
s → D(∗)+

s D(∗)−
s ) �

∆ΓCP
s

2

 1
1−2x f

+ cosφs

ΓL
s

+

1
1−2x f

− cosφs

ΓH
s

 (1.39)

�
∆ΓCP

s

2

[
1 + cosφs

ΓL
s

+
1 − cosφs

ΓH
s

]
,

where in the second step the CP-odd fraction x f , defined by ΓCP−
s /ΓCP+

s = x f/(1−x f ),
has been set to zero. Substituting ΓL,H

s = Γs ± ∆Γs/2 and ∆ΓCP
s = ∆Γs/ cosφs,
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and further assuming φs to be negligibly small according to the Standard Model
scenario, equation (1.39) simplifies to

2B(B0
s → D(∗)+

s D(∗)−
s ) �

∆Γs

Γs + ∆Γs/2
, (1.40)

which one can solve for the relative decay width difference:

∆Γs

Γs
�

2B(Bs → D(∗)+
s D(∗)−

s )

1 − B(Bs → D(∗)+
s D(∗)−

s )
(1.41)

Thus, under the theoretical assumptions made, a measurement ofB(Bs → D+(∗)
s D−(∗)

s )
gives a direct estimate of the strongly Standard Model dominated observable
∆ΓCP

s = 2 |Γ12|, independently of CP violation. In case of the Standard Model
scenario predicting a negligible small phase φs ≈ 0, it is furthermore sensitive
to ∆Γs/Γs. As a matter of fact, an analysis of this kind is not a “smoking gun”
measurement in terms of new physics effects in B0

s − B̄0
s ; nevertheless it can make

an important complementary contribution to this field by providing an estimate
of ∆Γs using an approach that does not rely on angular and decay time studies.
Furthermore, if ∆ΓCP

s was realized vanishing in nature, there would be no way to
measure a non-zero CP-violating phase φs in untagged analyses, as can be seen
from equation (1.33).

1.5.2 Theoretical Caveat

The previous discussions have shown that the reduction in experimental complex-
ity comes at the cost of predictive robustness owing to the theoretical assumptions
that need to be made. As the theoretical caveats and possible experimental reme-
dies already have been exhaustively discussed in Ref. [22] the key issues are
pointed out only.

Among the theoretical assumptions made, two are of particular concern,
since they can significantly increase the theoretical uncertainty in the estimation
of ∆Γs/Γs, or even spoil the whole ansatz: Neglecting three-body modes, and the
cleanliness of the CP content of B0

s → D(∗)+
s D(∗)−

s . Both issues are controversial, as
only theoretical predictions exist to date.

While the preference of B0
s → D(∗)+

s D(∗)−
s over other two-body decay modes

can be regarded as a safe assumption, the possibility to neglect other final states
crucially depends on the branching fractions of multi-body modes, such as B0

s →

D(∗)
s D(∗)K(∗). Recently published theoretical calculations [33] suggest that the partial

widths of three-body modes can be sizable. According to the new estimations,
their contribution to ∆Γs is not only greater than hitherto assumed, but almost
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equal to the contribution of two-body modes. As a consequence, approximating
B0

s → D(∗)+
s D(∗)−

s decays to saturate ∆Γs needs a considerable correction. However, it
should be stressed that the theoretical uncertainties involved are very large and up
to the present day none of the B0

s three-body decay modes has been experimentally
established. Hence their true branching fractions, not to mention their CP content,
remain unknown.

Another concern is related to the CP content of the D(∗)+
s D(∗)−

s final state. The
presence of a sizeable CP-odd component would be serious, since it would add to
∆ΓCP

s in (1.39) with the wrong sign. For the exclusive P→ VV decay B0
s → D∗+s D∗−s

theory predicts a small CP-odd fraction of ∼ 5% [34]. Depending on the size of
B(B0

s → D∗+s D−s ) and B(B0
s → D+

s D−s ), the share of the CP-odd component on the
semi-inclusive final state D(∗)+

s D(∗)−
s is correspondingly smaller. The true size of

the CP-odd component still remains unknown, because limited statistics of data
samples or other experimental limitations yet prohibit the extraction of fCP− in
B0

s → D∗+s D∗−s .
In conclusion, the possibility to relate the branching fraction of B0

s → D(∗)+
s D(∗)−

s

to the decay width difference in the B0
s − B̄0

s system strongly depends on the
theoretical assumptions made. In this regard, any results quoted should therefore
include a clear specification of the theoretical regime chosen.

1.6 Experimental Status
The first experiment to report evidence for B0

s → D(∗)+
s D(∗)−

s was the ALEPH collab-
oration [35]. In this measurement D(∗±)

s mesons were reconstructed by evaluating
correlations among two φ mesons detected in the same hemisphere. The semi-
inclusive branching fraction was quoted asB(Bs → D(∗)+

s D(∗)−
s ) = 0.14± 0.06± 0.03,

giving rise to ∆ΓCP
s /Γs = 0.25+0.21

−0.14.
DØ reported evidence for the decay B0

s → D(∗)+
s D(∗)−

s and a non-vanishing
decay width difference using data corresponding to 2.8 fb−1 [36]. Based on a
reconstruction of the semi-leptonic final state D∗+s (→ D+

s γ/π
0)D∗−s (→ D−s γ/π0),

D+
s (→ φπ+)D−s (→ φµ−ν̄µ), 27 signal events were found. With B(Bs → D(∗)+

s D(∗)−
s ) =

0.035±0.010(stat)±0.011(syst) and by assuming the semi-inclusive final state to be
predominantly CP even, ∆Γs/Γs = 0.072 ± 0.021(stat) ± 0.022(syst) in the standard
model scenario was derived. Both the ALEPH and the DØ measurement have in
common that no attempt was made to distinguish between decays of a D+

s or a
D∗+s meson.

First observation of the decay Bs → D+
s D−s on the basis of an exclusive mea-
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ALEPH DØ CDF Belle
Signal Yield 14 27 24 23
B(B0

s → D+
s D−s ) (%) - - 1.04+0.35+1.1

−0.32−1.1 1.03+0.39+0.26
−0.32−0.25

B(B0
s → D∗+s D−s ) (%) - - - 2.75+0.83+0.69

−0.71−0.69

B(B0
s → D∗+s D∗−s ) (%) - - - 3.08+1.22+0.84

−1.04−0.84

B(B0
s → D(∗)+

s D(∗)−
s ) (%) 14 ± 6 ± 3 3.5 ± 1.0 ± 1.1 - 6.85+1.53+1.89

−1.30−1.89

∆Γs/Γs (%) 25+21
−14 7.2 ± 2.1 ± 2.2 > 1.2 14.7+3.6+4.4

−3.0−4.2

Table 1.1: Results of B0
s → D∗+s D−s , B0

s → D∗+s D−s , and B0
s → D∗+s D∗−s analyses. The next

to last row gives the branching fraction of the semi-inclusive decays B0
s → D(∗)+

s D(∗)−
s

with no attempt being made to distinguish between D+
s and D∗+s . In the last row

an estimate on the relative decay width difference is given using the theoretical
considerations outlined in section 1.5.1.

surement was reported by the CDF collaboration using 355 pb−1 of data [37, 38].
By analyzing the hadronic decay modes D+

s (→ φπ+)D−s (→ φπ−/K0∗K−/π+π−π−),
24 signal events were reconstructed. Accounting for the fact that Bs → D+

s D−s is
fully CP-even and the measurement lacks reconstruction of Bs → D(∗)+

s D∗−s decays,
with B(Bs → D+

s D−s ) = 0.0103+0.0037
−0.0034 a lower bound of ∆ΓCP

s /Γ > 0.012 at 95% C.L.
was obtained.

To date, the most recent result published stems from the Belle collaboration
[39]. With 23.6 fb−1 of data recorded at the Belle experiment running at the Υ(5S)
resonance, several hadronic decay channels were used to reconstruct decays of
B0

s → D(∗)+
s D(∗)−

s . In total, 23 signal events were found. Belle was the first experi-
ment to disentangle the individual decay modes Bs → D(∗)+

s D(∗)−
s , thus confirming

observation of Bs → D+
s D−s , plus claiming observation of Bs → D∗+s D−s and evi-

dence for Bs → D∗+s D∗−s . Again, assuming Bs → D(∗)+
s D(∗)−

s to saturate CP-even final
states and taking CP violation to be negligibly small, Belle obtained a relative
decay width difference of ∆Γs/Γ = 0.147+0.036

−0.030(stat)+0.044
−0.042(syst). Table 1.1 gives an

overview of the existing measurements described in this section.
Since the way of calculating the world average value of ∆Γs/Γs is not uniquely

defined, the Heavy Flavor Averaging Group (HFAG) presents different estimations
of ∆Γs/Γs depending on the way individual results were measured and combined
[40]. According to Table 1.2, which is an excerpt from a table that can be found in
the referenced source, depending on the result combination technique, the current
world average value of ∆Γs/Γs ranges from about 9% to 15%.
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W/o constraint from W/ constraint from W/ constraint from

τ(Bs → flavor specific) τ(Bs → flavor specific) τ(Bs → flavor specific)

nor B(B0
s → D(∗)+

s D(∗)−
s ) only and B(B0

s → D(∗)+
s D(∗)−

s )

∆Γs/Γs (%) 15.4+6.7
−6.5 9.2+5.1

−5.4 9.3+3.2
−3.3

Table 1.2: Overview of the estimations of ∆Γs/Γs depending on the way of combining
individual results [40].

1.7 Aim and Scope of This Analysis
It is the intention of this work to provide new measurements of both the exclusive
and the semi-inclusive branching fraction ratios fD(∗)

s D(∗)
s

= ( fs/ fd)B(Bs → B0
s →

D(∗)+
s D(∗)−

s /B(B0
→ D+D−s ). From the ratios the absolute branching fractions of

B0
s → D(∗)+

s D(∗)−
s can be derived using world average values of fs/ fd – i.e. the

ratio of the s and d quark production fractions at the Tevatron collision energy –
and the branching fraction of the normalization decay B0

d → D+D−s . Whenever
more accurate measurements of fs/ fd and B(B0

d → D+D−s ) are available in the
future, providing fD(∗)

s D(∗)
s

enables a smooth re-calculation of the absolute B0
s →

D(∗)+
s D(∗)−

s branching fractions independently of the presented analysis. Depending
on the theoretical regime relied upon, the implications of this measurement on
the relative decay width difference ∆Γs/Γs will be discussed.

Higher statistics, improved selection techniques and more in-depth consider-
ations concerning the properties of intermediate decays involved will help to
improve the accuracy of this measurement. This thesis reports on the steps
taken to achieve this ambition. Our studies concentrate on the decay chan-
nels B0

s → D+
s D−s → φ†π+φ†π− and B0

s → D+
s D−s → φ†π+K∗0†K−, as well as

B0
d → D+D−s → K−π+π+φ†π− and B0

d → D+D−s → K−π+π+K∗0†K− as normaliza-
tion channels1. Additional hadronic D+

s decay channels might be added in the
future to increase statistics.

Apart from measuring branching fractions, in the light of the discussions
in Section 1.5.2 the separate reconstruction of B0

s → D+
s D−s , B0

s → D∗+s D−s , and
B0

s → D∗+s D∗−s represents a useful preparatory step for later fits to the decay time
distributions of these decays. As a decay time fit to B0

s → D+
s D−s directly determines

1/τCP+ = ΓCP+, and given the current experimental efforts [29, 30] in measuring
ΓCP− from B0

s → J/ψ f0, a B0
s → D+

s D−s lifetime analysis is a very interesting option to
infer ∆ΓCP

s . When it comes to B0
s → D∗+s D∗−s , a decay time fit might help to constrain

1The meaning of the “dagger” the φ and K∗0 resonance are labeled with will be elucidated in
Section 4.4
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the CP-odd fraction in this decay, as described in the guidance given in Ref. [22].
Due to experimental limitations in the reconstruction of B0

s → D∗+s D∗−s , in the course
of Monte Carlo studies an attempt will be made to infer a potential non-zero CP-
odd fraction in B0

s → D∗+s D∗−s without relying on lifetime or angular fits to data.
Though beyond the scope of this analysis and despite the experimental challenges
associated to decay time fits, a lifetime analysis of the used double-charm data
sample should however not be impossible to achieve in the near future.

This analysis is carried out using a large set of collision data that was recorded
by the CDF II detector at the proton-antiproton collider Tevatron located at the
North American Fermi National Accelerator Laboratory. Before detailing the anal-
ysis steps, a technical description of both the accelerator and detection apparatus
is given first.





2
The Tevatron Collider at Fermilab

2.1 Introduction
To gain knowledge about the nature of the fundamental constituents of matter
and the forces they participate in, particle physicists probe the structure of matter
at very small scales. Due to the inverse relationship between wave length and
energy, resolving smaller scales requires experimental setups to operate at high
energies. For a particle physics experiment in which high-energetic particles
like protons are brought to collision, this means that physics interactions do
not take place at hadron level, but rather among the very elementary particles
these compound objects consist of, like quarks and gluons in the case of proton
collisions. Through quark or gluon interactions new unstable compound objects
are formed, the decay products of which can be used to track their properties.
According to Albert Einstein’s famous mass-energy relation m = E/c2, the mass of
new compound objects that can be produced depends on the kinetic energy of the
colliding particles – the more energy available in an inelastic scattering process,
the heavier the masses newly formed compound objects can receive. Thus, the
role of energy in a particle physics experiment is twofold: On the one hand, it sets
the resolution scale on which the sub-structure of matter can be probed, on the
other hand it sets the mass scale on which new particles can be produced.

Particle synthesis through inelastic scattering also takes place in the earth
atmosphere, when a high energy cosmic ray particle strikes a nitrogen or oxygen
nucleus, producing a shower of decay products. As a matter of fact, in the early
days of experimental particle physics atmospheric cosmic rays were the only
available source of high energy particles, leading to the discovery of muons in
1936 [41] and charged pions in 1947 [42, 43], to name a few, and for a series of
important physical disciplines the study of cosmic rays yet provides important

21
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insights, particularly when it comes to cosmology, astroparticle and neutrino
physics.

Due to the steeply falling differential energy spectrum of cosmic rays [44],
events at the highest energies occur at extremely small rates only. Hence, for
searches of rare decay processes or heavy and short-living particles of interest
today, neither do high energy cosmic rays provide reasonable particle fluxes, nor
does the earth atmosphere represent a good and controlled laboratory environ-
ment. Therefore, eminent experimental endeavors have been made to design
artificial earth-bound particle accelerators capable of colliding particles at high
rates and well-defined kinetic energies, and particle detector devices hermetically
enclosing the interaction regions.

In the particle physics community, scientific efforts of this kind are com-
monly embraced under the collective term Energy Frontier. The energy frontier
is also an integral part of the scientific program [45] of the Fermi National Accel-
erator Laboratory (common abbreviations are Fermilab or Fnal), a high energy
physics laboratory located about 35 miles west of Chicago, Illinois, USA. Fermi-
lab, founded in 1967 as the National Accelerator Laboratory and renamed in honor
of Enrico Fermi in 1974, is host to a variety of both theoretical and experimental
research groups as well as on-site experiments covering a wide range of scientific
programs.

Besides various fixed target, muon and neutrino experiments designed to
cover the scientific program summarized under the term intensity frontier, since
1985 Fermilab’s main scientific instrument at the energy frontier is the Tevatron
collider with its two experiments DØ and CDF. This landmark particle accelerator,
the contour of which is well visible from a bird’s eye view (see Figure 2.1), lay
the ground for groundbreaking scientific findings in high energy physics, like the
discovery of the top quark in 1995 [46, 47], and still provides important insights
into the fields of high pT and heavy flavor physics. Together with the KEKb high
energy accelerator complex in Tsukuba, Japan, and the Large Hadron Collider (Lhc)
at Cern1 near Geneva, Switzerland, the Tevatron is one out of three major particle
accelerators to provide the technical requirements for the production of B0

s mesons
and the investigation of their properties. In recent years, this enabled Fermilab to
make important contributions in the field of B0

s − B̄0
s meson mixing and the search

for CP violation in this system.
While circulating in opposite directions around an underground ring about

6.3 km in circumference, inside the Tevatron [48] beams of protons (p) and an-

1This acronym is derived from the founding committee’s name Conseil Organisation Europeéenne
pour la Recherche Nucléare
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tiprotons (p̄) are accelerated to an energy of 980 GeV. At two positions, where the
general purpose particle detectors DØ and CDF are located, protons and antipro-
tons collide at a center-of-mass energy of

√
s = 1.96 TeV. Until the proton-proton

collider Lhc set the new world record in particle energy (1.18 TeV per proton
beam2) in late November 2009, this represented the highest collision energy ever
reached in an artificial earth-bound particle accelerator.

The first two periods of Tevatron operation, usually referred to as Run 0 and
Run I, began in 1985 with pp̄ collisions at

√
s = 1.8 TeV and ended in 1996. During

this first 11 year operation period an integrated luminosity3 of about 140 pb−1 was
accumulated. During the following years the Tevatron and its experiments DØ
and CDF underwent major upgrade work. In 2001, the second operation period
Run II [49] was initialized, with the pp̄ beams now colliding at a center-mass-
energy of

√
s = 1.96 TeV at higher and ever increasing instantaneous luminosities.

The second operation phase Run IIb was just terminated very recently in late
September 2011.

2.2 The Tevatron Accelerator Complex
The still remarkable center-of-mass collision energy of 1.96 TeV is the result of
gradual energy gains achieved by a sequence of sophisticated accelerator devices
[50]. Figure 2.2 gives an schematic overview of the Tevatron accelerator chain.

2.2.1 Proton Pre-Acceleration

The first energy gain within the acceleration process of protons is the result of the
production and pre-acceleration of negatively charged hydrogen ions in a static
750 kV high voltage field. This is performed inside the Cockroft-Walton [51] pre-
accelerator: First, high-purity hydrogen gas is injected into the volume between
a central cylindrical cathode surrounded by an anode. Electrical and magnetic
fields inside this cavity set the conditions for the formation of a dense plasma
of positively ionized H+ atoms, that travel towards the cathode and occasionally
convert into H− ions by surface ionization. The cathode surface is coated with
cesium to ease electron release. The H− ions are extracted, accelerated to an energy

2This corresponds to a center-of-mass energy of
√

s = 2.36 TeV in pp collisions. With a design
energy of

√
s = 14 TeV which is intended to be attained by 2013, the LHC is currently running at

a collision energy of
√

s = 7 TeV.
3Luminosity is a common measure of the particle collision rate and thus of a collider’s perfor-

mance. Please refer to Section 3.1 for details.
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Figure 2.1: Aerial photograph of the Fermilab accelerator complex taken from the
west. In front of the photograph the contours of the Main Injector tunnel, which as
well houses the Recycler, can be seen. In the background the maintenance road on top
of the underground Tevatron tunnel is visible. Please note that the real dimensions
of the pictured synchrotron rings are distorted by the perspective of the photograph:
In reality the Tevatron’s circumference is about twice as large as the one of the Main
Injector.
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Figure 2.2: Schematic representation of the accelerator complex at Fermilab.
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of 750 keV, magnetically focused and then transferred to the Linac [52, 53], a linear
accelerator approximatively 150 m in length.

The first 75 m long section of the Linac provides a H− acceleration up to
an energy of 116 MeV by means of oscillating electromagnetic fields generated
by radio frequency (RF) resonators. While the first, low energy section of the
Linac consists of drift tube cavities made of copper, the second, high energy
section houses a series of side-coupled cavity modules which again are fed by
RF resonator stations. The design of both the drift tubes and the side-coupled
cavities, as well as the gaps between them is such that the oscillating fields only
have an accelerating effect on the hydrogen ions. As another significant result of
the Linac configuration the beam of hydrogen ions is sub-divided into bunches
each consisting of about 1.5×109 particles. Having reached an energy of 400 MeV,
the H− bunches are sent to the Booster [54, 55], a circular accelerator about 475 m
in circumference, representing the first synchrotron in the accelerator chain.

The bunches of H− ions entering – and the remaining ones circulating – the
Booster pass through a carbon foil stripping off the electrons from the ions, leaving
bare protons only. While circulating the Booster, protons are accelerated using
radio frequency cavities arranged along the ring. After about 20,000 revolutions
the energy of the protons has increased to 8 GeV.

The final proton acceleration phase outside the Tevatron collider takes place
inside the Main Injector [56, 57], a 3 km circumference oval synchrotron, that com-
menced operations in 1999 as a result of the Run II upgrade work. Here, the proton
bunches coming from the Booster are coalesced (seven Booster bunches into one
bunch) and accelerated to a an energy of 150 GeV using several accelerating
and focusing conventional water-cooled dipole and quadrupole electromagnets.
These protons are now ready for injection into the Tevatron. Another important
operation mode of the Main Injector is to prepare bunches of 120 GeV protons to be
sent to the Antiproton Source and to provide protons for fixed target experiments
located outside the Tevatron.

2.2.2 Antiproton Production and Buffering

The 120 GeV protons coming from the Main Injector are steered towards the
Antiproton Source [58], the core element of which is a stack of nickel targets [59].
The particle bombardment on the nickel targets results in the production of a
variety of secondary particles, including protons, pions, neutrons and antiprotons,
which are focused into a beam by means of lithium lens positioned behind the
target. Using a pulsed magnet antiprotons having a mean energy of 8 GeV are
isolated from the spray of produced particles.
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Antiproton production and storing efficiency is critical to Tevatron perfor-
mance. However, for every 1 million protons hitting the nickel target, on average
20 antiprotons with an energy of 8 GeV are produced only. Furthermore, because
of the bunch configuration of the protons impacting the Antiproton Source, the
extracted antiprotons exhibit a large spread in momentum space. Unifying the
antiprotons’ momentum spectrum is accomplished by an expansion in space, i.e.
dispersing the antiproton bunches. Debunching of the antiproton beam is per-
formed inside the Debuncher [60], a triangular-shaped synchrotron with a mean
diameter of 180 m, using a RF manipulation technique called bunch rotation. By
stochastic cooling techniques [61, 62] the 8 GeV antiproton beam is stabilized and
remains inside the Debuncher until the next antiproton production cycle starts.

The Debuncher tunnel is host to another important device in the antiproton
production and accumulation chain, the Accumulator [63], a storage ring which
is used to stack the 8 GeV antiprotons coming from the Debuncher. In order
to minimize the antiproton loss rate, stochastic cooling is applied to wipe out
momentum fluctuations, thus confining the antiproton beam to a smaller volume
in phase space. When the cycle of antiproton stacking is complete, i.e. once
enough antiprotons have accumulated, the continuous antiproton beam is again
segmented into bunches using RF fields and sent to the Recycler [56, 64], a ring of
permanent magnets that was mounted to the ceiling of the Main Injector tunnel
as part of the Run II upgrades.

The role of the Recycler changed over time: As its name implies, its original
purpose was to collect and recycle antiprotons left over after a Tevatron store.
A store is a full Tevatron operation cycle comprising pp̄ charging and collision
operation until pp̄ re-filling. This operation mode turned out to be ineffective, so
in the early Run II phase it was decided to dismiss these original plans and to use
the Recycler as a means of intermediate storage for antiprotons coming from the
Accumulator. It turned out that stashing the antiprotons in the Recycler helped
to increase antiproton stacking in the Accumulator and thus the overall antipro-
ton production rate, representing one of the bottlenecks to Tevatron performance.
While circulating the Recycler, stochastic and electron cooling techniques [65, 66]
are applied, further reducing the antiprotons’ spread in momentum space. Elec-
tron cooling is the preferred particle cooling technique for higher beam intensities.
Once the antiproton beam has reached a certain density, it is overlaid with a 4.3
MeV electron beam along a stretch of about 20 m. The electron beam acts as a
momentum damper on the antiprotons: By Coulomb scattering the antiprotons’
momentum is transferred to the much lighter electrons, providing an substantial
reduction in longitudinal momentum and thus resulting in more compact an-
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tiproton bunches. During intermediate storing in the Recycler the antiprotons are
kept at an energy of 8 GeV by electrically powered energy correction magnets.
As soon as the Tevatron is ready for injection, the antiproton bunches are directed
to the Main Injector where they circulate contrariwise to the protons’ direction of
rotation. Within two seconds they are accelerated to an energy of 150 GeV and
are now ready for Tevatron injection.

2.2.3 Tevatron

While Tevatron [67] is often used as a pars pro toto term for the full proton-
antiproton accelerator complex at Fermilab, the Tevatron in fact is only the final,
albeit the largest and most important element of the accelerator chain. Here,
protons and antiprotons are accelerated to the final operational beam energy that
is almost on the TeV scale – this is where the naming of this circular synchrotron
originates from.

The Tevatron does not only provide for the final acceleration, it is primarily
designed to serve as a storage ring in order to maintain stable collision conditions
over a longer period of time. Both the protons and antiprotons circulate inside
the same vacuum beam pipe in opposite directions, while spiralling around each
other on helical paths. 774 dipole magnets and multiple correction magnets are
used to keep the particles on track inside the slightly curved beam pipe. 240
quadrupole magnets narrow the beam into a thin line, while horizontally and
vertically oriented electrostatic separators constrain the protons and antiprotons
to helices. To sustain the strong magnetic field of 4.2 T the dipole magnets
operate at, these magnets are superconducting with the coils made of niobium-
titanium alloy wire. Superconductivity is sustained by cryogenic cooling using
liquid helium, keeping the operation temperature at 4.3 K. As a matter of fact, the
Tevatron was the world’s first synchrotron involving superconducting magnets.
At Fermilab, the Tevatron is the only cryogenically cooled accelerator device.

A Tevatron store starts with the shot setup, where proton and antiproton
bunches are subsequently injected into the Tevatron: First, 36 bunches of 150 GeV
protons are extracted from the Main Injector, followed by a ninefold injection of
four antiproton bunches. Once the Tevatron is populated by an equal number
of 36 proton and antiproton bunches, the ramping process starts: This is the final
acceleration phase to the operation energy of 980 GeV, which is achieved by
eight accelerating RF cavities. Tevatron loading can take up to 45 minutes, while
ramping is usually done in a few minutes.

Before the injection helix is switched to collision mode, the beam halo is
removed by collimators, since these outer bunch section particles do not signifi-
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cantly contribute to the inelastic collisions, but might potentially cause damage to
the beam confinement material or, even worse, to sensitive detector parts. Follow-
ing the cleaning of the beam environment, a process called scraping, the beams are
focused to a minimal transverse size. By switching the helices to collision mode
the proton and antiprotons are brought to collision at two designated positions of
the Tevatron ring: Position B0 where the Collider Detector at Fermilab (CDF)
is located, and D0 marking the position of the identically named DØ experiment.

At the end of a Tevatron store, which typically allows a continuous data
taking period of 10 to 20 hours, or in case of malfunctions, the beams are dumped
into absorber material located at Tevatron position A0 by so called abort kicker
magnets, making room for a new store. To provide for a safe beam removal,
already during shot setup the 36 bunches are grouped into three bunch trains with
each train separated by 2.6 µs abort gaps to give the kicker magnets enough time
to ramp up.

2.3 Performance and Acquired Data
In collider physics, the key indicator characterizing a particle accelerator perfor-
mance is given by the luminosity L [49, 68], which is a measure of the rate of – in
case of the Tevatron – proton-antiproton collisions. The luminosity depends on a
number of collider-specific operating figures,

L = f ·Nb ·
NpNp̄

2π
(
σ2

p + σ2
p̄

) · F (
σl

β∗

)
, (2.1)

where f is the revolution frequency, Nb is the number of bunches, and Np and
Np̄ are the average number of protons and antiprotons, respectively, per bunch.
σ2

p and σ2
p̄ denote the spatial bunch widths, while F is a form factor efficiency

function accounting for the non-ideal bunch structure at the interaction point.
The dimension of L is that of a particle flux, measured in cm−2s−1. From the
instantaneous luminosity the rate of a certain process, e.g. the number of inelastic
proton-antiproton interactions per time unit, can be inferred:

Ṅ = σinL, (2.2)

where σin is the cross-section of inelastic proton-antiproton scattering. The cross-
section is a measure of the probability of a given process to occur. Its dimension
is that of an geometrical area, commonly quoted in units of 1 barn (b) (1 b = 10−28

cm2).



2.3 Performance and Acquired Data 29

store number
1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

400

450 01/1101/1001/0901/0801/0701/0601/0501/0401/03

)-1s-2 cm30 10×Initial Luminosity (

Figure 2.3: Development of the Tevatron Run II initial instantaneous luminosities
[69].

Figure 2.3 shows the instantaneous luminosities measured at the beginning
of each store since the beginning of Run II up to time of writing. According to
the shown statistics the delivered instantaneous luminosity is steadily increasing.
However, it took years to reach and exceed the ambitious design goals for Run II
[70, 71]. The ever increasing instantaneous luminosities are the result of several
technical improvements realized in the course of Run II upgrade work, with some
of the measures being the increase of the number of bunches Nb and thus the
effective revolution frequency f , and the number of particles Np,p̄ per bunch, just
to name a few. The key improvement, the increase in antiproton yields, was made
possible particularly by increasing the antiproton stacking rate through antiproton
stashing in the Recycler.

The amount of data collected over a given period of time is commonly given
in terms of the integrated luminosity, Lint =

∫
Ldt, which is preferably quoted in

the dimension of an inverse cross-section, b−1. The number of events of a given
process contained in a data sample can thus be calculated by N = σ · Lint. Figure
2.4 shows how the integrated luminosity collected per store developed over time.
During the Run II operation period ending in late September 2011, a total of
Lint = 11.9 fb−1 has been delivered by the Tevatron, whereof CDF managed to
record 9.9 fb−1, corresponding to an average data taking efficiency of 83.1%. The
highest instantaneous luminosity reached during the Tevatron Run II operation
period amounted 4.4 × 1032 cm−2s−1. Table 2.1 summarizes some of the CDF data
acquisition facts.
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Figure 2.4: Development of the integrated luminosity per store since the beginning
of Tevatron Run II [69].

Time (hr) L (1030 cm−2s−1) L
del
int (pb−1) L

acq
int (pb−1) Efficiency (%)

Average 16.5 186.3 4.5 3.7 80.0
Record 62.4 441.9 12.2 10.7 98.5

Sum 44016 11892.3 9885.2 83.1

Table 2.1: Average, record and sum of duration, delivered initial luminosity, deliv-
ered integrated luminosity, recorded integrated luminosity and CDF data acquisition
efficiency per Tevatron Run II store [69].



3
The Collider Detector at Fermilab

The Collider Detector at Fermilab [72, 73], which first commenced operations in
1985, is a multipurpose collider detector designed for covering a broad range
of high energy physics regimes. In the course of the Tevatron Run II upgrades
it underwent major upgrade work, primarily to prepare for higher luminosity
operations as well as to enhance particle tracking and identification. Since then,
the Collider Detector at Fermilab is commonly abbreviated as CDF II.

Typical to classical collider detectors, the CDF II detector exhibits a azimuthal
and forward-backward symmetry with most of the sub-detector systems arranged
in layers coaxially around the beam pipe. Due to symmetric proton-antiproton
head-on collisions (both the protons and the antiprotons have an energy of 980
GeV), on average the spatial distribution of the collision products is expected
to be forward-backward symmetric – this is why the detector also features a
forward-backward symmetry. With a length of 12 m and a radius of 6 m, CDF II
weighs around 4, 500 tons. Figure 3.1 shows a photograph of CDF II taken during
Run II upgrade installations carried in the CDF assembly hall, located next to
the detector’s nominal operational position at Tevatron ring coordinate B0, eight
meters below the surface.

In global terms, from the inside out the detector is composed of six main
detector components arranged around the beam pipe: A tracking system (1)
comprising the Silicon Detector and the Central Outer Tracker, a Time-of-Flight
System (2) enclosed by a superconducting solenoid magnet (3) generating a 1.4
T field orientated parallel to the beam pipe, electromagnetic calorimeters (4),
hadronic calorimeters (5), and finally a multi-component muon detector system
(6). A schematic depiction of CDF II is given in Figure 3.2.

According to the detector’s symmetries, in the following brief discussion
of the detector components an admixture of a polar and cylindrical coordinate

31
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Figure 3.1: The CDF II detector. The photograph shows the installation of the new
tracking system as part of the Run II upgrade work.

Figure 3.2: Cutaway view of the detector showing its sub-detector devices [74, 75].
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system, indicated in the bottom right of Figure 3.2, is used:

• The nominal pp̄ interaction position marks the point of origin of the coordi-
nate system

• The proton beam direction determines the positive direction in z.

• r measures the distance from the beamline.

• The azimuthal angle φ is measured upwards within the x-y-plane where the
x axis lies in the accelerator plane, radially directing outwards off the center
of the ring; the Cartesian coordinate y points upright with respect to the
accelerator plane.

• θ represents the polar angle lying in the y-z-plane.

In the field of experimental particle physics the pseudorapidity η, which is an
approximation of the Lorentz invariant rapidity Θ = tanh −1 (v/c) for rest masses
m0 � p, is commonly used: η = − ln

(
tan θ

2

)
. Moreover, in later discussions the

physical quantities transverse energy ET and transverse momentum pT will be used
frequently. These quantities describe the transverse component of a particle’s
energy or momentum, defined as ET = E · sinθ and pT = p · sinθ, respectively.

3.1 Luminosity Counter
Before outlining the individual detector apparatus, the Cerenkov Luminosity Counter
(CLC) [76] is briefly introduced. This device is needed to estimate the rate at which
protons and antiprotons inelastically collide while crossing interaction point B0.
As introduced in Section this rate is expressed in terms of the instantaneous lumi-
nosity L.

CDF has two CLCs, each mounted around the beam pipe in the end-plug
regions, covering the forward-backward region 3.7 ≤

∣∣∣η∣∣∣ ≤ 4.7. Each CLC is made
of 48 isobutane Cerenkov light detectors that collect the burst of Cerenkov light
generated by a particle travelling through the gaseous medium faster than the
speed of light. From the rate the CLCs fire and the bunch crossing rate f the
instantaneous luminosity L can then be calculated with an accuracy of about 6%.
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3.2 Tracking System
The precise construction of charged particle tracks is an outstanding feature of
the CDF II detector: Various kinds of analyses at CDF benefit from the high
primary and secondary vertex reconstruction resolution, as well as the good
momentum resolution – so does the present work. The momentum of a charged
particle can be inferred by measuring the bending of its track inside the 1.4 T
magnetic field. Offline reconstruction of particle tracks is performed by employing
tracking algorithms provided by the CDF II offline software. In principle, track
reconstruction works by extrapolating hits – i.e. spots in the detector material
which have an energy deposit caused by an ionizing particle passing through –
found in a certain detector component and finding matches in detector material
of a different tracking unit.

The CDF II tracking system consists of two main detector apparatus: A Silicon
Microstrip Detector providing high resolution tracking in the immediate vicinity
of the interaction point, where the highest track densities are to be expected, and
the Central Outer Tracker (COT), a drift chamber surrounding the silicon device.

3.2.1 Silicon Detector

From the inside out, the Silicon Detector comprises three sub-systems: The Layer
00 (L00) [77] which is directly mounted onto the beam pipe, the Silicon Vertex
Detector (SVX II) [74], and the Intermediate Silicon Layers (ISL) [78]. The CDF
Tracker unit as well as the dimensions and η coverages of its sub-systems are
illustrated in Figure 3.3.

The innermost detector, L00, is made of two overlapping layers of radiation-
hard silicon microstrips positioned at radii 1.35 and 1.62 cm, each consisting of
twelve sensor modules. With a total length of 94 cm in z direction, L00 provides a
pseudorapidity coverage of

∣∣∣η∣∣∣ ≤ 4. L00 was installed as part of the Run II upgrade
and due to its vicinity to the primary interaction point it significantly contributed
in improving the precision of track measurements and impact parameter resolu-
tion.

SVX II is a double-sided micro strip detector ranging from r = 2.1 cm to
r = 17.3 cm. It basically consists of three barrel like devices, each of them 29
cm in length. The overall geometry of SVX II allows for a track reconstruction
with a maximum pseudorapidity of

∣∣∣η∣∣∣ = 2. Due to the special layout of the five
layers inside each device, a high impact parameter resolution can be achieved:
On one side of each of the layers the silicon microstrips are axially aligned for a
precise measurement of the r and φ coordinate of a particle track. In addition,
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Figure 3.3: The components of the CDF II tracking apparatus. On the right hand side
of the depiction three of the five end-plug calorimeters can be seen [79].

layers 0, 1 and 3 feature orthogonally attached stereo strips on the back side,
supplementing the r − φ measurement with a z-measurement, whereas the strips
on the back side of layers 2 and 4 are tilted by 1.2 degrees (SAS, Small Angle Stereo),
thereby avoiding combinatorial ambiguities introduced by multiple hit events in
the Silicon Detector and thus providing unique three-dimensional information.

The outermost component of the silicon detector system is the 1.9 m long
Intermediate Silicon Layer. The main function of the ISL is to provide precise three-
dimensional track information and to act as a link between SVX II and COT in later
offline track reconstruction, where hits detected in the Silicon Detector and the
COT are matched to each other. It consists of three double-sided silicon microstrip
layers having the same SAS design as layers 2 and 4 of SVX II. One layer positioned
in the central region at r = 22 cm covers

∣∣∣η∣∣∣ < 1, whereas two of the three layers
are located at r = 20 cm and r = 28 cm covering the forward/backward region
(1 <

∣∣∣η∣∣∣ < 2). Figure 3.4 shows an schematic illustration of the Silicon Detector in
the r − φ plane.

3.2.2 Drift Chamber

The precise spatial information provided by the Silicon Detector system is com-
plemented by the excellent momentum resolution achieved with the Central Outer
Tracker (COT) [80], an open-cell wire drift chamber surrounding the silicon de-
vices. The active gas volume of the 3.1 m long cylindrical device radially ranges
from 43.4 cm to 132.3 cm, resulting in a pseudorapidity coverage of η ≤ 1. The
drift chambers are filled by an admixture of argon and ethane in equal shares. A
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Figure 3.4: r − φ view of the CDF II Silicon Detector [74].

charged particle passing through the chamber ionizes gas molecules it encounters
on its flight path. An electronic drift field causes the electron signal to amplify by
secondary interactions and to drift towards sense wires where the charge deposi-
tion is detected. The COT is designed to have drift times not exceeding 100 ns, in
order to handle the Run II luminosities.

The COT wire system is segmented into eight coaxially arranged super-layers
with equal numbers of alternating axial and stereo angle super-layers. The axial
super-layers responsible for measurements in the r − φ plane have wires parallel
to the beam line, whereas the wires of the other four super-layers, providing z
coordinate information, are tilted by an stereo angle of 2 degrees with respect to
the z axis. Each super-layer in turn consists of 13 potential wires, shaping the
electrical drift field, and 12 sense wires. By this configuration, the COT is capable
of providing a maximum of 96 position measurements per ionizing particle.

The spatial resolution of the COT is poor compared to one delivered by the
Silicon Detector. However, thanks to its large volume and the intrinsic low track
densities it yields high precision in measurements of transverse momenta. The
momentum resolution is approximately σ(pT)/p2

T = 0.0015 (GeV/c)−1.
In addition, the COT provides information about a particle’s specific energy

loss dE/dx which is proportional to the logarithm of the charge Q deposited in the
detector’s active volume, which in turn is proportional to the readout pulse width
∆t. By using Bethe’s stopping power formula [81], for a given βγ = p/m the dE/dx
information can be used to infer a particle’s mass. The Kaon-Pion discrimination
is shown in Figure 3.5 as the dashed line. The energy loss discrimination power
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Figure 3.5: Discrimination power for kaons, pions, and protons using TOF (solid
lines) and COT dE/dx information (dashed line) as a function of particle momenta
[82].

is above 1σ for momenta larger than 1.7 GeV/c.

3.3 Time of Flight Detector
Another important input to particle identification is given by the measurement of
the time it takes a particle to travel from the production point to the Time of Flight
(TOF) [83] detector. The flight duration is calculated as the difference between the
time of arrival at the TOF detector and its production time, t = tTOF− t0. Using the
COT momentum measurement derived from the reconstructed track curvature, a
particle’s mass can be inferred by

m =
p
c

√
(ct)2

L2 − 1, (3.1)

where L is the length of the flight path. The TOF particle separation power is high
(> 2σ) for low momenta (p . 1.6 GeV/c) and declines for increasing momenta (see
Figure 3.5).

The Time of Flight Detector is located at r = 140 cm just between the COT and
the cryostat of the super-conducting solenoid magnet. It consists of 216 plastic
scintillator bars 279 cm in length. Each scintillator has a photomultiplier attached
for signal readout. The TOF system provides a time resolution of ∼ 100 ps.
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3.4 Calorimetry
The CDF II calorimeter system [84] consists of several segmented detector units
comprising alternating layers of scintillators and absorbing material. It is located
outside the solenoid and in the forward-backward end wall regions. It is ded-
icated for measuring energy deposits of electromagnetic and hadronic particles
or particle showers, respectively, by fully absorbing all particles except neutrinos
and muons. Since it is primarily designed for particles or jets with high transverse
momenta (pT > 20 GeV/c) the calorimeter system provides important information
in the regime of high pT physics and is therefore of major importance for analy-
ses in the top quark physics sector, for instance. At CDF, b physics analyses do
usually not rely on calorimetry – nor does the present thesis – except for studies
of leptonic decay channels where electron or muon identification is needed. In
the latter case one takes advantage of the screening effect the calorimeter system
has on all particles except for muons. A description of the electromagnetic and
hadronic calorimetry systems can be found in the Refs. [85, 86].

3.5 Muon Detector System
The muon system represents the outermost CDF detector device. It comprises
four systems consisting of several multi- or single-wire proportional chambers
filled with argon and ethane at equal shares with scintillators attached for signal
readout. Because of the decay channels subject to this analysis, the muon detectors
do not add any information needed throughout the given analysis. They do
however provide important input for many other b physics studies of decay
channels having muons in the final state. The interested reader may refer to
Refs. [87, 88, 89, 90] for a detailed description of the muon detector and counter
components.

3.6 Event Recording
With an effective Tevatron bunch crossing rate of 1.7 MHz and a required per-
event detector readout storage space of about 250 kB it is neither possible nor
desirable to record every collision event. A hadron collider yields a higher bb̄
production cross-section compared to an electron machine, there is however an
overwhelming amount of collision events not worth of being recorded: At the
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Tevatron center-of-mass energy, the bb̄ production cross-section is three orders of
magnitude lower than the total inelastic pp̄ cross section. bb̄ events are therefore
overlayed by very high noise level. For this reason, CDF II has an online system
implemented that automatically triggers event recording if an observed detector
signature matches one or multiple pre-set trigger schemes according to different
physics regimes. The CDF Data Acquisition System (DAQ) [91], illustrated in Figure
3.6, is a successive three-level trigger system [92, 93] with Level 1 being entirely
hardware-based, while Level 2 is a hardware-software implementation. The third
trigger stage is implemented in software running on a Linux computer farm. By
the three-level implementation of the DAQ the event recording rate is reduced
to ∼ 100 Hz. Depending on the trigger scheme an event has fired, recorded data
is split up into eight different streams and written to tape. A fraction of data
is copied out for online monitoring. Based on certain quality requirements the
CDF Control Room crew assesses data taking on a regular basis and marks a run
– the smallest unit of data taking – bad in case of detector or data acquisition
malfunctions.

All data used in this analysis were recorded by a trigger scheme called the
Two-Track Trigger (TTT). The TTT basically selects events containing a track pair
having a large displacement from the primary interaction vertex. In this sense,
the TTT is purpose-built for finding detector signatures typical to decay chains
of unstable, but relatively long-living particles like bottom or charm mesons that
decay hadronically into kaons and pions in particular. Sometimes, the Two-Track
Trigger is also referred to as “Two Displaced Tracks” Trigger or “Secondary Vertex”
Trigger. Accounting for the requirements of the TTT, in the following section the
signal processing of the CDF DAQ is outlined in a nutshell.

3.6.1 Two Track Trigger

The first trigger level, Level 1 Trigger (L1), runs synchronous to the clock cycle
and seeks for patterns of raw physics objects based on information provided by a
set of sub-detectors, whereas in case of the Two-Track Trigger COT information is
used only. The fixed latency time amounts 5.5 µs. In addition to the synchronous
one clock L1 pipeline, digitized detector information is fed into a 42 clock cycle
pipeline for further readout and for later use on the next trigger stage. Already at
the early L1 stage, approximate COT tracking information with pT and φ values
provided by the eXtremely Fast Tracker (XFT) [95] is available for decision making.
The criteria for TTT L1 acceptance are at least two oppositely charged COT tracks
with an opening angle of ∆φ(1,2) < 135 ° and each track having a transverse
momentum larger than 2 GeV/c.
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Figure 3.6: Flow chart illustrating the signal processing of the three-level data acqui-
sition system at CDF II [94].

Level 2 Trigger (L2) is an asynchronous two-stage pipeline with a latency
time of 40 µs. The longer time available for L2 decision making is obtained by
keeping up to four events in an onboard buffer. The key function of the second
trigger level is to link silicon tracking information provided by the Silicon Vertex
Trigger (SVT) [96, 97] with XFT tracks. This functionality is of major importance
in the heavy flavor physics regime where decays involving long-living b, c and s
mesons are analyzed, because already at trigger stage events containing secondary
vertices can be identified. The larger latency allows for executing vertex fits and
calculating more complex track quantities like the impact parameter d0 and decay
length Lxy. The Level 2 Trigger requires the oppositely charged SVT tracks to
have a transverse momentum of at least 2 GeV/c, to match the XFT tracks and
to meet the vertex fit quality criterion of χ2 < 25. At this trigger stage, further
pass requirements depend on particular sub-schemes that are implemented by
the Level 2 sub-paths L2_B_LOWPT, L2_B_CHARM, and L2_B_HIGHPT:

• L2_B_LOWPT: The matched SVT tracks must have a minimum scalar trans-
verse momentum sum of p(1)

T + p(2)
T > 4.0 GeV/c, an opening angle in the

range 2°< ∆φ(1,2) < 90°, an impact parameter of 0.1 mm< |d0| < 1 mm, and a
decay length in the xy plane of Lxy > 0.1 mm.
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• L2_B_CHARM: The matched SVT tracks are required to have a minimum
scalar transverse momentum sum of p(1)

T +p(2)
T > 5.5 GeV/c, an opening angle

in the range 2°< ∆φ(1,2) < 135°, an impact parameter of 0.1 mm< |d0| < 1
mm, and transverse travel distance of Lxy > 0.1 mm.

• L2_B_HIGHPT: The requirements in this scenario are the same as for L2_B_
CHARM, except for a higher transverse momentum cut of p(1)

T + p(2)
T > 6.5

GeV/c.

All events accepted by L1 and L2 are kept in the DAQ buffers before entering
Level 3 Trigger (L3). Using software-implemented algorithms similar to those
of the offline reconstruction software a full event reconstruction is performed. In
doing so, decisions of the previous levels can be re-confirmed at a higher precision
using an event’s full decay topology.

At trigger level, the amount of recorded data can be artificially scaled down
by a dynamically adjusted quantity p, called prescale factor. This is especially useful
during periods of high luminosity, since otherwise certain trigger paths would
fire perpetually, consuming a lot of bandwidth. Prescaling of the trigger paths
means that only one out of N = 1/p events having met the trigger requirements
is accepted. This procedure frees bandwidth now available to other trigger paths
by decreasing the deadtime of the trigger system. The prescale factors are stored
in a database to be accessible in offline software.

The Two-Track Trigger is a prominent example of a trigger that is scaled
down at high luminosities to allocate more bandwidth to triggers aimed for high
pT physics, like top quark physics or Higgs searches. Over the years, this began to
negatively impact the gain in net Two-Track Trigger data acquired, since the Teva-
tron operates at by far higher instantaneous luminosities than in the early days
of Run II. Tevatron stores are often dropped before reaching the low luminosity
regime in which the Two-Track Trigger is not prescaled. The amount of recorded
Two-Track Trigger data does therefore only scale well with integrated luminos-
ity for the initial Run II operation periods, while for later periods an increase in
integrated luminosity does not add that much of Two-Track Trigger data.
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4.1 Data Base
This study uses hadronic Two-Track Trigger data gathered between February 2002
and August 2010, corresponding to CDF II operation periods 0 to 31 (ending at run
number 294777). Used data comprise generic hadronic streams extracted from the
CDF SAM [98] database sets xbhdid (p0), xbhdih (p1-4), xbhdii (p5-10), xbhdij (p11-
13), xbhdik (p14-17) xbhdfm (p18-28), and xbhdfp (p29-31). The Two-Track Trigger
(see previous section) is an online run selection algorithm that triggers recording
of detector events with at least two oppositely charged particle tracks, whose
common decay vertex has a minimum transverse displacement from the primary
vertex. Additional requirements are placed on the tracks’ minimum transverse
momenta and opening angles. The hadronic modes studied throughout this
analysis were collected by selecting events having passed the trigger sub-paths
B_CHARM_LOWPT, B_CHARM, and B_CHARM_HIGHPT. Total available statis-
tics are equivalent to an integrated luminosity of 6.8 fb−1.

Throughout this thesis, three different data sub-samples will sometimes be
referred to. These correspond to different exclusive trigger configurations of data
taking and are defined in the following way:

• TriggerFlag 1 (T1): Candidates selected by B_CHARM_LOWPT but not by
B_CHARM or B_CHARM_HIGHPT.

• TriggerFlag 2 (T2): Candidates selected by B_CHARM but not by
B_CHARM_HIGHPT.

• TriggerFlag 3 (T3): Candidates selected by B_CHARM_HIGHPT only.

43



44 4. Preparation of Data Samples

4.2 Offline Reconstruction
Since the total number of B0

s mesons produced at the Tevatron is a priori not known,
the branching fractionsB(B0

s → D(∗)+
s D(∗)−

s ) cannot be measured directly, but in ratio
to a normalization channel only. In doing so, the unknown number of produced
B0

s mesons cancels out. Due to similar decay topologies the decay B0
d → D+D−s is

chosen for this purpose. Technically – in terms of offline reconstruction code – D−s
mesons are constructed from D−s → φπ− and D−s → K∗0K−, respectively1, while the
D+ meson is reconstructed from its decay into one charged kaon and two equally
charged pions (D+

→ K−π+π+).
Offline reconstruction of the studied decay modes is performed from the

bottom up. Reconstruction of a B0
s candidate in the decay mode B0

s → D+
s D−s →

φπ+φπ− (B0
s → D+

s D−s → φπ+K∗0K−) starts with the selection of a φ (K∗0) candidate.
For this, in a first step two oppositely charged particle tracks assumed to be
kaons (kaon and pion) are combined. To reject a large amount of combinatorial
background events not stemming from a real φ (K∗0), a full vertex fit is performed
and from that a candidate’s invariant mass based on the sum of the four momenta
of the kaon (kaon and pion) track candidates is calculated. Since the computation
needed for a full vertex fit is rather time-consuming, prior to performing the
vertex fit a soft pre-selection on the estimated raw invariant mass of the track pair
is applied. A selected track pair is accepted as a φ (K∗0) candidate if the vertex
fit has succeeded and the invariant mass lies in the mass window 1.005 GeV/c2 <

MK+K− < 1.035 GeV/c2 (0.837 GeV/c2 < MK−π+ < 0.947 GeV/c2). By adding a further
charged track which is assumed to be a pion (kaon), a D+

s candidate is formed.
In the following vertex fit the tracks belonging to the selected candidates are
required to come from one common vertex. B0

s → D+
s D−s candidates are accepted

if the vertex fit has succeeded and the D+
s invariant lies within 1.87 and 2.07 GeV/c2,

corresponding to a mass window of ±100 MeV/c2 around the Ds mass of 1.968
GeV/c2 published by the Particle Data Group (PDG) [3]. When performing the B0

s

vertex fit the D+
s mass is constrained to its PDG value. Tables 4.1 and 4.2 summarize

the requirements placed on several kinematic and fit quality variables. At this
stage, in addition B0

s candidates are required to fulfill the specifications of the Two-
Track Trigger and the requirements of the B_CHARM_LOWPT, B_CHARM, and
B_CHARM_HIGHPT trigger sub-paths. Reconstructed decay chains are stored in
a hierarchical tree structure, which contains all the kinematical and other detector
or reconstruction related quantities. Due their tuple-like structure, at CDF data
files holding information about B meson decays are called BStntuples.

1As later discussions will show, this is only correct in technical respects. To correctly account
for the full underlying decay dynamics this statement needs to be put under scrutiny.
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B0
s → D+

s D−s → φπ+φπ− B0
d → D+D−s → K−π+π+φπ−

3.0 < m(B0
s ) < 6.6 GeV/c2 3.0 < m(B0

d) < 6.6 GeV/c2

1.870 < m(D(1)
s ) < 2.070 GeV/c2 1.870 < m(D(1)

s ) < 2.070 GeV/c2

1.870 < m(D(2)
s ) < 2.070 GeV/c2 1.770 < m(D) < 1.970 GeV/c2

1.005 < m(φ(1,2)) < 1.035 GeV/c2 1.005 < m(φ) < 1.035 GeV/c2

χ2
rφ(B0

s ) < 40 χ2
rφ(B0

d) < 40

χ2
rφ(D(1)

s ) < 40 χ2
rφ(Ds) < 40

χ2
rφ(D(2)

s ) < 40 χ2
rφ(D) < 20

χ2
rφ(φ(1,2)) < 15 χ2

rφ(φ) < 15

Lxy/σLxy(Ds) > 3.0
Lxy/σLxy(D) > 3.0

∆Z0(φ(1,2)) < 1.5 cm ∆Z0(φ) < 1.5 cm

Table 4.1: Requirements the CDF offline reconstruction software places when select-
ing the decays B0

s → D+
s D−s → φπ+φπ− (left column) and B0

d → D+D−s → K−π+π+φπ−

(right column). See Section A.1 in the Appendix for definitions of variables.

From the BStntuples, which do not only contain the described decays, but a
variety of reconstructed hadronic channels, flat Ntuples are generated using the
BottomMods library (Version 6.1.4) and the most recent hadronic goodrun lists,
energy loss corrections and COT calibrations. This process is called skimming in
technical terminology. The skimmed or flat Ntuples are a streamlined version of
the BStntuples and contain the hadronic decay modes of interest only. The file
format of flat Ntuples is that of the ROOT software [99], an object-orientated data
analysis framework that is widely used in the particle physics community.

In addition to experimental data, realistic simulations reflecting the physics
behavior of true B0

s and B0
d events in the studied decay modes are an essential

input. Simulated data, that are generated by means of Monte Carlo (MC) tech-
niques, are needed for various steps in the analysis. Before describing Monte
Carlo production in technical respects, some physics-related issues that need to
be addressed prior to simulation are pointed out.

4.3 Additional Considerations on B Meson Lifetimes
The B0

s and B0
d Monte Carlo samples used in this analysis were generated with

mean decay lengths of cτB0
s

= 441 µm (τ = 1.471 ps) and cτB0
d

= 458.7 µm (τ = 1.530
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B0
s → D+

s D−s → φπ+K∗0K− B0
d → D+D−s → K−π+π+K∗0K−

3.0 < m(B0
s ) < 6.6 GeV/c2 3.0 < m(B0

d) < 6.6 GeV/c2

1.870 < m(D(1)
s ) < 2.070 GeV/c2 1.870 < m(D(1)

s ) < 2.070 GeV/c2

1.870 < m(D(2)
s ) < 2.070 GeV/c2 1.770 < m(D) < 1.970 GeV/c2

1.005 < m(φ) < 1.035 GeV/c2

0.837 < m(K∗0) < 0.947 GeV/c2 0.837 < m(K∗0) < 0.947 GeV/c2

χ2
rφ(B0

s ) < 40 χ2
rφ(B0

d) < 40

χ2
rφ(D(1)

s ) < 40 χ2
rφ(Ds) < 20

χ2
rφ(D(2)

s ) < 20 χ2
rφ(D) < 20

χ2
rφ(φ) < 15

χ2
rφ(K∗0) < 15 χ2

rφ(K∗0) < 15

Lxy/σLxy(D
(1)
s ) > 3.0 Lxy/σLxy(Ds) > 3.0

Lxy/σLxy(D
(2)
s ) > 3.0 Lxy/σLxy(D) > 3.0

Lxy/σLxy(K∗0) > 2.0 Lxy/σLxy(K∗0) > 2.0
∆Z0(φ) < 1.5 cm
∆Z0(K∗0) < 1.5 cm ∆Z0(K∗0) < 1.5 cm

Table 4.2: Offline reconstruction requirements placed on the studied decay channels
with one D−s decaying into K∗0K+.



4.3 Additional Considerations on B Meson Lifetimes 47

ps), respectively. These values correspond to the state of knowledge of the year
2008 [100]. For the B0

d meson, the current edition of the Review of Particles Physics
[3] quotes a slightly smaller world average value of

τB0
d

= 1.519 ± 0.007 ps (4.1)

cτB0
d

= 455.4 ± 2.1 µm

Therefore, all B0
d Monte Carlo samples are re-weighted using the central value of

the more recent result (4.1). Re-weighting of Monte Carlo is done according to the
relation

wcτ = exp
( ct
cτMC

−
ct
cτ

)
(4.2)

where cτMC denotes the mean decay length Monte Carlo was originally generated
with, while cτ is the new mean decay length simulated events shall be re-weighted
with. ct is the per-event proper decay length at generator level. In the context
of Monte Carlo simulation, generator level quantities are usually referred to as
Monte Carlo Truth quantities.

For the B0
s meson the current edition of Ref. [3] quotes

τB0
s

= 1.472+0.024
−0.026 ps (4.3)

cτB0
s

= 441+7
−8 µm

as mean lifetime. This is identical to the input value used in simulation. However,
the attentive reader may recall that B0

s → D(∗)+
s D(∗)−

s is believed to be predominantly
CP-even. This has been the pre-condition for relating the branching fraction of
B0

s → D(∗)+
s D(∗)−

s to the relative decay width difference ∆Γs/Γs, as described in the
theoretical introduction, Section 1.5.1. Given the Standard Model expectation of
a vanishing CP-violating phase φs, the CP-even state BCP+

s coincides with the light
mass eigenstate BL

s . According to the Heavy Flavor Averaging Group (HFAG) [40]
the mean lifetime of the short-living light eigenstate amounts

τBL
s

= 1.408+0.033
−0.030 ps (4.4)

cτBL
s

= 422+10
−9 µm

In order to bring the B0
s → D(∗)+

s D(∗)−
s Monte Carlo sample in line with the CP

assumption made, simulated data is re-weighted using the decay length of the
light eigenstate, cτBL

s
(4.4). Changes in the both the B0

d and B0
s lifetime assumptions

will be subject to systematic studies (Section 7.3.1).



48 4. Preparation of Data Samples

4.4 Additional Considerations on D+
s → φπ+ and D+

s →

K∗0K+

As described in Section 4.2, reconstruction of a D+
s meson candidate starts with a

φ (K∗0) candidate which is formed from two oppositely charged kaons (one kaon
and one pion of opposite charge). In doing so a large amount of random kaon
and pion tracks are being picked up in reconstruction, leading to a huge amount
of combinatorial background events. However, methods will be put in place to
effectively separate signal meson events from combinatorics (Section 5).

There is yet an additional issue that needs to be addressed: The decays
D+

s → φπ+ and D+
s → K∗0K+ are not the only possibilities for a D+

s meson to proceed
into the final state K+K−π+. In fact, D meson three-body decays are expected to
proceed through a variety of resonant two-body decays, where, in our example, φ
and K∗0 only represent two possible resonances among other intermediate states
that are kinematically allowed for D+

s → K+K−π+. Conversely, when forming
a φ candidate according to the offline reconstruction algorithm, there is a non-
vanishing chance for any other intermediate state fulfilling the invariant mass
requirement 1.005 GeV/c2 < MK+K− < 1.035 GeV/c2 to be falsely reconstructed as a
φ. The same arguments hold for the reconstruction of K∗0 mesons.

In the end, no attempt is made to identify the φπ+ or the K∗0K+ component
as such; any D+

s meson reconstructed from the final state K+K−π+, where a K+K−

(K−π+) pair and the D+
s meson itself fulfill the invariant mass and vertex fit quality

requirements, is accepted as a D+
s candidate. However, when it comes to the

extraction of observables (particularly relative branching fractions) from data, one
has to take into account that through the reconstruction technique one reconstructs
φπ+ (K∗0K+) plus additional contributions. It is therefore not correct to use the
published [3] final state branching fractions of pure D+

s → φπ+ or D+
s → K∗0K+

decays. Besides, more in-depth considerations on D+
s → K+K−π+ might allow to

reduce systematic uncertainties introduced by final state branching fractions.
Based on a well established kinematical model describing three-body decays

a formalism will be implemented that allows to simulate the full underlying decay
dynamics of D+

s → K+K−π+. This formalism requires a set of parameters to be
determined to correctly model all components contributing to this decay. The
determination of these model parameters is, however, beyond the scope of the
present analysis. Instead, this study makes use of model parameters measured
by another experimental flavor physics group, the CLEO collaboration. Based on
the CLEO measurement, in the following sections the model implementation is
described step-by-step.
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4.4.1 Dalitz Plot Formalism

An approach that allows to systematically identify all the significantly contribut-
ing intermediate states of a three-body decay of the form D→ Rc with R→ ab is
given by the Dalitz Plot technique [101]. In the Dalitz technique a minimum set of
independent observable quantities is used only. For a spin-zero particle like the D+

s

meson decaying into three daughters, only two degrees of freedom are required
to completely describe the kinematics of the decay chain D → Rc, R → ab. This
can be derived from simple kinematical considerations: Due to mass constraints,
conservation of energy and momentum, and rotational invariance of the D→ Rc
system, the 12 unknown quantities corresponding to the four-momenta of the
three daughters in the D+

s rest frame can be reduced to two. A good choice for
these two independent Dalitz variables are two out of the three possible squared
invariant masses of each pair of the final state particles abc, m2

ab, m2
ac, or m2

cb.
If decay dynamics were governed solely by phase space, events in the plane of

m2
ab and m2

ac, for instance, would be uniformly distributed within the kinematically
allowed borders. However, since weak non-leptonic decays of D (and as well B)
mesons proceed dominantly through resonant two-body decays one expects the
scatter plot of events in the (m2

ab, m2
ac) plane to have characteristic structures and

shapes that reflect the dynamics of the decay D → abc: For instance, strongly
localized enhancements in the scatter plot indicate sharp intermediate resonances
R→ ab.

For three-body decays of a spin-zero D meson to pseudo-scalar final states,
D→ abc, the decay fraction reads

dΓ =
|M|

2

(2π)332(MDs)3 dm2
abdm2

bc, (4.5)

where M is the decay matrix element incorporating all the decay dynamics. A
common approach to computeM is given by the isobar model: Each contribution
to the Dalitz plot is modeled as a separate amplitude with a complex coefficient
parameterized by magnitude and phase. The complex coefficients thus contain
information about relative magnitudes and phases among the contributions. The
total amplitude is given by the sum of all contributions. Hence, by construction
the squared amplitudeM2 contains diagonal and interference terms.

In the following the individual components contributing to M are being
detailed. The matrix element can be parameterized as a sum of partial amplitudes,

M =
∑

R

cR ×ΩR × F
L

D × F
L

R ×WR, (4.6)

where cR = aReiφR is the complex coefficient.
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ΩR is the angular distribution depending on the spin of a given resonance R:

ΩL=0
R =1 (4.7)

ΩL=1
R =m2

bc −m2
ac +

(m2
D −m2

c )(m2
a −m2

b)

m2
ab

(4.8)

ΩL=2
R =[ΩL=1

R ]2
−

1
3

(
m2

ab − 2m2
D − 2m2

c +
(m2

D −m2
c )2

m2
ab

)
×

(
m2

ab − 2m2
a − 2m2

b +
(m2

a −m2
b)2

m2
ab

)
(4.9)

Particular attention must be given permutation of the axes ab, bc, ac.
F

L
D and F L

R are the angular momentum barrier-penetration factors for the
D meson or the resonance decay vertex R. They depend both on spin and the
effective meson radius r and are commonly parameterized in the (normalized)
Blatt-Weisskopf form [102]. Here, the cases of a zero meson radius, r = 0, giving
rise to F L

V = 1, and non-zero meson radii

F
0

R =1 (4.10)

F
0

D =e−(z−zR)/12 (4.11)

F
1

R,D =

√
1 + zR

1 + z
(4.12)

F
2

R,D =

√
9 + 3zR + z2

R

9 + 3z + z2 (4.13)

where

z =r2
R,Dp2 (4.14)

zR =r2
R,Dp2

R (4.15)

are distinguished. p is the decay products’ momentum in the decaying particle’s
rest frame, and pR the products’ momentum at m = mR.

The resonance term is introduced byWR. Its parameterization depends on
the particular kind of the resonance: For regular resonances like K∗0(892), K∗0(1430)
or φ(1020) a common formulation is given by the Breit-Wigner function

WR(m) =
1

m2
R −m2 − imRΓ(m)

. (4.16)

The mass-dependent width can be expressed as [103]

Γ(m) = ΓR
mR

m

(
p
pR

)2L+1

[F L
R (z)]2. (4.17)
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If a resonance’s mass is close to a meson pair production threshold, which is true
for the f0(980) resonance (m f0(980) is close to KK̄ production threshold), the Flatté
[104] formula is commonly used:

WR(m) =
1

m2
R −m2 − i

∑
ab g2

Rabρab(m)
(4.18)

where a, b ∈ [π0, π±,K±,K0, K̄0]. ρab(m) = 2pa/m is a phase space factor and g2
Rab is

a coupling constant of resonance R to the final state ab.
For a low mass K+π− S wave, known as κ or K(800), a complex pole amplitude

Wκ(m) =
1

m2
κ −m2

(4.19)

is a common choice.

4.4.2 CLEO D+
s → K+K−π+ Dalitz Plot Analysis

At the time of model implementation, the most recent and most precise Dalitz
plot analysis of the decay D+

s → K+K−π+ is provided by the CLEO Collaboration
[105]. Using the CLEO-c data set corresponding to 548pb−1 of e+e− collisions at
√

s = 4.17GeV/c2, the CLEO Collaboration reconstructs 14, 400 D+
s → K+K−π+

candidates (the charge conjugate decay is implied throughout) at a background
level of 15.1%, corresponding to a yield of 12, 200 signal events.

Following the Dalitz formalism outlined above, magnitudes and phases of
all kinematically allowed K−π+ and K+K− resonances recognized by the PDG are
determined in a unbinned maximum likelihood fit. The signal component of
the fit function essentially contains the squared amplitude |M|2. In addition to
the magnitudes and phases, whose values CLEO sets relative to the magnitude
aK∗0(892) = 1 and the phaseφK∗0(892) = 0, the mass and width of the K∗0(892) resonance
are kept free in the fit. This gives a total of 12 floating fit parameters.

Given a successful Dalitz plot fit, CLEO calculates fit fractions of contributing
resonances. The fit fraction of a given resonance R is defined as the full Dalitz
plot integral of squared amplitudes for a given resonance divided by the integral
of squared amplitudes for the sum of all considered resonances:

FFR =

∮
|MR|

2 dm2
K+K−dm2

K−π+∮ ∑
R |MR|

2 dm2
K+K−dm2

K−π+

(4.20)

CLEO concludes that a six-resonance model, referred to as Model A, consisting of
K∗0(892)K+, K∗0(1430)K+, f0(980)π+,φ(1020)π+, f0(1370)π+, and f0(1710)π+ describes
their data best. In addition, CLEO reports that the consistency with data is larger
than in previous analyses that did not account for the f0(1370)π+ contribution.
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All remaining allowed resonances are included one by one in the signal
component of the fit function, and the fit to data is repeated. It is found that
all other resonances do not significantly improve fit quality. The final CLEO
results are summarized in Table 4.3. From that it can be seen that the sharp
resonances K∗0(892) and φ(1020) and the threshold resonance f0(980) are the most
relevant resonances observed in D+

s → K+K−π+ phase space. It is worth noting
that the fit fractions do not add up to 100%, an intrinsic property of the isobar
ansatz: Contributions can interfere constructively or destructively. In the given
case constructive interference seems to be prevalent.

For further details on the Dalitz formalism, experimental techniques, and
parameter values used in CLEO Dalitz analyses please refer to [3, 106, 107].

4.4.3 Reproducing CLEO’s Dalitz Plot Results

Based on the Dalitz formalism outlined above, additional valuable information
provided by the authors [108], and by inserting parameter values (masses, widths,
magnitudes, and phases of resonances) quoted in the CLEO paper (in particular
results quoted in Table 4.3), two routines are coded: The first one provides a cal-
culation of the squared amplitude |M|2 at a given coordinate in the (m2

K+K− ,m
2
K−π+)

plane for a given or the sum of all resonances of Model A. With the second routine
integrations of |M|2 over the full or particular regions of the Dalitz plot can be
carried out. This enables us to reproduce CLEO’s fit fraction results, for instance.
The whole purpose of these two routines will become evident in Sections 4.6 and
5.5.

Please note that in contrast to the CLEO analysis no Dalitz fits to data are
performed in the course of the present study. Instead, the signal component (i.e.
the squared amplitude |M|2) of the probability density function used in the CLEO
fit is set up statically2 only, with the values of magnitudes and phases determined
by the CLEO Collaboration being inserted. Figure 4.1 shows the Dalitz plot of
D+

s → K+K−π+. The plot does not show a scatter plot of events, but is rather
a graphical representation of the square of the absolute value of the complex
function M(m2

K+K− ,m
2
K−π+) that was computed using CLEO’s specifications. A

higher density of plotted points indicates a higher |M|2. As a matter of fact, an
event scatter plot exhibits the same topology, since the probability for events to
populate a particular region of phase space is given by |M|2.

The two dashed vertical red lines and the dotted horizontal blue lines indicate
the invariant mass requirements applied in the reconstruction ofφ and the K∗0(892)

2In the course of later discussions this statement will be revised.
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Parameter Parameter Index CLEO-c Model A
mK∗0(892) (MeV/c2) 0 894.9 ± 0.5 ± 0.7
ΓK∗0(892) (MeV/c2) 1 45.7 ± 1.1 ± 0.5
aK∗0(892) − 1 (fixed)
φK∗0(892) (◦) − 0 (fixed)
aK∗0(1430) 2 1.51 ± 0.11 ± 0.09
φK∗0(1430) (◦) 3 146 ± 8 ± 8
a f0(980) 4 4.72 ± 0.18 ± 0.17
φ f0(980) (◦) 5 157 ± 3 ± 4
aφ(1020) 6 1.13 ± 0.02 ± 0.02
φφ(1020) (◦) 7 −8 ± 4 ± 4
a f0(1370) 8 1.15 ± 0.09 ± 0.06
φ f0(1370) (◦) 9 53 ± 5 ± 6
a f0(1710) 10 1.11 ± 0.07 ± 0.10
φ f0(1710) (◦) 11 89 ± 5 ± 5
FF[K∗0(892)] (%) 47.4 ± 1.5 ± 0.4
FF[K∗0(1430)] (%) 3.9 ± 0.5 ± 0.5
FF[ f0(980)] (%) 28.2 ± 1.9 ± 1.8
FF[φ(1020)] (%) 42.2 ± 1.6 ± 0.3
FF[ f0(1370)] (%) 4.3 ± 0.6 ± 0.5
FF[ f0(1710)] (%) 3.4 ± 0.5 ± 0.3∑

R FFR (%) 129.5 ± 4.4 ± 2.0

Table 4.3: Magnitudes, phases, and fit fractions of the six most significantly contribut-
ing resonances (Model A) observed in D+

s → K+K−π+ decays as measured by CLEO
[105]. The magnitudes aR are given in units of the K∗0(892) magnitude which is fixed
to 1. The uncertainties quoted are statistical and systematic.
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Figure 4.1: Graphical representation of the squared decay amplitudeM(m2
K+K− ,m

2
K−π+)

for the decay D+
s → K+K−π+ calculated from the results of CLEO’s Dalitz plot analysis

[105].

mesons, respectively. Inside the area marked by these lines the sharp φ resonance
(dashed red lines) and the broader K∗0(892) resonance (dotted blue lines) are
clearly visible. Their twin-peak structure is a consequence of both particles being
spin-1 states. The thin vertical enhancement to the very left of the Dalitz plot
can be explained by the presence of the f0(980) meson. All the other resonances
considered in the CLEO-c Model A are fairly uniformly distributed across D+

s →

K+K−π+ phase space.
After qualitatively reproducing CLEO’s Dalitz analysis results, the next aim

is to quantitatively reproduce the fit fractions presented in the CLEO paper. For
this, Dalitz plot integrations are performed for each of the resonances and divided
by the integral of the full Dalitz plot. Apart from that the fit fractions within the
mass windows introduced in reconstruction are of interest. The results are quoted
in Table 4.4. Inside the K∗0 mass window the K∗0(892) accounts for a overwhelming
fraction of 99.0% with very small contributions from the other resonances. The
second largest contribution stems from the f0(980), accounting for 4.5%. In the φ
mass band the major contribution comes from the φ(1020) itself (93.8%), but there
is still a significant contribution from the f0(980) (8.8%). All the other resonances
in this mass band are found to be almost negligible.
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Fit Fraction FF (%) In
Resonance Full Dalitz Region φ Mass Band K∗0 Mass Band
K∗0(892) 47.6 0.3 99.0
K∗0(1430) 4.0 0.4 0.5
φ(1020) 41.8 8.8 4.5
f0(980) 28.4 93.8 0.9
f0(1370) 4.3 0.1 1.5
f0(1710) 3.4 0.0 2.2∑

R FFR 129.5 103.3 108.6

Table 4.4: Fit fractions calculated from squared Dalitz plot amplitudes using CLEO’s
D+

s → K+K−π+ Dalitz model specifications. From left to right the fit fractions in full
D+

s → K+K−π+ phase space, inside the φ mass band, and inside the K∗0 mass band
are shown.

4.4.4 Remarks and Nomenclature

The considerations made in Section 4.4 and the subsequent discussions might
suggest that the statements with regards to reconstruction of B0

s → D+
s D−s via

D+
s → φπ+ and D+

s → K∗0K+ need to be overhauled; in actual fact, B0
s → D+

s D−s
is reconstructed via D+

s → K+K−π+ by choosing two narrow mass bands of the
D+

s → K+K−π+ Dalitz plot for which one expects to reconstructφ(1020) and K∗0(892)
mainly. Neither in offline reconstruction, nor in the final selection any attempt
is being made to distinguish between φ(1020) (K∗0(892)) and any other K+K−

(K−π+) resonance. To avoid confusion and to have a formal means of distin-
guishing between the exclusive decays D+

s → φπ+ and D+
s → K∗0K+ on the one

hand and the D+
s → K+K−π+ decays lying in the invariant mass regions intro-

duced by reconstruction on the other hand, from now on the phrases D+
s → φ†π+

and D+
s → K∗0†K+ are used as abbreviations for

[
D+

s → K+K−π+
]
φ(1020)mass band and[

D+
s → K+K−π+

]
K∗0(892)mass band, respectively, to increase the readability of the text.

Finally, the question may arise why reconstruction does not use the full
D+

s → K+K−π+ Dalitz plot region in the first place; the area of the chosen mass
regions does indeed only account for about 14% of the full kinematically allowed
region. Previous discussions have however shown that, due to the observed
Dalitz structure of D+

s → K+K−π+, around 76% of all D+
s → K+K−π+ events are

concentrated inside these two mass bands. The presence of large combinatorial
background all across D+

s → K+K−π+ phase space one expects for a hadron collider,
combined with the fact of strong localization of resonances in certain Dalitz plot
regions, strongly suggests to use those two mass bands only where a high signal
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purity is expected.

4.4.5 Modified Final State Branching Fractions

For the decays D+
s → φ†π+ and D+

s → K∗0†K+ the relative branching fraction
with respect to D+

s → K+K−π+ are re-defined as either the integral of the squared
amplitudes over the φ(1020) or the K∗0(892) mass band (specified by offline recon-
struction) of the D+

s → K+K−π+ Dalitz plot divided by the integral over the full
Dalitz plot region:

fφ†π+ =
B(D+

s → φ†π+)
B(D+

s → K+K−π+)
=

∫
φ(1020)

∑
R |MR|

2 dm2
K+K−dm2

K−π+∮ ∑
R |MR|

2 dm2
K+K−dm2

K−π+

(4.21)

fK∗0†K+ =
B(D+

s → K∗0†K+)
B(D+

s → K+K−π+)
=

∫
K∗0(892)

∑
R |MR|

2 dm2
K+K−dm2

K−π+∮ ∑
R |MR|

2 dm2
K+K−dm2

K−π+

(4.22)

To estimate the impact of the Dalitz model parameter uncertainties on these mass
band fractions and to evaluate possible correlations among them parameter toy
studies are carried out. This is done by repeating the calculations (4.21) and (4.22)
various times. However, in each calculation the 12 CLEO Dalitz plot parameters
(those quoted in Table 4.3) are now allowed to take any values according to
Gaussian errors, where the cases of statistical and systematic uncertainties are
treated separately.

For the category of systematic parameter uncertainties, the toy study pro-
cedure is straightforward: We generate uncorrelated Gaussian random numbers
according to the systematic uncertainties CLEO quotes and add them to the central
parameter values. Statistical uncertainties are a little bit more difficult to handle,
since one has to take into account correlations among the 12 free fit parameters.
The CLEO authors kindly provided us the full covariance matrix of fit parame-
ters (see Section A.2.1), which enables us to compute correlated Gaussian random
numbers. This is done as follows: First, a vector of uncorrelated Gaussian random
numbers having mean 0 and width 1 is generated and then multiplied with the
decomposed lower-left covariance matrix (obtained by Cholesky decomposition
[109]). The result is a vector of parameter uncertainties which are now correlated
among each other according to the covariance matrix. Afterwards the individ-
ual uncertainty projections are verified to keep their Gaussian shape, with their
respective Gaussian widths being equal to the published parameter uncertainties
(see Figures A.1 and A.2 in the Appendix). To obtain the absolute random param-
eter values, the randomly generated (and now correlated) uncertainties are added
to the central parameter values. According to the variation of Dalitz parameters,
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Figure 4.2: Computation of the fraction of D+
s → K+K−π+ decays as defined by

equations (4.21) and (4.22). In the 1000 trials the statistical uncertainties of the CLEO
Dalitz model parameters and their correlations were accounted for.

each parameter configuration represents a slightly differing D+
s → K+K−π+ Dalitz

model scenario.
Considering 1, 000 Dalitz model variations separately for both the categories

of statistical and systematic Dalitz model parameter uncertainties, the computed
fφ†π+ and fK∗0†K+ mass band fractions are plotted into histograms and the widths
of the distributions are assigned as uncertainties. The parameter toy studies give
rise to

fφ†π+ =
B(D+

s → φ†π+)
B(D+

s → K+K−π+)
= 0.380± 0.003(stat)± 0.010(sys) = 0.380± 0.010 (4.23)

fK∗0†K+ =
B(D+

s → K∗0†K+)
B(D+

s → K+K−π+)
= 0.384±0.003(stat)±0.011(sys) = 0.384±0.011 (4.24)

The top right and bottom right plots in Figures 4.2 and 4.3 illustrate the outcomes
of the D+

s → φ†π+ and D+
s → K∗0†K+ relative mass band fraction estimations. The

top left plot shows the two mass bands of the D+
s → K+K−π+ Dalitz plot chosen in

reconstruction.
In addition to the central values and uncertainties obtained in the toy ex-

periments, correlations (illustrated by the bottom left scatter plots) among them
are investigated. When correlated statistical Dalitz parameter uncertainties are
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Figure 4.3: Computation of the fraction of D+
s → K+K−π+ decays as defined by

equations (4.21) and (4.22) when accounting for systematic parameter uncertainties
CLEO quotes.

accounted for, the correlation matrix for fφ†π+ and fK∗0†K+ reads:

1 −0.035
−0.035 1

(4.25)

Considering systematic Dalitz parameter uncertainties, the following correlation
matrix is obtained:

1 −0.013
−0.013 1

(4.26)

We consider the tiny anti-correlations between the two relative branching fractions
negligible. From the relative fractions (4.23) and (4.24), the absolute mass band
fractions of D+

s → φ†π+ and D+
s → K∗0†K+ decays can be calculated by inserting

the PDG value B(D+
s → K+K−π+) = 0.0549 ± 0.0027:

B(D+
s → φ†π+) = 0.0209 ± 0.0012 (4.27)

B(D+
s → K∗0†K+) = 0.0211 ± 0.0012 (4.28)

For the reasons outlined in Section 6.5, when extracting the quantities of interest
fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

from data, the figures given in equations (4.27) and
(4.28) will be again factorized into (4.23) and (4.24) times the branching fraction
of D+

s → K+K−π+.
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4.5 Additional Considerations on B0
s → D(∗)+

s D(∗)−
s

The elaborations on the off-line reconstruction given in Section 4.2 did not cover
the cases where in the decay of the B0

s meson one or two excited D∗±s mesons
are involved. Theses cases introduce a slight complication to the reconstruction
process since the D∗±s de-excitation into the ground state D±s is accompanied by
the emittance of a slow neutral pion or a photon. Both the neutral pion and the
photon are however not detected, because their energies are below the energy
threshold of the CDF calorimetry system. Thus, the four-momentum of either the
pion or the photon are missing and the bottom-up reconstruction chain is insofar
incomplete as the chain element next to the B0

s , i.e. the D∗±s , is skipped over. In this
case one speaks of partially reconstructed B0

s events, which manifest as differently
shaped structures shifted towards lower values in the invariant B0

s → D+
s D−s mass

spectrum.
The mass line shapes of these partially reconstructed sequential two-body

decays are non-trivial since they can depend on three different aspects: First of all,
as stated above, D∗±s de-excitation can proceed via both a neutral pion or a photon.
Being non-spin-0 particles, on the other hand the angular decay distributions of
the D∗±s decay products are not flat. In this context, “flat” means that there is no
preferred direction of particle release. Different angular distributions might result
in variously formed mass line shapes. Finally, the aforementioned aspects might
in addition be sculptured by detector acceptance effects.

The mass line shapes can be estimated from Monte Carlo simulations, as long
as the required input information are available. This is true for the former aspect:
The branching ratios of the D∗±s de-excitation modes are precisely measured and
published by the Particle Data Group (PDG) [3]:

B(D∗+s → D+
s γ) =(94.2 ± 0.7) × 10−2 (4.29)

B(D∗+s → D+
s π

0) =(5.8 ± 0.7) × 10−2 (4.30)

Furthermore, simulation of the detector response is implemented in the
Monte Carlo software package (see Section 4.6). For the discussion of angular
distributions, the computation of decay amplitudes in the helicity basis is outlined
first. The helicity basis represents a commonly used frame well suited for describ-
ing sequential two-body decays. While concentrating on the critical aspects and
expressions only, which were extracted from [110] and the derived pedagogical
reviews [111, 112, 113], the subsequent sections provide a brief introduction to
this topic.
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4.5.1 Decay Amplitudes in the Helicity Basis

We consider a sequential two-body decay of particles having spins si

1 → 2 3 (4.31)

2 → 4 5

3 → 6 7

in the helicity basis. In this frame the dynamics of this sequential decay are fully
described by the given helicities λi, i = 1...7, where λi is defined as the particle’s
i spin-projection with the spin quantization axis z̃ given by its own momentum
~p( j)

i measured in the parent’s j rest frame, and the particle’s i flight direction in its
parent’s rest frame, determined by a set of angles Ω̃ = (θ̃, φ̃).

For a sequence of two two-body decays one therefore has to construct three
coordinate systems to fully describe the problem:

• The rest frame of particle 1 which is identified by the unprimed coordinate
system X = (x, y, z). In this rest frame the set of angles Ω = (θ, φ) is defined.

• The rest frame of particle 2 which is identified by the primed coordinate
system X′ = (x′, y′, z′). In this rest frame the set of angles Ω′ = (θ′, φ′) is
defined.

• The rest frame of particle 3 which is identified by the double primed co-
ordinate system X′′ = (x′′, y′′, z′′). In this rest frame the set of angles
Ω′′ = (θ′′, φ′′) is defined.

Each of the coordinate systems forms a right-handed orthonormal basis.
Given particle momenta ~plab

i specified in the lab frame, a series of rotations and
boosts are needed to proceed from the lab frame to X, X′, and X′′. First, to obtain
the unprimed coordinate system the Euler operator R(φlab, θlab,−φlab) is applied
to the lab system, effecting a rotation of the zlab axis onto the flight direction of
particle 1. With the choice of the third Euler angle γ = −α we follow the Jacob-
Wick convention [110]. In a second step, the z axis is rotated by R(φ, θ,−φ) onto
the flight direction of particle 2, followed by a boost into the rest frame of particle
2, yielding the primed coordinate system X′. Again starting from X, in a similar
way the double primed system X′′ is obtained by rotating and boosting into the
rest frame of particle 3.

The Euler operator R(α, β, γ) performs an irreducible rotation by a set of
rotation angles (α, β, γ) of a system with total angular momentum j and a definite
third component m along a quantization axis z onto a new system characterized
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by the axis z′. In applying the rotation operator, the basis state | jm〉 is transformed
into a linear combination of new basis states | jm′〉:

R(α, β, γ) | jm〉 =

j∑
m′=− j

D j
m′,m(α, β, γ) | jm′〉 (4.32)

Here, D j
m,m′(α, β, γ) are the Wigner D-functions, which can be explicitly represented

as
D j

m′,m(α, β, γ) = e−im′αd j
m′,m(β)e−imγ (4.33)

d j
m′,m are commonly referred to as the reduced Wigner functions, some of which

are tabulated in the literature, in [3] for instance. From the identity

d j
m′,m = (−1)m−m′d j

m,m′ = d j
−m,−m′ (4.34)

the reduced Wigner functions obey, all the other elements of d j
m′,m that are not

listed in the relevant literature can be obtained.
Given a two-body decay 1 → 2 3, in the helicity frame the decay amplitude

is calculated by

A(λ1, λ2, λ3,Ω) =

√
2s1 + 1

4π
Ds1∗

λ1,λ2−λ3
(Ω)Aλ2λ3 , (4.35)

where the set of angles φ, θ,−φ are encapsulated in Ω. Equation (4.35) represents
the amplitude for the spin s1 of a decaying particle 1 to have projection λ2 − λ3

along the decay axis, multiplied by the coupling to the final state helicities, given
by the complex amplitude Aλ2λ3 . Because of conservation of angular momentum,
only helicity amplitudes satisfying the selection rule

|λ2 − λ3| ≤ s1 (4.36)

are valid. If a decay is parity conserving, the number of independent helicity
amplitudes is further reduced by the condition

A−λ2−λ3 = η2η3η1(−1)s2+s3−s1Aλ2λ3 , (4.37)

where ηi denotes a particle’s intrinsic parity.
We now add another sequence of two-body decays, with particle 2 decaying

to 4 and 5, and 3 → 6 7. Constraining particle 1 to be a spin-0 particle with fixed
helicity λ1 = 0, equation (4.36) implies that λ2 = λ3 = λ. Therefore, the general
expression for the decay amplitude of a sequence of two-body decays

A(λ1, λ4,λ5, λ6, λ7,Ω,Ω
′,Ω′′) =

√
(2s1 + 1)

4π
(2s2 + 1)

4π
(2s3 + 1)

4π
(4.38)

×

s1∑
|λ2−λ3|=0

Ds1∗

λ1,λ2−λ3
(Ω)Aλ2λ3D

s2∗

λ2,λ4−λ5
(Ω′)Bλ4λ5D

s3∗

λ3,λ6−λ7
(Ω′′)Cλ6λ7
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simplifies to

A(λ4, λ5, λ6, λ7,Ω
′,Ω′′) =

√
1

4π
(2s2 + 1)

4π
(2s3 + 1)

4π
(4.39)

×

1∑
|λ|=0

AλλDs2∗

λ,λ4−λ5
(Ω′)Bλ4λ5D

s3∗

λ,λ6−λ7
(Ω′′)Cλ6λ7 ,

where one coherently sums over the allowed helicities of the intermediate particles
1 and 2, because they cannot be measured. The probability of particles stemming
from a sequence of two-body decays to have flight direction in the angle elements
dΩ′,dΩ′′ is then simply found by squaring the decay amplitude. If an experiment
does not measure the final state helicities one in addition has to incoherently sum
over them. Neglecting constant factors, the angular distribution is then given by

∣∣∣A(θ,ψ, χ)
∣∣∣2 =

s1∑
|λ4−λ5|

s1∑
|λ6−λ7|

∣∣∣∣∣∣∣
1∑
|λ|=0

Hλeiλχd1
λ,λ4−λ5

(θ)Bλ4λ5d
1
λ,λ6−λ7

(ψ)Cλ6λ7

∣∣∣∣∣∣∣
2

(4.40)

For the upcoming discussions we demand that the maximum spin of particles 2
and 3 is s2,3 ≤ 1, and simplify the notation of the three allowed helicity amplitudes
A11, A00, A−1−1 to H+, H0, H−. The helicity amplitudes are related to the amplitudes
of the transversity basis [114, 115] by

T‖ =
H+ + H−
√

2
, T0 = H0, T⊥ =

H+ −H−
√

2
(4.41)

The fraction of the square of the amplitude T0 (or H0) is called the longitudinal
polarization fraction fL:

fL =
|H0|

2

|H+|
2 + |H0|

2 + |H−|2
=

|T0|
2∣∣∣T‖∣∣∣2 + |T0|
2 + |T⊥|2

(4.42)

From the transversity amplitudes the fractions of the CP eigenstates can be derived
easily. The fractions of the parallel and the longitudinal amplitude determine the
CP even component, while the fraction of the perpendicular amplitude corre-
sponds to the CP odd component:

fCP+ = f‖ + f0 =

∣∣∣T‖∣∣∣2 + |T0|
2∣∣∣T‖∣∣∣2 + |T0|

2 + |T⊥|2
(4.43)

fCP− = f⊥ =
|T⊥|2∣∣∣T‖∣∣∣2 + |T0|

2 + |T⊥|2
(4.44)
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4.5.2 B0
s → D∗+s D−s

We now consider the decay B0
s → D∗+s D−s , with D∗+s → D+

s γ or D∗+s → D+
s π

0. The
first decay of the two-body decay chain corresponds to the decay of a pseudo-
scalar (P) to a vector (V) and a pseudo-scalar (P) particle. In terms of helicities
λ1 → λ2 λ3, it can be expressed as

0 →

1
0
−1

0 (4.45)

Being a spin-1 particle, the D∗+s meson has three possible helicities −1, 0, −1. Due
to conservation of angular momentum (4.36) only one helicity projection onto
the decay axis, λ = λ2 − λ3 = 0, is allowed though. This implies that this decay
necessarily has only one helicity amplitude H0, or in other words, the D∗+s meson
is 100% longitudinally polarized. As a consequence, D∗+s → D+

s π
0 only has one

amplitude B00. The impact of this on invariant mass line shapes will be discussed
in Section 6.3.3. Since the photon is a massless spin-1 particle which has no
longitudinal polarization component (λ5 = ±1) there are two amplitudes C01, C0−1

for D∗+s → D+
s γ.

This brief discussion demonstrates that all requisites (helicity amplitudes,
final state branching fractions) are in place to simulate this decay based on decay
amplitude calculations. Thus, for the simulation of B0

s → D∗+s D−s common Monte
Carlo generation procedures (please refer to Section 4.6) are relied upon, including
event decay simulation using the EvtGen package [116, 117, 118].

4.5.3 B0
s → D∗+s D∗−s

The situation is different in the case of the P→ VV decay B0
s → D∗+s D∗−s , which can

be expressed as

0 →

1
0
−1

1
0
−1

(4.46)

in terms of the helicities λ1 → λ2 λ3. Figure 4.4 illustrates the decay in the
helicity frame. Because of (4.36), there are three allowed helicity amplitudes
{H11, H00, H−1−1} = {H+, H0, H−}. For the full sequence of decays, with D∗+s → D+

s γ

and D∗+s → D+
s π

0, the squared decay amplitude (4.40) is given by

∣∣∣A(θ,ψ, χ)
∣∣∣2 =

1∑
|λ4−λ5|

1∑
|λ6−λ7|

∣∣∣∣∣∣∣
1∑
|λ|=0

Hλeiλχd1
λ,λ4−λ5

(θ)Bλ4λ5d
1
λ,λ6−λ7

(ψ)Cλ6λ7

∣∣∣∣∣∣∣
2

, (4.47)
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Figure 4.4: The decay B0
s → D∗+s D∗−s in the helicity frame. D∗+s de-excitation proceeds

via D∗+s → D+
s γ or D∗+s → D+

s π
0

where constant factors have been omitted. In addition, the substitutions θ′ ≡ θ,
θ′′ ≡ ψ, and χ ≡ φ′ + φ′′ have been made. The reduced Wigner d-functions for
a particle with total angular momentum of 1 are tabulated in Section A.3. The
external incoherent summation over helicities depends on the final state particles
involved in the decay of the spin-1 particle D∗+s . The pseudo-scalars D+

s and π0

have fixed helicities of 0, while the photons’ helicities are λ5,7 = ±1. The coupling
amplitudes are then B00 = C00 for pion decays, and B01, B0−1, C01, and C0−1 for
radiative D∗+s decays. Because electromagnetic decays are parity conserving, it
follows from (4.37):

B01 = −B0−1 (4.48)

C01 = −C0−1 (4.49)

Hence, the coupling amplitudes Bλ4λ5 and Cλ6λ7 can be factorized out as constant
factors for every summand of the external helicity summation, and do not affect
the resulting angular shape.

Equation (4.47) lacks one essential piece of input information: The helic-
ity amplitudes {H+, H0, H−} are unknown, since they have not yet been mea-
sured before for this particular decay. From a theoretical point of view [34] it is
however reasonable to use the helicity amplitudes measured for B0

d → D∗+D∗−s ,
{H+, H0, H−} = {0.4904, 0.7204, 0.4904} [119]: Both B0

s → D∗+s D∗−s and B0
d → D∗+D∗−s

proceed via a Cabibbo- and color-favored b → cc̄s tree diagram, with the D∗+s

meson produced by the same weak current and the initial and final state meson
masses being very close. The only difference arises by the spectator quark, s or d.
When simulating B0

s → D∗+s D∗−s decays the helicity amplitudes of B0
d → D∗+D∗−s are

thus relied upon. Because different angular distributions can affect reconstructed
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B0
s mass line shapes and efficiencies, not only the default B0

d → D∗+D∗−s helicity con-
figuration will be used, but in addition several different configurations in order to
assess the effects on the final results as a systematic check (Section 7.3.3). Despite
the fact that B0

s → D∗+s D∗−s is only partially reconstructed, changing parameter ex-
pectations in Monte Carlo might even allow to infer the true helicity amplitudes
of B0

s → D∗+s D∗−s and, using (4.43-4.44), the fraction of the CP-odd component, if
significantly different from zero. This will be investigated in Section 6.6.

From a technical point of view there is one difficulty that has to be overcome:
The full procedure of generating a Monte Carlo sample – including event genera-
tion, event decay, detector simulation, and further data processing – with reason-
able statistics takes a considerable amount of time. In order to carry out studies
with different sets of helicity amplitudes within a reasonable time scale only one
Monte Carlo sample is therefore produced, for which phase space configuration
is used in simulation. Other scenarios are obtained by doing an event-by-event
weighting of simulated data, where the weights are given by the squared decay
amplitudes calculated from equation (4.47). For the final state φ†π+φ†π− (quali-
tatively the same results are obtained for φ†π+K∗0†K−), in Figure 4.5 the angular
distributions of the helicity angles cos(θ) and χ are shown for the phase space
case and the standard helicity scenario {H+, H0, H−} = {0.4904, 0.7204, 0.4904}.

4.6 Monte Carlo Simulation
Monte Carlo Ntuple production comprises several successive stages, starting with
the creation of B mesons using the event generator BGenerator (BGen)[120]. In
contrast to the widely-used PYTHIA [121] event generator which creates bb̄ pairs,
BGen only simulates single B mesons without the anti–bottom quark and frag-
mentation products. Fragmentation processes are implemented via the Peterson
fragmentation function [122].

Both for B0
s and B0

d mesons the generated pT spectrum follows a reference
spectrum derived from 2 fb−1 of exclusive B0

d decays. It is nominally valid for B+,
B0

s and B0
d mesons over the kinematic range pT > 6 GeV/c and the rapidity range

|Y| < 1.5.
For the simulation of the B decay chains the EvtGen [116, 117, 118] software

package is employed. EvtGen is an versatile event decayer containing many
detailed physics models that allow to simulate a wide range of decays. To per-
form the complete sequence of event generation, event decay, and a geant3 based
[123] detector simulation the cdfSim [124] program is run, that invokes the corre-
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Figure 4.5: Monte Carlo cos(θ) (a,c) and χ (b,d) distributions of B0
s → D∗+s D∗−s phase

space (upper row) and re-weighted Monte Carlo (bottom row), where in the latter
case weights were calculated from the standard helicity amplitude configuration
{H+, H0, H−} = {0.4904, 07204, 0.4904}.
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sponding sub-modules one after another. To apply the CDF Two Track Trigger
simulation the TRGSim++ [125] program runs over the output of cdfSim. Finally,
the TRGSim++ output is fed through ProductionExe which performs event recon-
struction. All programs used for simulation are built from CDF software version
6.1.4mc.m, patch r.

For the reasons outlined in Section 4.4, it is not correct to estimate reconstruc-
tion and selection efficiencies from Monte Carlo simulations with the D+

s meson
exclusively decaying to φπ+ or K∗0K+. Thus, existing Monte Carlo samples which
already had been produced for the studied decay channels cannot be used. To
have a simulation correctly reflecting the sub-resonance structure of D+

s → K+K−π+

decays of B0
s → D+

s (K+K−π+)D−s (K−K+π−) and B0
d → D+

s (K+K−π+)D−(K+π−π−) are
simulated considering the full Dalitz structure of D+

s → K+K−π+. Since this par-
ticular decay mode has not yet been included in the official EvtGen software it has
to be implemented first.

Adding a new decay model into EvtGen is straightforward: All the program
needs to calculate the decay probability at the Ds decay vertex is the squared
decay amplitude as a function of randomly generated daughter four-momenta.
Therefore, the module calculating the squared amplitude |M|2 at a given coordi-
nate in the (m2

K+K− ,m
2
K−π+) Dalitz plane is integrated into the EvtGen framework.

By running fast simulations – i.e. simulations without simulating trigger and
detector response – it is verified that Monte Carlo generation does not introduce
any bias to decay dynamics, where we are particularly interested in the size of
the mass band fractions fφ†π+ (4.21) and fK∗0†K+ (4.22). Rather than integrating over
squared Dalitz plot amplitudes, these fractions are now determined by counting
events lying within the corresponding mass bands and dividing them by the total
number of simulated events populating the full Dalitz plane. If the total number
of events generated in fast simulation is very large, the fraction of events lying in-
side the two mass bands should be as large as calculated directly from the model.
Therefore a total number of 106 events populating the kinematically allowed
Dalitz plot region are requested in simulation. Figure 4.6 shows the scatter plot of
simulated events. The mass band fractions determined from counting simulated
events agree well with those calculated from integrating the two-dimensional real
function of squared amplitudes. We conclude that EvtGen simulation does not
introduce any bias and are now confident that the Monte Carlo simulation will
adequately reflect the decay dynamics according to the used Dalitz model.

We run full Monte Carlo simulations for B0
s → D+

s (K+K−π+)D−s (K−K+π−) and
B0

d → D+
s (K+K−π+)D−(K+π−π−) according to the decay tables shown in Section A.4

of the Appendix. In total, around 4.5 billion B0
s mesons and 1.8 billion B0

d mesons
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Figure 4.6: Scatter plot of simulated events populating the D+
s → K+K−π+ Dalitz

(m2
K+K− ,m

2
K−π+) plane.

are generated and decayed. The numbers of events to be generated per run are
determined by means of weights derived from integrated luminosity acquired for
each run. Simulations are run for a wide range of runs (numbers 138809 to 267718,
corresponding to CDF operation periods 0 through 20).

After full simulation of detector and trigger response, the same offline recon-
struction and skimming procedures as discussed in Section 4.2 are applied to the
samples of simulated events.

4.7 B Meson Transverse Momentum and Rapidity Spec-
trum

This chapter concludes with a comparison of the signal B0 transverse momentum
(pT(B0)) and rapidity (Y(B0)) distributions observed in real data and Monte Carlo.
For this purpose the decay mode B0

d → D+D−s → K−π+π+φπ− is used. Among the
decay modes being subject to this analysis this channel is expected to hold the
largest amount of signal events.

Signal candidates in data are taken from the expected B0
d → D+D−s signal

region in invariant mass space, which is defined as ±3σ around the nominal mass
mB0

d
= 5.279 GeV/c2. 1σ = 9 MeV/c2 is the effective B0

d → D+D−s width mainly
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Figure 4.7: Detector resolution of reconstructed B0
s meson mass (a) and B0

d meson
mass (b) estimated from simulated data.

driven by the uncertainties of reconstructed particle four-momenta, since the
natural B meson width is tiny [3]. The detector resolution can be estimated from
simulated data by subtracting the Monte Carlo truth B mass from the reconstructed
mass and fitting a single Gaussian function to the distribution. The detector
resolution is then given by the Gaussian width. Figure 4.7 displays the mass
resolution fits both for the B0

s and the B0
d meson using the B0

s → D+
s D−s → φ†π+φ†π−

and B0
d → D+D−s → K−π+π+φ†π− Monte Carlo samples.

To obtain a clean pT(B0) signal distribution, the background contribution
needs to be subtracted first. Background events lying within an equally-sized
mass band (mB0

d→D+D−s ∈ [5.356, 5.410]) slightly shifted to higher invariant masses
should give a reasonable representation of the background contribution in the
signal region. As upcoming discussions will show (Section 6.4), the background
contribution in invariant mass is not flat but rather has a decreasing exponential
shape. Therefore, prior to background subtraction upper sideband events are
re-weighted using

w(m) =
Pi

bg(m − ∆m)

Pi
bg(m)

, (4.50)

where m is the floating invariant B0
d mass in upper sideband and ∆m is the offset

between the upper edge of the signal region and the lower edge of the sideband
region. The parameters (slope, constant offset) of the background parameteriza-
tion function Pi

bg are obtained from a fit to the channel B0
d → D+D−s → K−π+π+φπ−

(for fit details see Section 6.4). To retain a sufficient amount of background, both
for the purpose of fitting and background subtraction a very soft neural network
cut of NN > −0.8 is applied (for details on the pre- and the Neural Network
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Figure 4.8: Normalized ratio of pT(B0) distributions observed in side-band subtracted
data and Monte Carlo. Simulated data has not yet been corrected for true Two-Track
Trigger fractions.

Data Monte Carlo
Trigger Sub-Path Events Fraction Events Fraction Weight wt

1 412 0.156 98891 0.415 0.375
2 587 0.222 49627 0.208 1.065
3 1648 0.622 89776 0.377 1.652

Table 4.5: Comparison of the two-track trigger sub-path fractions in Data and Monte
Carlo. The right-most column gives the weight wt simulated data is corrected with.

selection please refer to sections 5.2 and 5.3). After background subtraction, the
data pT histogram distribution is divided by the one observed in Monte Carlo.
If simulated data provides a reasonable representation of the true pT signal dis-
tribution, one expects the pT ratio to be flat. Apparently (Figure 4.8), transverse
momentum is not well described by simulated data. To follow up this matter
both data and Monte Carlo are sub-divided into the three exclusive sub-samples
according to the different trigger scenarios of data taking. These were defined at
the very beginning of this chapter. For each of the sub-samples the pT(B0) distribu-
tions of side-band subtracted data and Monte Carlo are plotted and the number of
events extracted (Figure 4.9). According to Table 4.5, particularly the shares of the
trigger sub-samples 1 and 3 do not agree well in data and Monte Carlo. We thus
re-weight simulated data using the weights given in the last column of Table 4.5.
If not stated otherwise, this kind of Monte Carlo correction is applied whenever
utilizing simulated data.

Figures 4.10(a) and 4.10(b) show the normalized ratio of the number of data
over corrected Monte Carlo events in pT bins of 500 MeV/c. The hypothesis
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Figure 4.9: From first to third row, pT(B0) distributions of the exclusive Two-Track
Trigger sub-samples (labeled by TriggerFlags T1, T2, T3) in side-band subtracted data
(left column) and Monte Carlo (right column).
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Figure 4.10: Normalized ratio of pT(B0) distributions observed in side-band subtracted
data and Two-Track Trigger corrected Monte Carlo using the decay channel B0

d →

D+D−s → K−π+π+φ†π− with a constant (a) and a 1st order polynomial fitted to it.

of pT compliance in Monte Carlo and data is tested by fitting a straight line to
the ratio of pT ratio distribution (Figure 4.10(a)). Fitting a 1st order polynomial
to the same distribution (Figure 4.10(b)) yields a slope being compatible with 0
and a comparable fit quality. We therefore conclude that after Two-Track Trigger
correction Monte Carlo does describe the pT(B0) distribution observed in data
reasonably well. The change in pT slope can be attributed to the pT dependance of
the Two-Track Trigger sub-paths.

In the same way the agreement of the Y(B0) distributions observed in data
and Monte Carlo (Figures 4.11(a) and 4.11(b)) is validated.
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Figure 4.11: Ratio of Y(B0) distributions observed in side-band subtracted data and
Monte Carlo using the decay channel B0

d → D+D−s → K−π+π+φ†π− with a constant
fit (a) and 1st order polynomial fit (b).





5
Signal Selection

5.1 Overview
After building skimmed Ntuples from reconstructed hadronic streams, data and
Monte Carlo are ready for the next analysis stage: classification of data and
selection of a clean sample of signal candidates to be used for the extraction of
branching fractions. Data selection is a two-step process: Firstly, data is required to
pass loose pre-cuts applied to several kinematical quantities. This already removes
a large fraction of combinatorial background, substantially reducing the size of the
data samples to be further processed. In contrast to pre-selection, final selection
of signal candidates is not done on the basis of a rectangular cut optimization but
using a neural network based multivariate approach that accounts for variable
correlations.

5.2 Track Quality and Pre-selection Requirements
In order to improve track quality, both data and Monte Carlo flat Ntuples share
the following pre-cuts per track:

• Number of COT stereo hits ≥ 10

• Number of COT axial hits ≥ 10

• Number of Silicon Stereo + Silicon axial hits ≥ 3

• Minimum track transverse momentum pT ≥ 0.35 GeV/c

Additionally, loose pre-cuts on certain kinematic variables are applied to sort out
obvious background events. This enables a much smoother operation of artificial

75
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B0
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d → D+D−s → K−π+π+φ†π−
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s ) < 20 χ2
rφ(D) < 20

Table 5.1: Applied pre-cuts for the studied decay channels having φ†π+ in the final
state. See Section A.1 in the Appendix for definition of variables.

Neural Networks that will be used for final classification and selection of B0
s →

D+
s D−s and B0

d → D+D−s events. Moreover, candidates reconstructed from tracks
with wrong charge combinations are rejected. The charge constraints depend on
the final pion and kaon states of the particular decay mode and are listed in Tables
5.1 and 5.2 along with all the other applied pre-selection requirements.

The selection of variables and cut values were chosen on the basis of the
following criteria: The cut on the B meson transverse momentum was selected
because of the nominally valid kinematic region of the input pT spectrum used
for Monte Carlo generation. The Lxy/σLxy requirement placed on the D(s) mesons
is a confirmation of the offline reconstruction cuts, except for the decay channel
B0

s → D+
s D−s → φπ+φπ− where this cut had not been made on reconstruction level.

The standard off-line reconstruction criteria exhibited another issue related to the
χ2 cut of the Ds vertex fit in the r-φ plane. This inconsistency was eliminated by
choosing a common requirement of χ2

rφ(D(1,2)
s ) < 20.

5.3 Neural Network Selection
For final event selection this analysis makes use of the NeuroBayes [126] program.
This multivariate analysis software package combines a sophisticated variable
pre-processing algorithm with a feed-forward three-layer artificial neural net-
work. Each network layer comprises a set of artificial neurons, or nodes, that are
interconnected with every node of the neighboring layer. The number of input
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s
)

> 6.0 GeV/c pT

(
B0

d

)
> 6.0 GeV/c∣∣∣d0

(
B0

s
)∣∣∣ < 0.012 cm

∣∣∣∣d0

(
B0

d

)∣∣∣∣ < 0.012 cm

Lxy/σLxy

(
B0

s
)

> −2.0 Lxy/σLxy

(
B0

d

)
> −2.0

Lxy/σLxy

(
D(1)

s

)
> 3.0 Lxy/σLxy (Ds) > 3.0

Lxy/σLxy

(
D(2)

s

)
> 3.0 Lxy/σLxy (D) > 3.0

χ2
rφ(D(1)

s ) < 20 χ2
rφ(Ds) < 20

χ2
rφ(D(2)

s ) < 20 χ2
rφ(D) < 20

Table 5.2: Applied pre-cuts for the studied decay channels having K∗0†K in the final
state. See Section A.1 in the Appendix for definition of variables.

nodes corresponds to the amount of discriminating variables chosen. Since the
discrimination between signal and background in data poses a binary classifica-
tion problem the output layer consists of a single node only1. Figure 5.1 gives a
schematic view of a simple three-layer feed-forward network. In applying a neu-
ral network the N-dimensional space spanned by the input variables is mapped
onto the single output node, providing a powerful one-dimensional discriminator.
Instead of cutting on several discriminating variables, this single discriminator
is then used to select events having a particular signature from an unclassified
data sample. A striking advantage over rectangular cut-based analysis techniques
comes by the fact that correlations among the individual input variables are taken
into account.

Before a neural network is ready to operate, an optimal net configuration
needs to be established by machine learning, which in this context is also called
network training. For a binary separation problem, this procedure requires train-
ing patterns with known classification to be in place. During the learning process
the connection strengths among the individual nodes are iteratively adjusted un-
til the network output matches the known classification encoded in the target
variable. To further optimize the prediction and generalization capabilities, at
the same time preventing the network from learning certain patterns by heart,
advanced network learning algorithms like the one embedded in the NeuroBayes

1As an additional program function, NeuroBayes also provides the estimation of continuous
probability densities. For this work however binary classification is relevant only.
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Figure 5.1: Schematic representation of a three-layer feed-forward neural network.
Prior to network training the input variables can be preprocessed to ease the network
training process.

package incorporate further sophisticated measures. These are described in detail
in Ref. [126].

Once the training has succeeded, the network topology and the weights
among the nodes are saved to what is commonly referred to as the expertise of the
neural network. When applied to unclassified data, the vector of input variables
is fed into the network and transformed into a single floating number based on
the expertise.

5.3.1 Composition of Training Data

Training patterns comprise two distinctive samples which are a priori known to
be composed of signal or background events only. Signal events are provided by
means of Monte Carlo simulations, where only fully and correctly reconstructed
signal is used. The other sample has to reflect the random combinatorial behavior
of non-signal events. Since current models used in Monte Carlo simulations are
not able to adequately model the complex quark production and hadronization
processes, background patterns are taken from regions in real data which are
known to be completely free of any signal like component. A common approach
is to use data from the lower and upper sidebands (i.e. events to the left and to
the right of fully reconstructed B(s) meson signal) of the invariant mass spectra
in order to emulate the behavior of combinatorial background lying inside the
signal region. However, as later discussions will show (Sections 6.3 and 6.4),
the lower mass region is populated by so called partially reconstructed events,
which exhibit signal-like signatures. The upper sideband region does not contain
any signal-like events and thus can be used for network training. For all the
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Figure 5.2: Invariant mass distributions of pre-selected data. The upper mass regions
used as background training patterns are highlighted by the green color. Fully re-
constructed simulated signal used as signal training patterns are overlayed in blue
color.

studied decay channels upper sideband data ranging from 5.45 to 6.5 GeV/c2 are
used as background training patterns. Figure 5.2 shows the reconstructed mass
distributions containing all events having passed the pre-selection requirements.
The background training regions are highlighted by the green mass band, with
the samples of fully reconstructed Monte Carlo samples overlayed in blue.

Training and selection are not done on the basis of four networks (one network
per studied decay channel), but using two networks only: Exploiting the similar
decay topologies of particular modes, one joint network is trained for those B0

(s)

decay modes reconstructed from D+
s → φ†π+ (B0

s → D+
s D−s → φ†π+φ†π− and

B0
d → D+D−s → K−π+π+φ†π−), and one training for those decay modes with the

(second) Ds decaying into K∗0†K (B0
s → D+

s D−s → φ†π+K∗0†K− and B0
d → D+D−s →

K−π+π+K∗0†K−). This reduces the amount of networks required from four to two.
The main motivation for using joint B0

s /B0
d networks is to be in line with the way the

figures of interest will be determined: The branching fractions of B0
s → D(∗)+

s D(∗)−
s
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decays will be extracted from data by measuring the ratio of branching fractions

fD(∗)
s D(∗)

s
=

fs

fd

B(B0
s → D(∗)+

s D(∗)−
s )

B(B0
d → D+D−s )

, (5.1)

where B0
d → D+D−s is used as normalization channel (please refer to Chapter 6 for

details). Having common selections for the signal and normalization channels
will make systematic studies easier, and selection efficiency related systematic
effects partly cancel out in the ratio of topologically similar decays.

5.3.2 Input Variables

To achieve an optimal neural network training result, a set of variables that allows
to efficiently exploit the information contained in the training patterns needs to
be selected. The set of variables that had been used for the rectangular cut-based
optimization procedure in the former CDF analysis [37] certainly forms a sound
basis for a neural network training. In addition to the B(s) and D(s) meson variables
originally used, kinematical quantities of the final state daughter particles and
Particle Identification (PID) variables, that reflect the probability of a given track to
be a pion, kaon or proton, are included. A full list of the training variables will be
given below.

The B0
s and the B0

d meson both have very similar masses, and exhibit long
and virtually equal lifetimes, thus the kinematical B0

(s) quantities have very similar
features. Therefore, the joint B0

s /B0
d neural network training setups use common

sets of kinematical and fit quality B0
(s) variables. The second type of input variables

are kinematical, vertex fit quality and PID variables of one Ds meson and its
daughter particles (D+

s → φ†π+
→ K+K−π+ on the one hand, D+

s → K∗0†KK+
→

K+π−K+ on the other hand). The drawback of performing one joint B0
s /B0

d network
training for two channels is given by the fact that one can only consider one branch
of the meson decay chain, since the second charm meson is a Ds decaying into
φ†π (K∗0†K) in the case of B0

s decays and a D decaying into Kππ for B0
d decays.

This is partially compensated by adding the deviation in reconstructed mass of
the second D(s) meson with respect to the corresponding PDG value. Tables 5.4
and 5.4 give a schematic overview of the input variables entering the network
trainings.

5.3.3 Neural Network Training Results

In this section the results of the neural network trainings are presented. The
compilation of results is limited to the essential input and output information.
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B0
s D(1)

s D(2)
s φ†π φ†π

Index B0
d D(1)

s D φ†π Kππ
2 Lxy/σLxy

3 pT

4 |d0|

5 χ2
rφ

6 prob
7 Lxy/σLxy

8 Lxy(B(s) ← Ds)
9 pT

10 |d0|

11 χ2
rφ

12 prob
13 Lxy(Ds ← φ†)
14 dlts

0 /σd0 (π)
15 PID.ratioPion(π)
16 dlts

0 /σd0

(
K(1)

)
17 PID.ratioKaon(K(1))
18 dlts

0 /σd0

(
K(2)

)
19 PID.ratioKaon(K(2))
20 min(pT)
21 min(d0/σd0)
22 m(K(1)K(2))
23 m(K(1)π)
24 m(K(2)π)
25 mrec −mpdg

Table 5.3: Schematic overview of the variables entering the joint B0
s → D+

s D−s →
φ†π+φ†π−/B0

d → D+D−s → K−π+π+φ†π− network. See Appendix A.1 for definition of
variables. Index number 1 is reserved for the target variable.
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B0
s D(1)

s D(2)
s K∗0†K φ†π

Index B0
d D(1)

s D K∗0†K Kππ
2 Lxy/σLxy

3 pT

4 |d0|

5 χ2
rφ

6 prob
7 Lxy/σLxy

8 Lxy(B(s) ← Ds)
9 pT

10 |d0|

11 χ2
rφ

12 prob
13 Lxy(Ds ← K∗0†)
14 dlts

0 /σd0

(
K(1)

)
15 PID.ratioKaon(K(1))
16 dlts

0 /σd0

(
K(1)

)
17 PID.ratioKaon(K(2))
18 dlts

0 /σd0 (π)
19 PID.ratioPionπ)
20 min(pT)
21 min(d0/σd0)
22 m(K(1)K(2))
23 m(K(1)π)
24 m(K(2)π)
25 mrec −mpdg

Table 5.4: Schematic overview of the variables entering the joint B0
s → D+

s D−s →
φ†π+K∗0†K−/B0

d → D+D−s → K−π+π+K∗0†K− network. The list of variables used is
formally identical to one of the φ†π network. The difference arises by the final
states φ†π and K∗0†K, which are reconstructed in two non-overlapping mass bands of
D+

s → K+K−π+ phase space.
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Rank Name This only Add Signi Loss Global Corr Index
- Target - - - - 1
1 Lxy/σLxy (B0

(s)) 507.98 507.98 117.06 83.51 2

2 min(pT) 478.58 243.26 78.49 74.71 20
3 prob(B0

(s)) 411.13 182.55 40.61 85.87 6

4 PID.ratioKaon(K(2)

D(2)
s

) 443.15 130.66 51.40 75.61 17

5 min(d0/σd0 ) 454.80 93.23 73.75 73.92 21
6 PID.ratioKaon(K(2)

D(2)
s

) 431.52 68.18 50.40 72.93 19

7
∣∣∣∣d0(B0

(s))
∣∣∣∣ 245.80 60.59 47.17 37.65 4

8 χ2
rφ(B0

(s)) 446.08 49.39 35.36 85.41 5

9 Lxy(B0
(s) ← D(2)

s ) 159.00 41.53 39.99 35.71 8

10 m(K(2)K(2)) 266.26 33.89 29.07 43.30 22
11 ∆m(D(2)

(s) ) 263.56 31.94 27.61 54.64 25

12 m(K(2)π) 266.32 29.42 10.00 83.26 24
13 Lxy(D(2)

s ← φ) 347.85 27.89 28.94 84.49 13
14 pT(B0

(s)) 395.91 24.94 20.62 71.76 3

15 pT(D(2)
s ) 454.46 16.95 20.13 86.89 9

16 χ2
rφ(D(1)

2 ) 205.11 14.77 9.13 78.83 11

17 m(K(2)π) 265.17 9.62 9.63 83.26 23

18 dlts
0 /σd0

(
K(2)
φ

)
391.26 8.99 8.37 79.40 18

19
∣∣∣d0(D(2)

s )
∣∣∣ 148.41 7.21 8.03 58.61 10

20 dlts
0 /σd0

(
K(2)
φ

)
398.51 5.25 7.51 81.19 16

21 Lxy/σLxy (D(2)
s ) 407.23 5.69 8.41 92.16 7

22 dlts
0 /σd0

(
πD(2)

s

)
312.91 6.70 6.76 81.21 14

23 prob(D(2)
s ) 153.63 2.42 2.41 79.72 12

- 2σ threshold - - - - -
24 PID.ratioPion(πD(2)

s
) 288.52 0.68 0.68 62.85 15

Table 5.5: Input variables of the combined network trained for the decays B0
s →

D+
s D−s → φ†π+φ†π− and B0

d → D+D−s → K−π+π+φ†π−, ranked by their significance.
K1,2 denotes the first or second kaon from a φ meson decay. See Appendix A.1 for
variable definitions. The quantity This only is the correlation of a variable to the target
multiplied by

√
n (with n being the training samples size), without taking into account

other variables. The ranking of variables is made based on the quantity Add Signi
which gives the amount of information this variable adds to the overall performance.
Variables ranked below the 2σ threshold are not used in the network training. Loss
indicates the correlation of a variable to the target multiplied by

√
n when the given

variable is removed from the variable set. Global Corr denotes the global correlation
of a given variable to all the others given in percent. Index marks a variable’s column
/ row position in the correlation matrix.
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Figure 5.3: Correlation matrix of the input variables used for the combined network
training of the decays B0

s → D+
s D−s → φ†π+φ†π− and B0

d → D+D−s → K−π+π+φ†π−
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Figure 5.4: Two of the training graphs indicating performance and quality of the
network trained for B0

s → D+
s D−s → φ†π+φ†π− and B0

d → D+D−s → K−π+π+φ†π−
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First, training variables are presented ordered by their significance (Tables 5.5 and
5.6). The ranking of the input variables according to their significance is part of
the pre-processing of the NeuroBayes learning program (Teacher), and is done
in the following way: After the correlation matrix is computed for the full set of
N input variables, one variable at a time is removed and the correlation to the
target is re-calculated. The least significant variable, i.e. the variable causing
the least loss of information, is detached from the input set. The correlation
matrix is re-computed for the set of N − 1 input variables, and the procedure of
removing one variable one after another is repeated. Again, the least significant
variable is discarded. This procedure is repeated until one single variable, i.e. the
variable holding the strongest discriminating power, remains. For what concerns
the ranking shown here, all linear dependence with the target has been rotated
into the first variable (the first training variable, not the target) after de-correlation
of input variables. For the network training only variables were used which have
a statistical significance higher than 2σ. The variables used in the training are
computed as a combination of the original input variables after the correlation
matrix has been diagonalized by means of iterative Jacobi rotations. For more
information it should be referred to [126] and the supporting technical documents
coming with the NeuroBayes software package [127].

The correlations between the variables are illustrated by color-coded corre-
lation matrices (Figures 5.3 and 5.5). Finally, two of the characteristic graphs
indicating a neural network’s quality and performance are given (Figures 5.4 and
5.6): In the first graph (a) a network’s capability to separate between signal and
background events is verified on the training samples. In the second plot (b) the
linearity of the purity P(NNout) = Ns(NNout)/(NS + NB)(NNout) as a function of
the neural network threshold NNout is tested. For a well trained network one
expects the training data points to lie on the diagonal.

5.4 Finding Optimal Neural Network Working Points
By running a routine called Expert the network expertise is applied to unclassi-
fied data. In doing so, an additional variable NNout holding an event-by-event
classification encoded in a real number in the range [−1, 1] is written onto the flat
ntuples. In this notation, a classification of NNout < 0 means that a given event
is more likely to be a background event, while signal-like events are classified by
NNout > 0. The selection of signal candidates is done by only retaining candidates
having a neural network classification larger than a certain threshold, providing



86 5. Signal Selection

Rank Name This only Add Signi Loss Global Corr Index
- Target - - - - 1
1 Lxy/σLxy

(
B0

(s)

)
650.99 650.99 126.70 84.78 2

2 χ2
rφ

(
B0

(s)

)
598.25 321.76 53.43 85.72 5

3 PID.ratioKaon(KD(1)
s

) 568.95 223.18 85.28 64.62 15

4 PID.ratioKaon(KK∗0 ) 532.82 154.14 69.13 64.62 17
5 dlts

0 /σd0

(
KD(1)

s

)
579.21 116.49 50.87 72.84 14

6 min(pT) 496.02 98.86 52.80 68.23 20
7 Lxy(B0

(s) ← D(1)
s ) 230.78 41.05 67.87 35.10 8

8 m(K(2)π) 469.71 83.06 12.34 95.10 24
9 min(d0/σd0 ) 555.11 57.50 69.10 71.75 21

10
∣∣∣∣d0(B0

(s))
∣∣∣∣ 316.76 63.06 50.71 38.88 4

11 prob(B0
(s)) 542.94 50.76 41.77 85.53 6

12 pT(D(1)
s ) 582.27 43.70 44.62 83.54 9

13 pT(B0
(s)) 520.21 35.68 40.38 72.22 3

14 Lxy(D(1)
s ← K∗0) 433.98 38.19 43.65 84.67 13

15 m(K(1)π) 249.91 34.05 33.38 27.27 23
16 ∆m(D(2)

(s) ) 334.59 26.79 24.27 54.01 25

17 Lxy/σLxy (D(1)
s ) 541.99 21.83 32.01 90.23 7

18 Lxy(D(1)
s ← KK∗0) 417.11 19.29 24.13 71.97 16

19 dlts
0 /σd0 (πK∗0 ) 344.83 17.50 17.50 65.42 18

20 m(K(1)K(2)) 465.15 12.34 12.49 95.06 22
21

∣∣∣d0(D(1)
s )

∣∣∣ 253.10 12.34 8.68 66.49 10
22 χ2

rφ

(
D(1)

s

)
321.29 8.82 8.05 79.16 11

23 PID.ratioPion(πK∗0 ) 258.74 7.59 3.86 48.82 19
24 prob(D(1)

s ) 235.88 3.59 3.59 79.16 12

Table 5.6: Significance-ranked input variables of the joint B0
s → D+

s D−s → φ†π+K∗0†K−

/ B0
d → D+D−s → K−π+π+K∗0†K− network. See Appendix A.1 for variable definitions.
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Figure 5.5: Correlation matrix of the input variables used for the combined network
training of the decays B0

s → D+
s D−s → φ†π+K∗0†K− and B0

d → D+D−s → K−π+π+K∗0†K−.
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(a) Network classification of training data.
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Figure 5.6: Graphs indicating performance and quality of the network trained for
B0

s → D+
s D−s → φ†π+K∗0†K− and B0

d → D+D−s → K−π+π+K∗0†K−.
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for an effective elimination of the vast amount of background events.
Since one is interested in minimizing the statistical uncertainty of the branch-

ing fraction measurement a common approach is to choose a cut on the neural

network output that maximizes the figure of merit S = Nexp
S /

√
NData

S+B , which is

usually referred to as Significance. Here, NData
S+B denotes the total yield comprising

signal and background in a pre-defined B0
s signal region, [5.343 < m(B0

s ) < 5.397].
The mass window corresponds to the central Bs mass ±3σ, where 1σ = 9 MeV
is the effective width mainly driven by detector resolution derived from Monte
Carlo. Since the signal yields for the studied B0

s → D+
s D−s channels are expected

to be by far smaller than those for B0
d → D+D−s the statistical uncertainty of the

branching fraction result is expected to be dominated by the former decay modes.
Therefore, the signal optimization procedure is done for B0

s → D+
s D−s → φ†π+φ†π−

and B0
s → D+

s D−s → φ†π+K∗0†K− only.
When optimizing the figure of merit no use is made of the fitting method that

will be described in Section 6. This is to avoid a potential bias which could be
introduced by fluctuations of the fit result, particularly in the case of low signal
statistics. Therefore Nexp

S is chosen to be the expected number of signal events for
a given network cut, deduced from the general relation (6.18):

Ni,exp
B0

s→D+
s D−s

= Ntot
B0

s
B(B0

s → D+
s D−s )B(D+

s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s
,

εB0
s→D+

s D−s is the combined reconstruction and selection efficiency which is calcu-
lated from simulated data having a larger Neural Network classification than a
given value (for a more accurate definition of the efficiency term please refer to
the immediately following Section 5.5). In this sense, the figure of merit S is the
simulated signal yield scaled down by the current world average intermediate
and final state branching fractions, divided by the square root of the total number
of candidates inside the specified signal region in data, NData

S+B . To obtain a reason-
able scaling for S, Ntot

B0
d
, the total number of B0

d mesons produced at the Tevatron,

is arbitrarily set to 1011.
Figure 5.7 shows the figure of merit S as a function of the Neural Network

threshold for the decay B0
s → D+

s D−s → φ†π+φ†π−. Because no maximum sig-
nificance is found for B0

s → D+
s D−s → φ†π+K∗0†K− (Figure 5.8) in the examined

Neural Network range the network scan is focussed on the upper region, while
the granularity of the scan is increased. From the significance curves the values
NNout > 0.9 and NNout > 0.98, respectively, are extracted as Neural Network
working points.
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Figure 5.7: Signal significance S = Nexp
S /
√

NS + NB
Data as a function of neural network

output for the decay B0
s → D+

s D−s → φ†π+φ†π−. The vertical red line indicates
the neural network requirements finally chosen. The error bars give the combined
uncertainty due to the uncertainty of the number of data events lying in the signal
region and due to limited Monte Carlo statistics.
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output for the decay B0
s → D+

s D−s → φ†π+K∗0†K− (a). Zoom into the upper network
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5.5 Associated Efficiencies
The combined reconstruction and signal selection efficiency for a given decay
mode is estimated from the ratio of the number of reconstructed simulated events
passing the Neural Network requirement, and the number of generated simula-
tion events:

ε =
NMC

rec

NMC
gen

=
NMC

rec

f MCNMC
tot

=

3∑
t

wtNMC
rec,t

f MCNMC
tot

(5.2)

The number of reconstructed events in simulated data is the sum of re-weighted
Two-Track Trigger sub-samples numbered by t ∈ [1, 2, 3]. The weights wt are
calculated from a data/Monte Carlo comparison (Section 4.7). The number of
generated signal events of a particular decay mode is calculated from the total
number of generated events of a particular Monte Carlo sample, NMC

tot , and the
decay fraction f MC of a simulated decay. Following a particular decay chain, f MC

results from multiplying the individual decay fractions at each decay stage defined
in the Monte Carlo decay tables (Section A.4), with the following exception: The
fractions of generated events in the φ(1020) and K∗0(892) mass windows are not
immediately apparent from the decay tables, since D+

s → K+K−π+ events are
simulated all across the Dalitz plot. Nevertheless, having full knowledge of the
model used in simulation it is straightforward to calculate f MC

φ (1020) and f MC
K∗0(892)

.
The procedure is identical to the one outlined in Section 4.4.5: The fraction of
generated events lying in a particular mass window is equal to the ratio of the
corresponding mass window integrals of squared amplitudes (calculated from the
Dalitz model described in Section 4.4) and the full Dalitz plot integral, equations
(4.21), (4.22). The numerical values are given by equations (4.23), (4.24). In
the case of the decay B0

s → D+
s D−s → φ†π+K∗0†K−, for combinatorial reasons the

resulting Monte Carlo decay probability f MC
φ (1020) × f MC

K∗0(892)
has to be multiplied

by two, because – neglecting daughter particle charges – there are two possible
combinations to extract this final state from B0

s → D+
s D−s → K+K−π+K−K+π−,

namely φ†π+K∗0†K− or K∗0†K−φ†π+.
In Table 5.7 the combined reconstruction and selection efficiencies estimated

from simulated data are tabulated channel by channel.
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Decay Channel Ntot
gen(109) Nch

gen(106) Nrec ε(10−3)
B0

s → D+
s D−s → φ†π+φ†π− 1.773 175.658 201004 ± 448 1.144 ± 0.003

B0
s → D∗+s D−s 1.795 79, 450 77140 ± 276 0.971 ± 0.003

B0
s → D∗+s D∗−s 0.884 87.626 78762 ± 281 0.899 ± 0.003

B0
s → D+

s D−s → φ†π+K∗0†K− 1.773 355.014 230704 ± 480 0.650 ± 0.001
B0

s → D∗+s D−s 1.795 160.572 89761 ± 299 0.560 ± 0.002
B0

s → D∗+s D∗−s 0.884 177.096 93973 ± 307 0.531 ± 0.002

B0
d → D+D−s → K−π+π+φ†π− 1.803 189.142 211334 ± 460 1.117 ± 0.002

B0
d → D∗+D−s 1.803 126.094 124997 ± 354 0.991 ± 0.003

B0
d → D+D∗−s 1.803 126.094 126455 ± 356 1.003 ± 0.003

B0
d → D∗+D∗−s 1.803 126.094 111007 ± 333 0.880 ± 0.003

B0
d → D+D−s → K−π+π+K∗0†K− 1.803 191.132 123085 ± 351 0.644 ± 0.002

B0
d → D∗+D−s 1.803 127.422 74095 ± 272 0.581 ± 0.002

B0
d → D+D∗−s 1.803 127.422 73353 ± 272 0.576 ± 0.002

B0
d → D∗+D∗−s 1.803 127.422 66638 ± 258 0.523 ± 0.002

B0
d → D+D−s → K−π+π+φ†π−

mis-reconstructed as
B0

s → D+
s D−s → φ†π+K∗0†K− 1.803 189.142 11405 ± 107 0.006 ± 0.000

B0
d → D∗+D−s 1.803 126.094 6595 ± 81 0.005 ± 0.000

B0
d → D+D∗−s 1.803 126.094 6742 ± 87 0.005 ± 0.000

B0
d → D∗+D∗−s 1.803 126.094 5648 ± 75 0.004 ± 0.000

Table 5.7: Combined reconstruction and selection efficiencies determined from
binned likelihood fits to simulated data (please refer to description of Monte Carlo
templates in the following sections). The second column quotes the total number of
delivered simulated events per Monte Carlo sample, while in the third column the
number of simulated events of a particular decay channel is given.





6
Parameter Estimation

6.1 Maximum Likelihood
In order to extract the figures of interest, i.e. the ratios of branching fractions
fD∗sDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

, from the selected invariant mass spectra, a statistical
parameter estimation method and a robust ansatz for the fit function need to be
in place. For all fits to real data carried out throughout this analysis the unbinned
extended maximum likelihood method is used.

The underlying principle of the maximum likelihood (ML) method [3, 128]
is the following: Given a set of n independent measurements (or events) of the
vector of variables ~x, which follows a normalized probability density function
(pdf) f

(
~x | ~a

)
, the best estimation of the vector of unknown parameters ~a is the one

that maximizes the joint probability density function, called likelihood function

L
(
~a
)

=

n∏
k=1

f
(
~xk | ~a

)
(6.1)

Instead of maximizing the likelihood function, for numerical reasons common
computational maximum likelihood libraries, like the one implemented in the
ROOT framework, utilize algorithms that aim for minimizing the negative loga-
rithm of (6.1), the negative log likelihood function F

(
~a
)

F
(
~a
)

= − ln L
(
~a
)

= −

n∑
k=1

ln f
(
~xk | ~a

)
(6.2)

Within this analysis, the branching fractions to be measured do not only depend on
parameters determining the expected shape in ~x, but mainly on the normalization
of signal-like components. For this purpose, instead of a probability density
f
(
~x | ~a

)
with fixed normalization a function g

(
~x | ~a

)
is used, where the integral

93
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over g
(
~x | ~a

)
in a measuring range Ω corresponds to the quantity of expected

events N
(
~a
)

N
(
~a
)

=

∫
Ω

g
(
~x | ~a

)
dx, (6.3)

that are allowed to vary. Furthermore, the observables will be determined from
the one-dimensional distribution of reconstructed invariant mass m. Thus the
vector of variables ~x simplifies to the scalar quantity m. Within this extended
maximum likelihood (EML) [129] regime, the negative log likelihood function to be
minimized reads

F
(
~a
)

= −

n∑
k=1

ln g
(
mk | ~a

)
+ N

(
~a
)

(6.4)

We now assume that the shape and normalization of the distribution in m can be
described by the sum of individual components that are expected to populate the
analyzed range in m. The probability density g

(
m | ~a

)
can then be represented

as the sum of q normalized probability densities hl
(
m | ~a

)
multiplied by their

expected yields Nl:

g
(
m | ~a

)
=

q∑
l=1

Nlhl
(
m | ~a

)
(6.5)

With this substitution, equation (6.4) becomes

F
(
~a
)

= −2
n∑

k=1

ln

 q∑
l

Nlhl
(
mk | ~a

) + 2
q∑

l=1

Nl
(
~a
)

(6.6)

The factor of 2 is convention and does not change the position of the minimum.
The first task is hence to set up the negative log likelihood function (6.6) and
its constituting pdfs. In the following sections the likelihood function that is
used to extract the ratios of branching fractions from data is worked out step-
by-step. Firstly, the per-channel pdfs are established. Afterwards, these are
modified by re-parameterizing and interrelating certain parameters. The function
re-parameterizations are targeted towards simultaneously extracting the ratios of
branching fractions in one fit that is run on all the studied decay modes in parallel
by sharing certain parameters.

6.2 Basic Features of the Fit Model
In order to formulate a robust fit model, the key features of the invariant mass
spectra in the analyzed range need to be understood and taken into account. The
components contributing to the invariant mass spectra can be roughly classified
into four categories:
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Combinatorial background Random combinations of tracks not originating
from decays of true B mesons that happened to pass the reconstruction and selec-
tion requirements.

Fully reconstructed signal Fully reconstructed B0
s or B0

d mesons characterized
by a sharp resonant peak.

Partially reconstructed signal Events originating from true B mesons where the
full decay chain cannot be fully reconstructed because because neutral particles
are note detected or otherwise lost in reconstruction.

Physics background Events sharing several common features with true signal
events. For the studied decay channels these are essentially given by reflections of
other decays, i.e. fully or partially reconstructed decays of mesons that happen to
occur in the invariant mass spectrum of a given decay, whenever a wrong particle
hypothesis has been assigned to one of the particles in the final state, hence leading
to mis-reconstruction of a topologically similar decay.

The individual fit model contributions belonging to each of these categories
are discussed in the upcoming sections in more detail.

6.3 B0
s → D+

s D−s Fit Function
Throughout this section, the individual probability densities constituting to the
full pdf of the decay B0

s → D+
s D−s and the studied sub-channels are set up. The

description of the shapes of the various components involve a large amount of
parameters that are impossible to be all simultaneously determined during the
final EML fitting stage. The remedy for this issue is simulated data: All signal-like
components that are expected to contribute to the studied invariant mass spectra
have been simulated by means of Monte Carlo techniques. An overview of all
signal channels was given in Table 5.7. The shape parameters are determined
by binned ML fits to the individual components and can be chosen to be fixed,
completely free or allowed to float within Gaussian constraints in the EML fit to
real data.
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(a) B0
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s → D+

s D−s → φπ+K∗0K− signal template.

Figure 6.1: Signal template for the decay B0
s → D+

s D−s → φ†π+φ†π− (a) and B0
s →

D+
s D−s → φ†π+K∗0†K− (b).

6.3.1 Combinatorial Background

Combinatorial background and further background contributions not being ex-
plicitly considered in separate templates are well described by a single exponential
function plus a constant,

Pi
bg = exp

(
m | si

)
+ ci, (6.7)

where s denotes the slope of the exponential and c the constant offset. For the lack
of a pure combinatorial background sample the parameters of this template can
not be determined by any pre-fitting and are left free in the final unbinned fit to
data.

6.3.2 Fully Reconstructed Signal

The shape of the signal peak is modeled by two Gaussian distributions with
different widths σi

1 but sharing a common mean value µ. With i being the index of
a particular Bs decay channel, the probability density function for the signal reads

Pi
sig = f i

G1G
(
m | µσi

1

)
+

(
1 − f i

G1

)
G

(
m | µσi

2

)
, (6.8)

where m is the reconstructed invariant D+
s D−s mass, and f i

G1 is the fraction of
one of the Gaussian distributions. For each channel the widths and the mean of
the double Gaussians are determined by a binned fit to the signal Monte Carlo
samples (Figures 6.1(a), 6.1(b)). In the final EML fit to real data the widths are kept
fixed, while the mean is shared among to the full fit function (for details please
refer to Section 6.5) and allowed to float within a Gaussian constraint.
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6.3.3 Partially Reconstructed Signal

On top of combinatorial background, the lower sideband region is populated by
B0

s → D(∗)+
s D∗−s decays which arise in the D+

s D−s invariant mass spectrum as broad
satellite peaks. They stem from D∗+s → D+

s γ
(
π0) decays, where the low-energy

π0 or γ are not reconstructed since their energies are below the CDF calorimetry
system’s threshold. Therefore these events can only be partially reconstructed.
The main decay mode for D∗+s is given by D∗+s → D+

s γ (94.2 ± 0.7%) with a minor
contribution from D∗+s → D+

s π
0 (5.8 ± 0.7%) [3].

• B0
s → D∗+s D−s

The physics observables related to the decay dynamics of this decay are well
established today (see Section 4.5.2), so there is no intention to make any
inference on them by means of parameterization. The fit pdf thus lacks any
physics motivation but is rather of phenomenological nature. A function
composed of four Gaussians each having its own mean and width,

Pi
p1 = f i

G1G
(
m | µi

1σ
i
1

)
+ f i
G2G

(
m | µi

2σ
i
2

)
+

(
f i
G3

)
G

(
m | µi

3σ
i
3

)
(6.9)

+
(
1 − f i

G1 − f i
G2 − f i

G3

)
G

(
m | µi

4σ
i
4

)
,

is found to fit reasonably well (Figures 6.2(a), 6.2(b) ). The small admixture
of D∗+s → D+

s π
0 produces a smooth double peak structure: From helicity am-

plitude considerations and conservation of angular momentum (see Section
4.5.2) it follows that the D∗+s is 100% longitudinally polarized. Geometrically
speaking, in the subsequent decay of D∗+s → D+

s π
0 the pion is either emitted

in the flight direction of the D+∗ or opposite to it. For the partial recon-
struction of the D+∗ this means that slightly more or less four-momentum
is missing. Since D∗+s → D+

s π
0 contributes to a much lesser extent than

D∗+s → D+
s γ the double-peak structure is strongly smeared out.

• B0
s → D∗+s D∗−s

To simulate the dynamics of this decay B0
s → D∗+s D∗−s phase space Monte

Carlo were re-weighted according to the helicity amplitudes {H+, H0, H−} =
{0.4904, 07204, 0.4904} [119]. In-detail discussions can be found in Section
4.5.3.

Simulation generates a broad, featureless shape, that is fitted by the sum of
three Gaussians (Figures 6.3(a), 6.3(b)):

Pi
p2 = f i

G1G
(
m | µi

1σ
i
1

)
+ f i
G2G

(
m | µi

2σ
i
2

)
+

(
1 − f i

G1 − f i
G2

)
G

(
m | µi

3σ
i
3

)
(6.10)
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(a) B0
s → D∗+s D−s → φπ+φπ− template.
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s → D∗+s D−s → φπ+K∗0K− template.

Figure 6.2: Templates for the partially reconstructed decay B0
s → D∗+s D−s in the final

states φ†π+φ†π− (a) and φ†π+K∗0†K− (b).
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(a) B0
s → D∗+s D∗−s → φπ+φπ− template.
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Figure 6.3: Templates for the partially reconstructed decay B0
s → D∗+s D∗−s in the final

states φ†π+φ†π− (a) and φ†π+K∗0†K− (b).
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For both templates of partially reconstructed events described in this section the
shape parameters and fractions of the individual single Gaussians are kept fixed
in the final fit and only the normalizations are allowed to float.

6.3.4 Reflections

The decay B0
s → D+

s

(
φπ+

)
D−s

(
K∗0K−

)
has a strong reflection from B0

d → D+
s

(
φπ+

)
D−(K+π−π−), which arises if one pion in the final state happens to be mis-
reconstructed as a kaon, leading to mis-reconstruction of a B0

d as a B0
s meson.

To estimate the shape of this reflection B0
d → D+

s

(
φπ+

)
D− (K+π−π−) Monte Carlo

samples were reconstructed as B0
s → D+

s

(
φπ+

)
D−s

(
K∗0K−

)
and then subjected

to the same pre-selection and final selection procedure as the decay channel
B0

s → D+
s D−s → φπ+K∗0K−. The reflection signal component has the shape of a res-

onant peak with a tail to the right. We find that a combination of three Gaussians,
each having its own value for mean and width, best fits the mis-reconstructed
signal Monte Carlo sample (see Figure 6.4(a)):

Pi
re f lsig = f i

G1G
(
m | µi

1σ
i
1

)
+ f i
G2G

(
m | µi

2σ
i
2

)
+

(
1 − f i

G1 − f i
G2

)
G

(
m | µi

3σ
i
3

)
(6.11)

Again, the shape parameters determined by means of binned fits to simulated
data are kept fixed in the final unbinned fit to real data.

This reflection entails additional satellite contributions, which arise due to
false reconstruction of the partially reconstructed B0

d → D+(∗)
s D−(∗) decays for the

same reasons outlined above (lost photon or neutral pion). Each of these contri-
butions is fitted by a triple Gaussian (Figures 6.4(b) to 6.4(d)):

Pi
rp1,2,3 = f i

G1G
(
m | µi

1σ
i
1

)
+ f i
G2G

(
m | µi

2σ
i
2

)
+

(
1 − f i

G1 − f i
G2

)
G

(
m | µi

3σ
i
3

)
(6.12)

6.3.5 Full Fit Function

Following equation (6.6), the individual pdfs are combined to give the following
negative log likelihood function used for EML fit to the B0

s → D+
s D−s invariant

mass spectra:

Fi(~a) = −2
∑n

k=1 ln [Ni
1Pi

sig(mk | ~asig) + Ni
2Pi

p1(mk | ~ap1) + Ni
3Pi

p2(mk | ~ap1) (6.13)

+Ni
4Pi

rsig(mk | ~arsig1) + Ni
5Pi

rp1(mk | ~arp1) + Ni
6Pi

rp2(mk | ~arp2)

+Ni
8Pi

rp3(mk | ~arp3) + Ni
8Pi

bg(mk | ~abg)]

+2
8∑

l=1

Ni
l,
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signal mis-reconstructed as B0
s → D+

s D−s →

φπ+K∗0K−.
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(b) Reflection template for B0
d → D∗+D−s .
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(c) Reflection template for B0
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(d) Reflection template for B0
d → D∗+D∗−s .

Figure 6.4: Templates used for the decay B0
d → D+D−s → K−π+π+φ†π− falsely re-

constructed as B0
s → D+

s D−s → φ†π+K∗0†K−. Clockwise shown are the templates for
mis-reconstructed B0

d → D+D−s signal and the templates of the falsely and partially
reconstructed decays B0

d → D∗+D−s , B0
d → D∗+D∗−s , and B0

d → D+D∗−s .
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where rsig label the reflection of the fully reconstructed B0
d → D+D−s signal, while

rp1,2,3 denote the reflections of partially reconstructed B0
d → D(∗)+D(∗)−

s events. n
is the total number of events of the fitted data sample and i labels the given B0

s

decay mode. The factors Ni
l in front of each probability density function are the

numbers of events of the given component:

Ni
1 = Ni

B0
s→D+

s D−s
(6.14)

Ni
2 = Ni

B0
s→D∗+s D−s

Ni
3 = Ni

B0
s→D∗+s D∗−s

Ni
4 = Ni

B0
d→D+D−s

Ni
5 = Ni

B0
d→D∗+D−s

Ni
6 = Ni

B0
d→D+D∗−s

Ni
7 = Ni

B0
d→D∗+D∗−s

Ni
8 = Ni

bkg

For decay channels in which no reflections are expected, the expected yields
are set to zero, Ni

4 = Ni
5 = Ni

6 = Ni
7 = 0.

6.3.6 Exclusive Ratios: Function Re-Parameterization

Based on the per-channel fit function (6.13), in a next step a modified negative log
likelihood function is deduced that allows to fit all the studied decay channels
simultaneously. This is achieved by an advantageous re-parameterization of the
expected number of signal-like events.

The expected yield of reconstructed B0
s → D+

s D−s events in the ith studied
decay channel, Ni

B0
s→D+

s D−s
, is given by

Ni
B0

s→D+
s D−s

= Ntot
B0

s
B(B0

s → D+
s D−s )B(D+

s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s
, (6.15)

where Ntot
B0

s
is the (a priori unknown) total number of produced B0

s mesons at the

Tevatron, and εi
B0

s→D+
s D−s

is the combined reconstruction and selection efficiency for
this particular decay channel estimated from simulated events (see Section 5.5).

The term B

 D+
s → φ†π+

D+
s → K∗0†K+

 represents the non-overlapping D+
s → K+K−π+ mass

band fractions introduced by reconstruction.
Likewise, the expected number of reconstructed B0

d → D+D−s events in the jth
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studied decay channel, N j
B0

d→D+D−s
, is given by

N j
B0

d→D+D−s
= Ntot

B0
d
B(B0

d → D+D−s )B

 D+
s → φ†π+

D+
s → K∗0†K+

B(D+
→ K−π+π+)ε j

B0
d→D+D−s

(6.16)
Ntot

B0
d

represents the (a priori unknown) total number of produced B0
d mesons at

the Tevatron, and ε j
B0

d→D+D−s
again is the combined reconstruction and selection

efficiency estimated from Monte Carlo.
In the next step we intend to introduce a common factor equations (6.15) and

(6.16) share. For this, we eliminate Ntot
B0

s
in equation (6.15) by introducing the ratio

of the fragmentation fractions, fs/ fd, of strange and down quarks produced at the
Tevatron:

Ntot
B0

s

Ntot
B0

d

=
fs

fd
(6.17)

With this, equation (6.15) now reads

Ni
B0

s→D+
s D−s

= Ntot
B0

d
fDsDsB(B0

d → D+D−s )B(D+
s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s
,

(6.18)
where in the same step the quantity

fDsDs =
fs

fd

B(B0
s → D+

s D−s )
B(B0

d → D+D−s )
(6.19)

has been introduced. By this parameterization, fDsDs can now be directly estimated
in one simultaneous fit to all four studied decay channels, where Ntot

B0
d

is globally

shared among the combined log likelihood function.
Following the principles outlined above, the parameterization of the expected

yields of B0
s → D∗+s D−s and B0

s → D∗+s D∗−s decay events is straightforward:

Ni
B0

s→D∗+s D−s
=Ntot

B0
d

fD∗sDsB(B0
d → D+D−s )B(D∗+s → D+

s X) (6.20)

× B(D+
s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D∗+s D−s

Ni
B0

s→D∗+s D∗−s
=Ntot

B0
d

fD∗sD∗sB(B0
d → D+D−s )B2(D∗+s → D+

s X) (6.21)

× B(D+
s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D∗+s D∗−s

B(D∗+s → D+
s X) ≡ 1 is the branching fraction of the excited D∗+s meson to D+

s and a
neutral particle X (either a photon or π0). fD∗sDs and fD∗sD∗s are defined analogously
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to equation (6.19):

fD∗sDs =
fs

fd

B(B0
s → D∗+s D−s )

B(B0
d → D+D−s )

(6.22)

fD∗sD∗s =
fs

fd

B(B0
s → D∗+s D∗−s )

B(B0
d → D+D−s )

(6.23)

Just like fDsDs , these parameters are also determined in the same simultaneous fit
to all data available.

As discussed in Section 6.3.4, the decay B0
s → D+

s D−s → φ†π+K∗0†K− has a
strong reflection from B0

d → D+D−s → K−π+π+φ†π− which is due to occasional
mis-reconstruction of one pion as a kaon in the final decay D+

→ K−π+π+. Fol-
lowing the same principles outlined in this section, the expected yield of falsely
reconstructed B0

d → D+D−s → K−π+π+φ†π− events reads

Nmis
B0

d→D+D−s
= Ntot

B0
d
B(B0

d → D+D−s )B(D+
s → φ†π+)B(D+

→ K−π+π+)εmis
B0

d→D+D−s
, (6.24)

where εmis
B0

d→D+D−s
is the efficiency of mis-reconstructing B0

d → D+D−s → K−π+π+φπ−

decays as B0
s → D+

s D−s → φπ+K∗0K− estimated from Monte Carlo. In the same
way the number of the falsely and partially reconstructed B0

d → D+(∗)
s D−(∗) decays

is parameterized:

Nmis
B0

d→D∗+D−s
=Ntot

B0
d
B(B0

d → D∗+D−s )B(D∗+ → D+X) (6.25)

× B(D+
s → φ†π+)B(D+

→ K−π+π+)εmis
B0

d→D∗+D−s

Nmis
B0

d→D+D∗−s
=Ntot

B0
d
B(B0

d → D+D∗−s ) (6.26)

× B(D+
s → φ†π+)B(D+

→ K−π+π+)εmis
B0

d→D+D∗−s

Nmis
B0

d→D∗+D∗−s
=Ntot

B0
d
B(B0

d → D∗+D∗−s )B(D∗+ → D+X) (6.27)

× B(D+
s → φ†π+)B(D+

→ K−π+π+)εmis
B0

d→D∗+D∗−s

Here B(D∗+ → D+X) = 0.323 ± 0.006 [3] denotes the branching fraction of the
excited D∗+ meson into a charged D+ and a neutral particle X either being a π0

or a photon. As in the case of D∗+s → D+
s γ and D∗+s → D+

s π
0 the neutral particles

originating from D∗+ de-excitation are not seen in the CDF detector since their
energies are below the energy threshold of the calorimetry system.
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6.3.7 Semi-Inclusive Ratio: Function Re-Parameterization

To take further advantage of the simultaneous parameter estimation technique
the semi-inclusive branching fraction ratio fD(∗)

s D(∗)
s

is also determined directly in
one parallel fit to all decay channels. Trivially, fD(∗)

s D(∗)
s

is defined as the sum of the
ratios of the exclusive branching fractions:

fD(∗)
s D(∗)

s
= fDsDs + fD∗sDs + fD∗sD∗s (6.28)

In principle the semi-inclusive branching fraction could be easily calculated from
equation (6.28), without the need of performing a separate EML fit for fD(∗)

s D(∗)
s

.
As all exclusive branching fraction ratios are extracted from one and the same
data sample there might be high correlations among them. When it comes to the
estimation of systematic uncertainties for the semi-inclusive sum (6.28) it is thus
advantageous to already account for correlations at the fitting stage without the
need to treat them afterwards by hand.

The individual branching fraction ratios can be expressed as the semi-inclusive
branching fraction ratio times a proportion factor p expressing its share on the total
branching fraction:

fDsDs = fD(∗)
s D(∗)

s
(1 − pD∗sDs − pD∗sD∗s) (6.29)

fD∗sDs = fD(∗)
s D(∗)

s
pD∗sDs (6.30)

fD∗sD∗s = fD(∗)
s D(∗)

s
pD∗sD∗s (6.31)

Using these definitions, we may re-write the expected number of reconstructed
events defined in equations (6.18) through (6.21) as

Ni
B0

s→D+
s D−s

= Ntot
B0

d
fD(∗)

s D(∗)
s

(1 − pD∗sDs − pD∗sD∗s) (6.32)

× B(B0
d → D+D−s )B(D+

s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s

Ni
B0

s→D∗+s D−s
= Ntot

B0
d

fD(∗)
s D(∗)

s
pD∗sDs (6.33)

× B(B0
d → D+D−s )B(D+

s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s

Ni
B0

s→D∗+s D∗−s
= Ntot

B0
d

fD(∗)
s D(∗)

s
pD∗sD∗s (6.34)

× B(B0
d → D+D−s )B(D+

s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s

Instead of the exclusive ratios fDsDs , fD∗sDs , and fD∗sD∗s , now the semi-inclusive ratio
fD∗sD∗s is the parameter that is determined in the simultaneous EML fit to all available
channels.
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(b) B0
d → D+D−s → K−π+π+K∗0K− signal template.

Figure 6.5: Signal template for the decay B0
d → D+D−s → K−π+π+φ†π− (a) and

B0
d → D+D−s → K−π+π+K∗0†K− (b).

6.4 B0
d → D+D−s Fit Function

The log likelihood function and the individual templates involved are set up in a
very similar way to those discussed in Section 6.3. The decay B0

d → DsD is studied
because it serves as the normalization mode for the calculation of the relative
branching fractionB(B0

s → D+
s D−s )/B(B0

d → D+D−). The functions used to describe
fully reconstructed signal and combinatorial background are the same used for
B0

s → D+
s D−s , namely the sum of two Gaussian distributions (Figures 6.5(a), 6.5(b))

having a common mean value, and a single exponential function plus constant,
respectively. The topology of the lower sideband region of the D+D−s invariant
mass spectrum is very similar to that of D+

s D−s . It is as well populated by several
satellite peaks originating from partial reconstruction of B0

d → D(∗)+
s D(∗)−

s decays.

6.4.1 Partially Reconstructed Signal

The decays B0
d → D∗+s D∗− produce a series of satellite peaks shifted to smaller

masses approximately by one to two pion masses with respect to the position of
the signal peak of fully reconstructed B0

d → D+D−s signal. There are three possible
combinations:

• B0
d → D∗+D−s

The D∗− can decay either into D− and a lost γ/π0, or into D0π− which is
not subject to reconstruction. B0

d → D∗−D+
s creates a distinct double peak

structure. The explanation is similar to the one given in Section 6.3.3: Again,
we are dealing with a pseudo-scalar decaying into a vector and a pseudo-
scalar particle (P→ VP), and due to conservation of angular momentum the
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Figure 6.6: Template for the partially reconstructed decay B0
d → D∗+D−s going into the

final states K−π+π+φ†π− (a) and K−π+π+K∗0†K− (b).

decaying D∗− is 100% longitudinally polarized. Therefore the angle between
the π0 and the momentum helicity of the D∗ follows a cos 2θ distribution,
which corresponds to a preferred pion release in the direction of the D+∗ or
opposite to it. In contrast to D∗+s → D+

s π
0/γ, the main contribution is given

by D∗− → D−π0 decays which results in the double peak shape being not
diluted by other contributions. The resulting shape is fitted by a combination
of three Gaussians (Figures 6.6(a), 6.6(b)).

• B0
d → D+D∗−s

The invariant mass distribution of this partially reconstructed P→ VP decay
exhibits a weakly pronounced double peak structure very similar to the one
observed for B0

s → D∗+s D−s . As in the cases discussed before, the reason for the
resulting weak double-horn structure is the full longitudinal polarization of
the vector D∗+s particle, which decays into D+

s π
0 in 5.8% of the cases only.

The shape is fitted by the sum of four Gaussian distributions, each having
its own mean and width (Figures 6.7(a), 6.7(b)).

• B0
d → D∗+D∗−s

This mode generates a wide, featureless structure located about two pion
masses below the B0

d → D+
s D− signal. A triple Gaussian is used to fit the

resulting shape (Figures 6.8(a), 6.8(b)).

The shapes of all signal templates determined by means of binned fits using
simulated data are kept fixed in the final EML fit to real data.
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Figure 6.7: Template for the partially reconstructed decay B0
d → D+D∗−s going into the

final states K−π+π+φ†π− (a) and K−π+π+K∗0†K− (b).
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Figure 6.8: Template for the partially reconstructed decay B0
d → D∗+D∗−s going into

the final states K−π+π+φ†π− (a) and K−π+π+K∗0†K− (b).
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6.4.2 Full Fit Function

Combining the pdfs set up above gives rise to the total negative log likelihood
function for the jth B0

d mode,

F j(~b j) = −2
∑n

k=1 ln [N j
1P j

sig(mk |
~b j

sig) + N j
2P j

p1(mk |
~b j

p1) + N j
3P j

p2(mk |
~b j

p2)(6.35)

+N j
4P j

p3(mk |
~b j

p3) + Ni
5P j

bg(mk |
~b j

bg)]

+2
5∑

l=1

N j
l ,

where the parameters Ni
l in front of each probability density function are the

expected yields of the given component:

N j
1 = N j

B0
d→D+D−s

(6.36)

N j
2 = N j

B0
d→D∗+D−s

N j
3 = N j

B0
d→D+D∗−s

N j
4 = N j

B0
d→D∗+D∗−s

N j
5 = N j

bkg

6.4.3 Function Re-Parameterization

The parameterization of the expected yield of reconstructed B0
d → D+D−s events

N j
B0

d→D+D−s
in the jth studied decay channel has already been introduced (6.16):

N j
B0

d→D+D−s
= Ntot

B0
d
B(B0

d → D+D−s )B

 D+
s → φ†π+

D+
s → K∗0†K+

B(D+
→ K−π+π+)ε j

B0
d→D+D−s

Ntot
B0

d
represents the (a priori unknown) total number of produced B0

d mesons at the

Tevatron, and ε j
B0

d→D+D−s
is the combined reconstruction and selection efficiency es-

timated from simulated events. Accordingly, the yields of partially reconstructed
events are parameterized as:

N j
B0

d→D∗+D−s
=Ntot

B0
d
B(B0

d → D∗+D−s )B(D∗+ → D+X) (6.37)

× B

 D+
s → φ†π+

D+
s → K∗0†K+

B(D+
→ K−π+π+)ε j

B0
d→D∗+D−s

N j
B0

d→D+D∗−s
=Ntot

B0
d
B(B0

d → D+D∗−s ) (6.38)

×B

 D+
s → φ†π+

D+
s → K∗0†K+

B(D+
→ K−π+π+)ε j

B0
d→D+D∗−s
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N j
B0

d→D∗+D∗−s
=Ntot

B0
d
B(B0

d → D∗+D∗−s )B(D∗+ → D+X) (6.39)

× B

 D+
s → φ†π+

D+
s → K∗0†K+

B(D+
→ K−π+π+)ε j

B0
d→D∗+D∗−s

The parameterizations (6.16) and (6.37) through (6.39) are valid for both the si-
multaneous fit for the exclusive ratios fDsDs , fD∗sDs , fD∗sD∗s (Section 6.3.6) and the
semi-inclusive branching fraction ratio fD(∗)

s D(∗)
s

(Section 6.3.7).

6.5 Extraction of Branching Fractions
In order to extract the observables of interest simultaneously from all decay chan-
nels, the negative log likelihood functions (6.13) and (6.35) are combined to give
one joint likelihood that is minimized. The parameterizations of the signal yields
in (6.13) depend on whether one aims for measuring the exclusive branching
fraction ratios or the semi-inclusive ratio.

There is a compelling case for the joint likelihood approach: The decay
B0

d → D+D−s → K−π+π+φ†π− enters twice, once as correctly reconstructed signal
in the invariant spectrum of the normalization channel, and once as background
(mis-reconstructed signal) in B0

s → D+
s D−s → φ†π+K∗0†K−. The simultaneous fit-

ting approach and the consistent parameterizations of both correctly and falsely
reconstructed signal ensure that correlations are taken into account already at the
fittings stage. Secondly, the total amount of parameters needed to describe the
problem is not unnecessarily inflated beyond the minimum required parameter
set. The same argument applies when it comes to external parameters like inter-
mediate or final state branching fractions that are required to parameterize signal
yields.

Table 6.1 gives an overview of the parameters that are shared among the
decay modes. Parameters enter the joint likelihood fit with a certain attribute
assigned: ’None’ (parameter fixed), ’Gaussian Constraint’ (parameter allowed to
vary around, but strongly constrained to its default central value within Gaussian
uncertainties), and ’Free’ (parameter completely free within wide physical bound-
aries). Unique parameters (template shape parameters, efficiencies) that are fixed
in the EML fit to data are not listed. In the standard fit, the default preference
for parameters that have both the attributes ’None’ and ’Gaussian Constraint’ is
’None’. The ’Gaussian Constraint’ attribute is used for systematic studies only to
propagate uncertainties.

The total number of B0 mesons produced at the Tevatron, NBtot
0

, is globally
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B0
s → D+

s D−s B0
s → D+

s D−s B0
d → D+D−s B0

d → D+D−s Parameter
→ φ†π+φ†π− → φ†π+K∗0†K− → K−π+π+φ†π− → K−π+π+K∗0†K− Freedom

NBtot
0

F
fDsDs , fD∗sDs , fD∗sD∗s , fD(∗)

s D(∗)
s

- F
- B(B0

d → D∗+D−s ), B(B0
d → D+D∗−s ), B(B0

d → D∗+D∗−s ) F
- B(D∗+ → D+X) N, GC

µBs - GC
- µB0 GC

B(B0
d → D+D−s ) N, GC

- B(D+
→ K−π+π+) N, GC

B(D+
s→φπ

+†)
B(D+

s→K+K−π+) ,
B(D+

s→K∗0K+†)
B(D+

s→K+K−π+) N
B(D+

s → K+K−π+) N, GC

Table 6.1: Overview of the fit parameters which are shared in the simultaneous fit to
all four studied decay channels. ’Parameter Freedom’ indicates the degree of freedom
a given parameter has in the fit: ’F’ stands for ’Free’, ’GC’ for ’Gaussian Constraint’,
’N’ for ’None’ (parameter fixed).

shared among all decay modes. By equations (6.16), (6.18), (6.20), (6.21), (6.24 -
6.27), and (6.37 - 6.39) NBtot

0
is related to the expected yields of all (both fully, par-

tially, and falsely reconstructed) signal-like events in the decay modes. The yields
in turn determine fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

through their respective interme-
diate and final state branching fractions and the combined reconstruction and
selection efficiencies. The branching fractions B(B0

d → D∗+D−s ), B(B0
d → D+D∗−s ),

B(B0
d → D∗+D∗−s ), andB(D∗+ → D+X) also enter the likelihood function of the decay

mode B0
s → D+

s D−s → φ†π+K∗0†K− due to partial reconstruction of the reflections
of the channels B0

d → D(∗)+D(∗)−
s → K−π+π+φ†π−. Despite the complicated multi-

component structure in the lower mass region of B0
s → D+

s D−s → φ†π+K∗0†K−,
it is worth noting that the associated components are not fixed by any external
knowledge. The constraints to these fractions are introduced “in situ” by sharing
the respective parameters with the high-statistics normalization channels in the
joint likelihood fit. In doing so, one does not have to rely on the relatively large
uncertainties of the world average values ofB(B0

d → D∗+D−s ), B(B0
d → D+D∗−s ), and

B(B0
d → D∗+D∗−s ) [3] in later systematic studies.
Figures 6.9(a) - 6.9(f) show the significance-optimized (see Section 5.4) in-

variant mass spectra that have been fitted using the simultaneous parameter esti-
mation procedure. From the simultaneous fits the following branching fractions
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Figure 6.9: Invariant D+
s D−s (a-d) and D+D−s (e,f) mass spectra fitted under the joint

likelihood scheme. The first row shows the results for the scenario where the fit
was geared towards measuring fDsDs , fD∗sDs , and fD∗sD∗s , the second row where fD(∗)

s D(∗)
s

was the quantity to be directly determined. The bottom row shows the fit results
of the decay modes that were used as normalization channels in either of the two
fit scenarios. The complex multi-component structure in the lower mass region of
B0

s → D+
s D−s → φ†π+K∗0†K− (b,d) is due to reflections of B0

s → D(∗)+
s D(∗)−

s decays into
the final state K−π+π+φ†π−.
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BF / 10−3 Deviation
Quantity This Analysis World Average / σ

fDsDs 6.2 ± 0.7 8.0 ± 1.1 1.4
fD∗sDs 8.4 ± 0.4 7.4 ± 1.6 0.6
fD∗sD∗s 17.0 ± 1.0 17.7 ± 1.4 0.4

Table 6.2: Comparison of branching fractions of B0
d → D(∗)+D(∗)−

s decays measured in
the course of the joint likelihood fit with respect to current world average values. For
the values determined by this analysis statistical uncertainties are given only.

ratios are extracted:

fDsDs = 0.184+0.021
−0.020 (6.40)

fD∗sDs = 0.421+0.046
−0.045 (6.41)

fD∗sD∗s = 0.654+0.073
−0.071 (6.42)

fD(∗)
s D(∗)

s
= 1.259+0.094

−0.092 (6.43)

The uncertainties given are statistical only. As expected, the lowermost value
(6.43) extracted from a separate simultaneous fit using an alternate signal param-
eterization (Section 6.3.7) is identical to the sum of the exclusive branching fraction
ratios, (6.40) through (6.43).

The matrix of correlation coefficients reads:

fDsDs fD∗sDs fD∗sD∗s

fDsDs 1 0.095 0.104
fD∗sDs 0.095 1 0.04
fD∗sD∗s 0.104 0.04 1

(6.44)

The correlations among the exclusive branching fractions are found to be fairly
low, not larger than 10%.

As indicated by Table 6.1, the branching fractions of B0
d → D∗+D−s , B0

d → D+D∗−s ,
and B0

d → D∗+D∗−s decays were allowed to float in the joint EML fit to data. In
Table 6.2 the resulting values are tabulated and compared to the current world
average values extracted from Ref. [3]. All the values are in good agreement
within 1.5σ. This shows that the fitting method does not significantly bias values
of experimentally established observables. Moreover, as a side product of this
analysis we might even be able to provide new measurements of these branching
fractions in the near future. For the time being, this is however beyond the scope
of this analysis and will require further systematic studies.



6.6 Feasibility of Measuring fCP− from Partial B0
s → D∗+s D∗−s Reconstruction 113

6.6 Feasibility of Measuring fCP− from Partial B0
s →

D∗+s D∗−s Reconstruction
The assumption of a non-sizable CP-odd component in B0

s → D∗+s D∗−s is critical
to the applicability of equation (1.39) which allows to infer the relative decay
width difference ∆Γs/Γs from a branching fraction measurement. The observation
of a sizeable CP-odd fraction would put the described measuring concept into
question.

The most promising way to disentangle CP-even and CP-odd components of
the P → VV decay B0

s → D∗+s D∗−s would be through a full angular analysis of the
decay products, be it in the helicity or the transversity frame. By fitting the angular
distributions the helicity amplitudes H+, H0, and H− can be quantified. The CP-
odd fraction fCP− is then determined by the difference of the helicity amplitudes
H+ and H− through equation (4.44). This approach has already been successfully
employed in other B → VV analyses. One of the most prominent examples in
the B0

s sector is the decay B0
s → J/ψφ, with J/ψ → µ+µ+ and φ → K+K−. In the

case of B0
s → D∗+s D∗−s however, the fact that the low-energetic neutral decay prod-

ucts γ and π0 are lost in reconstruction prohibits this approach. Depending on
the direction the missing decay particles are emitted into, their angular distribu-
tions might influence the distribution in (partially) reconstructed invariant mass.
Therefore, as an alternative to a full data-driven angular analysis, a Monte Carlo
based approach is chosen: If the angular and reconstructed mass distributions do
show a strong dependence on the helicity amplitudes used in simulation the true
helicity amplitudes can be deduced by varying helicity amplitude expectations in
simulated data. In practice, this can be realized by using a series of Monte Carlo
templates reflecting different helicity amplitude scenarios in the EML fit to data.
The resulting fit qualities can then be used to confine or rule out the most probable
helicity amplitudes in B0

s → D∗+s D∗−s .
As pointed out above, the high computing time prohibits running full simu-

lation for every helicity amplitude scenario that one may want to test. Therefore,
the study is performed by weighting the dedicated B0

s → D∗+s D∗−s phase space
Monte Carlo sample according to set of desired helicity amplitudes H+, H0, and
H−, with the weights equal to the squared amplitude calculated in the helicity
frame, equation (4.47). To have a quick means of evaluating the feasibility of
the suggested approach, the decay B0

s → D∗+s D∗−s is generated in a fast simula-
tion scheme using the extreme (and probably unphysical) helicity amplitudes
{H+, H0, H−} = {1, 0, 0} and {0, 0, 1} in order to emulate maximal differences be-
tween H+ and H−. For comparison the case of 100% longitudinal polarization,
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{H+, H0, H−} = {0, 1, 0}, is also shown. In fast simulations, the decay chain is sim-
ulated only, without detector and trigger simulation. This reduces the computing
time required for simulation considerably. For the simulation of the B0

s → D∗+s D∗−s
decay chain internal decay amplitude calculations inside the EvtGen program are
relied upon. The simulated angular distributions and invariant mass spectra (Fig-
ure 6.10) show a clear dependence on helicity amplitudes. Compared to the case
of full longitudinal polarization {H+, H0, H−} = {0, 1, 0} the mass distributions
obtained for the two other extreme cases considered exhibit a strong asymmetric
shape. Thus, simulation indicate that there is a clear correlation between helicity
amplitudes and mass line shape of partially reconstructed B0

s → D∗+s D∗−s events.
Thus, the suggested approach of inferring a potentially non-zero CP-odd fraction
fCP− from partial reconstruction of B0

s → D∗+s D∗−s looks very promising.
Following this preparatory test using fast simulations, the studies are con-

tinued in a more systematic way by re-weighting full phase space simulations of
B0

s → D∗+s D∗−s decays for particular sets of helicity amplitudes. With the helicity
amplitude H0 kept fixed to 0.7204 [119], H+ and H− are adjusted in a way that the
fraction of the CP-odd component ranges from 0.0 through 0.24 in steps of 0.08 (the
upper boundary corresponds to the maximum CP-odd fraction for H0 = 0.7204).
For given values of H0 and fCP−, H+ and H− are determined by the normalization
condition

|H+|
2 + |H0|

2 + |H−|2 = 1 (6.45)

and equation (4.44):

H(1)
+ =H(2)

−
=

2
√

2 fCP− +

√
8 fCP− − 8(−1 + |H0|

2 + 2 fCP−)

4
(6.46)

H(1)
−

=H(2)
+ =

2
√

2 fCP− −

√
8 fCP− − 8(−1 + |H0|

2 + 2 fCP−)

4
(6.47)

The Monte Carlo distributions shown for the cases fCP− = 0.00, 0.08, 0.16, 0.24
(Figure 6.11) clearly indicate that for a fixed longitudinal polarization both the
angular distributions and the invariant mass line shapes of partially reconstructed
B0

s → D∗+s D∗−s events are completely insensitive to changes in H+ and H−, and thus
to fCP−. Since all the Monte Carlo templates are virtually identical – despite
changes in H+ and H− – the proposed procedure of performing fits to real data
and evaluating fit qualities for different scenarios can be regarded as obsolete.

We may speculate that these findings can be explained by the general form
of the decay amplitude (4.47), the structure of the Wigner rotation functions,
and the parity-conserving nature of the electro-magnetic interaction. In decays
of D∗+s → D+

s γ this causes the photon to have two preferred decay directions
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Figure 6.10: Monte Carlo truth cos(θ) (left column) and resulting invariant mass (right
column) distributions of B0

s → D∗+s D∗−s decays for the extreme helicity amplitude
configurations {H+, H0, H−} = {1, 0, 0} (a,b), {0, 1, 0} (b,c), and {0, 0, 1} (e,f) obtained
from fast EvtGen simulations.
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Figure 6.11: Monte Carlo truth cos(θ) (left column) and invariant mass (right column)
distributions obtained by weighting B0

s → D∗+s D∗−s phase space Monte Carlo (full
simulation) according to different CP-odd fractions.
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Figure 6.12: Monte Carlo truth cos(θ) (left column) and resulting invariant mass
(right column) B0

s → D∗+s D∗−s distributions for the extreme helicity amplitude config-
urations {H+, H0, H−} = {1, 0, 0} (a,b) and {0, 0, 1} (c,d) obtained by weighting phase
space Monte Carlo (full simulation). In contrast to direct EvtGen simulations the
distributions are all symmetric.

for each of the D∗+s helicity projections H+ and H−: in the flight direction of the
D∗+s or opposite to it. This is because both left- and right-handiness of photons
must be accounted for when incoherently summing over final state helicities. As a
consequence, even if H+ is unequal to the H− amplitude the angular distribution in
the helicity angle θ is always symmetric, and so is the mass line shape of partially
reconstructed B0

s → D∗+s D∗−s decays. To illustrate this, phase space B0
s → D∗+s D∗−s

Monte Carlo were weighted according to the extreme cases {H+, H0, H−} = {1, 0, 0}
and {0, 0, 1}. Figure 6.12 shows the resulting cos(θ) and invariant D+

s D−s mass
distributions. We therefore conclude that we are not able to make any inference
on the CP odd fraction in B0

s → D∗+s D∗−s decays by partial reconstruction. The
implication of this finding is two-edged: Neither can this study find any evidence
of a non-zero CP-odd component, nor can B0

s → D∗+s D∗−s be confirmed to be CP-
even by 100%.
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However, these findings stand in clear contradiction to the preliminary eval-
uations made at the beginning of this section, where EvtGen B0

s → D∗+s D∗−s decay
amplitude calculations were relied upon. The disagreement puts both the EvtGen
modules responsible for the calculation of this process and the decay amplitude
formula presented in this work, equation (4.47), under scrutiny. In fact, by valu-
able consultations with one of the EvtGen authors [130] a programming error
in the EvtGen package could be revealed: Wrong summation over partial decay
amplitudes led to incorrect computation of the P→ VV, V → Pγ decay amplitude
for helicity amplitude scenarios with H+ , H−. Figure 6.13 shows that by fixing
this error angular and invariant mass distributions are now symmetric also for
the considered extreme cases {H+, H0, H−} = {1, 0, 0}, {0, 0, 1}. While the findings
presented in this section are not satisfactory with regards to our efforts in de-
termining fCP− from partial reconstruction of B0

s → D∗+s D∗−s , the in-depth studies
made in the course of this survey at least helped to track down a programming
error in a widely used decay simulator package.
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Figure 6.13: Monte Carlo truth cos(θ) (left column) and resulting invariant mass (right
column) B0

s → D∗+s D∗−s distributions for the extreme helicity amplitude configurations
{H+, H0, H−} = {1, 0, 0} (a,b) and {0, 0, 1} (c,d) obtained from fast simulations after
fixing the programming error in the responsible EvtGen module.
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Systematic Studies

7.1 Intermediate and Final State Branching Fractions
The results presented in Section 6.5 were obtained with some of the external
parameters (intermediate and final state branching fractions B(D+

s → K+K−π+),
B(B0

d → D+D−s ), B(D+
→ K−π+π+), and B(D∗+ → D+X)) kept fixed to their world

average values [3]. For this reason, the uncertainties quoted are of statistical
nature only. In a second step, uncertainties introduced by external parameters are
accounted for by re-doing the simultaneous fit, but adding Gaussian constraints
to the log likelihood fit function according to the uncertainties these external
parameters are afflicted with. This allows these uncertainties to be propagated in
the fit, while the parameters themselves are being strongly constrained to their
central values. In this respect, one of the major benefits of the simultaneous fitting
approach is the opportunity to directly evaluate impacts of variations of external
parameters on the branching fraction result without the need for re-evaluating
parameter correlations afterwards. As systematic uncertainties of fDsDs , fD∗sDs ,
fD∗sD∗s , and fD(∗)

s D(∗)
s

(Table 7.1) the root of the differences between the squared total
uncertainties – those obtained with the uncertainties of intermediate and final state
branching fractions propagated – and statistical fit uncertainties – those obtained
in the standard fit – are assigned. It is not surprising that the branching fraction
of the normalization channel B0

d → D+D−s does not add any uncertainty. This
can be traced back to the way the expected number of reconstructed events that
are involved in the relative branching fraction measurement are parameterized
(sections 6.3.6 and 6.4.3): B(B0

d → D+D−s ) is a common factor to all relevant signal
yield parameterizations, any variation thus cancels out.

121
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External Input fDsDs fD∗sDs fD∗sD∗s fD(∗)
s D(∗)

s

B(D+
s → K+K−π+) 0.011 0.022 0.037 0.067

B(D+
→ K−π+π+) 0.006 0.010 0.012 0.031

B(B0
d → D+D−s ) 0.000 0.000 0.000 0.000

B(D∗+ → D+X) 0.000 0.000 0.000 0.000
Total B 0.013 0.024 0.039 0.074

Table 7.1: Systematic uncertainties caused by uncertainties of intermediate and final
state branching fractions.

7.2 Reconstruction and Selection

7.2.1 Two-Track Trigger Correction

Recording of B meson decay candidates of the fully hadronic meson decays stud-
ied in this analysis is triggered by an online algorithm, called Two-Track Trigger,
that uses three different sub-scenarios basically depending on the transverse mo-
mentum of the decaying B meson. According to these scenarios recorded data
can be sub-categorized into three exclusive sub-samples. Previous studies have
shown (Section 4.7) that the proportions of these sub-samples are not well re-
flected in simulated data. To provide a more realistic description of real data, all
Monte Carlo samples have been re-weighted with the weights calculated from a
comparison of real and simulated data. Since the branching fractions of interest
are measured relative to the branching fractions of topologically similar decays,
to first order the effects of poorly simulated Two-Track Trigger fractions should
cancel out in the ratios of reconstruction efficiencies. As a systematic check the
standard simultaneous fits for fDsDs , fD∗sD∗ , fD∗sD∗s , and fD(∗)

s D(∗)
s

are repeated, however
this time keeping the (poorly matching) proportions of the trigger sub-samples as
simulated in the first place. The full deviations with respect to the central fD(∗)

s D(∗)
s

results, that were obtained with reconstruction efficiencies computed from Two-
Track Trigger corrected Monte Carlo, are conservatively assigned as systematic
uncertainties (Table 7.2).

7.2.2 Multiple Candidates

The four studied decay channels have a very similar decay topology, each having
a combination of six kaon or pion tracks in the final state. The similar topological
decay structure is both a blessing and a curse. On the one hand, one benefits from
the cancellation of the major fraction of acceptance and selection related effects.
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Quantity TTT Correction No TTT Correction Assigned Uncertainty
fDsDs 0.184 0.185 0.001
fD∗sDs 0.421 0.424 0.003
fD∗sD∗s 0.654 0.644 0.010

fD(∗)
s D(∗)

s
1.259 1.254 0.005

Table 7.2: Systematic uncertainties due to correction of Monte Carlo samples accord-
ing to the fractions of two-track trigger sub-samples observed in side-band subtracted
data. As systematic uncertainties the absolute differences between the default central
values (second column) and the values determined from non-corrected Monte Carlo
(third column) are conservatively assigned as uncertainties (last column).

On the other hand, during reconstruction a given candidate might be assigned
to more than one exclusive decay channel. As a consequence, this candidate
then populates the invariant mass spectra of other decay channels as well, a fact
that might spoil the simultaneous fitting approach. If the fraction of multiple
candidates among the different decay channels is significant the distributions
entering the simultaneous fit cannot be treated as statistically independent, since
the invariant mass in one sample will be correlated to the mass of another one. To
phrase it differently, the total probability density function (pdf) does not factorize
into the individual pdfs,

pd f (m1,m2) , pd f (m1) × pd f (m2), (7.1)

where equation (7.1) exemplarily covers the case of two non-independent data
samples only.

To address this issue, in a first step the level of candidate cross-feed among
the four invariant distributions is quantified. Once recorded and reconstructed,
an event candidate is unambiguously identified by the number of the CDF run it
was found in and a running event number. Table 7.3 shows the exclusive fraction
of multiple events a particular data sample shares with any of the other three
studied decay channels. The level of inclusive candidate cross-feed is illustrated
by the plots in Figure 7.1. Table 7.3 indicates that already the individual channels
contain a non-vanishing, but low amount of multiple candidates. To phrase it
according to the geometrical arrangement of the plots in Figure 7.1, the level
of “horizontal” candidate cross-feed is negligible. The “vertical” cross-feed is
neither an issue of concern. Owing to the very similar decay topology there is
however a remarkable level of candidate cross-feed in a “diagonal” sense among
the channels B0

s → D+
s D−s → φ†π+K∗0†K− and B0

d → D+D−s → K−π+π+φ†π−. The
latter finding is not surprising, and the cross-feed due to false reconstruction has
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Final State φ†π+φ†π− φ†π+K∗0†K− K−π+π+φ†π− K−π+π+K∗0†K−

φ†π+φ†π− 1.7% 0.1% 16.2% 0.0%
φ†π+K∗0†K− 0.1% 1.2% 37.3% 9.6%

K−π+π+φ†π− 1.2% 4.6% 1.9% 0.6%
K−π+π+K∗0†K− 0.0% 1.6% 0.8% 3.3%

Table 7.3: Fraction of multiple candidates a given decay channel (row) shares with
any of the other studied decay channels (column).

No Cross-Feed Veto
Quantity Central Dalitz Fluct Deviation

fDsDs 0.184 ± 0.021 0.166 ± 0.018 −0.018
fD∗sDs 0.421 ± 0.046 0.379 ± 0.040 −0.042
fD∗sD∗s 0.654 ± 0.073 0.586 ± 0.063 −0.068

Cross-Feed Veto
fDsDs 0.186 ± 0.021 0.168 ± 0.018 −0.018
fD∗sDs 0.428 ± 0.047 0.385 ± 0.041 −0.043
fD∗sD∗s 0.664 ± 0.073 0.596 ± 0.064 −0.068

Table 7.4: Comparison of fit results obtained without a cross-feed veto (upper half)
and with a cross-feed veto placed on the normalization channels (lower half). In
addition to the central fit results in both scenarios one particular Dalitz model fluc-
tuation is considered as systematic cross-check. The absolute deviations with respect
to central values are equal for both scenarios.

already been accounted for by adequately parameterizing the respective yields.
As a second step, the impact of the correlations inside the total fit pdf on the

final results is evaluated. This is done by vetoing multiple candidates found in the
normalization channels. Due to the structure of candidate cross-feeds described
above, in doing so the level of mass correlation should be reduced down to a
negligible level. To avoid a bias multiple candidates are also removed from
simulated data. With the multiple candidate veto placed on both data and Monte
Carlo of the normalization channels the standard simultaneous fitting procedure
is repeated. The results (column labeled by “Central” in Table 7.4) indicate that
the deviations with respect to the standard scenario (no multiple candidate veto)
are below 0.2 statistical standard deviations. Given the overall precision of this
measurement the deviation is thus negligible.

While the central values can be unaffected, mass correlations inside the total
pdf might still introduce biases to the estimation of systematic uncertainties. To
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Figure 7.1: Inclusive candidate cross-feeds. Nc f gives the number of cross-feed
candidates a given data sample shares with any of the other decay channels. The
level of cross-feed among the decays B0

s → D+
s D−s → φ†π+K∗0†K− and B0

d → D+D−s →
K−π+π+φ†π− is remarkable, but not surprising.
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address this concern, one particular variation of the D+
s → K+K−π+ Dalitz model1

is considered that introduces∼ 1σ downward fluctuations for fDsDs , fD∗sDs , and fD∗sD∗s

in the standard non-veto scenario. Given the same Dalitz model variation, the
simultaneous fit is repeated with the multiple candidate veto placed on the nor-
malization channels. As can be seen from Table 7.4, the same absolute downward
fluctuations with respect to the central values are observed.

We conclude that the presence of multiple candidates does not introduce a
bias to the analysis results obtained from a joint likelihood fit, neither in terms
of central values, nor in terms of systematic estimates. Therefore, no systematic
uncertainty is assigned due to multiple candidate cross-feeds. Since removing
multiple candidates from real and simulated data takes a considerable amount of
time and would be mandatory for all systematic studies, for practical reasons the
non-veto case is retained as the standard scenario.

7.2.3 B0
s → D+

s D−s → φ†π+K∗0†K− Network Selection

The neural network working point for the decay B0
s → D+

s D−s → φ†π+K∗0†K−

determined by a significance scan over a range of neural network outputs was
not very pronounced, particularly given the size of statistical uncertainties (see
Figure 5.8). The question may arise if the neural network threshold chosen indeed
represents a robust estimation of an optimal working point, and if the selection
introduces biases to the final results. This can be verified by determining the
ratios of branching fractions for a series of different network thresholds. This is
done by scanning over the same neural network output region the neural network
working point was determined from in steps of ∆NNout = 0.04 and repeating the
simultaneous likelihood fits for the ratios of branching fractions.

Figure 7.7 shows the result of the network scan. The left column of diagrams
displays the branching fraction results, the right column of plots their relative
uncertainties. From the latter group of plots it is clearly visible that the relative
uncertainty of the measurement is virtually independent of the K∗0K network cut
chosen. In this sense, no neural network point is really preferred over another,
and the choice of the network threshold is indeed somewhat arbitrary. Due to this
freedom of choice we retain the original network working point.

When it comes to absolute values (left group of plots in Figure 7.7), care must
be taken when interpreting the outcome of the network scan. At first glance,
the results seem to be perfectly compatible within the statistical uncertainties
indicated by the errors bars. However, the fitted samples are not statistically

1The Dalitz model represents one of the leading sources of the overall systematic uncertainty.
See Section 7.3.2 for details.
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Quantity NN > 0.00 NN > 0.98 ∆RA,B n
fDsDs 0.168 ± 0.019 0.184 ± 0.020 0.016 0.41
fD∗sDs 0.401 ± 0.044 0.421 ± 0.045 0.020 0.23
fD∗sD∗s 0.589 ± 0.068 0.654 ± 0.070 0.065 0.48

fD(∗)
s D(∗)

s
1.159 ± 0.092 1.259 ± 0.091 0.100 0.56

Table 7.5: Comparison of results determined from data samples selected from a low
(NN > 0.00) and a high (NN > 0.98) neural network threshold. See text for further
explanations.

independent, since every sample is a subset of any sample that was selected using
a looser network cut. Given the results RA, RB with statistical uncertainties σA,
σB determined from data samples having total candidate yields of sA and sB with
sB ⊂ sA, the difference ∆RA,B can be verified to be statistically compatible within
nσ using the relation

∆RA,B = nσA,B

√
sA

sB
− 1 (7.2)

Since the fluctuations of the results are not very high, only the values determined
from the lowest and highest network working point are compared. The size of the
associated data samples is 7, 511 and 1, 569 candidates, respectively. As shown in
Table 7.5, the variations of the results are compatible with statistical fluctuations
due to differences in the data samples.

7.3 Monte Carlo Simulation
As mass line shapes and selection efficiencies are estimated from simulated data,
variations in Monte Carlo model assumptions might affect the measured branch-
ing fractions. In the upcoming sections the effects of variations of model assump-
tions entering Monte Carlo generation are scrutinized.

Beside Monte Carlo models, another source of uncertainty arises by the lim-
ited statistics of the Monte Carlo samples. To account for this aspect, in the
simultaneous fits for fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

the statistical Monte Carlo un-
certainties are propagated as Gaussian constraints to the efficiency parameters.
As high-statistics simulations are at hand the relative uncertainties on the number
of reconstructed Monte Carlo events are small, and the re-fitted values of fD(∗)

s D(∗)
s

do not show any deviations from the central values. Therefore no systematic
uncertainties are assigned due to Monte Carlo statistics.
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Figure 7.2: Results (left column) and relative uncertainties (right column) of fDsDs

(a,b), fD∗sDs (c,d), fD∗sD∗s (e,f), and fD(∗)
s D(∗)

s
(g,h) obtained from changing the working

points of the K∗0K network in steps of 0.04.
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7.3.1 B and D Meson Lifetimes

In Monte Carlo simulation B and D mesons are decayed following a decay law
with a particular mean decay length cτMC. The Two-Track Trigger as well as the
pre- and final selection procedure place requirements on kinematical quantities
that are highly correlated to the travel distance of the decaying particle. Therefore,
different mean B meson lifetimes used in Monte Carlo generation may result in
deviating trigger and reconstruction efficiencies. The effect of varying the mean
meson lifetimes on the measured ratios fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

is evaluated
by re-weighting simulated data according to different mean decay lengths cτ. The
per-event weights are calculated from the Monte Carlo truth information for the
proper decay length ct by using relation (4.2)

wcτ = exp
( ct
cτMC

−
ct
cτ

)
The B0

s and B0
d Monte Carlo samples used in this analysis were generated with mean

decay lengths of cτB0
s

= 441 µm (τB0
s

= 1.471 ps) and cτB0
d

= 458.7 µm (τ = 1.530 ps).
By default, prior to the determination of fD(∗)

s D(∗)
s

all B0
d Monte Carlo have already

been re-weighted using the more recent value τB0
d

= 1.519. B0
s → D(∗)+

s D(∗)−
s Monte

Carlo samples have been re-weighted using the lifetime of the short-living light
mass eigenstate, τBL

s
= 1.408 ps.

In order to quantify systematic effects on the measured branching fractions
introduced by deviations of the central B meson lifetimes we proceed as follows:
Each of the B0

d (including the channel B0
d → D+D−s → K−π+π+φ†π− falsely re-

constructed as B0
s → D+

s D−s → φ†π+K∗0†K−) and the B0
s Monte Carlo samples are

re-weighted using deviating decay lengths cτB0
d

and cτB0
s
, respectively, and the

standard likelihood fits to data are repeated two times: In the first scenario the
mean BL

s decay length is varied downwards by 1σ, while the mean B0
d decay length

is varied upwards by 1σ at the same time. In the second scenario, BL
s /B0

d decay
length assignments are swapped, with the B0

d decay length (now assigned to the
B0

s meson) varied upwards by 1σ, and the BL
s decay length (now assigned to the

B0
d meson) varied downwards by 1σ. This procedure should cover any systematic

effects related to B meson kinematics, and is motivated by these considerations:

• The final selection used joint networks trained for each combination of B0
s →

D+
s D−s and the topologically similar B0

d → D+D−s normalization sub-channel.
This procedure was motivated by the very similar lifetimes of the B0

s and B0
d

meson. The swap in lifetimes (including 1 standard deviation) accounts for
the non-perfect agreement by using the lifetime of the shorter-living light
eigenstate BL

s instead of the mean B0
s lifetime.
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Quantity σ(cτBL
s
)/σ(cτB0

d
) cτBL

s
↔ cτB0

s
σ(cτD+

s
)/σ(cτD+) Combined

fDsDs +0.001 −0.003 0.001 +0.001
−0.003

fD∗sDs +0.002 −0.008 0.001 +0.002
−0.008

fD∗sD∗s +0.002 −0.012 0.002 +0.003
−0.012

fD(∗)
s D(∗)

s
+0.005 −0.023 0.004 +0.006

−0.023

Table 7.6: Fluctuations of the ratios of branching fractions fDsDs , fD∗sDs , fD∗sD∗s , and
fD(∗)

s D(∗)
s

induced by 1 sigma variations of the B meson decay lengths (second column),
by swapping cτBL

s
and cτB0

d
lifetime assignments (third column), and by randomly

varying the D meson lifetimes in 250 trial fits (fourth column). The fifth column
quotes the combined systematic uncertainties by adding the individual uncertainties
in quadrature.

• By swapping lifetime assignments according to cτBL
s
↔ cτB0

d
≈ cτB0

s
at the

same time the B0
s meson is assigned the mean B0

s lifetime, which virtually
coincides with the mean B0

d lifetime. In this way the scenario of a vanishing
decay width difference ∆Γs is considered. Looking at ∆Γs = ∆ΓCP

s cosφs,
the case of a zero decay width difference could occur if the phase φs takes
multiples of π/2, or if the CP width difference ∆ΓCP

s vanishes.

Table 7.6 quotes the branching fraction ratios measured in the two scenarios. The
down- and upward fluctuations are assigned as asymmetric systematic uncertain-
ties.

The studied decay chains contain charged D and Ds mesons as long-living
intermediate states. To study effects of variations in the D and Ds mean decay
lengths these are allowed to randomly float within Gaussian uncertainties [3].
After re-weighting Monte Carlo using these random values, the standard likeli-
hood fits to data are repeated. Figure 7.3 displays the results of 250 fit trials. The
systematic uncertainties that are deduced from the Gaussian widths of the result-
ing distributions of the fitted ratios fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

are negligible.
We conclude that variations of the mean B and D meson decay lengths used in
simulation have marginal impact on the measured branching fractions.

7.3.2 D+
s → K+K−π+ Dalitz Model

As described in Sections 4.4 and 4.6, decays of D+
s → K+K−π+ are simulated ac-

cording to the Dalitz model using parameters (magnitudes, phases) measured by
the CLEO collaboration [105]. The model parameters are afflicted with uncer-
tainties though (Table 4.3). The effects of any variation of the Dalitz model are
two-fold: Firstly, the fractions of D+

s → K+K−π+ events that populate the φ(1020)
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Figure 7.3: Fluctuations of the ratios of branching fractions fDsDs (a), fD∗sDs (b), fD∗sD∗s
(c), and fD(∗)

s D(∗)
s

(d) due to variations of the mean D+
s and D+ decay lengths. See text

for details.
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and K∗0(892) mass bands introduced by reconstruction undergo changes (cf. equa-
tions (4.23) and (4.24)). This is a direct effect of any change in the Dalitz parameter
configuration. Secondly, as the proportions of the resonances in the considered
D+

s → K+K−π+ decay model change, due to acceptance effects a variation of the
Dalitz model can influence the reconstructed number of events lying inside the
two mass bands. In this context, resolution effects at the boundaries of the mass
bands may also play a role. In this section the effects of variations of the Dalitz
model on the quantities fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

is quantitatively investigated.
For this purpose, the ratios of branching fractions are extracted using the

standard simultaneous fitting method for a number of arbitrary but fixed con-
figurations of the Dalitz model. Each model scenario is expressed in terms of
a different set of the 12 Dalitz model parameters that are randomly generated.
Following the toy parameter procedure described in Section 4.4.5 the parameters
are correlated to each other according to the parameters’ covariance matrix (see
Section A.2 in the Appendix).

Before presenting the outcomes of the fit trials, the effects on fDsDs , fD∗sDs ,
fD∗sD∗s , and fD(∗)

s D(∗)
s

are discussed in some more detail. For this it is worthwhile
taking a closer look at equation (6.18), which specifies the number of expected
fully reconstructed events in the decay channels B0

s → D+
s D−s → φ†π+φ†π− and

B0
s → D+

s D−s → φ†π+K∗0†K− (though the discussion is analogous for equations
(6.16), (6.20-6.21), (6.24-6.27) and (6.37-6.39). For ease of discussion equation
(6.18) is repeated:

Ni
B0

s→D+
s D−s

= Ntot
B0

d
fDsDsB(B0

d → D+D−s )B(D+
s → φ†π+)B

 D+
s → φ†π+

D+
s → K∗0†K+

 εi
B0

s→D+
s D−s

The equation is now re-formulated by introducing the relative fractions fφ†π+

(4.21), fK∗0†K+ (4.22) and writing out the efficiency term,

Ni
B0

s→D+
s D−s

=Ntot
B0

d
fDsDsB(B0

d → D+D−s ) (7.3)

× fφ†π+B(D+
s → K+K−π+)

 fφ†π+

fK∗0†K+

B(D+
s → K+K−π+)

×
Ni

rec

fφ†π+

 fφ†π+

fK∗0†K+

 Ngen
KKπ

,

where by Ngen
KKπ the number of simulated B0

s → D+
s D−s → K+K−π+K−K+π− decays

is abbreviated. If the configuration of the considered Dalitz model changes, the
quantities fφ†π+ , fK∗0†K+ , and Ni

rec are expected to change, too. Technically, the
change in Ni

rec is induced by an event-by-event re-weighting of Monte Carlo.
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The weights per D+
s → K+K−π+ decay branch, W(m2

K+K− ,m
2
K−π+), are given by the

squared decay amplitude using an arbitrary but fixed Dalitz parameter configura-
tion, divided by the squared decay amplitude according to the Dalitz configuration
simulated data have originally been generated with

W(m2
K+K− ,m

2
K−π+) =

∣∣∣M̃(m2
K+K− ,m

2
K−π+)

∣∣∣2∣∣∣M(m2
K+K− ,m

2
K−π+)

∣∣∣2 . (7.4)

The squared invariant masses of pairs of daughter particles, m2
K+K− and m2

K−π+

are obtained from Monte Carlo Truth information. The variation in fφ†π+ and
fK∗0†K+ can be evaluated using the procedure outlined in Section 4.4.5. However,
care must be taken to ensure that the underlying Dalitz scenario has the same
random but fixed parameter configuration the re-weighting procedure makes use
of. Thereby the efficiency term in equation (7.3) solely reflects second-order effects
in the form of variations in reconstruction efficiency, whereas changes in fφ†π+ and
fK∗0†K+ reflect direct effects of Dalitz model variations.

From equation (7.3) it becomes apparent that a substantial simplification can
be made: Since the quantities fφ†π+ and fK∗0†K+ cancel out for every arbitrary but
fixed model variation, it is sufficient to vary Ni

rec only by re-weighting Monte Carlo.
Any observed variation in the quantities fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

is hence the
combined result of direct (variation in mass band fractions) and second-order
effects (changing resonance fit fractions influencing acceptance) due to changes
of the Dalitz model parameters. It must be emphasized though that direct and
acceptance effects had to be studied separately if external values of fφ†π+ and
fK∗0†K+ – e.g. stemming from a newer Dalitz plot analysis – differing from the
those Monte Carlo were generated with were used. Secondly, the Dalitz plot mass
band fractions might be correlated, a fact that also would need to be accounted for.
However, the anti-correlation among fφ†π+ and fK∗0†K+ was found to be insignificant,
as shown in Section 4.4.5.

We perform a total of 500 simultaneous fits with Monte Carlo being re-
weighted according to 500 different Dalitz universes, whereby variations within
correlated Gaussian statistical and uncorrelated systematic uncertainties of the
Dalitz model parameters are considered separately. The widths of the Gaussian
distributions fitted to the corresponding result histograms are taken as system-
atic uncertainties of fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

. Table 7.7 lists the uncertainties
derived from the distributions shown in Figures 7.4 and 7.5.
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Figure 7.4: Systematic uncertainties of the ratios of branching fractions fDsDs (a),
fD∗sDs (b), fD∗sD∗s (c), and fD(∗)

s D(∗)
s

(d) induced by variations of the CLEO Dalitz model
parameters within correlated statistical uncertainties.
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Figure 7.5: Systematic uncertainties of the ratios of branching fractions fDsDs (a),
fD∗sDs (b), fD∗sD∗s (c), and fD(∗)

s D(∗)
s

(d) induced by variations of the CLEO Dalitz model
parameters within uncorrelated systematic uncertainties.
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Quantity Dalitz Stat Errors Dalitz Sys Errors Combined
fDsDs 0.007 0.008 0.011
fD∗sDs 0.016 0.018 0.024
fD∗sD∗s 0.025 0.029 0.038

fD(∗)
s D(∗)

s
0.047 0.056 0.073

Table 7.7: Systematic uncertainties of the ratios of branching fractions fDsDs , fD∗sDs ,
fD∗sD∗s , and fD(∗)

s D(∗)
s

induced by variations of the CLEO Dalitz model parameters within
correlated statistical (second column) and uncorrelated systematic uncertainties (third
column). The fourth column quotes the combined systematic uncertainties by adding
the individual uncertainties in quadrature.

7.3.3 B0
s → D∗+s D∗−s Helicity Amplitudes

Section 6.6 demonstrated that both the distribution of helicity angles and the mass
line shape of B0

s → D∗+s D∗−s do not depend on any changes of the helicity amplitudes
H+ and H− as long the longitudinal polarization fraction is fixed. No systematic
uncertainty is therefore assigned due to variations of fCP−. For quantifying any
systematic effect on the ratios of branching fractions it is thus sufficient to vary
the longitudinal polarization fraction fL = |H0|

2 /(|H+|
2 + |H0|

2 + |H−|2) only, with
H+ = H− calculated from the normalization condition (6.45). The longitudinal
polarization fraction is varied by generating random numbers around the central
value fL(B0

d → D∗+D∗−s ) = 0.5192 [119] by taking the assigned uncertainty ±0.057
as a Gaussian constraint. In doing so, the helicity amplitude H0 fluctuates around
the value H0 = 0.7204 originally used in B0

s → D∗+s D∗−s Monte Carlo simulation.
For each variation of H0 the dedicated B0

s → D∗+s D∗−s phase space Monte Carlo
sample is weighted using equation (4.47) and the standard simultaneous fit for
fD(∗)

s D(∗)
s

is repeated. The resulting values of fD(∗)
s D(∗)

s
are plotted in histograms (Figure

7.6) and the widths of Gaussian fits are taken as systematic uncertainties (Table
7.8).

7.4 Fit

7.4.1 Signal Parameterization

The parameterizations of the signal-like contributions (fully and partially recon-
structed signal events) are determined by means of fits to the Monte Carlo samples

2For the reasons outlined in Section 4.5.3 this is a reasonable estimate for fL(B0
s → D∗+s D∗−s ).
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Figure 7.6: Systematic uncertainties of the ratios of branching fractions fDsDs , fD∗sDs ,
fD∗sD∗s , and fD(∗)

s D(∗)
s

induced by variations of the B0
s → D∗+s D∗−s helicity amplitudes H+,

H0, and H−. For the reasons set out above, in practice the amplitude H0 =
√

fL is
varied only.
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Quantity fCP− fL Combined
fDsDs 0.000 0.001 0.001
fD∗sDs 0.000 0.005 0.005
fD∗sD∗s 0.000 0.012 0.012

fD(∗)
s D(∗)

s
0.000 0.008 0.008

Table 7.8: Systematic uncertainties due to variations of B0
s → D∗+s D∗−s helicity am-

plitudes. Second column: No uncertainties are assigned due to changes of fCP− (c.f.
Section 6.6). Compared to statistical uncertainties, systematic uncertainties originat-
ing from variations of fL (third column) are insignificant.

Quantity Assigned Uncertainty
fDsDs 0.003
fD∗sDs 0.007
fD∗sD∗s 0.009

fD(∗)
s D(∗)

s
0.019

Table 7.9: Systematic uncertainties due to the variation of the parameterization of
signal-like components in data.

generated for the respective components. Except for the shared means of fully
reconstructed signal all the shape parameters are kept fixed in the final fit to data.
This sections examines how variations in the shapes of the signal parameteriza-
tions affect the measured ratios of branching fractions.

Propagating the uncertainties of the shape parameters in the full fit function
the way it was done in the case of intermediate and final state branching fractions
(Section 7.1) is not a practicable option: The amount of parameters needed to de-
scribe all the contributions of partially reconstructed events is huge, and so would
be the number of free parameters in the full fit. To overcome this problem, the
full simultaneous fit is run repeatedly, with each fit trial using fixed but slightly
varied signal component parameters. This is achieved by generating correlated
Gaussian random numbers taking into account the full covariance matrices re-
sulting from the Monte Carlo template fits. In this way, 250 fits are performed,
and the results of fDsDs , fD∗sD∗s , fD∗sD∗s , and fD(∗)

s D(∗)
s

are plotted into histograms. As
systematic uncertainties the widths of Gaussian functions fitted to the result his-
tograms are assigned. Please see Table 7.9 and Figure 7.7 for details. Compared
to statistical and the leading systematic uncertainties the assigned uncertainties
are insignificant.
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Figure 7.7: Result distributions of fDsDs (a), fD∗sDs (b), fD∗sD∗s (c), and fD(∗)
s D(∗)

s
(d) obtained

from 250 trial fits, each time randomly varying the parameterizations of all signal-like
components.



140 7. Systematic Studies

4.8 5 5.2 5.4 5.6 5.8

2
C

an
d

id
at

es
 / 

10
 M

eV
/c

0

5

10

15

20

25

30

35

40

45
Data
Fit Function
Combinatorial

-
sD+

s D→ sB
-
sD+*s D→ sB

-*sD+*s D→ sB

)-πφ(-

s
)D+πφ(+

s D→ sB

-1CDF Run II Preliminary, L = 6.8 fb

2 Mass / GeV/c
-
sD+

sInvariant D

 = 469(*)
Ds

(*)
DsN

 0.020± = 0.184 DsDsf
 0.045± = 0.421 Ds*Dsf
 0.070± = 0.654 Ds*Ds*f

(a) Exponential plus constant

4.8 5 5.2 5.4 5.6 5.8

2
C

an
d

id
at

es
 / 

10
 M

eV
/c

0

5

10

15

20

25

30

35

40

45
Data
Fit Function
Combinatorial

-
sD+

s D→ sB
-
sD+*s D→ sB

-*sD+*s D→ sB

)-πφ(-

s
)D+πφ(+

s D→ sB

-1CDF Run II Preliminary, L = 6.8 fb

2 Mass / GeV/c
-
sD+

sInvariant D

 = 455(*)
Ds

(*)
DsN

 0.020± = 0.185 DsDsf
 0.043± = 0.417 Ds*Dsf
 0.069± = 0.624 Ds*Ds*f

(b) Second order polynomial

Figure 7.8: Comparison of the mass projections of the decay channel B0
s → D+

s D−s →
φ†π+φ†π− using the default parameterization for the background component (a) in
the simultaneous fit and alternatively using a second order polynomial function to
describe background (b).

7.4.2 Background Parameterization

As stated above, the combinatorial background component is parameterized by
a sloping exponential function plus a constant. Both the shape parameters are
left completely free in the fit. Consequently, the uncertainty of – this particular
– background parameterization is already accounted for and included in the
statistical uncertainties quoted in equations (6.40) through (6.43).

Since the parameterization chosen lacks any physical motivation – and cannot
be verified on a clean statistically independent sample – a function having a similar
slope and amount of parameters may describe the background component in data
equally well, but might lead to different results in terms of branching fractions
ratios. To investigate the influence of a slightly differently shaped background
the simultaneous fits are repeated using a second order polynomial function, that
needs an equal amount of parameters to be described. As systematic uncertain-
ties the full deviations from the central results for fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

are
assigned (Table 7.10). The relatively large deviation in the case of fD∗sD∗s can be
attributed to the different shapes of the exponential and the polynomial param-
eterization in the lower region of the fit range, as can be seen from Figure 7.8.

7.4.3 Fit Validity

The simultaneous fitting method might introduce a systematic bias, pushing the
values of fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

in one direction or another. The potential
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Quantity Exponential 2nd Order Polynomial Assigned Uncertainty
fDsDs 0.184 0.185 0.001
fD∗sDs 0.421 0.417 0.004
fD∗sD∗s 0.654 0.624 0.030

fD(∗)
s D(∗)

s
1.259 1.226 0.033

Table 7.10: Systematic uncertainties due to parameterization of the combinatorial
background component in data. As systematic uncertainties the absolute differences
between the default central values obtained in a fit using an exponential function plus
constant (second column) and the values determined in a fit using a second order
polynomial instead (third column) are conservatively assigned as uncertainties (last
column).

presence of a systematic shift can be investigated by means of toy experiments:
According to the final parameter values determined in the simultaneous fit to
real data, random mass distributions for all the studied channels are generated.
This is done by calculating the per-event likelihood for a given random invariant
mass lying inside the fitting range and employing the accept/reject method. The
amount of events per decay mode randomly generated are equal to the number
observed in the original real data sample. Generation of random mass spectra is
performed for all four decay channels studied. For each combination of random
invariant mass distributions simultaneous fits for fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)

s D(∗)
s

are
carried out. In this way, 250 toy experiments are run in total, and the fit results
are filled into histograms (Figure 7.9). The validity of the fit can be reviewed by
evaluating pull distributions, where the per-trial pull ptrial of a given fit parameter
x is defined as

ptrial =
xtrial − xcentral

σxtrial

. (7.5)

xcentral denotes the central parameter value having a symmetric uncertainty σxtrial

determined in a fit to real data. Since the statistical uncertainties of fDsDs , fD∗sDs ,
fD∗sD∗s , and fD(∗)

s D(∗)
s

determined in the original fits to data are slightly asymmetric,
the pull relation for asymmetric uncertainties σ+

xtrial
, σ−xtrial

has to be used:

ptrial =
xtrial − xcentral

σ+
xtrial

for xtrial ≤ xcentral (7.6)

ptrial =
xtrial − xcentral

σ−xtrial

for xtrial > xcentral

For a bias-free fit, i.e. a fit in which result variations are driven by statistical
fluctuations of the data sample only, one expects a pull distribution centered at
0 and having a width of 1. Figure 7.10 shows the pull distributions for the fit
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Figure 7.9: Distributions of the fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)
s D(∗)

s
results determined in

250 toy experiments.

parameters fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)
s D(∗)

s
. We conclude that, according to the

amount of toy experiments run, within 0.5σ the pull means are compatible with a
bias-free fit. The toy widths – particularly for fDsDs , see Figures 7.9(a) and 7.10(a) –
tend to be marginally smaller than the uncertainties determined in the standard fit
to real data. This could be explained by the standard fit slightly overestimating the
statistical error. No additional systematic uncertainties due to the fitting method
are assigned.



7.4 Fit 143

f_DsDs Pull
-3 -2 -1 0 1 2 3

F
re

q
u

en
cy

 o
f 

P
u

ll

0

2

4

6

8

10

12

14

16

18

20 Toy Pull
Gaussian Fit

-1CDF Run II Preliminary, L = 6.8 fb

 0.060± = -0.003 µ
 0.043± = 0.901 σ

(a)

f_DsSDs Pull
-3 -2 -1 0 1 2 3

F
re

q
u

en
cy

 o
f 

P
u

ll

0

2

4

6

8

10

12

14

16

18

20 Toy Pull
Gaussian Fit

-1CDF Run II Preliminary, L = 6.8 fb

 0.061± = -0.017 µ
 0.045± = 0.924 σ

(b)

f_DsSDsS Pull
-3 -2 -1 0 1 2 3

F
re

q
u

en
cy

 o
f 

P
u

ll

0

2

4

6

8

10

12

14

16

18

20 Toy Pull
Gaussian Fit

-1CDF Run II Preliminary, L = 6.8 fb

 0.065± = 0.012 µ
 0.049± = 0.981 σ

(c)

f_DsSDsSSemi Pull
-3 -2 -1 0 1 2 3

F
re

q
u

en
cy

 o
f 

P
u

ll

0

2

4

6

8

10

12

14

16

18
Toy Pull
Gaussian Fit

-1CDF Run II Preliminary, L = 6.8 fb

 0.063± = 0.025 µ
 0.046± = 0.942 σ

(d)

Figure 7.10: Pull distributions of the fDsDs , fD∗sDs , fD∗sD∗s , and fD(∗)
s D(∗)

s
results determined

in 250 toy experiments.



144 7. Systematic Studies

Source fDsDs Rel fD∗sDs Rel fD∗sD∗s Rel fD(∗)
s D(∗)

s
Rel

Branching Fractions 0.013 0.07 0.024 0.06 0.039 0.06 0.074 0.06
MC Statistics 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00

TTT Correction 0.001 0.01 0.003 0.01 0.010 0.02 0.005 0.00
B, D Lifetimes +0.001

−0.003
+0.01
−0.02

+0.002
−0.008

+0.00
−0.02

+0.003
−0.012

+0.00
−0.02

+0.006
−0.023

+0.00
−0.02

Dalitz Model 0.011 0.06 0.024 0.06 0.038 0.06 0.073 0.06
Helicity Model 0.001 0.01 0.005 0.01 0.012 0.02 0.008 0.01
Signal Model 0.003 0.02 0.007 0.02 0.009 0.01 0.019 0.02

Background Model 0.001 0.01 0.004 0.01 0.030 0.05 0.033 0.03
Total +0.017

−0.018
+0.09
−0.10

+0.035
−0.036

+0.08
−0.09

+0.065
−0.066 0.10 +0.111

−0.113 0.09

Table 7.11: Overview of absolute and relative systematic uncertainties. The total sys-
tematic uncertainties are calculated by adding the individual ones in quadrature. Due
to the uncertainties of fs/ fd and B(B0

d → D+D−s ), further uncertainties will contribute
to the absolute branching fractions B(B0

s → D(∗)+
s D(∗)−

s ).

7.5 Overview
The systematics considered throughout the foregone sections are finally summa-
rized and combined. The individual absolute and relative uncertainties are pre-
sented in Table 7.11. The leading sources of uncertainty introduced by analysis
techniques are the combined uncertainties of intermediate and final state branch-
ing fractions and the uncertainty in the parameterization of the D+

s → K+K−π+

Dalitz model.
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Results and Discussion

8.1 Absolute Branching Fractions and Implications on
∆Γs/Γs

By combining the individual and total systematic uncertainties estimated in Sec-
tion 7 we may write the results of the exclusive branching fractions ratios and the
semi-inclusive branching fraction ratio:

fDsDs = 0.184+0.021
−0.020(stat)+0.017

−0.018(sys) (8.1)

fD∗sDs = 0.421+0.046
−0.045(stat)+0.035

−0.036(sys) (8.2)

fD∗sD∗s = 0.654+0.073
−0.071(stat)+0.065

−0.066(sys) (8.3)

fD(∗)
s D(∗)

s
= 1.259+0.094

−0.092(stat)+0.111
−0.113(sys) (8.4)

For the exclusive ratios fDsDs , fD∗sDs , and fD∗sD∗s the total systematic uncertainties
are slightly smaller than statistical uncertainties, while for the sum of them, fD(∗)

s D(∗)
s

,
which is deduced from the inclusive yield, the opposite is observed.

From the ratios (8.1) through (8.4) absolute branching fractions are calculated
by inserting the current world average value B(B0

d → D+D−s ) = (7.2 ± 0.8) × 10−3

[3] and the relative B0
s to B0

d meson production rate at Tevatron energies, fs/ fd =

0.269 ± 0.033 [131], into equations (6.19, 6.22, 6.23):

B(B0
s → D+

s D−s ) = (0.49+0.06
−0.05(stat) ± 0.05(sys) ± 0.08(norm))% (8.5)

B(B0
s → D∗+s D−s ) = (1.13 ± 0.12(stat)+0.09

−0.10(sys) ± 0.19(norm))% (8.6)

B(B0
s → D∗+s D∗−s ) = (1.75+0.20

−0.19(stat)+0.17
−0.18(sys) ± 0.29(norm))% (8.7)

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.37 ± 0.25(stat) ± 0.30(sys) ± 0.56(norm))% (8.8)

The uncertainties of the branching fraction of the normalization channel B0
d →

D+D−s and the ratio of quark fragmentation fractions fs/ fd contribute further un-
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certainties. These were added in quadrature and labeled by (norm). Equations
(8.5) - (8.8) indicate that this is the leading source of uncertainty. Apparently,
this analysis would considerably benefit from more precise measurements of
B(B0

d → D+D−s ) and fs/ fd. Whenever new values are available, it is straightfor-
ward to re-calculate the absolute branching fractions from the relative branching
fractions given by equations (8.1) - (8.4).

As discussed in Section 1, under certain theoretical assumptions B0
s → D(∗)+

s D(∗)−
s

decays saturate decays to CP-even final states. Furthermore taking CP violation
in the B0

s − B̄0
s system to be negligibly small the relationship specified in equation

(1.41),

∆Γs

Γs
�

2B(Bs → D+(∗)
s D−(∗)

s )

1 − B(Bs → D+(∗)
s D−(∗)

s )
,

may be used to estimate the relative decay width difference ∆Γs/Γs system from
the branching fraction of semi-inclusive B0

s → D(∗)+
s D(∗)−

s decays. Inserting the
calculated branching fraction value (8.8) and propagating all uncertainties, one
obtains:

∆Γs

Γs
= (6.97+0.50

−0.49(stat)+0.59
−0.60(sys) ± 1.11(norm) ± 0.34(theo))% (8.9)

= (6.97+1.39
−1.40)%

In the estimation of ∆Γs/Γs a theoretical uncertainty of ±5% has been added. This
arises [31] from the potential presence of a small but non-zero CP-odd component
in B0

s → D∗+s D−s and B0
s → D∗+s D∗−s and contributions from two-body decay modes

other than b→ cc̄s that are common to B0
s and B̄0

s .

8.2 Statistical Significance
The statistical significances of the relative branching fraction measurements are

calculated from
√
−2 ln(L f

0/Lmax), where Lmax is the value of the likelihood func-

tion for the central branching fraction values found in the standard fit, and L f
0

are the likelihood values when each of the branching fractions of B0
s → D+

s D−s ,
B0

s → D∗+s D−s , B0
s → D∗+s D∗−s , and B0

s → D(∗)+
s D(∗)−

s are fixed to zero one by one.
The statistical significances quoted in Table 8.1 clearly indicate that the present

analysis confirms observation of the decay modes B0
s → D+

s D−s , B0
s → D∗+s D−s , and

B0
s → D(∗)+

s D(∗)−
s . In addition, this thesis claims first observation of B0

s → D∗+s D∗−s
with a statistical significance above 10σ.



8.3 Comparison of Results 147

Quantity fDsDs fD∗sDs fD∗sD∗s fD(∗)
s D(∗)

s

Significance (σ) 16.8 12.2 10.9 20.6

Table 8.1: Statistical significances for the observations of the exclusive and the semi-
inclusive decay modes.

DØ CDF Belle CDF 2011
Signal Yield 27 24 23 745
B(B0

s → D+
s D−s ) (%) - 1.04+0.35+1.1

−0.32−1.1 1.03+0.39+0.26
−0.32−0.25 0.49+0.06+0.09

−0.05−0.09

B(B0
s → D∗+s D−s ) (%) - - 2.75+0.83+0.69

−0.71−0.69 1.13+0.12+0.21
−0.12−0.21

B(B0
s → D∗+s D∗−s ) (%) - - 3.08+1.22+0.84

−1.04−0.84 1.75+0.20+0.34
−0.19−0.34

B(B0
s → D(∗)+

s D(∗)−
s ) (%) 3.5 ± 1.0 ± 1.1 - 6.85+1.53+1.89

−1.30−1.89 3.37+0.25+0.63
−0.23−0.63

∆Γs/Γs (%) 7.2 ± 2.1 ± 2.2 > 1.2 14.7+3.6+4.4
−3.0−4.2 6.97+0.50+1.30

−0.49−1.31

Table 8.2: Comparison of available results and the preliminary results presented in
this document. “Signal Yield” refers to the total number of any kind of B0

s → D(∗)+
s D(∗)−

s

decay events a given experiment was able to reconstruct.

8.3 Comparison of Results
The presented results (8.5) - (8.8) are now being embedded in the context of the
current experimental status. The estimated relative decay width difference (8.9)
is directly comparable to the values obtained by the previous analyses published
in the Refs. [35, 36, 39], where ∆Γs/Γs was determined within the same theoretical
regime the present estimation makes use of. At the cost of the oldest result by
the ALEPH collaboration, Table 8.2 gives an overview of previous results and the
preliminary results contributed by the present analysis. To enhance comparability,
Figure 8.1 illustrates the compilation of results in a graphical way.

The results contributed by this analysis tend to be lower than or at the lower
edge of the world average values: Our value of B(B0

s → D+
s D−s ) is 1.9σ below the

world average value, B(B0
s → D∗+s D∗−s ) is off by 1.6σ. In the latter case the world

average value yet consists of the Belle measurement only. Both B0
s → D∗+s D∗−s and

B0
s → D(∗)+

s D(∗)−
s are compatible with the world average values within 1σ. Recently,

the Belle collaboration presented new preliminary results on the basis of the full
Υ(5S) dataset holding an integrated luminosity of 121.4 fb−1 [132], indicated by
Belle Prelim. (2011) in Figure 8.1. While these recent values are not yet included
in the calculated average (the yellow band), they show a clear tendency towards
lower branching fraction values. Including these values in the average calculation
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Figure 8.1: Comparison of B0
s → D+

s D−s (a), B0
s → D∗+s D−s (b), B0

s → D∗+s D∗−s (c), and
B0

s → D(∗)+
s D(∗)−

s (d) branching fraction measurements. The preliminary results CDF
Prelim. (2011) (this analysis) and Belle Prelim. (2011) were not yet considered in the
calculated averages (yellow bands).
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Figure 8.2: Comparison of results of the relative decay width difference ∆Γs/Γs esti-
mated from B(B0

s → D(∗)+
s D(∗)−

s ). The average value (yellow band) is calculated from
lifetime measurements and non-preliminary B(B0

s → D(∗)+
s D(∗)−

s ) measurements [40].

would certainly reduce the tension the presented results partly have with the
current world averages considerably.

Even with the inclusion of the preliminary results presented by the Belle
collaboration, the given measurements of both the individual exclusive branching
fractions and the semi-inclusive branching fraction of B0

s → D(∗)+
s D(∗)−

s decays
represent the world’s most precise measurements of these quantities. As the
concluding discussions in the last Chapter to come will show, it is difficult to
make any definite statement with regards to the accuracy and robustness of the
estimated value of the relative decay width difference ∆Γs/Γs. Nonetheless, under
the theoretical regime described in Section 1.5.1, our estimate of ∆Γs/Γs is in
good agreement with the current world average value ∆Γs/Γs = 9.3+3.2

3.3 [40] that is
calculated from a variety of lifetime measurements and existingB(B0

s → D(∗)+
s D(∗)−

s )
measurements. Figure 8.2 gives a graphical comparison of results.

8.3.1 Comparison with Previous CDF Measurement

Compared with the previous CDF analysis [37] this study introduced a series of
differing approaches. We are curious if the tension with the old CDF result (please
compare “CDF (2008)” with “CDF Prelim. (2011)” in Figure 8.1(a)) is model-driven
or a statistical effect only. To gain confidence in the methods used throughout this
analysis the simultaneous fit is repeated using CDF period 0 data only. This is
the dataset that has been available to the former CDF analysis1. Figure 8.3 shows

1There might be slight differences in the period 0 datasets due to changes in reconstruction
software.
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Figure 8.3: Fitted mass projections of B0
s → D+

s D−s → φ†π+φ†π− (a) and B0
s → D+

s D−s →
φ†π+K∗0†K− using period 0 CDF data only.

the fitted mass projections of the decay channels B0
s → D+

s D−s → φ†π+φ†π− and
B0

s → D+
s D−s → φ†π+K∗0†K−. From the simultaneous fit the ratio fDsDs is extracted

to be
fDsDs = 0.27 ± 0.07(stat) (8.10)

The fit result (8.10) is compared with the results extracted from Ref. [37] and the
accompanying public documentation [38]. Excluding B0

s → D+
s D−s → φπ+π+π−π−,

equation (10) in [38] is used to calculate the weighted average of fDsDs , where
we insert yields and efficiencies as presented in [37], but use today’s final state
branching fractions. We calculate

fDsDs = 0.26+0.08
−0.06(stat) (8.11)

This is in good agreement with (8.10). Neglecting the small correlation between
the two datasets (the period 0 dataset is a subset of the full dataset used in this very
analysis) the 2σ deviation with respect to the former CDF result can be explained
by the two analyses being carried out on different data samples.
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Concluding Remarks

In summary, this thesis presented a measurement of the ratios of the exclusive
branching fractions fDsDs , fD∗sDs , fD∗sD∗s , and the semi-inclusive relative branching
fraction fD(∗)

s D(∗)
s

, and reports first observation of the exclusive mode B0
s → D∗+s D∗−s .

In the relative measurement the decay of B0
d → D+D−s was chosen as normal-

ization channel. The D+
s meson was reconstructed selecting two narrow mass

bands in K+K−π+ phase space, where for the first time the full Dalitz structure
of D+

s → K+K−π+ decays was accounted for in an analysis of this kind. In doing
so, reconstruction efficiencies estimated from simulated data are more reliable
when compared to other analyses involving D+

s → K+K−π+ decays where K+K−

and K−π+ resonances other than φ(1020) and K∗0(892) are neglected. The rela-
tive branching fractions were determined in a joint likelihood fit to all signal and
normalization channels by sharing certain parameters among the full likelihood
function. Using the world average values of the quark production ratio fs/ fd and
B(B0

d → D+D−s ) this analysis measures the absolute exclusive branching fractions
as

B(B0
s → D+

s D−s ) = (0.49+0.06
−0.05(stat) ± 0.05(sys) ± 0.08(norm))%

B(B0
s → D∗+s D−s ) = (1.13 ± 0.12(stat)+0.09

−0.10(sys) ± 0.19(norm))%

B(B0
s → D∗+s D∗−s ) = (1.75+0.20

−0.19(stat)+0.17
−0.18(sys) ± 0.29(norm))%

These values represent the world’s most precise measurements of these observ-
ables.

Assuming the mostly CP-even final states D(∗)+
s D(∗)−

s to saturate ∆Γs, and taking
CP violation to be negligible, the branching fraction of B0

s → D(∗)+
s D(∗)−

s can be used
to infer the relative decay width difference ∆Γs/Γs in the Bs-B̄s system. Using
the absolute branching fraction value of semi-inclusive decays measured in this

151



152 9. Concluding Remarks

analysis,

B(B0
s → D(∗)+

s D(∗)−
s ) = (3.37 ± 0.25(stat) ± 0.30(sys) ± 0.56(norm))%

the relative decay width difference is estimated to be

∆Γs

Γs
= (6.97+0.50

−0.49(stat)+0.59
−0.60(sys) ± 1.11(norm) ± 0.34(theo))%

= (6.97+1.39
−1.40)%

The possibility of estimating the decay width difference in the B0
s − B̄0

s system
through a branching fraction measurement of the decays B0

s → D(∗)+
s D(∗)−

s critically
depends on the assumptions contributed by the theory community. As with other
scientific disciplines, theoretical heavy flavor physics is a continually evolving
field. Over time, this gives rise to changing theoretical models and predictions.
Deviating assumptions however may lead to a considerably different interpreta-
tions of experimental results. In the light of these thoughts and the considerations
made in Section 1.5.2, this thesis closes with a brief discussion of concerns and
possible solutions with regards to the interpretation of the presented estimate of
∆Γs/Γs.

As pointed out in [22], the theoretical assumptions made in [31] do not account
for contributions stemming from multi-body (more than two) final states and
two-body final states other than B0

s → D(∗)+
s D(∗)−

s . If other contributions to ∆Γs are
sizable, measuring B(B0

s → D(∗)+
s D(∗)−

s ) does not give any more a robust estimation
of ∆Γs. These concerns seem to be encouraged by recent theoretical calculations of
∆Γs: in contrast to previous predictions, according to Ref. [33] the effect of three-
body modes on ∆Γs is virtually comparable to that of two-body modes. Thus
the assumption of the semi-inclusive two-body mode B0

s → D(∗)+
s D(∗)−

s saturating
∆Γs receives a considerable correction. With this in mind, ∆Γs estimated from
B(B0

s → D(∗)+
s D(∗)−

s ) can be interpreted as a lower limit to the full decay width
difference only. However, it must be stressed that the theoretical uncertainties
of the newly calculated semi-inclusive branching fractions of three-body modes
are still so sizable that their estimated contribution to ∆Γs can still be considered
as compatible with zero. Therefore, further experimental efforts in this field
are certainly required. To provide a more accurate estimation of ∆Γs it would
be necessary to experimentally establish the full ensemble – both two-body and
three-body – of CP-specific B0

s − B̄0
s final states, or at least to identify the dominant

modes other than B0
s → D(∗)+

s D(∗)−
s .

Of equivalent concern would be the existence of a sizeable CP-odd component
in B0

s → D∗+s D∗−s . Though theoretical calculations predict a small CP-odd fraction (∼
5%) [34], it could be easily as large as 24% given a scenario where the longitudinal



153

polarization fraction in B0
s → D∗+s D∗−s is compatible with the one predicted and

measured in B0
d → D∗+D∗−s decays.

The only promising concept to overcome the latter concern is to exactly de-
termine the CP-odd component in B0

s → D∗+s D∗−s , either by angular studies or by
a lifetime fit to B0

s → D∗+s D∗−s . The first approach requires full reconstruction of
B0

s → D∗+s D∗−s , including detection of the tracks of the neutral pion and photon
emitted in the decay of the excited D∗+s meson in order to determine their helic-
ity angles in the D∗+s rest frame. Full reconstruction of B0

s → D∗+s D∗−s is however
beyond the technical capabilities of the CDF II detector. In the course of in-depth
systematic studies this thesis examined the feasibility of measuring a potentially
non-zero CP-odd fraction fCP− in B0

s → D∗+s D∗−s decays by varying helicity am-
plitude expectations in simulated data. We are however not able to confirm or
rule out any CP-odd fractions lying within 0 and 24% by partial reconstruction of
B0

s → D∗+s D∗−s , though preparative studies relying upon decay amplitude calcula-
tions of the widely used EvtGen decay simulator package clearly pointed to this
possibility. The EvtGen simulations could however be shown to give false results
for the considered decay chain and certain input parameter configurations. Since
the Belle detector allows for the detection of low-energetic neutral particles, and
decays of B0

s → D(∗)+
s D(∗)−

s already have been observed with 23.6 fb−1 of data, given
sufficient statistics of Υ(5S) data the Belle collaboration might be able to make
important contributions to angular analyses of B0

s → D(∗)+
s D(∗)−

s .
Though beyond the scope of this very analysis, given the statistics available

the second approach proposed might yet be in reach for the CDF collaboration:
a lifetime fit to the decay time distribution of B0

s → D∗+s D∗−s . It must however
be pointed out that a study of this kind would be technically demanding, since
biases to the proper decay time introduced by Two-Track Trigger requirements
need to be corrected for. This argument holds true for both the CDF and the
LHCb detector, that uses similar online trigger requirements to identify hadronic
tracks with large replacements of secondary vertices. It should be possible to
overcome this difficulty by measuring the B0

s → D∗+s D∗−s lifetime relative to a
decay having similar decay kinematics and topology so that resolution effects and
kinematical biases mostly cancel out. A promising candidate for this approach
could be the same decay mode used as normalization channel in the presented
branching fraction analysis, B0

d → D+D−s . In addition to the CDF experiment, both
the Belle and the LHCb collaboration can certainly make valuable contributions
in this field.

In the context of the measuring concepts introduced in Section 1.5, apart from
shedding light on the CP puzzle in B0

s → D∗+s D∗−s , a lifetime measurement is a very
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interesting option in other respects as well. Since the decay B0
s → D+

s D−s represents
the CP-even counterpart of the pure CP-odd decay B0

s → J/ψ f0, by measuring the
distinct lifetimes of these two CP eigenstates all required ingredients would be
at hand to directly determine the decay width difference ∆Γs. This approach is
highly encouraged by the first successful determination of the B0

s → J/ψ f0 lifetime
that was recently reported by the CDF collaboration.

The presented branching fraction analysis used 6.8 fb−1 of CDF Run II hadronic
Two Track Trigger data. This represents the total amount of processed data avail-
able at the time of writing. Due to the poor scaling of the net amount of Two-
Track Trigger data with the gross amount of integrated luminosity acquired, no
significant reduction in statistical uncertainty is to be expected from future CDF
measurements of fD(∗)

s D(∗)
s

using hadronic D+
s decay channels, even when using the

full available Tevatron Run II dataset of about 10 fb−1. Nonetheless, as production
of the last Tevatron operation periods is already in progress, the author is keen to
use the full processed dataset as soon as available. A further reduction in statis-
tical uncertainty may be achieved by extending the ensemble of D+

s decay modes
used.
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Appendix

A.1 Variable Definitions
With P being a non-stable parent particle (a meson decaying into stable final state
particles or non-stable particles that decay further) and Ci

1 being a child particle
(a decaying meson or a stable final state particle), throughout the analysis we refer
to variables defined in the following way:

• Lxy(P) is the transverse displacement (the displacement in the xy-plane) of
the reconstructed P vertex with respect to the primary interaction point.

• σLxy(P) is the estimated uncertainty of Lxy(P).

• χ2
Rφ(P) is the χ2 in the R − φ plane of the kinematic fit of the P candidate.

• ∆Z0(P) is the difference in the Z coordinates of the starting points of the fitted
daughter particle tracks prior to the vertex fit. This is to avoid accepting
particle tracks that seem to be close in the transverse plane, but are far off in
Z direction.

• prob(P) is the P candidate probability derived from χ2
Rφ(P).

• d0(P) is the distance of closest approach (i.e. the impact parameter) of the P
trajectory with respect to the beamline.

• pT(P) is the projection of the P momentum into the transverse plane.

• Lxy(P← C) is the transverse displacement (the displacement in the xy-plane)
of the reconstructed C vertex with respect to the reconstructed P vertex.

1To avoid ambiguities, in some cases the parent particle P the child particle C is associated with
is given as a subscript.

155



156 A. Appendix

• dlts
0 (P) is the lifetime-signed impact parameter of particle P.

• σd0(P) is the estimated uncertainty of dlts
0 (P).

• min(pT) is the minimum transverse momentum of the final state particles.

• min(d0/σd0) is the minimum of the significance of the final state particles’
impact parameter .

• m(CiC j) is the invariant mass of two particles Ci, C j.

• ∆m(P) is the difference of the reconstructed mass of particle P and the pub-
lished world average P mass value

• PID.ratioC(C) is the probability of a child particle C to be a C candidate,
divided by the probability for being a non-C candidate, derived from dE/dx
and TOF information.
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A.2 Dalitz Plot Parameter Toy Studies
The estimation of impacts of Dalitz model variations on the ratios of branching
fractions (section 7.3.2) required knowledge of the full covariance matrix resulting
from a fit to the D+

s → K+K−π+ Dalitz plot performed by the CLEO collaboration
[105]. The authors kindly provided us the fit parameter covariance matrix, from
which the decomposed lower left triangle matrix is calculated in order to generate
correlated random parameter values. The parameters from left to right (or top to
bottom) are: mK∗0(892), ΓK∗0(892), aK∗0(1430), φK∗0(1430), a f0(980), φ f0(980), aφ(1020), φφ(1020), a f0(1370),
φ f0(1370),a f0(1710), and φ f0(1710). The ordering of the parameters follows the indexing
scheme given in Table 4.3.

A.2.1 Correlated Statistical Uncertainties

Covariance Matrix
2.7e-07 0 1e-05 0.00084 -1e-05 0.00029 -0 0.00028 -1e-05 -0.00023 1e-05 -0.00039

0 1.145e-06 -0 -0.00064 -6e-05 -9e-05 -2e-05 -0.00039 -1e-05 -0.00098 -2e-05 4e-05

1e-05 -0 0.01222 0.20407 -0.00504 0.13979 0.00012 0.01612 -0.00238 -0.10867 -0.00144 -0.02375

0.00084 -0.00064 0.20407 67.867 -0.48353 13.232 0.04142 18.927 -0.05537 -2.1973 0.04057 -7.5926

-1e-05 -6e-05 -0.00504 -0.48353 0.03094 0.13005 0.00124 0.14102 0.00935 0.39917 0.0066 0.18934

0.00029 -9e-05 0.13979 13.232 0.13005 10.225 0.01399 8.4925 0.01036 8.644 0.09497 3.1487

-0 -2e-05 0.00012 0.04142 0.00124 0.01399 0.00043 0.0223 0.00026 0.0178 0.00053 0.01762

0.00028 -0.00039 0.01612 18.927 0.14102 8.4925 0.0223 11.297 0.05329 6.2204 0.10004 1.318

-1e-05 -1e-05 -0.00238 -0.05537 0.00935 0.01036 0.00026 0.05329 0.0073 0.02883 0.00038 -0.06801

0.00023 -0.00098 -0.10867 -2.1973 0.39917 8.644 0.0178 6.2204 0.02883 26.473 0.22972 2.8634

1e-05 -2e-05 -0.00144 0.04057 0.0066 0.09497 0.00053 0.10004 0.00038 0.22972 0.00544 0.04375

-0.00039 4e-05 -0.02375 -7.5926 0.18934 3.1487 0.01762 1.318 -0.06801 2.8634 0.04375 22.887

Correlation Matrix
1 0 0.17409 0.19623 -0.10941 0.17454 -0 0.16032 -0.22525 -0.086029 0.26093 -0.15689

0 1 -0 -0.072602 -0.31878 -0.026303 -0.90135 -0.10844 -0.10938 -0.178 -0.25341 0.0078137

0.17409 -0 1 0.22408 -0.2592 0.39547 0.052349 0.043385 -0.25199 -0.19106 -0.17661 -0.044909

0.19623 -0.072602 0.22408 1 -0.33368 0.50232 0.24246 0.68354 -0.078665 -0.051838 0.066769 -0.19265

-0.10941 -0.31878 -0.2592 -0.33368 1 0.23122 0.33996 0.23852 0.62214 0.44106 0.50873 0.225

0.17454 -0.026303 0.39547 0.50232 0.23122 1 0.21099 0.79016 0.03792 0.5254 0.40268 0.20583

-0 -0.90135 0.052349 0.24246 0.33996 0.21099 1 0.31995 0.14675 0.16683 0.34653 0.17761

0.16032 -0.10844 0.043385 0.68354 0.23852 0.79016 0.31995 1 0.18556 0.35969 0.40354 0.081965

-0.22525 -0.10938 -0.25199 -0.078665 0.62214 0.03792 0.14675 0.18556 1 0.065582 0.060301 -0.16638

0.086029 -0.178 -0.19106 -0.051838 0.44106 0.5254 0.16683 0.35969 0.065582 1 0.60534 0.11633

0.26093 -0.25341 -0.17661 0.066769 0.50873 0.40268 0.34653 0.40354 0.060301 0.60534 1 0.12399

-0.15689 0.0078137 -0.044909 -0.19265 0.225 0.20583 0.17761 0.081965 -0.16638 0.11633 0.12399 1

Lower Left Triangle Covariance Matrix
0.00051962 0 0 0 0 0 0 0 0 0 0 0

0 0.00107 0 0 0 0 0 0 0 0 0 0

0.019245 -0 0.10886 0 0 0 0 0 0 0 0 0

1.6166 -0.5981 1.5889 7.8976 0 0 0 0 0 0 0 0

-0.019245 -0.056072 -0.042897 -0.052902 0.15095 0 0 0 0 0 0 0

0.55811 -0.084108 1.1855 1.3164 1.6997 1.9696 0 0 0 0 0 0

-0 -0.018691 0.0011024 0.0036074 0.0028492 0.00077167 0.0075969 0 0 0 0 0

0.53886 -0.36447 0.052819 2.248 1.6704 1.1679 0.21848 1.2713 0 0 0 0

-0.019245 -0.0093454 -0.018461 -6.5282e-05 0.050746 -0.022322 -0.0028227 0.0025939 0.058424 0 0 0

-0.44264 -0.91585 -0.92004 -0.071878 1.9611 3.3846 -0.82186 -0.56127 -0.51464 2.8337 0 0

0.019245 -0.018691 -0.016631 0.0031281 0.035603 0.019163 0.0094087 -0.0056644 -0.018295 0.023469 0.042344 0

-0.75056 0.037382 -0.085485 -0.78771 0.87215 1.6383 2.3043 -0.28481 -1.4409 -1.3526 -0.48223 2.9532
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Toy Parameter Distributions
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Figure A.1: Randomly generated Dalitz parameter deviations for the scenario of cor-
related statistical Dalitz plot parameter uncertainties. The toy parameter distributions
keep their Gaussian shape. The small deviations of the toy widths with respect to the
uncertainties given by Table 4.3 are due to rounding errors.
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A.2.2 Systematic Uncertainties

Systematic uncertainties are not correlated to each other. Therefore the covariance
matrix is a diagonal variance matrix.

Variance Matrix
4.9e-07 0 0 0 0 0 0 0 0 0 0 0

0 2.5e-07 0 0 0 0 0 0 0 0 0 0

0 0 0.0081 0 0 0 0 0 0 0 0 0

0 0 0 64 0 0 0 0 0 0 0 0

0 0 0 0 0.0289 0 0 0 0 0 0 0

0 0 0 0 0 16 0 0 0 0 0 0

0 0 0 0 0 0 0.0004 0 0 0 0 0

0 0 0 0 0 0 0 16 0 0 0 0

0 0 0 0 0 0 0 0 0.0036 0 0 0

0 0 0 0 0 0 0 0 0 36 0 0

0 0 0 0 0 0 0 0 0 0 0.01 0

0 0 0 0 0 0 0 0 0 0 0 25

Variance Triangle Matrix
0.0007 0 0 0 0 0 0 0 0 0 0 0

0 0.0005 0 0 0 0 0 0 0 0 0 0

0 0 0.09 0 0 0 0 0 0 0 0 0

0 0 0 8 0 0 0 0 0 0 0 0

0 0 0 0 0.17 0 0 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0 0 0

0 0 0 0 0 0 0.02 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 0 0 0.06 0 0 0

0 0 0 0 0 0 0 0 0 6 0 0

0 0 0 0 0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0 0 0 0 5
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Toy Parameter Distributions
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Figure A.2: Randomly generated Dalitz parameter deviations for the scenario of
systematic Dalitz plot parameter uncertainties.



A.3 Spin-1 Wigner Rotation Functions 161

A.3 Spin-1 Wigner Rotation Functions
In this section the reduced Wigner d-functions d1

m,m′ for the rotation of a particle
with total angular momentum of j = 1 and a third projection component m = 0,±
into a final state with helicity m′ = 0,± are tabulated. The function elements not
quoted in the literature [3] were derived using the identity d j

m′,m = (−1)m−m′d j
m,m′ =

d j
−m,−m′ .

d1
−1,−1 =

1 + cosθ
2

d1
0,1 =

sinθ
√

2
d1

1,−1 =
1 − cosθ

2

d1
−1,0 =

sinθ
√

2
d1

0,0 = cosθ d1
1,0 = −

sinθ
√

2

d1
−1,1 =

1 − cosθ
2

d1
0,−1 = −

sinθ
√

2
d1

1,1 =
1 + cosθ

2
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Decay Model Meaning Parameters
PHSP Phase Space
SVS Pseudo-Scalar to Vector and Pseudo-Scalar
VSS Vector to Pseudo-Scalar and Pseudo-Scalar

VSP_PWAVE P-Wave Decay of Vector
to Pseudo-Scalar and Photon

SVV_HELAMP Pseudo-Scalar to Vector H+, φ(H+),
and Vector using H0, φ(H0),
Helicity Model H−, φ(H−)

D_DALITZ Three-body Decay using Dalitz Model

Table A.1: Decay models used in the simulation of decay chains.

A.4 Monte Carlo Decay Tables
The following tables were used as input to the EvtGen program to simulate
different decay chains, starting from a B0

s or a B0
d meson. The decay tables also

include decay chains with the three-pion final state. These were not subject to this
very study but might be useful for later studies incorporating D+

s → π−π+π+ to
extent the ensemble of hadronic B0

s → D(∗)+
s D(∗)−

s decays.
At each stage of the decay chain, the decay tables specify the mother particle

(preceded by “Decay”), the daughter particles preceded by the decay probability
requested for this final state, and the decay model used for this particular decay.
Table A.1 provides an overview of the decay models relevant for Monte Carlo
generation of the decay channels used in this analysis.

A.4.1 B0
d → D(∗)+D(∗)−

s

#

# Delivered by simulation: 1802726904

#

# mass/Gev ctau/mm

# B0 5.27953 0.4587

# anti-B-0 5.27953 0.4587

#

#-----------------------------------------------------------------------------

#

Decay B0

0.3 D- D_s+ PHSP;

0.2 D*- D_s+ SVS;
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0.2 D_s*+ D- SVS;

0.2 D_s*+ D*- SVV_HELAMP 0.4904 0.0 0.7204 0.0 0.4904 0.0;

Enddecay

#

Decay anti-B0

0.3 D+ D_s- PHSP;

0.2 D*+ D_s- SVS;

0.2 D_s*- D+ SVS;

0.2 D_s*- D*+ SVV_HELAMP 0.4904 0.0 0.7204 0.0 0.4904 0.0;

Enddecay

#

#

#-----------------------------------------------------------------------------

# D*

#-----------------------------------------------------------------------------

Decay D*+

0.3060 D+ pi0 VSS;

0.0110 D+ gamma VSP_PWAVE;

Enddecay

#

Decay D*-

0.3060 D- pi0 VSS;

0.0110 D- gamma VSP_PWAVE;

Enddecay

#-----------------------------------------------------------------------------

# Ds*

#-----------------------------------------------------------------------------

Decay D_s*+

0.942 D_s+ gamma VSP_PWAVE;

0.058 D_s+ pi0 VSS;

Enddecay

#

Decay D_s*-

0.942 D_s- gamma VSP_PWAVE;

0.058 D_s- pi0 VSS;

Enddecay

#-----------------------------------------------------------------------------

# D

#-----------------------------------------------------------------------------

Decay D+

0.920 K- pi+ pi+ D_DALITZ;

Enddecay

#

Decay D-

0.920 K+ pi- pi- D_DALITZ;

Enddecay
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#-----------------------------------------------------------------------------

# Ds

#-----------------------------------------------------------------------------

Decay D_s-

0.0550 K- K+ pi- D_DALITZ;

0.0004 rho0 pi- SVS;

0.0057 f_0 pi- PHSP;

0.0020 f_2 pi- PHSP;

0.0033 f’_0 pi- PHSP;

Enddecay

#

Decay D_s+

0.0550 K+ K- pi+ D_DALITZ;

0.0004 rho0 pi+ SVS;

0.0057 f_0 pi+ PHSP;

0.0020 f_2 pi+ PHSP;

0.0033 f’_0 pi+ PHSP;

Enddecay

#

#-----------------------------------------------------------------------------

# Final decay products

#-----------------------------------------------------------------------------

#

Decay f’_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_2

0.5650 pi+ pi- TSS;

Enddecay

#

Decay rho0

1.000 pi+ pi- VSS;

Enddecay

#

#-----------------------------------------------------------------------------

#

End
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A.4.2 B0
s → D+

s D−s

#

# Delivered by simulation: 1773006604

#

# mass/Gev ctau/mm

# B_s0 5.3663 0.441

# anti-B_s0 5.3663 0.441

#

#-----------------------------------------------------------------------------

#

Decay B_s0

0.0026 D_s- D_s+ PHSP;

Enddecay

#

Decay anti-B_s0

0.0026 D_s+ D_s- PHSP;

Enddecay

#

#-----------------------------------------------------------------------------

Decay D_s-

0.0550 K- K+ pi-D_DALITZ;

0.0004 rho0 pi- SVS;

0.0057 f_0 pi- PHSP;

0.0020 f_2 pi- PHSP;

0.0033 f’_0 pi- PHSP;

Enddecay

#

Decay D_s+

0.0550 K+ K-pi+ D_DALITZ;

0.0004 rho0 pi+ SVS;

0.0057 f_0 pi+ PHSP;

0.0020 f_2 pi+ PHSP;

0.0033 f’_0 pi+ PHSP;

Enddecay

#

#-----------------------------------------------------------------------------

#

Decay f’_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_0

0.5200 pi+ pi- PHSP;

Enddecay
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#

Decay f_2

0.5650 pi+ pi- TSS;

Enddecay

#

Decay rho0

1.000 pi+ pi- VSS;

Enddecay

#

#-----------------------------------------------------------------------------

#

End

A.4.3 B0
s → D∗+s D−s

#

# Delivered by simulation: 1795428397

#

# mass/Gev ctau/mm

#B_s0 5.3663 0.441

#anti-B_s0 5.3663 0.441

#

#-----------------------------------------------------------------------------

#

Decay B_s0

0.0026 D_s- D_s+ PHSP;

0.0090 D_s*+ D_s- SVS;

0.0090 D_s*- D_s+ SVS;

0.0197 D_s*- D_s*+ SVV_HELAMP 0.4904 0.0 0.7204 0.0 0.4904 0.0;

Enddecay

#

Decay anti-B_s0

0.0026 D_s+ D_s- PHSP;

0.0090 D_s*- D_s+ SVS;

0.0090 D_s*+ D_s- SVS;

0.0197 D_s*+ D_s*- SVV_HELAMP 0.4904 0.0 0.7204 0.0 0.4904 0.0;

Enddecay

#

#-----------------------------------------------------------------------------

# Ds*

#- ---------------------------------------------------------------------------

#Decay D_s*+
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0.942 D_s+ gamma VSP_PWAVE;

0.058 D_s+ pi0 VSS;

#Enddecay

#

#Decay D_s*-

0.942 D_s- gamma VSP_PWAVE;

0.058 D_s- pi0 VSS;

#Enddecay

#-----------------------------------------------------------------------------

Decay D_s-

0.0550 K- K+ pi-D_DALITZ;

0.0004 rho0 pi- SVS;

0.0057 f_0 pi- PHSP;

0.0020 f_2 pi- PHSP;

0.0033 f’_0 pi- PHSP;

Enddecay

#

Decay D_s+

0.0550 K+ K-pi+ D_DALITZ;

0.0004 rho0 pi+ SVS;

0.0057 f_0 pi+ PHSP;

0.0020 f_2 pi+ PHSP;

0.0033 f’_0 pi+ PHSP;

Enddecay

#

#-----------------------------------------------------------------------------

#

Decay f’_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_2

0.5650 pi+ pi- TSS;

Enddecay

#

Decay rho0

1.000 pi+ pi- VSS;

Enddecay

#

#-----------------------------------------------------------------------------

#

End
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A.4.4 B0
s → D(∗)+

s D(∗)−
s Phase Space

#

# Delivered by simulation: 884452701

#

# mass/Gev ctau/mm

# B_s0 5.3663 0.441

# anti-B_s0 5.3663 0.441

#

#-----------------------------------------------------------------------------

#

Decay B_s0

0.0197 D_s*- D_s*+ PHSP;

Enddecay

#

Decay anti-B_s0

0.0197 D_s*+ D_s*- PHSP;

Enddecay

#

#-----------------------------------------------------------------------------

# Ds*

#- ---------------------------------------------------------------------------

Decay D_s*+

0.942 D_s+ gamma PHSP;

0.058 D_s+ pi0 PHSP;

Enddecay

#

Decay D_s*-

0.942 D_s- gamma PHSP;

0.058 D_s- pi0 PHSP;

Enddecay

#-----------------------------------------------------------------------------

Decay D_s-

0.0550 K- K+ pi-D_DALITZ;

0.0004 rho0 pi- SVS;

0.0057 f_0 pi- PHSP;

0.0020 f_2 pi- PHSP;

0.0033 f’_0 pi- PHSP;

Enddecay

#

Decay D_s+
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0.0550 K+ K-pi+ D_DALITZ;

0.0004 rho0 pi+ SVS;

0.0057 f_0 pi+ PHSP;

0.0020 f_2 pi+ PHSP;

0.0033 f’_0 pi+ PHSP;

Enddecay

#

#-----------------------------------------------------------------------------

#

Decay f’_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_0

0.5200 pi+ pi- PHSP;

Enddecay

#

Decay f_2

0.5650 pi+ pi- TSS;

Enddecay

#

Decay rho0

1.000 pi+ pi- VSS;

Enddecay

#

#-----------------------------------------------------------------------------

#

End
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