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Creating Optimized Cut-Out Sheets for Paper
Models from Meshes?

Raphael Straub and Hartmut Prautzsch

{raphael.straub,hartmut.prautzsch}@kit.edu
Karlsruhe Institute of Technology (KIT), Germany

Abstract. We propose an algorithm that creates optimized cut-out
sheets for paper models from textured polygon meshes. Crafting time
and usage of paper and glue are reduced by first computing an initial
folding tree to unfold the mesh into a plane. Overlaps in the plane are
then eliminated by adding new cuts. Finally, glue tabs are generated
along all cuts before fitting all unfolded parts onto paper sheets using a
2D bin packing algorithm.
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1 Introduction

Rapid advancement in technology has made virtual 3D models popular and in-
creasingly affordable. However, 3D displays alone are usually insufficient for a
complete understanding of virtual objects. Often, physical models are required,
but producing them can be laborious and expensive. To build prototypes or
small quantities of objects, rapid prototyping systems, such as 3D printers, stere-
olithography machines, and selective laser sintering systems are commonly used.
Injection molding and punching techniques are not suitable as the production
of the mold is relatively expensive. To save costs, an alternative solution is to
build paper models. Paper models are suitable if high accuracy and stability are
not mandatory and if the geometric structures of the model are not too small.
Other than lower costs and higher ease of crafting, paper modeling is by itself a
challenge enjoyed by many. In Japan, the art of origami, perhaps the first form
of paper modeling, was a popular pastime and came about shortly after paper
became available. Traditionally, origami only involves folding a square sheet of
paper to create simple models. Over the years, it evolved to include cutting and
pasting parts of the model together to create complex models.

Origami and paper modeling in general have seen a renaissance in the last
few years. This has led to a significant rise in the number of related publications
recently, such as [9], with new ideas and theories about paper modeling. An
overview over the polyhedron unfolding problem and many references to existing
software are given in [13]. Mitani and Suzuki [11] present a method for producing
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an unfolded papercraft from a 3D computer model represented by a triangular
mesh by approximating the mesh with triangle strips. These triangle strips can
be unfolded easily. The main advantage of this strip-based method is that it can
be applied to rounded models with many triangles. The final model is assembled
using adhesive tape, which is generally faster than using tabs. A disadvantage
of using tapes instead of tabs is that it is more difficult to craft closed models
as it is difficult to attach a tape on the inside when closing the model in the last
step. On the other hand, glue tabs have the advantage that glue joints can be
easily realigned before the glue is dry. Although there exist tapes that can be
easily removed from paper, they are not strong enough usually to guarantee the
stability of the paper model. Therefore, we are working with tabs in this paper.

Many papers deal with the theory of unfolding. The question if one can cut
every convex polyhedron along its edges to get a non-overlapping unfolding is a
long-standing and still open question in geometry [7, pp. 73–75]. On the other
hand, there are many examples of non-convex polyhedra that do not have a
non-overlapping unfolding. In many papers, the authors concentrate on special
cases like unfolding polyhedra with orthogonal faces [5], or prove that some
special polyhedra do not have a non-overlapping unfolding [3]. Other authors
discuss cuts across faces [1] or the folding problem [12], which is inverse to the
unfolding problem. In [16] several heuristic methods to get a non-overlapping
edge unfolding are studied. However, no heuristic algorithm has succeeded in
finding a non-overlapping unfolding for every test case.

In this paper, we present an algorithm for creating optimized cut-out sheets
for paper models in detail. This algorithm has been implemented in [15] and [4].
Section 3 shows some paper models that were crafted with cut-out sheets au-
tomatically generated by our algorithm. Finally, Section 4 concludes this paper
with some ideas for future work.

2 Creating Cut-Out Sheets

Our program begins by reading the input, which is represented by an indexed face
set, stored in a VRML97 file. The input is a 2-manifold and possibly textured
mesh with planar faces that are simple polygons without holes. If there are faces
with holes, they can be subdivided. For efficient traversal of the mesh, a half-edge
data structure [6] is used to represent the mesh internally such that any adjacent
entity of the mesh can always be computed in constant time.

2.1 Initial Unfolding

To create the cut-out sheets, we need to unfold the model into the plane by
cutting the model along existing edges of the mesh. We refer to these edges as
cut edges and call the remaining ones folding edges.

In order to simplify the description of the unfolding process, we first define
two graphs.
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Definition 1 (Graph and dual graph of a mesh). Let M be a mesh. Then

G(M) = (V,E) , where

V = {vertices of M} and

E = {edges of M}

is called the graph of M and

D(M) = (Vd, Ed) , where

Vd = {faces of M} and

Ed = {(f, g) | f and g are faces with a common edge in M}

is called the dual graph of M . An edge (f, g) of D(M) is said to be dual to the
common edge of f and g in M .

Figure 1a shows the graph and the dual graph of an example mesh.

(a) A graph (black) and its dual graph
(green).

(b) An unfolding (black) with corre-
sponding folding tree (green).

Fig. 1. Initial unfolding of a polyhedral mesh.

Any spanning tree of D(M) defines an unfolding of M . By cutting all edges
that have no dual in the spanning tree of D(M), we can unfold M into the plane.
For example, we can unfold the faces of M in order of a depth first traversal of
the spanning tree.

We call a spanning tree of D(M) a folding tree (see Fig. 1b for an example),
because it contains only the folding edges. To get an unfolding, we have to de-
termine a spanning tree of D(M). In order to minimize the usage of glue and
crafting time, we try to avoid self-overlapping unfoldings forcing us to partition
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the unfolding by further cuts into non-overlapping parts as shown in Section 2.2.
As we pointed out already, there are polyhedra without a non-overlapping un-
folding. On the other hand, for polyhedra that have a non-overlapping unfolding,
the only known algorithm to obtain such an unfolding is to try all possibilities.
According to [14], the number n of spanning trees of a graph with |Vd| vertices
and |Ed| edges satisfies

n ≥ 2

⌈
1
2

(
−1+
√

1+8(|Ed|−|Vd|+1)
)⌉
≈ 2d 1

2 (−1+
√
9+8v)e

if we assume that the mesh is almost regular and triangular, i. e., |Ed| ≈ 3v and
|Vd| ≈ 2v, where v is the number of vertices in the original mesh. So the number
of spanning trees is exponential in

√
v and listing all possible spanning trees is

impossible in practical cases (e. g. for v = 500, we get n & 232 ≈ 4.3 · 109).
Therefore, we use a heuristic to generate a spanning tree with few overlaps.
Below, we define a weight function w : Ed −→ R+ that assigns a weight to
every edge in the dual graph, where small weights are assigned to edges whose
dual edges in the mesh should not be cut. Accordingly, edges with large weights
are more likely to be cut. The folding tree for the unfolding is the minimum
spanning tree of the weighted dual graph and it can be computed efficiently
using, e. g., Kruskal’s algorithm. The weight function is defined as a weighted
sum of heuristically determined weights h(e) and user defined weights u(e):

w(e) := (1− α) · h(e) + α · u(e) , α ∈ [0, 1] . (1)

Here, α is a user specified parameter that reflects the importance of the heuris-
tically over the user defined weights. If the user wants to cut an edge with dual
edge e, he could choose u(e) = ∞ and α > 0. If he wants to prevent the edge
from being cut, he could choose u(e) = 0.

Following [16], we used two heuristics to define the weights h(e). The first
one is the minimum perimeter heuristic. Because the perimeter of the unfolding
of a closed mesh is twice the sum of the lengths of all cut edges, this method
minimizes the perimeter of the unfolding by favoring cuts along short edges using
the normalized weight function

m(e) := 1− l − lmin

lmax − lmin
∈ [0, 1] ,

where l is the length of the edge with dual edge e and lmin and lmax are the
lengths of the shortest and longest edge, respectively. The other heuristic is
called flat spanning tree. Here cuts along edges having roughly an arbitrary but
constant direction c (‖c‖ = 1) are preferred:

f(e) :=
|ct(p− q)|
‖p− q‖ ,

where e is the dual edge of the edge (p,q). Combining both weights, we obtain

h(e) := (1− β) ·m(e) + β · f(e) , β ∈ [0, 1] .



Creating Optimized Cut-Out Sheets for Paper Models from Meshes 5

Here again, β is a user specified parameter, similar to α in Equation (1).

After computing the minimum spanning tree with the weights in Equa-
tion (1), the computation of the corresponding unfolding is straightforward as
explained above. Starting from an arbitrary face of the mesh, all neighboring
faces in the spanning tree are unrolled onto the plane. Figure 2 shows the results
of using both heuristics on a globe model with meridians and parallels. In this

(a) Minimum perimeter. (b) Flat spanning tree.

Fig. 2. Applying different unfolding heuristics to a globe.

case, the flat spanning tree heuristic yields overlaps, but these overlaps can be
removed by only one additional cut.

2.2 Removing Overlaps

As mentioned before, an unfolding could have overlaps. To remove these overlaps,
we subdivide the unfolding into several parts by introducing new cuts. Again, as
we try to minimize crafting time, we should minimize the number of these cuts.

First, we detect all overlaps in the plane using an efficient line intersection
algorithm. The result is a set of pairs of faces that overlap. As every face corre-
sponds to a vertex in the folding tree, there is exactly one simple path in the tree
between two overlapping faces. Figure 3 shows the paths between all overlapping
faces in our example. If all these paths are cut at least once, then all overlaps
are eliminated. This problem can be expressed as a minimum set cover problem.
Let T = (Vd, E

′
d) (where E′d ⊆ Ed) be the folding tree and P = {P1, . . . , Pn}

be the set of all paths Pi ⊆ E′d between overlapping faces. In addition, let
c : E′d −→ R+ be a cost function that assigns a cost to every edge of the folding
tree.

Definition 2 (Minimum set cover). The minimum set cover S of a set of
paths P = {P1, . . . , Pn} is a set S ⊆ P1∪ . . .∪Pn with minimum cost that covers
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Fig. 3. An unfolding with four overlapping pairs of faces and corresponding paths in
the folding tree.

all paths in P, i. e., S contains an edge of every Pi:

S := argmin
S′⊆P1∪...∪Pn

∀i=1,...,n:S′∩Pi 6=∅

∑
e∈S′

c(e) .

The minimum set cover problem is NP-hard, but fortunately there are some
approximation algorithms that are sufficiently efficient in practice. We imple-
mented the greedy set cover algorithm from [19, p. 16] given in Algorithm 1.
If all costs c(e) are equal to some constant γ, a minimum set cover gives the
minimum number of cuts.

Algorithm 1 Greedy set cover algorithm.

S := ∅ {set of new cut edges}
C := ∅ {set of already covered paths}
while C 6= P do

{Determine the edge with minimum average cost at which it covers new elements.}

e := argmin
e′∈P1∪...∪Pn

c(e′)
|{P ∈ P | e′ ∈ P}\C|

S := S ∪ {e}
C := C ∪ {P ∈ P | e ∈ P}

end while
return S

In Section 2.1, we defined weights indicating a cutting priority. We use these
weights also to define the cost function c(e) whose meaning is opposite. Hence,
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we set
c(e) := (1− γ) · (1− w(e)) + γ ,

where γ ∈ [0, 1] controls the importance of the weights w(e) compared to the
number of additional cuts.

2.3 Packing on Paper Sheets

After unfolding and removing remaining overlaps, there might still be some parts
that are too large to fit on a paper sheet. To determine the size of each part,
the minimum area bounding box—which is not necessarily axis aligned—of each
part is computed with the rotating calipers algorithm [18]. Each bounding box
that is too large, is iteratively subdivided along its x- or y-axis until it fits on a
paper sheet. In each step, the axis that does not fit is selected. Then the path in
the dual graph between two faces with extremal vertex positions, with respect
to this axis, is computed. The edge in this path intersecting the centerline of the
bounding box perpendicular to the axis determines where a new cut is introduced
(cf. Fig. 4).

Fig. 4. Subdividing a part that is too large to fit on a sheet of paper.

To pack all parts on paper sheets, we only consider the bounding boxes of
the parts and not the parts themselves. The problem of packing the parts onto
as few paper sheets as possible is a so called 2D bin packing problem. Even if
the parts have a simple geometry—in our case we have rectangular bounding
boxes—this problem is known to be NP-hard. Although exact algorithms for
solving small bin packing problems in a reasonable amount of time exist [10],
we apply the approximative 2D bin packing algorithm used in [8] for packing
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textures on a texture atlas, since the latter algorithm is easier to implement. In
addition, the exact packing algorithm only finds an optimal solution for given
orientations of the bounding boxes and not for all possible orientations.

2.4 Computing Glue Tabs

So far, we did not consider glue tabs which need to be added to every edge being
cut. The computation of the glue tabs is done in parallel to the previous steps
of our algorithm. While the tabs should have a minimum size to guarantee the
stability of the glue joints, they should not be too large since large tabs would
use more paper and cause overlaps. Since our tabs have the usual trapezoidal
shape (cf. Fig. 5), the geometry of a tab is described by the two base angles
α and β and by its width d. If the width is too large for the base angles, the

d
α β

Fig. 5. A trapezoidal glue tab with base angles α and β and width d.

tab will become triangular. The range of tab sizes can be specified by the user
through a global minimum and maximum base angle and width.

The tab of each cut edge has two possible positions. To formalize this, we
assign to every potential tab a boolean variable, which is true exactly if we realize
this tab. Consequently, the two variables xi and xj associated with a cut edge
satisfy xi 6↔ xj .

The geometry of the 3D mesh and of the unfolded planar mesh implies further
constraints on the tabs. For any two potential tabs that overlap in 2D or 3D,
we require that their variables xi and xj satisfy the clause xi ∧ xj (cf. Fig. 6).
Further, for any potential tab that overlaps a face in 2D or a wrong one in 3D,
we require that its variable xi satisfies the clause xi.

The conjunction of all these clauses gives us the arrangement formula. We
are looking for an unfolding with a satisfiable arrangement formula. First, we
determine all edges e with a tab/face conflict in 3D on both sides and set their
weights w(e) to zero. This minimizes the chances that these edges are cut. If
however, such an edge is cut, there exists a cycle in the dual graph with zero
weight. In this case, it is impossible to find an unfolding with a satisfiable glue
tab arrangement. We inform the user in such a case and recommend to reduce the
(minimum) tab size. Second, we compute an unfolding and only check the clauses
xi 6↔ xj and the clauses corresponding to 3D conflicts. If these are not satisfiable,
the user is also asked to reduce the tab size. Third, we try to satisfy further
clauses associated with 2D conflicts and remove overlaps by Algorithm 1. This
algorithm introduces further cut edges and therefore possibly further conflicts.
Whenever we encounter such a conflict, the second or next best edge is chosen in
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tab/tab tab/face

2D

3D

xi

xi

xi

xi

xj

xj

xi ∧ xj xi

Fig. 6. Glue tab conflicts.

Algorithm 1. If this does not remedy the conflict, the user is informed to change
the weights used for unfolding or to reduce the tab size. If conflicts occur due to
the subdivision of the parts, then other edges near the ideal edge in the middle
are cut. In the case that no edge can be cut, then again the user has to choose
smaller minimum tab sizes.

The tab arrangement formula has at most two literals in each clause and can
be easily converted to conjunctive normal form (CNF) by substituting

xi 6↔ xj by (xi ∨ xj) ∧ (xi ∨ xj) ,
xi ∧ xj by xi ∨ xj , and

xi by xi ∨ xi .

With the help of an implication graph, both the satisfiability of a 2CNF formula
can be decided and—if the formula is satisfiable—a fulfilling assignment can be
computed in linear time [2].

Definition 3 (Implication graph). Let F = c1 ∧ . . . ∧ cn be a formula in
2CNF. Then the implication graph GF = (V,E) of F is a directed graph that
has two vertices x and x for each variable x in F , and two edges (xi, yi) and
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(yi, xi) for each clause ci = xi ∨ yi:

V := {xi | i = 1, . . . , n} ∪ {yi | i = 1, . . . , n}
∪{xi | i = 1, . . . , n} ∪ {yi | i = 1, . . . , n} ,

E := {(xi, yi) |xi ∨ yi = ci, i = 1, . . . , n}
∪{(yi, xi) |xi ∨ yi = ci, i = 1, . . . , n} .

The two edges (xi, yi) and (yi, xi) represent the equivalent implications xi → yi
and yi → xi, respectively.

It can be easily proven that F is satisfiable if and only if for each variable x
in F the vertices x and x are in different strongly connected components of GF .
In our algorithm, the tab assignment formula is represented by the transitive
hull of the implication graph since this does not change the formula because
implications are transitive. Each time a new clause is added, the corresponding
two edges are inserted and the transitivity of the graph is reestablished. With
this method the satisfiability of the formula can easily be checked. The formula
is satisfiable if and only if there is no edge from a literal to the negated literal
in the transitive hull of the implication graph.

By processing the strongly connected components of the implication graph
in reverse topological order and assigning truth values, a fulfilling assignment
can be computed in linear time. As there are several assignments fulfilling the
formula, in general, we can add additional constraints to reduce crafting time.
For example, it is better if all glue tabs along adjacent cut edges are on the
same side. This can be expressed by adding equivalence clauses xi ↔ xj to the
tab arrangement formula. However, by adding equivalence clauses for all cuts,
the formula often becomes unsatisfiable. As a consequence, we use a MAX-2-
SAT algorithm [17] to guarantee that all original clauses and as many added
equivalence clauses as possible are fulfilled.

This gives a valid assignment with tabs of a user defined minimum size. In a
further and last step of our glue tab arrangement algorithm, we iteratively grow
all tabs until they reach the maximum specified size, or touch another tab or face
in the original or in the unfolded mesh (cf. Fig. 7). In each iteration, the area of

Fig. 7. Post-optimization of the size of the glue tabs.
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the tab with maximum possible base angles without overlaps is compared to the
area with maximum possible width. The greater area determines whether the
tab grows its base angles or its width in the current iteration. The tab is allowed
to grow only up to a certain percentage—the growth factor—of its maximum
possible size since it would otherwise prevent neighboring tabs from growing. In
the final iterations the growth factor should be incrementally increased to 100 %
in order to close remaining gaps between tabs and faces.

3 Results

We tested our algorithm on several models. The cut-out sheets for the following
models were computed within a few seconds. This is very short compared to the
time it takes to craft the model. If a cutting machine was used, crafting time
could be halved.

Figure 8 shows a 3D version of our former university logo, which only consists
of 20 faces. The resulting cut-out sheet (in Fig. 8b) is written to a PDF file. The
numbers on the glue tabs correspond to the same numbers printed on the back
near the edge inside the corresponding face. Note that, although the model is
not convex, a non-overlapping unfolding is produced. After cutting, bending,
and gluing the model together, we obtain the paper model shown in Fig. 8c.

(a) (b) (c)

Fig. 8. The logo of the Universität Karlsruhe in 3D.

Another textured model with 62 polygons is the space ship in Fig. 9a. The
time taken to craft the model in Fig. 9b, which includes the time to cut-out,
bend, and glue the model together, is dependent on the experience and skills of
the user. It took us about two hours to craft this model.

A more complex model is the model of the Stanford bunny in Fig. 10. The
original Stanford bunny was simplified to 348 polygons by successively applying
an edge collapse and a region growing algorithm. The paper model in Fig. 10b
was crafted in about 12 hours.

We also collaborated with architects and civil engineers to apply our method
to models of buildings. Figure 11 shows a model of our university library building.
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(a) (b)

Fig. 9. A textured, low polygon space ship (62 polygons, 2 h crafting time).

(a) (b)

Fig. 10. The Stanford bunny (348 polygons, 12 h crafting time).
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Several large polygons of the library model had to be subdivided to fit into A4
paper sheets. Although the model has nearly the same number of polygons as
the Stanford bunny model, the crafting time (25 hours) is roughly doubled. This
is due to the fact that the library model is much larger than the bunny model.
Another building, namely Karlsruhe Palace, is shown in Fig. 12. We simplified
the original model of the palace, which we got from the City of Karlsruhe, to
254 polygons and created the paper model in Fig. 12b.

(a) Rendered model, courtesy of Matthi-
as Baas.

(b) Paper model.

Fig. 11. The new building of the KIT Library South (347 polygons, 25 h crafting time).

(a) Rendered model, courtesy of Thomas
Hauenstein (real estate office of the City
of Karlsruhe).

(b) Paper model.

Fig. 12. Karlsruhe Palace (254 polygons, 12 h crafting time).
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4 Conclusion and Future Work

We presented an algorithm that automatically creates optimized cut-out sheets
for paper models from polygonal meshes. Our method can be divided into four
basic steps, where the last step is done in parallel with the first three steps:
computing an initial unfolding, removing remaining overlaps, fitting and pack-
ing the parts onto paper sheets, and computing glue tabs. Due to the complex
nature of the combinatorial optimization problem, only a few parts of the entire
optimization problem were solved optimally. For the rest, we used heuristic ap-
proximation algorithms which may not yield a globally optimal result because
the result of each step will influence all possible results in the next step.

For the future, one could improve our heuristics by evaluating the properties
of the results statistically. One could also extend our method to include calcu-
lation of the ideal assembling order and sequential numbering of the glue tabs
as the assembling order of the paper model has a great impact on the crafting
time. An unsuitable order would make it more difficult to assemble the model.
In addition, as our method is only applicable for coarse polygon meshes with
relatively few vertices, we are currently exploring mesh simplification methods
that remove geometric details that cannot be crafted. The details can be ren-
dered into textures and projected onto the coarse mesh. These methods should
also conserve possible symmetry properties of the object and remove inner parts
and self-penetrations.
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