
Combinatorial and Geometric Aspects of
Computational Network Construction

Algorithms and Complexity

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von
Marcus Krug

aus Erfurt

Tag der mündlichen Prüfung: 21. Dezember 2011

Erster Gutachter: Frau Prof. Dr. Dorothea Wagner

Zweiter Gutachter: Herr Prof. Dr. Michael Kaufmann

Acknowledgments

First of all I would like to thank Dorothea Wagner for the opportunity to work in an interesting
and multifaceted field of computer science and for the freedom to choose which problems
to work on. When I was a student, her lecture on theoretical computer science fascinated
and inspired me and has changed my view on the field. I would also like to thank Michael
Kaufmann for accepting to review my thesis despite the fact that he was already reviewing
two other theses at the time.

I am grateful to all members of Dorothea Wagner’s group for the friendly, stimulating and
productive atmosphere they provided. Working in Dorothea Wagner’s group was a great
experience and I always enjoyed my time in the office. I owe special thanks to Reinhard
Bauer and Ignaz Rutter for proof-reading large portions of my thesis and for the fun we
had during work. Additionally, I would like to thank Reinhard for his friendship and his
good-humored nature that would always lift my spirit.

Finally, I would like to thank all the people outside the group who supported me in various
ways during the time it took to write this thesis. Specifically, I would like to thank Henning
Piezunka for his longlasting friendship, our numerous conversations and his advice. Most of
all, however, I would like to thank my wife Susanne for her inspiration, her constant support,
her patience and her faith in me.

iii

Deutsche Zusammenfassung

Ein Netzwerk stellt ein System von miteinander verbundenen Einheiten dar, dessen zugrunde-
liegende Verbindungs-Struktur mathematisch durch einen Graphen beschrieben werden kann.
Die Einheiten eines Netzwerkes werden dabei typischerweise als Knoten und die Verbindungen
zwischen diesen als Kanten bezeichnet. Netzwerke treten in unterschiedlichen Ausprägungen
und Anwendungsgebieten auf – von Infrastruktur-Netzwerken wie dem Strom-Netz über
Transistor-Netzwerke im Schaltkreis-Entwurf bis hin zu sozialen Netzwerken wie facebook
oder myspace. Häufig erfüllen die Netzwerke darüber hinaus wichtige Funktionen, wie etwa
das Trinkwasser-Netzwerk, das Strom-Netzwerk oder das Straßen-Netzwerk. Aufgrund der
wichtigen Funktionen, die diese Netzwerke für unser Leben übernehmen, ist ein reibungsloser
Betrieb sowie die Effizienz der Netzwerke von entscheidender Bedeutung und sie müssen
daher gemäß sorgfältig ausgewählter Kriterien geplant und konstruiert werden.
Netzwerk-Konstruktion bezeichnet einen Prozess, bei dem eine gegebene Menge von Knoten

gemäß vorgegebener Kriterien in einem Netzwerk miteinander verbunden werden. Häufig
soll die Qualität des resultierenden Netzwerkes bezüglich eines oder mehrerer Qualitätsmaße
optimiert werden. Ein Strom- oder Trinkwasser-Netzwerk etwa sollte möglichst ausfallsicher
sein, so dass die Beschädigung einer einzelnen Leitung nicht die Versorgung einer größeren
Menge von Haushalten betrifft. Ein Transport-Netzwerk wie das Straßen-Netzwerk hingegen
sollte schnelle Verbindungen ohne große Umwege zwischen beliebigen Orten bereitstellen. Die
zunehmende Komplexität dieser Netzwerke, wie etwa im Schaltkreis-Entwurf, führt dazu,
dass viele Konstruktionsprobleme für Netzwerke nur noch mithilfe von Rechnern bewältigt
werden können. Bereits 1969 untersuchte daher etwa Scott das sogenannte “Optimal Network
Problem” [Sco69] aus algorithmischer Sicht. Bei diesem Problem soll auf einer gegebenen
Menge von Knoten in der Ebene ein Netzwerk konstruiert werden, das eben jene Umwege
minimiert, indem die Summe der Längen aller kürzesten Wege minimiert werden soll. Diese
Größe zur Beschreibung der Effizienz eines Transport-Netzwerkes wird auch als Routing-
Kosten bezeichnet.

Algorithmische Netzwerk-Konstruktions-Probleme treten in vielfältiger Form und in einer
Vielzahl von Anwendungsgebieten auf. So reicht das Spektrum der algorithmischen Netzwerk-
Konstruktions-Probleme von grundlegenden, rein kombinatorischen Problemen wie dem
Aufzählen und zufälligen Erzeugen von Graphen bis hin zu komplexen, multi-kriteriellen
Optimierungsproblemen aus dem Bereich der Generalisierung von Landkarten. Die vorliegende
Arbeit spannt einen Bogen von elementaren hin zu komplexen und von rein kombinatorischen
hin zu geometrischen Netzwerk-Konstruktions-Problemen sowie den damit verbundenen
Netzwerk-Einbettungs-Problemen.
Im ersten Teil der Arbeit beschäftige ich mich mit kombinatorischen Netzwerk-Konstruk-

tions-Problemen mit steigender Anzahl von Einschränkungen und Optimierungskriterien.
Am Anfang der Betrachtung stehen dabei Probleme ohne Optimierungsfunktion mit rein
strukturellen Einschränkungen. Anschließend untersuche ich klassische Optimierungsproble-
me mit einer Optimierungsfunktion sowie multi-kriterielle Optimierungsprobleme mit zwei
Optimierungsfunktionen.

v

Deutsche Zusammenfassung

Im zweiten Teil der Arbeit wende ich mich geometrischen Netzwerk-Konstruktions-Proble-
men zu, die sich dadurch auszeichnen, dass die Knoten des zu konstruierenden Netzwerks in
die euklidische Ebene eingebettet werden müssen. In diesem Kontext ergeben sich eine Reihe
spezieller Einschränkungen und Optimierungskriterien. Im Folgenden sind die betrachteten
Problemstellungen sowie meine Lösungsansätze kurz skizziert.

Aufzählungs-Algorithmen und Graph-Generatoren für degenerierte Graphen Beim Auf-
zählen und zufälligen Erzeugen von Graphen sollen zu einer gegebenen Menge von Eigen-
schaften alle Netzwerke oder ein zufälliges Netzwerk mit den gewünschten Eigenschaften
konstruiert werden. Da diese Problemstellungen keine weitere Optimierung der konstruier-
ten Netzwerke hinsichtlich eines Qualitätsmaßes fordern, zählen sie zu den elementarsten
Netzwerk-Konstruktionsproblemen. Während Aufzählungs-Algorithmen etwa bei erschöpfen-
der Suche zur Anwendung kommen, werden Graph-Generatoren zur Simulation sowie zur
experimentellen Analyse von Algorithmen benötigt.
Ein Graph ist k-degeneriert, wenn jeder induzierte Teilgraph einen Knoten mit Grad

höchstens k enthält. Zu den degenerierten Graphen zählen Bäume, da jeder Teilbaum
einen Knoten mit Grad höchstens 1 enthält, sowie planare Graphen, da jeder Teilgraph
eines planaren Graphen einen Knoten mit Grad höchstens 5 enthält. Da selbst für reguläre
Graphen, eine weitere spezielle Klasse von degenerierten Graphen, nicht bekannt ist, ob diese
gleichverteilt unter Berücksichtigung von Isomorphie erzeugt werden können, betrachte ich
das Problem Vernachlässigung von Isomorphie. Dies entspricht einem gängigen Vorgehen, bei
dem die Knoten eines Graphen je mit einem eindeutigen Label annotiert werden, um diese
voneinander unterscheiden zu können. Diese Label werden jedoch nur während der Erzeugung
verwendet und anschließend vernachlässigt. Ich betrachte dabei eine neue Art von Labeling,
die es mir ermöglicht derart annotierte degenerierte Graphen effizient aufzuzählen sowie
gleichverteilt zu erzeugen. Ein Vorteil dieser neuen Methode ist, dass die dadurch induzierte
Verteilung auf den nicht annotierten Graphen näher an der Gleichverteilung der degenerierten
Graphen unter Berücksichtigung von Isomorphie ist als die durch ein klassisches Labeling
induzierte Verteilung.

Optimale Erweiterung von Baum-Netzwerken bezüglich Routing-Kosten Die Optimie-
rung der Netzwerke spielt bei vielen Netzwerk-Konstruktions-Problemen eine zentrale Rolle.
So sollen etwa typischerweise die Konstruktions-Kosten des Netzwerks minimiert und die
Funktionalität des Netzwerks maximiert werden. Aufgrund ihrer vergleichsweise geringen
Konstruktions-Kosten spielen Bäume im Bereich der Netzwerk-Konstruktion eine wichtige Rol-
le. Als klassisches Netzwerk-Optimierungsproblem mit lediglich einer Optimierungsfunktion
betrachte ich die Optimierung gewichteter Routing-Kosten bei der Erweiterung von Netzwer-
ken. Bei dieser Variante der Routing-Kosten sind die kürzesten Wege gemäß der erwarteten
Anzahl von Nutzern, die diese Wege benutzen werden, gewichtet. Zunächst untersuche ich
dabei das Problem, zwei unzusammenhängende Bäume durch Erweiterung mit einer einzelnen
Kante zu verbinden, so dass die Routing-Kosten minimiert werden. Diese Problemstellung
entsteht bei einem Zusammenschluss von Netzwerken sowie nach dem Ausfall einer Kante.
Hierzu betrachte ich sowohl das Erweiterungs- wie auch das Reparatur-Problem für verschie-
dene Distanzfunktionen zwischen den Knoten der Bäume. Anschließend beschäftige ich mich
mit dem Problem, einen gegebenen, gerichteten Baum mit einer Abkürzung zu erweitern, die

vi

Deutsche Zusammenfassung

die Routing-Kosten minimiert, um die Performanz des Netzwerkes zu steigern. Während sich
beide Probleme durch Aufzählen aller möglichen Kanten trivialerweise in quadratischer Zeit
lösen lassen, zeige ich wie man diese Probleme durch Reduktion auf geometrische Konzepte
deutlich effizienter und in einigen untersuchten Varianten sogar optimal lösen kann.

Das Dichte-Maximierungs-Problem in Graphen Viele Netzwerk-Konstruktionsprobleme,
die durch realitätsnahe Problemstellungen motiviert sind, erfordern die gleichzeitige Optimie-
rung von mehreren Optimierungsfunktionen. Da Optimalität in diesem Fall nicht eindeutig
definiert ist, existieren verschiedene Konzepte im Umgang mit mehreren Optimierungsfunk-
tionen wie etwa Pareto-Optimalität sowie die Zusammenfassung der Optimierungsfunktionen
durch gewichtete Summen oder gewichtetes Minimum bzw. Maximum. Ich betrachte Optimie-
rungsprobleme mit zwei Optimierungsfunktionen, bei denen eine Kosten-Funktion minimiert
und eine Nutzen-Funktion maximiert werden soll. In diesem Fall kann man Optimalität
bezüglich des Quotienten von Nutzen und Kosten definieren, was zur Folge hat, dass jedes
bezüglich des Quotienten optimale Ergebnis auch Pareto-Optimal ist, darüber hinaus aber
zusätzlich das beste “Kosten-Nutzen”-Verhältnis aufweist. Dieses Verhältnis entspricht damit
dem “Return-On-Investment” einer Netzwerk-Konstruktion. Ich untersuche die Komplexität
sowie effiziente Algorithmen für die Maximierung des Kosten-Nutzen-Quotienten für ver-
schiedene Varianten des Problems. Während einige der untersuchten Varianten NP-schwer
oder sogar nicht bis auf einen konstanten Faktor approximiert werden können, falls P un-
gleich NP ist, zeige ich für einige Varianten effiziente Approximations-Algorithmen sowie
Fixed-Parameter-Algorithmen auf.

Orthogeodätische Einbettungen von Graphen Geometrische Netzwerk-Konstruktionspro-
bleme sind dadurch charakterisiert, dass sie zusätzlich zur Konstruktion des Netzwerkes eine
Einbettung desselben in eine Teilmenge der euklidischen Ebene erfordern, bei der Knoten auf
Punkte und Kanten auf Jordan-Kurven abgebildet werden. Häufig wird dabei aus Gründen
der Komplexität der Problemstellung die Konstruktion des Netzwerkes von der Einbettung
des Netzwerkes in die Ebene getrennt, wie etwa beim Schaltkreis-Entwurf.
Während geradlinige Einbettungsfragen bereits vielfach untersucht wurden, betrachte ich

orthogeodätische Einbettungen, eine spezielle neue Variante von orthogonalen Einbettungen,
bei denen Kanten auf monotone kürzeste Ketten von orthogonalen Segmenten abgebildet
werden. Damit bilden die entstehenden Kurven das kanonische Gegenstück zu geradlini-
gen Segmenten auf einem orthogonalen Gitter. Der resultierende Zeichenstil liefert daher
funktionale und übersichtliche Einbettungen.
Zunächst untersuche ich verschiedene Varianten des kreuzungsfreien, orthogeodätischen

Einbettungsproblems aus algorithmischer Sicht. Dabei zeige ich, dass man das Einbettungs-
problem effizient lösen kann, sofern man lediglich fordert, dass die Knoten und Kanten auf
einem ganzzahligen Gitter quadratischer Größe liegen sollen. Anschließend beweise ich, dass
das Problem NP-schwer ist, wenn die Knoten des Netzwerkes nur auf eine kleine, beschränkte
Menge von Punkten abgebildet werden dürfen. Für den Spezialfall, dass das Netzwerk ein
Kreis ist, kann ich hingegen eine einfache Charakterisierung sowie einen effizienten Algorith-
mus angeben, der entscheidet, ob eine gegebene Menge von Punkten eine Einbettung des
Kreises zulässt und der eine solche Einbettung auch berechnet, sofern sie existiert. Weiter
veranschauliche ich, dass das Problem auch dann noch NP-schwer ist, wenn man die Positionen

vii

Deutsche Zusammenfassung

der Knoten fest vorgibt und fordert, dass die Kanten auf dem Gitter eingebettet werden
sollen. Ohne diese Forderung jedoch gebe ich einen effizienten, zertifizierenden Algorithmus
an, der entweder eine Einbettung der Kanten berechnet oder einen leicht zu überprüfenden
Beweis dafür liefert, dass eine solche Einbettung nicht existiert.

Anschließend nähere ich mich dem orthogeodätischen Einbettungsproblem für Bäume aus
kombinatorischer Sicht. Hierzu untersuche ich für verschiedene Klassen von Bäumen und für
verschiedene orthogeodätische Einbettungsvarianten die minimale Anzahl von Punkten mit
der Eigenschaft, dass alle Punktmengen dieser Größe die Einbettung aller betrachteten Bäume
bezüglich der gegebenen Einbettungsvariante zulassen. Hierbei berücksichtige ich Bäume
und sogenannte Raupen-Graphen mit Maximalgrad 3 und 4 sowie Einbettungsvarianten
mit ein oder zwei Knicken pro Kante. Darüber hinaus betrachte ich die Problemstellung
sowohl unter Berücksichtigung wie auch unter Vernachlässigung von Planarität. Für alle
betrachteten Varianten gebe ich jeweils ich eine obere Schranke für die gesuchte minimale
Größe der Punktmenge an.
Häufig muss die Einbettung der Netzwerke unter bestimmten Einschränkungen erfolgen,

etwa wenn die Knoten des Netzwerkes nicht beliebig auf die Punkte abgebildet werden
können. Dieses Szenario lässt sich dadurch modellieren, dass man davon ausgeht, dass die
Punkte gefärbt sind. Ich betrachte eine Variante des Problems, bei welcher die Punkte rot
beziehungsweise blau gefärbt sind und bei welcher benachbarte Knoten des Netzwerkes auf
unterschiedlich gefärbte Punkte abgebildet werden müssen. Für dieses Problem beweise
ich, dass jede Punktmenge mit etwa gleicher Anzahl von roten und blauen Punkten eine
orthogeodätische Einbettung eines Pfades selber Größe zulässt, sofern jede horizontale und
jede vertikale Gerade höchstens einen Punkt enthält. Die Einschränkung auf Punktmengen mit
dieser Eigenschaft ist dadurch motiviert, dass es im allgemeinen beliebig große Punktmengen
gibt, die eine orthogeodätische Einbettung bestimmter Bäume nicht zulassen, etwa eine
Menge von Punkten auf einer einzigen horizontalen Linie. Darüber hinaus erläutere ich
einen effizienten Algorithmus, der eine solche orthogeodätische Einbettung berechnet. Fordert
man hingegen, dass der Pfad auf dem Gitter eingebettet werden muss, wird das Problem
erstaunlicherweise NP-schwer. Motiviert durch dieses Resultat untersuche ich daher die
Länge eines längsten Pfades. Ich beweise, dass es gefärbte Punktmengen gibt, für die der
längste Pfad höchstens etwa die Hälfte der Punkte enthalten kann und gebe einen effizienten
Approximations-Algorithmus an, der einen Pfad mit mindestens einem Drittel der Punkte
berechnet.

Generalisierung von geometrischen Graphen Als letzten Themen-Komplex betrachte ich
das Problem der Generalisierung von geometrischen Graphen. Dieses Problem ist motiviert
durch die steigende Menge zu visualisierender Daten und die daraus resultierende Not-
wendigkeit der Daten-Reduktion. Obgleich sich Zeichnungen von riesigen Graphen effizient
berechnen lassen [KCH03, HJ05], reichen die Ressourcen selbst modernster Medien nicht
aus, um Netzwerke mit mehreren Millionen von Knoten darzustellen. Bisherige Ansätze
zum Umgang mit dieser Tatsache lösen das Problem nicht zufriedenstellend. So verzerren
Fish-Eye Visualisierungen die Zeichenebene zulasten des Gesamteindrucks und Algorithmen
zur Bündelung von Kanten führen häufig zu sehr stark veränderten Darstellungen.
Das Problem der Generalisierung von geometrischen Graphen besteht darin, zu einer

gegebenen Zeichnung eines Netzwerkes ein kleineres Netzwerk zu konstruieren, das dem

viii

Deutsche Zusammenfassung

gegebenen sowohl in geometrischer als auch in graph-theoretischer Hinsicht ähnlich ist. Bereits
1995 hatte Saalfeld [Saa95] gefordert, das Generalisierungsproblem von Landkarten aus graph-
theoretischer-theoretischer Sicht zu betrachten und in einem rigiden mathematischen Rahmen
zu analysieren. Ich modelliere dieses Problem erstmals in seiner vollen Breite in einem
mathematischen Modell, indem ich verschiedene Artefakte, die bei der Visualisierung von
großen Netzwerken in einem Medium mit beschränkter Auflösung entstehen, zur Formulierung
von Optimierungsproblemen nutze, die darauf abzielen, ebendiese Artefakte zu vermeiden. Ich
zeige, dass die entstehenden multi-kriteriellen Problemstellungen im Allgemeinen NP-schwer
sind, und gebe darüber hinaus effiziente Approximations-Algorithmen sowie Heuristiken an,
die in einer experimentellen Studie bereits sehr gute Ergebnisse lieferten.

ix

Deutsche Zusammenfassung

x

Contents

Zusammenfassung v

1 Introduction 1

2 Preliminaries 9
2.1 Networks and Graphs . 9
2.2 Geometry and Graph Drawing . 12
2.3 Complexity . 14
2.4 Fixed-Parameter Tractability . 16
2.5 Approximation Algorithms . 17

3 Enumerating and Generating Well-Ordered Degenerate Graphs 19
3.1 Preliminary Remarks . 19
3.2 Introduction . 21
3.3 Random Variate Generator for the Restricted Binomial Distribution 25

3.3.1 Preliminaries . 25
3.3.2 Inversion Method . 28
3.3.3 The Restricted Binomial Distribution 30

3.4 Approximating the Restricted Binomial Distribution 30
3.5 Generating Well-Ordered Degenerate Graphs 41

3.5.1 Generators for D(n, k) . 42
3.5.2 Generators for D(n,m, k) . 44

3.6 Generating Well-Ordered Strongly Degenerate Graphs 48
3.7 Enumerating Well-Ordered Degenerate Graphs 57

3.7.1 Enumerating D(n, k) and S(n, k) . 58
3.7.2 Enumerating D(n,m, k) and S(n,m, k) 63

3.8 Concluding Remarks . 64

4 Optimal Routing Cost Tree Augmentation 67
4.1 Introduction . 67
4.2 Connecting Two Trees . 69

4.2.1 General Distance Functions . 69
4.2.2 Euclidean Metric . 72
4.2.3 General Metrics . 73

xi

Contents

4.3 Optimal Shortcuts in Trees . 75
4.3.1 Reduction to Pseudo-Line Arrangements 77
4.3.2 Computing the Envelope in Linear Time 79
4.3.3 Extension to Directed Tree Networks 81
4.3.4 Undirected Paths . 85

4.4 Concluding Remarks . 86

5 The Density Maximization Problem in Graphs 89
5.1 Introduction . 90
5.2 The Bi-constrained Maximum Density Subgraph Problem 93

5.2.1 Trees and Almost-Trees . 95
5.2.2 Graphs with Bounded Treewidth . 99

5.3 An FPTAS for Relaxed Density Maximization 103
5.4 Maximum Density Subgraphs with Structural Constraints 107

5.4.1 Parametric Search and Application . 107
5.4.2 Steiner Constraints . 112

5.5 Concluding Remarks . 116

6 Orthogeodesic Embedding of Planar Graphs 119
6.1 Introduction . 119
6.2 Orthogeodesic Embeddability . 123
6.3 Orthogeodesic Point-Set Embeddability . 123
6.4 Orthogeodesic Polygonization . 126
6.5 Labeled Orthogeodesic Point-Set Embeddability 134
6.6 Sparse Labeled Orthogeodesic Point-Set Embeddability 136
6.7 Concluding Remarks . 144

7 Orthogeodesic Embeddings of Trees 147
7.1 Introduction . 147
7.2 Planar Orthogeodesic Point-Set Embeddings 149
7.3 Planar L-Shaped Orthogeodesic Pointset Embeddings 156
7.4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings 161
7.5 Concluding Remarks . 165

8 Hamiltonian Orthogeodesic Alternating Paths 169
8.1 Introduction . 169
8.2 Hamiltonian Orthogeodesic Alternating Paths 171
8.3 Hamiltonian Orthogeodesic Alternating Paths on the Grid 178
8.4 Long Orthogeodesic Alternating Paths on the Grid 187
8.5 Concluding Remarks . 195

9 Generalizing Geometric Graphs 197
9.1 Introduction . 197

xii

Contents

9.2 Generalizing the Vertex Set without Vertex-Clutter 200
9.2.1 Complexity . 202
9.2.2 Approximating the Maximum Size of a Generalization 205

9.3 Minimizing Edge-Clutter . 208
9.4 Vertex-Edge-Clutter . 213
9.5 Sample Generalizations . 216
9.6 Conclusion and Open Problems . 227

10 Conclusion 229

Bibliography 235

Index 254

List of Publications 255

xiii

Contents

xiv

Chapter 1

Introduction

Networks have played an important role in the development of modern culture and tech-
nology. While social networks have helped develop the complex societies of today’s world,
infrastructure networks have been the basis for many far-reaching achievements in the history
of human kind. Even in ancient times, infrastructure networks such as waterways and road
networks have played a crucial role for merchandise and information exchange over different
cultures and peoples and have, thus, provided the basis for the deployment of novel ideas
and technologies. Irrigation networks have made it possible to detach farmers’ fates from the
unpredictabilities of nature and, thus, have permitted families to abandon nomadism to settle
down and found cities. As these cities grew larger and larger it was again an infrastructure
network, the drainage system, that helped coping with the increasing number of inhabitants.
Much later, the industrial revolution drew much of its momentum from the introduction of
the railway system and the 20th century has implemented such infrastructure networks as
power supply systems, gas pipelines and long-distance heating systems. But even today’s
world and much of our well-being still depends on rapidly growing networks such as water and
power supply systems, gas pipelines, road networks and airways. Today we are witnessing
some of the largest networks installed by humans such as the Internet and the transistor
networks on modern CPUs with up to two billion nodes, and these networks, too, are playing
a revolutionary role for economies, cultures and even politics.

What all of these networks have in common is that they are designed for a special purpose
or functionality and that they are vital to a large number of people. Further, they are rather
expensive to construct and to maintain and the efficiency of these networks crucially depends
on an appropriate design. Thus, they must be planned and constructed with special care.
Today we are facing a large number of network construction problems involving tangible

networks such as power and water supply systems, road networks and communication networks.
The rapid growth of existing networks, for instance, as a consequence of rapidly growing
populations in developing countries or the increasing mobility, but also the desire to abandon
fossil sources of energy in favor of regenerative sources, involve the construction of large new
parts of infrastructure networks. These networks must be carefully planned and optimized
since they must be highly efficient and their construction involves huge costs. For instance,
as energy from regenerative sources is seldom produced where it is consumed, we need to
establish new infrastructure networks to distribute this energy adequately. However, the
economical and ecological consequences of such networks may have a severe long-term impact
on the surroundings of their erection and, thus, these networks should be designed thoroughly.
A large number of network construction problems resulting, for instance, during the

operation of a network, involve the constructing a virtual sub-network in a given network,

1

Chapter 1 Introduction

rather than constructing a tangible network. As typical examples, consider transportation
problems evolving in logistics, such as the problem of distributing goods to customers by a
transportation company or the problem of setting up a communication scheme among a large
number of participants in a wireless communication network. Whether a company is capable
of constructing these virtual distribution networks in an adequate way or not typically has a
large impact on its competitiveness and, therefore, on its economic success.

Given that networks are almost ubiquitous and play such a crucial role in today’s world, it
is not surprising that the study of the optimal design of networks has received considerable
attention in various areas of research. To name just a few examples, Jha et al. study design
issues of road network construction [JSJK06] and Sarte studies design principles of sustainable
green infrastructure networks [Sar10]. Further, network design issues play an important role
in the area of chip design as illustrated in the introductory textbook by Carballo [Car08].
Apart from that, sensor networks spur increasing interest in the algorithmic construction of
communication networks among sensors [Kn09]. Finally, it is interesting to note that even
social networks such as facebook and myspace depend on a careful design specifying the rules
according to which the network may evolve and, thus, be constructed by the people engaging
in them. These issues are studied, for instance, in [How10].
What is considered an optimal design, however, strongly depends on the purpose of the

network. Various qualities such as reliability and performance must be quantified in order
to assess how well a given network design is suited for its specific task. While reliability is
typically quantified by the number of network components that may fail without discontinuing
the network’s operation, the performance of a network can be quantified, for instance, by
its routing cost, defined as the total length of all shortest paths in the network, or by its
dilation, a factor quantifying the maximum detour for routing in the network as compared
to some optimal reference path. On the other hand, the construction of a network often
involves construction costs of some kind. While this is immediately obvious for infrastructure
networks involving hardware, this equally applies to virtual networks, such as communication
networks, where each additional link may introduce an additional communication overhead
that may result in unwanted latency.
As a consequence of the rapid growth of these networks, it is becoming increasingly

important to solve the design problems for networks with the aid of computer programs.
In fact, optimal network design problems are among the earliest and most extensively
studied problems in various areas of computer science. Already in 1926 Borůvka provided
an algorithm for the problem of constructing a minimum weight spanning tree of a network
as a means to construct an efficient electricity network for the electric power company in
Moravia [Bor26]. According to Shrijver [Sch05], the transportation problem, defined as the
problem of supplying a given amount of goods to a set of customers with given demands
such that the resulting costs are minimized, was considered by Tolstŏı from a computational
point of view as early as 1930. Further, the traveling salesperson problem, one of the most
well-known and widely studied problem in computer science, which is to find a shortest
tour vising a given number of sites, can be traced back to a manual for traveling salesmen
formulated in 1832, but Menger [DS98] seems to be the first to consider this problem, which
he called “Das Boten-Problem” from a mathematical point of view almost a century later
in 1930.
However, the interest in these problems has not faded over time. In the 1960s and 1970s

network construction problems became a hot topic from a computational point of view

2

with the increasing accessibility of computers. In the early 1960s Quandt [Qua60] discussed
models for the network construction problems and quantitative measures for optimal network
construction. Later, Werner [Wer68] studied the relationship between spatial network design
issues and the construction and operation of networks and Scott [Sco69] formulated the
optimal network problem, which is to find a network interconnecting a given set of sites in the
plane without crossings such that the routing cost of the network is minimized. In the 1970s
Boyce et al. [BFW73] studied branch-and-bound algorithms for solving the optimal network
problem, Johnson et al. [JLK78] studied the complexity of the network design problem and
Dionne and Florian [DF79] studied exact and approximate algorithms for optimal network
design.

Network construction problems involving integrated circuit design have become increasingly
important during the 1980s with the development of very large scale integration production
techniques allowing hundreds of thousands of transistors per chip. This development has
fueled research in graph drawing, which is closely related to integrated circuit layout. Leiser-
son [Lei80], Valiant [Val81] and Kramer and van Leeuwen [KvL84], for instance, have studied
graph drawing problems with applications in very large scale integration circuit layout, such
as the problem of routing wires on the circuit board as well as the problem of minimizing the
area of orthogonal layouts.
But even today, many network construction problems constitute a multifaceted and ac-

tive area of research, such as the construction of communication infrastructure backbones
in wireless sensor networks [GK11, PM11, DWW+11] and the traveling salesperson prob-
lem [ABCC06, RGGO11, KM11]. Further, network theory has evolved as an independent
science [Lew09, New10] involving graph theory, the study of the evolution of random networks
as well as network analysis [Sco00, McC07] and network visualization [BETT99].

As we have seen from the previous examples, network construction problems have various
applications and appear in various areas of computer science. In this thesis we adopt a unified
view on a wide range of problems that are related to the construction of networks from a
computational point of view. A computational network construction problem is a problem
whose underlying task is to construct a graph, that is, an abstract network, subject to a given
set of hard constraints and such that a given set of optimization goals are met. Depending on
the nature of the constraints, the optimization goals and the type of the network that is to
be constructed, we distinguish several types of computational network construction problems.
For instance, we distinguish between combinatorial network construction problems, where the
task is to compute a virtual representation of the network as a graph—as in the construction
of a wireless communication network—and geometric network construction problems, where
the task is to compute a geometric network—as in the case of integrated circuit design and
the design of road networks. Often the construction of geometric networks is split into a
combinatorial network construction problem with the aim of computing the functionality
of the network and the construction of the actual layout. That is, in the layout phase we
are already given a graph representing the combinatorial structure of the network to be
constructed as an input and the task is merely to construct a layout of this graph subject
to various constraints and optimization goals. As an example, consider integrated circuit
layout, a sub-problem of integrated circuit design that is considered independently from
circuit design. We refer to this kind of network construction problem as network embedding
problem. All these problems can be cast as a computational network construction problem
by choosing constraints and optimization goals in an adequate way. For instance, we may

3

Chapter 1 Introduction

view the network embedding problem as the special case of a geometric network construction
problem in which the topology of the network is part of the hard constraints of the problem.

Thesis Outline
In this thesis, we study a small collection of computational network construction problems from
various areas of computer science. We consider these problems from both a computational
and a combinatorial point of view and we present results concerning their complexity as
well as algorithmic solutions. We start by considering combinatorial network construction
problems with increasing complexity of the network’s underlying model and optimization
goals. Then we turn our attention to network embedding problems and, finally, we study a
geometric network construction problem. In the following we present a short overview of the
contents of this dissertation.

Chapter 2. Preliminaries
We briefly introduce the main concepts and definitions appearing throughout thesis. We
start by reviewing some basic definitions from graph theory as well as geometry and graph
drawing. Then we turn to basic concepts underlying the theory of NP-completeness and
polynomial-time many-to-one reductions needed for the presented complexity results. As
some of the problems considered in this thesis are computationally hard, we then repeat
basic notions from the theory of fixed-parameter tractability and approximation algorithms
providing the basis for the presented approaches to the computationally hard problems.

Chapter 3. Enumerating and Generating Well-Ordered Degenerate Graphs
The problems of enumerating graphs and generating random graphs can be considered as the
most basic combinatorial network construction problems since these problems do not ask for
a specific graph but every or a random graph from a given class of graphs. Enumeration
algorithms are used, for instance, for exhaustive search in brute-force-algorithms and graph
generators are used, among others, in simulations and experimental analysis of algorithms. To
avoid bias, graph generators should produce each graph of a given class of graphs uniformly,
that is, with equal probability. Since it is sometimes hard to devise uniform generators for
unlabeled graphs, it is a common technique to resort to generating labeled graphs uniformly.
We study the problem of enumerating and generating k-degenerate graphs. While there

does not seem to be a straight-forward way of generating ordinary k-degenerate graphs
uniformly at random—either labeled or unlabeled—we show that we can uniformly generate
well-ordered k-degenerate graphs by introducing a new vertex labeling. This way we generate
each unlabeled k-degenerate with positive probability ruling out some, but not all isomorphic
copies. We show that the distribution of the generators induced on the unlabeled k-degenerate
graphs is closer to the uniform distribution as compared to the classical labeling, which makes
this approach preferable to the classical labeling approach. We present efficient algorithms
for the enumeration and the random generation of labeled k-degenerate graphs within this
new labeling scheme.

Chapter 4. Optimal Routing Cost Tree Augmentation
We consider two network augmentation problems on trees asking for the insertion of a single
edge such that resulting network is optimized with respect to routing cost. These problems
evolve when two networks must be re-combined, for instance, after a single link has broken

4

down, or if the performance of the network is to be increased. While both problems can be
solved trivially by exhaustive search over all pairs of endpoints in quadratic time, we present
faster algorithms with optimal or near-optimal running times exploiting geometry.
First, we consider the problem of making a network consisting of two trees connected

by introducing an additional edge such that the routing cost of the resulting network is
minimized. We study this problem for various distance measures on and between the trees.
We show that the problem can be efficiently solved by reducing it to the problem of computing
a Voronoi diagram in the plane or in a graph, respectively. Moreover, we show that the
quadratic-time exhaustive algorithm is worst-case optimal if we do not require the distance
measure to be metric.
Second, we consider the problem of introducing a shortcut into a weighted directed tree-

network such the weighted routing cost is minimized. We show that this problem can be
efficiently solved by reducing it to the computation of the upper envelope of an associated
set of piecewise linear functions. We show that the latter task can be solved in linear time
for the resulting piecewise linear functions.

Chapter 5. The Density Maximization Problem in Graphs
Many network design problems involve maximizing the performance of the network while
minimizing the construction cost for building and maintaining the network. We study the
density maximization problem in graphs, which, given a graph with edge lengths and edge
weights, asks for a subgraph whose length is minimized while its weight is maximized. We
tackle this problem by maximizing the ratio of the total weight over the total length, called
the density, as an optimization goal. Thus, we compute a Pareto-optimal solution whose
weight to length ratio is maximized. By considering the length of the network as costs and
the weight as profit, we can re-cast this problem in terms of the optimization of a network’s
return-on-investment.

We study this problem for different classes of graphs and under various constraints. First,
we assume that we are given an upper bound on the total length and a lower bound on
the total weight, that is, a limited budget and a target profit. We show that the problem
is NP-hard and we provide pseudo-polynomial fixed-parameter tractable algorithms that
can be applied to a large class of graphs. Further, we present an FPT-algorithm for the
special case that we wish to find a path with maximum density with respect to a structural
parameterization of the problem describing how tree-like a graph is. Then we show that the
problem admits a fully polynomial-time approximation scheme if the constraint on the length
may be violated at the cost of an additional penalty term on the weight.
Second, we study the problem of interconnecting a given set of so-called Steiner vertices

such that the density of the resulting network is maximized. We provide NP-hardness and
inapproximability results for this case and we present a fixed-parameter tractable algorithm
for computing a maximum density path where the parameter is the length of the path.
Further, we show that the problem of computing an arbitrary maximum density subgraph
containing a given set of Steiner vertices in a planar graph is fixed-parameter tractable when
parameterized by the number of vertices of the sought subgraph, whereas we show that this
problem is W[1]-hard for general graphs.

5

Chapter 1 Introduction

Chapter 6. Orthogeodesic Embedding of Planar Graphs
We introduce and study the orthogeodesic drawing style for embedding planar graphs. Since
orthogeodesic chains are shortest-possible orthogonal chains they can be considered to be the
counterpart of straight lines on the orthogonal grid. In terms of network construction, these
chains are optimal connections between their endpoints with respect to construction cost.
We consider the problem of embedding a given graph into a subset of the Euclidean plane.
First, we consider the orthogeodesic embedding problem without any constraints and show
that it can be efficiently solved by reducing it to the problem of computing an orthogonal
embedding with at most one bend per edge. Next, we consider the embedding problem for
the case when we are given a small set of points in the plane to which the vertices of the
graph must be mapped. We show that this problem is NP-hard and we provide a simple
characterization of the point sets admitting an orthogeodesic embedding of a cycle as well as
an efficient algorithm for computing such an embedding. Finally, we consider the problem
for the case, when the mapping between the vertices of the graph and the points is given.
While this problem turns out to be NP-hard even for matchings if the embedding must be on
the grid, we show that we can efficiently compute such an embedding without this restriction.
To this end, we present a certifying algorithm that either computes an embedding or an
intelligible proof that no such embedding exists.

Chapter 7. Orthogeodesic Embeddings of Trees
A set of points admitting an embedding of all graphs from a given class of graphs for a
specific drawing style is called universal for this class of graphs and this drawing style. We
consider the combinatorial problem of determining the size of the smallest point set whose
points are neither horizontally nor vertically aligned such that every point set of is this size
is universal for all trees with respect to the orthogeodesic drawing style. We consider planar
and non-planar orthogeodesic drawing styles with two-bend and one-bend orthogonal chains,
respectively, and we provide upper bounds for the size of universal point sets for various
classes of trees including trees with maximum degree 3 and 4 as well as caterpillars.

Chapter 8. Bicolored Hamiltonian Orthogeodesic Paths
In the colored point-set embeddability problem we are given a graph and a colored set of
points and the problem is to determine whether the graph can be embedded on the colored
point set such that adjacent vertices of the graph are mapped to points with different colors.
This models a situation in which the embedding of the vertices of the network is underlying
a set of addition constraints. We consider a special variant of this problem where the graph
is a path and the point set is colored with only two colors. We show that the problem of
deciding whether a path can be embedded on the grid is NP-hard and we provide an efficient
algorithm if the path needs not be on the grid. Additionally, we provide an efficient algorithm
approximating the length of a longest path on the grid up to a factor of 1/3 and we prove
that there are point sets such that the longest path contains at most slightly more than half
of the points.

Chapter 9. Generalization of Geometric Graphs
When visualizing or constructing geometric graphs, we must usually avoid placing objects
too close to each other. This holds equally true if we wish to visualize a graph’s vertices
and edges on a display media with limited resolution and if we wish to place transistors and
route wires on a circuit board. If the vertices of a graph are mapped too close to each other

6

they are said to clutter. Clutter avoidance is an important problem arising, for instance,
in computational cartography and network visualization when zooming out of the drawing,
that is, when generalizing the drawing. This motivates the problem of generalizing geometric
graphs. This problem is to construct a small graph that is similar with respect to both
geometry and structure to the original graph and that can be visualized without clutter on
the given display media. We formalize the problem by distinguishing several types of clutter
and formulating the avoidance of these types of clutter as optimization problems. We show
that these problems are NP-hard, and we therefore devise efficient approximation algorithms
and easy-to-implement heuristics. We implemented the heuristics and showcase the results.

7

Chapter 1 Introduction

8

Chapter 2

Preliminaries

In this section we introduce basic concepts and definitions from geometry, graph theory,
complexity theory and approximation algorithms used throughout the thesis. We assume
that the reader is familiar with basic concepts from computer science and algorithmics,
especially the Bachmann–Landau notation describing the asymptotic behavior of functions.
An introduction to basic algorithmic techniques can be found in the textbook Introduction to
Algorithms by Cormen et al. [CLRS09].

2.1 Networks and Graphs
The term network refers to any set of entities that are associated with each other such
that the resulting structure can be described formally as a graph. Thus, a network is
a concrete manifestation of a graph, while the latter is an abstract mathematical object.
Formally, a graph is a tuple G = (V,E) consisting of a set V = {v1, . . . , vn} of vertices and
a set E = {e1, . . . , em} of edges such that E is a binary relation on V . A geometric graph
is a graph whose vertices are associated with a given set of points in the Euclidean plane
R2 in a one-to-one correspondence. Usually, we identify the vertices of a geometric graph
with their associated points. Given a graph G = (V,E), we denote the set of vertices of G
by V (G) := V and the set of edges of G by E(G) := E, respectively. Throughout the thesis
we consider only finite graphs, that is, both V and E are finite. The edges of a graph can be
either directed or undirected depending on whether the relation defined by the edge-set is
symmetric or not. A directed edge is a tuple e = (u, v) such that u, v ∈ V . We say that e is
directed from u to v and we call u the source and v the target of e, respectively. A directed
graph is a graph whose edges are directed. An undirected edge is an unordered set {u, v}
such that u, v ∈ V . An undirected graph is a graph whose edges are undirected. The vertices
of a directed or undirected edge e are called the endpoints of e. If it is clear from the context,
whether the graph G is directed or undirected, we will sometimes abbreviatingly write uv
instead of {u, v} and (u, v). An edge uv such that u = v is called a loop. A graph is called
simple if it contains no loops. A multi-graph is a graph whose set of edges is a multi-set, that
is, a multi-graph can have multiple edges between two distinct vertices. Two vertices u and v
of a graph G are called adjacent if there is a directed or undirected edge between u and v. A
vertex u that is adjacent to another vertex v is called a neighbor of v. The set of neighbors
of v is denoted by N(v). A vertex v and an edge e are incident if v is an endpoint of e. The
degree of v, denoted by d(v), is equal to the number edges that are incident to v.
A path in G is a sequence of vertices P = (u1, . . . , uk) such that k ≥ 1 and such that G

contains the edges uiui+1 for all 1 ≤ i ≤ k − 1. The length of P is equal to the number

9

Chapter 2 Preliminaries

u
v

e ve

(a) Contraction of a single edge

V1

V2

V3

V4

(b) Branch sets and minor

Figure 2.1: Contraction, branch sets and minors. (a) Graph G/e resulting from contracting
the edge uv. (b) Graph G/C with C = {V1 . . . , V4}.

of edges on P . A path is called simple, if the vertices on P are distinct. A cycle is a
path C = (u1, . . . , uk) such that u1 = uk. If the vertices u1, u2, . . . , uk−1 are distinct, then C
is called simple. A connected graph is a graph such that each pair of vertices is connected by
a path.
Let G = (V,E) be a graph and let G′ = (V ′, E′) be a graph with V ′ ⊆ V and E′ ⊆ E.

Then G′ is called a subgraph of G, denoted by G′ ⊆ G. We say that G contains G′ if G′ is a
subgraph of G. If, additionally, E′ contains all edges uv ∈ E such that u, v ∈ V ′, then G′ is
called an induced subgraph, that is, a subgraph that is induced by the set of vertices V ′ ⊆ V ,
denoted by G[V ′].
Let G = (V,E) and G′ = (V ′, E′) be two graphs and let v ∈ V be a vertex. Then the

union of G and G′, denoted by G ∪G′ is defined as the graph H = (V ∪ V ′, E ∪ E′). The
graph G[V \ v] is also denoted by G− v. If U ⊆ V , we write G− U for the graph G[V \ U].
Similarly, if e ∈ E is an edge of G, we denote the graph resulting from G by removing e
by G− e and we extend this notation to sets of edges F ⊆ E by writing G− F for the graph
we obtain from G by removing the edges in F .

A tree is a simple connected graph that does not contain any cycle. A leaf of a tree is a
vertex whose degree is equal to one. Any vertex of a tree that is not a leaf is an internal
vertex . Any two vertices in a tree T are connected by a unique path in T . A tree T = (V,E)
may contain a special vertex r ∈ V , called root. Then T is called a rooted tree and we say
that T is rooted at r. A root induces a partial order on the vertices of T . If T is rooted
in r, we say that u ∈ V is below v ∈ V (respectively v is above u) if v lies on the unique
path connecting r to u. The height of a rooted tree is the maximum length of a simple path
between r and some other vertex of T . A caterpillar C is a special tree with the property
that the subgraph induced by the internal vertices of C is path. A forest is a finite union of
trees.

Let G = (V,E) and G′ = (V ′, E′) be two graphs and let ϕ : V → V ′ be a bijection mapping
vertices in G to vertices in G′. Then ϕ is a graph isomorphism, or isomorphism, for short if
there is an edge uv in G if and only if there is an edge ϕ(u)ϕ(v) in G′. If G = G′, then an
isomorphism between G and G′ is called an automorphism. The set of the permutations of
the vertices of a graph together with the composition form a group, the symmetric group of
the graph, in which the set of automorphisms is a subgroup, called the automorphism group.
Let G = (V,E) be a graph and let e = uv be an edge in G. By G/e we denote the graph

we obtain by contracting the edge e into a new vertex ve /∈ V that is adjacent to all neighbors

10

2.1 Networks and Graphs

of u and v as illustrated in Figure 2.1a. Formally, G/e is a graph whose vertex set is given
by V ′ := (V \ {u, v}) ∪ {ve} and whose edge set is given by

E′ := E(G− {u, v}) ∪ {vew | w ∈ (N(u) ∪N(v)) \ {u, v}} .

Let C = {V1, . . . , Vk} be a partition of V such that the induced graphs G[Vi] are connected
for all 1 ≤ i ≤ k. Then we denote the graph we obtain by contracting all edges in the induced
subgraphs G[Vi] by G/C as illustrated in Figure 2.1b. The sets V1, . . . , Vk are called branch
sets. If G is a subgraph of a graph H, then the graph graph G/C is called a minor of H. A
family F of graphs is closed under taking minors, or minor-closed, if each minor of a graph
in F is also contained in F . As an example, consider the class of forests. Every subgraph F ′
of a forest F is a forest and by contracting edges in F ′ we do not create cycles. Therefore,
every minor of a forest F is a forest and, thus, the class of forests is closed under taking
minors. If F is a family of graphs that is closed under taking minors, then according to the
Robertson-Seymour Theorem [RS04], there is a finite set of graphs Z such that none of the
graphs in Z is contained in F and such that Z does not contain any minor of a graph in Z,
that is, all minors of graphs in Z are in fact contained in F . Due to this property F can also
be characterized in terms of the graphs in Z. These graphs are called forbidden minors and
F is called Z-minor-free. As an example, consider the class of planar graphs. According to
Kuratowski’s Theorem [Kur30] these graphs can be characterized as the class of graphs that
do not have a complete graph on five vertices or a complete bipartite graph on two sets of
three vertices each as a minor.

Let G = (V,E) be a graph. A tree decomposition of G is a pair (X , T) such that X = {Xi |
i ∈ I} is a collection of subsets of V which are called bags and T = (I, ET) is a tree with the
following properties.

(i) The union of all bags
⋃
i∈I Xi is equal to V .

(ii) For all edges e ∈ E there is an index i ∈ I such that e ⊆ Xi.

(iii) For all vertices v ∈ V , the tree induced by the set of nodes Xv = {i ∈ I | v ∈ Xi}
induces a connected subtree of T .

We will refer to the elements in I as nodes—as opposed to vertices in the original graph.
The treewidth of a tree decomposition equals maxi∈I |Xi| − 1, that is, the maximum number
of vertices over all bags minus one. The treewidth of a graph G = (V,E) is equal to the
minimum treewidth of a tree decomposition of G. The treewidth of a tree is equal to one.
An exemplary tree decomposition of a graph is illustrated in Figure 2.2. Tree decompositions
are often used in combination with dynamic programming on the decomposition tree. An
introduction to treewidth and its algorithmic applications is given by Bodlaender and Koster
in [BK08].
Quite frequently, the edges of a graph are assumed to have a specific length, given by a

map ` : E → R. Then the length of a path in the graph is defined as the sum of the lengths of
the individual edges on the path. The length of a shortest path between two vertices u and v
of a graph, denoted by dG(u, v), defines a metric on the vertices of the graph. We refer to
this metric as the distance of u and v in G. For convenience, we sometimes assume that the
length of an edge is equal to 1 if no specific length is specified. The routing cost of a graph,

11

Chapter 2 Preliminaries

v

G = (V,E)X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14
X15

(a) Graph and bags

Tv

1

2

3
4

5
6

7

8

910

11

1213

14

15

T = (I, ET)

(b) Bags and decomposition tree

Figure 2.2: Tree decomposition (X , T) with X = {X1, . . . , X15} and T = (I, ET) where
I = {1, . . . , 15} of a graph G = (V,E) with tree-width two. The tree Tv induced
by v ∈ V in the decomposition tree is marked boldly.

denoted by rc(G), is defined as the sum of the distances over all pairs of vertices, that is,

rc(G) =
∑

(u,v)∈V×V
dG(u, v) .

If we are additionally given a weight function w : V → R on the vertices of G, then we define
the weighted routing cost as

rc(G) =
∑

(u,v)∈V×V
w(u) · w(v) · dG(u, v) .

The definition of the weighted routing cost reflects a situation in which heavy vertices can
be considered to be central vertices in charge of distributing traffic. Whereas there is much
traffic among heavy vertices, there is little traffic among less heavy vertices.
While the routing cost is a measure for the efficiency of a network, the construction cost,

defined as the sum of the lengths of all edges, is a measure for how expensive it is to realize
such a network. In addition to a length, the edge of a graph are sometimes assumed to have
a specific weight w : E → R.

2.2 Geometry and Graph Drawing
We denote the natural numbers by N, the integers by Z and the real numbers of R; the
Euclidean plane is denoted by R2. For a point p = (px, py) ∈ R2 in the Euclidean plane, we
write x(p) := px and y(p) := py, respectively. A point p = (i, i) with integer coordinates
i, j ∈ Z is called a grid point. The integer grid, or simply the grid for short, is the subset
of R2 consisting of all horizontal and vertical lines defined by the grid points in Z2. A point
is said to be on the grid if it is a grid point and a curve is said to be on the grid if it is a
subset of the integer grid. The bounding box of a set of points P , denoted by B(P) is defined
as the smallest axis-parallel rectangle containing all points of P .

The straight-line segment between two points p and q in R2 is denoted by pq. Unless stated
otherwise, the distance between two points in the Euclidean plane refers to the L2-metric

12

2.2 Geometry and Graph Drawing

(a) Convex hull (b) Voronoi diagram

Figure 2.3: A plane point set, its convex hull (a) and its Voronoi-diagram (b).

or Euclidean metric. We say that a point p ∈ R2 is below (above) q ∈ R2 if y(p) < y(q)
(y(q) < y(p)). Similarly, we say that p is left of q (right of q) if x(p) < x(q) (x(q) < x(p)).

A polygonal chain consists of a sequence c = (p1, . . . , pn) of points in R2 such that pi
and pi+1 are connected by the straight-line segment pipi+1 for all 1 ≤ i ≤ n− 1. A polygonal
chain is called monotone if the orthogonal projections of the points p1, . . . , pn onto the
straight line ` defined by its endpoints p1 and pn appear in the same order as the points
appear on c. The length of an orthogonal chain is equal to the sum of the lengths of its
straight-line segments. A polygonal chain whose endpoints coincide, that is p1 = pn, is called
a polygon. The points on the polygonal chain defining a polygon are also called vertices of the
polygon. A polygon whose vertices p1, . . . pn−1 are distinct and whose straight-line segments
do not intersect, except in their endpoints, is called simple. A simple polygon subdivides
the Euclidean plane into two connected regions, a bounded region defining the inside of the
polygon and an unbounded region defining the outside of the polygon.

An orthogonal chain is a polygonal chain consisting only of horizontal and vertical segments.
An orthogonal chain whose length is equal to the L1-distance between its endpoints is called
an orthogeodesic chain. Note that this implies that an orthogeodesic chain is monotone. The
points p2, . . . , pn−1 on a polygonal chain are also called bends, the points p1 and pn are also
called endpoints of c. An L-shaped orthogeodesic chain is an orthogeodesic chain consisting of
exactly one horizontal and one vertical straight-line segment. A horizontal orthogeodesic chain
is an orthogeodesic chain consisting of two horizontal straight-line segments and one horizontal
straight-line segments. Similarly, a vertical orthogeodesic chain consists of two vertical and
one horizontal straight-line segment. Note that a horizontal (vertical) orthogeodesic chain
is uniquely determined by its endpoints and the x-coordinate (y-coordinate) of its vertical
(horizontal) straight-line segment.

The convex hull of a point set P ⊆ R2 is the unique simple polygon with vertices in P that
contains all straight-line segments between pairs points of points in P in its interior or on its
boundary. A set of points and its convex hull is illustrated in Figure 2.3a

The Voronoi diagram of a set of points P ⊆ R2 is a subdivision of the plane into regions Rp
for p ∈ P such that Rp is the locus of points that are closer to p than to any other
point q ∈ P \ {p} as illustrated in Figure 2.3b. The region Rp is also called the Voronoi-cell
of p.

A drawing of a graph G = (V,E) is a mapping γ : V ∪E → R2 that maps G to a subset of
the Euclidean plane R2 such that every vertex V is mapped to a distinct single point γ(v)

13

Chapter 2 Preliminaries

(a) straight-line (b) polyline (c) orthogonal (d) orthogeodesic

Figure 2.4: Illustration of various graph-drawing styles.

and every edge uv is mapped to an open plane curve γ(uv) between its endpoints whose
length is finite. That is, γ embeds G into R2. We use the terms drawing and embedding
synonymously. Throughout this thesis, we identify u and γ(u) for all u ∈ V as well as e
and γ(e) for all e ∈ E. A drawing of a graph partitions the plane into a set of connected
regions, called faces, with exactly one unbounded face, called the outer face. A drawing of G
that maps V to a given restricted finite set of points P is called a point-set embedding of G
on P . A graph G is called planar if it admits a drawing that does not contain any crossings
between the edges. If, additionally there is a drawing of G such that all vertices of G are
incident to the outer face, then G is called outerplanar .

Depending on the shape of the curve γ(uv) to which an edge uv is mapped we distinguish
various drawing styles. A straight-line drawing is a drawing in which each edge is mapped to
a straight-line segment as illustrated in Figure 2.4a. Since straight-line segments are uniquely
determined by their endpoints and it is sometimes convenient to have more freedom for
the placement of the edges, we also consider polyline drawings, in which edges are mapped
to polygonal chains, that is, edges are allowed to have bends as illustrated in Figure 2.4b.
If the polygonal chains are orthogonal, then the drawing is called an orthogonal drawing
as illustrated in Figure 2.4c. Further, if the polygonal chains are orthogeodesic, then the
drawing is called an orthogeodesic drawing as illustrated in Figure 2.4d. Graph drawings
are discussed in detail in the textbook by Di Battista et al. [BETT99] and in the book by
Kaufmann and Wagner [KW01].

2.3 Complexity
In this thesis we study the computational complexity of several problems related to network
construction. Naturally, we would like to devise algorithms that solve these problems with as
few operations as possible for any given input. Since larger input sizes will typically result in
longer running times, we would therefore like to devise algorithms whose asymptotic running
time can be bounded by a slowly growing function in the input size. Problems that can be
solved within a polynomial number of operations for some polynomial in the input size of the
algorithm are commonly considered to be efficiently solvable or tractable, whereas problems
requiring a super-polynomial number of operations are not considered to be efficiently solvable.
While even algorithms with polynomial running times may be intractable in practice, this
classification is well-defined from a theoretical point of view and is therefore widely adopted.
The class of problems that is solvable in polynomial time is denoted by P. However,

there is a large number of practically relevant problems for which no efficient algorithms

14

2.3 Complexity

with polynomial running times have yet been found. In order to classify these problems
with respect to their complexity, an extensive theory has evolved over time. One of the
earliest and most important complexity classes apart from P is the class NP. This class
contains the problems that can be solved by a non-deterministic algorithm in polynomial
time. Intuitively, we can think of a non-deterministic algorithm as an algorithm that first
guesses a solution to a given problem instance and then verifies this solution. Its running
time is said to be polynomial if both the guessing and the verification requires at most a
polynomial number of operations in the input size. Thus, the complexity class NP can
equivalently be characterized as the class of problems admitting a small certificate that can
be verified in polynomial time. While it is clear that P ⊆ NP , it is a major open problem in
computer science, whether P = NP or P 6= NP . However, many computer scientists believe
that P = NP is rather unlikely.
Informally, a problem is said to be NP-hard if it is at least as hard as any other problem

in NP and it is said to be NP-complete if it is contained in NP. Formally, the theory
of NP-completeness is built upon the theory of formal languages, Turing machines and
polynomial-time reductions between problems. We merely provide a short overview here; for
a detailed discussion of the theory of NP-completeness we refer the reader to the textbooks
by Garey and Johnson [GJ79] or Cormen et al. [CLRS09]. An abstract problem Q is a binary
relation between a set of problem instances I and a set of problem solutions S, that is, Q
associates solutions to problem instances. We distinguish between optimization problems
where the goal is to find a solution that is optimal with respect to some optimization goal
and decision problems where we are merely to decide whether a given instance has a solution
or not. Although many realistic problems are optimization problems by nature, the theory
of NP-completeness is built on decision problems. However, each optimization problem can
be associated with a decision problem in a straight-forward way and, in some sense, the
optimization problems are not harder than their associated decision problems.

While an abstract problem is a binary relation that associates a set of problem instances I
with a set of solutions S, a decision problem can be thought of as a function that maps
problem instances I to either yes or no, or equivalently, to 1 and 0, respectively. That is,
each decision problem can be associated with a tuple (I,Y) such that I is a set of problem
instances and Y ⊆ I is the set of yes-instances, that is, the set of instances that have a
solution with respect to the decision problem Q. Without going into more detail, we briefly
mention that decision problems can be related to formal languages by encoding problem
instances over a finite alphabet Σ. That is, the yes-instances can be associated with a
formal language L ⊆ Σ∗ such that the decision problem is transformed into the problem of
recognizing words from L. The size of a problem instance is usually measured by the length
of the string over Σ corresponding to a problem instance. As long as we use finite alphabets
and reasonable encoding schemes, the notion of size is well-defined in that the length of
different encodings do not differ too much.

In order to formalize the notion of a problem Q being at least as hard as another problem R,
we reduce R to Q, that is, we show that any algorithm deciding Q can be used to decide R
after applying some kind of transformation to the problem instances. Formally, a decision
problem R is said to be polynomial-time reducible to a decision problem Q if there is an
algorithm A that transforms an instance x of R into an instance A(x) of Q such that the
running time of A is bounded by a polynomial in the size of x and such that A(x) is a
yes-instance of Q if and only if x is a yes-instance of R. In order to show that a decision

15

Chapter 2 Preliminaries

problem Q is NP-hard, we must therefore show that an NP-hard problem R is polynomial-time
reducible to Q. In order to show that Q is NP-complete, we must show that it is NP-hard and
that it is contained in NP, that is, that there is a non-deterministic algorithm with polynomial
running time that decides Q. Thus, whenever an NP-hard problem R is polynomial-time
reducible to a problem Q, then any polynomial-time algorithm for Q can be used to devise a
polynomial time algorithm for R by first transforming the instance x of R using A and then
applying the polynomial-time algorithm on the transformed instance. That is, in some sense
Q is at least as hard to solve as R.
Some decision problems, such as the following Partition problem, involve numbers and

must be treated with special care.

Problem Partition
Instance: A set of objects A := {a1, . . . , an} and a weight w : A→ Z.

Solution: A partition A = A1]A2.

Goal: Is there a partition A = A1]A2 such that
∑
a∈A1 w(a) =

∑
a∈A2 w(a)?

While no algorithm solving the Partition problem is known whose running time is
bounded by a polynomial in the input length where each number k must be encoded by at
most O(log k) digits, there are algorithms whose running time is bounded by a polynomial in
the input length and the largest input number. Algorithms for decision problems involving
numbers whose running time is bounded by a polynomial in the input size and the largest
number are called pseudo-polynomial. However, there are problems involving numbers that
do not admit a pseudo-polynomial-time algorithm unless P = NP . A problem Q involving
numbers is called strongly NP-hard if there is polynomial p such that a restricted variant
of the problem Qp is NP-hard, where the problem Qp is obtained from Q by restricting the
largest input number of each instance to be bounded by p(n) where n denotes the size of the
instance. A problem is said to be strongly NP-complete if it is strongly NP-hard and contained
in NP . Clearly, strongly NP-hard problems do not admit pseudo-polynomial-time algorithms
unless P = NP. For instance, the following problem is a classical strongly NP-complete
problem [GJ79].

Problem 3-Partition
Instance: A set of objects A := {a1, . . . , a3m} and a weight w : A→ Z.

Solution: A partition A = A1]A2] · · ·]Am.

Goal: Is there a partition A = A1]A2] · · ·]Am such that
∑
a∈Ai

w(a) = B for all
1 ≤ i ≤ m?

A detailed discussion of the theory of NP-completeness as well as a large number of
NP-complete problems can be found in the textbook by Garey and Johnson [GJ79].

2.4 Fixed-Parameter Tractability
While the theory of NP-completeness is a powerful tool for assessing the complexity status of
computational problems in terms of the hardest instances of these problems, it does not take

16

2.5 Approximation Algorithms

into account that some problem instances may be easier to handle than others. Despite the
fact that some computational problem may contain very hard instances, it may well be the
case that these instances do not—or merely seldom—occur in practical applications. The
theory of fixed-parameter tractability seizes this idea by parameterizing the input instances
and devising algorithms whose running time is polynomial in the input size, but is allowed to
have an additional super-polynomial factor depending on the parameter. If the parameter of
an instance is small, then fixed-parameter tractable algorithms can be efficient for practical
problems.
A parameterization is a function κ that maps problem instances to natural numbers. If

the problem instances of a decision problem are graphs, then the maximum degree of the
graph is a valid parameterization, for instance. A parameterized problem is a tuple (Q, κ)
consisting of an decision problem Q and a parameterization κ. The parameterized problem
(Q, κ) is called fixed-parameter tractable (FPT) if each instance x of Q can be solved in
time O(f(κ(x)) · |x|c) where |x| denotes the size of the input x, c is a constant not depending
on the input size and the parameter and f is a computable function. We will equivalently
say that the problem Q is fixed-parameter tractable with respect to the parameter κ. An
algorithm for a parameterized problem whose running time is O(f(κ(x)) · |x|c) is called an
FPT-algorithm and the complexity class FPT contains all parameterized problems that are
fixed-parameter tractable.
However, not all parameterized problems do admit FPT-algorithms. Thus, a theory of

the hardness of parameterized problems has evolved that is analogous to the theory of NP-
completeness, albeit, more complex. Similar to the theory of NP-completeness, parameterized
problems are related to each other via reductions. A parameterized problem (Q, κ) is FPT-
reducible to the parameterized problem (Q′, κ′) if there is an FPT-algorithm A with respect
to κ that transforms each instance x of Q into a new instance A(x) of Q′ such that x is
a yes-instance of Q if and only if A(x) is a yes-instance of Q′ and such that κ′(A(x)) is
bounded by a computable function in κ(x). While there are various hierarchies of complexity
classes for parameterized problems, we only briefly mention the classes W[1] and W[2] that
appear in this thesis. These classes are the bottommost complexity classes of a hierarchy
W [1] ⊆ W [2] ⊆ · · · of complexity classes that are defined by means of a family of logic
decision problems. We omit the details here and merely mention that a parameterized
problem (Q, κ) is W [t]-hard under FPT-reductions, if every problem in W [t] is FPT-reducible
to (Q, κ). That is, in order to show that a parameterized problem is W [t]-hard, it suffices to
provide an FPT-reduction from a W [t]-hard parameterized problem (Q′, κ′) to (Q, κ). For
more details we refer the reader to the textbook by Flum and Grohe [FG06] as well as to the
textbook by Niedermeier [Nie06].

2.5 Approximation Algorithms
While fixed-parameter tractable algorithms can be used to compute optimal solutions for
problem instances for which the parameter is small, they do not help solving problem
instances for which the parameter is large. Another way of approaching NP-hard optimization
problems is to try to compute approximate solutions instead of optimal solutions. Formally,
an optimization problem is four-tuple Q = (I, sol,m, type) where sol associates each problem
instance x ∈ I with a set sol(x) of possible solutions such that y ∈ sol(x) can be verified in

17

Chapter 2 Preliminaries

polynomial time. Further, m associates each tuple x and y ∈ sol(x) with a number m(x, y)
and the type ∈ {min,max} denotes the type of the optimization problem, which is either a
minimization problem or a maximization problem. The goal of an optimization problem is
to find, for a given problem instance x, a solution y ∈ sol(x) such that the measure m(x, y)
is optimal with respect to type, that is m(x, y) = type{m(x, y′) | y′ ∈ sol(x)}. The measure
m(x, y) is the called the optimum of x, denoted by opt(x). Given an optimization problem
Q, an instance x ∈ I and a solution y ∈ sol(x), the performance ratio or approximation ratio
of y with respect to x is defined as

R(x, y) = max
{
m(x, y)
opt(x) ,

opt(x)
m(x, y)

}
.

An algorithm A that computes for each problem instance x ∈ I a solution A(x) ∈ sol(x)
such that

R(x,A(x)) ≤ r

is called an r-approximation algorithm. The class of optimization problems that have an
r-approximation algorithm for a fixed r is denoted by APX. An optimization problem Q
belongs to the class PTAS if there is a family of algorithms containing for each ε > 0 an
algorithm Aε that is an (1 + ε)-approximation algorithm for Q. The family of algorithms Aε
is called a polynomial time approximation scheme (PTAS). If, additionally, the running time
of the algorithm Aε of a PTAS is polynomial in the input size and 1/ε, then the family of
algorithms is called a full polynomial-time approximation scheme (FPTAS). Clearly, PTAS
is contained in APX. However, some optimization problems are not contained in PTAS,
unless P = NP. There are various techniques for showing that an optimization problem is
unlikely to be in PTAS by means of approximation-preserving reductions. An overview of
approximation-preserving reductions is given by Crescenzi [Cre97]. A more detailed discussion
of approximation algorithms can be found in the textbook by Ausiello et al. [ACG+02].

18

Chapter 3

Enumerating and Generating Well-Ordered Degenerate
Graphs

The first network construction problem we consider in this chapter is the problem of enu-
merating and generating k-degenerate and strongly k-degenerate graphs. A k-degenerate
graph is a graph in which every induced subgraph has a vertex with degree at most k and a
strongly k-degenerate graph is a k-degenerate graph whose minimum degree is k. Network
construction problems of this kind are among the most basic network construction problems
since they do not require the construction of an optimal network but instead ask for the
construction of either every or an randomly sampled network from a specific class of networks.
However, at least as far as generators are concerned, it is desirable to generate the objects
uniformly at random, that is, with equal probability, in order to avoid a bias on the resulting
distribution of the networks.
The class of k-degenerate graphs includes, among others, planar graphs and it plays an

interesting role in the theory of fixed parameter tractability since some otherwise W [2]-hard
domination problems become fixed-parameter tractable for k-degenerate graphs. Algorithms
for enumerating and generating k-degenerate graphs have applications in exhaustive brute-
force algorithms and experimental analysis of algorithms, respectively. Additionally, these
generators can be used to generate graphs with given core hierarchy. We introduce a novel
labeling scheme for the vertices of a k-degenerate graph and call the resulting labeled graphs
well-ordered k-degenerate graphs.
While it is not clear how to generate k-degenerate graphs uniformly at random either

unlabeled or labeled, we present efficient algorithms for the problem of enumerating and
generating well-ordered k-degenerate graphs uniformly at random. By generating well-ordered
k-degenerate graphs we generate at least one labeled copy of each unlabeled k-degenerate
graph and we filter out some but not all isomorphies compared to the classical labeled
approach. Additionally, we introduce the class of strongly k-degenerate graphs, that is,
k-degenerate graphs with minimum degree k, which are a natural generalization of k-regular
graphs and we present efficient complete algorithms for generating graphs from this class.
Finally, we present efficient algorithms for enumerating well-ordered k-degenerate and strongly
k-degenerate graphs. This chapter is based on joint work with Reinhard Bauer and Dorothea
Wagner [BKW10].

3.1 Preliminary Remarks
The problem of enumerating and generating random graphs has a long tradition in the
combinatorial algorithms community. While algorithms for enumerating and generating

19

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

graphs have applications in exhaustive brute-force algorithms and the experimental analysis
of algorithms, the study of these algorithms may also yield new combinatorial insights. The
study of analytic combinatorics [FS09], for instance, which is based on an enumerative
description of combinatorial objects based on generating functions has provided far-reaching
new insights into combinatorial structures and their properties.
When generating random graphs, especially for applications in the experimental analysis

of algorithms it is important to provide complete generators, that is, generators that generate
each graph with positive probability. Otherwise, the experimental analysis will not be
representative and, therefore the results of the analysis may be misleading. However, even a
complete generator may produce an unwanted bias if the chances of generating a specific
subclass of the graphs are very low, while the chances of generating another subclass of the
graphs are rather high. Meinert and Wagner [MW11] discuss the impact of various generators
for planar graphs on the experimental analysis of planar dominating set algorithms and show
that the choice of generator has a significant impact on the outcome of the experimental
analysis. Therefore, it is usually desirable to design uniform generators, that is, generators
that produce each graph from a given class of graphs with equal probability. In cases, where
this is not within reach, we can either try to approximate a uniform distribution instead or
to design complete generators, whose distribution is as close to a uniform distribution as
possible. That is, in general we would like to minimize the maximum difference between the
probabilities of generating two different graphs.

Complex objects, such as graphs can be either unlabeled or labeled, depending on whether
we can distinguish between vertices or not. In a labeled graph each vertex has a unique
label and vertices are clearly distinguishable, whereas, in an unlabeled graph, vertices are not
distinguishable by themselves. Whether we consider the class of labeled or unlabeled graphs
has a large impact on whether two graphs are considered to be equal or not. While two
unlabeled graphs are considered to be equal if there is an isomorphism between the vertex
sets of the graphs, two labeled graphs are considered to be equal only if their edge sets are
identical, that is, if there is an edge between two labeled vertices in one of the graphs if and
only if there is an edge between two vertices with the same labels in the other graph as well.
For instance, two unlabeled paths consisting of three vertices are considered to be equal since
there is an isomorphism between the two graphs while there are three different labeled paths
as illustrated in Figure 3.1b, one for each label that can be assigned to the center vertex of
the path.
We can think of the class of labeled graphs as consisting of a various number of copies of

each unlabeled graph. The number of labeled copies of an unlabeled graph with n vertices is
exactly the number n! of different labelings divided by the size of the graph’s automorphism
group, that is, the index of the automorphism group in the symmetric group of the vertices.
Consider for instance the class of connected graphs with three vertices and consider a path P
consisting of three vertices as well as a triangle T . While, for both graphs, there are exactly
3! = 6 possible ways of labeling the vertices, all labelings of the triangle will in fact yield
the same graph, whereas there are three different labeled copies of the path as illustrated in
Figure 3.1. Hence, generating labeled graphs uniformly at random will therefore produce
unlabeled objects with small automorphism groups with higher probability, whereas graphs
with large automorphism groups, that is, highly symmetric graphs will ge generated less
likely.
Ideally, we would like to enumerate and generate unlabeled graphs whenever we are only

20

3.2 Introduction

(a) unlabeled

1

2

3 1

2

3

1

3

2

1

2

3

(b) labeled

Figure 3.1: Two unlabeled graphs (a) and their labeled counter-parts (b).

interested in the combinatorial structure of the graphs and, thus, rule out all isomorphic
copies. However, this is sometimes complicated, especially, if the structure of the objects to
be enumerated or generated is rather complex. For instance, to the best of our knowledge,
there is as of yet no algorithm for generating unlabeled regular graphs efficiently. In order
to overcome the difficulties associated with unlabeled generation, it is common to generate
labeled graphs instead, which is often much easier. However, since we are usually interested
in unlabeled graphs, even when generating labeled graphs, we only use the labeling for the
process of the generation and forget the labels afterwards, thus, associating the labeled copies
of the generated graphs with their unlabeled counterparts.
Finally, if the algorithms for enumerating and generating graphs are used for exhaustive

algorithms or the experimental analysis of algorithms, they should be fast and easy to
implement. Especially, when generating large graphs for experimental analysis we would
like to compute large benchmark sets quickly. Thus, even quadratic-time generators may
prove to be impracticable. On the other hand, many fast uniform samplers, especially
those based on the framework of generating functions, are not easy to implement since
the implementation involves complex numerical evaluations and it is often assumed that
the computations are performed on a real RAM machine on which the involved numbers
can be handled accurately. While the complex combinatorics involved in many generating
problems seem to make it unlikely to avoid these computations without sacrificing uniformity
of the resulting distribution, the numerical issues involved in these computations must, on
all accounts, be resolved and we must find a reasonable balance between the computational
efforts and the quality of the resulting distributions in order to obtain practical generators.

3.2 Introduction
In this chapter, we consider the problem of enumerating and generating k-degenerate graphs.
A k-degenerate graph G is a graph in which every induced subgraph has a vertex with
degree at most k. If, in addition, the minimum degree of G is k, then G is a strongly
k-degenerate graph. The most prominent class of degenerate graphs is the class of planar
graphs: Since every induced subgraph of a planar graph is itself planar and since every planar
graph contains a vertex of degree at most 5 every planar graph is 5-degenerate. Figure 3.2a
shows a 4-degenerate planar graph. Many other well-known classes of graphs are degenerate,
including graphs with bounded genus, bounded maximum degree, bounded tree-width as well
as minor-free classes of graphs.

The class of k-degenerate graphs plays an interesting role in the theory of fixed parameter

21

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

v6

v7 v2

v3

v1

v4v8

v5

(a)

v1

v2 v3

v4

v5

v6
v7

v8

(b)

v6

v7 v1

v3

v2

v4
v8

v5

(c)

Figure 3.2: Figure (a) shows a well-ordered 4-degenerate graph that is not 3-degenerate and
not well-ordered strongly 4-degenerate; Figures (b) and (c) shows two different
but isomorphic well-ordered strongly 3-degenerate graph.

tractability since some otherwise W [2]-hard domination problems become fixed-parameter
tractable for k-degenerate graphs. Noga and Gutner present a linear-time algorithm for
computing a dominating set of fixed size in degenerate graphs [AG09] and Golovach and
Villanger [GV08] extend this by showing that connected dominating set and dominating
threshold set are fixed-parameter tractable for degenerate graphs. Further, Cai et. al use the
method of random separation to obtain fixed-parameter tractable algorithms for the problem
of finding induced cycles and trees in degenerate graphs [CCC06]. However, degenerate
graphs have also been studied from a combinatorial point of view by studying packings,
colorings and the game chromatic index of degenerate graphs [CZ01, SIN07, BKN08].

It is a well-known fact that the k-degenerate graphs are exactly the graphs whose vertex-set
v1, . . . , vn can be ordered such that the degree of vi in the graph induced by the vertices
vi, . . . , vn is at most k for each i. That is, we can obtain the empty graph by iteratively
removing vertices with degree at most k as illustrated in Figure 3.2a. These vertex-sequences
are also called Erdős-Hajnal well-orderings [SP80] since they were first studied by Erdős and
Hajnal [EH66]. Erdős-Hajnal well-orderings are closely related to the core decomposition
of a graph, a concept that was introduced by Seidman [Sei83] and that has since been used
in the analysis of social networks [BZ11]. The coreness of a vertex v in the graph G is the
minimum integer c such that we can remove v from G by iteratively deleting vertices with
degree at most c and the coreness of the graph is the maximum coreness over all vertices in
the graph. Thus, the graphs with coreness k are k-degenerate. For example, the coreness of
the graph in Figure 3.2a is four while the coreness of the graph in Figure 3.2b is three. The
k-shell of a graph consists of all vertices whose coreness is exactly k. Note that these vertices
must necessarily have a minimum degree of k after iteratively removing all vertices with
degree at most k − 1. Thus, the k-shell of a graph is a strongly k-degenerate subgraph. For
example, the 3-shell of the graph in Figure 3.2a consists of the single vertex v1, whereas its
4-shell consists of the remaining vertices. The strongly k-degenerate graphs are the building
blocks of the core hierarchy of a graph and thus have applications in graph generators with
pre-defined core-hierarchy [BGG+08].

A labeled k-degenerate graph with vertex labels 1, . . . , n is called well-ordered if each vertex
with label i is incident to at most k vertices with label greater than i. Figures 3.2b and 3.2c
show two different but isomorphic well-ordered k-degenerate graphs. Given a thus labeled
vertex-set and its induced order, we consider the problem of enumerating and generating

22

3.2 Introduction

such well-ordered k-degenerate graphs uniformly at random. By generating well-ordered
k-degenerate graphs we generate at least one labeled copy of each unlabeled k-degenerate
graph and we filter some but not all isomorphies compared to the classical labeled approach
since not all labelings correspond to Erdős-Hajnal sequences. Thus, by generating a subset
of the labeled graphs and filtering out some of the isomorphies, we do in fact decrease the
probability of obtaining some of the graphs in favor of others. As an example, consider a
star-shaped 1-degenerate graph Sn consisting of a single central vertex v that is connected
to n− 1 other vertices. There are n different labeled copies of this graph, since each label
can be assigned to the central vertex v to yield a labeling that is different from all labelings
assigning a different number to v. However, there are only two valid Erdős-Hajnal sequences,
namely the ones in which the central vertex is the last or the second-last vertex. Although
the star-shaped graph is highly symmetric and, thus has a rather large automorphism group,
this example already shows that this approach is capable of filtering out a large number of
isomorphies.
On the other hand, consider the graph In consisting of n isolated vertices. Clearly, this

graph has only one labeled copy. Therefore, the class of labeled 1-degenerate graphs contains
one labeled copy of In but n labeled copies of Sn. Therefore any uniform generator for
labeled 1-degenerate graphs will generate In proportional to 1, whereas it generates Sn
proportional to n. In contrast to this, the class of well-ordered 1-degenerate graphs contains
one well-ordered copy of In and only two labeled copies of Sn. Thus, a uniform generator for
well-ordered 1-degenerate graphs generates Sn proportional to 2. Note that the class C of
k-degenerate graphs with n vertices contains both Sn and In for all k ≥ 1. Therefore, any
uniform generator for labeled k-degenerate graphs with n vertices will produce an unlabeled
copy of Sn with a probability that is n times higher than the probability of generating In,
whereas a uniform generator for well-ordered k-degenerate graphs will produce Sn with a
probability that is only twice as high as the probability of generating In. In general, if there
are m isomorphic labeled copies of a graph G in C, then a uniform generator for labeled
k-degenerate graphs will generate an unlabeled copy of G with probability m times as high as
the probability of generating In. Therefore, filtering isomorphies by considering well-ordered
k-degenerate graphs instead of ordinary labeled graphs will decrease the difference between
the distribution on the unlabeled graphs and their labeled counterparts for k-degenerate
graphs. Therefore this method of generation is preferable to the classic labeled generation in
terms of the resulting distribution of the networks for k-degenerate graphs.

Previous Work While, to the best of our knowledge, the enumeration an generation of
degenerate graphs has not been considered before to its full extent, there has been some
effort to obtain generators and enumeration algorithms for various subclasses of degenerate
graphs. Planar graphs, for instance, a subset of the 5-degenerate graphs, have been widely
studied with respect to random generation. Denise et al. [DVW96] present a Markov process
whose stationary distribution is the uniform distribution over all planar subgraphs of a graph.
Hence, this process can be used to approximate a uniform distribution of the planar graphs by
running the process on a complete graph. Bodirsky et al. [BGK07] present an algorithm for
generating labeled planar graphs based a recursive decomposition and Fusy [Fus09] presents
a linear-time sampler for generating labeled planar graphs based on generating functions.
Additionally, Brinkmann and McKay [BM07] present a fast algorithm for generating unlabeled
planar graphs.

23

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Further research has been concentrated on the study of random generation of regular graphs,
which is also a subset of the degenerate graphs. According to Gropp [Gro92] the enumeration
of regular graphs is a problem that can be traced back to the Dutch mathematician de Vries in
1891. A survey of the results obtained for regular graphs is given by Wormald [Wor99]. Kim
and Vu [KV03] analyze a generator for random regular graphs given previously by Steger and
Wormald [SW99] and prove that it produces random regular graphs asymptotically uniformly.
Read and Wormald [RW06] study the number of labeled 4-regular graphs, a problem that is
closely related to enumeration and uniform generation, and Ding et al. [DKS09] study the
problem of generating 5-regular planar graphs.

Contribution We investigate the problem of generating well-ordered k-degenerate graphs
uniformly at random and present fast algorithms whose running time is almost optimal after
a precomputation in the real-RAM machine model. Since the precomputation must only
be performed once for the uniform samplers it can be amortized when generating a large
set of graphs. Further, we present practical and easy-to-implement complete generators for
k-degenerate graphs whose running time is linear in the size of the generated graph in the
RAM machine model and, thus, optimal. For well-ordered k-degenerate graphs with given
number of vertices, this algorithm is based on an asymptotic approximation of the uniform
distribution of these graphs.

Additionally, we consider strongly k-degenerate graphs, which are a natural generalization
of k-regular graphs with applications in the design of generators for graphs with given core
hierarchy [BGG+07]. We present fast and easy-to-implement complete algorithms for this
class of graphs. Finally, we consider the problem of enumerating k-degenerate and strongly
k-degenerate graphs and we provide efficient algorithms whose amortized running time is
polynomial in the size of the generated graphs. Since strongly k-degenerate graphs are a
generalization of k-regular graphs, the presented algorithms can be used to generate k-regular
graphs without further modification.

Content In Section 3.3 we review some basic concepts related to random variate generation,
such as the inversion method, and we present a random variate generator for the k-restricted
binomial distribution, a distribution that appears during the uniform generation of well-
ordered k-restricted graphs with a given number of vertices. In Section 3.4 we present an
approximate random variate generator for the k-restricted binomial distribution that can be
used to generate well-ordered k-degenerate graphs with approximately uniform distribution.
These first two sections establish preliminaries and auxiliary results in probability theory
that will be used in the following sections.
In Section 3.5 we present uniform as well as faster complete non-uniform generators for

well-ordered k-degenerate graphs. Subsequently, Section 3.6 is concerned with algorithms for
generating well-ordered strongly k-degenerate graphs. In this section we present fast and
complete non-uniform generators for the class of well-ordered strongly k-degenerate graphs.
Finally, we present efficient algorithms for enumerating all well-ordered k-degenerate and
strongly k-degenerate graphs in Section 3.7. A summary of the contributions can be found in
Table 3.1.

24

3.3 Random Variate Generator for the Restricted Binomial Distribution

Table 3.1: Summary of the contributions in this chapter. If not otherwise marked the running
times are in the classical RAM machine model.

well-ordered well-ordered
k-degenerate strongly k-degenerate

sampling
uniform n O(n log k +m)∗ [Th. 3.4] open

(n,m) O(n log k +m+ nk)∗ [Th. 3.6] open
non-uniform n O(n+m) [Th. 3.5] O(n+m) [Th. 3.9]

(n,m) O(n+m) [Th. 3.7] O(nmk + n log k) [Th. 3.8]
enumeration

enumeration n O(nm+m2) [Th. 3.11] O(nm+m2) [Th. 3.11]
(n,m) O(nm+m2) [Th. 3.11] O(n3/2m2) [Th. 3.12]

∗real-RAM machine model

3.3 Random Variate Generator for the Restricted Binomial
Distribution

In this section we introduce the k-restricted binomial distribution that we will use for the
generation of well-ordered k-degenerate graphs in Section 3.5 and we study random variate
generators for this distribution. First we show how to generate random variates for the k-
restricted binomial distribution using the inversion method [Dev86]. By pre-computing
and re-using data needed to apply the inversion method, we can improve over the classical
inversion method when generating random variates for k-restricted distributions with different
parameters. Finally, we show how to approximate the k-restricted binomial distribution
using the standard normal distribution and we show how this approximation can be turned
into a random variate generator whose distribution is approximately k-restricted binomial
and whose running time is constant in the classical RAM machine model. Before we study
the k-restricted binomial distribution, however, we provide some basic concepts related to
distributions and random variate generation that will only be used in this chapter.

3.3.1 Preliminaries
The following definitions are based on the textbook by Klenke [Kle08] and the book by
Devroye [Dev86]. Let Ω be a non-empty set and let A ⊆ 2Ω. Then A is a σ-algebra if Ω ∈ A
and A is closed both under complements and countable unions. If A is a σ-algebra, then
the tuple (Ω,A) is called a measurable space and the sets in A are called measurable. If Ω
is at most countably infinite and if A = 2Ω, then (Ω, 2Ω) is called discrete. A function
µ : A → [0,∞], where A is a σ-algebra, is called σ-additive, if

µ

(⊎
i∈I

Ai

)
=
∑
i∈I

µ(Ai)

25

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

for any choice of countably many pairwise disjoint set Ai ∈ A for i ∈ I. If A is a σ-algebra
and µ : A → [0,∞] is a σ-additive function with µ(∅) = 0, then µ is called a measure. If, in
addition, µ(Ω) = 1, then µ is called a probability measure and the triple (Ω,A, µ) is called a
probability space. Further, if (Ω,A) is discrete, then the triple (Ω,A, µ) is called a discrete
probability space. If, additionally, Ω is finite, we call the triple a finite discrete probability
space. For a probability space (Ω,A, µ), the sets A ∈ A are called events.
If (Ω,A) and (Ω′,A′) are two measurable spaces and X : Ω → Ω′ is a map such that

X−1(A′) ∈ A for any A′ ∈ A′, then X is called a measurable map. Let (Ω,A,P) be a
probability space. Intuitively, a random variable is a variable that is associated with the
outcome of a random experiment and that describes an observation A′ associated with an
event in A. Formally, a random variable is a measurable map X : Ω → Ω′ that maps the
events in A to a space of possible observations A′. If (Ω,A) = (R,B(R)), where B(R) denotes
the Borel σ-algebra on R that is generated by all intervals on R, then X is called a real
random variable. If not otherwise stated, we will assume that random variables are real.
For A′ ∈ A′ we write {X ∈ A′} := X−1(A′) and P(X ∈ A′) := P(X−1(A′)). Further, we
write {X ≥ a} := X−1([a,∞)) and {X ≤ b} := X−1((−∞, b]) for a, b ∈ R.

Let X be a random variable. Then PX := P ◦X−1 is called the distribution of X. The
distribution of a discrete probability space is called discrete, otherwise it is called continuous.
If X is a real random variable, then the map FX : x 7→ P(X ≤ x) for x ∈ R is called
the (cumulative) distribution function of X and we write X ∼ PX and say that X has
distribution PX . Further, if it exists, the derivative of the distribution function fX(x) =
dFX(x)/dx is called the (probability) density function of X. Note that the distribution function
of a discrete function is defined on R. That is, the distribution function of a discrete real
random variable X is defined for values outside the domain of X. If X is a real random
variable and if fX exists, then the expected value is defined as

E(X) =
∫ ∞
−∞

xfX(x)dx .

If X is a discrete random variable, then the expected value is defined as

E(x) =
∞∑
i=1

xP(X = xi) ,

where xi (i = 1, 2, . . .) denote the at most countably many values that X can assume. The
variance of X is defined as Var(X) = E(X2)− E(X)2. Throughout the chapter we use the
discrete and continuous distributions summarized in Table 3.2. We define the k-restricted
binomial distribution as the discrete probability distribution with domain {1, . . . , k} and
distribution function

Fn,k(x) =
∑x
i=0

(n
i

)∑k
i=0

(n
i

) .
While the standard binomial distribution Binom(n, 1

2) is the distribution of the number of
successes in a sequence of n independent random experiments whose outcome is either success
or failure, each occurring with probability 1

2 , the k-restricted binomial distribution models a
similar distribution restricted to at most k successes in total. Hence, the n-restricted binomial

26

3.3 Random Variate Generator for the Restricted Binomial Distribution

Table 3.2: Distributions used in this chapter.
Distribution Notation Domain Density

discrete
Uniform Uniform(X) x ∈ X, |X| <∞ f(x) = 1/|X|
Binomial Binom(n, p) x ∈ {0, . . . , n} f(x) =

(n
i

)
pi(1− p)n−i

k-restricted Binomial f(x) = Binom≤k(n) x ∈ {0, . . . , k} f(x) =
(n
x

)
·
(∑k

i=0
(n
k

))−1

continuous
Uniform Uniform([a, b]) x ∈ [a, b] f(x) = 1/(b− a)
Normal Normal(µ, σ2) x ∈ R f(x) = 1

σ
√

2π · exp
(
− (x−µ)2

2σ2

)

distribution is identical to the standard binomial distribution with parameters n and p = 1
2 .

The remaining distribution in Table 3.2 are well-known standard distributions.
A random variate is a real number that is the output of a randomized algorithm that halts

with probability one. Such an algorithm is also called a random variate generator . If G is a
random variate generator that produces random values in [0, 1] with uniform distribution, then
the resulting random variate is called a random uniform [0, 1]-variate. We assume that we
can store and manipulate real numbers and that there exists a random uniform [0, 1]-variate
generator that we may use in order to obtain random numbers.

A graph G = (V,E) is called labeled if each vertex v ∈ V is assigned a unique label λ(v) ∈ N,
that is, λ : V → N is an injective function. Throughout the chapter we assume that V =
{v1, . . . , vn} and that λ(vi) = i for all 1 ≤ i ≤ |V |. Two labeled graphs G = (V,E)
and G′ = (V ′, E′) are identical if and only if |V | = |V ′| and {λ−1(i), λ−1(j)} ∈ E if and only
if {λ′−1(i), λ′−1(j)} ∈ E for all 1 ≤ i, j ≤ |V |, where λ and λ′ denote the labels of G and G′,
respectively.
Throughout this chapter, we only consider undirected loopless graphs without multiple

edges between any pair of vertices. The neighborhood N(vi) of a vertex vi is the set of
vertices vj such that there is an edge {vi, vj} ∈ E. The degree of a vertex vi in G is denoted
by dG(vi). If the context is clear we will omit the subscript G. For a vertex vi we define the
successor-degree by

d+(vi) := |{{vi, vj} ∈ E | i < j}|

as well a the predecessor-degree by

d−(vi) := |{{vi, vj} ∈ E | j < i}| .

A well-ordered k-degenerate graph G = (V,E) is a labeled k-degenerate graph with n
vertices v1, . . . , vn such that λ(vi) = i and such that d+(vi) is bounded by min{n− i, k} for
all 1 ≤ i ≤ n. Let G be a well-ordered k-degenerate and let G′ be the subgraph induced
by the vertices vi, . . . , vn for i > 1. By definition, G′ is not well-ordered k-degenerate, but
by re-labeling the vertices using the mapping j 7→ j − i + 1 we obtain a well-ordered k-
degenerate graph. We will not always mention the re-labeling explicitly. Instead we will say
that G′ is a well-ordered k-degenerate graph with vertices vi, . . . , vn. We denote the class of

27

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

well-ordered k-degenerate graphs with n vertices by D(n, k) and its cardinality by D(n, k).
Accordingly, we denote the class of well-ordered k-degenerate graphs with n vertices and m
edges, by D(n,m, k) and its cardinality by D(n,m, k).

With some abuse of notation we denote the set of all s-element subsets of a set X by
(X
s

)
.

Let X be a finite set and let f : X → R be a function assigning a real value to each of given
set of objects in X. Choosing an element x ∈ X proportional to f means choosing x with
probability

px := f(x)∑
z∈X f(z) .

The term G[u1, . . . uk] is used as a shorthand for G[{u1, . . . , uk}] and refers to the subgraph
of G induced by the vertices u1, . . . uk.

3.3.2 Inversion Method
The inversion method [Dev86] is a well-known method for generating random variates with
arbitrary continuous distribution. This method is based on the observation that the inverse
of the distribution function of a given continuous distribution Θ can be used to transform
a random uniform [0, 1]-variate into a random variate with distribution Θ. To generate
a random variate with distribution Θ with distribution function F , we simply generate a
random uniform [0, 1]-variate U and compute F−1(U) as summarized in Algorithm 3.1. The
correctness of this algorithm is established by the following theorem.

Theorem 3.1 ([Dev86]). Let F be a continuous distribution function on R with inverse F−1

defined by

F−1(u) = inf{x ∈ R | F (x) = u}

for 0 < u < 1. If U is a uniform [0, 1] random variable, then F−1(U) has distribution
function F . Also, if X has distribution function F , then F (X) is uniformly distributed
on [0, 1].

A similar concept can be used for the discrete case and is also shortly mentioned in [Dev86].
Let (Ω, 2Ω,P) be a finite discrete probability space and let X be a real random variable.
Then X can assume a finite set of values x1 < x2 < · · · < xr ∈ R such that P(xi) > 0 for
all 1 ≤ i ≤ r. Setting P(xi) =: pi, the cumulative distribution function of X is given by

F (x) = P(X ≤ x) =
∑
xi≤x

pi (3.1)

Algorithm 3.1: Continuous Inversion Method
Input: Continuous distribution function F : R→ [0, 1]
Output: Random variate X with distribution F

1 Generate a uniform [0, 1] random variate U
2 X ← F−1(U)
3 return X

28

3.3 Random Variate Generator for the Restricted Binomial Distribution

Algorithm 3.2: Discrete Inversion Method
Input: x1, . . . , xr ∈ R, distribution function F : {x1, . . . , xr} → [0, 1]
Output: Random variate X with distribution F

1 Compute and store F (xi) for 1 ≤ i ≤ r
2 Generate a uniform [0, 1] random variate U
3 compute X := F−1(U) by binary search on F (xi) i = 1, . . . n using Equation (3.4)
4 return X

Let the inverse of F be defined as the function F−1 : [0, 1]→ {x1, . . . , xr} such that

F−1(p) = min{x ∈ {x1, . . . , xr} | F (xi) ≥ p} (3.2)

for p ∈ [0, 1]. Further, let Pi :=
∑
xj≤xi

pi be the values that F can assume. Then
clearly, F−1 (Pi) = xi and, therefore, we have

F (F−1(Pi)) = Pi and F−1(F (xi)) = xi (3.3)

for all 1 ≤ i ≤ r. Further, note that, if xi = F−1(p) for i > 1, then we have

F (xi−1) < p ≤ F (xi) . (3.4)

Additionally, we have 0 < p ≤ F (x1) for x1 = F−1(p). That is, we can compute the
inverse F−1 of a discrete distribution function using binary search given the sorted sequence
of the values F (xi) for 1 ≤ i ≤ r. Let U be a random uniform [0, 1]-variate and let
Y := F−1(U). Then

P(Y = xi) = P(F (xi−1) < U ≤ F (xi)) = F (xi)− F (xi−1) = pi . (3.5)

Hence, Y is a random variate with distribution function F . In order to generate a random
variate of a discrete distribution with given distribution function F we can therefore proceed as
summarized in Algorithm 3.2. First, we compute the values F (x1), . . . , F (xr) corresponding to
the cumulative probabilities of F for the values x1, . . . , xr that the distribution may assume.
We store these values in an array sorted according to the order of x1, . . . , xr. Then we
generate a random uniform [0, 1]-variate U and compute F−1(U) according to Equation (3.4)
by binary search on the stored values. Assuming that we can evaluate F in constant time,
we can pre-compute and store the values F (x1), . . . , F (xr) in time and space O(r) and
we can compute F−1(U) in time O(log r). The correctness of this approach is based on
Equation (3.5). This result is summarized by the following lemma.

Lemma 3.1. Let Y be a discrete random variable with distribution function F and let D be
the domain of Y . Further, assume that F (x) can be computed in O(1) time for all x ∈ D.
Then we can generate a random variate X with domain D and distribution function F in
time O(log |D|) after precomputing and storing |D| values using O(|D|) time and space,
respectively.

29

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

3.3.3 The Restricted Binomial Distribution
If the discrete inversion method is used more than once to generate random variates with
the same distribution, then it suffices to perform Line 1 of Algorithm 3.2 only once, as a
pre-computation. However, if the discrete inversion method is used to generate random
variates with different distributions, then the precomputation must, in general, be performed
for each of the distributions. As an application of the discrete inversion lemma we generate
random k-restricted binomial variates for different values of k. Although the distribution
functions differ for different values of k, they are identical to a prefix of the standard binomial
distribution up to normalization. In fact, we can use this observation to obtain a random
variate generator for random variates X ∼ Binom≤k(n) for all 1 ≤ k ≤ n that pre-computes
and stores only n values. Clearly, this outperforms the

∑n
i=1 i = Ω(n2) precomputation time

and space needed for independent random variate generators.

Lemma 3.2. Let n be a fixed integer and let Y be a k-restricted random variable for
0 ≤ k ≤ n with distribution function Fn,k. Then we can generate a random variate X
with domain D = {0, . . . , k} with distribution function Fn,k in O(log k) time using O(n)
precomputation time and space.

Proof. In a precomputation we compute and store the prefix-sums of the binomial coeffi-
cients Bn(i) :=

∑i
j=0

(n
j

)
for all 0 ≤ i ≤ n. This can be done in linear time in our model of

computation since (
n

i+ 1

)
= n− i
i+ 1

(
n

i

)
. (3.6)

Hence, we can iteratively obtain Bi+1 and
(n
i+1
)
from Bi and

(n
i

)
in constant time. This implies

that F (i) = P(Y ≤ i) can be computed from F (i) = Bn(i)/Bn(k) in constant time. Hence,
the binary search from Lemma 3.1 can be performed in time O(log k) on the values Bn(i).

As mentioned, the linear-time precomputation needs only be performed once and the linear
overhead is amortized as soon as we sample Ω(n) values from this distribution. Although there
are other methods for sampling discrete random variates with arbitrary distributions, such
as the table-lookup methods or methods based on hashing [Dev86], we prefer the described
inversion methods for two reasons. On the one hand, it provides a reasonably good worst case
guarantee on the running time and on the other hand, the space requirement is reasonably
small. For the applications in this chapter, methods based on table-lookup are infeasible due
to the large numbers involved and methods based on hashing do not give any guarantees.
We note, however, that methods based on hashing may indeed be used to achieve expected
constant time random variate generation after a suitable pre-computation.

3.4 Approximating the Restricted Binomial Distribution
In the previous section, we have seen how to generate k-restricted binomial random variates
using a discrete inversion method. A major drawback of this approach is the additional
linear space for the pre-computation and the logarithmic factor on the running time due
to the binary search. Additionally, the large numbers involved in the computations make

30

3.4 Approximating the Restricted Binomial Distribution

the algorithms rather infeasible for large n. While this is not an issue within the real-RAM
machine model in theory, we have to cope with this issue in practical applications. Since
exact arithmetic involving large numbers is computationally costly, we therefore propose
approximating the distributions instead. In this section we will study an approximation of
the k-restricted binomial distribution and a corresponding random variate generator with
applications in the generation of well-ordered k-degenerate graphs. Our goal is to obtain
an approximation with a provable guarantee on the maximal deviation from the uniform
distribution that can be used as the basis for further numerical approximation. We note
that numerical approximations based, for instance, on Taylor series expansion and Padé
approximants, cannot be computed for the involved distributions directly, since the involved
functions do not allow to be described by a closed formula.

Overview In order to generate random variates with approximately k-restricted binomial
distribution we proceed in several steps. First, we show that we can generate k-restricted
binomial random variates using a modification of the discrete inversion method on the
standard binomial distribution Binom(n, 1

2) in Lemma 3.3. In order to make the inversion
method efficient, we must find an efficient way of evaluating the binomial distribution function
and its inverse. Since easy-to-evaluate closed formulae for these functions are unlikely to
exist, we resort to approximating these functions instead. In Lemma 3.4 we show that we
can approximate the binomial distribution function using the standard normal distribution
function. This is established by the Berry-Esseen Theorem [Ber41, Ess42, Ess56, KS10].
Next, we show that the inverse of the normal distribution can, in turn, be used in order to
approximate the inverse of the binomial distribution function in Lemma 3.5. The error of this
approximation deteriorates towards zero and one, but it is quite useful in an interval that
is not too close to these values. Since we cannot evaluate the normal distribution function
efficiently, we conclude by establishing the error of additionally approximating the normal
distribution function numerically in Lemma 3.6. Then we present an easy-to-implement
random variate generator based on the numerical approximations. We start with the following
lemma, which shows how to generate a random variate with k-restricted binomial distribution
using a modification of the inversion method and the standard binomial distribution.

Lemma 3.3. Let n ∈ N and let Fn be the distribution function of a random variable with
distribution Binom(n, 1

2). Further, let U be a random uniform [0, p]-variate for p = Fn(k)
with 0 ≤ k ≤ n. Then X = F−1

n (U) is a random variate with distribution Binom≤k(n),
where F−1

n is defined according to Equation 3.2.

Proof. Recall that X = F−1
n (U) satisfies

Fn(X − 1) < U ≤ Fn(X) (?)

by Equation (3.4) since X assumes only integral values. Then we have

P(X = i) = P (Fn(i− 1) < U ≤ Fn(i)) = Fn(i)− Fn(i− 1)
p

,

due to (?) and since U is a random uniform [0, p]-variate, which simplifies to

P(X = i) =
2−n

(n
i

)
Fn(k)

31

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

since p = Fn(k) and since

Fn(i)− Fn(i− 1) =
i∑

j=0
2−n

(
n

j

)
−

i−1∑
j=0

2−n
(
n

j

)
= 2−n

(
n

i

)
.

This yields

P(X = i) =
(n
i

)∑k
j=0

(n
j

) .
Hence, X is a k-restricted binomial random variate with distribution Binom≤k(n) by the
definition of this distribution.

This suggests, that we can use the inversion method on the standard binomial distribution
using a truncated uniform random variate as a starting point for generating k-restricted
binomial random variates. In order to make this approach efficient, however, we must find an
adequate way of approximating the binomial distribution function and its inverse, since it
seems unlikely that there is an efficient way of computing the exact values of this distribution
efficiently. For our approximation we first show that the binomial distribution and its inverse
can be approximated using the standard normal distribution and its inverse, respectively.
This is possible by considering X ∼ Binom(n, 1

2) as the sum of n independent random
Bernoulli variables. The key to assessing the quality of this approximation is given by the
Berry-Esseen-Theorem [Ber41, Ess42, Ess56, KS10].

Theorem 3.2 (Berry-Esseen [Ber41, Ess42, Ess56, KS10]). Let (Xn)n≥1 be a sequence of
independent identically distributed random variables with a = E(X1), 0 < σ2 = V (X1) <∞
and E | X1 |3< ∞. Let Fn denote the distribution function of the random variable Z :=
(σ
√
n)−1 ·(

∑n
j=1Xj−na) and let Φ denote the distribution function of the normal distribution.

Then

sup
x∈R
|Fn(x)− Φ(x)| ≤ C√

n
· E
∣∣∣∣X1 − a

σ

∣∣∣∣3
where C is an absolute constant fulfilling 0.4097 ≈ (

√
10 + 3)/(6

√
2π) ≤ C < 0.4784.

In other words, the error of approximating the sum of n independent identically distributed
random variables by the standard normal distribution can be bounded by an error term that
is approaching zero as n tends to infinity. In the following we let C denote the constant of
the Berry-Esseen Theorem. The Berry-Esseen Theorem immediately implies the following
lemma, which provides the bound for the case that the considered random variables have a
Bernoulli distribution, that is, the sum of these variables has a binomial distribution.

Lemma 3.4. Let n ∈ N, let X be a random variable with X ∼ Binom(n, 1
2), let Fn(x) be the

distribution function of X and let Φ denote the distribution function of the standard normal
distribution. Then

sup
x∈R

∣∣∣∣Fn(x)− Φ
(2x− n√

n

)∣∣∣∣ ≤ C√
n
.

32

3.4 Approximating the Restricted Binomial Distribution

Proof. We have X ∼ Binom(n, 1
2) ∼ X1 + . . . + Xn with Xi ∼ Binom(1, 1

2). Since X1 ∼
Binom(1, 1

2) we have a = E|X1| = 1
2 and σ2 = V (X1) = 1

4 . Let

Z := (σ
√
n)−1 ·

 n∑
j=1

Xj − na

= 2
√
n
−1 ·

 n∑
j=1

Xj −
n

2

 since a = 1
2 and σ = 1

2

= 2
√
n
−1 ·

(
X − n

2

)
.

Hence, Z is the random variable obtained by centering and scaling X. Let Gn be the
distribution function of Z. Then the previous equation implies

Gn(z) = P (Z ≤ z) = P
(
X ≤ 1

2
(√
n · z + n

))
.

Using Theorem 3.2 we obtain

sup
z∈R
|Gn(z)− Φ(z)| = sup

z∈R

∣∣∣∣P(X ≤ 1
2
(√
n · z + n

))
− Φ(z)

∣∣∣∣ ≤ C√
n
· E
∣∣∣∣X1 − a

σ

∣∣∣∣3 .

We have E
∣∣∣X1−a

σ

∣∣∣3 = E |2X1 − 1|3 ≤ 1 since −1 ≤ 2X1 − 1 ≤ 1. Then the previous equation
yields

sup
x∈R

∣∣∣∣Fn(x)− Φ
(2x− n√

n

)∣∣∣∣ = sup
x∈R

∣∣∣∣P (X ≤ x)− Φ
(2x− n√

n

)∣∣∣∣
= sup

z∈R

∣∣∣∣P(X ≤ 1
2
(√
n · z + n

))
− Φ(z)

∣∣∣∣
= sup

z∈R
|Gn(z)− Φ(z)|

≤ C√
n
.

The previous lemma provides an approximation guarantee for approximating the standard
binomial distribution by the standard normal distribution after centering and scaling the
arguments. Hence, we can approximate the standard binomial distribution using Fn(x) ≈
Φ(ζ(x)) where

ζ(x) = 2x− n√
n

.

Accordingly, we write

ζ−1(z) =
√
nz + n

2 .

33

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

The previous lemma shows that |Fn(x)− Φ(ζ(x))| converges uniformly to zero as n goes to
infinity. In order to apply Lemma 3.3, however, we also need to approximate the inverse F−1

n (p).
The following lemma shows that this is possible using the inverse of the standard normal
distribution function for large n. Due to the singularities of this function at 0 and 1, however,
it is not possible to obtain uniform convergence. Thus, the quality of the approximation
deteriorates towards the boundaries of the interval [0, 1]. The following lemma provides a
family of approximations Gn defined on a symmetric interval I := [p0, 1− p0] around 1

2 whose
approximation guarantee can be bounded in terms of p0 as n goes to infinity. That is, as n
goes to infinity, the error can be bounded by a constant in this interval.

Lemma 3.5. Let n ∈ N, let X be a binomially distributed random variable with X ∼
Binom(n, 1

2) and let Fn(x) be the distribution function of X. Let Pi := Fn(i) denote the values
that Fn can assume for 0 ≤ i ≤ n and let F−1

n be the inverse of Fn as defined in Equation (3.2).
Further, let I := [p0, 1−p0] for a fixed value 0 < p0 <

1
2 and let ` := `(n) := max{i | Pi < C√

n
}

and r := r(n) := min{i | Pi > 1 + C√
n
}. Let

Gn(p) =

Gn(P`+1)− 1 p ∈ (0, P`+1)
ζ−1 (Φ−1 (p)

)
p ∈ [P`+1, Pr−1]

Gn(Pr−1) + 1 p ∈ (Pr−1, 1)
.

Then

lim
n→∞

sup
p∈I

∣∣∣F−1
n (p)−Gn(p)

∣∣∣ ≤ √2π · C · exp
{

Φ−1 (p0)2

2

}
+ 1 .

Proof. We prove the lemma as follows. First, we define two function G−n and G+
n and show

that these functions are minorants and majorants of Gn and F−1
n , respectively. In order to

achieve this, we first show that these functions bound F−1
n from above and below, respectively,

on the finite number of values that F−1
n assumes in the interval I. Using this result, we show

that the functions bound F−1
n on the whole interval I. Given this, we can bound the error of

approximating F−1
n by Gn on I in terms of the difference between G+

n and G−n since both
functions bound both Gn and F−1

n from above and below, respectively.
Assume that n0 is such that I ⊂ (C√

n0
, 1− C√

n0
). Then for all n ≥ n0 we have I ⊂ In :=

(C√
n
, 1 − C√

n
). Since we consider the following equations in the limit for n → ∞ we may

assume that n ≥ n0 henceforth. Note that ` and r are chosen in such a way that P` is
the largest probability not in In and Pr is the smallest probability not in In. Thus, the
probabilities P`+1, . . . , Pr−1 are contained in In. We consider the functions

G+
n (p) =

G+
n (P`+1)− 1 p ∈ (0, P`+1)

ζ−1
(
Φ−1

(
p+ C√

n

))
p ∈ [P`+1, Pr−1]

G+
n (Pr−1) + 1 p ∈ (Pr−1, 1)

and

G−n (p) =

G−n (P`+1)− 1 p ∈ (0, P`+1)
ζ−1

(
Φ−1

(
p− C√

n

))
p ∈ [P`+1, Pr−1]

G−n (Pr−1) + 1 p ∈ (Pr−1, 1)

34

3.4 Approximating the Restricted Binomial Distribution

on domain (0, 1). We will show that these functions are a minorant and a majorant of both Gn
and F−1

n , respectively. That is, we can bound the difference between Gn and F−1
n by the

difference of G−n and G+
n . Since Gn is defined in terms of the inverse of the standard normal

distribution function this provides a bound on the quality of the respective approximation.
Note that both functions are well-defined on (0, 1) since [P`+1, Pr−1] ⊆ In and since

0 < p− C√
n
≤ p+ C√

n
< 1

for all p ∈ In. Further, note that both G−n and G+
n are non-decreasing since ζ−1 ◦ Φ−1 is

non-decreasing. Clearly, G−n is a minorant of Gn and G+
n is a majorant of Gn on In. Next,

we show that G−n is a minorant and G+
n is a majorant of F−1

n on I, respectively. According
to the bound

sup
x∈R
|Fn(x)− Φ(ζ(x))| ≤ C√

n

provided in Lemma 3.4 we have

Fn(i)− C√
n
≤ Φ(ζ(i)) ≤ Fn(i) + C√

n
(3.7)

due to Lemma 3.4 for all i ∈ {0, . . . , n} such that Pi ∈ In. Since ζ−1 ◦ Φ−1 is non-decreasing,
this is equivalent to

G−n (Pi) = ζ−1
(

Φ−1
(
Pi −

C√
n

))
≤ i ≤ ζ−1

(
Φ−1

(
Pi + C√

n

))
= G+

n (Pi) . (3.8)

for all i by applying ζ−1 ◦ Φ−1 to both sides and substituting Fn(i) = Pi ∈ In. Note that, by
the definition of G−n , G+

n , F−1
n and Equation (3.8) we also have

G−n (P`) = G−n (P`+1)− 1 ≤ ` = F−1(P`+1)− 1 = F−1(P`)

and

G+
n (P`) = G+

n (P`+1)− 1 ≥ ` = F−1(P`+1)− 1 = F−1(P`) .

Similarly, we have

G−n (Pr) = G−n (Pr−1) + 1 ≤ r = F−1(Pr−1) + 1 = F−1(Pr)

and

G+
n (Pr) = G+

n (Pr−1) + 1 ≥ r = F−1(Pr−1) + 1 = F−1(Pr) .

Hence we have

G−n (Pi) ≤ i ≤ G+
n (Pi)

35

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

for all Pi ∈ Pn := {Pi ∈ In} ∪ {P`, Pr}. Substituting i = F−1
n (Pi) for Pi = Fn(i) ∈ In we

obtain

G−n (Pi) ≤ F−1(Pi) ≤ G+
n (Pi) (3.9)

for all Pi ∈ Pn due to the definition of the inverse F−1
n and Equation (3.3). That is, G−n is a

minorant for F−1
n and G+

n is a majorant of F−1
n for all Pi ∈ Pn. Next, we show that G−n is a

minorant of F−1
n and G+

n + 1 is a majorant of F−1
n for all p ∈ In. Consider an index i such

that (Pi−1, Pi) ∩ In 6= ∅, that is Pi−1, Pi ∈ Pn, and let p ∈ (Pi−1, Pi) ∩ In. Then F−1(p) = i
and we have

G−n (p) ≤ G−n (Pi) since G−n is non-decreasing
≤ F−1(Pi) due to Equation (3.9)
= i

= F−1(p) .

Similarly, we have

G+
n (p) + 1 ≥ G+

n (Pi−1) + 1 since G+
n is non-decreasing

≥ F−1(Pi−1) + 1 due to Equation (3.9)
= i

= F−1(p) .

Therefore, G−n is a minorant for F−1 for all p ∈ In and G+
n + 1 is a majorant for F−1 for

all p ∈ In. Since both F−1
n and Gn are bounded by G−n and G+

n + 1 from above and below,
respectively, on In, the absolute difference of these functions must be bounded by∣∣∣F−1

n (p)− ζ−1 (Φ (p))
∣∣∣ ≤ G+

n (p)−G−n (p) + 1

on In. Note that, since G+
n (p) − G−n (p) = G+

n (P`+1) − G−n (P`+1) for all p ∈ (0, P`+1)
and G+

n (p) − G−n (p) = G+
n (Pr−1) − G−n (Pr−1) for all p ∈ (Pr−1, 1), the supremum of this

difference is attained in the interval [P`+1, Pr−1]. Using this observation along with the
definition of ζ−1 we get

lim
n→∞

sup
p∈In

{
G+
n (p)−G−n (p) + 1

}
= lim

n→∞
sup
p∈In

√
n

2

{
Φ−1

(
p+ C√

n

)
− Φ−1

(
p− C√

n

)}
+ 1

= lim
n→∞

sup
p∈In

2C√
n
·
√
n

2 ·
Φ−1

(
p+ C√

n

)
− Φ−1

(
p− C√

n

)
2C√
n

+ 1 .

Since the third term of the previous equation is equal to the difference quotient of Φ−1 at p,
this simplifies to

lim
n→∞

sup
p∈In

{
G+
n (p)−G−n (p) + 1

}
= sup

p∈In

C · ∂
∂p

Φ−1(p) + 1

= sup
p∈In

C ·
{

1√
2π
· exp

(
−Φ−1(p)2

2

)}−1

+ 1

36

3.4 Approximating the Restricted Binomial Distribution

by the definition of the derivative of Φ−1, which yields

lim
n→∞

sup
p∈In

{
G+
n (p)−G−n (p) + 1

}
= sup

p∈In

√
2π · C · exp

{
Φ−1 (p)2

2

}
+ 1 .

Note that by the symmetry of Φ we have Φ−1(p) = −Φ−1(1− p) and, therefore Φ−1(p)2 =
Φ−1(1−p)2. Further, note that Φ−1(p)2 is minimized for p = 0.5 and monotonically increasing
for p→ 0. This yields

lim
n→∞

sup
p∈In

{
G+
n (p)−G−n (p) + 1

}
≤
√

2π · C · exp
{

Φ−1 (p0)2

2

}
+ 1 ,

which concludes the proof since I ⊂ In.

Although the rate of deterioration of the error bound provided in the previous lemma
is rather fast towards the boundaries of the domain, it yields that the absolute error of
the approximation is less than 8 for 0.05 ≤ p ≤ 0.95 in the limit, which shows that the
approximation can be quite useful already. In fact this means that the probability of witnessing
an error larger than 8 while generating approximately binomially distributed random variates
using the inverse normal distribution is less than 0.1 for large values of n. Figure 3.3 shows
the quality of the bound provided by the minorants and majorants for large n on a log-scale
plot as well as the bound provided by the lemma. Note that the error is less than 1 for a
large fraction of the possible probabilities p, while the image of the function we approximate
is {1, . . . , n}.

0.0 0.2 0.4 0.6 0.8 1.0

p

E
rr

or
 B

ou
nd

 o
f A

pp
ro

xi
m

at
io

n

10
−3

10
−2

10
−1

1
10

10
2

10
3

Figure 3.3: Log-scale plot of the absolute error bound of the approximation to the inverse of
the binomial distribution function given by G+

n (p)−G−n (p) for p ∈ In for different
values of in n ∈ [500, 106] (solid lines) and

√
2π · C · exp

{
Φ−1(p)2

2

}
(dashed line),

respectively.

37

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Next, we approximate the normal distribution function and its inverse numerically in order
to be able to evaluate these functions efficiently. The standard normal distribution function Φ
can be approximated according to Equation 26.2.19 in Abramowitz and Stegun [AS72]. Let

d1 = 0.0498673470 d2 = 0.0211410061 d3 = 0.0032776263
d4 = 0.0000380036 d5 = 0.0000488906 d6 = 0.0000053830 .

Then Φ(x) can be approximated by

G(x) = 1− 1
2

(
1 +

6∑
i=1

dix
i

)−16

(3.10)

with error |εG(x)| ≤ 1.5 · 10−7 for 0 ≤ x. Further, we can approximate the inverse of the
standard normal distribution using Padé approximants [PTVF07]. For instance, let

a1 = 4.442882938158366 a2 = 5.38865628256879
a3 = 10.882423209201171 a4 = 6.614276302275924
a5 = 8.20719310378084 a7 = 1.923455149786169
a9 = 0.7895597958079597

.

Then the Padé approximant for Φ−1 in x = 0.5 computed by Mathematica [Inc08] is given by

H(x) = a1t− a3t
3 + a5t

5 + a7t
7 + a9t

9

1− a2t2 + a4t4
, (3.11)

where t = x− 0.5. We have |H(x)−Q(x)| ≤ 3.75172 · 10−7 for all x ∈ [0.2, 0.8], where Q(x)
is the approximation of the inverse cumulative distribution function of the standard normal
distribution built into Mathematica. In order to extend the range of the approximation,
we can compute additional Padé approximants in the sub-ranges of [0, 0.2) and (0.8, 1],
respectively. Note that these functions can be computed using only a constant number of
additions, multiplications and divisions, that is they can be computed in constant time in
the RAM machine model.

Next, we show that the additional absolute error resulting from approximating the inverse
of the standard normal distribution function numerically does not increase by too much
when using reasonable numerical approximations. While this is immediately obvious for our
approximation to the binomial distribution where the operand is transformed prior to the
evaluation of the standard normal distribution function, it is not immediately clear for our
approximation of the inverse of the binomial distribution since this approximation involves a
transformation of the function value of the numerical approximation.

Lemma 3.6. Let n ∈ N and let 0 ≤ k ≤ n. Let (Hn)n≥0 be a family of approximations
of the inverse of the standard normal distribution function with absolute error bounded
by εn ∈ o(n−1/2). Further, let Fn be the distribution function of the binomial distribution
Binom(n, 1

2) and let U be a random uniform [0, p]-variate such that p = Fn(k). Let F−1
n denote

the inverse of Fn as defined in Equation (3.2). Further, let Pi := Fn(i) for 0 ≤ i ≤ n and
let I = [p0, 1− p0] for a fixed value 0 < p0 <

1
2 such that p0 >

C√
n
. Let ` := max{i | Pi < p0}

38

3.4 Approximating the Restricted Binomial Distribution

and r := min{i | Pi > 1− p0} and let Gn be defined as in Lemma 3.5. Let

G̃n(p) :=

G̃n(P`+1)− 1 p ∈ (0, P`+1)
dζ−1(Hn(p))e p ∈ [P`+1, Pr−1]
G̃n(Pr−1) + 1 p ∈ (Pr−1, 1)

Then G̃n(U) approximates the k-restricted binomial distribution with absolute error

lim
n→∞

sup
U∈I

∣∣∣G̃n(U)− F−1
n (U)

∣∣∣ ≤ √2π · C · exp
{

Φ (p0)2

2

}
+ 2

on the interval I.

Proof. Note that F−1
n is constant on (P`, P`+1] and (Pr−1, Pr] and note that both these

intervals are overlapping I. Hence, the maximum absolute error of the function |G̃n(U)−
F−1
n (U)| is attained in the interval [P`+1, Pr−1]. In this interval, we have

lim
n→∞

sup
U∈I

∣∣∣G̃n(U)− F−1
n (U)

∣∣∣ = lim
n→∞

sup
U∈I

∣∣∣G̃n(U)− ζ−1(Φ−1(U))
∣∣∣

+
√

2π · C · exp
{

Φ−1 (p0)2

2

}
+ 1

using Lemma 3.5

≤ lim
n→∞

sup
U∈I

∣∣∣ζ−1(Hn(U))− ζ−1(Φ−1(U))
∣∣∣

+
√

2π · C · exp
{

Φ−1 (p0)2

2

}
+ 2

using the definition of F̃−1
n and the fact that rounding causes at most an additive unit error

≤ lim
n→∞

sup
U∈I

∣∣∣ζ−1(Φ−1(p0)± εH)− ζ−1(Φ−1(U))
∣∣∣

+
√

2π · C · exp
{

Φ−1 (p0)2

2

}
+ 2

by the quality of the approximation Hn

≤ lim
n→∞

εn

√
n

2 +
√

2π · C · exp
{

Φ−1 (p0)2

2

}
+ 2 ,

by the definition of ζ−1, which by εn ∈ o(n−1/2) yields

=
√

2π · C · exp
{

Φ−1 (p0)2

2

}
+ 2 .

39

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Algorithm 3.3: Approximately k-restricted binomial random variate generation
Input: n, k
Output: approximately k-restricted binomial random Variate X

1 p← F̃n(k) where F̃n(k) is defined as in Lemma 3.4
2 U ← random uniform [0, 1]-variate
3 U ′ ← Up // generate random uniform [0, p]-variate
4 X ← G̃n(U ′) where G̃n is defined as in Lemma 3.6
5 if X < 0 then
6 return 0
7 else if X > k then
8 return k
9 else

10 return X

That is, in order to keep the additional absolute error introduced by the numerical
approximation to the inverse of the normal distribution low, it suffices to approximate the
inverse of the standard normal distribution with error bounded by o(n−1/2). Using an
approximation of the normal quantile function with absolute error bounded by εH ≤ 10−7,
for instance, the additional absolute error introduced by the approximation of the normal
quantile function, given by εH

√
n/2 + 1, is less than 2 for all n < 4 · 1014. In Equation (3.11)

we showed that these error terms are indeed within reach of reasonable approximations.
To summarize, we propose the following algorithm for generating approximately k-re-

stricted binomial random variates, as illustrated in Algorithm 3.3. The algorithm first
computes p ≈ Fn(k) using a numerical approximation of the standard normal distribution
such as the one in Equation (3.10). This is justified by Lemma 3.4. Then it generates a
random uniform [0, p]-variate U ′ using a simple transformation from a random uniform [0, 1]
variate U . Finally, we apply a numerical approximation of the standard normal quantile
function such as the one in Equation (3.11) to U and apply ζ−1 according to Lemma 3.3 to
transform U ′ into an approximately k-restricted binomial random variate. Due to the error
introduced in the computation, X may be larger than k or smaller than 0. By substituting
these values with 0 and k, respectively, we obtain an approximately k-restricted binomial
random variate.
The quality of the resulting approximation is better for large n and if k is not too

small compared to n. For large n, and if k is large compared to n, the approximation
guarantees discussed numerically suggest that the approximation is very close to the k-
restricted binomial distribution. The quality of the approximation can be improved at the
cost of more complicated Padé approximants.

Theorem 3.3. Algorithm 3.3 generates an approximately k-restricted binomial random
variate in time O(1).

Proof. The quality of the approximation of Algorithm 3.3 mainly depends on Lemma 3.6
and the used numerical approximations for the standard normal distribution and has been
discussed above. We assume that the numerical approximations for the standard normal
distribution can be computed by a constant number of numerical operations involving only

40

3.5 Generating Well-Ordered Degenerate Graphs

addition, multiplication and division. As an example, consider the approximations given in
Equations (3.10) and (3.11). Since the numerical approximations can be computed with a
constant number of operations, the algorithm can be implemented to run im O(1) time.

3.5 Generating Well-Ordered Degenerate Graphs
In this section we study the problem of generating well-ordered k-degenerate graphs with n
vertices or n vertices and m edges uniformly at random. We first establish recursive formulae
for the cardinalities of the respective graph classes. Then we show how these formulae can
be used to generate graphs from these classes uniformly at random. Since the involved
probability distributions are hard to deal with computationally, we additionally present
non-uniform and easy-to-implement generators, whose running time is optimal.

Lemma 3.7. We have the following recursive formulae for the cardinalities D(n,m, k)
of D(n,m, k) and D(n, k) of D(n, k)

D(n,m, k) =
min{n−1,m,k}∑

i=0

(
n− 1
i

)
D(n− 1,m− i, k) (3.12)

D(n, k) =
min{n−1,k}∑

i=0

(
n− 1
i

)
D(n− 1, k) . (3.13)

Proof. Let G be a well-ordered k-degenerate graph with n vertices and m edges. Then the
graph G[v2, . . . , vn] is a well-ordered k-degenerate graph with n− 1 vertices and m′ edges,
where m′ = m − d for some 0 ≤ d ≤ min{n − 1,m, k}. To see this, note that the degree
of v1 is at most min{n− 1,m, k} since G is well-ordered k-degenerate and that removing v1
and its adjacent edges does not affect labels and the out-degree of the remaining vertices.
On the other hand, suppose that G′ is a well-ordered k-degenerate graph such that the
minimum vertex-label of G′ is i + 1 for i > 1 and suppose that G′ has n′ vertices and m′
edges. Let G be the graph resulting from adding a new vertex vi labeled i and a set of at
most min{n − 1,m, k} edges incident to vi. Then, clearly, G is well-ordered k-degenerate,
since adding the edges does not affect the labeling and the out-degree of the other vertices
and since the out-degree of vi is at most min{n− 1,m, k}.
That is, for fixed d such that 0 ≤ d ≤ min{n− 1,m, k} we obtain all k-degenerate graphs

with n vertices and m edges as follows. We take an arbitrary well-ordered k-degenerate
graph G′ with n−1 vertices {v1, . . . , vn−1} andm′ = m−d edges and create a new well-ordered
k-degenerated graph with n vertices and m edges by first re-labeling the vertices of G′ such
that the new label vi is i+ 1, adding a new vertex labeled 1 and adding d ≤ min{n− 1,m, k}
edges to the resulting graph. Since the newly added vertex chooses d neighbors out of n− 1
vertices we obtain

D(n,m, k) =
min{n−1,m,k}∑

d=0

(
n− 1
d

)
D(n− 1,m− d, k) .

Clearly, each of these graphs is unique and no graph is counted more than once. Similarly, if G
is a k-degenerate graph with n vertices, then G[v2, . . . , vn] is k-degenerate with n− 1 vertices.

41

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Algorithm 3.4: Degenerate(i, n, k)
Input: n ∈ N, 0 ≤ k ≤ n, 1 ≤ i ≤ n
Output: random well-ordered k-degenerate graph with n− i+ 1 vertices vi, . . . , vn

1 if i = n then
2 return ({vn}, ∅)
3 di ← Binom≤min{n−i,k}(n− i) Xi

4 (V ′, E′)← Degenerate(i+ 1, n, k) Yi+1

5 S ← Uniform
((V ′

di

))
Zi

6 E ← E′ ∪ {{vi, s} | s ∈ S}
7 G← (V ∪ {vi}, E)
8 return G Yi

We can construct all k-degenerate graphs with n vertices from the k-degenerate graphs with
n− 1 vertices by adding a new vertex as before and choosing 0 ≤ d ≤ min{n− 1, k} edges
incident to the newly added vertex. Hence, we have

D(n, k) =
min{n−1,k}∑

d=0

(
n− 1
d

)
D(n− 1, k) .

The uniform samplers presented in the following sections are based on these recursive
formulae.

3.5.1 Generating k-degenerate Graphs with n Vertices
First, we describe an exact uniform sampler for k-degenerate graphs with a given number
of vertices. Our approach is a recursive algorithm that expects an index i as well as the
number of vertices n of the graph as parameters. If i = n the algorithm returns a graph
consisting of an isolated vertex with label n. Otherwise, it randomly chooses the successor-
degree di of vertex vi according to a k-restricted binomial distribution (see Table 3.2) and
recursively calls itself generating a well-ordered k-degenerate graph G′ with n− i vertices
labeled vi+1, . . . , vn. Then it chooses di distinct vertices uniformly at random, creates a new
vertex labeled i and inserts new edges from vi to all di selected vertices. The resulting graph G
is returned. The details are listed in Algorithm 3.4. It remains to show that Algorithm 3.4
samples well-ordered k-degenerate graphs with n vertices uniformly at random if invoked
with Degenerate(1, n, k). Let Y1 denote the random variable representing the outcome of
the call Degenerate(1, n, k).

Theorem 3.4. Algorithm 3.4 generates all graphs in D(n, k) with equal probability, that
is, Y1 ∼ Uniform(D(n, k)) if invoked with Degenerate(1, n, k). The algorithm can be
implemented to run in O(n log k +m) time in the real-RAM machine model.

Proof. First, we show that the graphs generated by Algorithm 3.4 are well-ordered k-
degenerate if the algorithm is invoked with Degenerate(1, n, k). This follows from the

42

3.5 Generating Well-Ordered Degenerate Graphs

invariant of the algorithm that the graph generated by the recursive call to the algorithm
in Line 4 is a well-ordered k-degenerate graph with n − i vertices vi+1, . . . , vn. We show
that the invariant is maintained by induction on i. The invariant is certainly true for i = n.
Suppose that the invariant is true for i+ 1. Then the call to Degenerate(i, n, k) recursively
calls Degenerate(i+1, n, k), which produces a well-ordered k-degenerate graph G′ with n−i
vertices vi+1, . . . , vn. By adding a vertex vi with at most min{k, n− i} edges according to
Line 6 we obtain a well-ordered k-degenerate graph with n− i+ 1 vertices v1, . . . , vn.
Next, we show that each well-ordered k-degenerate graph G with n vertices v1, . . . , vn is

generated with probability D(n, k)−1. Let Gi := G[vi, . . . , vn]. Then Gi is a well-ordered k-
degenerate graph with n − i + 1 vertices vi, . . . , vn. Let Xi, Yi+1, Zi denote the random
variables representing the outcome of the randomized operations in Lines 3, 4 and 5 of the
algorithm, respectively. That is, Xi = di, Yi = Gi, Yi+1 = Gi+1 and Zi = S. We prove
that Yi ∼ Uniform(D(n−i+1, k)) by induction on the parameter i of the algorithm. Since there
is only one well-ordered k-degenerate graph with one vertex we have D(1, k) = 1 and, thus,
the claim holds for i = n. Assume that i < n. Let Gi = ({vi, . . . vn}, E) be a well-ordered k-
degenerate graph and let di denote the degree of vi. Further, let N(vi) ⊆ {vi+1, . . . , vn}
denote the neighbors of vi. According to the definition of the algorithm the probability of
obtaining Gi given as input i and n is given by

P(Yi = Gi) = P(Xi = di) · P(Yi+1 = Gi − vi) · P(Zi = N(vi) | Xi = di) .

By definition of the k-restricted binomial distribution, we have

P(Xi = di) =
(n−i
di

)
∑min{k,n−i}
j=0

(n−i
j

)
and by choosing di neighbors uniformly at random, we have

P(Zi = N(vi) | Xi = di) = 1(n−i
di

)
.

Thus, by induction hypothesis Yi+1 ∼ Uniform (D(n− i, k)) we obtain

P(Yi = Gi) =
(n−i
di

)
∑min{k,n−i}
j=0

(n−i
j

) · 1
D(n− i, k) ·

1(n−i
di

)
= 1∑min{k,n−i}

j=0
(n−i
j

)
D(n− i, k)

,

which simplifies to

P(Yi = Gi) = 1
D(n− i+ 1, k)

using Equation (3.13). Hence, P(Y1 = G) = D(n, k)−1 as claimed.
By Lemma 3.2 we can generate Xi in Line 3 in O(log k) time using values, which have

been pre-computed in O(n) time and space. Since Line 3 is performed for each of the n− 1

43

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

vertices v1, . . . , vn−1 of the graph and since the pre-computation must only be performed
once, the pre-computation is completely amortized. Hence Line 3 can be implemented to run
in amortized O(log k) time. Further, we can implement Line 5 iteratively as follows. Suppose
that V ′ is implemented as an array with random access. When picking the j-th element
for j ≤ di we choose a random index r between 1 and |V ′| − j+ 1 uniformly at random. Then
we swap the elements r and |V ′| − j + 1. Hence, no element is chosen more than once. The
probability obtaining a specific set N(vi) is given by

di! ·
1
|V ′|
· 1
|V ′| − 1 · · ·

1
|V ′| − di + 1 =

(
|V ′|
di

)−1

.

To choose a random index between 1 and t > 1 uniformly at random we first compute a
random uniform [0, 1]-variate U and compute X = 1 + b(t− 1)Uc. Then

P(X = j) = P (b(t− 1)Uc = j − 1)
= P(j − 1 ≤ (t− 1)U < j + 1)

= P
(
j − 1
t− 1 ≤ U <

j

t− 1

)
= j − (j − 1)

t− 1 = 1
t− 1 ,

that is, each j ∈ {1, . . . , t} is chosen with equal probability. Note that the floor operation is
implemented in hardware on many modern floating-point units and is therefore considered
as a constant-time operation here. Then the number of calls in Line 5 is proportional to
the number of generated edges. If the generated graph has m edges, then the resulting time
complexity is O(n log k +m).

In Section 3.4 we have seen how to generate random variates with an approximately k-
restricted binomial distribution in expected or deterministic O(1) time using the inversion
method and approximations for the normal and inverse normal distributions. Thus, by
substituting the exact random variate generator for in Algorithm 3.4 by Algorithm 3.3 we
obtain an approximately uniform generator for k-degenerate graphs with optimal running
time as summarized in the following theorem.

Theorem 3.5. Using Algorithm 3.3 to sample random variates with an approximately k-
restricted binomial distribution Algorithm 3.4 can be turned into an approximate uniform
generator for D(n, k) with running time O(n+m) in the standard RAM machine model.

3.5.2 Generating k-degenerate Graphs with n Vertices and m Edges
Next, we present a uniform generator for well-ordered k-degenerate graphs with n vertices
and m edges. Throughout this section we assume m ≤ M(n, k), where M(n, k) is the
maximum number of edges of a well-ordered k-degenerate graph with n vertices. Since the
degree of each vertex vi of a well-ordered k-degenerate graph with n vertices v1, . . . , vn is
bounded by min{k, n− i} we have

M(n, k) :=
n∑
i=1

min{k, n− i} .

44

3.5 Generating Well-Ordered Degenerate Graphs

Algorithm 3.5: Degenerate(i, n,m, k)
Input: n ∈ N, 0 ≤ k ≤ n, 1 ≤ i ≤ n, 0 ≤ m ≤M(n− i+ 1, k),
Output: random well-ordered k-degenerate graph with n− i+ 1 vertices vi, . . . , vn

and m edges
1 if m = 0 then
2 return ({vi, . . . , vn}, ∅)
3 di ← choose 0 ≤ di ≤ min{n− i,m, k} proportional to

(n−i
di

)
D(n− i,m− di, k) Xi

4 (V,E′)← Degenerate(i+ 1, n− i,m− di, k) Yi+1

5 S ← Uniform
((V ′

di

))
Zi

6 E ← E′ ∪ {(vi, s) | s ∈ S}
7 G← (V ∪ {vi}, E)
8 return G Yi

For n ≥ k this yields

M(n, k) = nk −
k∑
i=1

i = nk − k(k + 1)
2 = nk −

(
k + 1

2

)
. (3.14)

For n < k this yields

M(n, k) =
n∑
i=1

n− i =
n−1∑
i=0

i = n(n− 1)
2 =

(
n

2

)
.

Clearly, there exist well-ordered k-degenerate graphs with n vertices and M(n, k) edges. In
order to see this, it suffices note that, for each vertex vi there are at least min{k, n − i}
vertices vj with j > i. Hence, we can construct a graph such that the degree of vi is exactly
min{k, n− i} for all 1 ≤ i ≤ n. On the other hand, however, no k-degenerate graph with n
vertices can have more than M(n, k) edges since this number of edges can only be achieved if
each vertex has the maximum number of edges it is allowed to have. Finally, note that the
empty graph on vertex set {v1, . . . , vn} is well-ordered k-degenerate, that is, the minimum
number of edges of a well-ordered k-degenerate graph equals zero.
The algorithm we propose is similar to the algorithm presented in the previous section.

At first we choose 0 ≤ di ≤ min{n− 1,m, k} proportional to
(n−1
di

)
D(n− 1,m− i, k). Then

we recursively choose G′ uniformly at random from D(n− 1,m− i, k). Next we choose di
vertices uniformly at random from G′ and finally we create a new vertex that is connected to
all selected vertices in G′. The pseudo-code is listed in Algorithm 3.5 and its correctness is
established in the following theorem.

Theorem 3.6. Algorithm 3.5 generates all graphs in D(n,m, k) with equal probability, that
is, Y1 ∼ Uniform (D(n,m, k)), if invoked with Degenerate(1, n,m, k). The algorithm can
be implemented to run in O(n log k +m+ nk) time in the real-RAM machine model.

Proof. The proof is analogous to the proof of Theorem 3.4. First, we show that the graphs
generated by calling Degenerate(1, n,m, k) are well-ordered k-degenerate with n ver-
tices and m edges. This follows from the invariant that a call to Degenerate(i, n,m′, k)

45

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

with m′ ≤ min{M(n, k),m} yields a well-ordered k-degenerate graph with n − i + 1 ver-
tices vi, . . . , vn and m′ edges. To see, why the invariant is maintained, note that a call
to Degenerate(i, n, 0, k) yields a well-ordered k-degenerate graph with n − i + 1 ver-
tices vi, . . . , vn as claimed for all 1 ≤ i ≤ n. Hence, the invariant holds for these calls.
Consider a call to Degenerate(i, n,m, k) and suppose that the invariant is maintained for
all j > i and m′ ≤ m such that D(j,m′, k) 6= ∅. Then the recursive call in Line 4 yields a
well-ordered k-degenerate graph Gi+1 with n− i vertices vi+1, . . . , vn and m− di edges such
that 0 ≤ di ≤ min{k, n− i}. By adding a new vertex vi and di edges incident to vi, we obtain
a new graph Gi with n− i+ 1 vertices vi, . . . , vn and m′ + di edges. Hence, the invariant is
maintained.

Next, we show that each graph G ∈ D(n,m, k) is generated with probability D(n,m, k)−1.
By induction over i and m′ we show that Yi ∼ Uniform (D(i,m′, k)). As above, the induction
hypothesis holds for all 1 ≤ i ≤ n and m′ = 0 since there is only one well-ordered k-degenerate
graph with n−i+1 vertices vi, . . . , vn. Assume that the induction hypothesis holds for all j < i
and all m′ ≤ m such that D(j,m′, k) 6= ∅ and consider the call Degenerate(i, n,m, k).
We again let Xi, Yi+1, Zi denote the random variables for the outcome of the randomized
operations in Lines 3, 4 and 5 of the algorithm, respectively. The probability of obtaining a
graph Gi ∈ D(n− i+ 1,m, k) with n− i+ 1 vertices vi, . . . , vn and m edges from a call to
Degenerate(i, n,m, k) such that the degree of vi equals di is given by

P(Yi = Gi) = P(Xi = di) · P(Yi+1 = Gi − vi) · P(Zi = N(vi) | Xi = di) .

By choosing di proportional to
(n−i
di

)
D(n− i,m− di, k) we have

P(Xi = di) =
(n−i
di

)
D(n− i,m− di, k)∑min{n−i,m,k}

j=0
(n−i
j

)
D(n− i,m− j, k)

and by choosing di neighbors uniformly at random, we have

P(Zi = N(vi) | Xi = di) = 1(n−i
di

)
.

Thus, by induction hypothesis Yi+1 ∼ Uniform (D(n− i,m− di, k)) we obtain

P(Yi = Gi) = 1(n−i
di

) · 1
D(n− i,m− di, k) ·

(n−i
di

)
Dn− i,m− di, k)∑min{n−i,m,k}

j=0
(n−i
j

)
D(n− i,m− j, k)

,

which simplifies to

P(Yi = Gi) = 1
D(n− i+ 1,m, k)

using Equation (3.12). Hence, by induction we generate each graph in D(n,m, k) with
probability D(n,m, k)−1 by calling Degenerate(1, n,m, k).

The algorithm can be implemented with similar techniques as those described in the proof
of Theorem 3.4. Line 3 can be implemented using the discrete inversion method described

46

3.5 Generating Well-Ordered Degenerate Graphs

Algorithm 3.6: Degenerate(n,m, k)
Input: n ∈ N, 0 ≤ k ≤ n, 0 ≤ m ≤M(n, k)
Output: well-ordered k-degenerate graph G = (V,E) with n vertices and m edges

1 V ← {v1, . . . , vn}
2 E ← ∅
3 di ← 0 for all 1 ≤ i ≤ n
4 C ← {vi ∈ V | min{n− i, k} − 1 ≥ 0}
5 for i = 1 to m do
6 vi ← Uniform(C)
7 di ← di + 1
8 if di = min{n− i, k} then
9 C ← C \ {vi}

10 for i = n− 1 to 1 do

11 X ← Uniform
((
{vi+1, . . . , vn}

di

))
12 E ← E ∪ {(vi, x) | x ∈ X}
13 return G := (V,E)

in Lemma 3.1. For each i we sample the degrees di from a different distribution. Each of
these distributions is defined over most k different values. Hence, by Lemma 3.1 we can
sample the values in time O(log k) if we allow for a total pre-computation of O(nk) time
and space, respectively. Since the returned graph has m edges the resulting running time
is O(n log k +m+ nk).

Note that, since m ∈ O(nk), the algorithm is rather efficient for large values of m, whereas
the overhead of the precomputation dominates for small values of m.
Next, we propose an efficient complete non-uniform generator for well-ordered k-degene-

rate graphs with n vertices and m edges. The algorithm first chooses a successor-degree
sequence d1, . . . , dn and then chooses di vertices uniformly at random for each vertex. In
order to choose the successor-degree sequence d1, . . . , dn we maintain a set C containing the
vertices whose tentative degree is at most min{n− i, k} − 1. Then we iteratively choose a
random vertex from C and augment its degree. If the degree of a vertex reaches min{n− i, k}
it is removed from C. In order to create the edges according to the chosen degree sequence,
the algorithm then iterates over the vertices starting at the vertex with index n − 1 and
chooses di target vertices with higher index where di denotes the successor-degree of vertex vi.
The pseudo-code can be found in Algorithm 3.6.

Theorem 3.7. Algorithm 3.6 can be implemented to run in time O(n + m) in the RAM
machine model and generates each G ∈ D(n,m, k) with positive probability.

Proof. Let G be a well-ordered k-degenerate and let v1, . . . , vn whose out-degree sequence

47

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

is d1, . . . , dn. Then Algorithm 3.6 generates G with probability at least

m!
(n− 1)m ·

n−1∏
i=1

(
n− i
di

)−1

.

To see this, consider a single pass of the first for-loop of the algorithm. Since C contains at
most n − 1 vertices, a fixed vertex vi ∈ C is chosen with probability at least 1/(n − 1) in
the current pass. Then the probability of choosing the vertices with correct multiplicities
is at least m!/(n− 1)m. In the second phase of the algorithm, the probability of choosing
the correct set of neighbors for each vertex vi is at least

(n−i
di

)−1. Hence, G is generated with
positive probability and the algorithm is therefore complete.

Clearly, the loop in Line 5 can be implemented to run in time O(m) using an array for C and
swapping deleted vertices to the back of the array. The loop in Line 10 can be implemented
to run in time O(n + m) as follows: We maintain an array A of the indices 1, . . . , n such
that the array A[i, . . . , n] contains the number i, . . . , n in arbitrary order when dealing with
vertex i. When choosing the j-th neighbor of vi we pick a random number r from i+ j, . . . , n
and create an edge from vi to vA[r]. Then we swap A[r] and A[i+ j]. Clearly, the operations
can be performed in constant time for each vertex and no duplicate edges are created. Hence,
the algorithm can be implemented to run O(n+m) time.

Note that the algorithm does not generate well-ordered k-degenerate graphs according to
a uniform distribution: In order to see this, we consider the sequence of successor-degrees
induced by the well-ordering of the vertices of a k-degenerate graph. Any 2-degenerate
graph with successor-degree sequence 1, 1, 0 is generated with probability 3/8 and the only 2-
degenerate graph with successor-degree sequence 2, 0, 0 is generated with probability 1/4.

3.6 Generating Well-Ordered Strongly Degenerate Graphs
In this section we consider the problem of generating well-ordered strongly k-degenerate
graphs. A graph is well-ordered strongly k-degenerate if it is well-ordered k-degenerate and if
its minimum degree is k. Strongly k-degenerate graphs, that is, k-degenerate graphs with
minimum degree k, are a natural generalization of k-regular graphs. As mentioned in the
introduction, strongly k-degenerate graphs are also interesting regarding to their relation
to the core hierarchy of a graph. We denote the class of well-ordered strongly k-degenerate
graphs with n vertices by S(n, k) and the class of well-ordered strongly k-degenerate graphs
with n vertices and m edges by S(n,m, k), respectively. The generators presented in the
previous sections are based on the fact that, for any well-ordered k-degenerate graph G, the
subgraphs Gi := G[vi, . . . , vn] are well-ordered k-degenerate. Although it remains true that
the subgraphs Gi are well-ordered k-degenerate for any well-ordered strongly k-degenerate
graph G, these subgraphs are not well-ordered strongly k-degenerate. In order to apply the
decomposition used in the previous section, we would have to make sure that, whenever we
create a vertex whose out-degree is d < k, we will be able to reserve k − d edges for this
vertex in future steps. Let the deficiency of a vertex v be defined as max{k − d(v), 0} and
let the deficiency of a well-ordered k-degenerate graph G be defined as

∆(G) :=
∑
v∈V

max{k − d(v), 0} .

48

3.6 Generating Well-Ordered Strongly Degenerate Graphs

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

G1 G2

Figure 3.4: Two well-ordered 2-degenerate graphs G1 and G2 with deficiency 4 and vertex
sets v2, . . . , v5. The graph G1 can be augmented to a well-ordered 2-degenerate
graph with deficiency 2 by a new vertex v1 and 6 possible sets of edges incident
to v1, whereas, for G2, there are only 3 possible sets of edges.

That is, the deficiency of a well-ordered k-degenerate graph is a measure for how close this
graph is to being well-ordered strongly k-degenerate. Clearly, a well-ordered k-degenerate
graph G is a well-ordered strongly k-degenerate graph if and only if ∆(G) = 0. By applying
the decomposition used in the previous section, we essentially decompose a well-ordered k-
degenerate graph with deficiency δ into a vertex v with degree dv and a well-ordered k-
degenerate graph with deficiency δ′. In order to apply the same approach for well-ordered
strongly k-degenerate graphs, we would have to compute, for a given values n, m, k and δ, a
well-ordered k-degenerate graph with n vertices, m edges and deficiency δ.

Let D(n,m, k, δ) denote the class of k-degenerate graphs with n vertices, m edges and
deficiency δ and let D(n,m, k, δ) denote its cardinality. Let 0 ≤ d ≤ k and let G′ ∈
D(n − 1,m − d, k, δ′) for some deficiency δ′. By A(G′, n,m, k, δ) we denote the number of
possibilities to augment G′ with d edges incident to a newly added vertex such that the
resulting graph has n vertices, m edges and deficiency δ. Since the deficiency is bounded
by nk we have

D(n,m, k, δ) =
k∑
d=0

 nk∑
δ′=0

 ∑
G′∈D(n−1,m−d,δ′)

A(G′, n,m, k, δ)

 .

Unfortunately, A(G′, n,m, δ) depends not only on d and δ′, but also on the structure of the
graph G′. More precisely, it depends on the deficiency sequence of the vertices of G′. Without
knowing this sequence, we cannot tell whether adding a specific edge will reduce the number
of vertices with positive deficiency. As an example consider the two 2-degenerate graphs on
vertex set v2, . . . , v5 and deficiency four illustrated in Figure 3.4 that are to be augmented
with a new vertex v1 and two additional edges such that the resulting graph has deficiency
two. For the leftmost graph, G1, there are

(4
2
)

= 6 possible augmentations, whereas for the
rightmost graph, G2, there are only

(3
2
)

= 3 possible augmentations. This is due to the fact
that the edge (v1, v2) can be used to decrease the deficiency of G1, but not that of G2, since
in G2, the degree of v2 already equals two. Hence, it does not seem to be possible to simplify
the above formula largely, which renders the approach used to generate k-degenerate graphs
in the previous section useless for strongly k-degenerate graphs.
In order to overcome these difficulties we propose the following alternative approach for

generating well-ordered strongly k-degenerate graphs: First we generate a random well-
ordered k-degenerate graph with n vertices (and m edges). Then we transform this graph
into a well-ordered strongly k-degenerate graph. We have seen how ordinary well-ordered k-
degenerate graphs with n vertices (and m edges) can be generated in the previous sections.
Next, we describe how an ordinary well-ordered k-degenerate graph can be transformed into
a well-ordered strongly k-degenerate graph in O(kn2) time.

49

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

u

v

x

(a)

u

v

x
(b)

u

v

x

(c)

u

v

x
(d)

u

v

x

(e)

u

v

x

(f)

Figure 3.5: The possible orderings of u, v, x in Lemma 3.8: dashed edges are replaced by solid
edges.

Lemma 3.8. Let G = (V,E) be a well-ordered k-degenerate graph with n vertices, m ≥ nk
2

edges and deficiency ∆(G) > 0. Then there is an edge {v, x} ∈ E and a vertex u such
that G′ := (G− {v, x}) + {u, x} is well-ordered k-degenerate and ∆(G′) < ∆(G).

Proof. Since ∆(G) > 0 there must be at least one vertex u such that d(u) < k. On the other
hand, there must be a vertex v such that d(v) > k. Otherwise

m = 1
2
∑
v∈V

d(v) = 1
2

 ∑
v∈V \{u}

d(v) + d(u)

 <
(n− 1)k + k

2 = nk

2

in contradiction to the assumption that m ≥ nk
2 .

Let u be an arbitrary vertex such that d(u) < k and let v be the largest vertex such
that d(v) > k. Since d(v) > k and d(u) < k there is a vertex x ∈ N(v) \N(u). Hence G′ :=
(G− {v, x}) + {u, x} is simple and

∆(G′) =
∑

v∈V ′\{u,v}
max{k − dG(v), 0}+ max{k − (dG(u) + 1), 0} = ∆(G)− 1 .

It remains to show that G′ is k-degenerate. Recall that a well-ordered graph is k-degenerate
if and only if all vertices v satisfy d+(v) ≤ k. Note that this property can only be violated
by edge-insertions (but not by edge-deletions), that is, if the successor-degree sequence is
increased for some vertex. Further d(u) < k implies d+(u) < k. There are six possible
orderings of the vertices u, v, x. We will consider three cases:

Case (i): x < u, v. The successor-degree sequence is not changed by the operation as illus-
trated in Figures 3.5b and 3.5d.

Case (ii): u < x. The successor-degree is increased only for u. Since d+
G(u) < k we ob-

tain d+
G′(u) ≤ k as illustrated in Figures 3.5a, 3.5c, and 3.5e.

Case (iii): v < x < u. If d+
G(x) < k then d+

G′(x) ≤ k as illustrated in Figure 3.5f. Other-
wise d+(x) = k. Since we have assumed that v is the largest vertex with degree greater
than k we have d(x) ≤ k, that is, d(x) = k. However, this implies d−(x) = 0 in
contradiction to the assumption that v is a neighbor of x and v < x.

This concludes the proof.

50

3.6 Generating Well-Ordered Strongly Degenerate Graphs

In order to obtain a canonical transformation we may assume, without loss of generality,
that x and u are the smallest (respectively largest) vertices with the desired properties. Using
this Lemma, we obtain efficient and complete generators for well-ordered strongly k-degenerate
graphs in S(n, k) and S(n,m, k), respectively. The pseudo-code is listed in Algorithm 3.7.
The Algorithm generates a random well-ordered k-degenerate graph and repeatedly applies
Lemma 3.8 in order to transform the well-ordered k-degenerate graph into a well-ordered
strongly k-degenerate graph.

Theorem 3.8. Algorithm 3.7 generates each well-ordered strongly k-degenerate graph with n
vertices (and m ≥ dnk2 e edges) with positive probability in time O(n2k+n logn) and O(nmk+
n log k), respectively.

Proof. Since S(n, k) ⊂ D(n, k) and S(n,m, k) ⊂ D(n,m, k), respectively, Algorithm 3.7
generates each well-ordered strongly k-degenerate graph with n vertices (and m edges) with
positive probability.
The first step of the algorithm can be performed in time O(n log k +m) for graphs with

given number of vertices and in time O(n log k + m + nk) for graphs with given number
of vertices and edges. The algorithm then terminates after exactly ∆(G) applications of
Lemma 3.8, where G denotes the graph generated in Line 1. For a well-ordered k-degenerate
graph G with n vertices ∆(G) ≤ nk. An application of Lemma 3.8 can be implemented to
run in O(n) time. Therefore, the algorithm can be implemented to run in O(n2k + n log k)
and O(nmk + n log k) time, respectively.

Note that the transformation of k-degenerate graphs using Lemma 3.8 is a surjective
function (projection)

π : D(n,m, k)→ S(n,m, k)

of the k-degenerate graphs onto the strongly k-degenerate graphs. If the uniform generator
for ordinary k-degenerate graphs is used in the first step of the algorithm then the probability
of obtaining a fixed strongly k-degenerate graph G is given by

P(G) = |π−1(G)|
D(n,m, k) .

Algorithm 3.7: Strongly-Degenerate(n[,m])
Input: n ∈ N, 0 ≤ k ≤ n[, nk2 ≤ m ≤M(n, k)]
Output: well-ordered strongly k-degenerate graph with n vertices [and m edges]

1 G← Generate-Degenerate(n[,m], k)
2 while ∆(G) > 0 do
3 u← smallest vertex with d(u) < k
4 v ← largest vertex with d(v) > k
5 x← smallest vertex in N(v) \N(u)
6 G← (G− {v, x}) + {u, x}
7 return G

51

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Clearly, π−1(G) tends to be smaller if the deficiency of G is small. That is, by rejecting
graphs with high deficiency we obtain a generator whose distribution is closer to the uniform
distribution. At the cost of running time we can get arbitrary close to the uniform distribution.
Although Algorithm 3.7 can be used to generate strongly k-degenerate graphs with n

vertices, its running time is rather slow. Next, we therefore describe a faster complete
non-uniform algorithm for generating strongly k-degenerate graphs with n vertices at random
improving on the previous algorithm. Unfortunately, however, this algorithm cannot be
used to generate strongly k-degenerate graphs with given number of vertices and edges,
respectively. For these graphs it is not clear how to improve on Algorithm 3.7.

The algorithm we propose for generating strongly k-degenerate graphs with given number is
summarized in Algorithm 3.8 and proceeds as follows. We start with an empty graph adding
vertices one at a time. In the i-th step we insert vertex vn−i+1 and a set of edges incident
to vn−i+1 such that the resulting graph can be augmented to a strongly k-degenerate graph
with n vertices by inserting i− 1 additional vertices with degree at most k. We call a well-
ordered k-degenerate graph with vertices vi+1, . . . , vn i-conditioned, if it can be augmented to
a well-ordered strongly k-degenerate graph with n vertices by adding i vertices v1, . . . , vi and,
for each vertex vs with 1 ≤ s ≤ i, a set of at most k edges (vs, vt) with t > s. The following
lemma characterizes i-conditioned graphs based on the vertex degrees and the deficiency of
the graph.

Lemma 3.9. Let n ∈ N and let k ∈ N such that n ≥ k + 1. A well-ordered k-degenerate
graph Gi+1 with vertices vi+1, . . . , vn is i-conditioned if and only if

(i) d(vj) ≥ k − i for all i+ 1 ≤ j ≤ n and

(ii) ∆(Gi+1) ≤ ik.

Proof. First, suppose that Gi+1 is i-conditioned, that is, it can be augmented to a well-ordered
strongly k-degenerate graph G by adding a set Ei of edges incident to a set of newly added
vertices v1, . . . , vi such that the out-degree of each newly added vertex is at most k. Since
each newly added vertex vs with 1 ≤ s ≤ i has at most one edge to each vertex vt with
i+ 1 ≤ t ≤ n and since, after the augmentation, the degree of each vertex is at least k, we
have (i) d(vt) ≥ k − i for all i+ 1 ≤ t ≤ n. Further, since ∆(G) = 0 and since each vertex vs
with 1 ≤ s ≤ i introduces at most k new edges, each of which can reduce the deficiency by at
most one unit, we have (ii) ∆(Gi+1) ≤ ik.
Second, suppose that (i) and (ii) hold. We show that Gi+1 can be augmented to a well-

ordered strongly k-degenerate graph with n vertices by adding a set of vertices v1, . . . , vi
and a set of edges Ei incident to these vertices. We prove this by induction on i. For i = 0,
the graph G1 has deficiency 0 by (ii), which implies that G1 is strongly k-degenerate with n
vertices. Thus, we are done if we can iteratively augment the graphs satisfying (i) and (ii).
First we show that, for i = n, the graph Gn satisfies (i) and (ii). The graph Gn consists of
a single vertex whose degree is zero. Clearly, the degree of vn is at least k − n which is at
least k − k = 0, that is, Gn satisfies (i) and the deficiency of Gn is clearly equal to k, which
is less than k2 for all values of k, that is Gn also satisfies (ii). Thus, the induction hypothesis
holds for the base case.

Suppose we are given a graph Gi+1 satisfying (i) and (ii). We show how to augment Gi+1
by a single vertex and some edge incident to this vertex such that the resulting graph Gi also

52

3.6 Generating Well-Ordered Strongly Degenerate Graphs

satisfies (i) and (ii). Let U1 ⊆ Vi+1 denote the set of vertices with degree exactly k − i, that
is,

U1 := {v ∈ Vi+1 | d(v) = k − i}

and let U2 ⊆ Vi+1 denote the set of vertices with degree greater than k − i, but less than k
that is,

U2 := {v ∈ Vi+1 | k − i < d(v) < k} .

Then the set U := U1] U2 contains exactly the vertices in Vi+1 with positive deficiency
that must be augmented by additional edges. All other vertices need not be augmented
by further edges. Due to the induction hypothesis and due to (i) we have d(v) ≥ k − i for
all v ∈ Vi+1 := {vi+1, . . . , vn}. Together with (ii) this implies that there are at most k vertices
in U1, since |U1| > k would imply ∆(Gi+1) > ik, a contradiction to (ii). We distinguish two
cases.

First, suppose that 1 ≤ i ≤ k. We show that we can always choose a set of vertices W such
that the graph resulting from introducing a new vertex vi and connecting vi to all vertices
in W will meet the conditions (i) and (ii). Let W ⊆ Vi+1 be such that the following holds

(a) The set W contains enough vertices from U to decrease the deficiency such that (ii) will
be met, that is |U ∩W | ≥ ∆(Gi+1)− (i− 1)k.

(b) The set W contains all vertices in U1 that must necessarily be augmented such that (i)
will be met, that is, U1 ⊆W .

(c) The set W contains enough vertices to raise the degree of vi to k − i+ 1 such that (i) is
met for vi, that is, |W | ≥ k − i+ 1, but not more than min{n− i, k} since the resulting
graph must be well-ordered k-degenerate, that is |W | ≤ min{n− i, k}.

We show that a set W with the desired properties always exists. Note that

∆(Gi+1) ≤ |U1|i+ |U2|(i− 1) < |U |i (3.15)

by the definition of the deficiency and the definition of U1 and U2, respectively. Suppose for
contradiction that |U | < ∆(Gi+1)− (i− 1)k. Then, by Equation (3.15) we have

∆(Gi+1) < |U |i
< (∆(Gi+1)− (i− 1)k)i .

For i > 1, this is equivalent to

(i− 1)∆(Gi+1) > i(i− 1)k,

that is, ∆(Gi+1) > ik in contradiction to the assumption that (ii) holds. Hence, for i > 1, we
have U ≥ ∆(Gi+1) − (i − 1)k, which implies that we can always satisfy (a). For i = 1 we
have d(vj) ≥ k − 1 for all 2 ≤ j ≤ n by (i), that is, U2 = ∅ and, thus, U = U1. Further, (ii)
implies |U | = |U1| = ∆(Gi+1). Hence, in this case, we can also satisfy (a) since we argued

53

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

that U1 ≤ k. Clearly, |U1| ≤ n− i since U1 ⊆ Vi+1 that is, including U1 in W does not violate
the upper bound on |W | required by (c).

Additionally, since U1 ≤ min{n− i, k} we can also satisfy (b) without violating the upper
bound on |W | required by (c). Finally, if i ≤ k, then |Vi+1| ≥ k − i+ 1. Otherwise we would
have n < i + k − i + 1 = k + 1, a contradiction to the assumption that n ≥ k + 1. That
is, we can also satisfy the lower bound required by (c) and we can therefore always find a
set W with the properties stated above. In the following, let W be any set with the desired
properties.
Let Gi be the graph resulting from adding the vertex vi and the edges

Ei := {(vi, w) | w ∈W}

toGi+1. We claim that (i’) d(v) ≥ k−i+1 for all v ∈ Vi := Vi+1∪{vi} and (ii’) ∆(Gi) ≤ (i−1)k.
To see (i’), note that d(vi) = |W | ≥ k−i+1 by (c) and that U1 ⊆W , that is we augmented the
degree of all vertices with minimum degree k−i inGi+1 such that the minimum degree is k−i+1
in Gi due to (b). Finally, (ii’) follows from the fact (a) that |U ∩W | ≥ ∆(Gi+1)− (i− 1)k.
For each vertex in |U ∩W | the deficiency is decreased such that the resulting deficiency of Gi
is at most (i− 1)k. Further, since |W | ≤ min{n− i, k} the resulting graph is well-ordered k-
degenerate.
Second, suppose that i > k. Let W ⊆ Vi+1 such that |U ∩W | ≥ ∆(Gi+1)− (i− 1)k, that

is, W satisfies (a). Note that U1 = ∅ for i > k since this implies k − i < 0, hence, W trivially
satisfies (b). Similarly, k − i+ 1 ≤ 0, that is, W also trivially satisfies (c). We have proven
the existence of such a set W satisfying (a) in the previous case, without using i ≤ k, which
we used only for (b) and (c). Again, let Gi be the graph resulting from adding the vertex vi
and the edges

Ei := {(vi, w) | w ∈W}

to Gi+1 and let (i’) and (ii’) be as in the previous case. Since k − i+ 1 ≥ 0 for i > k, (i’) is
trivially true for Gi and (ii’) follows analogous to the previous case.

The previous lemma is constructive in that it provides a characterization of the sets of
edges that can be used to augment an i-conditioned graph to an (i− 1)-conditioned graph
using a single new vertex and some edges incident to this vertex. We use this idea to generate
strongly k-degenerate graphs with n ≥ k + 1 vertices as follows.
We start with a graph Gn consisting of a single vertex vn, which is clearly (n − 1)-

conditioned, since d(vn) = 0 ≥ k − n − 1 due to n ≥ k + 1 and since ∆(Gn) = k. Then
we iteratively add a single vertex and a set of edges W with the properties used in the
proof of Lemma 3.9. Suppose that we are given an (i+ 1)-conditioned graph as in the proof
of the lemma and we wish to construct and i-conditioned graph Gi. We choose a set of
vertices W as follows. First, we select all vertices U1 with degree k − i in Gi+1. Then we
randomly choose a set Z of ∆(Gi+1) − (i − 1)k − |U1| vertices from the set U2 of vertices
with positive deficiency that are not contained in U1. Finally, we choose a random number r
between max{0, k− i+ 1} and min{n− i, k− (|U1|+ |Z|)} and randomly choose a set X of r
additional vertices from Vi+1 \W . Then we add the vertex vi and the edges

Ei := {(vi, w) | w ∈ U1 ∪ Z ∪X}

54

3.6 Generating Well-Ordered Strongly Degenerate Graphs

Algorithm 3.8: Degenerate(n, k)
Input: k ∈ N, n ∈ N such that n ≥ k + 1
Output: random strongly k-degenerate graph with n vertices

1 V ← {vn}
2 E ← ∅
3 U2 ← ∅
4 if k > 0 ∧ n > k + 1 then
5 U2 ← U2 ∪ {vn}
6 for i = n− 1 to 1 do
7 V ← V ∪ {vi}
8 U1 ← {w ∈ V | d(w) = k − i}
9 E ← E ∪ {(vi, w) | w ∈ U1}

10 Z ← randomly choose ∆(Gi+1)− (i− 1)k − |U1| edges from U2
11 r ← random integer between max{0, k − i+ 1} and min{n− i, k − (|U1|+ |Z|)}
12 X ← randomly choose r edges from V \ (U1 ∪ Z)
13 for w ∈ Z ∪X do
14 E ← E ∪ {(vi, w)}
15 if d(w) = k then
16 remove w from U2

17 if d(vi) < k ∧ d(vi) > k − i+ 1 then
18 U2 ← U2 ∪ {vn}

19 return G = (V,E)

to Gi+1 to obtain Gi. Since W := U1]Z]X satisfies the conditions (a)–(c) required from W
in the proof of Lemma 3.9, Gi is i-conditioned as desired. The algorithm summarized in
Algorithm 3.8.

Theorem 3.9. Algorithm 3.8 generates each well-ordered strongly k-degenerate graph with n
vertices with positive probability in time O(n+m) in the RAM machine model.

Proof. Note that the sets used in the algorithm are defined analogous to the sets used in the
proof of Lemma 3.9 with W := U1] Z]X.

First, we show that the algorithm only computes well-ordered strongly k-degenerate graphs.
To see why the generated graph is well-ordered k-degenerate it suffices to note that each vertex
has out-degree at most k. The out-degree of vi is exactly the size of U1]Z]X = W . Observe
that, due to Line 11, we have |X| ≤ k− |U1]Z|. Hence, it suffices to show that |U1]Z| ≤ k.
We already mentioned that U1 ≤ k. Further ∆i+1 − (i − 1)k ≤ k. Hence U1] Z indeed
contains at most k elements and, therefore, the degree of vi is at most k. Since the selected
set of vertices is contained in Vi+1 it is trivially bounded by n− i.
In order to show that the graph returned by the algorithm is strongly k-degenerate it

suffices to show that the graph G = (V,E) maintained by the algorithm is (i− 1)-conditioned
after the j-th iteration where i = (n− j). However, this follows analogous to the proof of
Lemma 3.9 by induction over i. As argued before, Gn is (n− 1)-conditioned and since we

55

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

v3 v2 v1 vn v5

B1 B2 B3 BkB0

A

b0 bk
b1

v4

umin umax amin amax

Figure 3.6: Data structure used for the implementation of Algorithm 3.8. The array I is
omitted for reasons of clarity.

inserted a set of edges satisfying conditions (a)–(c) of the proof of Lemma 3.9, the graph
constructed in iteration i is (i− 1)-conditioned.
Second, we show that each well-ordered strongly k-degenerate graph is generated with

positive probability. Let G be a well-ordered strongly k-degenerate graph with n vertices.
Then for each i the graph Gi := G[vi, . . . , vn] is (i − 1)-conditioned. Removing the edges
incident to v1, . . . vi−1 results a total deficiency of Gi of at most (i−1)k. Further, the deficiency
of each vertex is at most i− 1, hence, its degree is at least k − i+ 1. By induction we show
that Gi corresponds to a graph that is generated with positive probability in the (n− i+1)-th
iteration. Clearly, in the first iteration we have i = n and Gn corresponds to the graph
that is deterministically constructed in the first step of the algorithm. In the induction step,
suppose that Gi+1 corresponds to some graph that is generated in the (n− i)-th iteration
of the algorithm with positive probability and consider Gi. Let Ei := E(Gi) \E(Gi+1). By
Lemma 3.9, Ei must contain all edges in U1 as well as at least ∆(Gi+1) − (i − 1)k − |U1|
edges from U2. Otherwise, either the total deficiency of Gi would be larger than ik or there
would be a vertex with degree less than k− i in Gi. The remaining edges are arbitrary. Thus,
the set of edges Ei is chosen with positive probability in iteration i, which proves the claim.
The algorithm can be implemented to run in O(n + m) time as follows. We store the

vertices in an array A with random access in order to be able to sample vertices by picking
a random integer. Instead of adding the vertices one at a time, we pre-fill the array with
the vertices v1, . . . , vn. The set U2 used in the algorithm is maintained as a sub-array of A
consisting of a prefix of A. Let umin and umax denote the minimum and maximum index of
an element of U2 in A and let amin and amax denote the minimum and maximum index of
an element of V \ U2, respectively. Since the elements in A will not be maintained in their
correct order throughout the algorithm, we additionally maintain an array I such that the
i-th element of I contains the index of vi in A. For each degree i we further maintain an
array Bi of pointers to the positions of vertices with degree i in A as well as an index bi
pointing to the last valid element in Bi. An element in Bi is called valid if we can insert an
edge from vi to the corresponding vertex in the current iteration without creating multiple
edges between these two vertices. For each vertex v in A we also store a pointer to its position
in the array Bd(v). The data structure, excluding I, is illustrated in Figure 3.6.

When adding a vertex vi in Line 7, we locate the index j of vi in A by inspecting the i-th
entry of I, then we decrease amin by one unit and swap the elements amin and j in A, updating
the pointers in I and the corresponding B-arrays.

56

3.7 Enumerating Well-Ordered Degenerate Graphs

Note that we need not maintain U1 explicitly, since U1 is empty for all iterations with i ≥ k
and since it corresponds exactly to the vertices in Bk−i in iteration i < k. When creating
the edges according to Line 9 we therefore iterate over the elements in Bk−i starting with
the last element. In each step, we remove the last element from Bk−i and add it to the end
of Bk−i+1 without increasing bk−i+1, since we have already created an edge, such that the
newly added vertices are not valid in the current iteration anymore. Before proceeding to
the next iteration of Algorithm 3.8 we set bk−i+1 to the size of Bk−i+1. Additionally, we
maintain the pointers in A accordingly, that is, whenever an element is moved, its pointer is
updated in A.
Whenever a vertex vi is added to U2, we proceed analogous to adding a new vertex to V .

However, instead of decreasing umin we increase umax and swap the elements umax and j,
where j is the index of vi in A. If vi was located between amin and amax, we additionally
swap the elements amin and j and increase amin. Hence, V is represented by the vertices
in A between the indices umin and umax and amin and amax of A, respectively. During the
swapping the pointers to the elements in A are maintained accordingly.
When picking an element w according to Line 10 of the algorithm, we pick a random

index j between umin and umax. Then we swap the elements j and umin and increase umin.
At the end of the iteration, we re-set umin = 1. Elements at the beginning of A belong to
U2 and have already been chosen as the endpoint of and edge and will not be chosen again.
We proceed similarly, when choosing a vertex w according to Line 12. However, in this case
we pick a random index j between umin and umax or between amin and amax, respectively.
If j is between amin and amax, we swap the j-th element with amax and decrease amax such
that no element is chosen more than once. At the end of the iteration, we re-set amax = n.
Clearly, all these operations are supported in O(1) time by the proposed data structure. The
deficiency is updated on the fly after each operation. Hence, each step of the algorithm can
be performed in constant time, which yields a total complexity of O(n+m).

3.7 Enumerating Well-Ordered Degenerate Graphs
In this section we show how to enumerate well-ordered strongly k-degenerate graphs with n
vertices and with n vertices and m edges, respectively. The presented algorithms can be
modified in a straight-forward way in order to enumerate ordinary well-ordered k-degenerate
graphs. Throughout this section, we assume the RAM machine model. When designing an
enumeration algorithm for a class of graphs, it is clearly desirable that all of the graphs is
enumerated exactly once. That is, we need to show that the algorithm is complete and no
graph is enumerated more than once. In order to facilitate this, it is common to represent
the graphs in a canonical way. For well-ordered k-degenerate graphs, we can do this by
representing a graph G = (V,E) with V = {v1, . . . , vn} as follows. For each vertex vi we
let N+(vi) denote the ordered set of successors in the set {vi+1, . . . , vn}. We assume that
the vertices in N+(vi) are ordered according to the ordering induced by v1, . . . , vn. Then we
obtain a canonical representation by encoding G as the vector

γ(G) :=
(
N+(v1), . . . , N+(vn)

)
.

Clearly, two well-ordered k-degenerate graphs G and G′ are equal if and only if γ(G) = γ(G′).
Further, note that this representation induces a canonical ordering on the graphs by considering

57

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

the lexicographical ordering on the vectors defined by γ. We say that G is lexicographically
smaller (respectively, larger) than G′ if γ(G) is lexicographically smaller (larger) than γ(G′).
Let G be a well-ordered strongly k-degenerate graph. Then G has at least n ≥ k + 1

vertices. Otherwise the maximum degree of a vertex is bounded by k− 1. Further, since each
vertex has degree at least k, it has at least

m = 1
2

n∑
i=1

d(vi) ≥
nk

2

edges. A strongly k-degenerate graph with n vertices and m(n, k) :=
⌈
nk
2

⌉
edges is called

minimal. If n or k is even, these graphs are exactly the k-regular graphs with n vertices.
If both n and k are odd each minimal strongly k-degenerate graph with n vertices has
exactly one vertex with degree k + 1. To see that minimal well-ordered k-degenerate graphs
exist, we can apply Lemma 3.8 to any well-ordered k-degenerate graph with dnk2 e edges.
Since the lemma states that we can reduce the deficiency as long as it is positive, this
implies that we can transform any well-ordered k-degenerate graph with dnk2 e edges and
positive deficiency into a graph with the same number of edges and deficiency 0, that is,
into a strongly k-degenerate graph. Thus, it suffices to show that we can always construct
a well-ordered k-degenerate graph with n vertices and nk

2 edges. In order to construct a
well-ordered k-degenerate graph with dnk2 e edges we proceed as follows. We start with an
empty graph consisting of vertices v1, . . . , vn and consider the vertices v1, . . . , vn in this
order. Then we iteratively add single edges as long as the graph has less than dnk2 e edges.
When considering vertex vi we either add another edge incident to vi if the degree of vi
is at most min{n − i, k} or we proceed to the next vertex. Since each vertex vi has at
least min{n − i, k} possible neighbors and since the degree of each vertex vi is bounded
by min{n− i, k} we thus construct a well-ordered k-degenerate graph without multiple edges
between the vertices. Further, since n ≥ k + 1 we have

n∑
i=1

min{n− i, k} = M(n, k) = nk − k(k + 1)
2 ≥ nk − nk

2 = nk

2

according to Equation 3.14. That is, the algorithm produces a well-ordered k-degenerate
graph with at least nk

2 edges.

3.7.1 Enumerating Well-Ordered Degenerate Graphs with n Vertices
At first, we consider the problem of enumerating k-degenerate and strongly k-degenerate
graphs with given number of vertices and arbitrary number of edges. The enumeration
algorithm outlines as follows: At first we generate all maximal well-ordered k-degenerate
graphs with n vertices, that is, all k-degenerate graphs with n vertices andM(n, k) edges. For
each maximal well-ordered k-degenerate graph G we identify and enumerate those well-ordered
strongly k-degenerate subgraphs whose lexicographically smallest well-ordered k-degenerate
supergraph is exactly G. Thus, we generate each graph exactly once.

At first we describe how to generate all maximal well-ordered k-degenerate graphs. We use
the following observation.

58

3.7 Enumerating Well-Ordered Degenerate Graphs

Lemma 3.10. Let G be a maximal well-ordered k-degenerate graph with n ≥ k + 1 vertices
and let G′ := G[vn−k, . . . , vn]. Then G′ is a clique on k + 1 vertices. Thus, any maximal
well-ordered k-degenerate graph is strongly k-degenerate.

Proof. If G is a maximal well-ordered k-degenerate graph, then d+(vi) = min{n− i, k} for
all 1 ≤ i ≤ n. Suppose for contradiction that the d+(vj) < min{n− j, k} for some 1 ≤ j ≤ n.
Then the number of edges of G is

m =
n∑
i=1

d+(vi) <
n∑
i=1

min{n− i, k} = M(n, k)

by Equation (3.14). Hence, G is not maximal in contradiction to the assumption, which
implies d+(vi) = min{n− i, k} for all 1 ≤ i ≤ k. That is, d(vi) ≥ d+(vi) = k for all 1 ≤ i ≤
n− k − 1. Further, consider a fixed vertex vi such that n− k ≤ i ≤ n. Then d+(vi) = n− i
and vi has an incoming edge from each vertex vj such that n− k ≤ j ≤ i− 1. To see this,
note that each vertex vj with n − k ≤ j ≤ i − 1 has out-degree n − j and exactly n − j
vertices vj+1, . . . , vn as potential neighbors. Therefore, vj must have an edge to each of the
vertices vj+1, . . . , vn, including vi. Hence, the in-degree of vi is at least i− (n− k). It follows
that

d(vi) = d+(vi) + d−(vi) = (n− i) + (i− (n− k)) = k .

Thus, the degree of all vertices is at least k, which proves that G is well-ordered strongly k-
degenerate. Further, since G′ is a simple directed graph such that d(vi) = k and d+(vi) = n−i
for all n− k ≤ i ≤ n, G′ is a directed clique with k + 1 vertices.

For an integer i, let Ci denote the set {vi+1, . . . , vn}. Using the previous lemma we obtain
the following characterization of the maximal well-ordered (strongly) k-degenerate graphs.

Lemma 3.11. LetM(n) be the set of all well-ordered maximal k-degenerate graphs with n
vertices. Then there is a bijection

Ψn,k :M(n)→
n−k−1�
i=1

(
Ci
k

)
. (3.16)

That is, there is a total of

n−k−1∏
i=1

(
n− i
k

)
(3.17)

maximal (strongly) k-degenerate graphs.

Proof. Let G be a well-ordered k-degenerate graph and let N+(vi) be defined as the set of
neighbors of vi with index greater than i. We define

Ψn,k(G) := (N+(vi))n−k−1
i=1 .

59

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Clearly, Ψn,k is injective since the last k + 1 vertices of a maximal well-ordered k-degenerate
graphs form a clique and need not be explicitly encoded by Lemma 3.10. To show that Ψn,k

is surjective let

(Xi)n−k−1
i=1 ∈

n−k−1�
i=1

(
Ci
k

)
.

Then Ψ−1
n,k(x) corresponds to a graph G = (V,E) such that V = {v1, . . . , vn} and

E = {{vi, x} | 1 ≤ i ≤ n− k − 1, x ∈ Xi} ∪ {{vi, vj} | n− k ≤ i < j ≤ n} .

Since every vertex vi satisfies d+(vi) = d+
max(vi) := min{n− i, k} the graph G is a maximal

well-ordered k-degenerate graph. Equation (3.17) follows directly from Equation (3.16).

This characterization can be used to efficiently enumerate all maximal well-ordered k-
degenerate graphs with n vertices.

Theorem 3.10. There is an algorithm that enumerates all maximal well-ordered k-degenerate
graphs with n vertices in amortized time O(n+m) per enumerated graph.

Proof. If n = k + 1, we construct a directed clique with k + 1 vertices and we are done. For
the remainder of the proof we therefore assume that n > k + 1. The representation given in
Equation (3.16) can also be encoded by a sequence of strings as follows. Each set A ∈

(Ci
k

)
can be represented by a string s(A) consisting of |Ci| − k zeros and k ones such that the j-th
character in s(A) is equal to one if and only if vi+j ∈ A. Then each graph can be represented
by the concatenation of these strings. Ruskey and Williams [RW09] show how to enumerate
all possible binary strings consisting of |Ci| − k zeros and k ones in constant amortized time.
We can use this algorithm as a sub-routine in an algorithm similar to a counter with n− k− 1
digits such that the i-th digit assumes the possible strings s(A) for A ∈ Ci. An augmentation
corresponds to computing the next string according to the algorithm of Ruskey and Williams
for some digit and possibly re-setting some of the digits to the string that forms the basis of
the algorithm by Ruskey and Williams, just like for an ordinary counter. Note that every
re-set of a digit is preceded by an augmentation of the digit and that every augmentation
corresponds to a newly enumerated maximal well-ordered k-degenerate graph. Hence the
re-set operations can be amortized over the enumerated graphs. Thus, we can enumerate
and print every maximal well-ordered k-degenerate graph in O(n+m) amortized time per
printed graph.

For a well-ordered k-degenerate graph G we denote the lexicographically smallest maximal
well-ordered k-degenerate supergraph by S(G). A well-ordered k-degenerate graph G with n
vertices is called a proper subgraph of a maximal well-ordered k-degenerate graph S with n
vertices if and only if S = S(G), that is, if S is the lexicographically smallest maximal k-
degenerate supergraph of G. We observe that the lexicographically smallest maximal well-
ordered k-degenerate supergraph of G can be obtained by including the d+

max(vi)− d+(vi)
lexicographically smallest edges for every vertex vi that are not yet incident to vi. Let X(G)
denote this set of edges. Given a graph G, the foundation F (vi) of a vertex vi is the largest
set of edges {vi, vi+1}, . . . , {vi, vi+`} such that F (vi) ∈ E. That is, if v does not contain e1
then F (v) = ∅. The foundation of a graph G is defined as F (G) =

⋃
v∈V F (v). We state the

following:

60

3.7 Enumerating Well-Ordered Degenerate Graphs

Algorithm 3.9: Enumerate-For-Graph(G,X, S)
Input: well-ordered (strongly) k-degenerate graph G, forced edges X, supergraph S
Output: all well-ordered (strongly) k-degenerate proper subgraphs of S containing no

edges in X
1 if (F (S) ∩ E(G)) \X 6= ∅ then
2 e← choose an edge in (F (S) ∩ E(G)) \X
3 if G− e is well-ordered (strongly) k-degenerate then
4 print G− e
5 Enumerate-For-Graph(G− e,X, S)
6 Enumerate-For-Graph(G,X ∪ {e}, S)

Lemma 3.12. Let S be a maximal well-ordered k-degenerate graph with n vertices and let
G 6= S be a subgraph of S with n vertices. Then G is a proper subgraph of S if and only
if E(S) \ E(G) ⊆ F (S). That is, the proper subgraphs of S are exactly the graphs

P (S) = {S − E′ | E′ ⊆ F (S), S − E′ is well-ordered (strongly) k-degenerate} . (3.18)

Proof. Let G be a k-degenerate graph. First, assume E(S) \E(G) ⊆ F (S). Then the edges
which must be added to G in order to obtain S are exactly the lexicographically smallest
missing edges, which are exactly the edges in X(G).
Second, assume that G is a proper subgraph of S, that is, by adding the edges in X(G)

we obtain S. By definition X(G) contains, for each vertex vi of G, d+
max(vi) − d+(vi) the

lexicographically smallest edges not in E(G). Therefore X(G) ⊆ F (S).
To see why Equation (3.18) holds, consider a set E′ ⊆ F (S) and let G := S − E′. Then

E(S) \ E(G) = E(S) \ (E(S) \ E′) = E′ ⊆ F (S) ,

that is, G is a proper subgraph of S. On the other hand, if G is a proper subgraph of S,
then E′ := E(S) \ E(G) ⊆ F (S) and G = S − E′.

The characterization of the proper subgraphs according to Equation (3.18) can be used to
design an efficient enumeration algorithm for well-ordered (strongly) k-degenerate graphs.
The following Algorithm 3.9 enumerates all well-ordered k-degenerate graphs using this
characterization by branching on the subsets of the foundation. The input of the algorithm
consists of a graph G, a set of edges X ⊆ E(G) that may not be removed from G and a
maximal well-ordered k-degenerate graph S. At each step the algorithm branches on some
edge e ∈ (F (S) ∩ E(G)) \X. We call the set of edges X forced since they are not used for
the branching. Initially, none of the edges is forced. For each edge e ∈ (F (S) ∩ E(G)) \X
the algorithm checks if G − e is well-ordered (strongly) k-degenerate. If this is the case,
the algorithm outputs G− e and recursively calls itself on the smaller graph. If the graph
is not well-ordered (strongly) k-degenerate, then no subgraph of G with n vertices can be
well-ordered (strongly) k-degenerate. In this case we need not branch further.

Lemma 3.13. Let S be a maximal well-ordered k-degenerate supergraph of G. Then Algo-
rithm 3.9 enumerates and prints all proper well-ordered (strongly) k-degenerate subgraphs
of S in amortized time O(nm+m2) per printed graph on input (S, ∅, S).

61

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Algorithm 3.10: Enumerate-Degenerate(n[,m])
Input: number of vertices n
Output: all well-ordered (strongly) k-degenerate graphs

1 for all maximal well-ordered k-degenerate graphs S do
2 print S
3 Enumerate-For-Graph(S, ∅, S[,m])

Proof. The algorithm recursively branches on the edges of F (S) enumerating the subsets
of F (S) with decreasing size. Clearly, the algorithm only prints proper subgraphs of S by
Equation (3.18).

On the other hand, let G be a proper well-ordered strongly k-degenerate subgraph of S, that
is, E(S)\E(G) ⊆ F (S). Then we need to show that G is enumerated by the algorithm. To see
this, consider a arbitrary set of edges Y ⊆ E(S) \E(G). Since both G and S are well-ordered
strongly k-degenerate, so is G+ Y . Hence, for any removal order of the edges e1, . . . , e` such
that {e1, . . . , e`} = E(S)\E(G) the graph Gi := G+{e1, . . . , ei} is well-ordered k-degenerate
for each 1 ≤ i ≤ `. Therefore the algorithm reaches and prints G when branching on the
edges in F (S).

Further, each well-ordered (strongly) k-degenerate graph is printed only once. To see this,
note that the printing of G− e can be associated with the removal of the edge e. However,
any edge is either in the set X of forced edges and is not removed any more, or it is removed
at most once without re-insertion, since the algorithm recurses on G− e.
Next, we show that the amortized time per generated graph is bounded by O(nm+m2).

First note, that each single call of the algorithm (without recursion) can be performed
in O(n+m) time. Consider the recursion tree T , in which each node corresponds to a call of
the algorithm. Each node in T that corresponds to a printed graph G is called a print-node.
Let G be a graph printed by the algorithm and let T(G,X,S) denote the subtree rooted in
the print-node vG corresponding to a call of the algorithm with arguments G,X and S. We
charge vG with all nodes in T(G,X,S) that can be reached from vG in T without crossing any
other print-node. Each call to the recursion in Line 5 is only performed if G−e is well-ordered
(strongly) k-degenerate. Hence, G− e will be charged for this call. Therefore, G will only
be charged for calls in Line 6. The same holds for any call involving G and a set X ′ ⊃ X.
Hence, G is charged for at most m calls of the algorithm, which yields an amortized running
time bounded by O(nm+m2) per graph.

Finally, Algorithm 3.10 contains the pseudo-code for the topmost level. Note that the
algorithm can be used to enumerate both regular and well-ordered strongly k-degenerate
graphs with n vertices.

Theorem 3.11. Algorithm 3.10 enumerates all well-ordered (strongly) k-degenerate graphs
in amortized O(nm+m2) time per graph.

Proof. Since the algorithm enumerates the proper subgraphs of all maximal well-ordered k-
degenerate graphs it enumerates every graph exactly once. By Equation (3.18) and correctness
of Algorithm 3.9 (Lemma 3.13) the algorithm enumerates all proper subgraphs for a given
maximal well-ordered k-degenerate graph. Since we can generate and print the maximal

62

3.7 Enumerating Well-Ordered Degenerate Graphs

well-ordered k-degenerate graphs in amortized linear time according to Theorem 3.10, the
overall running time of the algorithm is O(nm+m2) per enumerated and printed graph.

3.7.2 Enumerating Well-Ordered Degenerate Graphs with n Vertices and m
Edges

Next, we describe how to enumerate well-ordered (strongly) k-degenerate graphs with n
vertices and m edges. In order to obtain an efficient algorithm we first establish a simple
criterion to decide if a given graph G contains a subgraph H such that G−E(H) is strongly k-
degenerate. Let G be a given well-ordered strongly k-degenerate graph with m edges and
let X ⊆ E(G) be a set of edges. As in the previous section, we would like to branch, for given
graph G and a set X of forced edges, on the set of edges in (E(G) \X) ∩ F (S(G)). That
is, for a given graph G and a set X ⊆ E(G), we would like to decide, whether G contains a
proper well-ordered (strongly) k-degenerate subgraph G′ of S(G) such that G′ contains all
edges in X. We show that this problem is equivalent to computing a generalized matching in
a properly defined graph.

Let GFX be the graph induced by the edges in (E(G) \X)∩F (S(G)). That is, GFX contains
all edges that may be removed from G in order to obtain G′ with the desired properties.
Further, we define ui = dG(vi)−k for i = 1, . . . , n. Hence, ui is the maximum number of edges
incident to vi that we may remove from G such that the resulting degree of vi is at least k.
Let H be a subgraph of GFX with the maximum number of edges such that dH(vi) ≤ ui for
all i. We call the maximum number of possible edges of H the excess of G with respect to X,
denoted by xs(G,X). The excess can be computed in time O(

∑n
i=1
√
ui ·m) ⊆ O(n3/2m)

by computing a generalized matching using an algorithm by Gabow [Gab83]. The following
lemma shows that G contains a subgraph G′ with m′ edges and the desired properties if and
only the excess of G with respect to X is at least m−m′, that is, if we are allowed to remove
a sufficiently large number of edges without violating the lower bound for the degrees.
Lemma 3.14. Let G = (V,E(G)) be a well-ordered strongly k-degenerate graph with n
vertices and m > m′ edges and let X ⊆ E(G) be a set of edges. Then G contains a well-
ordered strongly k-degenerate subgraph G′ with n vertices and m′ edges that is a proper
subgraph of S(G) and that contains all edges in X if and only if xs(G,X) ≥ m−m′.
Proof. “if”: Assume that xs(G,X) ≥ m −m′. Then G contains a subgraph H with edge-
set E(H) such that |E(H)| ≥ m−m′ and E(H) ⊆ (E(G) \X) ∩ F (S(G)). Let E′ ⊆ E(H)
with |E′| = m−m′. Then G− E′ is a well-ordered strongly k-degenerate proper subgraph
of S(G). Clearly, G − E′ is strongly k-degenerate since all vertices have degree ≥ k by
definition of ui. Additionally, G− E′ is a proper subgraph of S(G) since E′ ⊆ F (S(G)) by
Lemma 3.12.
“only if”: Assume that G contains a well-ordered strongly k-degenerate subgraph G′

with m′ edges which is a proper subgraph of S(G) and which contains all edges in X.
Let E′ := E(G) \ E(G′). Then clearly, E′ ⊆ E(G) \X and E′ ⊆ F (S(G)) by Lemma 3.12,
that is, E′ ⊆ (E(G) \X) ∩ F (S(G)). Hence, E′ is a subset of E(GFX). Let H := G(V,E′),
then H is a subgraph of GFX and for all vertices vi we have dH(vi) ≤ ui = dG(vi)− k and,
therefore, xs(G,X) ≥ |E′| = m−m′.

Using Lemma 3.14 in combination with Algorithms 3.10 and 3.9 we can enumerate all
well-ordered strongly k-degenerate graphs with n vertices and m edges by slightly modifying

63

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

Algorithm 3.11: Enumerate-For-Graph(G,X, S,m)
Input: (well-ordered strongly) k-degenerate graph G, forced edges X, super-graph S
Output: all well-ordered (strongly) k-degenerate proper subgraphs of S containing no

edges in X
1 if (F (S) ∩ E(G)) \X 6= ∅ then
2 e← choose an edge in (F (S) ∩ E(G)) \X
3 if G− e is (strongly) k-degenerate and xs(G− e,X) ≥ |E(G− e)| −m then
4 if |E(G)| = m then
5 print G− e
6 Enumerate-For-Graph(G− e,X, S)
7 if xs(G,X ∪ {e}) ≥ |E(G)| −m then
8 Enumerate-For-Graph(G,X ∪ {e}, S)

Algorithm 3.9: We extend the check in Line 3 by testing if xs(G− e,X) ≥ |E(G)| −m. We
further add a similar check in Line 6. The pseudo-code is listed in Algorithm 3.11.

Theorem 3.12. Algorithm 3.11 enumerates and prints all well-ordered (strongly) k-degene-
rate graphs with n vertices and m edges in amortized O(n3/2m2) time per printed graph.

Proof. The proof is similar to the proof of Theorem 3.11. The running time results from the
fact that we can check xs(G,X) ≥ i in time O(n3/2m). Note, that the algorithm recurses
only if the subtree rooted in the current node of the recursion tree contains at least one more
print-node. Let G be a well-ordered (strongly) k-degenerate graph that is printed by the
algorithm. In the search tree we then charge the node vG associated with G with all nodes
on the path from the source of the recursion tree to vG. Since the algorithm branches only if
the corresponding subtree of the recursion tree contains a node that can be associated with a
printed graph, all nodes in the recursion tree are charged to a printed graph. However, since
the height of the recursion tree is bounded by m, each printed graph is charged at most m
nodes of the recursion tree. Thus, the running time is bounded by O(n3/2m2) per printed
graph.

In order to enumerate ordinary well-ordered k-degenerate graphs with n vertices and m
edges we need only check if |E(G− e) ∩ F (S(G))| ≥ |E(G− e)| −m. This can be done in
constant time if we allow to have a marker for edges in the foundation of S(G). Testing
whether the graph is well-ordered k-degenerate and printing the graph can be done in
time O(n + m). Therefore, we can enumerate ordinary well-ordered k-degenerate graphs
with n vertices and m edges in time O(nm+m2) per enumerated graph.

3.8 Concluding Remarks
In this chapter we studied the problem of enumerating and generating well-ordered k-
degenerate graphs. On the one hand, we presented efficient algorithms for generating
well-ordered k-degenerate graphs uniformly at random whose running times are almost
optimal in the real-RAM machine model, given that we are allowed a polynomial amount

64

3.8 Concluding Remarks

of time and space for a precomputation. The precomputation is completely amortized if a
linear number of graphs must be generated for the same set of parameters.
However, since the numerical computations involved in these algorithms are rather costly

and the numbers that are involved become huge even for small-sized graphs, we additionally
presented fast and easy-to-implement algorithms whose running time is linear in the size of
the generated graphs in the classical RAM machine model. For well-ordered k-degenerate
graphs with given number of vertices we presented a fast algorithm based on an approximation
of the uniform distribution. Further, we studied strongly k-degenerate graphs, a natural
generalization of k-regular graphs and we presented fast and efficient algorithms for generating
graphs from this class. The presented algorithms can be used to generate k-regular graphs
without modification and thus yield an interesting new approach to generating regular graphs.

While the class of well-ordered k-degenerate graphs is only a subset of the labeled k-
degenerate graphs, our approach is preferable to the classical approach of generating labeled
graphs as we elaborated at the beginning of this chapter, since it allows to filter out some
isomorphies resulting in generators whose distribution is closer to the ideal uniform distribution
on the unlabeled k-degenerate graphs. To the best of our knowledge, this is the first application
of a non-standard labeling scheme.
On the other hand, we studied the problem of enumerating well-ordered k-degenerate

graphs and we presented algorithms for enumerating k-degenerate and well-ordered k-degene-
rate graphs, respectively. Again, these algorithms can equally be used to enumerate regular
graphs.

Open problems One of the major open problem in this chapter concerns the problem
of generating strongly k-degenerate graphs uniformly at random. While we presented an
algorithm for generating these graphs uniformly at random based on rejection, the efficiency
of this approach is far from being satisfactory. Thus, the problem of generating strongly
well-ordered k-degenerate graphs remains widely open.

Although we presented fast uniform as well as fast and easy-to-implement complete
generators for well-ordered strongly k-degenerate graphs, it is not clear what the distribution
of the presented non-uniform generators is. Thus, it is an open problem to study this
distribution or to provide different fast and easy-to-implement algorithms for generating
these classes of graphs while providing approximation guarantees on the distribution of these
generators, thus closing the gap between theory and practice a little further. As a preliminary
step it may also be interesting to consider 2-degenerate or 3-degenerate graphs.
Finally, it seems to be worthwhile to study new labeling schemes for various classes of

graphs in order to design new generators for labeled graphs whose distribution is closer to
the uniform distribution than the distribution of generators relying on the classical labeling
scheme.

65

Chapter 3 Enumerating and Generating Well-Ordered Degenerate Graphs

66

Chapter 4

Optimal Routing Cost Tree Augmentation

The performance or efficiency of communication and transportation networks is frequently
assessed in terms of its routing cost. This quantity is defined as the (weighted) sum of the
lengths of the shortest paths between all pairs of nodes of the network. On the other hand,
the cost of constructing or maintaining the network is often considered to be proportional
to the number of links in the network. Therefore, tree networks have received considerable
attention in network construction.
We study two augmentation problems on trees whose goal is to minimize the resulting

routing cost. First, we study the problem of finding the optimal connection between two
disconnected vertex-weighted trees. We are given a distance function on the vertices and seek
to minimize the routing cost of the tree resulting from adding one single edge between the two
trees. The problem arises, for instance, when augmenting and/or repairing communication
networks or infrastructure networks. We present an asymptotically optimal quadratic-time
algorithm for the general case and show that the problem can be solved more efficiently
for the Euclidean metric, when vertices are mapped to points in the plane, as well as for
compactly representable graph metrics.
Second, we study the problem of inserting an additional shortcut into a vertex-weighted

directed tree network such the weighted routing cost of the resulting network is minimized.
While this problem can be solved in quadratic time by exhaustive search, we show that it be
solved in linear time in a directed path and a star-shaped network and that it can be solved
in O(n logn) time in an arbitrary directed tree network with n nodes. This chapter is based
on joint work with Mong-Jen Kao, Bastian Katz, Rolf Klein, Elmar Langetepe, Der-Tsai Lee,
Martin Nöllenburg, Ignaz Rutter and Dorothea Wagner [KKK+11a, KKL+11].

4.1 Introduction
In the construction of communication and infrastructure networks we often have to find a
reasonable balance between the cost for establishing the links between the vertices in the
network and the performance of the network in terms of various quality measures, such as
routing cost, connectivity and diameter. While the cost should be minimized and increases
with each established link, the performance of the network should be maximized and typically
improves when more links are added. This tradeoff can be formalized in different ways, for
instance, by modeling the network construction problem as a multi-objective optimization
problem. However, motivated by practical applications of this problem it is quite common to
assume that we are given a limited budget for the construction cost and wish to optimize the
performance of the network subject to this constraint.

67

Chapter 4 Optimal Routing Cost Tree Augmentation

The Optimal Network Problem, which has been introduced by Scott [Sco69], addresses
the problem of optimizing the routing cost of a network, defined by the sum of the shortest
paths between all pairs of vertices in the graph. Due to its importance for communication
networks, this problem has received considerable attention, among others by Dionne and
Florian [DF79] and Wong [Won80] and, more recently, by Fischetti et al. [FLS02].

If the budget for establishing the links in a network is rather tight, a tree is often the only
affordable infrastructure and the construction of tree networks therefore gained considerable
attention. However, Johnson et al. [JLK78] prove that the optimal network problem is NP-
complete, even if all edges have the same length and the network must be a tree. This problem
is also called the Minimum Routing Cost Spanning Tree Problem (MRCST). More recently,
Wu et al. presented an FPTAS for this problem [WLB+99] and Fischetti et al. [FLS02]
studied exact algorithms for computing the minimum routing cost spanning tree.
In this chapter we consider two problems related to the augmentation of tree networks.

The first problem we consider is the problem of connecting a disconnected tree network
consisting of two vertex-weighted trees by inserting an additional edge such the weighted
routing cost of the resulting tree is minimized. The second problem is to augment a given
vertex-weighted tree network by inserting an additional edge, called a shortcut, such that
the weighted routing cost of the resulting graph is minimized. While both problems can be
solved by exhaustive enumeration of the possible edges in quadratic time with respect to the
number of vertices in the trees, we present optimal or almost optimal algorithms.

Related problems In almost all areas related to network construction, special attention has
been paid to trees. A comprehensive overview of network construction problems involving
trees can be found in the textbook by Wu and Chao [WC04]. Graph augmentation problems
have been widely studied in computer science. Typical problems involve augmenting the
connectivity of networks in order make them more robust against failure of links. Graph
augmentation problems in network design are surveyed by Frank [Fra94] and more recently
by Nagamochi [Nag00]. In addition to the classical graph augmentation problem, several
variants of the problem have been studied. For instance, Nutov [Nut09] presents approximation
algorithms for the problem of augmenting graphs with the minimum number of edges such
that, for each pair of vertices u and v in the resulting network, there is at least a given
number of edge-disjoint paths, that additionally do not share any vertex from a given set of
vertices S. Further, Ishii et al. [IAN10] consider the problem of augmenting a given graph
with respect to its edge-connectivity between single vertices and given sets of vertices in the
graph, called areas, and show that the problem is polynomial-time solvable if the network is
required to be at least k-connected with k ≥ 3.

Contribution In Section 4.2 we consider the problem of augmenting two disconnected
trees with n1 and n2 vertices, respectively. First, we consider general distance functions in
Section 4.2.1. We show that both the optimal routing cost augmentation problem and the
optimal routing cost replacement problem can be solved in Θ(n1 · n2) time, which is optimal.
Second, we assume that vertices are points in the plane and that the distance between points
is equal to the Euclidean distance in Section 4.2.2. We show that both the augmentation
problem and the replacement problem can be solved more efficiently in O(n log min{n1, n2})
time by querying an additively weighted Voronoi diagram of a suitably chosen set of points.

68

4.2 Connecting Two Trees

Finally, we adapt this idea to general graph metrics by computing an additively weighted
Voronoi diagram on graphs in Section 4.2.3. This yields an O(n logn)-time algorithm for
compactly representable metrics, that is, metrics that are representable as sparse graphs.
In Section 4.3, we consider the problem of augmenting a connected tree-network by an

additional edge reducing the routing cost. Subsequently, we show how this problem can be
reduced to computing the upper envelope of an arrangement of piecewise linear functions
in Section 4.3.1 and prove that this problem can be solved in linear time in Section 4.3.2.
Finally, we show how general trees can be reduced to the special case of paths in Section 4.3.3.

4.2 Connecting Two Trees
In this section, we consider the problem of augmenting two disconnected, vertex-weighted
tree networks by a single edge such that the resulting network connected and the weighted
routing cost is minimized.
More formally, we consider the following problem. We are given a set of vertices V as

well as some distance function d on V such that d(v, v) = 0 and d(u, v) = d(v, u) ≥ 0 for all
vertices u, v ∈ V . Further, we are given a partition of V = V1 ∪ V2 and two disjoint trees
T1 = (V1, E1) and T2 = (V2, E2) on V1 and V2, respectively. We write n = |V |, m = |E|,
ni = |Vi| and mi = |Ei| for i ∈ {1, 2}. For each tree T on a subset V ′ ⊆ V , we consider the
tree metric dT , which is defined on V ′ such that the distance between u, v ∈ V ′ is equal to the
sum of the distances on the uniquely defined path between u and v. Further, we assume each
vertex v ∈ V has some non-negative demand c(v). For V ′ ⊆ V we write c(V ′) :=

∑
v∈V ′ c(v)

as a shorthand. We define the weighted routing cost of T as

rc(T) =
∑

(u,v)∈V×V
c(u) · c(v) · dT (u, v) .

The demands can be considered to be an indicator for the importance of the vertices in the
network. The amount of traffic between two vertices in the network is scaled by the product
of the demands modeling the fact that important vertices are usually involved in more traffic
than less important vertices and that the traffic between two important vertices is usually
larger than that between an important and a less important vertex.
The Optimal Routing Cost Augmentation Problem is to find vertices u ∈ V1 and

v ∈ V2 such that the routing cost of the tree Tuv = (V,E1 ∪ E2 ∪ {uv}) is minimized as
illustrated in Figure 4.1, for instance.
For the Optimal Routing Cost Replacement Problem we are additionally given

a pair of vertices u ∈ V1 and v ∈ V2 that should be excluded from the solution (since
the corresponding edge must be replaced). We can solve this problem by simultaneously
computing the best and second-best solution. If the best solution coincides with uv, then we
return the second-best solution.

4.2.1 An Optimal Algorithm for the General Case
In this section, we consider general distance functions on the vertex set. We show that the
problem can be solved in Θ(n1 · n2) time, which is optimal. For ease of notation we write
C1 = c(V1) and C2 = c(V2) for the total demand in T1 and T2, respectively. Given two

69

Chapter 4 Optimal Routing Cost Tree Augmentation

Figure 4.1: Two vertex-weighted trees and the best connection with respect to routing
cost (dashed).

vertices u ∈ V1 and v ∈ V2, the routing cost of the tree Tuv resulting from joining T1 and T2
by the edge uv is given by

rc(Tuv) = rc(T1) + rc(T2)
+ C2 ·

∑
u′∈V1

c(u′) · dT1(u′, u)

+ C1 ·
∑
v′∈V2

c(v′) · dT2(v, v′)

+ C1 · C2 · d(u, v) .

(4.1)

It is composed of the routing cost inside the subtrees T1 and T2 of Tuv, respectively, and the
routing cost effected by the shortest paths using the edge uv between the two trees. Since the
total sum of demands for these paths equals C1 · C2, the edge uv contributes a total amount
of C1 · C2 · d(u, v) to the routing cost. Furthermore, each shortest path starting at u′ in T1
and ending at u can be extended to a shortest path ending at some vertex v′ in T2. Hence,
each shortest path of this kind contributes its length, weighted by its demand c(u′) and the
total sum of the demands C2 in T2, to the routing cost. The situation is symmetrical for the
paths starting in T2 and ending at v.
Since the routing costs of T1 and T2 do not depend on the choice of the link between the

two trees, our problem is equivalent to minimizing the remaining summands in equation (4.1).
We define the weight of a vertex u ∈ V1, denoted by w(u), as the sum of lengths of all

shortest paths starting at u′ ∈ V1 and ending at u, weighted by the demand of u′, that is,

w(u) =
∑
u′∈V1

c(u′) · dT1(u′, u) .

We define the weight of a vertex v ∈ V2, denoted by w(v), analogously. Hence, we seek to
minimize the term

rc′(Tuv) = C2w(u) + C1w(v) + C1 · C2 · d(u, v) (4.2)

over all possible combinations of u ∈ V1 and v ∈ V2.
The weights of the trees can be computed in linear time as follows. First we compute the

total demands in T1 and T2, respectively. We compute the weights in T1 by rooting the tree
in some vertex r and performing one bottom-up pass over the tree, followed by a top-down
pass. For a vertex u in T1 we denote the subtree rooted in u by Tu.

70

4.2 Connecting Two Trees

In the bottom-up pass, we compute two values for each vertex u ∈ V1: the total demand
γ(u) of the vertices in Tu, and the sum λ(u) of the shortest paths starting at some vertex u′
in Tu and ending at u, weighted by the demand of u′, that is,

γ(u) =
∑

u′∈V (Tu)
c(u′)

and

λ(u) =
∑

u′∈V (Tu)
c(u′)d(u′, u) .

For a vertex u with children u1, . . . , uk these values can be computed in linear time as

γ(u) = c(u) +
k∑
i=1

γ(ui)

and

λ(u) =
k∑
i=1

(
λ(ui) + γ(ui) · d(ui, u)

)
,

respectively. In the top-down pass, we compute the weight for each vertex v ∈ V1. For the
root r this weight is equal to λ(r). For a vertex v with father u ∈ V1 the weight can be
computed by

w(v) = w(u) + (C1 − 2γ(v))d(u, v) .

This equation is due to the fact that the weight of v is obtained from the weight of u by
removing the demand γ(v) in the subtree of v from the edge uv and adding the remaining
demand C1 − γ(v) to the edge uv. For T2 we proceed analogously.

Having this, we can compute the best and second-best connection between the two trees by
enumerating all possible pairs uv such that u ∈ V1 and v ∈ V2, which yields a total running
time of O(n1 · n2). Note, that the described algorithm only finds the best or second-best
solution, but does not compute the routing cost of this solution. If we have no restriction on
the distance between the vertices, however, the algorithm is optimal.

Theorem 4.1. The optimal routing cost augmentation problem and the optimal routing cost
replacement problem can be solved in O(n1 · n2) time for general distance function. This is
optimal in the algebraic decision tree model.

Proof. We have already outlined the algorithm and argued why it runs within the stated time
complexity. It remains to show the lower bound on the running time. For this, we assume
that we are given a set of integers a1, . . . , aN . We construct an instance of the optimal routing
cost augmentation problem such that finding the minimum routing cost connection between
the two trees is equivalent to the minimum of the numbers a1, . . . , aN . For this problem, we
need at least N − 1 comparisons in the algebraic decision tree model of computation.

Let N = n1n2 be any factorization of N and let V be a set of n1 + n2 vertices. Further, let
V1, V2 ⊆ V be a partition of V such that |V1| = n1 and |V2| = n2 and let T1 and T2 be two

71

Chapter 4 Optimal Routing Cost Tree Augmentation

arbitrary trees on V1 and V2, respectively. We set the distance between two vertices in the
same tree equal to one. Let x : V1 × V2 → {a1, . . . , aN} be a bijective mapping between the
pairs of vertices in V1 and V2 and the numbers ai. Then we choose the remaining distances as
follows. Let W1 and W2 be the maximum weights of the vertices in T1 and T2, respectively.
For u ∈ V1 and v ∈ V2 we define

d0(u, v) = C2W1 + C1W2 − C2w(u)− C1w(v) .

Further, we set

d(u, v) = d0(u, v) + x(u, v)
C1C2

.

Then rc′(Tuv) = C2W1 + C1W2 + x(u, v). For both the augmentation and the replacement
problem we need to compute the minimum routing cost solution. However, minimizing the
routing cost for the given instance is equivalent to computing the minimum over the values
x(u, v) for u ∈ V1 and v ∈ V2. Hence, in the algebraic decision tree model of computation,
we need at least n1 · n2 − 1 comparisons, which completes the proof.

4.2.2 An Efficient Algorithm for the Euclidean Metric
The proof for the lower bound in the previous section crucially exploits the fact that we can
choose distances between the vertices in an arbitrary fashion. If this is not the case, we can
come up with more efficient algorithms.
In this section we consider the case that vertices are points in the plane and that the

considered metric d is the Euclidean metric. In this case, we can compute the best connection
between two trees in O((n1 + n2) log min{n1, n2}) time. Throughout the section, we do not
distinguish between vertices and points.

Theorem 4.2. The optimal augmentation problem for the Euclidean metric can be solved in
O((n1 + n2) log min{n1, n2}) time.

Proof. Without loss of generality we may assume that n2 ≤ n1. Let σ : R2 → R2 be an
isotropic scaling with scale factor s = C1 ·C2, that is, σ scales distances by a factor s and we
thus have

d(σu, σv) = C1 · C2 · d(u, v) .

Let σV1 and σV2 denote the scaled sets of points.
For x ∈ R2 and ṽ ∈ σV2 we define a new distance function, defined by d+(x, ṽ) :=

d(x, ṽ) + C1 · w(v), where w is defined as in the previous section. The additively weighted
Voronoi cell of ṽ is the locus of points

{x ∈ R2 | ∀ũ ∈ σV2 \ {ṽ} : d+(x, ṽ) < d+(x, ũ)}

The additively weighted Voronoi diagram V defined by d+ consists of the additively weighted
Voronoi cells of the points in σV2 and can be computed in O(n2 logn2) time [For87].

For each point u ∈ V1, we locate the nearest neighbor σv of σu in V using an algorithm
with O(logn2) query time described by Kirkpatrick [Kir83]. Then σv satisfies

d+(σu, σv) = min
v′∈V2

d+(σu, σv′)

72

4.2 Connecting Two Trees

and we have

d+(σu, σv) = d(σu, σv) + C1 · w(v)
= C1 · C2 · d(u, v) + C1 · w(v) .

Hence, v ∈ V2 is the best endpoint of an edge starting at u ∈ V1 with respect to routing
cost. Minimizing C2 ·w(u) + d+(σu, σv) over all vertices σu ∈ V1 and their respective nearest
neighbor σv ∈ V2 will thus minimize the overall routing cost. The resulting overall running
time is O(n1 logn2 + n2 logn2).

In order to solve the replacement problem, we also need to compute the second-best solution.
We can do this as follows. Let u∗ ∈ V1 and v∗ ∈ V2 be the best solution computed by the
algorithm above. This algorithm can trivially be modified to simultaneously compute

min
u∈V1\{u∗},v∈V2

rc′(Tuv)

in the same time complexity. By additionally computing the Voronoi diagram only for the
points in V2 \ {v∗} and repeating the algorithm on this instance, we can also compute

min
u∈V1,v∈V2\{v∗}

rc′(Tuv) .

Clearly, the second-best solution is either of the two. Hence, we have the following corollary.

Corollary 4.1. The optimal routing cost replacement problem for the Euclidean metric can
be solved in time O((n1 + n2) logn2).

Note that the same approach can also be used in a planar setting, that is, when the newly
introduced edge connecting the two trees may not intersect any other edge of the two trees.
In this case we compute an additively weighted constrained Voronoi diagram, which can be
done by adapting Fortune’s sweepline algorithm [For87] with O(n logn) running time. In a
constrained Voronoi diagram, we are given an additional set of line segments representing
obstacles. Whenever the straight line connecting two points intersects one of the obstacles,
the distance between the two points is assumed to be infinity, otherwise, it is equal to the
(weighted) Euclidean distance between the points. In our application each edge defined by
one of the trees is one such obstacle. Seidel shows how to adapt Fortune’s algorithm to
compute the constrained Voronoi diagram [Sei88]. The adaption to additively weighted sites
has been sketched in Fortune’s original paper [For87].

Corollary 4.2. The planar augmentation problem for the Euclidean metric can be solved in
O((n1 + n2) logn2) time.

4.2.3 General Metrics
Every finite metric d can be encoded by a finite graph M = (V,D) where each edge e ∈ D
has some length `(e) and the distance d between two vertices in V is equal to the sum of the
lengths of the shortest path between the vertices in the graph in terms of the edge lengths.
We can directly translate our idea from the previous section to this setting by computing the
additively weighted Voronoi diagram in M instead. Although the computation of various

73

Chapter 4 Optimal Routing Cost Tree Augmentation

Voronoi diagrams on graphs has been considered by Hurtado et al. [HKLS04], among them
a multiplicatively weighted Voronoi diagram, we are not aware of any investigation of the
additively weighted Voronoi diagram on graphs. The following theorem is similar to the
results by Hurtado et al. [HKLS04]. We assume that the additively weighted Voronoi diagram
of a set of sites S ⊆ V on a metric graph G = (V,E) is completely known if every vertex
v ∈ V \ S knows its nearest neighbor in S and we know the bisector point for each edge, if it
exists.

Theorem 4.3. The additively weighted Voronoi diagram of a set of sites S ⊆ V on a graph
G = (V,E) has complexity Θ(m) and can be computed in time O(m+ n logn).

Proof. Each edge of the graph contains at most one bisector point, since moving along the
edge will alter the additively weighted distances by the same amount—either increasing or
decreasing—for all distances. Hence we have at most m bisector points. On the other hand,
we can have exactly m bisectors by setting V ′ = V . Hence, the complexity of the additively
weighted Voronoi diagram is Θ(m).

To compute the additively weighted Voronoi diagram in G we use the parallel Dijkstra
algorithm proposed by Erwig [Erw00] with running time O(m + n logn). To compute
the diagram, we run Dijkstra’s algorithm in parallel using the vertices in S as starting
points. For a vertex v ∈ V \ S and some vertex s ∈ S the distance between v and s is
ds(v, s) = dG(v, s) + w(s). Whenever a vertex v ∈ V \ S is settled, we update its closest
neighbor in S and we annotate v with the distance to its closest neighbor. The bisector
points can be computed in O(m) time from this information as follows. For each edge uv we
obtain the closest sites su and sv in S that have been stored at the vertices. If su 6= sv, then
the edge uv contains a bisector point. This point is located halfway between su and sv on uv
and can be computed in a straightforward way from the distances du and dv from u and v to
su and sv, respectively.

Using this result, we can almost directly translate the technique for the Euclidean case to
the general metric case studied in this section.

Theorem 4.4. The optimal routing cost augmentation problem for general metrics can be
solved in time O(m+ n logn) if the metric is given by a graph M = (V,D) with edge length
function `.

Proof. Instead of scaling the point set as in the Euclidean case, we scale the lengths of the
edges in G by a factor C1C2, that is, instead of using ` to assess the distance between two
vertices in M , we use C1C2`. The rest of the proof is completely analogous. We compute the
additively weighted Voronoi diagram onM for the set of sites V2 in O(m+n logn) as described
in Theorem 4.3. Then we locate the vertex u ∈ V1 that minimizes C2 ·w(u) + d+(u, v) where
d+(u, v) is the scaled and additively weighted distance between u and its closest neighbor v.
The resulting time complexity is O(m+ n logn) according to Theorem 4.3.

Again we can proceed as in the Euclidean case in order to compute the second-best
connection between the two trees.

Corollary 4.3. The optimal routing cost replacement problem for general metrics can be
solved in time O(m+ n logn) if the metric is given by a graph M = (V,D) with edge length
function `.

74

4.3 Optimal Shortcuts in Trees

Although this result does not provide an asymptotic improvement in the worst-case, it does
show that we can efficiently solve the augmentation problem for compactly representable
metrics. If the graph representing the metric is sparse, then the above theorem states that
we can solve the augmentation problem in O(n logn) as in the Euclidean case.

4.3 Optimal Shortcuts in Trees
In this section, we are interested in augmenting a given network by adding an extra edge
to it in such a way that its routing cost is reduced as much as possible. In contrast to the
previous section, we assume that each edge is of unit length, reflecting a situation where
long distance traffic in transportation networks is fast, while changing between highways or
railways requires time consuming inner-city travel and waiting, respectively. Similarly, this
model reflects a situation encountered in communication networks, where passing a message
along a link is cheap, while the processing and distribution of messages at the nodes of the
network requires expensive computational work. Further, we consider the special case in
which the network is a tree.

A similar augmenting problem for general graphs has been studied by Farshi et al. [FGG08]
with respect to the dilation (or: stretch factor, spanning ratio) of a network. Given a set of
vertices V in the Euclidean plane and a network G = (V,E) interconnecting these vertices,
the dilation of the network is defined as the maximum of the quotient d(u, v)/dG(u, v) over
all pairs of vertices u, v ∈ V , where d(u, v) denotes the Euclidean distance between u and v
dG(u, v) denotes the distance between u and v in G. That is, the dilation reflects how well
the graph preserves the Euclidean distance between vertices and it therefore is a measure for
the maximum detour when traveling between u and v in G.

The problem studied by Farshi et al. [FGG08] differs considerably from ours. Consider, for
instance, the geometric path P over n vertices shown in Figure 4.3 consisting of n consecutive
vertices v1, . . . , vn such that the vertices, except v2 are placed on a horizontal line. The
distances between consecutive vertices on P is 1 and the distance between v1 and v3 is ε.
Hence, P has dilation 2/ε, attained by vertices v1 and v3, while its routing cost

2
∑

1≤i<j≤n
(j − i) = (n− 1)n(n+ 1)

6

does not depend on the geometric embedding of P . With one extra edge available, we would
minimize the dilation of P by inserting it between v1 and v3, whereas the routing cost of P
is minimized by adding an edge connecting v := vn/5 to v′ := v4n/5. The proof of optimality
requires lengthy calculations. We note however, that the routing cost that can be saved
by a shortcut connecting v1 and v3 is only n− 2 while the routing cost that can be saved
by connecting v and v′ is at least 4n3/125, which results from the fact that there are n/5
vertices at both ends of the shortcut and each path from the first n/5 vertices to one of the
last n/5 vertices saves roughly 4n/5 vertices. However, not only the paths between vertices
to the left of v and to the right of v′ become shorter as vertices between v and v′ also benefit
from the shortcut edge, as Figure 4.2 indicates.

In this chapter we first consider the following problem, which we generalize in subsequent
sections. We are given a path P = (v1, v2, . . . , vn) all of whose edges (vi, vi+1) are directed

75

Chapter 4 Optimal Routing Cost Tree Augmentation

ε

e
e′

v v′

P

v1 vn

1 1

v3

v2

Figure 4.2: Inserting edge e minimizes the dilation, while e′ minimizes the routing cost of
path P.

from left to right. Each vertex vi is assigned a weight wi > 0, reflecting the number of
residents of city vi and we wish to decrease the weighted routing cost

r :=
∑

1≤i<j≤n
wi(j − i)wj

of P by adding one more edge (vk, vl), called shortcut, directed from vk to vl, choosing k < `
such that the total routing cost is minimized, that is, such that the decrease in routing cost
is as large as possible as illustrated in Figure 4.3.

As compared to the undirected case shown in Figure 4.2, the situation has become simpler
in that only vertex pairs on opposite sides of the shortcut edge can benefit from the extra
edge. Thus, the decrease in routing cost effected by adding a directed edge from vk to v`
equals

ρ(k, `) :=

 ∑
1≤i≤k

wi

 (`− k − 1)

 ∑
`≤i≤n

wi

 , (4.3)

since `−k−1 edges between vk and v` can be avoided by using edge (vk, v`). For unit weights,
this term simplifies to ρ(k, `) = k(`− k − 1)(n− `+ 1). In this case, the best shortcut is a
directed edge from vn/3 to v2n/3.

Lemma 4.1. If wi = 1 for all 1 ≤ i ≤ n, then ρ(k, `) is maximized for k = bn/3c and
` = n− bn3 c − 1.

Proof. In order to simplify the argumentation we set `′ := n− `+ 1, that is ` = n− `′ + 1
and we consider the function ρ′(k, `′) := ρ(k, n− `′ + 1) = k(n− `′ − k)`′. If the sum k+ `′ is
fixed, then the term k(n− `′ − k)`′ only depends on the product k`′ since n− `′ − k is fixed
if k + `′ is fixed. The product k`′ is maximized for |k − `′| ≤ 1, since k and ` are positive
integers. Since ρ′(k, l′) is symmetric with respect to k and `′ the maximum of ρ′ is attained
either for `′ = k or `′ = k + 1.
Simple calculations show that ρ′(k, k) − ρ′(k, k + 1) = k(2 + 3k − n) ≥ 0 if and only if

k ≥ n−2
3 , since k is positive. That is, for these values of k, the maximum of ρ′(k, `′) is

attained for `′ = k. Assuming `′ = k we have ρ′(k, `′) = k2(n− 2k) subject to k ≤ n, which
is maximized for either k = bn3 c or k = dn3 e in the range [1, . . . , n]. Assuming that n = 3r+ i
for r = bn3 c and i = n − 3r, we obtain ρ′(3r, 3r) − ρ′(4r, 4r) = r2(7 + 74r − 7n), which is

76

4.3 Optimal Shortcuts in Trees

w1 w2 wk w`

vk v`v1 v1

Figure 4.3: Directed, vertex-weighted path with weights wi representing the population size
of city vi.

larger than zero, whenever n ≥ 3. Hence ρ′(k, k) is maximized for k = bn3 c. Since we have
bn3 c ≥

n−2
3 , we can conclude that ρ′(k, `′) is maximized for k = `′ = bn3 c, that is, ρ(k, l) is

maximized for k = bn3 c and ` = n− bn3 c − 1.

Introducing non-unit weights, on the other hand, makes the maximization problem non-
trivial. In fact, the decrease function ρ(k, `) can have multiple local maxima as illus-
trated, for instance, by a path with 13 vertices whose weights are given by the vector
(90, 10, 100, 1, 100, 1, 1, 1, 100, 1, 100, 10, 90). For this path, both the shortcuts (v3, v9) and
(v5, v11) are locally optimal.

Quite obviously, the optimum shortcut can in general be computed by inspecting the
O(n2) many candidates (vk, v`) where 1 ≤ k < ` ≤ n. In this chapter, we show that we can
improve on this by reducing the problem to computing the upper envelope of an arrangement
of pseudo-lines in the plane if the network is a directed, weighted path. Further, we show
how to extend the algorithm to directed star-shaped networks and to directed tree networks,
respectively. While we obtain optimal linear-time algorithms for both directed, weighted paths
and directed, weighted star-shaped networks, we only achieve a running time of O(n logn)
for directed trees.

4.3.1 Reduction to Pseudo-Line Arrangements
In this section we show how to compute the best shortcut for a directed, weighted path
by reducing the problem to computing the upper envelope of an arrangement of piece-
wise linear functions. Let P denote a directed path of n vertices v1, . . . , vn with positive
weights w1, . . . , wn. Considering Equation 4.3 we define

Ak :=
k∑
i=1

wi and B` :=
n∑
i=`

wi

for k, ` = 1, . . . , n. Moreover, we let

f`(k) := Abkc(`− k − 1)B`

be a function of a real variable k. In our optimization problem, only values k ≤ ` are
meaningful, but there is no harm in ignoring this constraint. The function f`(k) is piecewise
linear, with discontinuities at integer values of k. For integral values of k, we have f`(k) =
ρ(k, `).
A set of unbounded curves in the plane is called a family of pseudo-lines if each pair of

curves intersect in at most one point and if the curves cross each other in this point. The
following lemma proves that the family of functions f` induces a family of pseudo-lines in the
plane.

77

Chapter 4 Optimal Routing Cost Tree Augmentation

Lemma 4.2. Let 1 ≤ `1 < `2 ≤ n be fixed. Then the following holds.

(i) There exists at most one real value k ∈ [1, n] such that f`1(k) = f`2(k) holds.

(ii) If f`1(k) = f`2(k), then f`1(k′) < f`2(k′) for all k′ > k.

(iii) If no such value exists, we have f`1(k′) < f`2(k′) for all k′ ∈ [1, n].

Proof. Consider the function

f`2(k)− f`1(k) = Abkc(`2 − k − 1)B`2 −Abkc(`1 − k − 1)B`1
= Abkc ((`2 − 1)B`2 − (`1 − 1)B`1 + k(B`1 −B`2))
= Abkc (C + k(B`1 −B`2)) ,

(4.4)

where C is a constant depending only on `1 and `2. Since `1 < `2 we have B`1 > B`2 . Moreover,
Abkc ≤ Abk′c holds whenever k < k′. Thus, Equation (4.4) is strictly monotonically increasing
in k, which proves Claim (i) and (ii). If Equation (4.4) never attains the value 0, then the order
relation between f`1(k) and f`2(k) is the same all over [1, n]. By setting k := `2 − 1 ∈ [1, n]
and since `1 − `2 < 0 by assumption, we obtain

f`1(k) = Abkc(`1 − `2)B`1 < 0 = f`2(k) ,

which completes the proof of Claim (iii).

By Lemma 4.2, the set of graphs of the functions f`(k) with 1 ≤ ` ≤ n is family of pseudo-
lines over the interval [1, n] since any two of them have at most one point of intersection, just
as proper lines would. Note that Lemma 4.2 also yields an efficient constant-time algorithm
for computing the intersection of two functions f`2 and f`1 . These functions intersect exactly
if there is a value k such that function f`2(k)− f`1(k) attains the value zero. However, due
to Equation (4.4) this function is equivalent to

Abkc(C + kC ′) = 0
where C and C ′ are constants depending only on `1 and `2. Since Abkc > 0, this is equivalent
to

k = − C
C ′

,

which can be computed efficiently. Note that we are only interested in intersections in the
range [1, n], however.
Arrangements of pseudo-lines have been extensively studied and are reviewed in the

Handbook of Combinatorial and Computational Geometry by Goodman [GO97], for example.
We can solve our optimization problem by constructing the upper envelope of this pseudo-line
arrangement, that is, the graph G of the maximum function

f(k) := max
1≤`≤n

{f`(k)} . (4.5)

Each function f`(k) contributes at most one segment to G. Conversely, assume that some f`(k)
contributed two segments to G. Then a segment of some f`′(k), where ` 6= `′, must occur in

78

4.3 Optimal Shortcuts in Trees

between. However, this implies that f`(k) and f`′(k) must intersect twice—in contradiction
to Lemma 4.2.
This is a special, and in fact the most simple, case of a Davenport-Schinzel sequence. In

general, if any two of n function graphs over some interval intersect at most s times, their
envelope is of complexity O(λs(n)), with a non-trivial, slightly super-linear function λs as
illustrated in the monograph by Sharir and Agarwal [SA95]. There is a simple algorithm that
allows the lower (or upper) envelope to be constructed in time O(λs(n) logn) by divide-and-
conquer. Here one assumes that elementary operations, like computing an intersection of
two functions, can be carried out in constant time. In our case, this is true as argued above.
Moreover, s = 1 and λ1(n) = n hold.
These facts give us a first improvement over the trivial O(n2) algorithm mentioned in

Section 4.3. We can construct the upper envelope G in time O(n logn). Then we perform
one pass over G and evaluate f(k) at all integer values of k in time O(n). If the maximum of
these values is attained within a segment of f`(k) in G, then the shortcut edge from vk to v`
yields a maximum reduction in routing cost.

4.3.2 Computing the Envelope in Linear Time
To improve on the O(n logn) upper time bound just mentioned, we will make use of the
fact that the ordering of the functions f`(k) “far to the right” is known to us. Indeed, for
each ` ≤ n− 1, Equation (4.4) yields

f`+1(n)− f`(n) = Abnc(`+ 1− n− 1)B`+1 −Abnc(`− n− 1)B`

= An

(`− n)
n∑

i=`+1
wi − (`− n)

n∑
i=`

wi +B`

= An(B` + (n− `)w`) > 0

so that we obtain

f1(n) < f2(n) < · · · fn(n) .

Next, we prove a general result concerning the computation of the upper envelope of a set
of pseudo-lines, for which the order “far to the right” is known.

Theorem 4.5. Let F = {f1, . . . , fn} form an arrangement A of pseudo-lines over the
interval I = [a, b]. If the order of values fi(b) is known and if the intersection of two pseudo-
lines can be computed in constant time, then the upper envelope of A can be computed in
time O(n).

Proof. We assume that the order of the values fi(b) for 1 ≤ i ≤ n is such that fi(b) < fj(b)
whenever i < j, that is, fn is part of the upper envelope of F at b. We proceed from right to
left and process the curves fj in order of decreasing indices. In a stack S we store the part of
the upper envelope that would result if no further curves existed, as illustrated in Figure 4.4.
Initially, S contains only fn. When processing fj , we compute the intersection w of fj with
the top element fk of S. If w does not exist, or if it lies to the left of interval I = [a, b], we
ignore fj and start processing fj−1.

79

Chapter 4 Optimal Routing Cost Tree Augmentation

fn

fn−1

f`

fk

fj

a b

w

v

w

S

top(S)

Figure 4.4: Constructing the upper envelope.

Otherwise, let v be the intersection of the two topmost curves in S. If w lies to the left
of v, or if no v exists since the stack contains only one element fk = fn, then we push fj on
the stack, and start processing fj−1. However, if w lies to the right of v, we pop fk from
the stack and continue processing fj . This pop operation is justified since to the left of w,
curve fk is dominated by fj and can, therefore, not contribute to the upper envelope. With
this observation, the correctness of our algorithm is evident.
The linear running time bound can be shown as follows. During each pass through the

loop described above, we (i) ignore fj , or (ii) push fj , or (iii) we pop fk. Whenever (i)
or (ii) occurs, we decrease the index j of the function currently processed. Thus, (i) and (ii)
occur at most n times. If there are only n push operations, there can be no more than n
pop operations either, because each pop is successful. Thus, the loop is carried out at most
O(n) times, which proves the linear time bound. Upon termination, the stack S contains the
segments of the upper envelope, with the leftmost segment on top.

Using Theorem 4.5 we obtain the following result for directed weighted paths.

Theorem 4.6. Let P be a directed, weighted path with n vertices. Then we can compute the
best shortcut in terms of routing cost in O(n) time.

Proof. In Section 4.3.1 we have argued that we can compute the intersection between two
functions f`1 and f`2 in constant time. Thus, we can compute the upper envelope of the
functions f` for 1 ≤ ` ≤ n in linear time using Theorem 4.5. Then we can simply examine
the upper envelope in linear time to compute the maximum decrease in routing cost.

With pseudo-lines replaced by proper straight lines, our task would be to construct the
upper envelope of an arrangement of lines that are sorted by slope. By duality, this task
corresponds to computing the upper convex hull of a set of points sorted by x-coordinates.
Under this duality, our algorithm would correspond to a variant of Graham’s scan algorithm,
namely Andrew’s monotone chain method [And79].

80

4.3 Optimal Shortcuts in Trees

v

v2

v1

Figure 4.5: A directed star-shaped network with center v, two incoming and four outgoing
paths of different length. Vertices v1 and v2 both have path distance 3 to center v.

4.3.3 Extension to Directed Tree Networks
Fortunately, we can apply the above optimal algorithm as a subroutine for computing the
optimal shortcut for directed, weighted trees efficiently. First, we consider star-shaped trees
to illustrate one of the main ideas for generalizing the algorithm presented in the previous
section to more general trees. Then we show how this idea can be applied to arbitrary
directed trees.

Star-shaped Networks One of the most simple extensions of a one-way path is given by a
star-shaped, directed network as depicted in Figure 4.5. These networks consist of a center
vertex v that has s incoming paths on mi vertices for i = 1, . . . , s and r outgoing paths of nj
vertices for j = 1, . . . , r, respectively. There are three possible locations for a shortcut. It
may either be placed fully inside an incoming path, fully inside an outgoing path or it may
connect an incoming path to an outgoing path. In the first two cases we can directly apply
the same idea as presented above. For this to work, it suffices to additionally sum up all
weights in all outgoing paths (resp., all incoming paths), and to add this sum to the weight
of the branching vertex v. Then we run the linear time algorithm of Section 4.3.2 on each of
the paths that result from removing v. This can be done in total time O(n).
The remaining task is to compute the best shortcut connecting an incoming path to an

outgoing path. Obviously, one could apply the linear time algorithm for paths to all s× r
path combinations, which would result in quadratic running time. The following observation
helps to improve on this bound. Suppose we fix a vertex u in one of the outgoing paths to
the right of v, and consider possible partner vertices to the left of v that might form a good
shortcut with u. Consider two vertices v1 and v2 on two different incoming paths with equal
distance from v as illustrated in Figure 4.5. Further, assume that the weights of the vertices
in the figure are proportional to the areas of the circles. Then the sum of the weights up
to v1 is larger than that up to v2. Choosing vertex v1 as the left endpoint in this situation
will result in a higher reduction of the routing cost for any fixed right endpoint u. That is, it
suffices to know which vertex is the best left endpoint for any given distance to v.

Based on this observation, we collect the most promising vertices of the s incoming paths

81

Chapter 4 Optimal Routing Cost Tree Augmentation

v

v2

1
1

1

1
1

3

1 1

1

1
120

50

30

40

1 1

1 120 13 9 10

c4 c3 c2 c1 v

Figure 4.6: Collecting vertices into a single path. The original directed, weighted, star-shaped
tree S is illustrated above. The path below is the directed, weighted, star-shaped
tree S′ resulting from replacing all incoming paths in S by the new collected
incoming path.

into a single path, in the following way. Let m := max{mi | 1 ≤ i ≤ s} denote the
maximum length of an incoming path. Assume that the vertices on the i-th incoming path
are labeled vi1, vi2, . . . , vimi

from right to left, that is, with increasing distance from v. For
each possible edge distance d = 1, 2, . . . ,m let

w(d) := max
i=1,...,s

mi∑
j=d

wij , (4.6)

where wij , the weight of vertex vj , equals zero if j > mi. The new collected incoming
path is defined to contain m vertices cd with weights w(d) − w(d + 1) for 1 ≤ d ≤ m,
where w(m+ 1) := 0. An example is shown in Figure 4.6. The following lemma states some
properties concerning the collected path.

Lemma 4.3. Let S be a directed, weighted, star-shaped tree and let P be the collected
incoming path of S with m vertices whose weights are defined according to Equation (4.6).
Then the following holds.

(i) For each 1 ≤ d ≤ m we have w(d)− w(d+ 1) > 0.

(ii) For each 1 ≤ d ≤ m, the sum of the weights of the vertices to the left of, or equal to, cd
is w(d), that is,

∑m
i=dw(cd) = w(d).

(iii) Let S′ denote the directed, weighted, star-shaped tree resulting from replacing the
incoming paths in S with the new collected path. Then the optimal shortcuts across v
in S and S′ correspond to each other.

82

4.3 Optimal Shortcuts in Trees

Proof. To prove (i), let i be the index of the path where w(d+ 1) is attained. By maximality
of w(d), we have

w(d) ≥
mi∑
j=d

wij >
mi∑

j=d+1
wij = w(d+ 1) .

Fact (ii) follows by the telescoping property of the weights

m∑
j=d

(w(i)− w(i+ 1)) = w(i)− w(m+ 1) = w(i) .

Fact (iii) is a consequence of (ii) and of our previous observation about good shortcut
candidates. A shortcut (vij , u) in S corresponds to a shortcut (ci, u) in S′ and a shortcut (c, d)
in S′ corresponds to a shortcut (vid, u) such that

w(d) =
mi∑
j=d

wij .

Clearly, one can also compute a collected outgoing path in the same way. Now the
linear time algorithm presented in Section 4.3.2 can be run on the concatenation of the
two paths, with the following modification. The functions f`(k) introduced in Section 4.3.1
must be considered only for indices ` of vertices on the collected outgoing chain, and only
for arguments k corresponding to vertices on the collected incoming chain. We obtain the
following result.

Theorem 4.7. The optimum shortcut in a directed, weighted, star-shaped network can be
constructed in linear time.

General Tree Networks Based on the linear time algorithm of the previous section we now
present an O(n logn)-time algorithm for general directed, weighted trees T of size n. We
proceed by Divide and Conquer. Ignoring edge directions for the moment we find a balanced
decomposition of T into two trees with exactly one vertex v in common such that each of the
trees contains at least n/3 vertices. The existence of such a decomposition is established by
the following lemma.

Lemma 4.4. Let T = (V,E) be a tree with n ≥ 2 vertices. Then T can be decomposed into
two trees T1 and T2 with the following properties

(i) Both T1 and T2 have at least n/3 vertices.

(ii) There is exactly one vertex v that is contained in T1 and T2.

(iii) The union of T1 and T2 equals T .

The decomposition can be computed in O(n) time.

83

Chapter 4 Optimal Routing Cost Tree Augmentation

X Y

x

(a)

x

yX
Y

Tx

Ty

(b)

x

y

X

Y

Ty

(c)

x

yX

Y
Ty

(d)

Figure 4.7: Illustration for the modification of the partition X] Y of the vertices of T
according to the proof of Theorem 4.4.

Proof. First, we show that there is partition X] Y = V of the vertices of T such that each
partition contains at least n/3 vertices and such that all edges of the tree T with one vertex
in X and one vertex in Y are incident to exactly one vertex u that is either contained in X or
in Y , respectively. Let uv be any edge in T and let Tu and Tv denote the trees resulting from
removing uv from T . Assume without loss of generality that |V (Tu)| ≤ |V (Tv)|. Then X :=
V (Tu) and Y := V (Tv) clearly is a partition with the desired properties. If |X| ≥ n/3 we
are done, since |Y | ≥ |X| ≥ n/3. Otherwise we show how to increase the size of X while
guaranteeing that the size of Y is at least n/3. We are done as soon as the size of X is at
least n/3.
So assume that X < n/3, that is, Y > n/3. First, consider the case that there is a

vertex x ∈ Y such that all edges of T between X and Y are incident to x as illustrated in
Figure 4.7a. Then we remove x from Y and add it to X as illustrated in Figure 4.7b. This
changes the cardinalities of X and Y by only one unit, that is, after the modification we
have |X| ≤ n/3 and |Y | ≥ n/3. Further, all edges of T between X and Y are connected to u
after the modification. If |X| ≥ n/3 we are done.
Second, consider the case that the edges of T between X and Y are incident to at least

two vertices in Y as illustrated in Figure 4.7b. Let y ∈ Y be a vertex that is adjacent to a
vertex x ∈ X. Further, let Tx and Ty be the connected trees containing x and y in T [X]
and T [Y], respectively, and let nx and ny denote their respective cardinalities. If ny < n/3,
then |Y | − ny > n/3 and we can safely move the vertices in Ty to X as illustrated in
Figure 4.7c. Otherwise, n ≥ n/3 and we can move all vertices in Y \V (Tx) to x as illustrated
in Figure 4.7d. In both cases we increase the size of X while guaranteeing that the size of Y
is at least n/3. Thus, the size of X will eventually reach n/3.
Due to the definition of the partition X] Y there is a vertex u such that all edges

84

4.3 Optimal Shortcuts in Trees

between X and Y are incident to u. Then the trees T [X ∪{u}] and T [Y ∪{u}] clearly satisfy
the properties (i)–(iii) as claimed.

Finally, we show how to compute the decomposition in linear time. First, we root the tree
at an arbitrary vertex v and compute for each vertex u the number of vertices nu in the
subtree rooted in u. Having these values, we can label each end of an edge e by the number
of vertices in the subtrees attached to the respective ends obtained by removing e. That is,
we can determine the number vertices in the respective subtrees in constant time. Note that
each vertex is only moved from Y to X. Hence, we can compute the decomposition in linear
time.

In order to compute the best short cut we compute a decomposition according to Lemma 4.4
to obtain two trees T1 and T2 having exactly one vertex v in common. First we recursively
compute the best shortcut in T1 and T2, respectively. Then we compute the best directed
shortcut from T1 to T2 and vice versa. Both of them must pass through v. Let Ini be the
subtree of Ti that contains all vertices from which v is reachable on a directed path for i = 1, 2.
Similarly let Outi be the subtrees of all vertices that can be reached from v on a directed
path. We need to compute the optimum shortcut from In1 to Out2 and from Out1 to In2.
These sub-tasks can be implemented as follows. Analogously to the previous section we
construct the collected paths for subtrees Ini and Outi for i = 1, 2. This can be done in linear
time by rooting the respective trees at the common vertex and performing one top-down
pass over the tree. Then we combine the corresponding collected paths into one and run the
algorithm of Section 4.3.2. This yields the following result.

Theorem 4.8. For a directed, weighted tree with n vertices, the optimal shortcut with respect
to routing cost can be computed in O(n logn) time.

Proof. We have outlined the algorithm above and it only remains to show that the algorithm
can be implemented to run in O(n logn) time. By Lemma 4.4 we can compute the decompo-
sition underlying the recursion in linear time. Further, the collected paths can be computed
in linear time and, given the collected paths, we can compute the best shortcut in linear
time as well. Next, consider the recursion tree. At each level of the tree, the total size of
the sub-instances is at most 2n since each vertex of the tree is contained in at most two
subtrees constituting the sub-instances. That is, the total amount of time needed to solve
the sub-instances is O(n). Further, since each tree has at least n/3 vertices, the height of the
tree is at most O(logn). That is, the total running time is O(n logn).

4.3.4 Undirected Paths
Finally, we consider the undirected case of a single path. As already depicted in Figure 4.2
there are different parts of the path that might profit from the shortcut between v and v′
or vk and v`. A corresponding function ρ(k, `) for indices ` < k becomes more complicated
and our idea for the linear time algorithm is not applicable in this case. Two vertices profit,
if the path length along the shortcut is smaller than the original path length. We collect the
benefit of a shortcut in the following functions due to the vertices that benefit. Afterwards
we will briefly explain the additional sums and the corresponding indices by an example.

85

Chapter 4 Optimal Routing Cost Tree Augmentation

First formula (from left to right as before):(
k∑
i=1

wi

)
·

 n∑
j=`

wj

 · (`− k − 1) (4.7)

Second formula (from left to inner right):(
k∑
i=1

wi

)
·

 `−1∑
j=d `+k

2 +1e

wj · (2j − `− k − 1)

 (4.8)

Third formula (from right to inner left):(
n∑
i=`

wi

)
·

b
`+k

2 −1c∑
j=k+1

wj · (`+ k − 2j − 1)

 (4.9)

Fourth formula (from inner right to inner left): `−1∑
i=d `+k

2 +1e+1

wi

 ·
i−d

k+`
2 +1e+k∑
j=k+1

wj · (k − `+ 2i− 2j − 1)

 (4.10)

Consider the path of Figure 4.8 with altogether 12 vertices and a shortcut from v4 to v10.
Thus ` = 10 and k = 4 holds and d `+k2 + 1e = 8 and b `+k2 − 1c = 6 is given. From inner right
to the left only the vertices v8 and v9 profit from using the shortcut. For j = 8, 9 the original
distance to v4 was j − k and the new distance along the shortcut is l − j + 1. Therefore we
have a benefit of j − k− (l− j + 1) = 2j − l− k− 1 for the weights wj and all weights on the
left hand side ending at v4 according to Equation (4.8).
From inner left to the right only the vertices v5 and v6 profit from using the shortcut.

For j = 5, 6 the original distance to v10 was l − j and the new distance along the shortcut
is j − k + 1. Therefore we have a benefit of l − j − (j − k + 1) = l + k − 2j − 1 for the
weights wj and all weights on the right hand side starting at v10 according to Equation (4.9).

From inner right to inner left using the shortcut only the vertex v9 will have a smaller
distance to the vertex v5 . We have d `+k2 +1e+1 = 9 = l−1 and k+1 = 5 = i−d `+k2 +1e+k.
The distance between vi and vj using the shortcut is given by `− i+ 1 + j − k and the direct
distance is i − j, thus the benefit is (i − j) − (l − i + 1 − k + j) = k − l + 2i − 2j − 1 and
Equation (4.10) provides the additional benefit in general.
Now let ρ(k, `) be the sum of the functions of Equations (4.7)–(4.10). It can be shown

that one can choose weights so that two functions ρ(k, `1) and ρ(k, `2) will have more than
one intersection. This means that the key idea of Theorem 4.6 does not apply directly to
undirected paths. Note, however, that the best shortcut can be easily computed in O(n2)
time.

4.4 Concluding Remarks
We have studied two augmentation problems for tree networks in the routing cost model.
The first problem concerned a class of augmentation problems, where the goal is to find the

86

4.4 Concluding Remarks

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Figure 4.8: For an undirected weighted path and a shortcut different parts of the path will
profit.

best connection between two disconnected trees in terms of routing cost. We presented a
quadratic-time worst-case optimal algorithm for general distance functions on the vertex
sets of the trees and showed that we can improve on this by providing on O(n logn) time
algorithm for both the Euclidean metric and sparse graph metrics
It remains an open question, for which graph metrics the problem can be solved in sub-

quadratic time. Also, there are some interesting variants of the problem, for instance, when
there are more than two disconnected trees. This problem arises, when a vertex of the
network fails to work. Additionally, we could consider a Steiner-variant of the problem, in
which we are allowed to introduce an additional vertex to which the disconnected components
must be connected.
The second problem we studied was to find an optimum shortcut for oriented paths and

trees with weighted vertices. We presented optimal linear-time algorithms for directed paths
and star-shaped tree networks in the presence of weights and we presented an O(n logn)
algorithm for arbitrary directed, weighted tree networks. It is a major open problem whether
this problem can be solved in sub-quadratic time on undirected tree-networks.

While both considered problems can be solved in quadratic time by exhaustive search, we
were able to devise more efficient algorithms by using techniques from geometry. While we
solved the augmentation problem of connecting two trees by computing a geometric and a
graph-theoretic Voronoi-diagram, respectively, we solved the augmentation problem of finding
the best shortcut by computing the upper envelope of an arrangement of polylines in the
plane. Surprisingly, concepts from geometry helped devising efficient algorithms even for
problems which have no obvious connection to geometry. We will present another example of
this situation in the following Chapter 5.

Finally, we note that any generalization of these problems to more general classes of graphs
than trees are likely to involve higher computational efforts. Throughout this chapter we
explicitly used the fact that we can aggregate the routing cost of subtrees efficiently and
subsequently work on the aggregated values instead of having to compute the routing cost
effected by a single edge from scratch. However, the computation of a graph’s routing cost
alone involves a the computation of the shortest paths between all pairs of vertices, which
has a trivial lower bound of Ω(n2) and a non-trivial lower bound of Ω(nm) provided by
Karger et al. [KKP93] for all path-comparison based all-pairs-shortest-path algorithms, that
is, algorithms that are allowed to use the edge weights only for comparisons between paths.

87

Chapter 4 Optimal Routing Cost Tree Augmentation

88

Chapter 5

The Density Maximization Problem in Graphs

Many realistic network construction problems must find a balance between various optimiza-
tion goals. Typical goals include the minimization of construction costs and the maximization
of the performance of the network. We consider a framework for bi-objective network con-
struction problems where one objective is to be maximized while the other is to be minimized.
Given a host graph G = (V,E) with edge weights we ∈ Z and edge lengths `e ∈ N for each
edge e ∈ E we define the density of a subgraph H = (V ′, E′) ⊆ G, called the pattern as the
ratio

dens(H) =
∑
e∈E′

we/
∑
e∈E′

`e .

We consider the problem of computing a maximum density pattern H under various additional
constraints. In doing so, we compute a single Pareto-optimal solution with the best weight
per cost ratio subject to additional constraints further narrowing down feasible solutions for
the underlying bi-objective network construction problem.
First, we consider the problem of computing a maximum density pattern with weight at

least W and length at most L in a host G. We call this problem the bi-constrained density
maximization problem. This problem can be interpreted in terms of maximizing the return
on investment for network construction problems in the presence of a limited budget and a
target profit. We consider this problem for different classes of hosts and patterns. Initially,
we show that it is NP-hard, even if the host has treewidth 2 and the pattern is a path.
However, it can be solved in pseudo-polynomial linear time if the host has bounded treewidth
and the pattern is a graph from a given minor-closed family of graphs. Finally, we present an
FPTAS for a relaxation of the density maximization problem, in which we are allowed to
violate the upper bound on the length at the cost of some penalty.

Second, we consider the maximum density subgraph problem under structural constraints
on the vertex set that is used by the patterns. While a maximum density perfect matching can
be computed efficiently in general graphs, the maximum density Steiner-subgraph problem,
which requires a subset of the vertices in any feasible solution, is NP-hard and unlikely to
admit a constant-factor approximation with polynomial running time. When parameterized
by the number of vertices of the pattern, this problem is W[1]-hard in general graphs. On
the other hand, it is FPT on planar graphs if there is no constraint on the pattern and on
general graphs if the pattern is a path. This chapter is based on joint work with Mong-Jen
Kao, Bastian Katz, Der-Tsai Lee, Ignaz Rutter and Dorothea Wagner [KKK+11b].

89

Chapter 5 The Density Maximization Problem in Graphs

5.1 Introduction
Many realistic network construction problems are characterized by complex constraints and
multiple, possibly conflicting objectives, and are therefore formulated within the framework
of multi-objective optimization [CP07]. There are several ways to define optimality in the
context of more than one objective, among them Pareto-optimality and aggregate optimality.
Let R be a multi-objective optimization problem and let I be the set of the instances of
R. Further, let f1, . . . , fk : I → R be the set of objective functions of R and assume that
these functions must be maximized. Then an instance x ∈ I is Pareto-optimal if there is
no instance y ∈ I such that fi(y) ≥ fi(x) for all 1 ≤ i ≤ k and fj(y) > fj(x) for at least
one index 1 ≤ j ≤ k. That is, x is Pareto-optimal if we cannot improve a single objective
without diminishing at least one of the other objectives. While Pareto-optimality seems to
capture the classical notion of optimality best, there may be many Pareto-optimal instances
for a multi-objective optimization problem. Since it is sometimes undesirable to confront
users with a possibly large number of Pareto-optimal solutions, it is common to combine the
objectives into a single new aggregate objective, which is then optimized as a single-criterion
objective. Typical aggregate functions include weighted sum or weighted minimum and
maximum, that is we try to maximize

F (x) :=
k∑
i=1

wi · fi(x) or G(x) := max{wi · fi(x) | 1 ≤ i ≤ k} ,

where wi ∈ R are constant weights. These weighted aggregate functions, however, must
be guided in that the decision maker has to supply a set of suitable weights at the risk of
arbitrariness.
We consider a framework for bi-objective network construction problems, motivated from

economics, where one objective must be maximized while the other must be minimized. We
can think of these objectives as profit and cost of an investment, respectively. Additionally,
we assume that we are given an upper bound on the objective to be minimized and a lower
bound on the objective to be maximized. That is, we are given a limited budget and a target
profit. Two optimization functions of this sort can be aggregated by the ratio of the two
optimization goals featuring two main advantages over other aggregate functions. First, we do
not need to supply any weights—if we did, it would not alter our notion of optimality. Second,
any optimal solution with respect to the ratio is Pareto-optimal. In economics, this ratio,
termed return on investment, is a common measure for assessing the quality of investments.

Our framework is defined as follows. Let G = (V,E) be a graph, which we will refer to as
the host. Throughout the chapter we write n := |V (G)| and m := |E(G)|, respectively. We
assume that we are given a weight function wt : E → Z and a length function len : E → N
on the edges, respectively. As a shorthand we write we := wt(e) and `e := len(e) and for a
subgraph H ⊆ G we define

wt(H) :=
∑

e∈E(H)
we and len(H) :=

∑
e∈E(H)

`e

as the weight and length of the edge set of a subgraph H, respectively. We refer to a subgraph
of G as a pattern. GivenW ∈ Z and L ∈ N, a pattern H is calledW -viable if wt(H) ≥W and
it is called (W,L)-viable if it is W -viable and len(H) ≤ L. Our goal is to find a (W,L)-viable

90

5.1 Introduction

pattern H maximizing wt(H) and minimizing len(H), which we formalize by maximizing the
ratio dens(H) = wt(H)/ len(H), called the density of H. Given a tuple (G,wt, len,W,L),
the Bi-constrained Maximum Density Subgraph (BMDS) problem asks for a connected
(W,L)-viable pattern H ⊆ G with maximum density.

Problem Bi-constrained Maximum Density Subgraph (BMDS)
Instance: A graph G = (V,E), weight wt: E → Z, length len : E → N, W ∈ Z, L ∈ N

Solution: A connected (W,L)-viable subgraph H ⊆ G

Goal: Maximize dens(H)

In realistic applications, it may be desirable to be able to violate the hard limitations
of our framework. For instance, it may be possible to exceed the budget by loaning addi-
tional money at the cost of some interest. We model this by introducing the L-deviation
of H, defined as dev(H) := max{0, len(H) − L}, and the penalized density, defined as
pdens(H) := wt(H)/(len(H) + c · dev(H)), where c is some non-negative constant. Given
a tuple (G,wt, len,W,L) the Relaxed Maximum Density Subgraph (RMDS) problem
asks for a connected W -viable pattern H ⊆ G with maximum penalized density. We will
consider these problems for different classes of hosts and patterns.

Problem Relaxed Maximum Density Subgraph (RMDS)
Instance: A graph G = (V,E), weight wt: E → Z, W ∈ Z, L ∈ N

Solution: A connected W -viable subgraph H ⊆ G

Goal: Maximize pdens(H)

A different set of constraints we consider arises from the fact that we may have to include
a given set S ⊆ V of vertices, so-called terminals, in any feasible solution, for instance,
if we would like to augment an already existing infrastructure network. We will refer to
these constraints as Steiner constraints. In the presence of Steiner constraints we drop the
constraints on the length and weight of the solution.

Problem Maximum Density Steiner Subgraph
Instance: A graph G = (V,E), weight wt: E → Z, W ∈ Z, S ⊆ V

Solution: A connected W -viable subgraph H ⊆ G such that S ⊆ V (H)

Goal: Maximize dens(H)

Related Work An overview of recent developments in multi-objective optimization is given
in [CP07]. Bálint [Bál03] proves inapproximability for bi-objective network optimization
problems, where the task is to minimize the diameter of a spanning subgraph with respect
to a given length on the edges, subject to a limited budget on the total cost of the edges.
Marathe et al. [MRS+98] study bi-objective network design problems with two minimization
objectives. Given a limited budget on the first, they provide a PTAS for minimizing the

91

Chapter 5 The Density Maximization Problem in Graphs

second objective among a set of feasible graphs. The considered objectives include total edge
weight, diameter and maximum degree.

The study of dense segments in bi-weighted sequences arises from the investigation of
non-uniformity of nucleotide composition with genomic sequences [Inm66, MTB76] and has
received considerable attention in bio-informatics. For this problem, we are given a sequence
of pairs (ai, bi) and we wish to find a subsequence I with length bounded by A ≤

∑
i∈I bi ≤ B

that maximizes the density
∑
i∈I ai/

∑
i∈I bi. For uniform lengths, Lin et al. [LJC02] give an

O(n logA) algorithm, which is improved to O(n) by Goldwasser et al. [GKL05]. A linear
time algorithm for the non-uniform case is given by Chung and Lu [CL05]. Lee et al. [LLL09]
show how to select a subsequence whose density is closest to a given density δ in O(n log2 n)
time. Without the upper bound on the length B they present an optimal O(n logn)-time
algorithm.

Subsequently, this problem has been generalized to graphs. Previous work on this problem
focuses mostly on the cases where the host is a tree subject to the two-sided constraint on
the length of the solution. Hsieh et al. [HC05, HC08] show that a maximum density path in
a tree subject to lower and upper length bounds can be computed in time O(Bn) and that
it is NP-hard to find a maximum density subtree in a tree, for which they also presented
an O(B2n) time algorithm. Wu et al. [WCT99, Wu09] improve on this by presenting an
optimal algorithm for computing a maximum density path in a tree in time O(n logn) in the
presence of both a lower and upper length bounds. They also give an O(n log2 n) algorithm
for finding a heaviest path in a tree in the presence of length constraints [WCT99], which is
improved to O(n logn) by Liu and Chao [LC08] .

Problems involving Steiner constraints have been widely studied in computer science for a
long time. For instance, it is known that the Steiner tree problem is NP-hard [GJ79] and
can be approximated within a factor of 1.55 [RZ00]. When parameterized by the number of
terminals, this problem is FPT [DW71], when parameterized by the number of non-terminals
in the solution it is W[2]-hard. The latter result is attributed to Bodlaender and can be
found in [Lok09]. For the special case that the set of terminals contains all vertices of the
graph, Chandrasekaran [Cha77] shows that a spanning tree with maximum density can be
computed in polynomial time.

Contribution In Section 5.2 we prove that the BMDS problem is NP-hard, even if the
host has treewidth 2 and the pattern is a path. Then we show how to compute a maximum
density path in a tree in Section 5.2.1 and extend this result to graphs that can be turned
into a tree by removing k edges, thus, showing that the problem is FPT with respect to k. In
Section 5.2.2 we show how to solve the BMDS and the RMDS problems in pseudo-polynomial
linear time if the host has bounded treewidth and the pattern must be contained in a given
minor-closed family of graphs. Additionally, we present a general FPTAS that can be applied
to all RMDS problems that admit algorithms whose running time is pseudo-polynomial
in the length in Section 5.3. We show that it can be used to approximate the maximum
penalized density if the host has bounded tree-width and the pattern belongs to a minor-closed
family of graphs. In Section 5.4 we drop the bounds on the weight and length, respectively,
and consider structural constraints instead. First, we consider general vertex constraints in
Section 5.4.1. We adapt a generic technique previously used by Chandrasekaran [Cha77] for
solving maximum density Steiner subgraph problems based on parametric search and we

92

5.2 The Bi-constrained Maximum Density Subgraph Problem

Table 5.1: Summary of the results obtained in this chapter. The symbol ? denotes an arbitrary
graph.

Bi-constrained Maximum Density Subgraph Problem
G H Constr. Results Reference

tw = 2 path bi-constr. NP-hard Thm. 5.1
tree path bi-constr. O(n log3 n) Thm. 5.2

tree +k edges path bi-constr O(2kk2n log2 n+ n log3 n) Thm. 5.3
tw = k minor-closed bi-constr 2O(k2+k logN+N)|F|Ln Thm. 5.4
tw = k minor-closed relaxed 2O(k2+k logN+N)|F|m/ε2 logB Cor. 5.1

Maximum Density Steiner Subgraph
G H Constr. Results Reference
? matching V O((m+ n logn)n log (nM)) Cor. 5.4

tree tree with k leaves |S| ≥ 1 O(k2n log (nM)) Thm. 5.7
? path |S| = 1 NP-hard, /∈ APX Thm. 5.8
? ?, |V (H)| ≤ k |S| = 1 W[1]-hard Thm. 5.9

planar ?, |V (H)| ≤ k |S| = 1 FPT Thm. 5.10
? path, |V (H)| ≤ k |S| ≥ 1 O((2k−sm+ 3k−s)s2 log (nM)) Thm. 5.11
? tree |S| ≥ 1 NP-hard Thm. 5.12

show how this technique can be used to solve the maximum density perfect matching problem
efficiently. Further, we show how to compute a maximum density tree with k leaves in a tree
in polynomial time. Then we focus on Steiner constraints requiring a given subset S of the
vertices in any feasible solution in Section 5.4.2. We show that this problem is NP-hard and
cannot be approximated by a constant factor unless P = NP , even if the pattern is a path
and S contains only one vertex. Further, when parameterized by the number of vertices of
the pattern, we show that the maximum density subgraph problem is W[1]-hard, that is, it
is unlikely to admit an FPT-algorithm. In contrast, we show that this problem is FPT on
planar graphs. Then we show that problem of computing a maximum density path is FPT
when parameterized by the number of vertices on the path in general graphs. However, we
also show that it is NP-hard to find a maximum density Steiner tree.

5.2 The Bi-constrained Maximum Density Subgraph Problem
In this section we consider the Bi-constrained Maximum Density Subgraph (BMDS)
problem. Given an instance I = (G,wt, len,W,L) we wish to find a connected (W,L)-viable
subgraph of G with maximum density. Since the BMDS problem can be solved in time O(n2)
when the host is a tree and the pattern is a path by enumerating all possible paths, it is
natural to ask if the BMDS problem can be solved efficiently on more general hosts and
patterns. However, we show that it is NP-hard to find a maximum density path, even if the

93

Chapter 5 The Density Maximization Problem in Graphs

q0 q1v0

v1 v3

v4 v2m−2

v2m−1

v2m

p1 p2 pm

v2

4M

M

4M

M

Figure 5.1: Graph used in the reduction from Partition. Bold edges have density 4, all other
edges have density 1. Dashed edges have weight and length 1, solid non-bold
edges incident to pi have weight and length ci + 1.

host is only slightly more complicated than a tree.

Theorem 5.1. BMDS is NP-hard, even if the host is a simply connected outerplanar graph
with treewidth 2, the pattern is a path and we drop the upper bound on the length of the
pattern.

Proof. The proof is by reduction from Partition. Assume we are given an instance of
Partition, that is, a set of positive integers C = {c1, c2, . . . , cm} with M =

∑m
i=1 ci

and we ask whether there is a subset I ′ ⊆ {1, . . . ,m} with
∑
ci∈I′ ci = M/2. We trans-

form this into an instance of BMDS as illustrated in Figure 5.1. First, we create a
path v0, v1, . . . , v2m with we = `e = 1 for each edge e on this path. Besides, we create addi-
tional m vertices, p1, p2, . . . , pm, and connect pi to both v2i−2 and v2i with we = `e = ci + 1
for e ∈ {piv2i−2, piv2i}. Then we create additional vertices q0 and q1, which we connect to v0
and v2m, respectively, such that wq0v0 = wq1v2m = 4M and `q0v0 = `q1v2m = M . Furthermore,
we set W = 9M + 2m. Since the graph is outerplanar, its treewidth is bounded by 2.

We claim that there is a path with length at leastW and density at least d := W/(3M+2m)
if and only if the corresponding instance of Partition can be solved. Clearly, any partition
can be transformed into a path with density d and length W . Let (C1, C2) be a partition
of C and let S denote the indices of the elements in C1, that is,

∑
i∈S ci = M/2. Consider

the simple path P from q0 to q1 that visits all vertices vi with i ∈ S and that contains none
of the vertices vj with j /∈ S. This path has weight 8M + 2m+ 2

∑
i∈S ci = 9M + 2m and

length 2M + 2m+
∑
i∈S ci = 3M + 2m. Hence, it has density d.

Conversely, assume that P is a path with density at least d. Since the weight of the path
must be at least 9M it must end at q0 and q1, respectively. Let S be the set of indices such
that pi is on the path if and only if i ∈ S. Then the density of this path can be expressed as

8M + 2m+ 2
∑
i∈S ci

2M + 2m+ 2
∑
i∈S ci

,

which is strictly decreasing as 2
∑
i∈S ci is increasing. Hence we have 2

∑
i∈S ci ≤M . On the

other hand the weight of the path must be at least W , which implies 2
∑
i∈S ci ≥M . Thus,

the path induces a valid partition I ′ := {ci | i ∈ S}.

When both the lower-bounded and upper-bounded constraints are imposed the problem
becomes much harder. By setting L = 3M + 2m in the reduction above we can show that it
is NP-hard to even compute any feasible solution if we impose both the lower bound on the
weight and the upper bound on the length of the pattern. Hence, the problem is not likely to
be approximable in polynomial time.

94

5.2 The Bi-constrained Maximum Density Subgraph Problem

5.2.1 Density Maximization for Trees and Almost-Trees
In the previous section, we have shown that it is NP-hard to compute a maximum density
path even if the host graph has treewidth 2. Hence, the problem is unlikely to be FPT with
respect to the parameter treewidth. In this section, however, we show that the problem of
computing a maximum density path is FPT with respect to the number of edges k that must
be deleted from a graph in order to obtain a tree. The treewidth of such a graph is bounded
by k + 1. We prove this result in two steps. First, we show how to compute a maximum
density path when the host is a tree. The problem can trivially be solved in O(n2) time by
enumerating all possible paths, but we show how to solve it in O(n log3 n) time. Our basic
approach is similar to one described by Wu [Wu09] and Lau et al. [LNN06] with respect to
decomposing the problem into smaller sub-problems. However, we use completely different
techniques for the sub-problems to obtain our results, since the results by Wu and Lau et al.
are not applicable in our setting. Second, we use this result to show that finding a maximum
density path in a general graph is FPT with respect to the number of edges we have to
remove in order to obtain a tree.
Throughout the section we use the key idea that the combined density of two sub-

paths P and Q is equal to the slope between two points uP = (len(P),wt(P)) and −uQ =
(− len(Q),−wt(Q)) in the Euclidean plane. This path is feasible if and only if wt(P) ≥
W − wt(Q) and len(P) ≤ L− len(Q). For a given query path Q this slope is maximized on
the convex hull of the set of points PQ representing the candidate subpaths for Q in the
range (−∞, L − len(Q)] × [W − wt(Q),∞) as illustrated in Figure 5.2a. Since we wish to
maximize the density it suffices to perform tangent queries to the upper chain of the convex
hull of PQ, denoted by UH(PQ), which is more efficient than trying all possible combinations.
We use a dynamic data structure for the maintenance of the upper chain of the convex

hull of a set of points P [OvL81] allowing point insertions in time O(log2 n). It maintains
the upper chain of the convex hull by a dynamically maintained ordered binary tree. Each
leaf of this tree corresponds to a point in the plane and each inner node v corresponds to
the segment of the upper hull of the set of points Pv that does not contribute to the upper
hull of the set of points in the subtree of the father of v. Each inner node additionally stores
the number of points on its upper hull that it inherits from its father and, whether these
points are at its left or right boundary. The segments of the upper hulls are represented
by concatenable queues which allow insertion, deletion, concatenation and split in O(logn)
time. Lemma 5.1 shows how to compute UH(PQ) from a given set of candidate paths P in
time O(log2 n) given the dynamic data structure.

Lemma 5.1. Given a point Q, a set of points P and a dynamic data structure for the
maintenance of UH(P) as described in [OvL81] the upper convex hull UH(PQ) can be computed
in time O(log2 n).

Proof. If PQ is empty, there is nothing to do. Otherwise, let pmin be the leftmost point
in PQ and let pmax be the rightmost point in PQ. Let xmin and xmax be the respective
x-coordinates of these points. Let P ′ := {(x, y) ∈ P | xmin ≤ x ≤ xmax}. First, we prove
that UH(PQ) ⊆ UH(P ′). Clearly, P ′ = PQ] P ′′ where P ′′ contains all the points (x, y) ∈ P
with xmin ≤ x ≤ xmax and y < W . Thus, all points in P ′′ are either in the interior of the
convex hull of PQ or on a vertical line through xmin or xmax, respectively. Hence, the claim
holds and we can reduce the problem of computing UH(PQ) to computing the upper hull of

95

Chapter 5 The Density Maximization Problem in Graphs

UH(P)

wt

len

Q

P

W − wt(P ∪R)

L− len(P ∪R)

UH(PQ)

PQ

(a)

r
v1 v2

RP1 P2

(b)

Figure 5.2: Tangent query to find the best candidate for Q (a) and combination of two paths
using vertex r (b).

a set of points P ′ in a vertical strip of the plane, which is supported by the dynamic data
structure. Let T denote the tree used by the dynamic data structure for the maintenance
of the upper hull. In order to compute UH(P ′) we traverse the paths from the root of T
to pmin and pmax, respectively, in parallel. In each step we reconstruct the upper hull using
the concatenation and split operation of the concatenable queues stored in the nodes of
the tree. We split off branches of the tree that are to the left of the path from the root
to pmin and to the right of the path from the root to pmax. These branches contain only
points whose x-coordinates are either greater than xmax or smaller than xmin. Since T is
balanced we have reconstructed UH(P ′) after at most logn steps using time O(logn) per
step and O(log2 n) time in total. Clearly, we can reconstruct the original data structure with
the same complexity.

Theorem 5.2. Given an instance (T,wt, len,W,L) of the BMDS problem, where T = (V,E)
is a tree, we can compute a (W,L)-viable maximum density path in O(n log3 n) time.

Proof. Without loss of generality we may assume that T is a binary tree. Otherwise we can
make it binary by adding auxiliary vertices and edges with weight and length 0 in linear
time such that the resulting tree has linear size. A centroid of a binary tree is a vertex
whose removal disconnects T into at most three subtrees with at most half of the vertices
of the original tree in each of the subtrees. We root T in one of its centroids r. Clearly, a
centroid can be computed in linear time by aggregating weights of the tree starting in the
leaves. Let v1, v2 be two children of r and let R be the path between v1 and v2 via r as
illustrated in Figure 5.2b. Then we can compute the maximum density path including R
using tangent queries in time O(n log2 n) as follows. First, we compute the set P1 of paths
starting in v1 and compute their density in linear time. Each of those paths P ∈ P1 is
mapped to a point uP := (len(P ∪R),wt(P ∪R)) in the plane and inserted into the dynamic
datastructure for the maintenance of the upper hull. This can be done in O(n log2 n). Then
we compute the set of paths P2 starting in v2. For each of these paths Q ∈ P2 we want to
compute the best path P ∈ P1, that is, a path P such that the concatenation of Q and P ∪R
has maximum density.
To this end, we map each Q ∈ P2 to a point −uQ := (− len(Q),−wt(Q)). Since we have

bounds on both the weight and the length of a feasible solution, not all paths in P1 will
be feasible partners for a given Q ∈ P2. We require that the length of P ∈ P1 is bounded

96

5.2 The Bi-constrained Maximum Density Subgraph Problem

by wt(P) ≥ W − wt(Q)− wt(R) and len(P) ≤ L− len(Q)− len(R). Using Lemma 5.1 we
can compute the maximum density partner for Q ∈ P2 in time O(log2 n). During of the
computation of the upper convex hull we can simultaneously perform the necessary tangent
queries using binary search on the constructed hull. Then we can compute the maximum
density path P ∗ through r in time O(n log2 n). We do this for all (at most 6) combinations
of children of r and store the path of maximum density. Next, we recursively compute the
best path through each of the children of r in the subtrees rooted in the children. Let P̂
be the maximum density path over all the paths computed this way. Then the maximum
density path in the tree rooted in r is the maximum density path over P ∗ and P̂ . The
recurrence relation for the computation is given by T (n) =

∑3
i=1 T (ni)+O(n log2 n), where ni

is the number of vertices in the tree rooted in vi. Hence, the running time of this approach
is O(n log3 n).

Next, we show that we can obtain a similar result if the host is a graph that can be
turned into a tree by deleting a fixed number of k edges. Roughly, the key idea consists of
enumerating all possible subsets of the k edges and computing, for each of those subsets,
the maximum density path containing all these edges. The following lemma can be used to
enumerate these paths efficiently.

Lemma 5.2. Given a graph G = (V,E ∪ F) such that T = (V,E) is a tree and F ∩ E = ∅
as well as F ′ ⊆ F and vertices s, t ∈ V incident to the edges in F ′, then there is at most
one s-t-path in G containing all edges in F ′. We can compute such a path or conclude that
no path exists in linear time.

Proof. We prove the existence of at most one path by contradiction. Suppose that there
are two different paths P1 and P2 both containing all edges in F ′ and ending with s and t,
respectively. Since the paths are different and both contain all edges in F ′ the symmetric
difference ∆ of E(P1) and E(P2) is non-empty and contained in E. Since both paths end
at s and t, all vertices of ∆ have even degree. Hence, ∆ contains a cycle contradicting the
fact that ∆ is a subgraph of T .
We proceed by showing that the uniquely determined feasible path can be computed in

linear time, if it exists. We root T in some vertex r ∈ V (T). By Tv we denote the tree rooted
in v ∈ V (T). For a given F ′ ⊆ F we call v ∈ V (T) \ {s, t} a loose end if it is incident to
exactly one edge in F ′. To compute P we traverse T in a bottom-up fashion constructing P
by iteratively matching loose ends. For each vertex v we store a reference to the unmatched
loose end, if it exists. Let v be a vertex with children w1, . . . , w`. Clearly, there can only be
a valid path if at most two children, say, w1 and w2, contain an unmatched loose end in their
subtrees. Otherwise there is no feasible path. If none of the children contains an unmatched
loose end, then there is nothing to do. If exactly one child contains an unmatched loose end
in its subtree, we store a reference to this vertex in v. If exactly two children of v contain
unmatched loose ends `1 and `2 in their subtrees, then we update the path by matching these
loose ends and adding the unique path in T that connects `1 and `2. We accept the resulting
graph if it is a path, which can be checked in linear time.

Theorem 5.3. Given an instance (G,wt, len,W,L) of the BMDS problem such that G is
a tree with k additional edges, we can compute a maximum density (W,L)-viable path in
time O(2kk2n log2 n+ n log3 n).

97

Chapter 5 The Density Maximization Problem in Graphs

s t

vi

vj
Ws(vi)

Wt(vj)

R

Ps(u)

u
w

Pt(w)

Figure 5.3: Illustration for the proof of Theorem 5.3. Extension of the unique path R using
all edges in F (dashed) with end vertices s and t.

Proof. Given a tree with k additional edges G = (V,E), we first compute an arbitrary
spanning tree T = (V,E′) of G. This leaves exactly k edges, denoted by F := E \ E′,
which may or may not be used by the optimal path. For each F ′ ⊆ F we compute the
maximum density path containing all edges in F ′ and we return the maximum density path
over all F ′ ⊆ F . First, we compute the maximum density path in T in O(n log3 n) time
using Theorem 5.2. Any path containing some non-empty subset of edges F ′ ⊆ F can be
decomposed into three subpaths P,Q and R such that R starts and ends with edges in F ′
and contains all edges in F ′. By Lemma 5.2 the possible paths R are uniquely determined by
choosing a set F ′ ⊆ F as well as two vertices incident to F ′ and R can be computed in linear
time from this information.
Hence, we iterate over all possible F ′ ⊆ F and all s, t ∈ V incident to F ′. In each of

the 2kk2 iterations, we first compute both weight and length of R in linear time, resulting
in O(2kk2n) time. Then we find paths P and Q starting at s and t, respectively, such that
the density of the concatenation of P , R and Q has maximum density among all paths
including R in time O(log2 n). For the remainder of the proof we show how this can be
accomplished and we thus assume that R, s and t are fixed. Our approach is similar to the
proof of Theorem 5.2. However, we must take care of the disjointness of the paths.

Let s = v0, . . . , v` = t be the sequence of vertices on the path from s to t in T . For each of
these vertices vi 6= s, t, we define Ws(v) as the set of vertices in Tvi that are reachable from s
in T without crossing the path R. Each of the vertices w ∈ Ws(vi) defines a path Ps(w).
Analogously, we define the set of vertices Wt(vi) in Tvi that are reachable from t in T without
crossing R. Each of those vertices w ∈Wt(vi) defines a path Pt(w) from t to w. Two paths
in Ps(vi) and Pt(vj), respectively, are disjoint, whenever vi is encountered before vj on the
path from s to t, that is, if i < j, otherwise they will have at least one vertex in common as
illustrated in Figure 5.3.
Now we describe how we insert the paths into the dynamic data structure for the mainte-

nance of the upper hull. As pointed out, paths may not be disjoint, hence, we must insert
the paths in a specific order. First, we insert all paths starting in s that do not include any
vertex on the path from s to t. Then, for each i = 1, . . . , `− 1 we insert all paths Ps(w) for
all w ∈Ws(vi). After inserting the paths for a specific i < `− 2 we make tangent queries for
all paths Pt(w) for w ∈Wt(vi+1). Note that at that point, we have included all paths starting
in s except those that would not be disjoint to the paths in Ps(w) for w ∈Wt(vi+1). After
we have inserted all paths Ps(w) for all w ∈Ws(v`−1) we have inserted all paths starting in s,

98

5.2 The Bi-constrained Maximum Density Subgraph Problem

which do not cross R. Then we make tangent queries for all paths starting in t that do not
use any vertex on the path from s to t.
In order to compute the best path for F = ∅ we proposed an algorithm with running

time O(n log3 n). For each specific non-empty choice of F ′ ⊆ F and vertices s and t incident
to F ′ we thus insert at most n points into the data structure with a total running time
of O(n log2 n) and we perform at most n tangent queries, each with a running time of at
most O(log2 n). Hence, the overall running time is O(2kk2n log2 n+ n log3 n).

Note, that the Relaxed Maximum Density Subgraph problem can be solved within
the same asymptotic bounds by similar means if the pattern is a path and the host is a tree
or a tree with k additional edges, respectively.

5.2.2 Density Maximization in Graphs with Bounded Treewidth
In this section we show that a large class of problems can be solved in pseudo-polynomial
FPT time when parameterized by the treewidth k of the host, that is, in time O(f(k)p(L, n))
where f is a function depending only on k and p is a polynomial depending on the maximum
length L of any feasible pattern and the number of vertices n of the graph. In the light of
the results on the hardness of the problem this seems to be the best we can hope for. Given
a graph G with treewidth k and a finite set of graphs F , we wish to find a connected (W,L)-
viable pattern H with maximum density that does not contain any graph in F as a minor.
Such a graph is called F-minor-free. This includes trees, (outer-)planar graphs as well as
graphs from various other minor-closed families of graphs. We give an algorithm for the
general case but note that the running time can be improved by considering special classes of
graphs. We assume that we are given a tree decomposition of the host as an input; otherwise it
can be computed in FPT time [Bod93, Klo94] with respect to the treewidth of the graph. We
note that the size of the forbidden obstructions is small for many interesting examples, such
as trees and (outer-)planar graphs whose sets of forbidden minors include graphs with ≤ 6
vertices.

Our algorithm is based on dynamic programming on the tree decomposition of the graph
and is inspired by Eppstein’s work on subgraph isomorphism in planar graphs [Epp95]. Based
on Eppstein’s idea of enumerating partial isomorphisms for the bags of the tree decomposition,
we enumerate partial minors of the graphs induced by the bags. In the following we present
the key ideas in more detail. Let G = (V,E) be a graph. Recall that a tree decomposition
of G is a pair (X , T) where X = {Xi | i ∈ I} is a collection of subsets of V which are called
bags and T = (I, ET) is a tree with the following properties.

(i) The union of all bags
⋃
i∈I Xi is equal to V .

(ii) For all edges e ∈ E there is an index i ∈ I such that e ⊆ Xi.

(iii) For all vertices v ∈ V , the tree induced by the set of nodes Xv = {i ∈ I | v ∈ Xi}
induces a connected subtree of T .

We will refer to the elements in I as nodes—as opposed to vertices in the original graph. The
treewidth of a tree decomposition equals maxi∈I |Xi|−1. The treewidth of a graph G = (V,E)
is equal to the minimum treewidth of a tree decomposition of G.

99

Chapter 5 The Density Maximization Problem in Graphs

Theorem 5.4. Let (G,wt, len,W,L) be an instance of the BMDS problem such that G has
treewidth at most k and let F be a non-empty finite set of graphs. Then the maximum density
connected F-minor-free (W,L)-viable pattern can be computed in time 2O(k2+k logN+N)|F|Ln
where N = maxF∈F |V (F)|.

Proof. We describe the algorithm for the case that F consists of only one forbidden obstruc-
tion F . The extension to a larger family of forbidden obstructions is straightforward. Our
algorithm is by dynamic programming on the tree decomposition of the graph. Robertson and
Seymour have proven the existence of an O(n3) graph minor test for any fixed minor F [RS95].
However, the proof is non-constructive and involves huge constants. Therefore, we describe
an explicit algorithm for the graph minor test which relies on the enumeration of subgraphs
instead. We note, however, that we need some explicit representation of the minor mappings
for the dynamic programming anyway, thus, this does not change the asymptotic complexity
of our approach.

For the proof we assume that we are given a nice tree decomposition. A tree decomposition
is called nice if T is a rooted binary tree where each node is of one of the following types:
A leaf node X contains only one vertex. An introduce node X has only one child Y such
that X = Y ∪ {v} for some v ∈ V . We say X introduces v. A forget node X has only one
child Y such that X = Y \ {v} for some v ∈ V . We say X forgets v. Finally, a join node X
has two children Y1 and Y2 such that X = Y1 = Y2. Given a graph with treewidth k, we can
always find a nice tree decomposition with O(n) nodes in linear time [Klo94].
Throughout the proof we assume that G = (V,E) is a graph with treewidth at most k

and we let (X , T) be a nice tree decomposition of G with treewidth at most k, rooted in a
node r ∈ I. For i ∈ I we denote the graph induced by the union of the bags of all descendants
of i (including i) by Gi. Using standard notation, we denote the graph induced by Xi

by G[Xi]. Let C := {V1, . . . , Vq} be a disjoint collection of connected subsets of V . Recall
that we denote the graph obtained by contracting the vertices in each of the sets Vi into a
single vertex by G/C and that we refer to the sets Vi as branch sets and to C as a contraction
set. Then F is a minor of G iff there is a subgraph H and a contraction set C such that H/C
is isomorphic to F .

Let C be a contraction set and let H be some subgraph in G[Xi] for some i ∈ I. A partial
minor embedding of F into H with respect to C is a mapping ϕ : V (F)→ V (H/C) ∪ {⊥,>}
such that uv ∈ E(F)⇒ ϕ(u)ϕ(v) ∈ E(H/C) for all uv ∈ E(F) with u, v /∈ ϕ−1(⊥)∪ ϕ−1(>),
hence, ϕ maps a subgraph of F to a minor of H. The image ⊥ represents vertices in Gi −Xi

and the image > represents vertices in G which have not been considered yet, that is, vertices
in G−Gi. A partial minor embedding ϕ is called proper if and only if ϕ−1(>) 6= ∅. Otherwise
it represents a minor embedding of F into some subgraph of Gi, and hence, H must be
disregarded as a partial solution.

For the algorithm we identify the vertices of F with the numbers 1, . . . , |V (F)|. The images
of these vertices under ϕ that are not contained in ϕ−1(⊥)∪ϕ−1(>) correspond to branch-sets
of H, that is, a partition of the vertices of H. By considering all |V (F) + 1|k+1 labelings
of the vertex set of H where each vertex is labeled with some number in 0, . . . , V (F), we
obtain a partition of the vertices induced by the labeling. Such a partition is valid only if
each set of vertices forms a connected set. Further, it defines an implicit mapping f of a
subset of the vertices of F to the partitions induced by the labeling. Vertices labeled 0 are
considered not to be images under f . We further encode for each vertex in F that does not

100

5.2 The Bi-constrained Maximum Density Subgraph Problem

have an image under f whether it is mapped to ⊥ or >. A mapping to ⊥ means that the
vertex can be mapped to some branch-set in the subgraph induced by the descendants of
node i whereas a mapping to > means that we will try to map the vertex to some branch-set
we have not encountered, yet. We can check in O(k2) time if such an encoding represents
a valid partial minor embedding of F into H. We check connectedness of the partitions in
time O(k). Further, we check if each edge in F is represented by some edge between the
corresponding branch-sets in H. This can be done in time O(k2) by iterating over all pairs of
vertices in H, and hence, over all pairs of labels and checking corresponding edges in both F
and H. Using these conventions, we can encode a partial minor embedding ϕ. It is not hard
to see that there are at most |V (F)|k+12|V (F)| many partial minor embeddings using this
kind of encoding.
By W (i,H,Φ, `) we denote the maximum weight of a subgraph G′ of Gi with length `,

such that G′[Xi] = H ⊆ G[Xi] and Φ represents all partial minor embeddings ϕ of F into G′.
We call the quadruple (i,H,Φ, `) an interface for i. An interface is called proper if and only
if ϕ(>) 6= ∅ for all ϕ ∈ Φ.

By G∗i we denote the graph obtained by adding new vertices > and ⊥ to G[Xi] which are
each connected to all vertices in Xi. Both weight and length of the additional edges is equal
to zero. We then consider connected subgraphs in G∗i . Note that any connected subgraph G′
can be mapped to a connected subgraph in G∗i .

The solution we are looking for will be the maximum over all interfaces (r,H,Φ, `) where r
is the root of the tree decomposition, such that H is connected and does not contain >, Φ is
proper and ` is at most L. If the maximum weight is at least W , then we return this weight,
otherwise there is no feasible solution. We now describe how W (i,H,Φ, `) can be computed
in T in a bottom-up fashion by dynamic programming starting at the leaves of T .

Leaf node i with Xi = {v}: For each subgraph H in G∗i that does not include ⊥ we compute
the set Φ of partial minor embeddings of F into H and we set W (i,H,Φ, 0) = 0, since
both the weight and length of any subgraph of G∗i are equal to 0 by construction. Note
that any vertex in F which is not mapped to v must be mapped to >. Hence, the time
complexity is asymptotically bounded by

O(1)︸ ︷︷ ︸
subgraphs H

· |V (F)|2 · |V (F)|︸ ︷︷ ︸
|Φ|

· O(1)︸ ︷︷ ︸
check mapping

·L .

Introduce node i introducing v: Let j be the only child of i and let (j,H ′,Φ′, `′) be an interface
for j such that Wj := W (j,H ′,Φ′, `′). We consider all connected subgraphs H of G∗i
which can be obtained from H ′ by adding v and some set of edges E+ incident to
both v and some set of vertices in H ′. For each fixed H obtained this way, we further
consider the set Φ of all partial minor embeddings ϕ of F into H that can be obtained
from some ϕ′ ∈ Φ′ by choosing some vertex in ϕ′−1(>) to be mapped to v by ϕ. If all
partial minor embeddings ϕ constructed this way are proper and ` := `′+ len(E+) ≤ L,
the interface (i,H,Φ, `) is proper, and we compute W (i,H,Φ, `) = Wj + wt(E+) and
setW (i,H ′,Φ′, `′) = Wj . Hence, the complexity for an introduce node is asymptotically
bounded by

2(k
2)︸ ︷︷ ︸

subgraphs H

· |V (F)|k+1 · 2|V (F)|︸ ︷︷ ︸
|Φ′|

· 2k︸︷︷︸
|E+|

· |V (F)|︸ ︷︷ ︸
new mappings to v

· k2︸︷︷︸
check mapping

·L

101

Chapter 5 The Density Maximization Problem in Graphs

Forget node i forgetting v: Let j be the only child of i and let (j,H ′,Φ′, `′) be an interface
for j such that Wj := W (j,H ′,Φ′, `′). If H ′ does not contain v, then there is nothing
to do and we simply set W (i,H ′,Φ′, `′) = Wj . Otherwise, we consider the set Φ of all
mappings ϕ that can be obtained from mappings ϕ′ by removing v from its partition
in the branch set. If v is the only vertex in its partition, then the corresponding
vertex in F must additionally be mapped to ⊥. We set W (i,H,Φ, `′) = Wj where H
is obtained from H ′ by removing v and mapping all edges from v to any vertex in Xi

by a corresponding edge with the end-vertex corresponding to v in ⊥. The resulting
complexity of a forget node is asymptotically bounded by

2(k
2)︸ ︷︷ ︸

subgraphs H

· |V (F)|k+1 · 2|V (F)|︸ ︷︷ ︸
|Φ′|

· O(1)︸ ︷︷ ︸
remapping

·L

Join node i joining j1 and j2: Let j1 and j2 be the two children of i and let (j1, H,Φ1, `1)
and (j2, H,Φ2, `2) be two interfaces. Two partial minor-embeddings ϕ1 ∈ Φ1 and ϕ2 ∈
Φ2 are compatible if all vertices v ∈ Xj1 ∩Xj2 satisfy ϕ−1

1 (v) = ϕ−1
2 (v). If ϕ1 and ϕ2

are compatible, we can obtain a new partial minor embedding by combining the two
partial embeddings into a new partial minor embedding ϕ12.
Let Φ12 be the set of partial minor embeddings combined in this manner from all
pairs of compatible partial minor embeddings in Φ1 × Φ2. Let W1 := W (j,H,Φ1, `1)
and W2 := W (j′, H,Φ2, `2). If ` := `1 = `2 and Φ := Φ1 = Φ2 we set W (i,H,Φ1, `) =
max{W1,W2}. Otherwise, we set W (i,H,Φ1, `1) = W1 and W (i,H,Φ2, `) = W2.
Additionally, we set W (i,H,Φ1 ∪ Φ2 ∪ Φ12, `1 + `2 − len(H)) := W1 + W2 − wt(H).
Clearly, the weight and length of H must be subtracted, since otherwise, these values
would be counted twice.

Since |Φ1 × Φ2| is bounded by |V (F)|k+1 × |V (F)|k+1, the resulting complexity in total is
asymptotically bounded by

2(k
2) · |V (F)|2k+2 · 22|V (F)| · 2k · |V (F)| · k2 ·M · n = 2O(k2+k log |V (F)|+|V (F)|)Mn .

If F contains more than one obstruction, the running time can be bounded by

2O(k2+k logN+N)|F|Ln ,

where N denotes the maximum number of vertices of any graph in F .

The following result can be obtained by a straightforward modification of the approach
sketched in this section. With the technique developed in the next section, this result will
yield an FPTAS for the Relaxed Maximum Density Subgraph problem.

Corollary 5.1. Let (G,wt, len,W) be an instance of the RMDS and let G and F be as in
Theorem 5.4. Then for any λ ∈ R a maximum penalized density F-minor-free (W,λ)-viable
pattern can be computed in time O(2O(k2+k logN+N)|F|λn) where N = maxF∈F |V (F)|.

102

5.3 An FPTAS for Relaxed Density Maximization

5.3 An FPTAS for Relaxed Density Maximization
In this section we consider the Relaxed Maximum Density Subgraph (RMDS) problem,
where the upper bound on the length may be violated at the cost of an additional penalty
term. We assume that the weight function is strictly positive. While it is NP-hard to decide
whether a feasible solution exists for the original problem, we show that this slight relaxation
allows us to give an FPTAS for penalized density. This FPTAS can be applied to any
problem that allows a quasi-polynomial-time algorithm that computes an optimal solution
with respect to the penalized density. Note that the relaxed density maximization problem
remains NP-hard as we can choose L very small such that every subgraph is penalized and
we have that pdens(H) ≈ dens(H)/2 for any subgraph H. Then the NP-hardness result of
Theorem 5.1 naturally applies to this problem. For simplicity, we will assume that the scaling
constant c for the penalized density equals 1.
Let Π be a relaxed density maximization problem that admits an algorithm A that takes

as input an instance I of the relaxed density maximization problem and λ ∈ N and computes
an optimal (W,λ)-viable pattern H with respect to penalized density, pdens, in O(p(λ, n))
time, where p(λ, n) is a function that is polynomial in λ and n. We show how to construct an
FPTAS for Π that uses A as a subroutine. We present our algorithm within the terminology
introduced by Schuurman and Woeginger for approximation schemes [SW]. We first structure
the output of our algorithm to form exponentially growing buckets based on the length of
the solutions. In order to compute approximately optimal solutions in each of the buckets
efficiently, we structure the input of algorithm A by exponentially compressing the lengths
and weights in such a way that the error resulting from the compression is proportional to
the size of the solutions in each bucket.
Assume that we are given a graph T . Let k be a suitably chosen integer depending on ε,

which will be defined later. We structure the output in blogk Bc−1 buckets, where B = len(G),
such that bucket i with 0 ≤ i ≤ blogk Bc−2 contains solutions with total length at most ki+2m,
where m is the number of edges. For each bucket we compute an approximately optimal
solution and return the overall best solution as output of our algorithm. To compute an
approximately optimal solution for bucket i, we structure the input by considering instances
Ii = (G, leni,wti,Wi, Li), where leni(e) =

⌈
len(e)/ki

⌉
, wti(e) = wt(e)/ki for e ∈ E(G)

and Wi = W/ki as well as Li = L/ki. We can think of these instances as being compressed.
We apply algorithm A on the compressed instances Ii with λ = k2m. A high-level description
of this algorithm is listed as Algorithm 5.1. When considering the i-th bucket, we refer to
the deviation of H ⊆ G with respect to leni and Li as the compressed deviation devi(H) =
max{0, leni(H)−Li}. Similarly, the penalized density of H ⊆ G is defined as the compressed
penalized density pdensi(H) = wti(H)/(leni(H) + devi(H)).
In order to show that Algorithm 5.1 is an FPTAS we proceed in several steps. First,

we bound the compressed penalized density used in the i-th iteration of the algorithm in
terms of the ordinary penalized density. In Lemma 5.4 we use this bound to derive an
approximation ratio for the penalized density. Finally, we show that the algorithm is an
FPTAS in Theorem 5.5.

103

Chapter 5 The Density Maximization Problem in Graphs

Algorithm 5.1: FPTAS for Relaxed Density Maximization
Input: An instance (G,wt, len,W,L) of Relaxed Maximum Density Subgraph, a

real number 0 < ε < 1
Output: An (1− ε)-approximation of the maximum penalized density subgraph

1 k ← d2
ε e

2 for i← 0 to blogk Bc − 1 do
3 Hi ← result of A on instance Ii with λ = k2m

4 return max0≤i≤blogk Bc pdensi(Hi)

Lemma 5.3. For any subgraph H and each 1 ≤ i < blogk Bc, the following holds

len(H) ≤ ki · leni(H) ≤ len(H) + |E(H)| · ki, (5.1)
dev(H) ≤ ki · devi(H) ≤ dev(H) + |E(H)| · ki, (5.2)

pdensi(H) ≤ pdensi−1(H) ≤ pdens(H), (5.3)
leni(H) ≤ k ·m implies that leni−1(H) ≤ k2 ·m. (5.4)

Proof. We use the following equation, which holds for any real positive numbers r, s ∈ R.

r ≤ s ·
⌈
r

s

⌉
≤ r + s (?)

We start out by proving Equation (5.1), which relates the length of a graph to the length of
the corresponding subgraph in the compressed instance of iteration i. By the definition of
len and Equation (?) we have

len(H) =
∑

e∈E(H)
`e

≤ ki ·
∑

e∈E(H)

⌈
`e
ki

⌉
by Equation (?)

= ki leni(H)

On the other hand,

ki leni(H) = ki ·
∑

e∈E(H)

⌈
`e
ki

⌉
≤

∑
e∈E(H)

(`e + ki) by Equation (?)

= len(H) + |E(H)| · ki .

Next, we consider Equation (5.2). Note that the first inequality trivially holds if dev(H) = 0.
So, we may assume that dev(H) > 0. By applying Equation (5.1) and the definition of the
compressed deviation we obtain

dev(H) = len(H)− L ≤ ki · leni(H)− L ≤ ki · devi(H) .

104

5.3 An FPTAS for Relaxed Density Maximization

The second inequality of Equation (5.2) again trivially holds if devi(H) = 0. For devi(H) > 0,
we obtain

ki devi(H) = ki leni(H)− L ≤ len(H) + |E(H)| · ki − L = dev(H) + |E(H)| · ki

using Equation (5.1) and the definition of the compressed deviation.
Finally, we consider Equations (5.3) and (5.4). Note that the first inequality of Equa-

tion (5.3) implies the second inequality since pdens0(H) = pdens(H) holds for any subgraphH.
From Inequality (?) we obtain that

leni−1(H) =
∑

e∈E(H)

⌈
`e
ki−1

⌉
≤

∑
e∈E(H)

k ·
⌈

`e
k · ki−1

⌉
= k · leni(H)

for any subgraph H, which immediately implies Equation (5.4). Similarly, we also obtain

k · devi(H) = k ·max{0, leni(H)− L} ≥ k ·max{0, len(H)− L} = devi−1(H)

Therefore, we obtain

pdensi(H) = wti−1(H)
k · (leni(H) + devi(H)) ≤

wti−1(H)
leni−1(H) + devi−1(H) = pdensi−1(H)

using wti(H) = wti−1(H) and leni(H) + devi(H) = k · (leni(H) + devi(H)), which concludes
the proof.

Let Ω(H) be the smallest integer such that lenΩ(H)(H) ≤ k2m. In other words, Ω(H)
denotes the smallest bucket for which H will be considered by algorithm A. Equation (5.4)
immediately implies a lower bound on the length of H in this bucket.

Corollary 5.2. For any subgraph H, Ω(H) > 0 implies lenΩ(H)(H) > km.

Now we are ready to bound the penalized density of an instance H in bucket Ω(H) in
terms of k and its true penalized density pdens(H).

Lemma 5.4. For any subgraph H, we have pdensΩ(H)(H) ≥ k−1
k+1 · pdens(H).

Proof. Clearly, this inequality holds if Ω(H) = 0. For Ω(H) ≥ 1, we have

len(H) ≥ kΩ(H) · lenΩ(H)(H)− |E(H)| · kΩ(H) by Equation (5.1)
≥ kΩ(H) · (lenΩ(H)(H)−m) since |E(H)| ≤ m.
≥ kΩ(H) · (km−m) due to Corollary 5.2
= (k − 1) · kΩ(H)m . (5.5)

This implies

kΩ(H)m ≤ len(H)
k − 1 ≤

len(H) + dev(H)
k − 1 . (5.6)

105

Chapter 5 The Density Maximization Problem in Graphs

Then the penalized density satisfies

pdensΩ(H)(H) =
wtΩ(H)(H)

lenΩ(H)(H) + devΩ(H)(H) by definition of pdens

= wt(H)
kΩ(H) · (lenΩ(H)(H) + devΩ(H)(H))

by definition of wtΩ(H)

≥ wt(H)
len(H) + dev(H) + 2|E| · kΩ(H) by Equations (5.1) and (5.2)

≥ wt(H)
len(H) + dev(H) + 2m · kΩ(H) since |E| ≤ m

≥ wt(H)(
1 + 2

k−1

)
(len(H) + dev(H))

by Equation (5.6)

= k − 1
k + 1 · pdens(H) .

This concludes the proof.

Theorem 5.5. Given 0 < ε < 1, we can compute a (1 − ε)-approximation for the relaxed
density maximization problem in O(p(m/ε2, n) logB) time, where G is the input graph and B
is the maximum total length of the edges, provided that an O(p(λ, n)) time algorithm for the
penalized density maximization as described above exists.

Proof. Clearly, the algorithm computes aW -viable solution if one exists due to the correctness
of algorithm A, the fact that we do not introduce any errors when scaling the weights, and
since the union of the buckets covers all feasible solutions.

Next we show that the algorithm indeed produces a (1− ε) approximation of the optimal
penalized density. Let opt be an optimal solution and H∗ be the solution returned by our
algorithm. By the above lemmas and choosing k =

⌈
2
ε

⌉
, we have

pdens(H∗) ≥ max
i≥Ω(H∗)

pdensi(H∗) by Algorithm 5.1

≥ max
i≥Ω(opt)

pdensi(opt) by Algorithm 5.1

≥ pdensΩ(opt)(opt) by Equation (5.3)

≥
(
k − 1
k + 1

)
· pdens(opt) by Lemma 5.4

=
(

1− 2
k + 1

)
· pdens(opt)

≥ (1− ε) · pdens(opt) by definition of k.

The running time of this approach clearly is O(p(m/ε2, n) logB) since k =
⌈

2
ε

⌉
≥ 2,

and logk B ≤ log2B = O(logB).

For reasons of simplicity, we assumed a scaling factor c = 1. By choosing k = dc+ 1/εe we
can accomplish the same result for any scaling factor c 6= 1. In our analysis, we further assumed
that we are given an algorithm A that computes a (W,λ)-viable pattern for a given value of λ.

106

5.4 Maximum Density Subgraphs with Structural Constraints

However, our approach still works if A only computes a W -viable pattern with maximum
penalized density. In each iteration we pre-process the instance Ii by removing edges that
are longer than k2m from G. Then the maximum length of any W -viable pattern considered
by A is naturally bounded by k2m2. The running time of the resulting FPTAS is bounded
by O(p(m2/ε2, n) logB), assuming that A has a running time bounded by O(p(len(G), n)).
Finally, with the results from Corollary 5.1 we immediately obtain the following result as
an application of the FPTAS to the problem of maximizing the penalized density objective
function.

Corollary 5.3. Let (G,wt, len,W) be an instance of the RMDS problem such that G has
treewidth at most k and let F be a finite set of graphs. Let B := len(G), 0 < ε < 1 and
let opt be the optimal penalized density of an F-minor-free W -viable pattern. Then a W -
viable F-minor-free pattern with penalized density at least (1− ε) · opt can be computed in
time O(2O(k2+k logN+N)|F|m/ε2 logB).

5.4 Maximum Density Subgraphs with Structural Constraints
In this section we drop the lower bound on the weight as well as the upper bound on the
length. Instead we impose structural constraints on the set of vertices by requiring a subset
of the vertices to be contained in any feasible solution. This models a scenario in which we
would like to inter-connect a subset of the given vertices in a certain way. For instance, we
may wish to connect the sites to form a spanning tree or a perfect matching or we may wish
to inter-connect a (small) subset of the vertices.

5.4.1 Parametric Search and Application
One of the most natural constraints on the vertex set is to require the pattern to span the
whole set of vertices. Chandrasekaran [Cha77] shows that a spanning tree with maximum
density can be computed in polynomial time. We provide an adapted version of the main
theorem that makes this possible, along with a proof of its correctness, and show how this
can be used as a generic tool in order to obtain efficient algorithms for the maximum density
subgraph problem.

Theorem 5.6 (Chandrasekaran [Cha77]). Let G = (V,E) be a graph with edge weights ae ∈
Z, be ∈ N for e ∈ E such that be > 0 for all e ∈ E and let S ∈ 2E be an arbitrary collection
of subsets of the edges. Let

θ∗ = max
X∈S

{∑
e∈X ae∑
e∈X be

}
and ϕ(θ) = max

X∈S

{∑
e∈X

(ae − θbe)
}
,

then

ϕ(θ) =

> 0 ⇔ θ < θ∗

= 0 ⇔ θ = θ∗

< 0 ⇔ θ > θ∗
.

107

Chapter 5 The Density Maximization Problem in Graphs

Proof. Let X∗ ∈ S be such that ϕ(θ) =
∑
e∈X∗(ae − θ · be):

ϕ(θ) =
∑
e∈X∗

(ae − θ · be) < 0 (5.7)

⇔
∑
e∈X

(ae − θ · be) < 0 ∀X ∈ S (5.8)

⇔
∑
e∈X ae∑
e∈X be

< θ ∀X ∈ S (5.9)

⇔ θ∗ < θ (5.10)

On the other hand, assume θ∗ > θ. Then and only then there is some X ′ ∈ S such that∑
e∈X′ ae∑
e∈X′ be

> θ (5.11)

⇔ ∃X ′ ∈ S :
∑
e∈X′

(ae − θ · be) > 0 (5.12)

⇔ ϕ(θ) =
∑
e∈X∗

(ae − θ · be) > 0 . (5.13)

Equality for the case ϕ(θ) = 0 follows from the previous observations.

In order to solve maximum density subgraph problems we adapt the optimization algorithm
suggested by Chandrasekaran to our setting. Essentially, the algorithm performs binary

Algorithm 5.2: Parametric Search
Input: Graph G = (V,E), ae ∈ Z, be ∈ N for e ∈ E, set of feasible solutions S ⊆ 2E
Output: S∗ ⊆ S with maximum density

1 [α, β]←
[
mine∈E

{
ae
be

}
,maxe∈E

{
ae
be

}]
2 while β − α ≥ (

∑
e∈E b2)−2 do

3 k ← α+β
2

4 d← maxX∈S {
∑
e∈X(ae − k · be)}

5 if d > 0 then
6 [α, β]← [k, β]
7 else if d < 0 then
8 [α, β]← [α, k]
9 else

10 [α, β]← [k, k]

11 Sα ← argmaxX∈S {
∑
e∈X(ae − α · be)}

12 Sβ ← argmaxX∈S {
∑
e∈X(ae − β · be)}

13 if dens(Sα) > dens(Sβ) then
14 return Sα
15 else
16 return Sβ

108

5.4 Maximum Density Subgraphs with Structural Constraints

s fQ = fXs

fP

θPQ

fR

θRQ

fX

θ

Figure 5.4: Upper boundary of the set of functions FS (gray line), segment s on the upper
boundary (bold black segment) and corresponding linear function fXs associated
with Xs ∈ S and interval that is dominated by s (gray area).

search on the density space using Theorem 5.6 and is listed as Algorithm 5.2. In Lemma 5.5
we show that this algorithm finds an optimal solution after a polynomial number of steps,
when the interval containing the optimal density is smaller than some value depending
on the input numbers. In this case, we return the maximum density of the two solutions
corresponding to the interval boundaries.

Lemma 5.5. Let G = (V,E) be a graph with edge weights ae ∈ Z, be ∈ N for e ∈ E and
let S ⊆ 2E be a set of feasible solutions. If we can compute

opt(θ) = argmaxX∈S

{∑
e∈X

(ae − θbe)
}

in time f(n) then Algorithm 5.2 computes a solution X∗ ∈ S with maximum density in
time O(f(n) log (nM)) where M denotes the largest input number.

Proof. First, we show that, if an interval I containing the optimal density is smaller than
some threshold value depending on the input numbers, then the optimal solution corresponds
to a solution that can be associated with the densities at the boundaries of the interval. Note
that every X ∈ S corresponds to a linear function fX : θ 7→

∑
e∈X ae−θ ·

∑
e∈X be. Essentially

we are interested in examining the upper envelope of the set of functions FS := {fX | X ∈ S}.
This upper boundary is composed of linear segments, such that each segment s corresponds to
some Xs ∈ S and to some interval Is on the θ-axis. This interval contains all θ for which Xs

maximizes
∑
e∈X(ae − θ · be) over all X ∈ S. We say that Xs is dominating on Is. See

Figure 5.4 for an illustration.
Let fP , fQ, fR, fS ∈ FS and let θPQ and θRS be the intersections of fP , fQ and fR, fS ,

respectively, such that θPQ < θRS . Then the length of the interval [θPQ, θRS] can be bounded
from below as follows. Let AX :=

∑
e∈X ae and let BX :=

∑
e∈X be. Then we have

fP (θPQ) = AP + θPQBP = AQ + θPQBQ = fQ(θPQ)
fR(θRS) = AR + θRSBR = AS + θRSBS = fS(θRS)

which, by a simple transformation, is equivalent to

θPQ = AP −AQ
BQ −BP

and θRS = AR −AS
BS −BR

.

109

Chapter 5 The Density Maximization Problem in Graphs

It follows that, if |θPQ − θRS | > 0, we have

|θPQ − θRS | =
∣∣∣∣∣AP −AQBQ −BP

− AR −AS
BS −BR

∣∣∣∣∣
=
∣∣∣∣∣(AP −AQ)(BS −BR)− (AR −AS)(BQ −BP)

(BQ −BP)(BS −BR)

∣∣∣∣∣
≥
∣∣∣∣∣ 1
(BQ −BP)(BS −BR)

∣∣∣∣∣
since the numerator must be an integer

≥ 1
(
∑
e∈E be)

2

since both BQ and BS are bounded by
∑
e∈E be. Hence, whenever |θRS − θPQ| > 0, we have

|θRS − θPQ| >
(∑
e∈E

be

)−2

.

As a consequence, let [α, β] be an arbitrary non-degenerate interval of length less than
this value containing the optimal density θ∗. Then this interval may contain at most one
intersection point of all the pairs of linear functions fP , fQ ∈ FS , that is, it intersects at
most two segments on the upper boundary of FS . Then, clearly, either the solution opt(α)
corresponding to α or the solution opt(β) corresponding to β must be optimal. Note, that
the optimal density will, in general, match neither α nor β in this case.
Next, we prove the bound on the running time. It is clear that δmin ≤ θ∗ ≤ δmax, where

δmin and δmax denote the minimum and maximum density of an edge of G, respectively.
Hence we only need to search the optimal value in the interval [δmin, δmax]. The size of this
interval is at most |2amax|, where amax denotes the maximum weight of an edge. since we
assumed be ≥ 1 for all e ∈ E. Algorithm 5.2 performs binary parameter search on this
interval using Theorem 5.6. In each step we bisect the previous interval, that is, after t
steps the interval has size at most 2|amax|/2t. Thus, after t > log |amax|+ 2 · log

∑
e∈E be + 1

steps the size of the interval is smaller than (
∑
e∈E be)

−2. By previous arguments either the
solution corresponding to the left boundary of the interval or the solution corresponding to
the right boundary of the interval is an optimal solution. Hence, it suffices to compute two
optimal solutions for α and β, respectively, and to compare their densities. The running time
of the algorithm is in O(f(n) · log (nM)) where M is the largest absolute value of the input
numbers. Hence, the running time is polynomial in the input size.

The algorithm provides a generic tool that can be applied to various problems, whenever the
corresponding single-objective optimization problem can be solved efficiently in the presence
of both positive and negative numbers. For instance, since perfect weighted matchings can be
computed in time O((m+ n logn)n) [Gab90] the lemma immediately implies the following.

Corollary 5.4. A perfect maximum density matching can be computed in time O((m +
n logn)n log (nM)).

110

5.4 Maximum Density Subgraphs with Structural Constraints

Next, we show that a maximum density subtree with k leaves can be computed in a tree
in polynomial time, again using the fact that we can solve the underlying single-objective
optimization problem efficiently.

Theorem 5.7. Given a tree T = (V,E), a maximum density subtree with exactly k leaves
can be computed in time O(k2n log (nM)) where M denotes the largest input number.

Proof. The proof exploits a combination of the parametric search technique and dynamic
programming. By applying the parametric search we reduce the problem to finding—for
various values of θ ∈ R—a longest subtree of T with k leaves, where the new length of
each edge e is given by ae − θbe. For an edge e = {u, v} we denote this new length
by λ(u, v) = ae − θbe.
In order to do compute the longest subtree of T with k leaves, we root the tree in some

vertex r ∈ V . For a vertex v ∈ V we denote the number of children of v by n(v) and we
denote the children by uv1 . . . , vvn(v).
Suppose we are given an optimal solution T ∗ for this problem. Let v∗ be the topmost

vertex in T ∗ with respect to the rooting. Then either v∗ is a leaf in T ∗ and there are only k−1
leaves of T ∗ in the subtrees rooted in the children of v or v∗ is an internal vertex with k
leaves in the subtrees rooted in the children of v∗. Let u ∈ V be a vertex of T and let Tu
denote the subtree of T rooted in u. Let T ′u be a subtree of Tu containing u. Further, let T ∗u
denote the subtree of T ∗ that is contained in T ′u and let k′ denote the number of leaves of T ∗
contained in T ′u. Then, clearly T ∗u is the longest subtree in T ′u rooted in u with k′ leaves. We
use this observation to decompose the problem into smaller sub-problems.
Let v ∈ V , 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n(v). Then we denote by Λ(v, i, j) the length of a

longest tree T̂ with i leaves, where v does not count as a leaf, such that T̂ is contained in the
tree induced by v and the subtrees rooted in its children uv1, . . . , uvj . We can compute these
values from the following equation

Λ(v, i, j + 1) = max

Λ(v, i, j),
Λ(v, i− 1, j) + λ(v, uj+1),
max1≤t≤i{Λ(v, i− t, j) + Λ(uj+1, t, n(uj+1)}+ λ(v, uj+1)

in a bottom-up manner on the tree, using Λ(v, 0, 0) = 0. This can be done in O(k2n) time.
Further, we denote by Λ(v, i, j) the length of a longest tree T̂ with i leaves, where v does

not count as a leaf, such that T̂ is contained in the tree induced by v and exactly one subtree
rooted in some child uvr of v, where j ≤ r ≤ n(v). These values can be computed in O(kn)
time from the following equation using the values computed in the previous step

Λ(v, i, j) = max
j≤r≤n(v)

{Λ(ur, i, n(ur)) + λ(v, ur)} .

Clearly, a tree with k leaves can only be found in a subtree of T with at least k − 1 leaves.
For each vertex v such that the tree Tv rooted in v contains at least k− 1 leaves, we compute
the longest subtree with k leaves, denoted by Λ∗(v), as follows

Λ∗(v) = max
{

Λ(v, k − 1, 1),
max1≤t≤k−1,1≤r≤n(v){Λ(v, k − t, r) + Λ(v, t, r + 1)}

}
.

111

Chapter 5 The Density Maximization Problem in Graphs

As mentioned earlier, this equation reflects the fact that v is either a leaf itself or an internal
vertex, in which case v must have at least two children in Tv. We achieve this by “guessing”
an index r such that the computed tree contains at least on child in uv1, . . . , uvr and one child
in uvr+1, . . . , u

v
n(v). Again, these values can be computed in O(kn) time. Finally, we return

the solution corresponding to the maximum value Λ ∗ (v) over all v ∈ V with at least k − 1
leaves in the subtree Tv. Using Lemma 5.5 the total time complexity is O(k2n log (nM)).

5.4.2 Maximum Density Subgraphs Spanning a Subset of the Vertices
In this section we consider maximum density subgraph problems with Steiner constraints.
Given a graph G = (V,E) and a set of terminals S ⊆ V the Maximum Density Steiner
Subgraph problem asks for a maximum density subgraph H containing all vertices in S.
First we show that this problem NP-hard and inapproximable unless P = NP, even if the
pattern is a path and there is only one terminal.

Theorem 5.8. The Maximum Density Steiner Subgraph problem is NP-hard, even if
all weights are positive, all numbers are chosen from two distinct values, there is only one
terminal and the pattern is a path. Furthermore, unless P = NP, this problem can not be
approximated within a constant factor in polynomial time under the same conditions.

We prove this theorem by a two-step reduction from the Longest Path problem. Given a
graph G = (V,E) the Longest Path problem is to compute a path with maximum length,
where the length is given by the number of edges on this path. This problem is NP-hard [GJ79]
and cannot be approximated within a constant factor unless P = NP due to Karger et
al. [KMR97]. First, we show that this problem remains NP-hard and inapproximable if we
require that the path starts in a predefined vertex r ∈ V . We refer to this problem as the
Rooted Longest Path problem and we refer to r as the root.

Lemma 5.6. The Rooted Longest Path problem is NP-hard and cannot be approximated
within a constant factor unless P = NP.

Proof. Let A be an algorithm that approximates the Rooted Longest Path problem
within a factor r. Then we immediately obtain an algorithm A′ approximating the longest
path by running A with root v once for each v ∈ V and returning the maximum of these
values. Clearly, A′ approximates the longest path within a factor of r. The claim then follows
from the results of Karger et al. [KMR97].

Proof of Theorem 5.8. We make a reduction from the Rooted Longest Path problem.
Assume we are given an instance I = (G, r) of the Rooted Longest Path problem,
where G = (V,E) is a graph and r ∈ V is the root. We construct a new instance I ′ = (G′, S)
of the Maximum Density Steiner Subgraph problem as follows. We let G′ = (V ′, E′)
such that V ′ = V ∪{x} for some new vertex x /∈ V and we set E′ = E∪{{x, r}} and S = {x}.
Further, let M := n2 + 1. We set we = 1 and `e = M for e = {x, r} and we set we = M
and `e = 1 for all e ∈ E.

We claim that there is a path in G′ rooted in x with density at least θ if and only if there
is a path in G with length at least dθ − 1e rooted in r. Note that a path in G′ of length i+ 1
rooted in x has density θi = (M + iM)/(M + i) for i ≥ 0. Since θi is monotonically increasing

112

5.4 Maximum Density Subgraphs with Structural Constraints

in i and we have i < θi < i+ 1 for i ≤ n and M ≥ n2 it follows that dθi − 1e = i and, hence,
the claim holds.

Suppose that A is an approximation algorithm that approximates the Maximum Density
Steiner Subgraph problem for path patterns within a factor rA. We show that we can
use A to approximate the rooted longest path problem within a factor 3rA. If r is isolated
in G, we return r as a longest path, which is an optimal solution in this case. Otherwise, let e
be an arbitrary edge incident to r in G. For a given instance I = (G, r) let PA be the path
computed by A for the instance I ′ = (G′, S) constructed from I as described above and let
θA be its density. If θA ≥ 2M/(M + 1) we return PA, otherwise we return the single edge e,
which together with the edge {x, r}, forms a path of length two with density 2M/(M + 1) in
G′.
In the following, let optI denote the longest path in G rooted in r and let optI′ denote

the maximum density Steiner path in G′. Further, let apxI′ denote the density of the
approximation as described above. Note that since 2M/(M + 1) > 3/2 for n > 1 we
have apxI′ > 3/2. It follows that

optI
apxI′

= doptI′ − 1e
dapxI′ −1e

≤ optI′
apxI′ −1

≤ 1
1− 1/ apxI′

· optI′
apxI′

<
1

1− 2/3rA

= 3 · rA .

The claim then follows from Lemma 5.6.

Although the Maximum Density Steiner Subgraph problem is NP-hard and unlikely
to be approximable if the pattern is a path, we may still be able to obtain fixed-parameter
tractable algorithms. First, we show that it is unlikely that the general problem is FPT when
parameterized by the number of vertices in the solution, when we have no constraint on the
feasible patterns.

Theorem 5.9. Maximum Density Steiner Subgraph is W [1]-hard when parameterized
by the number of vertices of the Steiner subgraph, even if S contains only one vertex.

Proof. We prove the theorem by reduction from the W [1]-hard problem k-Clique [DF95].
Given an instance of k-Clique, that is, a graph G = (V,E), we wish to decide if G has a
clique of size at least k. We transform this into an instance of Maximum Density Steiner
Subgraph as follows. We construct a graph G′ by adding a new vertex x to G that is
connected to all vertices in V . We set wtvw = lenvw = 1 for all vw ∈ E and we set wtxv = 0
and lenxy = 1 for all v ∈ V . Further, we set S = {x}. Clearly, there is a clique of size k
with m =

(k
2
)
edges in G if and only if G′ has a subgraph H with x ∈ H and density at

least m/(m+ 1).

While the Maximum Density Steiner Subgraph problem is W[1]-hard on general
graphs, it turns out to be FPT on planar graphs.

113

Chapter 5 The Density Maximization Problem in Graphs

s1 s2

︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
C1 C2 C3

Figure 5.5: Decomposition of an optimal colorful Steiner path. Terminals are depicted as
boxes.

Theorem 5.10. Maximum Density Steiner Subgraph is FPT on planar graphs when
parameterized by the number of vertices of the subgraph.

Proof. Let G be a planar graph and let S ⊆ V be a non-empty set of terminals. Since we are
looking for a connected subgraph and since S 6= ∅, it suffices to consider the subgraph G′
consisting of the (k−1)-neighborhood of some vertex s ∈ S. This graph is (k−1)-outerplanar
and has radius at most k − 1. Hence, by a result of Robertson and Seymour [RS84], G′ has
treewidth bounded by 3k − 2. Note, that a path is a simple, connected graph that does
not contain a triangle as a minor. Hence, using a modification of the algorithm proposed
in Theorem 5.4 in combination with Theorem 5.5, we can compute a subgraph of G′ with
maximum density in FPT time.

In contrast to the W[1]-hardness of the Maximum Density Steiner Subgraph problem
without constraints on the pattern, we show that the problem is FPT when parameterized
by the number of vertices if the pattern is a path. In order to obtain this result we use
the parametric search technique introduced in Section 5.4.1 in combination with Color
Coding [AYZ95]. Color Coding was introduced by Alon et al. [AYZ95] as a method for
finding subgraphs of bounded size in arbitrary graphs in FPT time. It can be used to find
paths and cycles in expected time 2O(k)m. The algorithms are randomized by construction,
but can be derandomized. We can directly apply Color Coding to find a maximum density
Steiner path with at most k vertices with high probability (WHP) in time 2O(k)m log (nM).
We can slightly improve on the standard algorithm by coloring the terminals in a deterministic
way, thus, using only k− s random colors and thereby improving the probability of obtaining
an optimal solution. In the following we further improve on this result when the number of
Steiner vertices is large compared to k.

Theorem 5.11. Given a set S of s terminals a maximum density Steiner path with k vertices
can be computed WHP in time O((2k−sm+ 3k−s)s2 log (nM)).

Proof. Since we apply the parametric search technique, we need to find, for various values
of θ, a longest path with respect to the edge-lengths λ(e) := ae − θbe for all e ∈ E. Suppose
we are given a random coloring of the vertices in V \S with k−s colors using some color set C
and we wish to find a longest colorful Steiner path for S. A Steiner path is called colorful, if
it contains each color exactly once. Note, that this implies that the path is simple, that is, it
does not contain multiple copies of any vertex. Our approach is based on a decomposition
of any optimal colorful Steiner path P for S into three optimal subpaths P1, P2 and P3 as
illustrated in Figure 5.5 such that the following holds:

(i) P2 starts and ends at terminals s1 and s2, respectively, and contains all terminals

114

5.4 Maximum Density Subgraphs with Structural Constraints

(ii) P1 and P2 end at terminals s1 and s2, respectively, and do not contain any other
terminals.

In order to compute P2, we further decompose this path into fragments each starting and
ending with a terminal and containing no other terminals apart from the end-vertices. Let c(v)
denote the color of vertex v. For each vertex v ∈ V \ S, x ∈ S and each set of colors C ′ ⊆ C
with c(v) ∈ C ′ we compute the maximum length L(x, v, C ′) of any colorful path from x to v
using all colors in C ′. Similarly, we compute for each z ∈ V the length L̂(z, C ′) of the longest
path ending in z using all colors in C ′. We compute these values by dynamic programming
in O(2k−s · s ·m) time using the equations

L(x, v, C ′) = max
w∈N(v)\S

{L(x,w,C ′ \ {c(v)}) + λ(v, w)}

L̂(z, C ′) = max
w∈N(z)\S

{L̂(w,C ′ \ {c(v)}) + λ(w, z)} .

For each x, y ∈ S and each set of colors C ′ ⊆ C we subsequently compute the maximum
length L(x, y, C ′) of any path from x to y using all colors in C ′ as well as for all z ∈ V the
maximum length L̂(z, C ′) of any path ending in z using all colors in C ′ by

L(x, y, C ′) = max
w∈N(y)\S

{L(x,w,C ′) + λ(w, y)} .

in time O(2k−s · s2 ·m). Implicitly, we obtain a combinatorial description of the longest
paths starting and ending at terminals as a complete multigraph GS = (S,M) on the set of
terminals in which each edge is annotated with its length and the set of colors used to attain
this length. The weighted multiset of edges in our multigraph GS = (S,M) is defined by

M =
{(
xy,C ′, L(x, y, C ′)

)
| x, y ∈ S,C ′ ⊆ C

}
.

Then we compute for each vertex x ∈ S and each subset X ⊆ S with x ∈ X and each
set of colors C ′ ⊆ C the length L̃(x,X,C ′) of the longest path in GS ending in x using all
vertices in X and all colors in C ′ using the equation

L̃(x,X,C ′) = max
y∈S,C′′⊆C′

{L̃(y,X \ {x}, C ′ \ C ′′) + L(x, y, C ′′)}

where L(x, {x}, C ′) = L̂(x,C ′). In order to do this efficiently, we consider all partitions of C
into three sets C \C ′, C ′′ and C ′ \C ′′. The number of these partitions is at most 3k−s. Hence,
the computation can be performed in time O(3k−s)s2. The optimal solution can then be
computed as

max
x∈S,C′⊆C

{L̃(x, S,C ′) + L̂(x,C \ C ′)} (5.14)

in time O(2k−ss). Hence, the dynamic programming for fixed θ takes O(2k−ss2m+ 3k−ss2)
time and the problem can be solved in time O((2k−sm+ 3k−s)s2 log (nM)).

The probability that a path of length at most k interconnecting a set of s vertices is colorful
is given by p(k, s) = (k − s)!/(k − s)(k−s) >

√
2π(k − s)e−(k−s) . Hence, a colorful path can

be found with probability ≤ ε if the number of trials is at least tε(k, s) = ln ε
ln(1−p(k,s)) =

| ln ε| · O(ek−s) .

115

Chapter 5 The Density Maximization Problem in Graphs

We conclude this section by showing that we cannot hope to extend this result to more
general patterns.

Theorem 5.12. It is NP-hard to decide whether there is a Steiner tree with at most k
vertices and density at least θ, even if we allow only one terminal.

Proof. We show NP-hardness by reduction from the NP-hard k-MST problem. Given an
edge-weighted graph G, a non-negative integer k and a weight W , the k-MST problem is
to decide whether there is a tree spanning at least k vertices with weight at least W . This
problem has been shown to be NP-hard by Ravi et al. [RSM+96] and it obviously remains
NP-hard if we require the solution to contain exactly k vertices.
We observe that deciding whether there is a tree with k vertices and density at least θ is

equivalent to deciding whether there is a tree with k vertices and length at most 0 where the
length of each edge is given by θbe − ae. To see this, note that∑

e∈E′ ae∑
e∈E′ be

≥ θ ⇔
∑
e∈E′

(θbe − ae) ≤ 0

by simple equivalent transformations.
Assume we are given an instance of k-MST, that is, a graph G = (V,E) and we wish

to decide if there is a tree with k vertices and length at most θ where the edge-lengths
are integral. We transform this into a set of |V | k-Maximum Density Steiner Tree
problems Gv such that G is solvable if and only if at least one of the new instances Gv is
solvable. We choose Gv = (V ∪{x}, E ∪{xv}) for some new vertex x. Further, we choose the
be ≡ 1 and ae := `e − θ and axv = 2θ and S = {x}. Hence, θbe − ae = `e, θbxv − axv = −θ
and each solution contains the edge sx.

By the above observations there is a tree with k vertices and length at most θ if and only
if there is a tree with k + 1 vertices including x with length at most 0, where edge lengths
are defined by θbe − ae. The latter is equivalent to deciding whether there is a tree with k
vertices and density at least θ.

5.5 Concluding Remarks
We have investigated the complexity of a framework for bi-objective network design problems
with one minimization and one maximization objective in the presence of additional constraints
by studying the complexity of maximizing the ratio of the two objectives for different classes
of hosts and patterns. Like many multi-objective optimization problems, the problems
we considered turned out to be NP-hard in general. Nevertheless, we presented efficient
algorithms for restricted variants of the problem as well as an FPTAS for a relaxed variant
of the problem.
While the bi-constrained density maximization problem is already NP-hard if the host is

an outerplanar graph, that is, a graph with treewidth two, and the pattern is a path, we were
able to obtain a pseudo-polynomial time algorithm for the case when the host has bounded
tree-width and the pattern is a graph from a minor-closed family of graphs. In some sense,
this is the best we can hope for, since the existence of a polynomial time algorithm for this
case would imply P = NP as the class of paths clearly is a minor-closed family of graphs.
Additionally, we presented an efficient algorithm for computing the maximum density path

116

5.5 Concluding Remarks

in a tree and in a graph that can be turned into a tree by removing only a fixed number of
edges, respectively. Again, this is in some sense the best we can hope for. While graphs that
can be turned into a tree by removing at most k edges have treewidth bounded by k + 1, we
cannot hope to extend this result to the class of graphs with treewidth k unless P = NP.
Interestingly, this result is obtained by applying geometric arguments to a problem that does
not have any geometric context at first glance. Further, we showed that a relaxed variant of
the density maximization problem admits a FPTAS, if we allow violating the upper bound
on the length of the sought solution at some extra penalty. That is, for this relaxed variant,
we can get rid of the pseudo-polynomiality at the cost of a loss of exactness.

Finally, we considered the density maximization problem in the presence of structural
constraints on the vertex sets. Although some density maximization problems involving
constraints on the vertex set of the graph, such as the problem of computing perfect matchings,
can be solved efficiently by parametric search in the density-space, the general maximum
density Steiner subgraph problem is NP-hard and inapproximable. Even worse, this problem
is W[1]-hard when parameterized by the number of vertices of the sought solution. In contrast
to this, we showed that the special case when the pattern is a path is fixed-parameter tractable
when parameterized by this number. Again, we cannot hope to generalize this problem very
much, since it turns out to be NP-hard already for general trees.

Open problems Due to the hard nature of both the bi-constrained density maximization
problem and the relaxed density maximization problem, it seems unlikely that there exist
efficient exact algorithms for all instances of the problem. Therefore we studied approximation
algorithms and FPT algorithms. Whereas we only studied parameterizations with respect to
treewidth and the number of vertices of the pattern, there may be other interesting parameters
of the problem. Further, it seems to be an interesting challenge to devise efficient and effective
heuristics for the problem. Another interesting problem concerns the question whether there
is a meaningful class of graphs admitting the efficient computation of a maximum density
path between the class of graphs with bounded tree-width and the class of graphs that can
be turned into a tree by removing a fixed number of edges. Finally, it seems to be worthwhile
to study variants of the problem in which we know more about the weights and the lengths
of the edges, for instance, if we consider the problem on geometric graphs and the length
corresponds to the Euclidean distance whereas the weight is proportional to the number of
points in the vicinity of the edge, say. This problem variant can be motivated from network
construction problems such as the construction of a new power supply system where each
edge in the graph corresponds to a possible route for the network and points in the vicinity
of an edge correspond to users that can profit from this line.

117

Chapter 5 The Density Maximization Problem in Graphs

118

Chapter 6

Orthogeodesic Embedding of Planar Graphs

Up to this point we have considered purely combinatorial network construction problems.
In this and the following chapters we turn our attention to geometric network construction
problems such as the problems arising, for instance, in the context of very large scale
integration circuit design. These network construction problems involve the computation
of a geometric representation of the network—or an embedding of the network into the
plane—and are typically considered in the field of graph drawing.

In this chapter and the following two chapters, we explore a new convention for embedding
graphs into the plane, called the orthogeodesic or Manhattan-geodesic drawing convention.
It requires that edges are drawn as interior-disjoint monotone chains of axis-parallel line
segments, that is, as geodesics with respect to the Manhattan metric. From the perspective of
geometric network construction the resulting networks will yield cost-effective and functional
geometric representations of the considered networks since the network links are shortest
possible and can easily be manufactured as a consequence of their orthogonal layout. From
the graph drawing perspective, on the other hand, the resulting networks tend to yield very
clear drawings, since the edges are short and monotone, and since the number of slopes is
rather small.

First, we show that geodesic embeddability on the grid is equivalent to 1-bend embeddability
on the grid. For the latter question an efficient algorithm has been proposed. Second, we
consider orthogeodesic point-set embeddability where the task is to decide whether a given
graph can be embedded on a given point set. We show that this problem is NP-hard. In
contrast, we efficiently solve orthogeodesic polygonization—the special case where the graph
is a cycle. Third, we consider orthogeodesic point-set embeddability where the vertex–point
correspondence is given. We show that, on the grid, this problem is NP-hard even for perfect
matchings. Without the grid restriction, however, we can efficiently test embeddability for
any planar graph (of maximum degree 4). This chapter is based on joint work with Bastian
Katz, Ignaz Rutter and Alexander Wolff [KKRW10, KKRW09].

6.1 Introduction
In this chapter we introduce a new drawing style for planar graphs. One of the most
popular drawing styles is the orthogonal drawing style, which requires edges to be drawn as
interior-disjoint orthogonal chains, that is, chains consisting of axis-parallel line segments.
Restricting the number of edge directions—as in the rectilinear drawing style—potentially
yields very clear drawings. We go a step further and insist that, additionally, edges are drawn
as monotone orthogonal chains. Such chains are called orthogeodesic chains or Manhattan

119

Chapter 6 Orthogeodesic Embedding of Planar Graphs

chains since they are shortest possible. The idea behind monotonicity is that following the
course of a monotone curve is potentially easier than following the course of a curve that
is allowed to make detours, an idea that is also justified by the fact that geodesic path
tendency has been identified as a central graph reading behavior by Huang et al. [HEH09].
In a sense, Manhattan paths thus combine the monotonicity of straight-line drawings with
the idea of a limited number of slopes from the orthogonal drawing style. Manhattan paths
are geodesics with respect to the Manhattan metric. Therefore we name this drawing style
the orthogeodesic or Manhattan-geodesic drawing style.

Related Work Monotone drawings have been studied from various points of view. Pach
and Tóth [PT02] consider x-monotone drawings of planar graphs and show that, if each
pair of edges crosses an even number of times, then there is a crossing-free x-monotone
drawing, in which the x-coordinates remain unchanged and the edges are drawn as straight-
line segments. Recently, Angelini et al. [ACD+11] considered monotone drawings, in which
each pair of vertices must be connected by a path that is monotone in some direction and
presented algorithms for computing such drawings for trees and bi-connected graphs on the
grid. Further, monotone drawings are related to upward-drawings [DBT88], which require
edges to be directed upward, and greedy drawings [AFG09] which allow for a greedy routing
scheme, in which we choose any vertex closer to the destination in every step.

In the Euclidean plane, geodesics are straight-line segments, and the classic result of König,
Fáry, and Stein says that the class of graphs that have a straight-line drawing is exactly the
class of planar graphs. Since there are efficient (linear-time) planarity-testing algorithms, we
can decide efficiently whether a given graph has a Euclidean-geodesic drawing. We consider
the same problem, which we call Orthogeodesic Embeddability, with respect to the
Manhattan distance. As an example consider the graph K4, that is, the complete graph on
four vertices, which has a geodesic drawing in the Euclidean plane but not in the Manhattan
plane. To avoid problems of drawing resolution, both questions are also interesting on the
grid. The Euclidean case has been solved, for example, by Schnyder [Sch90] who can draw
any planar n-vertex graph on a grid of size (n− 2)× (n− 2), which is asymptotically optimal
in the worst case.

Fixed point set Next, we consider the setting, in which we are given a graph and, additionally,
a finite set of points (in the plane or on the grid) to which the vertices of the graph must be
mapped. We call this problem Orthogeodesic Point-Set Embeddability. Kaufmann
and Wiese [KW02] considered point-set embeddability (PSE) with respect to the polyline
drawing convention. They showed that it is NP-hard to decide whether a graph can be
embedded on a point set with at most one bend per edge and that two bends are sufficient for
any planar graph and any point set. Cabello [Cab06] showed that the problem is also NP-hard
for zero bends, that is, it is NP-hard to decide whether a planar graph has a crossing-free
straight-line embedding on a given point set. Everett et al. [ELLW10] showed that for every
integer n > 0 there is a universal set Un of n points such that every n-vertex planar graph
can be 1-bend embedded on Un.
A special case of both the straight-line and the orthogonal drawing convention has also

been considered. Rappaport [Rap86] showed that it is NP-hard to decide whether a set P
of n points has an orthogonal polygonization, that is, whether the n-cycle can be realized on P

120

6.1 Introduction

using horizontal or vertical edges only. O’Rourke [O’R88] proved that if one forbids 180◦-
degree angles in the vertices, then there exists at most one simple rectilinear polygon with
vertex set P . He also showed how to reconstruct the polygon from P in O(n logn) time. We
refer to Demaine’s survey [Dem07] about problems related to polygonization.

Point-set embeddability with the same drawing convention but with respect to a different
graph class—perfect matchings—was considered by Rendl and Woeginger [RW93]. They
showed that given a set of n points in the plane, one can decide in O(n logn) optimal time
whether each point can be connected to exactly one other point with an axis-parallel line
segment. They also showed that the problem becomes NP-hard if one insists that the segments
do not cross. Hurtado [Hur06] gave a simple O(n logn)-time algorithm for the same problem
under the orthogeodesic drawing convention. The idea is to alternatingly go up and down
the occupied grid columns.

We will study a two-colored version of the orthogeodesic point-set embeddability problem
for paths in Chapter 8. We show that it is NP-hard to decide, whether a path can be
embedded on a set of n two-colored points on the grid such that no two points are horizontally
or vertically aligned and such that all adjacent pairs of vertices are mapped to points with
different colors. However, we also show that the problem can be solved efficiently, if there is
an unoccupied column or row between each pair of points.
A somewhat related problem is that of constructing Manhattan networks. Given a set of

points, find a set of axis-parallel line segments whose union contains a geodesic for each pair of
points. Contrary to our setting, however, geodesics may intersect and overlap. Constructing
minimum Manhattan networks, that is, networks of minimum total length, has recently been
shown NP-hard [CGS11].

Fixed correspondence We further restrict the placement of the vertices by making the
bijection between vertices and points part of the input. We call the resulting problem
Labeled Orthogeodesic PSE. A special case of this problem (where the graph is a perfect
matching) has applications in VLSI layout. Insisting on orthogeodesic connections makes
sure that signals reach their destinations as fast as possible. For example, a popular, but
more restrictive wiring technique in VLSI layout, single-bend wiring, uses special geodesic
connections with only one bend per edge. Raghavan et al. [RCS86] have shown that one can
decide our perfect matching problem efficiently when insisting on at most one bend per edge.
For the same problem with given vertex–point correspondence but under the polyline

drawing convention, Pach and Wagner [PW01] showed that it is possible to embed any planar
graph on any set of points, but they also showed that some edges may require Ω(n) bends.
For the case that one insists on at most one bend per edge, Goaoc et al. [GKO+09] showed
that it is NP-hard to decide whether a given graph can be 1-bend embedded on a given
set of points with given vertex–point correspondence. They also showed that it is hard to
approximate the number of edges that are drawn with one bend even if one knows that the
given instance is a yes-instance of the previous problem.

Contribution Drawing graphs in the orthogeodesic drawing style opens up a large new
field of research. In this chapter we study orthogeodesic embeddability problem from an
algorithmic point of view for planar graphs.
We show that Orthogeodesic Embeddability on the grid is equivalent to deciding

121

Chapter 6 Orthogeodesic Embedding of Planar Graphs

Table 6.1: Summary of the results for the considered orthogeodesic embedding problems;
hard is short for NP-hard.

Orthogeodesic Orthogeodesic Point-Set Embeddability
Embeddability unrestricted labeled (on grid) labeled (off grid)

Planar graph P [Thm. 6.1] hard[Th. 6.2] hard [Th. 6.4] P [Th. 6.5]
Matching trivial P [Hur06] hard [Th. 6.4] P [Th. 6.5]
Polygonization trivial P [Th. 6.3] open P [Th. 6.5]

whether the given graph has a rectilinear one-bend drawing on the grid in Section 6.2. Bläsius
et al. [BKRW10] proposed an algorithm to decide the latter question efficiently. It is easy to
see that a rectilinear one-bend drawing of an n-vertex graph fits on the n× n grid.

Further, we prove that Orthogeodesic PSE is NP-hard on (and off) the grid, reducing
(in two steps) from Hamiltonian Cycle in Section 6.3. In contrast, we give a complete and
easy-to-check characterization of all yes-instances of Orthogeodesic Polygonization,
which is the special case of Orthogeodesic PSE where the input graph is restricted to
a cycle. Recall the results of Rappaport [Rap86] and O’Rourke [O’R88] concerning the
corresponding problem where edges must be drawn as axis-parallel line segments, that is,
without bends.

As a side note, we briefly mention that we will study orthogeodesic embeddings of trees on
general point sets, that is, point sets with no horizontally or vertically aligned points, from
a combinatorial point of view in the following Chapter 7. For different classes of trees and
various additional constraints on the embedding, we present upper bounds on the minimum
number of points f(n) such that every tree of the given class with n vertices can be embedded
according to the given constraints on every general point set with f(n) points, thus, providing
a sufficient characterization of a large class of point sets admitting orthogeodesic embeddings
of all trees.
Finally, we show that Labeled Orthogeodesic Matching on the grid is NP-hard

by reduction from 3-Partitionin Section 6.5. This implies NP-hardness of Labeled
Orthogeodesic PSE on the grid and, by a simple reduction, the hardness of finding p
vertex-disjoint paths on a directed grid. The latter result complements a result of Marx [Mar04]
saying that it is NP-hard to find p edge-disjoint paths in grid graphs. Our proof vitally
exploits the space limitation of the grid. On the other hand, we show that Labeled
Orthogeodesic PSE can be solved efficiently if we loosen or drop this limitation.
We give a list of results and open questions in orthogeodesic embeddability in Table 6.1.

In the remainder of the chapter, by a grid geodesic (or, even shorter, a geodesic) we mean a
orthogeodesic chain connecting two grid points on the grid. A geodesic grid embedding (or
geodesic embedding for short) of a graph G is a drawing of G such that the vertices of G are
mapped to grid points and the edges of G are mapped to interior-disjoint grid geodesics. We
only consider 4-planar graphs, that is, planar graphs with maximum degree 4, since each
point in the plane allows for at most 4 outgoing orthogonal paths. When considering an
instance of Labeled Orthogeodesic PSE, we will identify the vertices of the graph and
the given point set. Hence, we will not refer to the set of points as a separate input, but
rather as the set of vertices of the given graph.

122

6.2 Orthogeodesic Embeddability

6.2 Orthogeodesic Embeddability
In this section we ask whether a given planar graph has an orthogeodesic embedding on
the grid, that is, we allow the vertices to be mapped to arbitrary grid points. Clearly, this
question makes only sense for graphs of maximum degree 4, but K4, for instance, does not
have a geodesic embedding on the grid.
In the following, we show that a graph admits an orthogeodesic embedding on the grid if

and only if it admits an orthogonal embedding on the grid with at most one bend per edge.
It is well-known, that it is NP-hard to decide if a given graph has a rectilinear embedding on
the grid without bends [GT01]. On the other hand, it is also well-known, that every 4-planar
graph is 3-bend-embeddable and every planar graph is 2-bend-embeddable with the only
exception of the octahedron [BK94]. Further, it is known that every series-parallel graph
is 1-bend-embeddable [TNU09]. Hence, all outerplanar graphs have geodesic embeddings.
Bläsius et al. [BKRW10] present an efficient algorithm for computing a 1-bend embedding of
a given 4-planar graph in O(n2.5) time. Hence, we have the somewhat surprising result that
we can efficiently recognize graphs that admit an orthogeodesic embedding on the grid.

Theorem 6.1. Let G = (V,E) be a planar graph. Then G has an orthogeodesic embedding
on the grid if and only if G is 1-bend embeddable on the grid.

Proof. The “if”-direction is trivially true, so we immediately turn to the “only if”-direction.
Suppose that G has an orthogeodesic embedding E on the grid. We turn E into an orthogonal
representation as introduced by Tamassia [Tam87]. Such a representation consists of lists,
one for each face of the given embedding. The list for a face f has, for each edge e incident
to f , an entry describing (a) the shape of e in terms of left (−90◦) and right (+90◦) turns,
and (b) the angle that the edge makes with its successor in the cyclic order of the edges
around f .

Since E is orthogeodesic, the angles along each edge sum up to a value in {−90◦, 0◦, +90◦}.
From the representation of E we compute a new representation where we replace the shape
entry of each edge by the corresponding sum. The result is a valid representation since
for each face the sum of the inner angles remains the same and for each vertex the sum
of the angles between consecutive incident edges also remains the same. Since the new
representation is valid, Tamassia’s flow network [Tam87] yields a corresponding (1-bend)
embedding of G.

6.3 Orthogeodesic Point-Set Embeddability
Next, we ask whether a given planar graph can be embedded on a given set of grid points.
We assume that we are not given a bijection between vertices and points. We refer to this
problem as Orthogeodesic PSE. We prove that in general, this problem is hard, using a
two-step reduction from Hamiltonian Cycle. Our proof also works in the case where the
orthogeodesic chains are not restricted to the grid.
We start by showing that the Hamiltonian Cycle Completion (HCC) problem is

NP-hard by reduction from Hamiltonian Cycle. HCC is defined as follows. Given a
non-Hamiltonian cubic graph G, decide whether G has two vertices u and v such that G+ uv
(i) is planar, (ii) has a Hamiltonian cycle H, and (iii) has an embedding such that u and v
are incident to at most two faces on the same side of H.

123

Chapter 6 Orthogeodesic Embedding of Planar Graphs

u v
ū v̄

(a)

u v
ū v̄

(b)

Figure 6.1: Gadget that replaces the edge uv of G in Guv (when reducing from HC to HCC).

Lemma 6.1. Hamiltonian Cycle Completion is NP-hard.

Proof. We reduce from the NP-hard problem Hamiltonian Cycle (HC), where the
task is to decide whether a given planar cubic graph is Hamiltonian [GJ79]. Given an
instance G = (V,E) of HC, we construct, for some fixed u ∈ V and each uv ∈ E, an
instance Guv of HCC. The graph Guv is a copy of G where we replace uv by the gadget
depicted in Figure 6.1a. We claim that the edge uv lies on some Hamiltonian cycle in G if
and only if Guv is a yes-instance of HCC.

We first assume that Guv is a yes-instance of HCC. Then there is a pair {a, b} of vertices
such that Guv + ab is Hamiltonian as illustrated in Figure 6.1b. The vertices a and b must
lie in our gadget, one on each side (albeit not necessarily {a, b} = {ū, v̄}); otherwise u or v
would remain separators. It is obvious how to transform a Hamiltonian cycle in Guv + ab
into a Hamiltonian cycle in G.

Conversely, assume G contains a Hamiltonian cycle H. Then H must contain u and some
edge uv. We observe two things. First, if we add the edge ūv̄ to Guv, then the concatenation
of ūv̄, the bold black edges in the gadget, and H−uv forms a Hamiltonian cycle H̄ in Guv+ūv̄.
Second, the planar embedding that Guv + ūv̄ inherits from G and from the embedding of the
gadget as depicted in Figure 6.1b makes sure that ū and v̄ are incident to two faces on each
side of H̄.
Thus, we could apply a hypothetical algorithm for HCC to Guv for each edge uv of G

incident to a fixed vertex v of G. As soon as the algorithm finds a vertex pair {a, b} such
that Guv+ab is Hamiltonian, it is straight-forward to construct the corresponding Hamiltonian
cycle in G. If, on the other hand, the algorithm decides for each edge uv of G that Guv is a
no-instance, we can conclude that G is not Hamiltonian. This yields the NP-hardness of
HCC.

Now we are ready to show the hardness of Orthogeodesic PSE.

Theorem 6.2. Orthogeodesic PSE is NP-hard, even for subdivisions of cubic graphs.

Proof. Our proof is by reduction from HCC. Suppose we are given an instance G = (V,E)
of HCC. Note that n = |V | is even, since G is a planar cubic graph and since the number
of vertices with odd degree in a planar graph must be even. Let k = n/2 + 1. Given three
non-negative integers k0, k1, k2, let the point sets P0 = {(−j, 0) | j = 0, . . . , k0 − 1}, P1 =
{(j, nj) | j = 1, . . . , k1}, P2 = {(j,−nj) | j = 1, . . . , k2}, and P (k0, k1, k2) = P0 ∪ P1 ∪ P2 be
constructed as illustrated in Figure 6.2a. Note that the points in P (k0, k1, k2) are placed
such that between any two consecutive non-empty rows of the integer grid there are n− 1
empty rows. We now construct a graph G′ = (V ′, E′) by subdividing every edge of G by
a vertex of degree 2. This yields |V ′| = |V |+ |E| = 2n− 1 + k. In the following, we show

124

6.3 Orthogeodesic Point-Set Embeddability

k0

k1
k2

1
P1

P0

P2

n

(a) P (k0, k1, k2)

u

v

(b)

v u

(c)

v

(d)

Figure 6.2: Reduction of HCC to Orthogeodesic PSE.

that G′ can be embedded on P (2n− 1, k1, k2) for some k1, k2 with k1 + k2 = k if and only
if G is a yes-instance of HCC.
Assume that G is a yes-instance of HCC. Then there is a pair {u, v} of vertices such

that G+ uv contains a Hamiltonian cycle and u and v are incident to two faces on either
side of this cycle. Without loss of generality, we can assume that uv is incident to the outer
face. An example of a plane graph G′ is depicted in Figure 6.2b; the subdivision vertices
are marked by circles, the original vertices of G are marked by black disks. Maintaining the
combinatorial embedding, we can embed the Hamiltonian path connecting u and v including
its subdivision vertices on a set of 2n− 1 points on a horizontal line as in Figure 6.2c. We
additionally embed the faces inside the cycle above the path and the faces outside the cycle
below the path. Since each vertex of G′ has degree at most 3, each vertex has at most one
edge going up or down—except u and v, which both have exactly one edge going up and
one going down. We set k1 and k2 to the numbers of edges inside and outside the cycle,
respectively. Then we can map the subdivision vertices of the remaining edges to the point
sets P1 and P2, and route the edges as illustrated in Figure 6.2d. Each subdivision vertex v
that is mapped to a point in P1 ∪ P2 has two neighbors, a left neighbor v− and a right
neighbor v+ (according to their x-coordinates). We route the edge vv− with one bend and
the edge vv+ with two bends. Note that the empty rows leave enough space for all horizontal
edge segments.

Conversely, assume G′ has an orthogeodesic embedding on P (2n−1, k1, k2) with k1+k2 = k.
Then, the k vertices that are mapped to points in P1 ∪ P2 are incident to at most 2k = n+ 2
edges. This is due to the fact that each such edge has its lexicographically larger endpoint in
either P1 or P2, and we claim that no point in P1 ∪ P2 can be adjacent to more than two
lexicographically smaller points. To see the claim, note that for any point v ∈ P1 the set of
lexicographically smaller points is contained in the third quadrant with respect to v. Clearly,
at most two geodesics can go from v to points in any fixed quadrant. For points in P2, the
argument is symmetric. Thus our claim holds.
Since G is cubic, G′ has 3n edges. This leaves 3n − (n + 2) = 2n − 2 edges incident to

points in P0 only. Since |P0| = 2n− 1, P0 induces a path π that alternates between vertices

125

Chapter 6 Orthogeodesic Embedding of Planar Graphs

of degree 3 (original vertices) and degree 2 (subdivision vertices). There are two possibilities:
either both endpoints—call them s and t—have degree 2 or both have degree 3. In the
former case, π would contain n− 1 degree-3 vertices, and s and t would be adjacent to the
only remaining degree-3 vertex (not in P0). This would mean that G is Hamiltonian—a
contradiction.
Thus we may assume that s and t have degree 3. In this case, π witnesses a Hamiltonian

path connecting s and t in G. This Hamiltonian path can be completed to a Hamiltonian
cycle by an edge through the outer face of G. Since both u and v are incident to one edge
pointing up and one edge pointing down from the path, they are incident to two faces on
either side of the cycle in this embedding. This shows that G is indeed a yes-instance of
HCC.

Note that the proof of Theorem 6.2 implies that the result extends to the problem where
the geodesics are not restricted to the grid.

6.4 Orthogeodesic Polygonization
Although Orthogeodesic PSE is NP-hard for general graphs, we can solve the problem
efficiently for cycles. For a given set of grid points in the plane we wish to decide whether
there is an orthogonal polygon on the grid containing all points on its boundary, such that
consecutive points are connected by orthogeodesic paths. We call this problem Ortho-
geodesic Polygonization. We present a simple characterization of the yes-instances of
this problem. The proof is constructive and yields an efficient algorithm that, for a given set
of grid points, computes an orthogeodesic polygonization or proves that such a polygonization
does not exist. Recall that the orthogonal polygonization problem is NP-hard, if the edges
are not allowed to have bends [Rap86] and that, on the other hand, it can be efficiently solved
if we additionally insist on right angles at the vertices [O’R88]. In contrast to this, we do
allow bends on the edges, albeit only as long as the edges remain orthogeodesic chains, and
we do not insist on right angles at the vertices.

In order to characterize the yes-instances of Orthogeodesic Polygonization, we
partition the grid points in a given axis-parallel rectangle B on the grid into two groups
as illustrated in Figure 6.3a. We say that a grid point p in B is even (with respect to B)
if its rectilinear distance to the lower left corner of B is even. Otherwise, we say that p
is odd (with respect to B). We denote the even points by even(P) and the odd points by
odd(P), respectively. Further, we call a set of points degenerate if the set is contained in
an axis-parallel line. It is clear that degenerate point sets do not admit an orthogeodesic
polygonization. We now characterize all point sets that do admit a polygonization.

Theorem 6.3. Let P be a non-degenerate set of points on the grid, let B(P) be the bounding
box of P , and let h and w be the numbers of rows and columns spanned by B(P), respectively.
Then P has an orthogeodesic polygonization if and only if either (i) h or w is even or (ii) P
does not contain all even points with respect to B(P).
We can test, in O(n) time, whether a given set of n points has a geodesic polygonization,

and if so, compute one within O(n logn) time.

Note that this implies that we can always find an orthogeodesic polygonization with at
least n− 1 points by removing an arbitrary even point if P is characterized by (ii). Before

126

6.4 Orthogeodesic Polygonization

B

(a)

B

(b)

Figure 6.3: (a) A polygon hits even grid points (black disks) and odd grid points (circles)
alternatingly. (b) If a point set contains a corner of its bounding box, we can
assume that it also contains the (marked) points at distance 1 from that corner.

we prove this theorem, let us quickly consider the case that we are not restricted to the
grid. If P is a non-degenerate set of points in the plane, we can use the grid Γ(P) induced
by P . If P fulfills the requirements of Theorem 6.3 with respect to Γ(P), we have a very
natural polygonization of P . Otherwise—if Γ(P) has an odd number of both rows and
columns, and P contains all even points with respect to B(P)—it is sufficient to introduce
one additional column between any two existing columns of Γ(P) to meet the requirements
of Theorem 6.3. Hence, we obtain the following corollary of Theorem 6.3.

Corollary 6.1. Every non-degenerate set of points in the plane has an orthogeodesic polygo-
nization off the grid. Such a polygonization can be computed in O(n logn) time.

Proof of Theorem 6.3. Given the above characterization is correct, testing for the existence
of a polygonization can clearly be done in linear time. First, we determine the bounding box,
then we inspect the even points and return yes if either one dimension of the bounding box
is even or if not all even points of the bounding box are occupied. Hence, the focus will be
on the proof of the characterization. It is constructive and can be extended to an efficient
algorithm. It is easy to see that each of the cases considered in the proof can be solved by a
simple algorithm with running time O(n logn).
Unless stated otherwise, even and odd always refers to B(P). We first show that P does

not have a polygonization if h and w are both odd and P contains all even points: Observe
that any polygonization of P must contain an equal number of even and odd grid points
on its boundary as illustrated in Figure 6.3a. If h and w are both odd, the number of even
points in B(P) exceeds the number of odd points in B(P) by one. Hence, P does not have
an orthogeodesic polygonization in this case.
In the remainder of the proof, we show that we can construct a polygonization in the

remaining cases. Note that the fact that P has a polygonization is invariant under rotation
by multiples of 90 degrees and reflection at vertical or horizontal lines. The key idea of the
proof is to partition (some rotation or reflection of) P into two sets U and U such that U
contains all the points on the topmost occupied row and U = P \U . A nice path π for U is a
path with the following properties.

(a) The path π connects all points in U by orthogeodesic chains.

(b) The path π ends at the topmost point of U in the leftmost column and in the topmost
point of U in the rightmost column, respectively.

127

Chapter 6 Orthogeodesic Embedding of Planar Graphs

U

U

U

U

(a)

U

U

U

U

(b)

Figure 6.4: Polygonization according to Case 1: U contains (a) an even number of occupied
columns or (b) an odd number of occupied columns plus (at least) one empty
column, marked gray.

(c) The path π does not occupy the grid points above the two endpoints. To motivate (c),
see the thick gray path in Figure 6.4a.

Note that, by definition, U is not empty, and by construction of the nice path, it is easy to
connect the endpoints of the nice path in U by a path that contains all points in U such
that the concatenation of the two paths yields the desired orthogeodesic polygonization of P .
Thus, the problem of finding an orthogeodesic polygonization of P reduces to the problem of
finding a nice path in U .
Without loss of generality, we may also assume the following. If a corner of B(P) lies

in P , then both points in B(P) at distance 1 from the corner also lie in P . This follows
from the fact that any polygonization containing the corner of B(P) must contain these
two points as well as illustrated in Figure 6.3b. This observation ensures that any partition
of P into U and U as described above has the property that the leftmost column and the
rightmost column of U are the same as those of P , that is, any nice path can be extended
to a polygonization. The proof is organized according to the case distinction illustrated in
Figure 6.5. At the topmost level we distinguish between feasible and infeasible instances
according to our characterization depending on the arrangement of points in B. At the next
level, we distinguish two cases depending on the number of occupied columns in U . If this
number is odd and all columns in U are occupied, we further partition U into sets Uleft, Umid,
and Uright. Finally, we distinguish three cases depending on the points in Umid.

Case 1 We can partition P (or some rotation or reflection of P) into U and U as described
above such that either (i) the number of occupied columns in U is even or (ii) it is odd and
there is at least one unoccupied column in U .

First, assume that the number of occupied columns is even. Then we can sweep the points
in U from left to right and alternatingly from top to bottom and vice versa, starting at the
topmost point of the leftmost column in downward direction. Imagine that all bends of our

128

6.4 Orthogeodesic Polygonization

points in U

points in Umid

Case 1:
– number of occupied columns in U even or
– U contains empty column

Case 2:
– number of occupied columns in U odd and
– all columns in U are occupied

Instance of Geodesic Polygonization

points in B

distinction by

Case 2.U1

h odd, w odd, and
even(B(P) \ P) = ∅
(instance infeasible)

h even, w even, or
even(B(P) \ P) 6= ∅
(instance feasible)

Case 2.U3Case 2.U2

Figure 6.5: Case distinction in the proof of Theorem 6.3. We first distinguish between different
arrangements of points in B, then in U , and finally in Umid.

tour lie on the boundary of B(U). Then some pairs of points of U that are consecutive in
our tour may be connected by U-shaped pieces of the tour, which are not geodesics. This,
however, can easily be fixed by shortening each U-shape in the sense that its horizontal part
is moved away from the boundary of B(U) until it hits at least one of the two endpoints of
the U-shape. The result is either an L-shaped or simply a horizontal connection, and hence a
geodesic. This process is depicted in Figure 6.4a. Since the number of columns is even, the
endpoints are exactly the topmost points on the leftmost and rightmost column, respectively,
and the unoccupied points above the endpoints of the path are not used.
Next, assume that the number of occupied columns is odd and there is an unoccupied

column (somewhere between, but not necessarily adjacent to two occupied columns). In this
case we use the same approach with the only difference that we also alternate the vertical
sweeping at exactly one of the unoccupied columns. Note that this does not necessarily
mean that there is a bend in the unoccupied column. As illustrated in Figure 6.4b, the
last point before the unoccupied row is linked to the first point after the unoccupied row
by two horizontal and one (possibly degenerate) vertical straight-line segment that uses the
unoccupied column.

Case 2 We cannot partition P as described in Case 1. Then the numbers of occupied
columns and rows of P are both odd, and every partition (of a rotation) of P into U and U
has the property that every row and every column in U has at least one occupied point.
We know that B(P) \ P contains an even point, that is, there is an unoccupied even point
in B(P).
Before we proceed, we introduce the following notation, see Figure 6.6a. Let X be a non-

degenerate set of points on the grid, and let q be a grid point in B(X). Then we define the

129

Chapter 6 Orthogeodesic Embedding of Planar Graphs

dep(q)

ht(q)

st
re
tc
h
(X

)

X

q

(a) stretch

U

U

Uleft Umid Uright

p∗

(b) partition

Umid

m

(c) nice path

Figure 6.6: Notation for the proof of Theorem 6.3: (a) Stretch of a set X of grid points;
height ht(q) and depth dep(q) of a grid point q w.r.t. B(X), (b) Partition of P
into U and U , and partition of U into Uleft, Umid and Uright, (c) Relaxed definition
of a nice path for Umid ending with m in U2

mid.

height of q with respect to X to be maxp∈X{y(p)}−y(q), where y(r) denotes the y-coordinate of
a point r ∈ R2. Similarly, we define the depth of q with respect to X to be y(q)−minp∈X{y(p)}.
Finally, we define the stretch of X to be maxp∈X{y(p)} − minp∈X{y(p)} + 1, that is, the
stretch of X is the number of rows spanned by X.
We now claim the following.

Claim 1. In the above situation, we can find a partition of some reflection or rotation of P
into two sets U and U as well as a partition of U into three sets Uleft, Umid, and Uright as
depicted in Figure 6.6b such that the following three requirements are fulfilled.

(R1) The set U contains the points in the topmost row of P , and U = P \ U , as in the
partition in the previous cases.

(R2) The set Umid consists of the points in three consecutive columns of U with an even
number of columns to the left and to the right. The corresponding subsets of Umid
are U1

mid, U
2
mid, and U3

mid (from left to right). Let U23
mid = U2

mid ∪ U3
mid, be the set of

points in the rightmost two columns of Umid, and let `1 denote the lowest point in U1
mid.

Additionally, at least one of the following three statements holds:
(U1) The stretch of U23

mid ∪ {`1} is odd.
(U2) The middle column of Umid contains an unoccupied point p∗ with even height

and odd depth with respect to U23
mid ∪ {`1}.

(U3) The rightmost column of Umid contains an unoccupied point p∗ with odd height
and even depth with respect to U23

mid ∪ {`1}.

(R3) The (possibly empty) sets Uleft and Uright consist of the points in the remaining columns
of U to the left and to the right of Umid, respectively.

We call a partition of P fulfilling (R1)–(R3) an odd partition.

We postpone the proof of the claim for now. Given an odd partition, we first show how to
find a nice path for U by finding and linking nice paths for Uleft, Umid, and Uright. We slightly
modify the definition of a nice path for Umid by allowing the path to end in a point m of the

130

6.4 Orthogeodesic Polygonization

`1 `1

(a) (U1)

p∗ p∗

`1 `1

(b) (U2)

p∗

`1

p∗

`1

(c) (U3)

Figure 6.7: Nice paths for Umid according to sub-cases (U1)–(U3). Each figure shows the
sweep starting in the bottommost row of U23

mid ∪ {`1} (left) and the resulting
orthogeodesic path (right).

middle column of Umid if all points in Umid either lie to the left or below m and if the path
does not go through the point to the right of m as illustrated in Figure 6.6c.

Note that we can find nice paths for Uleft and Uright as in Case 1 since both sets consist of
an even number of occupied columns. In other words, we need only consider Umid. The first
part of the nice path for Umid consists of a vertical straight-line segment containing all points
on the leftmost column of Umid. Now we follow the case distinction concerning the shape
of U23

mid in the above definition of an odd partition. Corresponding illustrations can be found
in Figure 6.7.

Case 2.U1: The stretch of U23
mid ∪ {`1} is odd, as illustrated in Figure 6.7a. We sweep the

second and third column of Umid row by row from bottom to top, starting at the
bottommost row of U23

mid ∪ {`1} and alternating the walking direction between right
and left in each (not necessarily occupied) row. This yields an ordering of the points
in U23

mid. We link consecutive points in this ordering by orthogeodesic chains. These
chains can be drawn such that they are interior-disjoint since, if two consecutive points
have not yet been connected by a geodesic, they are either in the same column or there
must be at least one empty row between them. Let m be the last point on the resulting
path. Since the stretch of U23

mid ∪ {`1} is odd, the path reaches m coming from below or
from the left. Hence, our path is a nice path for U23

mid. It can be connected to `1 since
the sweep goes left-to-right through the bottommost row of U23

mid ∪ {`1}.

Case 2.U2: The middle column of Umid contains an unoccupied point p∗ with even height
and odd depth with respect to U23

mid ∪ {`1}, as illustrated in Figure 6.7b. In this case we
compute the nice path as follows. We sweep U23

mid from bottom to top starting at the
lowest (not necessarily occupied) row in U23

mid ∪ {`1} from left to right. We alternate
the walking direction between right and left in each (not necessarily occupied) row
skipping the row that contains p∗. Since the depth of p∗ is odd, the walking direction is
left-to-right in the row below p∗. Hence, our sweep leaves out p∗. We link points that
were swept consecutively by geodesics as in the previous sub-case. Again, the resulting
path is nice.

Case 2.U3: The rightmost column of Umid contains an unoccupied point p∗ with odd height
and even depth with respect to U23

mid ∪ {`1}, as illustrated in Figure 6.7c. This case

131

Chapter 6 Orthogeodesic Embedding of Planar Graphs

Case (i):
∃p0 ∈ B(P) \ P on the boundary of B(P)

Case (ii):
6 ∃p0 ∈ B(P) \ P on the boundary of B(P)

Instance of Geodesic Polygonization

Case 2.U1 Case 2.U3Case 2.U2

(a) even number of
columns left of p0

(b) odd number of
columns left of p0

distinction by

points on
boundary
of B(P)

number of
columns
left of p0

type of
odd partition

Figure 6.8: Case distinction for the proof of Claim 1 regarding the construction of an odd
partition. Depending on the existence of a an unoccupied point on the boundary
of B(P) we further distinguish between an even and an odd number of points to
the left of the unoccupied point.

is very similar to the previous sub-case. We skip the row containing p∗ in the sweep.
Since the depth of p∗ is even, the walking direction in the row below p∗ is right-to-left.
Hence, we leave out a point in the right column, which is exactly p∗.

In all three cases the two geodesic paths for U1
mid and U23

mid can be combined to a nice
path for Umid since the path for U23

mid (a) starts at the leftmost point on the lowest row
of U23

mid ∪ {`1} and (b) stops at the topmost point of U23
mid without going through the point

to the right of the topmost point. Hence, we have found a nice path for Umid. We now turn
to the claim whose proof we postponed before.

Proof of Claim 1 Suppose that Case 2 applies, that is, the numbers of occupied columns
and rows of P are both odd and the partition of any rotation of P into U and U has the
property that every column in U has at least one occupied point and there is an even point
in B(P) \ P .
In this setting, we show how to explicitly construct an odd partition of P . Note that any

rotation and any reflection of the point set maps even points to even points and odd points
to odd points with respect to the new positions, respectively. In order to prove the claim, we
consider two cases as illustrated in Figure 6.8:

Case (i): There is an unoccupied even point p0 on the boundary of B(P), as illustrated in
Figure 6.9a. We assume without loss of generality that p0 is in the bottom row r0
of B(P). Since r0 is non-empty, there must be an occupied point on r0, say, to the
left of p0. Let p∗ be the leftmost unoccupied even point of r0 such that there is an
occupied point to the left of p∗. Since p∗ is an even point in r0, there is an even number

132

6.4 Orthogeodesic Polygonization

p0p∗

Uleft Umid Uright

(a)

p0

p∗

Umid Uright

(b)

p0

p∗

Uleft Umid Uright

(c)

Figure 6.9: Case distinction for proving the existence of an odd partition.

of occupied columns in U to the left of p∗. By the choice of p∗ this number of columns
is at least 1 and hence there are at least two occupied columns to the left of p∗.
Let U be the set of points in the top row of P . Let U = P \ U , and let Umid be the
subset of U in the column of p∗ and the two columns to its left. Since p∗ is an even
point on the lowest row, there must be an even number of columns to the left and right
of Umid, respectively, and we fix Uleft and Uright accordingly.
Since p∗ is on the lowest row the depth of p∗ with respect to U23

mid ∪ {`1} is zero and,
hence, even. If the stretch of U23

mid ∪ {`1} is even, then the height of p∗ with respect
to U23

mid is odd and its depth is even. Since p∗ is in the rightmost column with respect
to Umid, this yields an odd partition according to Case (U3). If the stretch of U23

mid∪{`1}
is odd, this yields an odd partition according to Case (U1).

Case (ii): All even points on the boundary of B(P) are occupied, as illustrated in Figures 6.9b
and 6.9c. Again, we let U be the top row of B(P) and let U = P \ U . Let p0 be
a leftmost unoccupied even point in B(U). Such a point must exist, since all even
points on the boundary are in P and U only contains points on the boundary. This
also implies that there is at least one occupied column to the left of p0. Note that by
assumption all even points to the left of p0 are occupied. We distinguish two cases:

(a) First, suppose that there is an even number of columns to the left of p0 as illustrated
in Figure 6.9b. Let Umid consist of the points in the column of p0 and the two
columns to its left and choose Uleft and Uright accordingly. Let p∗ be the lowest
unoccupied even point in the column of p0. Since p∗ is an even point with an even
number of columns to the left and since all even points below p∗ are occupied, p∗
has an even depth with respect to U23

mid. If the height of p∗ is even, then the

133

Chapter 6 Orthogeodesic Embedding of Planar Graphs

stretch of Umid is odd, hence, this yields an odd partition according to Case (U1).
Otherwise, this yields an odd partition according to Case (U3).

(b) Next, assume that there is an odd number of columns to the left of p0 as illustrated
in Figure 6.9c. In this case we mirror the instance on a vertical line, that is, p0

is in the rightmost column containing an unoccupied even point and there is an
odd number of columns to the right of p0 whose even points are all occupied. We
let Umid consist of all the points of U in the columns of p0 and its two neighboring
columns and choose Uleft and Uright accordingly. Let p∗ be the lowest unoccupied
even point on the column of p0. Since p∗ is an even point with an odd number
of columns to the left and since all even points on the column to its right are
occupied, p∗ has an odd depth with respect to Umid. If the height of p∗ is odd as
well, then the stretch of Umid is odd, and therefore, this yields an odd partition
according to Case (U1). Otherwise the height of p∗ is even, and this yields an odd
partition according to Case (U2).

This finishes the proof of our claim and, thus, we can always find an odd partition in Case 2
that can be used to compute an orthogeodesic polygonization. Hence, the theorem holds.

6.5 Labeled Orthogeodesic Point-Set Embeddability
Since the orthogeodesic point-set embedding problem is NP-hard both on and off the grid,
we next investigate the complexity of Labeled Orthogeodesic PSE, a variant of the
orthogeodesic embedding problem in which we are given a geometric graph G as an input
whose vertices are associated with a given set of points on the grid. Since the position of the
vertices of G are given, the problem is that of finding an orthogeodesic embedding of the
edges of G. We show that this problem is NP-hard, even for perfect matchings. Interestingly,
however, it turns out that the problem can be solved efficiently if we drop the restriction
imposed by the grid. Note that this behavior is in contrast to that of Orthogeodesic
Point-Set Embeddability, where the vertex–point correspondence is not given. We showed
that this problem NP-hard on and off the grid in Section 6.3.

Theorem 6.4. Labeled Orthogeodesic PSE on the grid is NP-hard, even if the given
graph is a perfect matching.

Proof. To prove the theorem we reduce 3-Partition to Labeled Orthogeodesic Match-
ing (LGM), which is a special case of Labeled Orthogeodesic PSE in which the graph
is a perfect matching. An instance of 3-Partition consists of a multiset A = {a1, . . . , a3m}
of 3m positive integers, each in the range (B/4, B/2), such that B = (

∑
a∈A a)/m, and the

question is whether there exists a partition of A into m subsets A1, . . . , Am of A, each of
cardinality three, such that the sum of the numbers in each subset is B. Since 3-Partition
is strongly NP-hard [GJ79], we may assume that B is bounded by a polynomial in m.
Based on an instance A of 3-Partition, we now construct an instance M of LGM

consisting of pairs of grid points that must be connected by an orthogeodesic chain such
thatM is a yes-instance of LGM if and only if A is a yes-instance of 3-Partition. Figure 6.10
shows an example instance M for a multiset A of nine numbers. The instance M consists of
three types of point pairs.

134

6.5 Labeled Orthogeodesic Point-Set Embeddability

S1
S2

S4

S5

S3

S6

S7

S8

S9

T8

T7 T6

T5

T4

T3 T2
T1

−N 0
L L+N

L

L

L

L

T9

1
2

3

7

7

1
2

3

S9

T9

a9

a9

Figure 6.10: Example of the reduction from 3-Partition to LGM using A1 =
{a1, a5, a7}, A2 = {a2, a3, a8}, and A3 = {a4, a6, a9} (not to scale).

The first type of point pairs represents the numbers in A and consists of 6m sets of points
S1, . . . , S3m and T1, . . . , T3m such that the points in Si are associated with the points in Ti
as we will explain below.
The 3m sets S1, . . . , S3m of grid points, all lie on the diagonal ` : y = −x, in this order

from left to right. For 1 ≤ i ≤ 3m, the points in Si occupy ai consecutive grid points, and
two consecutive sets are separated by a large gap of L = Bm+m− 1 grid points. The gap
between the last point of S3m and the origin is also L.
The points in the sets T3m, . . . , T1 lie on the line `′ : y = −x+ L, in this order from left

to right. Again, points within a set are consecutive grid points, and between consecutive
sets there are large gaps of L grid points. The matching is as follows. For 1 ≤ i ≤ 3m and
for 1 ≤ j ≤ ai, the j-th point in Si (counting from the left) matches the j-th point in Ti
(counting from the right). The ai point pairs in Si ∪ Ti represent the number ai.

The second type of point pairs forms a sort of “dot mask” forming the partitions. These
pairs lie on the x-axis. Therefore, the geodesics between them are obviously line segments and
pairwise disjoint. The leftmost segment matches −N to 0, where N = 3mL+mB+ 2(m− 1).
The following m− 1 segments have unit length and leave gaps of width B. The rightmost
segment matches L to L+N .

135

Chapter 6 Orthogeodesic Embedding of Planar Graphs

Finally, the third type of point pairs gives rise to geodesics that will act as partitioners
ensuring that all geodesics that represent a number from A go through the same gap in
the mask. There are m− 1 such pairs. Their upper endpoints are consecutive grid points
on the diagonal `. They lie above the points in S1, leaving a gap of m − 1 grid points.
The corresponding lower endpoints lie one unit above the right endpoints of the unit-length
segments on the x-axis forming the dot mask. The matching is such that, from left to right
and for 1 ≤ j ≤ m−1, the j-th upper endpoint matches the j-th lower endpoint, as illustrated
in Figure 6.10.
It is easy to see that any orthogeodesic embedding of M induces a partition of A. Since

the partitioners cannot pass between points associated with the same number in A and since
there is only one gap in the dot mask between two partitioners, all edges corresponding to
the same element of A must be routed through the same gap of the dot mask, each of the m
gaps has width B, and each of the mB edges must go through some gap.

Conversely, given a partition, we can construct an orthogeodesic embedding of the matching
as follows. We start by drawing the dot mask whose layout only depends on the numbers B
and m and which is uniquely determined by the placement of the respective endpoints. Then,
we analyze the first subset of the partition, A1, and connect the points in S1 =

⋃
aj∈A1 Sj

to the corresponding points in T 1 =
⋃
aj∈A1 Tj , starting with the leftmost point in S1 and

the rightmost point in T 1. For each connection, we use the bottommost orthogeodesic chain
that is routed one grid unit above and to the right of all orthogeodesic chains we have drawn
so far. Next, we draw the first (that is, leftmost) partitioner. Also in this case, we use the
bottommost orthogeodesic chain that is routed above all orthogeodesic chains we have drawn
so far. We repeat these two steps, connecting the points corresponding to a subset of the
partition and drawing a fence. Since we left enough horizontal and vertical space between
the points representing the numbers in A, this process does not create any crossings among
the constructed orthogeodesic chains.

Since we assumed that B is polynomial in m, the numbers L and N , which determine the
grid size needed by M , are also polynomial in m. Thus, given an embedding, the partition
can be constructed from this embedding efficiently, and vice versa. Thus our reduction is
polynomial, which concludes the proof.

6.6 Sparse Labeled Orthogeodesic Point-Set Embeddability
Contrary to the previous section, we show that Labeled Orthogeodesic PSE becomes
easy if we loosen or drop the space limitation of the grid. We call an instance G = (V,E) of
Labeled Orthogeodesic PSE sparse if the minimum distance between any two occupied
columns and between any two occupied rows is at least 3n−5. In the remainder of this section,
we give an efficient algorithm that solves sparse instances of Labeled Orthogeodesic
PSE. Clearly, the algorithm can also be used for an instance that does not “live” on the grid,
by underlaying the instance with a fine enough grid. Throughout the section we will identify
vertices and points according to the given mapping and we will assume that the graph does
not contain isolated vertices. Isolated vertices can be treated as single vertices with a loop
that is not embedded.

First, we derive the notion of a combinatorial (geodesic) embedding of a geometric graph,
that is, a graph whose vertices are mapped to points in the plane, as well as a set of necessary

136

6.6 Sparse Labeled Orthogeodesic Point-Set Embeddability

e

f

(a) e below f

e

f

(b) f below e

e

f

(c) e strictly below f

e

f
g′

f ′
C2(g)

C4(f)

g

(d) f ≺ e ≺ g, g′ ∈ C2(g),
f ′ ∈ C4(f)

Figure 6.11: Combinatorial orthogeodesic embedding of the edges of a geodesic graph.

conditions for the existence of such an embedding. Then we show that we can efficiently
compute an orthogeodesic embedding from a combinatorial embedding. Finally, we show how
to efficiently obtain a combinatorial embedding or provide a short and comprehensible proof
that no such embedding exists.

We say that an edge e ∈ E is downward if its lexicographically larger endpoint e+ lies below
its lexicographically smaller endpoint e−, otherwise e is upward. We consider horizontal or
vertical edges to be both upward and downward, respectively.

A vertex v of a 4-planar geometric graph, that is a graph with given vertex positions, is
called admissible if it is incident to at most one vertex on each of the rays starting in v, to at
most two vertices in each (closed) quadrant with respect to v and at most three vertices in
each (closed) axis-aligned half-plane with respect to v. Clearly, a 4-planar geometric graph
can only admit an orthogeodesic embedding if it is admissible, that is, if all its vertices are
admissible.

Let γ be an orthogeodesic embedding of G. We say that γ(e) is below γ(f) (and that γ(f)
is above γ(e)) if there is a vertical line ` intersecting γ(e) below γ(f) as illustrated in
Figure 6.11a. Note that ` intersects the bounding boxes of both e and f in this case. Our
goal is to provide a combinatorial description of the possible embeddings for the edges of G
in terms of these above–below relations. In other words, for each pair (e, f) of edges such
that there is a vertical line intersecting the bounding boxes of both e and f , we would like to
specify whether e is below or above f . Hence, we are looking for a partial order on the set of
edges as a combinatorial description of the embeddings. Given an orthogeodesic embedding
of G, it is easy to derive such a partial order. Not every partial order on the edges, however,
corresponds to an orthogeodesic embedding of G. We say that an edge e is strictly below an
edge f (and that f is strictly above e) with respect to G if and only γ(e) is below γ(f) in
every orthogeodesic embedding of G as illustrated in Figure 6.11c.

We denote the set of points in the (closed) k-th quadrant of the coordinate system centered
at p ∈ R2 by Qk(p). We say that p ∈ R2 k-dominates q ∈ R2 if q ∈ Qk(p). Similarly, for
e ∈ E, let Qk(e) := Qk(e−) ∪ Qk(e+); we say that e k-dominates q ∈ R2 if q ∈ Qk(e). In
Figure 6.11d, for example, the edge g 2-dominates (g′)− and f 4-dominates (f ′)−.

We define the k-critical set of edges of e as Ck(e) := {f ∈ E | f ∩Qk(e) 6= ∅}, that is, the
set of edges with at least one endpoint in the region that is k-dominated by the endpoints
of e. Consider an upward edge e that is strictly above an edge f and let f ′ ∈ C4(f). This
implies that e is strictly above f ′ as well, since any geodesic upward chain that passes above
some point p must also pass above all points that are 4-dominated by p as illustrated in

137

Chapter 6 Orthogeodesic Embedding of Planar Graphs

Figure 6.11d. Similar observations can be made for the case that e is strictly below f as well
as for downward edges. Note that the following dualities hold for all edges e and f

f ∈ C4(e)⇔ e ∈ C2(f) and f ∈ C1(e)⇔ e ∈ C3(f).

Clearly, an upward edge e is strictly above all edges in C4(e) and strictly below all edges
in C2(e). Similarly, a downward edge is strictly above all edges in C3(e) and strictly below
all edges in C1(e). For instance, in Figure 6.11c, edge f is in C2(e) and, therefore, e is
strictly below f . By incorporating these observations, we obtain the following notion of a
combinatorial orthogeodesic embedding.
A combinatorial orthogeodesic embedding of G is a partial order ≺ on the set of edges E

such that two edges are comparable whenever there is a vertical line intersecting the bounding
boxes of both edges and such that the following implication rules hold.

Implication Rules. Let e ∈ E be an upward edge, and let f ∈ E. If f ∈ C2(e), then e ≺ f .
If f ∈ C4(e), then f ≺ e. Further, if f ≺ e, then f ′ ≺ e for all f ′ ∈ C4(f). If e ≺ f ,
then e ≺ f ′ for all f ′ ∈ C2(f).
Similarly, let e ∈ E be a downward edge and let f ∈ E. If f ∈ Ce1(e), then e ≺ f .

If f ∈ Ce3(e), then f ≺ e. Further, if f ≺ e, then f ′ ≺ e for all f ′ ∈ Ce3(f). If e ≺ f , then
e ≺ f ′ for all f ′ ∈ Ce1(f).

These implication rules summarize our observations from above. Whenever one of the
rules is violated in a given partial order ≺ for any edge e, this implies that the corresponding
order cannot be realized by a geodesic chain, which implies that the partial order does not
correspond to any partial order that can be obtained from an orthogeodesic embedding
of G. Now that we have an understanding of a combinatorial orthogeodesic embedding, we
can show that the notion is well-defined by showing that every combinatorial embedding
of G corresponds to an orthogeodesic embedding of G. Given a combinatorial embedding ≺,
let G≺ = (E,A) denote the corresponding directed graph on the set of edges E with an
edge (e, f) ∈ A if and only if e ≺ f .

Lemma 6.2. Given a combinatorial orthogeodesic embedding ≺ of an admissible geometric
graph G = (V,E) represented by G≺, we can compute a geodesic embedding of G according
to ≺ in O(n2) time, which is worst-case optimal.

Proof. In order to compute an orthogeodesic embedding according to ≺, we sweep a vertical
line over the point set. Events occur at the vertices of G, sorted in lexicographical order from
left to right and from bottom to top. During the sweep, we partition the edges in E into
three groups. Completed edges have both endpoints to the left of the sweep-line. We have
already embedded these edges as orthogeodesic chains. Partial edges have one endpoint on
either side of the sweep-line. A partial edge is embedded as a partial geodesic ending at the
sweep-line. Finally, untouched edges have both endpoints to the right of the sweep-line. We
have not started embedding these edges yet. During the sweep we maintain the following
invariants.

1. All completed and partial edges are (partially) embedded as geodesics.

2. For every partial downward edge the partial embedding is not upward; vice versa for
partial upward edges.

138

6.6 Sparse Labeled Orthogeodesic Point-Set Embeddability

3. The ordering of the endpoints of the partial edges from bottom to top corresponds to
the partial order ≺.

4. No two (partial) geodesics intersect.

Let c and c′ be two consecutive occupied grid columns, with c to the left of c′. Assume
that we have already computed a partial geodesic embedding up to c. Essentially, we extend
the edges not ending at c in an iterative fashion from bottom to top such that each newly
embedded chain is just above all previously embedded chains, as well as above the endpoints
on c′ that correspond to edges below the current edge. To this end, we maintain a sorted list
of the edges at the sweepline. In more detail, we proceed as follows.

First, we sort the events in lexicographical order in O(n logn) time. Let the resulting order
be given by v1, . . . , vn. Next, we sort the edges topologically according to ≺, resulting in a
total order on the edges, say e1, . . . , em. Given G≺, we can sort the edges topologically in
time proportional to the number of edges of G≺, which is in O(n2), since G≺ is a simple
graph whose vertices correspond to the edges of a planar graph. Note that, whenever the
sweepline intersects the bounding boxes of a set of edges, these edges must be totally ordered
by ≺ and therefore, the sequence of partial edges at the sweepline, sorted from bottom to
top, must be a subsequence of e1, . . . , em. In order to compute the embedding, it essentially
suffices to merge the order of the events with the order of the edges. This way, we can
compute an embedding in O(n2) time.
To merge the order defined by the events with the order defined by the edges, we pro-

ceed as follows. At the sweepline we store a list of partial edges sorted according to ≺.
Let eα(1), . . . , eα(k) be the set of partial edges that are stored at the sweepline when it is
located at c, that is, α(1) < · · · < α(k). Further, let v be the next event on c′. Suppose,
we would like to embed eα(i) for some i. Hence, we need to decide whether eα(i) must be
embedded above or below v. Since there are only O(n) vertices and edges, respectively, we
can store this information in O(n2) space and access it in O(1) time. Whenever eα(i) is
the first edge on c that is above v, we insert the edges starting in v into the sequence of
edges stored at the sweepline before embedding eα(i), such that it will be considered in the
subsequent steps of the algorithm.

The merging can only be done if the following holds. Assume that e := eα(i) is an upward
edge that must be embedded above v according to ≺ and recall that we did not allow isolated
vertices for technical reasons, that is, v is the endpoint of some edge, say e′. Then (1) none of
the following edges eα(j) with j > i may be embedded below v and (2) e must be embedded
above all edges in C4(e′) and below all edges in C2(e′). First, assume for contradiction
that f := eα(j) is an edge with j > i that must be embedded below v. Then we have e′ ≺ e
since e must be embedded above v and f ≺ e′ since f must be embedded below v. However,
this implies f ≺ e by transitivity of ≺. On the other hand, since both B(e) and B(f) are
intersected by the sweepline at c, they are comparable with respect to ≺ and, therefore,
α(i) < α(j) implies e ≺ f , a contradiction to the acyclicity of ≺. Second, since ≺ respects
the implication rules, (2) is trivially fulfilled by ≺. The case, when e is a downward edge can
be handled similarly.
As another ingredient, we describe how to embed single edges. Note that, an upward

(downward) Manhattan-geodesic chain is uniquely determined by the 4-dominant (3-dominant)
points corresponding to the right (left) bends along the chain. We will use this observation
to describe the orthogeodesic chains corresponding to single edges. Let R be a set of points

139

Chapter 6 Orthogeodesic Embedding of Planar Graphs

(a) 4-hull (b) 3-hull

c c′ c c′

(c) extension of a partial embedding

Figure 6.12: Computing an orthogeodesic embedding from a combinatorial embedding.

and let e be an upward edge. By R↖ := {(x − 1, y + 1) | (x, y) ∈ R} we denote the set of
points resulting from translating R one unit of the grid to the left and to the top, respectively.
Similarly, by R↗ := {(x+ 1, y + 1) | (x, y) ∈ R} we denote the set of points resulting from
translating R one grid unit to the right and one grid unit to the top. Further, we define the
k-hull of R as the boundary of the regions

⋃
p∈RQk(p), denoted by Hk(R), that is, Hk(R)

is the boundary of the set of points that are k-dominated by R. See Figure 6.12 for an
illustration. Hence, in order to compute a orthogeodesic chain for a new edge in the sequence
computed above, we simply compute the k-hull of the set of points corresponding to bends of
the previously embedded edges and translate this k-hull one unit to the top and either to
the left or to the right, depending on the type of edge. Let Bi be the set of endpoints of all
straight-line segments used between c and c′ in the embedding up to this point and consider
the edge e = eα(i). Let pα(i) be the tentative endpoint of eα(i) on c and let v ∈ V be the vertex
corresponding to the current event. If eα(i) is an upward edge that does not end on c′, then
we embed it on the fraction of the 4-hull of the point set (Bi ∪ {v} \ eα(i))↖ ∪ {pα(i), e

+
α(i)}

between c and c′, that is, it is embedded just above all (partial) geodesics of edges eα(j)
with j < i. Similarly, if eα(i) is a downward edge that does not end on c′, we embed it on
the fraction of the 3-hull of the point set (Bi ∪ {v} \ eα(i))↗ ∪ eα(i) ∪ ea between c and c′.
If e = eα(i) is an upward edge ending on c′, we embed it as follows. If e+ is the left endpoint
of two downward edges or one downward edge and two upward edges or if e is the second
of two upward edges ending in e+, we embed e on the fraction of the 4-hull of the point
set (Bi \ eα(i))↖ ∪ {pα(i), e

+, qe} between c and c′, where qe is the gridpoint to the left of e+.
Otherwise, we embed e on the fraction of the 4-hull of the point set (Bi \ eα(i))↖ ∪{pα(i), e

+}
between c and c′. This special treatment is necessary to reserve the space for the edges
starting at e+ to the right. Downward edges ending on c′ are treated similarly. See Figure 6.12
for an illustration.

From a practical point of view, it is more convenient to use the k-hull of the previous step
in order to compute the k-hull for the current edge instead of using the endpoints of all edges
embedded so far. In this case, the new k-hull can be computed in linear time by walking
along the given k-hull. The total time complexity for this is proportional to the number of
bends in the resulting embedding. Note, that each bend can be attributed to a vertex of the
graph. Hence, each edge has at most n bends, resulting in a total of at most n2 bends. The
total time complexity of the algorithm is, therefore, bounded by O(n2).
It remains to show that the algorithm is correct, that is, it maintains the embedding and

140

6.6 Sparse Labeled Orthogeodesic Point-Set Embeddability

v1 v2 v3 v4 v5

h1

h2

h3

h4

h5

Figure 6.13: Instance of Labeled Orthogeodesic Matching with 3n edges and at
least 2n2 bends.

does not create any crossings between the edges. Clearly, the embedding is preserved if the
instance is sparse and, thus, contains at least 3n− 6 unoccupied columns and rows between
each pair of occupied columns and rows, respectively. To see this, recall that, in order to
compute the embedding for an edge, we merely translated the k-hull of the set of previously
computed bends by one unit to the top and to the left or right, respectively. Since a planar
graph contains at most 3n− 6 edges, we never run out of space this way, implying that the
combinatorial embedding is maintained throughout the algorithm. Since the edges are always
embedded above all endpoints of previously embedded straight-line segments, the resulting
embedding must also be crossing-free. Additionally, no segment of the grid incident to the
vertices of the graph is used by more than one edge, since the graph is admissible.

In order to see that the algorithm is worst-case optimal, consider the graph illustrated in
Figure 6.13. It consists of n horizontal edges h1, . . . hn and n vertical edges v1, . . . , vn as well
as n upward edges. Clearly, each of the upward edges is strictly above the vertical edges and
strictly below the horizontal edges. Due to the arrangement of the horizontal and vertical
edges, each pair of edges (hi, vi) causes each of the upward edges to bend, resulting in Ω(n2)
bends.

The previous lemma shows that a combinatorial description of the embedding can be turned
into an orthogeodesic embedding in O(n2) time. Clearly, we can modify the algorithm such
that it can be used to test, whether a given combinatorial embedding has an orthogeodesic
embedding on the grid. To this end, we simply stop whenever there is not sufficient space.
Hence, Labeled Orthogeodesic PSE is fixed-parameter tractable with respect to the
number of combinatorial embeddings.
Next, we show how to compute a combinatorial embedding efficiently. We show how

to compute a directed graph Π = (E,A) on the set of edges of G, called a pre-embedding
of G, which contains only edges (e, f) such that e is strictly below f and whose acyclicity is
equivalent to the existence of a combinatorial embedding. Moreover, this graph in a sense
implicitly encodes all combinatorial embeddings.

141

Chapter 6 Orthogeodesic Embedding of Planar Graphs

During the computation, we essentially compute the fix-point obtained by repeatedly
applying the implication rules to an initial partial order ≺0 of strictly-below relations. This
yields a sequence ≺0,≺1, . . . of partial orders. As long as ≺i 6=≺i+1 we iteratively derive
more necessary constraints for the embedding. We stop this process as soon as ≺i=≺i+1.
Geometrically, this corresponds to computing lower and upper orthogeodesic boundaries for
each edge e, defined by the union of the boundaries of the regions dominated by the elements
that are strictly below and above e, respectively.

Lemma 6.3. A pre-embedding Π of G can be computed in O(n2 logn) time. If the pre-
embedding is acyclic, we can compute a combinatorial embedding within the same time.

Proof. We compute Π as follows. For each edge e, we maintain a stack Se containing pairs of
edges (e, f) or (f, e) that have been added to Π and to which we have not yet applied the
implication rules. Further, we maintain a dynamic 2-dimensional spatial datastructure Re
for orthogonal range queries [MN90] that initially contains the endpoints of all edges of G.
Each endpoint p is annotated with a list L(p) ⊆ E of the edges incident to p.

We initialize the stacks according to the implication rules as follows. If e is an upward edge,
then Se is initialized with all edges in {(e, f) | f ∈ C2(e)} ∪ {(f, e) | f ∈ C4(e)}. Similarly,
if e is a downward edge, then Se is initialized with all edges in {(e, f) | f ∈ C1(e)} ∪ {(f, e) |
f ∈ C3(e)}. The corresponding edges are also included in Π. To compute the edges for Ci(e),
we query Re with Qi(e−) and Qi(e+), respectively. Finally, we remove the endpoints of all
edges corresponding to the reported points from Re.

For each edge e, we then proceed as follows. While the stack Se is not empty, we pop the
top element from the stack and apply the implication rules. For instance, assume that e is an
upward edge and that we popped (f, e) from the stack, that is, e is strictly above f . Then we
first compute all edges in C4(f) by querying Re with Q4(f−) and Q4(f+) and enumerating
the points in these regions. Whenever we find a point u we look up the corresponding
edges fv = {u, v} ∈ L(u). Then we remove the endpoints of all edges fv from Re, insert the
edges (fv, e) into Π and put these edges onto the stack Se. The cases, when e is a downward
edge, or when we pop (e, f) from the stack, are handled in a similar fashion.
Note that there is an edge (e, f) in Π if and only if there is a sequence of edges f ′1, . . . f ′k

such that

f ′1 ∈ C2(e), f ′2 ∈ C2(f ′1), . . . , f ′k ∈ C2(f ′k−1), f ∈ C2(f ′k), (6.1)

which is equivalent to

f ′k ∈ C4(f), f ′k−1 ∈ C4(f ′k), . . . , f ′1 ∈ C4(f ′2), e ∈ C4(f ′1)

due to the duality of the domination. Further, if there is are two edges (e, f) and (f, g), then
by concatenating the sequences above, we have that (e, g) is also an edge in Π, that is, Π is
the transitive closure of the implication rules.
Clearly, Π is a pre-embedding of G, that is, each edge (e, f) in Π encodes a necessary

condition stating that e is strictly below f , since we only included edges according to the
implication rules into Π. Hence, there is no orthogeodesic embedding for G, if Π contains a
cycle corresponding to a conflicting set of necessary conditions. If Π contains a cycle, we can
therefore conclude that no embedding exists and we are done.

142

6.6 Sparse Labeled Orthogeodesic Point-Set Embeddability

Otherwise, assume that Π is acyclic. Then we show how to compute a combinatorial
embedding from Π. If all pairs (e, f) of edges whose bounding boxes are intersected by a single
vertical line are ordered with respect to Π, there is nothing to do. Otherwise, we iteratively
construct a sequence of graphs Π = Π1, . . . ,Πt such that Πt corresponds to a combinatorial
embedding of G. In iteration i we find a pair of edges (ei, fi) whose bounding boxes are
intersected by a common vertical line and that are not ordered with respect to Πi. Then we
add an edge (ei, fi) to Πi as well as all edges that are implied by (ei, fi), thus, obtaining Πi+1.
We stop if there is no pair of edges with the desired properties. To compute Πi+1 from Πi

we simply put the edge (ei+1, fi+1) on the stacks Sei+1 and Sfi+1 and re-run the algorithm
described above. Intuitively, this corresponds to adding another rule ei+1 ≺ fi+1 to the
implication rules.
Assume that e is an upward edge. Since the edges (ej , fj) for j ≤ i do not correspond to

necessary conditions, Equation (6.1) does not hold in its original version anymore for Πi.
Instead, there is an edge (e, f) in Πi if and only if either Equation (6.1) holds as stated above
or if a modified version holds with either e = ej or f = ej for some 1 ≤ j ≤ i, that is, if there
is an index j and a sequence of edges f ′1, . . . f ′k such that

f ′1 ∈ C2(ei), f ′2 ∈ C2(f ′1), . . . , f ′k ∈ C2(f ′k−1), f ∈ C2(f ′k)

or

f ′1 ∈ C2(e), f ′2 ∈ C2(f ′1), . . . , f ′k ∈ C2(f ′k−1), fi ∈ C2(f ′k) .

Intuitively, this means that every edge in Πi is implied either by the original implication
rules or by the newly added edges. As above, we have that Πi is the transitive closure of the
implication rules and the set of edges (ej , fj) for 1 ≤ j ≤ i.
Suppose that e := ei+1 and f := fi+1 are unordered in Πi and we create a cycle in Πi+1

when inserting the edge (e, f) and the edges implied by (e, f). Assume that e and f are
both upward edges. The other cases are similar. All newly created edges are either of the
form (e, g) such that there is a sequence of edges f ′1, . . . f ′k with

f ′1 ∈ C2(f), f ′2 ∈ C2(f ′1), . . . , f ′k ∈ C2(f ′k−1), g ∈ C2(f ′k)

or of the form (g, f) such that there is a sequence of edges f ′1, . . . f ′k with

f ′1 ∈ C4(e), f ′2 ∈ C4(f ′1), . . . , f ′k ∈ C4(f ′k−1), g ∈ C4(f ′k) .

Hence, we either find edges that must be embedded above e or edges that must be embedded
below f , that is, the newly introduced edges are acyclic.
Since Πi+1 is the transitive closure of the implication rules and the edges (ej , fj) for 1 ≤

j ≤ i+ 1, a cycle in Πi+1 therefore implies the existence of an edge (f ′j , e) or and edge (f, f ′j)
in Πi for some 1 ≤ j ≤ k. Assume that there is an edge (f ′j , e) ∈ Πi. The case that there is
an edge (f, f ′j) is analogous. First, observe that

f ′1 ∈ C2(f), f ′2 ∈ C2(f ′1), . . . , f ′j ∈ C2(f ′j−1)

is equivalent to

f ′j−1 ∈ C4(f ′j), . . . , f ′1 ∈ C4(f ′2), . . . , f ∈ C4(f ′1),

143

Chapter 6 Orthogeodesic Embedding of Planar Graphs

by the duality of the domination. Since f ′j ≺ e the latter sequence of implications implies
that f ≺ e in Πi by the implication rules, that is Πi must contain the edge (f, e), which
contradicts the fact that we assumed e and f to be unordered. Therefore, the algorithm
correctly computes a combinatorial embedding from the pre-embedding, given that the
pre-embedding is acyclic.
It remains to show that the running time is bounded by O(n2 logn). For each edge,

we initialize Re in time O(n logn). Subsequently, we perform at most n queries in amor-
tized O(logn) time each, since there are at most n edges incident to e in Π. We remove each
point at most once from Re without re-insertion. Therefore, the total time spent on Re is
bounded by O(n logn) [MN90]. Since there are only O(n) edges and since each pair (e, f) of
edges involves at most 4 stack operations, the running time of the algorithm is O(n2 logn).
In order to extend the pre-embedding to obtain a regular orthogeodesic embedding, we must
efficiently find pairs of edges whose bounding boxes can be pierced by a vertical line and
that are not yet ordered in the current pre-embedding. In order to do this efficiently, we
can maintain a list containing these edges. This list can be initialized in quadratic time.
Then we iteratively pop edges from this list. We can efficiently test whether a newly popped
pair of edges is comparable by additionally maintaining a marker for each pair of edges
indicating whether they are comparable, for instance, in a quadratic-sized m ×m-matrix
with 0/1-entries. Since each operation is added and removed from the list only once, these
operations do not increase the asymptotic running time.

Combining the results from the previous section we obtain the following.

Theorem 6.5. Given a 4-planar graph G with n vertices, we can decide, in O(n2 logn)
time, whether G admits an orthogeodesic embedding. Within the same time bound, we can
construct such an embedding if one exists, or, if not, a proof of non-existence.

Proof. First, we test whether G is admissible in linear time. If this is not the case, we return
an in-admissible vertex to prove that the graph does not have a geodesic embedding. If
the graph is admissible, we compute a pre-embedding of G and test whether it contains
a cycle. The pre-embedding contains edges corresponding to necessary conditions for the
existence of an orthogeodesic embedding. Every cycle thus corresponds to a set of conflicting
requirements. If we additionally annotate each edge (e, f) with the edge (e′, f ′) that implied
this edge during the computation of the pre-embedding according to the implication rules,
this proof is comprehensible and easy to check. Hence, if there is a cycle, we return the
(annotated) pre-embedding to prove that no orthogeodesic embeddings exists. This can be
done in O(n2 logn).
Otherwise, we extend the pre-embedding to a full combinatorial embedding as described

in the proof of Lemma 6.3 in O(n2 logn) time. By Lemma 6.2 we obtain an orthogeodesic
embedding from the combinatorial embedding in O(n2) time. This concludes the proof.

6.7 Concluding Remarks
We have introduced a new convention for drawing planar graphs, which we call the ortho-
geodesic drawing style. We require edges to be embedded as monotone orthogonal chains,
that is, as shortest-possible orthogonal chains with respect to the Manhattan metric. This
drawing style translates the good features of straight-line drawings into the rectilinear world:

144

6.7 Concluding Remarks

v1 v2 v3 v4 v5

h1

h2

h3

h4

h5

v1 v2 v3 v4 v5

h1

h2

h3

h4

h5

Figure 6.14: Instance of Labeled Orthogeodesic Matching with 3n edges and at
least 2n2 bends and corresponding bundled orthogeodesic embedding with only
2n bends.

it combines monotonicity and shortness of edges with a limited number of slopes. We have
investigated the complexity of several basic problems related to embedding graphs in this
style. We have shown that we can efficiently decide whether a graph has a geodesic embedding
on the grid, which is based on the observation that this is equivalent to 1-bend embeddability
on the grid. If we are prescribed a set of points for placing the vertices, then the problem
becomes NP-hard, even for subdivisions of cubic graphs. On the other hand, we have shown
that point-set embeddability can be solved efficiently for cycles by proving an easy-to-check
characterization of the point sets admitting an orthogeodesic polygonization and an efficient
algorithm for computing such a polygonization if it exists.
The orthogeodesic embedding problem remains NP-hard if, in addition, the vertex–point

correspondence is given—even for the case of perfect matchings. On the other hand, the
problem can be solved efficiently for general graphs if we drop the grid limitation. We
have provided an efficient certifying algorithm whose running time is almost worst-case
optimal—up to a logarithmic factor.

Open problems An interesting set of open problem concerns the optimization of æsthetic
criteria, such as the number of bends. Using a modification of the flow network by Tamassia,
it is easy to see that we can compute a bend-minimal geodesic embedding on the grid if
such an embedding exists. For sparse instances of the Labeled Orthogeodesic PSE
problem, however, we do not know whether an efficient algorithm for minimizing the number
of bends is within reach. We note that the sweepline algorithm we described for this case
does not even provide an embedding with the minimum number of bends for the given
combinatorial embedding. While the presented algorithm for the Labeled Orthogeodesic
PSE is almost worst-case optimal, we could consider a modification of the drawing style in
which sub-chains of the orthogeodesic chains representing the edges with the same embedding
may be represented by a single bundled orthogeodesic chain as illustrated in Figure 6.14.
In this drawing style, we can prove that the complexity of the embedding in terms of the

145

Chapter 6 Orthogeodesic Embedding of Planar Graphs

number of the used straight-line segments is linear in the number of vertices of the graph.
Thus, the lower bound we provided for the general case does not apply here. This raises the
question if an orthogeodesic embedding in this drawing style can be computed in o(n2) time.
Further open problems concern orthogeodesic embeddability problems for various other

classes of graphs. For instance, an interesting open problem concerns the question whether
we can decide efficiently whether a given tree or a given outerplanar graph admits an
orthogeodesic point-set embedding on a given point set. Finally, the orthogeodesic drawing
style can also be considered for non-planar graphs.

146

Chapter 7

Orthogeodesic Embeddings of Trees

In the previous chapter we have studied different variants of the orthogeodesic embedding
problem from a computational point of view. In this section, we adapt a combinatorial
perspective and study which point sets admit orthogeodesic embeddings of all trees from a
given class of trees in various orthogeodesic drawing styles. Let S be a set of N grid points
in the plane, and let G be a graph with n vertices such that n ≤ N . We study the following
problem. Given a family of trees F what is the minimum value f(n) such that every tree
with n vertices in F admits an orthogeodesic point-set embedding on every grid-point set of
size f(n)? We provide polynomial upper bounds on f(n) for both planar and non-planar
orthogeodesic point-set embeddings as well as for the case when edges are required to be
L-shaped chains. This chapter is based on joint work with Emilio Di Giacomo, Fabrizio Frati,
Radoslav Fulek and Luca Grilli [DGFF+12].

7.1 Introduction
Let S be a set of N points in the plane, and let G be a graph with n vertices such that
n ≤ N . A point-set embedding of G on S is a drawing of G such that each vertex of G
is drawn as a point of S. If, in addition, the drawing of G is crossing-free, that is, edges
are not allowed to intersect in their interior, then the point-set embedding is called planar.
Point-set embeddings are a classical subject of investigation in graph drawing from both an
algorithmic and a combinatorial point of view. From the algorithmic point of view we are
typically interested in deciding whether a given graph admits a point-set embedding on a
given set of points. From the combinatorial perspective, on the other hand, we typically
wish to characterize point sets that admit point-set embeddings for a whole class of graphs,
such as trees or planar graphs. Different types of point-set embeddings have been defined
depending on the desired type of drawing, that is, depending on how the edges are mapped to
the plane. Further, point-set embeddings have been considered for various classes of graphs,
such trees, planar graphs and outerplanar graphs as well as for various types of drawings,
such as straight-line drawings and polyline drawings.

Previous work Several algorithmic results are known for point-set embeddings in which edges
are required to be straight-line segments. Deciding whether a planar graph admits a straight-
line planar point-set embedding on a given point set is an NP-complete problem [Cab06], while
straight-line planar point-set embeddings of trees [BMS97] and outerplanar graphs [Bos02]
can be computed efficiently. From the combinatorial perspective, Gritzmann et al. [GMPP91]
prove that every planar graph with n vertices admits a planar straight-line point-set embedding

147

Chapter 7 Orthogeodesic Embeddings of Trees

on every set of n points in general position if and only if it is outerplanar. Kaufmann and
Wiese show that every n-vertex planar graph admits a planar polyline point-set embedding
on every set of n points with at most 2 bends per edge [KW02]. Colored versions of planar
polyline point-set embeddings in which the points are colored and adjacent vertices must be
mapped to points with different color have also been investigated [BDL08, DLT10]. Special
research effort has also been devoted to the study universal point sets for planar graphs. A
point set S is universal for a family F of graphs and for a type D of drawing if every graph
in F admits a point-set embedding of type D on S. Every universal point set for straight-line
planar drawings of planar graphs has size at least 1.235 · n [Kur04], whereas there exist
universal point sets of size 8

9n
2 [Bra08]. For polyline point-set embeddings of planar graphs,

on the other hand, there exist universal point sets of size n [ELLW10].
In this chapter we study orthogeodesic point-set embeddings on the grid. We already intro-

duced orthogeodesic point-set embeddings and studied different variants of the orthogeodesic
embedding problem from an algorithmic perspective. We proved that it is NP-hard to decide
whether a planar graph with n vertices and maximum degree 4 admits an orthogeodesic
point-set embedding on n points, while the problem can be solved efficiently for cycles.
Further, we showed that, if the mapping between vertices and points is given and the bends
are required to be at grid points, then the problem is NP-hard even for matchings, while the
problem is polynomial-time solvable if bends need not be at grid points. Further, we will
study a 2-colored version of the planar orthogeodesic point-set embedding in Chapter 8.

Contribution In contrast to Chapter 6, we consider orthogeodesic point-set embeddings on
the grid from the combinatorial point of view in this chapter. Let P be a set of grid points in
the plane, that is, p = (i, j) with i, j ∈ Z for all p ∈ P . A set P of grid points with x(p) 6= x(q)
and y(p) 6= y(q) for all p, q ∈ P with p 6= q is called a general point set. For different classes
of trees F and different drawing styles D we study the value f(n) such that every general
point set is universal for orthogeodesic point-set embeddings of all trees in F using D. The
restriction to general point sets is necessary since there are arbitrarily large point sets that are
not universal for orthogeodesic point-set embeddings of trees—for instance, a set of collinear
points. Thus, without the restriction to general point sets f(n) would not be well-defined
for a large class of graphs. We consider both planar and non-planar orthogeodesic point-set
embeddings as well as the case when edges can be arbitrary orthogeodesic chains and when
edges are required to be L-shaped chains, respectively. Recall that an L-shaped chain is an
orthogonal chain with only one bend, thus, it is an orthogeodesic chain with the minimum
number of bends for general point sets. In the non-planar orthogeodesic drawing style we
allow edges to be mapped to orthogeodesic chains that have a finite number of points in
common, that is, two orthogeodesic chains are allowed to intersect, but they may not share
common straight-line segments. Table 7.1 summarizes our results.

Organization This chapter is organized as follows. In Section 7.2, we study planar ortho-
geodesic point-set embeddings of trees without any further restriction. Then, we consider
the case when edges are required to be L-shaped, that is, if they are allowed to have only
one bend in Section 7.3. In Section 7.4, we drop the planarity constraint and we study
L-shaped orthogeodesic point-set embeddings. Finally, we summarize our results and list
open problems in Section 7.5.

148

7.2 Planar Orthogeodesic Point-Set Embeddings

Table 7.1: Summary of the results in the chapter. Each row corresponds to a family of trees
F and each column corresponds to a type of drawing D. The value in each entry
is an upper bound to the minimum value f(n) such that every n-vertex tree in F
admits a point-set embedding of type D on every point set of size f(n).

L-Shaped Orthogeodesic
Planar Non-Planar Planar Planar 2-spaced

Caterpillars ∆ = 3 n [Th. 7.8] n [Th. 7.8] n [Th. 7.8] n [Th. 7.1]
Trees ∆ = 3 n2−2n+2 [Th. 7.6] n [Th. 7.10] n [Th. 7.3] n [Th. 7.1]

Caterpillars ∆ = 4 3n−2 [Th. 7.7] n+1 [Th. 7.11] b1.5nc [Th. 7.4] n [Th. 7.1]
Trees ∆ = 4 n2−2n+2 [Th. 7.6] 4n−3 [Th. 7.9] 4n [Th. 7.2] n [Th. 7.1]

7.2 Planar Orthogeodesic Point-Set Embeddings
We start by considering planar orthogeodesic point-set embeddings of trees. Consider a
general point set P such that both the horizontal and vertical distance between two distinct
points is at least two, that is, min{|x(p)− x(q)|, |y(p)− y(q)|} ≥ 2 for all p, q ∈ P with p 6= q.
We call such a point set 2-spaced. In some sense, the point-set embedding problem is easier
on 2-spaced point sets since these point sets do not contain pairs of points that are diagonally
adjacent on the grid. Consider, for instance, two diagonally aligned points p and q such
that x(q) = x(p) + 1 and y(p) = y(q) + 1 as illustrated in Figure 7.1a. Then there are only
six grid points adjacent to p and q on the grid. However, if both vertices have degree four,
then at least one grid point x must be used by two orthogeodesic chains incident to p and q
as illustrated in Figure 7.1b. To see this, note that the horizontal and vertical grid lines
through p and q, respectively may not contain any other vertex since we assumed that P
is a general point set. On the other hand, all orthogeodesic chains incident to p and q,
respectively, must use these lines. Assuming that p and q are connected by an L-shaped edge
as illustrated in Figure 7.1b, the remaining six straight-line segments incident to p and q
must pass five remaining points, which implies that one of the points, say x, is passed by two
segments. This implies that two vertices with degree four may not be mapped to diagonally

p

q

(a)

p

q

x

(b)

Figure 7.1: (a) Two points p and q that are diagonally adjacent on the grid and the six grid
points adjacent to p and q. (b) Crossing resulting from mapping two vertices
with degree four to p and q, respectively.

149

Chapter 7 Orthogeodesic Embeddings of Trees

adjacent points on the grid. For instance, this implies that in any orthogeodesic embedding
of a complete ternary tree, the internal vertices must be “interleaved” with the leaves in the
sense that we may never place two internal vertices next to each other.

Since this restriction on the placement of the vertices makes the problem more complicated,
we first consider the problem for 2-spaced point sets and we show that every tree with
maximum degree 4 can be embedded on every general point set with n points using at most
two bends per edge if we require that the horizontal and vertical distance of any two points
is at least two. This implies that we can embed every tree with n vertices on every general
point set P with n points whose points are not horizontally or vertically aligned, if neither
vertices nor bends are required to be grid points.

Theorem 7.1. Every tree with n vertices and with maximum degree 4 admits a pla-
nar orthogeodesic point-set embedding on every general point set P with n points such
that min{|x(p)− x(q)|, |y(p)− y(q)|} ≥ 2 for all p, q ∈ P with p 6= q.

Proof. Let T be any tree with n vertices and maximum degree 4. We root T at any vertex r
of degree at most 3. Inductively, we prove that T admits a planar orthogeodesic point-set
embedding on every general point set P with n points such that the following invariants are
maintained.

(T1) Each edge has two bends.

(T2) No edge intersects a half-line h arbitrarily chosen among the two horizontal and two
vertical half-lines starting at r.

We will each subtree T ′ of T to a set of points contained in an axis-parallel rectangle. Since
the half-line h does not intersect the drawing, we can use it to connect the root of T ′ to its
parent using a straight-line segment on this half-line.
The claim is trivially true for n = 1. We inductively prove that T admits the required

embedding for the case that no edge may intersect the horizontal half-line starting at r and
directed rightward. The other constructions are analogous. Let n1 ≥ 0, n2 ≥ 0, and n3 ≥ 0
denote the number of vertices in the subtrees T1, T2, and T3 rooted at children r1, r2, and r3
of the root r of T , respectively. Let P1 denote the set of the n1 bottommost points of P .
Let P2 denote the set of the n2 leftmost points of P \ P1. Let p be the bottommost point
of P \ (P1 ∪ P2). Let P3 = P \ (P1 ∪ P2 ∪ {p}) as illustrated in Figure 7.2a. We embed r
on p and we inductively embed Ti on Pi (i = 1, 2, 3) such that no edge intersects the vertical
half-line h1 starting at r1 in the upward direction, the horizontal half-line h2 starting at r2 in
the rightward direction and the vertical half-line h3 starting in r3 in the downward direction.
We connect r with r1 by an orthogeodesic edge vertically attached to r and to r1, respectively,
and we connect the two vertical segments by an intermediate segment s on the horizontal
line one unit above the top side of the bounding box of P1. Further, we connect r with r2
and r3 analogously as illustrated in Figure 7.2b.

To see why the induction hypothesis holds, first note that the embeddings of T1, . . . , T3 are
crossing-free by induction-hypothesis and contained in disjoint axis-parallel rectangles. By
choice of the point sets P1, P2 and P3 no edge intersects the horizontal half-line h starting
in r in the rightward direction by construction. Hence, it suffices to show that the resulting
drawing is crossing free, that is, none of the edges connecting r1, . . . , r3 to r are involved in
any crossings. Clearly, these edge cannot cross each other by choice of P1, . . . , P3 and the

150

7.2 Planar Orthogeodesic Point-Set Embeddings

r

r3

r2

r1

P3

P2

P1

(a)

r

r3

r2

r1

P3

P2

P1

(b)

Figure 7.2: Planar orthogeodesic point-set embedding of a tree on a general point set with
bends allowed to have half-integer coordinates.

construction of the corresponding orthogeodesic chains. Further, the straight-line segments
incident to the vertices r1, . . . , r3 corresponding to the edges directed towards r, are mapped
to the half-lines h1, . . . , h3 that are not crossed by any other edge by induction hypothesis.
That is, there is no crossing in the bounding boxes of P1, . . . , P3, respectively. Next, consider
the edge (r1, r). The intermediate segment s is located on a horizontal grid line one unit
above the highest point in P1. Hence, this line does not contain any other point since we
required min{|x(p)− x(q)|, |y(p)− y(q)|} ≥ 2 for all p, q ∈ P . Therefore, we can embed the
edge as required by (T1) and (T2). Similar arguments can be applied to the remaining edges,
which concludes the induction step.

As an immediate consequence of Theorem 7.1 we obtain the following corollary for arbitrary
point sets.

Corollary 7.1. Let P ⊆ R2 be a set of points in the plane such x(p) 6= x(q) and y(p) 6= y(q)
for all p, q ∈ P such that p 6= q. Then every tree with maximum degree 4 has an orthogeodesic
point-set embedding on P with at most two bends per edge.

To see why Corollary 7.1 holds, we can consider a subdivision of the grid induced by the
points in P . Let x1, . . . , xn be the sorted sequence of the x-coordinates of the points in P
and let y1, . . . , yn be the sorted sequence of y-coordinates of the points in P . Let G be the
grid induced by the horizontal and vertical lines through the points in P as well as by the
horizontal lines y = xi+xi+1

2 and the vertical lines x = yi+yi+1
2 for i = 1, . . . , n − 1. Then

clearly, each point in p ∈ P can be assigned a pair of integer coordinates (ip, jp) by numbering
the horizontal grid-lines from bottom to top and the vertical grid lines from left to right such
that min{|ip − iq|, |jp − jq|} ≥ 2. Then the corollary immediately follows from Theorem 7.1.

As another consequence of Theorem 7.1 we obtain the following theorem for general point
sets on the grid without the restriction on the horizontal and vertical distance of the points.

Theorem 7.2. Every tree with n vertices and with maximum degree 4 admits a planar
orthogeodesic point-set embedding on every general point set with 4n points.

Proof. We prove that any set P of 4n points contains a subset of n points such that no two
points have a horizontal or vertical distance of less than two. The theorem then directly
follows from Theorem 7.1. Let the points in P be p1, . . . , p4n sorted from left to right. Let

151

Chapter 7 Orthogeodesic Embeddings of Trees

P1 consist of the 2n points p2i (1 ≤ i ≤ 2n) and the points in P1 be q1, . . . , q2n sorted from
bottom to top. Further, let P2 consist of the n points q2i (1 ≤ i ≤ n). By construction the
points in P2 have the desired horizontal and vertical spacing and the theorem we can thus
apply Theorem 7.1.

For trees with maximum degree 3, however, we can improve this result by showing that
every tree with this property admits a planar orthogeodesic point-set embedding on every
general point set with n points using at most two bends per edge. Hence, every general point
set with n points is universal for planar orthogeodesic point-set embeddings of trees with
maximum degree 3.

Theorem 7.3. Every tree with n vertices and with maximum degree 3 admits a planar
orthogeodesic point-set embedding on every general point set with n points.

Proof. Let T be a tree with maximum degree 3 and let P be a general point set with n
points. We root T in a leaf r. Let w be the unique vertex incident to r. For a vertex v
in T we denote the tree rooted in v by Tv. Then we construct a point-set embedding of T
on P as follows. First, we embed r on the topmost point pt of P and assign the subtree Tw
rooted in w to the point set Pw := P \ {pt} and an axis-parallel rectangle Rw whose opposite
corners are the left-bottom corner of the bounding-box of P and the point one unit below
the right-top corner of the bounding-box of P . We connect r with the top border of Rw
by drawing a vertical segment from pt to the point p∗ one unit below pt as illustrated in
Figure 7.3a with r = p(v).
Next, we traverse T in a top-down fashion. When considering the subtree Tv of T rooted

in v we suppose that Tv has already been assigned to a point set Pv and an axis-parallel
rectangle Rv such that the following invariants hold.

(T1) The size of the tree Tv equals the size of the point set |Pv|.

(T2) The point set Pv is contained inside the rectangle Rv.

(T3) The parent p(v) of vertex v lies outside of the rectangle Rv and is connected to Rv
by a horizontal or vertical straight-line segment p(v), p∗ such that p∗ is located on the
boundary of Rv.

(T4) Let Tu and Tv be two subtrees of T . If Tu is contained in Tv, then Ru is contained
inside Rv. Similarly, if Rv is contained in Ru, then Rv is contained inside Ru. If
neither Tu is contained in Tv nor Tv is contained in Tu, then Ru ∩Rv = ∅

(T5) Let T be a tree containing the edges e = (p(v), v) and consider the straight-line
segment σ = p(v), p∗. Then σ is contained in a rectangle Rv such that Tv has been
assigned to Rv if and only if Tv contains e.

Clearly, these invariants are satisfied after we have handled r as described above. Let v be an
internal vertex of T . Since T has maximum degree 3, the subtree rooted in v has at most two
children. Suppose that p∗ is on the top side of Rv; the cases in which p∗ is on the bottom,
left, or right side of Rv can be discussed analogously. We consider two cases depending on
the degree of v.

152

7.2 Planar Orthogeodesic Point-Set Embeddings

p(v)

p∗v

p′

Pv

(a)

p(v)

v p∗
p′

Pw

(b)

p(v)

p∗

v

p′

Pv

(c)

p(v)

p∗

v

Pw1

Pw2

(d)

p(v)

p∗v
p′

Pv

(e)

p(v)

p∗
v

Pw1

Pw2

(f)

p(v)

p∗

(g)

p(v)

p∗v

Pw1

Pw2

(h)

Figure 7.3: Embedding a tree with maximum degree 3 on a set of n points. (a) Embedding
the root r. (b)–(c) Embedding s with exactly one child. (d)–(g) Embedding s
with two children.

Case 1: First, suppose that v has one child w and consider Figures 7.3a and 7.3b. We
embed v on the topmost point pt of Pv and assign Tw to the point set Pw := Pv \ {pt}
and to the rectangle Rw whose opposite corners are the left-bottom corner of Rv and the
point one unit below the right-top corner of Rv. Let p∗ be the point on the boundary
of Rw that is vertically below p(v) and let p′ be the point on the boundary of Rw
that is vertically above v. We connect p(v) to v extending the horizontal straight-line
segment p(v)p∗ that we have already drawn by the invariant by the horizontal segment
p∗p′ and the horizontal segment p′v. Finally, we draw a vertical segment connecting v
to the top side of Rw as illustrated in Figure 7.3b.

Case 2: Next, suppose that v has two children w1 and w2. Let Pw1 ⊂ Pv denote the point set
composed of the leftmost |Tw1 | points of Pv and let Pw2 denote the point set composed
of the rightmost |Tw2 | points in Pv. Further, we denote the single remaining point in
Pv \ (Pw1 ∪ Pw2) by p. Let p∗ be the point on the boundary of Rv vertically below p(v)
and let p′ be the point on the boundary of Rv that is vertically above p. Then we
assign Tw1 to the point set Pw1 and to the rectangle Rw1 whose opposite corners are
the left-bottom corner of Rv and the intersection point between the top side of Rv and
the vertical line one unit to the left of p. We consider two sub-cases depending on the
line segment p∗p′.

Case 2a: First, suppose that the straight-line segment p∗p′ does not contain any point
in P . This case is illustrated in Figures 7.3c and 7.3d. We embed v on p and we
assign Tw2 to the point set Pw2 and the rectangle Rw2 whose opposite corners are
the right-bottom corner of Rv and the intersection point between the top side

153

Chapter 7 Orthogeodesic Embeddings of Trees

of Rv and the vertical line one unit to the right of p. Then we connect p(v) to v
by extending the straight-line segment p(s)p∗ by a horizontal segment p∗p′ and
a vertical segment p′p. Finally, we draw a horizontal segment connecting v with
the right side of Rw1 and we draw a horizontal segment connecting v with the left
side of Rw2 as illustrated in Figure 7.3d.

Case 2b: Second, suppose that the segment p∗p′ contains a point q ∈ P . This case
is illustrated in Figures 7.3e–7.3h. We consider two sub-cases. First, suppose
that q = p. Then we embed v on p and we assign Tw2 to the point set Pw2 and to
the rectangle Rw2 whose opposite corners are the right-bottom corner of Rv and
the point one unit below the intersection point between the top side of Rv and
the vertical line through p. We connect p(v) to v by extending the straight-line
segment p(s), p∗ by a horizontal segment p∗p as illustrated in Figure 7.3f. Second,
suppose that q 6= p. Then we embed v on q and we assign assign Tw2 to the
point set Pw2 \ {q} ∪ {p} and to the rectangle Rw2 whose opposite corners are the
right-bottom corner of Rv and the intersection point between the horizontal line
one unit below the top side of Rv and the vertical line through p. We connect p(v)
to v by extending the vertical segment p(s)p∗ by the horizontal segment p∗q.

Finally, in both cases, we draw a horizontal segment connecting v with the right side
of Rw1 and we draw a vertical segment connecting v with the left side of Rw2 as
illustrated in Figures 7.3f and 7.3h.

The case, when v is a leaf is handled similar to the case when v is an internal vertex with
only one child.
Clearly, the invariants are maintained by the algorithm. The resulting drawing does not

contain any crossings, since for each vertex v, the subtree Tv rooted in v is mapped to an
axis-parallel rectangle that does not contain any vertex from T −Tv. Further, the constructed
edges are orthogeodesic. Hence P admits and orthogeodesic point-set embedding of T

Recall that a caterpillar is a tree such that by removing all leaves we are left with a path,
called spine. In Theorem 7.2 we show that every tree with maximum degree 4 has a planar
orthogeodesic point-set embedding on every general point set with 4n points. For caterpillars
with maximum degree 4, however, this result is not tight.

Theorem 7.4. Every caterpillar with n vertices and with maximum degree 4 admits a planar
orthogeodesic point-set embedding on every general point set with b1.5nc points.

Proof. Let C be a caterpillar with n vertices and with maximum degree 4 and let ni denote
the number of vertices of C with degree i = 1, . . . , 4. Let P ∗ be a general point set with b1.5nc
points. From P ∗ we arbitrarily choose a point set P of size N = n + n3 + n4 points on
which we embed C. First, we show that N ≤ 1.5n, which implies N ≤ b1.5nc since N
is a natural number. Suppose for contradiction that n3 + n4 > n/2. Since each vertex
with degree at least 3 is incident to a leaf this yields n1 ≥ n3 + n4. Summing up we have
n ≥ n1 + n3 + n4 ≥ 2(n3 + n4) > n, a contradiction.
Next, we show how to embed C on P . Each vertex v ∈ V is mapped to a point π(v) ∈ P .

Let S = (u2, . . . , uk−1) be the spine of C and let u1 be a leaf incident to u2 and let uk be a leaf
incident to uk−1. By S+ we denote the path (u1, . . . , uk). Then we consider the vertices ui

154

7.2 Planar Orthogeodesic Point-Set Embeddings

qj

qj+1

(a)

qj

qj+1

(b)

qj

qj+1

qj+2

(c)

qj

qj+1

qj+2

(d)

PT

PS+

u1

u2

u5

u3

u4

u6

u7

w1

w2

w4
w5

w3P−
3

P+
3

(e)

Figure 7.4: Embedding a caterpillar on a set of b1.5nc points. (a)–(d) Embedding the spine S+.
(e) Embedding the leaves in T .

for i = 2, . . . , k − 1. If ui has two adjacent leaves not in S+, then we label one of them “top”
and one of them “bottom”. If ui has only one adjacent leaf not in S+, we arbitrarily label it
“top” or “bottom”. Let B and T be the sets of leaves of C that have been labeled “bottom”
and by “top”, respectively.
Let PT be the subset of the highest |T | points of P and let PB be the subset of the

lowest |B| points. Further, let Q = P \ (PT ∪PB) be the remaining points. By construction Q
contains t = n2 + 2(n3 + n4) + 2 points. We embed C on P as follows.

(S1) The leaves in T will be embedded on PT , the leaves in B will be embedded on PB and
the vertices in S+ will be embedded on a subset PS+ ⊆ Q.

(S2) The spine will be embedded as an x-monotone chain such that ui is left of ui+1 for
all 1 ≤ i ≤ k − 1.

(S3) Edge {ui, ui+1} occupies the horizontal segment incident to ui on the right for all
1 ≤ i ≤ k − 1. If, additionally, the degree of ui is at least 3, then edge {ui−1, ui}
occupies the horizontal segment incident to ui on the left for all 2 ≤ i ≤ k − 1.

Let q1, . . . , qt be the points in Q sorted from left to right. First, we map u1 to the leftmost
point q1 in Q. Suppose, we have mapped u1, . . . , ui for some i < k and let qj = π(ui).
If ui+1 has degree 2, then we map ui+1 to qj+1 and we connect ui and ui+1 by an L-shaped
orthogeodesic chain composed of a horizontal segment incident to ui and a vertical segment
incident to ui+1 as illustrated in Figures 7.4a and 7.4b. If ui+1 has degree at least 3, then
we map ui+1 to qj+2 skipping the point qj+1 in Q and we connect ui by an orthogeodesic
chain consisting of two horizontal segments incident to ui and ui+1, respectively, and a
vertical segment in the column to the left of qj+2 as illustrated in Figures 7.4c and 7.4d. By
construction, uk is mapped to a point qj such that j ≤ n2 + 2(n3 + n4) + 2 since we only
skipped points for vertices with degree at least 3.
Now we describe how to embed the leaves of T on PT . The leaves in B are embedded

on PB analogously. Let w1, . . . , w|T | be the vertices in T sorted such that their corresponding
vertices on the spine are sorted from left to right and let Ti be the set of vertices in T that are

155

Chapter 7 Orthogeodesic Embeddings of Trees

incident to vertices uj for j < i. For each i with 1 ≤ i ≤ k let P−i be the set of points in PT
to the left of π(ui) and let P+

i be the set of points in PT to the right of π(ui), respectively,
as illustrated in Figure 7.4e for vertex u4. Each leaf wi is mapped to a point π(wi) and
is attached to the spine by an L-shaped orthogeodesic chain. We maintain the following
invariant.

(L1) If wi is incident to uj and |P−j | > |Tj |, then wi is mapped to the lowest point p ∈
P−i \

⋃i−1
l=1{π(wl)} by an L-shaped orthogeodesic chain consisting of the vertical segment

incident to π(uj) and the horizontal segment incident to p. Otherwise, wi is mapped to
the highest unused point in P+

i \
⋃i−1
l=1{π(wl)} as illustrated in Figure 7.4e.

The resulting point-set embedding is orthogeodesic by construction. Planarity follows from
the invariants as follows.
Due to invariants (S1) and (S2) the spine is mapped to an x-monotone chain such that

the angle at vertices with degree at least 3 is 180 degrees. This implies that the spine
does not cross itself and that the vertical segments incident to the vertices with degree at
least 3 are unoccupied by the spine. Since, by invariant (S1), we attached the leaves in T
above the spine and the leaves in B below the spine, there cannot be a crossing between
two edges incident to a leaf in T and a leaf in B, respectively. Suppose for contradiction
that there is a crossing between two edges ei and ej incident to two leaves wi and wj in T ,
respectively. Without loss of generality we assume i < j. If π(wi) ∈ P−i and π(wj) ∈ P+

j

there cannot be a crossing by construction. If π(wi) ∈ P−i ⊆ P−j and π(wj) ∈ P−j , then
a crossing can only occur if π(wj) ∈ P−i and π(wj) is below π(wi), which contradicts
invariant (L1). Analogously, if π(wi) ∈ P+

i and π(wj) ∈ P+
j ⊆ P

+
i , then a crossing can only

occur if π(wi) ∈ P+
j and π(wi) is below π(wj), which contradicts invariant (L1). Finally,

if π(wj) ∈ P−i and π(wi) ∈ P+
j ⊆ P

+
i , then this contradicts invariant (L1), since wi is only

mapped to a point in P+
i if there is no unused point in P−i . Therefore, the embedding is

crossing-free, which concludes the proof.

7.3 Planar L-Shaped Orthogeodesic Pointset Embeddings
Next, we consider planar L-shaped orthogeodesic point-set embeddings of trees. First we
prove that every tree with n vertices and with maximum degree 4 admits a planar L-shaped
point-set embedding on every general point set with n2−2n+2 points. Every point set of this
size contains a diagonal point set, which is universal for planar L-shaped point-set embeddings
of trees with maximum degree 4. Let P be a point set and let p1, . . . , pn denote the points
in P ordered by increasing x-coordinates. Then we refer to P as a positive-diagonal point set
if y(pi+1) > y(pi) for every i = 1, . . . , n− 1. Similarly, we refer to P as a negative-diagonal
point set if y(pi+1) < y(pi) for every i = 1, . . . , n− 1. If P is either a positive-diagonal point
set or a negative-diagonal point set, then we call P a diagonal point set. First, we show that
any diagonal point set is universal for L-shaped orthogeodesic point-set embeddings of trees
with maximum degree 4.

Theorem 7.5. Every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every diagonal point set with n points.

156

7.3 Planar L-Shaped Orthogeodesic Pointset Embeddings

P1

P2

P3

r1

r2

r3

h1

h2

h3

(a) Induction hypothesis

P1

P2

P3

r1

r2

r3
h

(b) Induction step

Figure 7.5: Orthogeodesic point-set embedding of a tree with maximum degree 4 on a positive-
diagonal point set.

Proof. Suppose that P is a positive-diagonal point set and let T be a tree with n vertices
and with maximum degree 4. The case, when P is a negative-diagonal point set can be
handled similarly. We root T at a vertex r with degree at most 3. By induction, we prove
that T admits an orthogeodesic planar L-shaped point-set embedding on every diagonal point
set with n points such that there is no edge overlapping or crossing a half-line h arbitrarily
chosen among the two horizontal and two vertical half-lines starting at r.
In the base case n = 1 and the statement is trivially true. Suppose that the claim of the

theorem is true for all n′ < n. We show that T admits an orthogeodesic planar L-shaped
point-set embedding on every diagonal point set P with n points such that no edge overlaps
or crosses the vertical half-line h starting at r in the upward direction. The cases, when no
edge overlaps the vertical half-line starting at r in the downward direction or the horizontal
half-lines starting at r in the leftward or rightward direction, respectively, are handled
analogously. Let r1, . . . rk denote the children of r, that is, k ≤ 3. Further, let ni denote
the number of vertices of the subtree Ti rooted in ri for i = 1, . . . , k. If r has less than 3
children, we set ni = 0 for k < i ≤ 3. Let P1, P2, and P3 be the point sets consisting of the
bottommost n1 points of P , the bottommost n2 points of P \P1, and of the topmost n3 points
of P , respectively. Further, let p be the unique point in P \ (P1 ∪ P2 ∪ P3). By induction
hypothesis, we can embed Ti on Pi for 1 ≤ i ≤ k as illustrated in Figure 7.5a such that no
edge of T1 intersects vertical half-line h1 starting at r1 in the upward direction, no edge of T2
intersects the horizontal half-line h2 starting at r2 in the rightward direction and such that
no edge of T3 intersects the vertical half-line h3 starting at r3 in the downward direction.
Since the bounding boxes of the point sets P1, P2 and P3 are disjoint and since the geodesic
chains corresponding to the edges of T1, T2 and T3, respectively, are contained inside the
bounding boxes of their respective point sets, the resulting embedding is crossing-free.

Then we embed r on p and we connect r to r1, . . . , rk as illustrated in Figure 7.5b. That is,
we connect r to ri using the horizontal or vertical segment on hi and the straight-line segment
incident to r that is orthogonal to hi for all 1 ≤ i ≤ k. By the choice of hi for 1 ≤ i ≤ k,
the edges are mapped to no-intersecting orthogeodesic chains and we do not use or cross
the vertical half-line h starting at r in the upward direction. This concludes the induction
step.

157

Chapter 7 Orthogeodesic Embeddings of Trees

According to the Erdős-Szekeres theorem [ES35], every general point set with n2 − 2n+ 2
points contains either a positive-diagonal point set with n points or a negative-diagonal point
set with n points. Hence, from Theorem 7.5 we immediately obtain the following theorem.

Theorem 7.6. Every tree with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every general point set with n2 − 2n+ 2 points.

For caterpillars with maximum degree 4 we can improve the bound of Theorem 7.6 as the
following theorem shows.

Theorem 7.7. Every caterpillar with n vertices and with maximum degree 4 admits a planar
L-shaped point-set embedding on every general point set with 3n− 2 points.

Proof. Let C be a caterpillar with n vertices and with maximum degree 4 and let P be a
general point set with 3n− 2 points. Let (u2, . . . , uk−1) be the spine of C and let u1 and uk
be two leaves of C adjacent to u2 and to uk−1, respectively. Let L denote the set of vertices
of C containing all leaves of C, except u1 and uk. For i = 1, . . . , k − 1 we let Ci denote
the subtree of C induced by the vertices u1, . . . , ui and by their adjacent leaves in C − uk
and we let Ck := C. Observe that Ci is a caterpillar, for i = 1, . . . , k. By induction on i
we prove that Ci admits a planar L-shaped point-set embedding on every general point set
with 3|Ci| − 2 points for all i = 1, . . . , k, such that the following invariant is satisfied.

(C1) The horizontal half-line starting at ui directed rightward does not intersect any edge of
the constructed drawing of Ci.

For i = 1 we have |C1| = 1 and the induction hypothesis is trivially true. Suppose that the
induction hypothesis is true for i− 1 and consider an arbitrary point set Pi with 3|Ci| − 2
points. By Pi−1 we denote the point set consisting of the leftmost 3|Ci−1| − 2 points of Pi.
Using the induction hypothesis, we can construct an orthogeodesic planar L-shaped point-set
embedding of Ci−1 on Pi−1 such that the horizontal half-line starting at ui−1 in the rightward
direction is not intersected by any edge of the constructed embedding. We distinguish three
cases depending on the degree of ui.

Case 1: First, assume that ui is not adjacent to a leaf in L. Then, embed ui on the rightmost
point of Pi. Such a point exists since |Pi \ Pi−1| = 3. We connect ui with ui−1 by an L-
shaped edge using a horizontal straight-line segment incident to ui−1 that neither used
nor crossed by any other edge by the induction hypothesis and a vertical straight-line
segment attached to ui.

Case 2: Second, assume that ui is adjacent to exactly one leaf ai and consider the three
leftmost points of Pi \ Pi−1. These points exist since |Pi \ Pi−1| = 6. Then, either two
of the three points are above the horizontal line hi−1 through ui−1 or two of the points
are below hi−1. Suppose that two of the points, say p1 and p2, are above hi−1. The
other case can be handled in a similar fashion. Without loss of generality we may
assume that p1 is to the left of p2. Then, we embed ui on the rightmost point p2 and we
embed ai on the leftmost point p1. Further, we connect ui with ui−1 by an L-shaped
edge horizontally attached to ui−1 and vertically attached to ui and we connect ui with
ai by an L-shaped edge horizontally attached to ui and vertically attached to ai.

158

7.3 Planar L-Shaped Orthogeodesic Pointset Embeddings

ui

ui−1 ai

bi

(a)

uiui−1

ai

bi

(b)

Figure 7.6: Planar L-shaped point-set embedding of caterpillars on general point sets.
(a) y(p1) < y(p2) < y(p3). (b) y(p1) > y(p2) > y(p3).

Case 3: Third, assume that ui is adjacent to two leaves ai and bi and consider the nine
leftmost points of Pi \ Pi−1. These points exist since |Pi \ Pi−1| = 9. Then, either
five of such nine points are above the horizontal line hi−1 through ui−1 or five are
below. Suppose that five points p1, . . . , p5 are above hi−1. The other case can be
handled in a similar fashion. As a consequence of the Erdős-Szekeres-Theorem [ES35]
every general point set with at least 5 points contains a diagonal point set with 3
points, hence the points p1, . . . p5 contain a diagonal point set with 3 points. Without
loss of generality we may assume that p1, . . . , p3 form a diagonal point set and that
x(p1) < x(p2) < x(p3). If y(p1) < y(p2) < y(p3) as illustrated in Figure 7.6a), that is, if
the points p1, . . . , p3 form a positive-diagonal point set, then we embed ui on p2, ai on p1
and bi on p3. Similarly, if y(p1) > y(p2) > y(p3) as illustrated in Figure 7.6b), that is
if the points p1, . . . , p3 for a negative-diagonal point set, then we embed ui on p3, ai
on p2 and bi on p1. In both cases, we connect ui with ui−1 by an L-shaped edge that
is horizontally attached to ui−1 and vertically attached to ui and we connect ui to ai
by an L-shaped edge horizontally attached to ui and vertically attached to ai, and we
connect ui to bi by an L-shaped edge vertically attached to ui and horizontally attached
to bi as illustrated in Figures 7.6a and 7.6b, respectively.

Note that we did not use or cross the horizontal half-line starting at ui in the rightward
direction. Hence, the invariant (C1) is maintained, which concludes the induction.

For caterpillars with maximum degree 3 we can improve this bound even further by showing
that every such a caterpillar can be embedded on every general point set with n points
using L-shaped edges.

Theorem 7.8. Every caterpillar with n vertices and with maximum degree 3 admits a planar
L-shaped point-set embedding on every general point set with n points.

Proof. Let C be a caterpillar with n vertices and let P be a general point set consisting
of n points p1, . . . , pn. Assume that the points are sorted such that x(pi) < x(pi+1) for
all 1 ≤ i ≤ n− 1 and let Pi := {p1, . . . , pi}. Let u2, . . . , uk−1 denote the spine of C and let u1
and uk be two vertices adjacent to u2 and uk−1, respectively. Let Ci be the sub-tree of C−uk
induced by the vertices u1, . . . , ui and the leaves incident to these vertices for 1 ≤ i ≤ k − 1.
Further, let Ck := C.

By induction on i we prove that we can find an planar L-shaped point-set embedding of Ci
on Pj such that ui such that the following invariants are maintained.

159

Chapter 7 Orthogeodesic Embeddings of Trees

ui−1

pb

ptPi−1

hi−1

`i−1

(a)

ui−1

Pi−1

ui

wi

`i`i

hi

(b)

ui−1

Pi−1

pt

pb

hi−1

`i−1

(c)

ui−1

Pi−1

ui

wi

`i

hi

`i

(d)

pt

ui−1

Pi−1
pb

hi−1

`i−1

(e)

ui−1

Pi−1 ui
wi

`i

hi

(f)

ui−1

Pi−1 pt
pb

hi−1

`i−1

(g)

ui−1

Pi−1
ui

wi `i

hi

(h)

Figure 7.7: Orthogeodesic planar L-shaped point-set embedding of a caterpillar with maxi-
mum degree 3.

(C1) The size of |Pj | equals the size of Ci, that is, j = |Ci|.

(C2) The vertex ui is mapped either to pj or to pj−1.

(C3) Both the horizontal half-line hi starting at pj in the rightward direction as well at least
one vertical half-line `i starting at pj either in the upward or in the downward direction
do not intersect the drawing of Ci.

The induction hypothesis is trivially true for i = 1. We map u1 to p1 and let h1 denote the
horizontal half-line starting at p1 in the rightward direction. Further, we let `1 denote the
vertical half-line starting at p1 in the downward direction. Now, suppose that the induction
hypothesis is true for i − 1 and consider the caterpillar Ci. By the induction hypothesis,
we can find an planar L-shaped point-set embedding of Ci−1 on Pj such that j = |Ci−1|.
Assume, without loss of generality, that `i−1 denotes the vertical half-line starting at ui−1 in
the downward direction and that `i−1 does not intersect the drawing of Ci−1 as illustrated in
Figure 7.7a and suppose that ui−1 is mapped to pc such that c ∈ {|Ci|, |Ci−1|}. Again we
distinguish two sub-cases depending on the degree of ui.

Case 1: First, suppose that ui has degree at most two, that is it is adjacent to at most two
vertices ui−1 and, possibly, ui+1 if it exists. Then we map ui to pc+1 and we connect ui
to ui−1 by an L-shaped edge that is horizontally attached to ui−1 and vertically attached
to ui. Clearly the invariants are maintained.

Case 2: Second, suppose that ui has degree three, that is i < k and ui is adjacent to two
vertices ui−1 and ui+1 as well as an additional leaf wi. Note that |Ci| = c + 2, that
is, |Ci| − |Ci−1| = 2. Let pb and pt denote the two vertices in P|Ci| \ P|Ci−1| such that
y(pb) < y(pt), that is pb is below pt. We distinguish two sub-cases.

Case 2a: First, suppose that pb is below the vertical half-line hi−1 as illustrated in
Figures 7.7a and 7.7c. Then we map ui to pb and we map wi to pt. Further,

160

7.4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings

we connect ui−1 to ui by an L-shaped edge that is vertically attached to ui−1
and horizontally attached to ui and we attach wi to ui by an L-shaped edge
that is vertically attached to ui and horizontally attached to wi as illustrated in
Figures 7.7b and 7.7d. This way, the horizontal half-line hi starting at ui in the
rightward direction as well as the vertical half-line `i starting at ui in the downward
direction do not intersect the constructed embedding. Hence, the invariants are
maintained.

Case 2b: Second, suppose that pb is above the vertical half-line hi−1, that is, pt is also
above hi−1 as illustrated in Figures 7.7e and 7.7g. We map ui to the rightmost
point of pb and pt and we map wi to the leftmost point of pb and pt, respectively.
Further, we connect ui to ui−1 by an L-shaped edge that is horizontally attached
to ui−1 and vertically attached to ui and we connect wi to ui by an L-shaped edge
that is horizontally attached to ui and vertically attached to wi as illustrated in
Figures 7.7f and 7.7h.

Note that the newly constructed edges do not intersect. Clearly, the constructed embedding
does not intersect the horizontal half-line hi starting at ui in the rightward direction and
the vertical half-line `i starting at ui in the upward direction. Hence, the invariants are
maintained. This concludes the induction.

7.4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings
Next, we consider non-planar L-shaped orthogeodesic point-set embeddings on general point
sets P . In a non-planar L-shaped orthogeodesic embedding we require that edges are mapped
to orthogeodesic chains such that each chain contains exactly two points from P , that is, its
endpoints, and has only a finite number of points in common with any other chain. That is,
orthogeodesic chains may cross but are not allowed to overlap. We start by showing that
every tree with n vertices as a non-planar L-shaped orthogeodesic point-set embedding on
every general point set with 4n− 3 points.

Theorem 7.9. Every tree with n vertices and with maximum degree 4 admits a non-planar
L-shaped point-set embedding on every general point set with 4n− 3 points.

Proof. Let T = (V,E) be a tree with n vertices and let P be a general point set with 4n− 3
points. Let T be rooted in a leaf r ∈ V and let the vertices of T be labeled r = v1, . . . , vn
according to a depth-first search in T . Let Qn = P . For n ≥ i ≥ 1, let Pi consist of the
points on the boundary of the bounding box of Qi, and for n ≥ i ≥ 2 let Qi−1 = Qi \ Pi as
illustrated in Figure 7.8a. Since the boundary of the bounding box of a general point set
contains at least two and at most four points, and since P contains 4n− 3 points, we have
that each set Pi contains at least two and at most four vertices, except for P1, which contains
at least one vertex.

We embed T using L-shaped orthogeodesic chains such that vertex vi is mapped to a point
in Pi for all 1 ≤ i ≤ n. We start by mapping the root v1 to an arbitrary point p∗ ∈ P1. Suppose
we have embedded all vertices v1, . . . vi for some i ≥ 1 and we would like to embed vi+1. Since
the vertices are ordered according to a depth-first search, we have already embedded the
parent vj of vi+1. Further, the vertices v1, . . . , vj have been embedded inside the bounding box

161

Chapter 7 Orthogeodesic Embeddings of Trees

Q1

Q2

Q3

Q4

(a) Point set

v1
v2

v3

v4

v5

(b) Embedding v2v5

Figure 7.8: Non-planar L-shaped point-set embedding of a tree with maximum degree 4.

of the point set Qi which in the interior of the bounding box of the points in Qi+1. Since vj
has degree at most 4 and since, we have not yet mapped vi+1, at least one of the segments
incident to vj in the drawing is unoccupied by the drawing. Without loss of generality we may
assume that the vertical segment above vj is unoccupied (otherwise we can rotate the instance
accordingly). By construction the points in Pi+1 are on the bounding box of Qi+1, which
contains Qi in its interior. Hence, Pi+1 contains a point pt on the top side of the bounding
box of Qi+1. Then we map vi+1 to pt and we connect it to vj by an L-shaped edge that is
vertically attached to vj and horizontally attached to pt as illustrated in Figure 7.8b.

Next, we improve on this by showing that a general point set of size n allows an L-shaped
point-set embedding for the class of trees with n vertices and maximum degree 3.

Theorem 7.10. Every tree with n vertices and with maximum degree 3 admits a non-planar
L-shaped point-set embedding on every general point set with n points.

Proof. Let T be a tree with n vertices and with maximum degree 3 and let P be a general
point set with n points. Assume that T is rooted at a vertex r with degree at most 2. By
induction on n we prove that we can find an L-shaped point-set embedding of T on P such
that none of the edges occupies the vertical line through r.

If n = 1, we map the single vertex of T to the single point in P and we are done. Suppose
that the induction hypothesis holds for all n′ < n. Let n1 ≥ 0 and n2 ≥ 0 denote the number
of vertices in the subtrees T1 and T2 rooted at the children r1 and r2 of r, respectively. Further,
let P1 and P2 be the point sets consisting of the leftmost n1 points and the rightmost n2
points of P , respectively, as illustrated in Figure 7.9a. Let p be the unique point of P not
in P1 and not in P2. Then we embed r on p. By induction we can find an L-shaped point
set embedding of T1 on P1 and of T2 on P2 such that the vertical line through r1 and r2 is
unoccupied by any edge of the resulting drawings, respectively. Then, we connect r to r1 by
an L-shaped edge that is horizontally attached to r and vertically attached to r1. Similarly,
we connect r to r2 by an L-shaped edge that is horizontally attached to r and vertically
attached to r2 as illustrated in Figure 7.9b. Since the constructed edges are attached to r
horizontally and since the embeddings of T1 and T2 are contained in the bounding boxes of
their respective point sets, which do not intersect the vertical line through r, the maintain
the invariant as claimed, which concludes the induction step.

162

7.4 Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings

r
r1

r2

P1 P2

(a) induction hypothesis

r
r1

r2

P1 P2

(b) induction step

Figure 7.9: Non-planar L-shaped point-set embedding of a tree on a general point set.

For caterpillars with maximum degree 4 we can further improve this by showing that every
general point set with n+ 1 points admits an orthogeodesic L-shaped point-set embedding of
every caterpillar with n vertices and with maximum degree 4.

Theorem 7.11. Every caterpillar with n vertices and with maximum degree 4 admits a
non-planar L-shaped orthogeodesic point-set embedding on every general point set with n+ 1
points.

Proof. Let P be a general point set with n+ 1 points. Let C be a caterpillar with maximum
degree 4 and let (u2, . . . , uk−1) denote the vertices of its spine. Further, let S+ denote the
path (u1, u1, . . . , uk, uk) where u1 and uk are two leaves incident to u2 and uk−1, respectively.
We embed C on P using L-shaped orthogeodesic chains for the edges such that the following
invariants are maintained.

(S1) The spine is embedded as a monotone chain starting in the leftmost point in P .

(S2) The spine leaves each vertex along the horizontal segment to its right and enters each
vertex along a vertical segment either above or below it.

(S3) All but possibly one point to the left of ui are occupied by the vertices uj for i < j and
the leaves adjacent to these vertices.

By applying (S3) to uk+1 it is clear that n+ 1 points are sufficient for the embedding.
First, we embed u1 on the leftmost point in P . Suppose we have mapped all ver-

tices u1, . . . , ui for some 0 ≤ i ≤ k. Let ui be mapped to pj and let P+
i be the remaining

points to the right of ui that are not yet occupied by a point.
In order to embed ui+1 as well as the leaves incident to it, we distinguish four cases.

Case 1: ui+1 has degree at most two. Let p be the leftmost point in P+
i . We map ui+1 to p

and connect it to ui an L-shaped orthogeodesic chain as illustrated in Figures 7.10a
and 7.10b.

Case 2: ui+1 has degree 3. Let w be a leaf incident to ui+1. Let p1 be the leftmost point
in P+

i and let p2 be the leftmost point in P+
i to the right of p1. We map ui+1 to p2

and connect it to ui by an L-shaped orthogeodesic chain starting with a horizontal
segment in ui+1. Further, we map w to p1 and connect it to ui+1 by the horizontal
segment incident to p2 to the left and the vertical segment incident to p1 as illustrated
in Figures 7.10c and 7.10d.

163

Chapter 7 Orthogeodesic Embeddings of Trees

ui

P+
i

p

(a)

ui

P+
i+1

ui+1

(b)

ui

P+
ip1

p2

(c)

ui

P+
i+1

w1

ui+1

(d)

ui

P+
ip`

p∗
pt

(e)

ui

w1

ui+1

w2

(f)

ui

P+
ipb

p∗
ptp`

(g)

ui

pb

ui+1

w2
w1

(h)

ui
P+
ip`

p∗pt

p−

(i)

ui p`

ui+1

w2

w1

(j)

Figure 7.10: Embedding a caterpillar on n+ 1 points using L-shaped edges.

Case 3: ui+1 has degree 4 and there is no unoccupied point to the left of ui. Let w1 and w2
be two leaves incident to ui+1. Recall that we assumed that the vertex ui be mapped
to a point pj . Let p∗ be the leftmost point in P+

i with the following property.

Either (i) p∗ is above pj and p∗ contains two distinct points p` and pt to
its left and above, respectively, as illustrated in Figures 7.10e and 7.10g or,
similarly, (ii) p∗ is below pj and p∗ contains two distinct points p` and pb
to its left and below, respectively.

Let Q denote the set of the leftmost 4 points in P+
i . We claim that Q contains a

point p∗ with the desired property. Let pt be the topmost point in Q and let pb be the
bottommost point in Q. Further, let p` be the leftmost point such that p` 6= pt, pb and
let q be the remaining point. By construction, q has the desired properties. Hence,
there can be at most three points to the left of p∗.
We assume that p∗ is above pj as illustrated in Figures 7.10e and 7.10g, respectively.
The case when p∗ is below pj is analogous. First, we consider the case that there are
only two points in P+

i to the left of p∗, namely a point pt above p∗ and a point p`
left of p∗ as illustrated in Figure 7.10e. We map ui+1 to p∗ and connect it to ui by
an L-shaped orthogeodesic chain consisting of the horizontal segment incident to ui
and the vertical segment incident to ui+1. Further, we map w1 to p` and connect it
to p∗ by an L-shaped orthogeodesic chain consisting of the horizontal segment incident
to p∗ and the vertical segment incident to p`. Further, we map w2 to pt and connect it
by the respective orthogeodesic chain as illustrated in Figure 7.10f.

164

7.5 Concluding Remarks

Next, we consider the case that there are three points to the left of p∗ as illustrated
in Figure 7.10g. Let Q, pt, pb and p` be chosen as described above. We embed ui+1
on p∗, w1 on p` and w2 on pt as in the above description and we leave the point pb to
the left of p∗ unused as illustrated in Figure 7.10h.

Case 4 ui+1 has degree 4 and there is a single unoccupied point p− to the left of ui. This case
is analogous to the Case 3, except that we do not require that p∗ contains a point p` to
its left in P+

i , since p− will substitute p`. Note that, as in Case 3, one single point to
the left of p∗ may remain unoccupied as illustrated in Figures 7.10i and 7.10j.

Clearly, by construction of the embedding the invariants are maintained, which implies that
at most one of the points will not be used by the embedding.

7.5 Concluding Remarks
In this chapter we studied orthogeodesic point-set embeddings of trees on the grid. For
various types of drawings D and various families of trees F we proved upper bounds on the
minimum value f(n) such that every n-vertex tree in F admits a point-set embedding of
type D on every general point set of size f(n) on the grid. The restriction to general point
sets was motivated by the fact that f(n) would be infinity for most of the interesting classes
of graphs if we allowed arbitrary point sets. We showed that every tree with n vertices and
maximum degree 4 admits a planar orthogeodesic point-set embedding on every general
point set with 4n points on the grid. This implies that every tree with n vertices admits a
planar orthogeodesic point-set embedding on every general point set if we do not require
the orthogeodesic chains to be on the grid. We then improved on this by considering trees
with maximum degree 3 and caterpillars with maximum degree 4. We showed that every
caterpillar with maximum degree 4 admits an orthogeodesic point-set embedding on every
general point set with 1.5n points, whereas every tree with maximum degree 3 admits an
orthogeodesic point-set embedding on every general point set with n points.

Next, we considered planar L-shaped orthogeodesic point-set embeddings. While all of the
constructions up to this point used at most two bends on each edge, L-shaped orthogeodesic
chains are optimal with respect to the number of bends for an orthogeodesic point-set
embedding of a graph on a general point set. We showed that every tree with n vertices and
maximum degree 4 admits a planar orthogeodesic point-set embedding on every point-set
with n2 + 2n+ 2 points. We improved on this for caterpillars with maximum degree 3 and 4
by showing that every caterpillar with maximum degree 4 admits a planar orthogeodesic
point-set embedding on every general point set with 3n− 2 points whereas a caterpillar with
maximum degree 3 admits a planar orthogeodesic point-set embedding on every general point
set with n points.
Finally, we considered non-planar orthogeodesic point-set embeddings which allow edges

to cross and we proved that every tree with n vertices and maximum degree 4 admits an
orthogeodesic embedding on every general point set with 4n− 3 points, which we improved
to n+ 1 and n for caterpillars with maximum degree 4 and trees with maximum degree 3,
respectively.
Interestingly, we could not prove a sub-quadratic bound on f(n) for planar L-shaped

point-set embeddings or a non-trivial lower bound on f(n). On the other hand, an extensive

165

Chapter 7 Orthogeodesic Embeddings of Trees

u

v

w

(a)

u

v

w

(b)

Figure 7.11: A path of three vertices u, v and w such that v has degree 4. While the
embedding of the edge uv does not affect whether the edge vw is connected to
w by a horizontal or a vertical segment if two bends are allowed, as illustrated
by the solid and dashed edge, respectively, there is only one embedding of the
edge vw depending on the embedding of the edge uv if only one bend is allowed.

experimental analysis did not reveal any tree with n vertices that did not be admit a planar
L-shaped orthogeodesic point-set embedding on any of the tested point sets with n points.
For the experimental analysis, we implemented an algorithm for orthogeodesic point-set
embeddings based on transforming the problem into a SAT problem and using the MiniSat
solver [ES05] to compute a layout or prove that no layout exists. But what makes these
embeddings so hard to analyze? On the one hand, we already mentioned in Section 7.2 that
we are not allowed to map two vertices with degree 4 to diagonally adjacent points on the
grid. In fact, we could prove much better bounds for the non-planar L-shaped point-set
embeddings, so at least part of the difficulty results from this observation. On the other hand,
allowing two bends on each edge seemed to also alleviate the situation, while not allowing
two bends introduces an addition difficulty due to the following observation.
Consider a path consisting of three vertices u, v and w such that v has degree 4. The

vertices are mapped to the grid as illustrated in Figure 7.11a. There are two possibilities
of embedding an L-shaped edge between u and v as illustrated in Figure 7.11a and 7.11b,
respectively. Whereas the choice of this embedding does not affect whether the edge vw is
attached to w by a horizontal or a vertical straight-line segment if two bends are allowed,
there is only one possible embedding left if only one bend is allowed, and this embedding
depends on the choice of the embedding of uv. Thus, the restriction to L-shaped edges
introduces an additional level of dependency between the embedding of individual edges,
which makes the problem considerably more complicated.

Open Problems Since n is a trivial lower bound for f(n) in all considered variants of the
problem and since the upper bounds we provided are larger than n for some of the considered
variants, it is an interesting topic for future research to close the gap between n and f(n).
The gap is especially large for planar L-shaped point-set embeddings for which we only proved
a quadratic upper bound. Hence it would be interesting to come up with a sub-quadratic
upper bound or a non-trivial lower bound.
Further, we restricted our attention to trees, but we may consider the same problem for

different classes of graphs. In a preliminary study we could prove that there are general point

166

7.5 Concluding Remarks

sets with n points that are not universal for planar orthogeodesic point-set embeddings of
outerplanar graphs with n vertices, regardless of the number of bends we allow per edge and
regardless of whether we require the embedding to be outerplane or not. Hence, this proves a
non-trivial lower bound on f(n) for outerplanar graphs. Given that not all general point sets
are universal for all outerplanar graphs, however, it is an interesting question which point
sets—if any—are universal for outerplanar graphs. Further, it is an interesting question to
determine the minimum size f(n) such that all outerplanar graphs admit an orthogeodesic
point-set embedding on all general point sets with f(n) points.

167

Chapter 7 Orthogeodesic Embeddings of Trees

168

Chapter 8

Hamiltonian Orthogeodesic Alternating Paths

In Chapter 6 we studied different variants of orthogeodesic point-set embedding problem.
We considered the two extreme situations in which the vertices of the network were allowed
to be mapped to either any point of the given point set or merely to a uniquely specified
point. In this chapter we consider an intermediate scenario for path networks, where a single
vertex of the path can be embedded on several but not all points of the given point set. This
kind of constraint is typically modeled by considering points as being colored and requiring
adjacent point to embedded on points with different colors.

Given a set of red and blue points, an orthogeodesic alternating path is a path such that each
edge is an orthogeodesic chain connecting points of different color and such that no two edges
cross. We consider the problem of deciding whether there exists a Hamiltonian orthogeodesic
alternating path, that is, an orthogeodesic alternating path visiting all points. We prove
that every general point set containing the right number of blue and red points contains a
Hamiltonian orthogeodesic alternating path and we present an efficient an O(n log2 n)-time
algorithm for finding such a path. Further, we show that the problem is NP-complete if
the path must be on the grid. On the other hand, we show that we can approximate the
maximum number of vertices of an orthogeodesic alternating path on the grid by a factor
of 3, whereas we present a family of point sets with n points that do not have a Hamiltonian
orthogeodesic alternating path with more than n/2 + 2 points. Additionally, we show that it
is NP-complete to decide whether a given set of red and blue points on the grid admits an
orthogeodesic perfect matching if horizontally aligned points are allowed. This contrasts a
recent result by Kano [Kan09] who showed that this is possible on every general point set.
This chapter is based on joint work with Emilio Di Giacomo, Luca Grilli, Giuseppe Liotta
and Ignaz Rutter [DGGK+12].

8.1 Introduction
The study of point-set embedding problems can be motivated, for instance, from applications
in circuit layout, where the task is to lay out a given graph on a circuit board subject to
certain constraints on the routing of the edges and the placement of the vertices. Motivated
by a limited resolution, special emphasis is typically put on embeddings on the grid. We
have already considered two variants of the orthogeodesic embedding problem in which the
vertices of the network could be placed on either all given points or a uniquely specified point.
However, typically, we are not given the exact placement of the vertices and vertices may
not be placed arbitrarily. In this chapter, we consider a special restriction on the placement
of the vertices, which is in fact probably one of the simplest and least restrictive scenarios

169

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

by assuming that the points have different characteristics and adjacent vertices may not be
mapped to points with the same characteristic. In order to model this scenario, we assume
that the points are colored using two colors. In previous work on this kind of problem the
points are usually colored red and blue.
Let R be a set of red points and let B be a set of blue points such that |R| ≤ |B|1. The

point set P = R ∪B is called equitable if |B| − |R| ≤ 1 and it is called balanced if |B| = |R|.
The color of a point p ∈ P is denoted by c(p). An alternating path on a set of red and blue
points P is a sequence of points p1, . . . , ph that is alternatingly colored red and blue, such
that pi is connected to pi+1 (i = 1, . . . , h− 1) by a rectifiable curve. Throughout this chapter
we only consider the case when the curves corresponding to the edges of the path are not
allowed to intersect. If the curves along the path are straight-line segments, then the path is
called a straight-line alternating path; if the curves are orthogeodesic chains, then the path
is called an orthogeodesic alternating path. Given a set of points P , an alternating path is
called Hamiltonian if it contains all points in P . Clearly a Hamiltonian alternating path can
only exist on an equitable point set. In this chapter, we study combinatorial and algorithmic
aspects of Hamiltonian orthogeodesic alternating paths on and off the grid. We note that a
given equitable point set P with n points admits a Hamiltonian orthogeodesic alternating
path if and only if a path with n vertices admits an embedding on P such that adjacent
vertices are mapped to points with different colors.

Previous work The problem of computing an alternating path on a given equitable set
of points in general position is a classical subject of investigation in the computational
geometry field and several papers are devoted to Hamiltonian alternating paths. Akiyama
and Urrutia [AU90] study Hamiltonian straight-line alternating paths on equitable point sets
in convex positions. They show that it is not always possible to compute a Hamiltonian
alternating path on a given equitable point set in convex position and they present an
O(n2)-time algorithm that, given an equitable point set in convex position, computes a
Hamiltonian alternating path if it exists. Abellanas et al. [AGLHP+99] study the case when
points are not restricted to be in convex position. They prove that if either the convex hull
of P consists of all the red points and no blue points or if the two point sets are linearly
separable, that is, if there exists a straight line that separates the red points from the blue
points, then a Hamiltonian straight-line alternating path can always be found. Kaneko
et al. [KKS04] study the values of n for which every equitable set of n points admits a
Hamiltonian alternating path and proved that this happens only for n ≤ 12 and n = 14.
For any other value of n there exist equitable point sets that do not admit a Hamiltonian
alternating path. On the other hand, Cibulka et al. [CKM+09] describe arbitrarily large
equitable point sets that admit a Hamiltonian straight-line alternating path for every coloring
of the points. Non-Hamiltonian alternating paths have also been considered. Abellanas
et al. [AGHT03] and Kynčl et al. [KPT08] study the values `(n) of the length of a longest
straight-line alternating path on sets of red and blue points in convex position and provide
upper and lower bounds on `(n).
Similar problems have been studied for graph families other than paths. Abellanas et

al. [AGLHP+99] investigate alternating spanning trees, that is, spanning trees on red and
blue point sets such that each edge is a straight-line segment connecting points of different

1Throughout the illustrations in this chapter, blue points are black and red points are gray.

170

8.2 Hamiltonian Orthogeodesic Alternating Paths

colors such that no two edges cross. They prove that every point set P = R ∪ B admits
an alternating spanning tree whose maximum vertex degree is O(|B||R| + log |R|). Kaneko
et al. [KKY00] consider non-planar Hamiltonian alternating cycles allowing edge crossings.
They prove that at most n− 1 crossings are sufficient to compute a Hamiltonian alternating
cycle and that this is worst-case optimal.

Further, Kano [Kan09] studies general equitable point sets, that is, point sets such that no
two points are horizontally and vertically aligned. He shows that general equitable point set
admits a perfect matching such that each edge is an L-shaped orthogonal chain connecting a
red point to a blue point.

Contribution It is easy to construct equitable point sets that do not allow a Hamiltonian
orthogeodesic alternating path on the grid, for instance, a set of horizontally aligned points
that are not colored alternatingly red and blue. In contrast to this, we consider general
point sets that we already introduced and studied in Chapter 7, that is, point sets whose
points are not horizontally or vertically aligned. We show that every general equitable point
set with n points admits a Hamiltonian orthogeodesic alternating path and we present an
efficient O(n log2 n)-time algorithm that computes a Hamiltonian orthogeodesic alternating
path, given such a point set. The computed path has at most two bends per edge and we
prove that this is worst-case optimal. However, the bends along the edges of the computed
path may not have integer coordinates. In contrast to this, we show that deciding whether a
set of red and blue grid points P admits a Hamiltonian orthogeodesic alternating path with
bends at grid points is NP-complete. Further, we describe a O(n log2 n)-time algorithm that
computes an orthogeodesic alternating path of length |P |/3 with bends at grid points and we
show that there are point sets that do not admit an orthogeodesic alternating path with more
than |P |/2 + 2 points. Finally, we show that if points of P are allowed to be horizontally
or vertically aligned then it is NP-complete to decide whether a balanced point set P has a
perfect orthogeodesic alternating matching. This contrasts a recent paper by Kano stating
that such a matching always exists if we are not allowed to place more than one point per
horizontal or vertical line.

8.2 Hamiltonian Orthogeodesic Alternating Paths
First, we consider the problem of computing a Hamiltonian orthogeodesic alternating path
for a given set of red and blue points. Note that there are point sets that do not admit
a Hamiltonian orthogeodesic alternating path, for instance, sets of collinear points that
are not alternatingly red and blue. In contrast to this, we show that every point set with
the additional property that no pair of points is horizontally or vertically aligned admits a
Hamiltonian orthogeodesic alternating path. The proof is constructive and yields an efficient
algorithm to construct a Hamiltonian orthogeodesic alternating path with at most two bends
per edge, given a point set with the desired properties. We show that this is also worst-case
optimal by showing that there are point sets that do not allow a Hamiltonian orthogeodesic
alternating path with at most one bend per edge.

Theorem 8.1. Every general equitable point set consisting of n red and blue points admits a
Hamiltonian orthogeodesic alternating path. Further, a Hamiltonian orthogeodesic path with
at most two bends per edge can be computed in O(n log2 n) time.

171

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

Before we prove Theorem 8.1, we prove the following auxiliary lemma.

Lemma 8.1. Let P be a balanced point set with n red and blue points and let p1, . . . , pn be
the sequence of points sorted from left to right. If c(p1) = c(pn), then there is an index i with
2 ≤ i ≤ n− i such that c(pi) 6= c(p1) and such that both the point set P1 := {p1, . . . , pi} and
the point set P2 := {pi+1, . . . , pn} are non-empty and balanced.

Proof. Let P be a balanced point set with n red and blue points and let p1, . . . , pn be the
sequence of points sorted from left to right. Let Pi := {p1, . . . , pi} and assume without loss of
generality that c(p1) and c(pn) are both red. Let r(i) and b(i) denote the number of red and
blue points in Pi, respectively, and let f(i) := b(i)− r(i). Then f(1) = −1 and f(n− 1) = 1.
Further, for 2 ≤ i ≤ n, we have |f(i) − f(i − 1)| = 1 since either r(i) − r(i − 1) = 1 and
b(i)− b(i− 1) = 0 or b(i)− b(i− 1) = 1 and r(i)− r(i− 1) = 0. Since f changes by exactly
one unit when going from i − 1 to i, there must be an index i such that f(i) = 0, that
is, r(i) = b(i). Hence, Pi is balanced. Since P = Pn is balanced and Pi is balanced, so is
P \ P1 = {pi+1, . . . , pn} =: P2.

Note that, for reasons of symmetry, the lemma also yields that there is an index i such that
c(pi) 6= c(pn) and such that both P1 := {p1, . . . , pi−1} and P2 := {pi, . . . , pn} are balanced.
Now, we prove Theorem 8.1.

Proof of Theorem 8.1. Let P be a general equitable set of n red and blue points such that
no pair of points is horizontally or vertically aligned. Let R ⊆ P denote the set of red points
and let B ⊆ P denote the set of blue points.
We postpone the unbalanced case and assume that the point set P is balanced. Every

Hamiltonian path π on a balanced point set contains one red endpoint r and one blue endpoint
b. Thus, we may refer to the ends of the path as the red end and the blue end. If not
otherwise stated, we assume that π is directed from its red end to its blue end. First, we
show that every balanced point set P admits a Hamiltonian orthogeodesic alternating path π
by induction on the size of P such that the following invariants are maintained.

(H1) Let q` be the point on the left side of the bounding box of P that is horizontally aligned
with the red endpoint r and let qr be the point on the right side of the bounding box
of P that is horizontally aligned with the blue end b. Then the straight-line segments
q`r as well as bqr do not intersect π, except in b and r, respectively, as illustrated in
Figure 8.1a.

(H2) Each geodesic chain in π has at most two bends.

For convenience, we will assume that the path is directed. Note that, by symmetry, this
also shows that we can find a path with the following property.

(H1’) Let q` be the point on the left side of the bounding box of P that is horizontally aligned
with the blue endpoint b and let qr be the point on the right side of the bounding box
of P that is horizontally aligned with the red end r. Then the straight-line segments
q`b as well as rqr do not intersect π, except in b and r, respectively.

172

8.2 Hamiltonian Orthogeodesic Alternating Paths

r

b

p

r

q`

qr

(a) Base case

p`

pt

P

p`

pt

P ′

q`

q′` r′

qrπ′

b′

(b) Case 1.1

Figure 8.1: Illustration for the proof of Theorem 8.1. Base case and Case 1.1.

In the base case of the induction we have |P | = 2, that is, P consists of a red point r and
a blue point b. We connect r to b by a vertical chain whose horizontal segment is on the
line y = (y(r) + y(b))/2 as illustrated in Figure 8.1a. Clearly, the invariants are maintained.
Now, suppose that the induction hypothesis holds for all balanced point sets with k red and
blue points such that k > 1 and 2k < n. Let p`, pr, pt and pb denote the leftmost, rightmost,
topmost and bottommost points on the boundary of the bounding box of P , respectively.
Note that some of these points may coincide. We distinguish two cases and several sub-cases
as summarized in Figure 8.2.

Case 1: The color of p` is blue. We distinguish three sub-cases.
Case 1.1: The color of pt is red. Then pt 6= p` as illustrated in Figure 8.1b. Let P ′ :=

P \ {p`, pt}. By the induction hypothesis we can compute a path π′ on the point
set P ′ such that the invariants (H1) and (H2) are maintained. That is, π′ starts
with a red point r′ and ends with a blue point b′. Let q′` denote the point on the
left side of B(P ′) that is horizontally aligned with r′ and let q′r denote the point on
the right side of B(P ′) that is horizontally aligned with b′. Further, let p′t be the
topmost point in P ′ and let p′` be the leftmost point in P ′. We connect pt to p` by a
vertical chain whose horizontal segment is located on the line y = (y(pt) + y(p′t))/2

Instance of Hamiltionian Orthogeodesic Path

c(pr) is blue c(pr) is red

Case 2.a Case 2.a

c(pt) is red
c(pb) is arbitrary

c(pt) is blue
c(pb) is red

Case 1.a Case 1.b

c(pt) is blue
c(pb) is blue

Case 1.c

c(pr) is bluec(pr) is red

Case 1.c.1 Case 1.c.1

c(p`) is blue

Case 1

c(p`) is red

Case 2

Figure 8.2: Case distinction applied in the proof of Theorem 8.1.

173

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

p`

pb

P

pt

pr

pl

pb

P ′

pt

q′r

pr

qr

b′

π′
q`

r′

(a) Case 1.3.1

p`

pb

P

pt
pr

p`

P1

pr
q2,`

P2

q1,r

r1 r2

b1
b2

π1
π2

q1,`

q2,r

(b) Case 1.3.2

Figure 8.3: Illustration for the proof of Theorem 8.1. Case 1.3.1 and Case 1.3.2.

and we connect p` to r′ by a horizontal chain whose vertical segment is on the
vertical line x = (x(p`) + x(p′`))/2 as illustrated in Figure 8.1b. The resulting path
starts with the red point pt and ends with the blue point b′. Let q` be the point
on the left side of B(P) that is horizontally aligned with pt. The point qr that is
horizontally aligned with b′ on the right side of B(P) coincides with q′r. Then the
segments q`pt and b′qr do not intersect π by construction and by the induction
hypothesis, respectively.

Case 1.2: The color of pt is blue and the color of pb is red. This case is symmetric to
Case 1.1 by a reflection at the horizontal axis.

Case 1.3: The color of pt is blue and the color of pb is blue. We consider two sub-ca-
ses depending on the color of pr.
Case 1.3.1: The color of pr is red. This case is similar to Case 1.1. We have

pr 6= pt since their colors differ. Let P ′ := P \ {pt, pr}. By the induction
hypothesis we can compute a path π′ on the point set P ′ such that the
invariants (H1) and (H2) are maintained. That is, π′ starts with a red point
r′ and ends with a blue point b′. Let q′` denote the point on the left side of
B(P ′) that is horizontally aligned with r′ and let q′r denote the point on the
right side of B(P ′) that is horizontally aligned with b′. Further, let p′t be the
topmost point in P ′ and let p′r be the rightmost point in P ′. We connect
pt to pr by a vertical chain whose horizontal segment is located on the line
y = (y(pt) + y(p′t))/2 and we connect pr to b′ by a horizontal chain whose
vertical segment is on the vertical line x = (x(pr) + x(p′r))/2 as illustrated
in Figure 8.3a. The resulting path π starts with the red point r′ and ends
with the blue point pt. Let qr be the point on the right side of B(P) that is
horizontally aligned with pt. The point q` that is horizontally aligned with r′
on the left side of B(P) coincides with q′`. Then the segments q`pt and b′qr do
not intersect π by the induction hypothesis and by construction, respectively.

Case 1.3.2: The color of pr is blue. According to Lemma 8.1 we can split P into
two non-empty balanced point sets P1 and P2 that can be separated by a
vertical line. By the induction hypothesis, we can compute two Hamiltonian
orthogeodesic paths π1 and π2 in P1 and P2, respectively. Let π1 be directed
from the red point r1 ∈ P1 to the blue point b1 ∈ P1. Similarly, let π2 be
directed from the red point p2 ∈ P2 to the blue point b2 ∈ P2. Let qi,` and qi,r
denote the points on the left and right side of B(Pi) for i ∈ {1, 2}, respectively.

174

8.2 Hamiltonian Orthogeodesic Alternating Paths

p`

P

pr

p`

pr

q′r
P ′

q′` b′

r′

(a) Case 2.1

p`
P

pr
p`

pr

P1

q2,`

P2

q1,r

r1 r2

b1
b2

π1
π2

q1,`

q2,r

(b) Case 2.2

Figure 8.4: The different cases of the algorithm. Case 1.2 is a vertical reflection of Case 1.1.

Figure 8.5: Illustration for the proof of Theorem 8.1. Case 2.1 and Case 2.2.

We connect the paths π1 and π2 by a horizontal chain between b1 and r2
whose vertical segment is on the line centered between B(P1) and B(P2) as
illustrated in Figure 8.3b. The resulting path π is directed from r1 to b2. By
the induction hypothesis the segments q1,`r1 and b2q2,r connecting r1 and b2
to the left and right side of B(P), respectively, do not intersect π.

Case 2: The color of pl is red. We distinguish two sub-cases depending on the color of pr.

Case 2.1: The color of pr is blue. Since the size of P is at least four, the point set
P ′ := P \ {p`, pr} is non-empty and balanced. By induction hypothesis, we can
construct a Hamiltonian orthogeodesic alternating path π′ on P ′ starting at a blue
point b′ ∈ P ′ and ending at a red point r′ ∈ P ′ such that the following holds.

(H1’) Let q′` be the point on the left side of the bounding box of P that is horizontally
aligned with b′ and let q′r be the point on the right side of the bounding box
of P that is horizontally aligned with r′. Then the straight-line segments q′`b′
as well as b′q′r do not intersect π, except in b′ and r′, respectively.

Let p′` and p′r denote the leftmost and rightmost points in P ′, respectively. Then
we connect p` to b′ by a horizontal chain whose vertical segment is on the line
x = (x(p`) + x(p′`))/2 and we connect r′ to pr by a horizontal chain whose vertical
segment is on the line x = (x(pr) + x(p′r))/2 as illustrated in Figure 8.4a. Since
p` and pr are on the left and right side of B(P) the invariant (H1) is trivially
maintained.

Case 2.2: The color of pr is red. This case is completely analogous to Case 1.3.2.

Hence, every general balanced point set P admits a Hamiltonian orthogeodesic alternating
path. Next, let P be an unbalanced equitable point set and assume without loss of generality
that |R| < |B|. First, suppose that there is a blue point p on one of the sides of B(P), say on
the left side. Then the point set P ′ := P \ {p} is balanced and we can compute a path π′
satisfying the invariants (H1) and (H2) as claimed such that π′ starts at a red point r′ and
ends at a blue point b′. Further, let q′` be the point on the left side of B(P ′) that is horizontally
aligned with r′. Then the segment q′`r′ does not intersect π′. Hence, we can connect p to r′
with a horizontal chain whose vertical segment is on the line x = (x(p) + x(p′`))/2, where p′`
denotes the leftmost point in P ′.

175

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

Second, suppose that all points on the boundary of B(P) are red. Let r /∈ P be an arbitrary
red point to the left of B(P) and let P ′ := P ∪{r}. Then P ′ is balanced and both the leftmost
point and the rightmost point of P ′ are red. Then we can split P ′ into two non-empty point
sets P1 and P2 that can be separated by a vertical line such that the rightmost point in P1 is
a blue point according to Lemma 8.1. Subsequently, we can compute a path π1 in P1 starting
at r according to Case 2.1 and we can compute a path π2 satisfying the invariants (H1)
and (H2) in P2. The two paths can be concatenated according to Case 2.2 such that the
resulting path π is a Hamiltonian orthogeodesic path on P ′ starting at r. Since r is an end
point of π and since we handled the point set according to Case 2.2, we can safely remove r
obtaining a Hamiltonian orthogeodesic path on P .

Finally, we show that we can compute a Hamiltonian orthogeodesic path according to the
preceding case distinction in O(n log2 n) time. We sort the points with respect to their x-
and y-coordinates, respectively, in O(n logn) time and we maintain two arrays X and Y
containing the points in sorted order. Then each point p can be addressed by two integers
h(p) and v(p) denoting the index of p in the horizontal array X and the vertical array Y ,
respectively. That is we have Xh(p) = p and Yh(p) = p. Further, we maintain two spatial data
structures R and B with O(n logn) initialization time supporting orthogonal range queries
in O(logn) query time [Cha88] for the blue and red points, respectively.

We assume that we are given the bounding box R of the instance P in the form of at most
four points pl, pr, pt and pb on the bounding box of P , each of which is specified by two
integers pointing to the position of the points in the horizontal and vertical array, respectively.
First we consider all cases, except for Case 1.3.2 and Case 2.2. In these cases we compute
the geodesic chain from two points p1 and p2 on the boundary of B(P) and the sub-path
computed for P ′ := P ′ \ {p1, p2}. In order to recurse on P ′ we need to compute the extremal
points of P ′, given an axis-aligned rectangle R ⊃ P ′ with R ∩ P = P \ {p1, p2} that can
easily be obtained from the extremal points of P ′ and the horizontal and vertical arrays as
follows. Suppose that R is given by two intervals x ∈ [i, j] and y ∈ [k, l] where i, j, k and l
are integers pointing to the horizontal and vertical arrays, respectively. First we determine
the number of points m in R ∩ P using the spatial data structures on O(logn) time. For
each horizontal and vertical side of R that is not yet covered by a point, we perform a binary
search on the horizontal and vertical arrays [i, j] and [k, l], respectively, in order to locate the
extremal point in P ′ along the axis orthogonal to the considered side of R. In each iteration
of the binary search we query the spatial data structures with the resulting rectangle R′ to
determine the number of points in R′. If this number is equal to m and the boundary is
defined by a point in P ′, then we have found an extremal point. The test, whether a point
p is in P ′ can be performed by testing whether p is contained in R since we chose R as a
rectangle containing exactly the points in P ′. Since the number of steps for the binary search
is at most logn and since each step can be performed in O(logn), we can find the extremal
points in O(log2 n) time.
In order to split the point set according to Lemma 8.1, note that we can compute the

number of red and blue points in a given rectangle in O(logn) time using the spatial data
structures R and B. That is, given an index i into the horizontal array of the points, we can
compute the function f(i) defined according to Lemma 8.1 in O(logn) time. Then we can
find an index i splitting the point set with the desired properties by binary search on the
indices in O(log2 n) time.
Since each operation of the algorithm can be implemented to run in O(log2 n) time and

176

8.2 Hamiltonian Orthogeodesic Alternating Paths

since each type of operation is executed at most n times, the running time of the algorithm
is in O(n log2 n).

If P is an equitable point set such that all points have even integer coordinates, then the
algorithm computes a Hamiltonian orthogeodesic alternating path such that every bend has
integer coordinates, that is, it computes a Hamiltonian path on the grid. Moreover, whenever
the horizontal and vertical distance of each pair of points is at least two, we can modify the
algorithm to compute a path on the grid as well. Instead of mapping the horizontal and
vertical segments of the vertical and horizontal chains onto the bisector of two points as
described in the proof of Theorem 8.1, we instead map it to any grid line between the points.
Note that, if the horizontal and vertical distance of any pair of points in P is at least two,
then there must be at least one unoccupied grid line between the points. Hence, we obtain
the following result.

Corollary 8.1. Let P be an equitable set of n red and blue grid points such that no min{|x(p)−
x(q)|, |y(p) − y(q)|} ≥ 2 for all p, q ∈ P with p 6= q. Then P admits a Hamiltonian
orthogeodesic path π with at most two bends per edge such that each bend is located at a grid
point. Further, there is an O(n log2 n)-time algorithm that constructs such a path.

The path computed by the algorithm in the proof of Theorem 8.1 has two bends per edge.
Next, we show that this is worst-case optimal by showing that there are point sets that do
not admit a Hamiltonian orthogeodesic alternating path with one bend per edge.

Theorem 8.2. For every n ≥ 5 there exists a general equitable point set that does not admit
a Hamiltonian orthogeodesic alternating path with at most one bend per edge.

Proof. A butterfly point set is an equitable point set P as illustrated in Figure 8.6a with the
following properties.

(B1) For every pair of blue points p and q of P , x(p) < x(q) implies y(p) < y(q).

(B2) Similarly, for every pair of red points p and q of P , x(p) < x(q) implies y(p) < y(q).

(B3) For every pair consisting of a blue point p and a red point q of P , x(p) > x(q) and
y(p) < y(q). That is, the red points are separable from the blue points by a diagonal
line.

Consider a butterfly point set P with at least five points and let π be a Hamiltonian
orthogeodesic alternating path on P . Assume without loss of generality that |R| ≤ |B|. Then
every Hamiltonian path on P contains at least one blue point that is not an endpoint of π.
Let b be an internal blue point of π. Then b is connected to two red points r1 and r2 by two
geodesic chains χ1 and χ2, respectively, as illustrated in Figure 8.6b. One of the two chains,
say χ1, must have a horizontal segment incident to b while the other chain, that is χ2, must
have a vertical segment incident to b. If b is connected to r1 and r2 by orthogeodesic chains
with at most one bend, then χ1 must be attached to r1 by a vertical segment, while χ2 must
be attached to r2 by a horizontal segment. Since all red points are above and to the left of
all the blue points and since the two chains cannot cross, we have x(r1) < x(r2). At least
one of the points r1 and r2 must be connected to a blue point b′ distinct from b since π can
have at most one red point as an endpoint due to |R| ≤ |B|. If x(b′) < x(b) then the geodesic

177

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

(a)

b

r1
r2

χ1

χ2

(b)

Figure 8.6: (a) A butterfly point set. (b) Illustration for the proof of Theorem 8.2. If point p
is connected to r1 and r2 with two 1-bend geodesic chains, then r1 and r2 cannot
be connected to any other blue point by a geodesic chain without introducing a
crossing.

chain connecting r1 or r2 to b′ would cross chain χ1. If x(b′) > x(b) then the geodesic chain
connecting r1 or r2 to b′ would cross chain χ2 as illustrated in Figure 8.6b. Thus, two bends
are worst-case optimal.

8.3 Hamiltonian Orthogeodesic Alternating Paths on the Grid
While we have seen that we can always construct a Hamiltonian orthogeodesic alternating
path on the grid if the horizontal and vertical distance between any pair of points is at least
two, a Hamiltonian orthogeodesic path does not always exist if we drop this requirement and
consider point sets whose points are neither horizontally not vertically aligned.

Theorem 8.3. For every n ≥ 5, there exists a general equitable set P of n red and blue grid
points that does not admit a Hamiltonian orthogeodesic alternating path on the grid.

Proof. Let P be a butterfly point set with at least five points with the additional property
that the points have integer coordinates. Let R := {r1, . . . , r|R|} and B := {b1, . . . , b|B|}
denote the red and blue points and let P be such that |R| ≤ |B| and such that x(ri) = i,
y(ri) = i for all 1 ≤ i ≤ |R| as well as x(bi) = |R| + i and y(bi) = i − |B| for 1 ≤ i ≤ |B|,
respectively, as illustrated in Figure 8.7a.

First, note that, since each orthogeodesic chain is contained inside the bounding box of its
endpoints and since the endpoints have different color, π must be contained in the polygon P
defined by the union of the rectangles spanned by all pairs of red and blue points, respectively,
as illustrated in Figure 8.7b.
Next, we show that the endpoints of π must be leftmost or rightmost red or blue points,

respectively. Suppose, for instance, that π starts in a blue point b such that there is a blue
point b` to the left and a blue point br to the right of b, respectively. Let π′ denote the
sub-path of π ending at b` and br, respectively. Further, let r be the unique red point adjacent
to b and let χ be the orthogeodesic chain connecting b and r. Clearly χ bisects P into two
sub-polygons P` and Pr such that b` is contained in P` and br is contained in Pr. That is,

178

8.3 Hamiltonian Orthogeodesic Alternating Paths on the Grid

r3

r4

r1

r2

r5

r6

b1

b2

b3

b4

b5

b6

(a)

b

r

b`

χ

P

br

π′

P`

Pr

(b)

r1

r2

q1

q2

q3

(c)

Figure 8.7: Illustration for the proof of Theorem 8.3. (a) Butterfly one the grid. (b) If a
path starts neither in blue point that is neither the leftmost nor the rightmost
blue point, then there must be a crossing. (c) Two internal red points of the path
cannot be next to each other on the grid, since the four incident orthogeodesic
chains can use only three distinct points incident to the red points.

the path π′ must cross χ as illustrated in Figure 8.7b. Hence, the endpoints of π must be
leftmost or rightmost red or blue points, respectively, as claimed.
Finally, we claim that π contains at least one pair of internal red points r1 and r2 such

that x(r2) = x(r1) + 1. If n is odd, π has two blue points as its endpoints since we assumed
|R| ≤ |B|. Hence we can find two red points with the desired properties. Otherwise, if n is
even we have n ≥ 6 and π has both a red and a blue point as its endpoints. Since we argued
that the endpoints must be leftmost or rightmost red and blue points, respectively, we can
find a pair of red points with the desired properties since the red endpoint of π must be the
leftmost or rightmost point of the at least three red points.
Let r1 and r2 be two internal red vertices of π such that x(r2) = x(r1) + 1, that is,

y(r2) = y(r1) + 1. Since r1 and r2 are internal points of π, both r1 and r2 are adjacent
to two orthogeodesic chains each. Since all blue points are right of and below r1 and r2,
respectively, these chains must occupy the horizontal and vertical grid lines starting at r1 and
r2 in the downward and rightward direction, respectively. That is, these chains must occupy
the grid points one unit to the right and one unit below r1 and r2, respectively. However,
this implies that the four distinct orthogeodesic chains incident to p1 and p2 must occupy
three distinct points q1 := (x(r1), y(r1)− 1),q2 := (x(r1) + 1, y(r1)) = (x(r2), y(r2)− 1) and
q3 := (x(r2) + 1, y(r2)). Thus, at least two of the chains must intersect as illustrated in
Figure 8.7c.

Note however, that any butterfly point set with the desired properties on the grid with at
most four vertices does admit a Hamiltonian orthogeodesic alternating path on the grid since
such a path never contains two internal red or blue points, respectively.

Motivated by Theorem 8.3, we study the Hamiltonian Orthogeodesic Alternating
Path on the Grid problem, that is, the problem of deciding whether a given general
equitable set of grid points admits a Hamiltonian orthogeodesic alternating path on the grid.
Surprisingly it turns out that this problem is NP-complete. If we are allowed to place more
than one point on a horizontal or vertical line, we can show that it is even NP-complete to
decide whether there exists an orthogeodesic alternating perfect matching. This contrasts a

179

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

result by Kano [Kan09] stating that such a matching always exists if we are not allowed to
place more than one point per horizontal or vertical line.

Theorem 8.4. Hamiltonian Orthogeodesic Alternating Path on the Grid is
NP-complete.

First, we show containment of Hamiltonian Orthogeodesic Alternating Path on
the Grid in NP.

Lemma 8.2. Hamiltonian Orthogeodesic Alternating Path on the Grid is con-
tained in NP.

Proof. In order to show that Hamiltonian Orthogeodesic Alternating Path on
the Grid is contained in NP, we introduce the notion of a bottommost orthogeodesic path
and show that the problem can be reduced to deciding whether there is a bottommost
Hamiltonian orthogeodesic alternating path for P . An instance of this problem can be
encoded in polynomial space and verified in polynomial time.

We use the terminology introduced in Section 9. We say that a point p ∈ R2 k-dominates
the points in k-th quadrant of the orthogonal coordinate system with origin at p. The
unbounded range corresponding to the k-the quadrant is called k-cone. Given a set Q of
points, we refer to the union of the k-cones of the points in Q as the orthogeodesic k-hull of
Q as illustrated in Figure 8.8a. Further, by Q↖ we denote the set of points resulting from
translating the points in Q one unit to the left and one unit to the top and by Q↗ we denote
the set of points resulting from translating the points in Q one unit to the right and one unit
to the top.
Assume we are given an orthogeodesic path π = (P,E) on a point set P such that each

e ∈ E is an orthogeodesic chain. We denote the leftmost point of e by e− and its rightmost
point by e+. An edge is called upward if y(e+) ≥ y(e−), otherwise, it is called downward.
We define the partial order ≺ on E such that for e1, e2 ∈ E we have e1 ≺ e2 if and only if
there is a vertical line intersecting e1 below e2. The path π is called bottommost orthogeodesic
path if and only if each edge e is embedded as the bottommost orthogeodesic chain with
respect to ≺. By this we mean, that each upward edge e connecting p and q is embedded
on the orthogeodesic 4-hull of the point set {p, q} ∪ P↖e ∪B↖, and each downward edge is
embedded on the orthogeodesic 2-hull of the point set {p, q} ∪ P↗e ∪ B↖, where Pe is the
union of the endpoints of all edges that are smaller than e with respect to ≺ and B is the set
of bends induced by the bottommost chains of these edges. That is, each smallest edge with
respect to ≺ is embedded as an L-shaped chain consisting of one horizontal and one vertical
straight-line segment.

Suppose that π is a bottommost orthogeodesic path. Then it is easy to see that the number
of bends of each edge is bounded by a linear function in the number of points as follows.
First, note that each of the bends corresponding to a 2-cone or a 4-cone, respectively, is
obtained by translating a point of the original point set. Further, the total number of bends
is at most twice this number of bends +1. Hence, all bends of π are placed on a polynomial
number of points P̂ such that

P̂ := {(x+ i, y + i), (x+ i, y − i) | (x, y) ∈ P ∧ 1 ≤ i ≤ n− 1}

since π has n− 1 edges.

180

8.3 Hamiltonian Orthogeodesic Alternating Paths on the Grid

H4

Q

H ′
4

Q↖

(a)

e

χ

`0`1 `2

R

(b)

Figure 8.8: Illustrations for the proof of Lemma 8.2. (a) Point set Q (small points) and
4-hull H4 of Q as well as Q↖ (large points) and 4-hull H ′4 of Q↖. (b) An edge
e of a Hamiltonian orthogeodesic alternating path that is not embedded as the
bottommost geodesic chain χ.

Further, it is clear that every path can be transformed into a bottommost path without
changing the partial order ≺ as follows. Suppose that π = (P,E) is a Hamiltonian ortho-
geodesic alternating path and let ≺ be the partial order on the edges of E defined as above,
that is e′ ≺ e if and only there is a vertical line that intersects e′ below e for e′, e ∈ E.
Assume that e ∈ E an upward edge that is not embedded as the bottommost orthogeodesic
chain with respect to ≺ but all edges e′ ∈ E with e′ ≺ e are embedded as the bottommost
orthogeodesic chain. The case, when e is a downward edge can be handled similarly.
Let χ be the bottommost orthogeodesic chain between e− and e+ with respect to ≺. We

claim that every vertical line intersecting e intersects χ below e or it intersects both chains
in the same point. Suppose that there is a vertical line ` such that ` intersects χ above e.
Since e is embedded according to ≺, it must be embedded above or on the orthogeodesic
hull of the points {e−, e+} ∪ P↖e where Pe denotes the union of the endpoints of all edges
that are smaller than e with respect to ≺. Otherwise, we would find an edge e′ ≺ e and a
vertical line that intersects e′ above e or that intersects both e′ and e in the same point. On
the other hand, if at least one bend b of e is embedded in the region that is 4-dominated by
the point set B of all bends corresponding to edges that are smaller than e with respect to
≺, then we again find a vertical line intersecting e below some edge e′ with e′ ≺ e. Hence e
must be embedded above or on χ defined as the orthogeodesic 4-hull of {p, q} ∪ P↖e ∪B↖.
Hence every vertical line intersecting e either intersects χ below e or it intersects both chains
in the same point.
Since e 6= χ we can find a vertical line `0 such that `0 intersects e above χ as illustrated

in Figure 8.8b. Let `2 be the leftmost line to the right of `0 such that `2 intersects e and
χ in the same point. Further, let `1 be the rightmost vertical line left of `0 such that `1
intersects both e and χ in the same point. Note that `1 and `2 are well-defined since the
vertical lines through e− and e+ have the desired property, respectively. Further, let R be
the region enclosed between `1, `2, χ and e as illustrated in Figure 8.8b. We claim that R is
empty. Note that each edge intersecting the vertical strip between `1 and `2 is comparable
to e with respect to ≺. Then R does not contain any edge e′ with e ≺ e′ by the definition
of ≺. On the other hand, all edges e′ with e′ ≺ e are below χ which is below e. Hence, R
is empty and we can substitute e by a new orthogeodesic chain consisting of the first part

181

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

of e between e− and `, the last part of e between `r and e+ as well as an intermediate part
consisting of the sub-chain of χ between `1 and `2 and the vertical segment of `2 between χ
and e. By iteratively applying this argument to any smallest edge with respect to ≺ that is
not embedded as the bottommost orthogeodesic chain, we can iteratively contract the space
between e and χ such that e will eventually be embedded as the bottommost orthogeodesic
chain.
Thus, the problem of deciding the Hamiltonian Orthogeodesic Alternating Path

on the Grid problem is equivalent to deciding whether there is a bottommost Hamiltonian
orthogeodesic alternating path on P . Such a path can be uniquely encoded by the sequence
of points along the path and the partial order ≺. Given this, we can check if the uniquely
determined bottommost path is a Hamiltonian orthogeodesic path in polynomial time by
computing the path and checking planarity. Hence, the problem is in NP.

Next, we prove that Hamiltonian Orthogeodesic Alternating Path on the Grid
is NP-complete.

Proof of Theorem 8.4. The problem is in NP as stated in the previous Lemma 8.2. We show
NP-hardness by reduction from 3-Partition using similar techniques as in the proof of
Theorem 6.4. Recall that an instance of 3-Partition consists of a multiset A = {a1, . . . , a3m}
of 3m positive integers, each in the range (B/4, B/2), where B = (

∑3m
i=1 ai)/m, and the

question is whether there exists a partition of A into m subsets A1, . . . , Am of A, each of
cardinality 3, such that the sum of the numbers in each subset is B. Since 3-Partition is
strongly NP-hard [GJ79], we may assume that B is bounded by a polynomial in m.
Given an instance A of 3-Partition, we construct a corresponding instance P = R ∪B

of the Hamiltonian Orthogeodesic Alternating Path on the Grid problem such
that P allows for a Hamiltonian orthogeodesic alternating path if and only if there exists a
partition of A with the desired properties as follows.
A sequence p1, . . . , pk of diagonally aligned grid points is called k-spaced if the Euclidean

distance between subsequent points pi and pi+1 is exactly k
√

2 for all 1 ≤ i ≤ k−1. The point
set P of constructed instance consists of four different types of points, called hinge points,
element points, mask points and partition points, and is aligned on a regular sawtooth-pattern
with 3m+ 2 teeth, numbered T0, . . . , T3m+1 from left to right. The point set, as well as the
sawtooth-pattern and the teeth are illustrated in Figure 8.9.
Let L be some integer to be specified later. Each tooth Ti consists of a diagonal segment

with slope 1 of length L
√

2, denoted by Si, and a diagonal segment with slope −1 of length
(2L+ 1)

√
2. Hence, the tips of the teeth are aligned along a line with negative slope such

that the tip of Ti is below the lowest point of Si−1 for 1 ≤ i ≤ 3m + 1. We construct our
point set as follows.

Along S0, we align m2B+4m 2-spaced blue hinge points starting at the leftmost point of S0.
For each element ai we align 2ai + 1 1-spaced red element points along Si. Further, we align
m sets of B 2-spaced blue partition points along S3m+1, each acting as a partition. These
partitions are separated by m−1 sequences of mB+1 2-spaced red mask points which will act
as a sort of “dot mask” separating partitions that are consecutive along S3m+1. The maximal
sequences of blue points along S3m+1 are called partitions and the maximal sequences of red
points along S3m+1 are called masks. By construction P contains m2B +mB + 4m− 1 red
and m2B +mB + 4m blue points and, thus, is equitable with one more blue point. Hence,

182

8.3 Hamiltonian Orthogeodesic Alternating Paths on the Grid

T0

T1

T3m+1

S1

S3m+1

︸
︷︷

︸ ︸
︷︷

︸2
a 1
+
1

︸
︷︷

︸

S0

L 2L+ 1

L

L+ 1

m
2 B

+
4m

hinge points

element points

m
as
k
po
in
ts
(m
B
+
1
ea
ch
)

pa
rt
it
io
n
po
in
ts
(B

ea
ch
)

︸︷︷
︸

︸︷︷
︸

︷ ︸
︸ ︷

︷ ︸
︸ ︷

︷ ︸
︸ ︷ ︸︷︷

︸

Figure 8.9: Pointset used in the reduction. Each shaded triangle constitutes a tooth Ti. All
points are arranged on the ascending slope Si of Ti.

any alternating path must start and end with a blue point and all red points must be interior
points of the path. This implies that every red point must be connected to exactly two blue
points.
We now show that there is a partition of A with the desired properties if and only if the

point set contains a Hamiltonian orthogeodesic alternating path. A high-level illustration of
the reduction is given in Figure 8.10. Assume that we are given a Hamiltonian orthogeodesic
alternating path π on P . First, consider the red mask points. In each mask there must be
one mask point that is connected to a blue hinge point on S0. To see this, note that there
are mB + 1 red mask points in each of the m− 1 masks, each of which is adjacent to two
blue points on π. Further, each blue point can have at most two adjacent red points on π.
Hence, the red masks points of a fixed mask are adjacent to a total of at least mB + 1 blue
points. Since there are only mB blue points in total on S3m+1, the red mask points of each
of the masks must be adjacent to at least one blue hinge point each. Each edge between a
red mask point and a blue hinge point is called a partitioner. Consider the partial order ≺ on
the edges of π such that e′ ≺ e if there is a vertical line intersecting e′ below e. Since there is
a vertical line `0 that is intersected by all partitioners, the partitioners are totally ordered by
≺. Let the sequence of partitioners sorted with respect to ≺ be given by P1, . . . ,Pk. Note
that k ≥ m− 1. For convenience we extend the partitioners by imaginary horizontal lines
towards the left and right. Then the k partitioners partition the plane into k + 1 regions
R1, . . . , Rk + 1 such that R1 is the region below P1, Ri is the region bounded by Pi−1 and Pi
and Rk+1 is the region above Pk+1.
Next, consider the element points. Since the element points corresponding to a single

element are 1-spaced, no partitioner can pass between them on a grid line. Hence, the
partitioners will partition the element points according to the element sizes, such that all
element points corresponding to a single element are contained in the same partition. Each
element ai can then be associated with a unique index f(i) such that all element points
corresponding to ai are contained in Rf(i). However, we still need to show that each partition

183

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

a1

a2

a3

a4

a5

a6

a7

a8
a9

2ai + 1

︸

︷︷

︸

B

S10

hinge points

element points

mask points

partition points

︸

︷︷

︸

m
2 B

+
4m

Figure 8.10: A high-level illustration of an exemplary reduction from 3-Partition to Hamil-
tonian Orthogeodesic Alternating Path on the Grid using the instance
A1 = {a1, a5, a7}, A2 = {a2, a3, a8}, A3 = {a4, a6, a9} (not to scale). Details are
depicted in the circles.

contains the correct number of element points.
Let Di be the diagonal line through Si and let H+

i and H−i denote the upper and lower
half-planes defined by Di, respectively. We claim that each group of 2ai + 1 element points
corresponding to element ai can have at most 2ai + 2 blue incidences in H+

i . Each of these
incidences is a geodesic chain starting either with a horizontal segment to the left or with a
vertical segment towards the top. These segments can be covered by gridpoints adjacent to
the element points. As there are only 2ai + 2 such gridpoints, the claim holds.
Recall that the element points must be interior points of the path since P contains more

blue points than red points, that is, each red element point must be adjacent to two blue
points in π. Since the group of element points corresponding to ai must therefore have 4ai+ 2
blue incidences in total, and since it can have at most 2ai + 2 blue incidence in H+, it must
have at least 2ai blue incidences in H−i . Thus, the union of all red element points must have
a total of 2mB blue incidences on S3m+1. On the other hand, there are only mB blue points

184

8.3 Hamiltonian Orthogeodesic Alternating Paths on the Grid

on S3m+1, each of which must have two red incidences. This implies that element ai has
exactly 2ai incidences in H−i and that the blue partition points are connected only to the
element points.
Finally, consider the partitions. Clearly the B partition points corresponding to a fixed

partition on S3m+1 must all be contained in the same region Rj . Otherwise, some partitioner,
say Ps must pass between two partition points. However, such a partitioner would have to
connect to a red mask point above or to the left of it, both resulting in an orthogonal chain
that would not be orthogeodesic. Since there are B blue points in each of the partitions, the
number of element points must add up to 2B, that is, the corresponding elements add up to
B and thus yield a valid 3-partition of A.
Conversely, suppose that we are given a valid partition A1, . . . , Am of A according to

3-Partition. Then we can find a Hamiltonian orthogeodesic alternating path as follows.
We iteratively embed the geodesic chains such that each geodesic chain is drawn as the
bottommost geodesic chain as defined in the proof of Lemma 8.2 that runs one grid unit
above all geodesic chains embedded so far as illustrated in Figure 8.10.
We start with an arbitrary partition, say A1 containing elements ai, aj , ak such that

i < j < k. First, we consider the element ai. We draw an alternating path starting at
the leftmost hinge point using the first ai partition points, the first 2ai + 1 element-points
corresponding to ai as well as the leftmost ai + 2 hinge points on S0. The path alternates
between the hinge points and the partition points, visiting the element points in between
and ends at a blue hinge point. We proceed accordingly for elements aj and ak, respectively,
in this order. Next, we embed a sequence of edges corresponding to partitioners. We start
with the blue hinge point that we ended after visiting the last element point of ak and we
alternatingly visit consecutive blue hinge points and red mask points, ending again, at a blue
hinge point. The remaining elements are handled in an analogous manner. Since each edge is
embedded as the bottommost orthogeodesic chain, it is below all points to be inserted in
later iterations. Further, let the parameter L used earlier on in the construction be defined
as L := 2m2B + 2mB + 8m − 1, that is, L is equal to the number of points of P . This
implies that there are at least L− 1 unoccupied grid lines between any pair of element points
corresponding to different elements. Since the constructed path has L− 1 edges, we therefore
did not introduce any crossings. Hence, we have constructed a Hamiltonian orthogeodesic
alternating path on P .

Note that we may add another red point above and to the left of all points in P to make
the point set balanced. Using arguments analogous to the arguments used in the proof of
Theorem 8.4 we can show the following corollary.

Corollary 8.2. It is NP-complete to decide whether a given balanced set of red and blue
grid points such that no two points are on a common horizontal or vertical line allows for a
Hamiltonian orthogeodesic alternating cycle if bends are only allowed at grid points.

Kano [Kan09] showed that every balanced set of red and blue points such that no two
points are on a common horizontal or vertical line admits a perfect orthogeodesic alternating
matching consisting of L-shaped orthogonal chains. Hence such a matching is completely on
the grid whenever the points are grid points. Surprisingly, the problem becomes NP-complete
if the points are allowed to be horizontally and vertically aligned. The proof for the following
theorem is similar to the proof of Theorem 8.4.

185

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

a1

a2

a3
a4

a5
a6

a7

a8
a9

︷ ︸︸ ︷
L

︷ ︸︸ ︷
ai

︸ ︷︷ ︸

B

L

Figure 8.11: Example of the reduction from 3-Partition to Perfect Orthogeodesic
Alternating Matching on Grid using A1 = {a1, a5, a7}, A2 = {a2, a3, a8},
and A3 = {a4, a6, a9} (not to scale)

Theorem 8.5. Given an arbitrary balanced set of red and blue grid points, it is NP-complete
to decide whether there is a perfect orthogeodesic alternating matching on the grid.

Proof. Showing containment in NP is analogous to the proof of Lemma 8.2. We show that
the problem is NP-hard by reduction from 3-Partition similar to the proof of Theorem 8.4.
Given an instance A of 3-Partition, we construct a corresponding instance P = R ∪B of
the Perfect Orthogeodesic Alternating Matching on Grid problem as illustrated
in Figure 8.11 such that P allows for a perfect orthogeodesic alternating matching if and
only if there exists a partition of A with the desired properties.

A set of horizontally aligned grid points is called k-spaced if the Euclidean distance between
two adjacent points is exactly k. As in the proof of Theorem 8.4, the point set P consists of
four different types of points, called hinge points, element points, mask points and partition
points, yet now the point set is aligned a regular staircase on the grid with 3m+ 1 stairs such
that each stair has width and height L := dB/2e+ 3m. We number the stairs S0, . . . , S3m
starting at the top. Then we construct our point set as follows.
On the horizontal line of the topmost stair S0, we align m− 1 1-spaced blue hinge points

starting at the leftmost point of S0. For each element ai we align ai 1-spaced red element
points along the horizontal stair Si. On the bottom line of the staircase, we align m sets of
B + 2 1-spaced blue partition points, each acting as a partition. These partitions are each

186

8.4 Long Orthogeodesic Alternating Paths on the Grid

separated by three 1-spaced red mask points that are placed at distance 1 from the partitions
and which will act as a sort of “dot mask” separating the partitions.
Clearly, the instance is balanced. Since we consider matchings, each red point must be

connected to exactly one blue point. We show that there is a perfect alternating matching
if and only if there is a partition of A with the desired properties. Assume we are given a
perfect orthogeodesic alternating matching.
First, consider the red mask points in the middle of each mask. Each of those red mask

points can only be connected to one of the hinge points since it is flanked by red points on
both sides. Due to the horizontal alignment of both the mask points and the hinge points,
these incidences are uniquely determined. We call any geodesic chain connecting a mask
point and a hinge point a partitioner. All the remaining red mask points must connect to the
unique adjacent blue point on the bottommost stair since all other blue points are already
matched to the red mask points in the middle.
Since the element points corresponding to a single element are 1-spaced, no partitioner

may pass between them and, hence, the partitioners partition the elements such that the
element points corresponding to a single element are all in the same partition.
Now consider the red element points. Each of these points must be connected to a blue

partition point, since these points are the only remaining blue points. Since the elements
have been partitioned by the partitioners and since there are exactly B blue points in each
partition, it is clear that the existence of the matching implies the existence of a partition of
A, which is obtained from the matching in a straightforward manner.

Conversely, given a partition, we can easily construct a valid perfect orthogeodesic alternat-
ing matching. As in the proof of Theorem 8.4, each geodesic chain is drawn as the bottommost
geodesic that runs above all geodesics drawn so far. We start with the element ai with the
smallest index in A1. We connect the element points of ai to the leftmost ai blue partition
points that have not yet been used. Then we proceed in the same manner with the second
and third element from the first partition. After that we draw the partitioner connecting the
leftmost hinge point with the leftmost middle mask point. We proceed accordingly with the
remaining partitions. Due to the space we reserved between the elements along the staircase,
it is clear, that we can draw all geodesic chains in the desired way.

8.4 Long Orthogeodesic Alternating Paths on the Grid
Motivated by the hardness of deciding whether a given equitable set of red and blue points
admits a Hamiltonian orthogeodesic alternating path on the grid according to Theorem 8.4,
we consider the following optimization problem. Given an equitable set of red and blue grid
points P such that no two points are on a common horizontal or vertical line, we wish to
find a subset P ′ ⊆ P of maximum size such that P ′ admits a Hamiltonian orthogeodesic
alternating path on the grid. First we show that there are point sets consisting of 2n points
that do not admit a Hamiltonian orthogeodesic alternating path of length more than n+ 1.
Theorem 8.6. For every n ≥ 6 there exists a general equitable point set P consisting of n red
and blue points such that the largest point set P ′ ⊆ P admitting a Hamiltonian orthogeodesic
path on the grid has at most bn/2c+ 2 points.
Proof. Consider a butterfly point set P consisting of n red and blue points on the grid. Let
R := {r1, . . . , r|R|} and B := {b1, . . . , b|B|} denote the red and blue points of P and let P

187

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

r3

r4

r1

r2

r5

r6

b1

b2

b3

b4

b5

b6

(a)

r3

r4

r1

r2

r5

r6

b1

b2

b3

b4

b5

b6

(b)

Figure 8.12: Illustration for the proof of Theorem 8.6 depicting a butterfly point set on the
grid and a longest orthogeodesic alternating path.

be such that |R| ≤ |B| and such that x(ri) = i, y(ri) = i for all 1 ≤ i ≤ |R| as well as
x(bi) = |R|+ i and y(bi) = i− |B| for 1 ≤ i ≤ |B|, respectively, as illustrated in Figure 8.7a.
Further, let π be an orthogeodesic path with maximum length on a point set P ′ ⊆ P . Since
the points are not horizontally and vertically aligned, each edge consists of at least two
straight-line segments. Thus, each straight-line segment of π is incident to at most one point
in P ′. Let S denote the set of straight-line segments of π that are incident to a point in P ′
and let each segment in S be colored according to the unique point to which it is incident.
That is, S contains |P ′| − 1 red and |P ′| − 1 blue segments. Each of the segments in S covers
a grid point adjacent to the unique point in P ′ to which it is incident. Since all blue points
are to the right and below all red points, each orthogeodesic chain incident to a red point p
covers a grid point one unit to the right or one unit below r. Similarly, each orthogeodesic
chain incident to a blue point b covers a grid point one unit to the left or one unit above
b. Thus, the red straight-line segments of π cover a total of |R| + 1 distinct grid points
adjacent to the red grid points and the blue straight-line segments of π cover a total of |B|+ 1
distinct points adjacent to the blue grid points. Since |R| ≤ |B|, there are at most |R|+ 1
red segments, that is, π contains at most |R|+ 1 edges and at most |R|+ 2 points. Clearly,
bn/2c+ 2 ≤ |R|+ 2 follows from |R|+ |B| = n and |B| ≤ |R|+ 1. Hence, there cannot be an
orthogeodesic alternating path containing more than bn/2c+ 2 points.

Next we show that this is tight by proving that we can construct an orthogeodesic path of
this length on P . Let f(i) be defined such that

f(i) :=
{
i
2 − 1 if i is even
i−1

2 if i is odd
.

We start by connecting b1 to r1 by an L-shaped orthogeodesic chain consisting of a
horizontal segment incident to b1 and a vertical segment incident to r1. For 1 ≤ i ≤ f(|R|)
we connect r2i−1 to b2i by a horizontal chain whose vertical segment is one unit to the right
of r2i−1 and we connect b2i to r2i+1 by a vertical chain whose horizontal segment is one unit
above b2i as illustrated in Figure 8.12a.

Case 1: |R| is odd. Then the constructed path has 2f(|R|) + 1 = |R| edges and ends in
r2f(|R|)+1 = r|R|. We connect r|R| to b|R| by an L-shaped edge composed of a horizontal

188

8.4 Long Orthogeodesic Alternating Paths on the Grid

segment incident to r|R| and a vertical segment incident to b|R|, which yields an
orthogeodesic path on |R|+ 2 ≥ bn/2c+ 2 points in total.

Case 2: |R| is even. Then the constructed path has 2f(|R|) + 1 = |R| − 1 edges and ends
in r2f(|R|)+1 = r|R|−1 as illustrated in Figure 8.12a. We connect r|R|−1 to b|R| by a
horizontal chain whose vertical segment is one unit to the right of r|R|−1. Further, we
connect b|R| to r|R by an L-shaped orthogeodesic chain that is vertically attached to
b|R| and horizontally attached to r|R| as illustrated in Figure 8.12b. The constructed
path has |R|+ 1 edges and |R|+ 2 ≥ bn/2c+ 2 points.

This concludes the proof.

In Corollary 8.1 we noted that we can always find an orthogeodesic alternating path on the
grid for any point set P such that each pair of points has a horizontal or vertical distance of
at least two. Given an equitable point set P that does not satisfy this property, we can always
find an equitable point set P ′ ⊆ P such that P ′ has at least |P |/16 points and such that
every pair of points in P ′ has a horizontal and a vertical distance of at least two, respectively.
We can achieve this as follows. First, we sort the points from left to right and we remove
every other point. Whenever we remove a point with color c we arbitrarily pick another point
with color c′ 6= c and remove this point as well. The resulting point set remains equitable
and contains at least |P |/4 points. We then repeat this process vertically such that the
remaining point set has at least |P |/16 points. However, we can improve on this as the
following theorem shows.

Theorem 8.7. Let P be an equitable set of grid points. There is an O(n log2 n)-time
algorithm that computes an equitable set P ′ ⊆ P with |P ′| ≥ |P |/3 that admits a Hamiltonian
orthogeodesic alternating path on the grid.

Before we prove the theorem we prove the following auxiliary Lemma.

Lemma 8.3. Let P be a balanced point set consisting of at least four and at most twelve
points. Then P admits an orthogeodesic alternating path π satisfying the invariants (H1)
and (H2) from the proof of Theorem 8.1 such that each point of π is charged with at most
two points from P not on π.

Proof. First, suppose that 4 ≤ |P | ≤ 6. Then we can find a balanced subset P ′ of P consisting
of at least four points. Suppose that the topmost point pt is red and let pb be the bottommost
blue point. Then y(pt) − y(pb) ≥ 2 and we can connect pt to pb by a vertical chain whose
horizontal segment is one unit below pt as illustrated in Figure 8.13a. If the bottommost point
is red, then we can argue similarly. Finally, if both the topmost and the bottommost point is
red, then let pt be the topmost red point and let pb be the bottommost blue point. Again
we have y(pt)− y(pb) ≥ 2 and we can connect pt to pb by a vertical chain whose horizontal
segment is one unit below pt. Clearly, the invariants (H1) and (H2) are maintained. Further,
since P has at most six points and the constructed path π has two points, each of the two
points can be charged with at most two points not on π as claimed.

Second, suppose that 8 ≤ |P | ≤ 12. We show that we can find an alternating path with the
desired properties consisting of at least four points. If |P | ≤ 12, then such a path contains
all but at most eight points. Thus, each point of the path can be charged with at most two

189

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

q`

qr

r

b

(a) |P | = 4

p`

ptq`

r

qr

b

(b) Case 1.1.1

Figure 8.13: Illustrations for the proof of Lemma 8.3 according to the case distinction.

points not on the path. Without loss of generality we assume that |P | = 8. Otherwise we
can always find a balanced subset of P consisting of eight points. We make a case distinction
similar to the case distinction in the proof of Theorem 8.1. We let p`, pr, pt and pb denote
the leftmost, rightmost, topmost and bottommost points in P . Note, that some of these
points may coincide.

Case 1: The color of p` is blue. We distinguish three cases based on the colors of pt and pb,
respectively.

Case 1.1: The color of pt is red. Let p denote the point one unit below pt if it exists.
Let P ′ := P \ {p`, pt, p}. That is, P ′ is equitable and contains at least five points.
Let the points in P ′ be denoted by the sequence p1, . . . , pk, sorted from left to
right and let σ denote the sequence of colors of p1, . . . , pk from left to right. We
connect pt to p` as illustrated in Figure 8.13b by a vertical chain whose horizontal
segment is one unit below pt. We distinguish two cases based on the sequence σ
of colors.

Case 1.1.1: The sequence σ contains a red point r followed by a blue point b. Then
we connect r to b by an L-shaped orthogeodesic chain that is horizontally
attached to r and vertically attached to b and we connect p` to r by an
L-shaped orthogeodesic chain that is horizontally attached to p` and vertically
attached to r as illustrated in Figure 8.13b.

Case 1.1.2: All blue points are at the beginning of the sequence and all red points
are at the end of the sequence. First, suppose that the set P ′ contains three
blue points and two red points. Then the point set P ′ \ {p1} contains a
balanced set P ′′ of four points in which we can find a Hamiltonian alternating
path consisting of two points r and b that satisfies the invariants (H1) and (H2).
Thus, we can connect p` to r by a horizontal chain whose vertical segment is
on the vertical line through p1 as illustrated in Figure 8.14a.
Second, suppose that P ′ contains three red points and two blue points. Let
b be the bottommost blue point in P ′ \ {p1}. Then there are either two red
points above or two red points below b, respectively. Suppose that there are
two red points above b. The other case can be handled similarly. Let r be the
topmost red point. Then y(r)− y(b) ≥ 2. Hence, we can connect r to b by a
vertical chain whose horizontal segment is one unit below r as illustrated in

190

8.4 Long Orthogeodesic Alternating Paths on the Grid

p`

ptq`

r

qr
b

P ′

(a) Case 1.1.2

p2,`
P ′P1 P2

q′`

q′r

pr

p`

b

r

(b) Case 1.3.2a

Figure 8.14: Illustrations for the proof of Lemma 8.3 according to the case distinction.

Figure 8.14a. Finally, we connect p` to r by a horizontal chain whose vertical
segment is on the vertical line through p1.

Case 1.2: The color of pb is red. This case is symmetric to Case 1.1.
Case 1.3: The color of pt is red and the color of pb is red. We distinguish two cases

based on the color of pr.

Case 1.3.1: The color of pr is red. This case is analogous to Case 1.1, except that
we attach the newly created edges at the blue end of the path instead of at
the red end of the path.

Case 1.3.2: The color of pr is blue. By symmetry we can find a horizontal parti-
tion of P into two balanced point sets P1 and P2, respectively such that the
leftmost point p2,` of P2 is red. We distinguish three cases based on the size
of |P2|.

Case 1.3.2a: |P2| = 6. Let P ′ := P2 \ {p2,`, pr} as illustrated in Figure 8.14b.
Then P ′ is balanced and contains at least four vertices and we can find an
orthogeodesic alternating path consisting of two vertices r and b such that
both the horizontal segment q′`b and the horizontal segment rq′r do not
intersect the edge between r and b, where q′` denotes the point on the left
side of B(P ′) that is horizontally aligned with b and q′r denotes the point
on the right side of B(P ′) that is horizontally aligned with r. That is, we
can connect p2,` to b by an L-shaped orthogeodesic chain that is vertically
attached to p2,` and horizontally attached to b and we can connect r to
pr by an L-shaped orthogeodesic chain that is horizontally attached to r
and vertically attached to pr as illustrated in Figure 8.14b. Then we have
constructed a path consisting of four vertices.

Case 1.3.2b: |P2| = 4. Then |P1| = 4 and we can find a path consisting of a
red point r and a blue point b with the desired properties in P1. Let p be
the rightmost red point in P2. Then we can connect b to p by a horizontal
chain whose vertical segment is on the vertical line of the leftmost red
point p2,` in P2 as illustrated in Figure 8.15a. Note that, p2,` 6= p since P2
contains 2 red points of which p is the rightmost.

Case 1.3.2c: |P2| = 2. Then |P1| = 6 and the leftmost five points in P1 must
contain a balanced point set P ′1 of four vertices. Then we can find an

191

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

P1 P2

pr

p`

b

r

p

p2,`

(a) Case 1.3.2b

P1 P2

pr

p`

b

r

(b) Case 1.3.2c

Figure 8.15: Illustrations for the proof of Lemma 8.3 according to the case distinction.

orthogeodesic chain in P ′1 connecting a red point r and a blue point b in
P ′1. Then we connect p2,` to pr by an L-shaped chain that is horizontally
attached to p2,` and vertically attached to pr and we connect b to p2,` by
a horizontal chain whose vertical segment is on the vertical line through
the rightmost point of P1 as illustrated in Figure 8.15b.

Case 2: The color of p` is red. We distinguish two cases based on the color of pr.

Case 2.1: The color of pr is blue. Note that the point set P has the same properties
as the point set P ′ in Case 1.3.2a. Therefore, we can handle this case in exactly
the same way illustrated in Figure 8.14b, except that need to charge two points
less to the computed path.

Case 2.2: The color of pr is red. This case is analogous to Case 1.3.2, except that we
exchange the roles of P1 and P2.

In all cases we constructed a path with four vertices satisfying the invariants (H1) and (H2).
Since P contains at most twelve vertices, at most eight vertices are not contained in the path.
Hence, each point of the path can be charged with at most two of these points.

Now we turn to the proof of Theorem 8.7.

Proof of Theorem 8.7. We slightly modify the algorithm described in Section 8.2 by forcing
it to use only grid lines and by allowing it to remove points during the execution if they
would obstruct an edge that the algorithm as suggested for Corollary 8.1 would draw next.
To keep the point set balanced, we always remove pairs of points with different colors. We
show that each point on the path computed by the algorithm can be charged with at most
two removed points. That is, the length of the computed path is at least |P |/3.
Our proof is based on a case distinction similar to the proof of Theorem 8.1. First, note

that we can find an orthogeodesic alternating path on the grid containing two vertices for
every equitable point set with at most three points. We simply connect an arbitrary red
point to an arbitrary blue point by an L-shaped edge. Thus, we only consider point sets with
at least four points.

First, we consider only the balanced case. That is, for every balanced point set consisting
of n = 2k with k ≥ 1 such that no pair of points is horizontally or vertically aligned, we prove
that we can compute a Hamiltonian orthogeodesic alternating path on the grid containing
at least |P |/3 points such that the invariants (H1) and (H2) according to the proof of

192

8.4 Long Orthogeodesic Alternating Paths on the Grid

Theorem 8.1 are maintained and such that each point on the path is charged at most two
points that are not on the path. The proof is by induction on n. We let the base cases be
all balanced point sets with at least four and at most twelve points. By Lemma 8.3 we can
always find an orthogeodesic path with the desired properties on such a point set.
Next, suppose that the induction hypothesis holds for all 2k < n such that k ≥ 2 and

n ≥ 14. We make a case distinction according to the proof of Theorem 8.1 and as illustrated
in Figure 8.4. Additionally, we use the definitions and terminology according to the proof of
Theorem 8.1. That is, by p`, pr, pb and pt we denote the leftmost, rightmost, bottommost
and topmost points in P , respectively.

Case 1: The color of p` is blue. We distinguish three sub-cases.

Case 1.1: The color of pt is red. Let Q ⊆ P be the points distinct from p` and pt on
the horizontal line one unit below pt and on the vertical line one unit to the right
of p`, respectively, that is |Q| ≤ 2 and p`, pt /∈ Q.
Let Q′ be an arbitrary set of two points from P \ (Q ∪ {p`, pt}) such that P ′ :=
P \ (Q ∪Q′) is balanced. Then P ′ contains at least eight points and we can apply
the induction hypothesis to P ′. The at most four points in Q ∪Q′ will be charged
to the two new vertices on the path.
We connect p` to the path computed in P ′ as in Case 1.1 in the proof of Theorem 8.1
and as illustrated in Figure 8.1b.

Case 1.2: The color of pt is blue and the color of pb is red. This case is obtained from
Case 1.1 by a reflection.

Case 1.3: The color of pt is blue and the color of pb is blue. We consider two sub-ca-
ses depending on the color of pr.
Case 1.3.1: The color of pr is red. This case is similar to Case 1.1. Instead of

attaching two new points to the left side of the path, we attach two more
edges at the right side of the path. Clearly, we must remove at most four
points for two newly created edges.

Case 1.3.2: The color of pr is blue. Let P1 and P2 be a partition of P according
to Lemma 8.1. By symmetry we can choose P2 such that the leftmost point p2,`
in P2 is red. Suppose that the vertical line one unit to the left of p2,` is occupied
by a point p. Clearly, p ∈ P1.
First, suppose that P1 contains at most four vertices. Then P2 contains at
least ten vertices and we can handle P2 according to Case 2.1 without charging
the first and the last point of the resulting path with any removed points
since we can use L-shaped edges incident to these points, which do not cross
any other points. Note that the point set P ′2 := P2 \ {p2,`, pr} still contains at
least eight points such that we can apply the induction hypothesis on P ′2 after
handling P2 according to Case 2.2. That is, we can remove all points in P1
and charge the removal to p`.
Otherwise P1 contains at least six points, that is, we can remove p and an
arbitrary point p′ whose color is different from c(p) and apply the induction
hypothesis to the set P ′1 := P1 \ {p, p′} since |P ′1| ≥ 4. If P2 has only two

193

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

vertices, we directly connect p2,` to pr by an L-shaped edge and charge the
removal of p and p′ to p2,`. If P2 has four vertices, then we can also connect p2,`
to pr by an L-shaped edge and charge the removal of p, p′ and the remaining
two points in P2 \ {p2,`, pr} to p2,` and pr, respectively. Finally, if P2 contains
at least six vertices, we can handle P2 according to Case 2.1 without charging
p2,` and pr since we can apply the induction hypothesis to the point set
P ′ := P2 \ {p2,`, pr} containing at least four vertices.
The sub-paths constructed for P1 and P2, if any, are connected according to
Case 1.3.2 of the proof of Theorem 8.1 and as illustrated in Figure 8.3b.

Case 2: The color of p` is red. We consider two sub-cases.

Case 2.1: The color pr is blue. Note that P has at least 14 points, that is we can apply
the induction hypothesis to P \ {p`, pr}. Then we connect p` to b′ and r′ to pr
using L-shaped edges. Clearly, this satisfies invariant (H1) since p` and pr at on
the left and right side of the bounding box of P , respectively.

Case 2.2: The color of pr is red. This case is similar to Case 1.3.2, except that we
exchange the roles of P1 and P2.

The unbalanced case can be handled similar to the proof of Theorem 8.1. Suppose that P
is an unbalanced equitable point set consisting of at least 5 red and blue points. We may
assume without loss of generality that |B| = |R| + 1. First, consider the case that one of
the points p on the boundary of B(P) is blue. Assume without loss of generality that p is
on the left side. Then we can compute a path as described earlier for the balanced set of
points P ′ := P \ {p} and connect p to this path by an L-shaped orthogeodesic chain that is
vertically attached to p and horizontally attached to the red end of the path computed for P ′.

Second, consider the case that all points on the boundary are red. Then we add a new red
point r to the left of P and consider the point set P ′ := P ∪ {r}. Then P ′ has at least six
points such that the leftmost two points are red. We split P ′ into two point sets P1 and P2
according to Lemma 8.1 such that the rightmost point p1,r in P1 is blue. Clearly, P1 contains
at least four points, since the leftmost two points are red. First, suppose that P1 contains
exactly four points p1, . . . , p4 sorted from left to right. Then the color of r = p1 and p2 is
red and the color of p3 and p4 is blue, respectively. If P2 contains only two vertices, then
P contains only six points. Then we can pick any balanced subset of points from P and
compute a an orthogeodesic alternating path with two points and we are done. If P2 contains
at least four points, we can compute a path in P2 the by induction hypothesis starting with
a red point r2 and ending in a blue point b2. Then we connect p2 to p3 by an L-shaped chain
that is vertically attached to p2 and horizontally attached to p3 and we connect p3 to r1 by
an L-shaped chain that is vertically attached to p3 and horizontally attached to r2. The
removed points p1 and p4 are charged to p3. Second, suppose that P1 contains at least six
points. Then we can handle P1 according to Case 2.1 without charging r with the removal of
any point. Finally, since r is only used as and endpoint of the path, if it is used at all, and
since it is not charged with the removal of any points, we can safely remove it again.
Note that we can decide which points to remove before recursing on the point sets from

which we removed the points. Therefore, the rest of the algorithm can be implemented and
analyzed as in the proof of Theorem 8.1. Thus, the algorithm can be implemented to run in
O(n log2 n) time.

194

8.5 Concluding Remarks

8.5 Concluding Remarks
In this chapter, we studied the existence of Hamiltonian orthogeodesic alternating paths.
While point sets that do not admit a Hamiltonian orthogeodesic alternating path can trivially
be constructed—as, for instance, any set of horizontally aligned point set whose points are
not alternatingly red and blue—we proved that such a path can always be computed in
O(n log2 n) time on every point set whose points are neither horizontally or vertically aligned.
The constructed path needs two bends on some of the edges, which we proved to be worst-case
optimal by presenting a family of graphs that does not admit a Hamiltonian orthogeodesic
alternating path with at most one bend per edge. However, if we require both points and
bends to be placed on the grid, then we proved that this problem is NP-complete. Using
similar techniques we then showed that it is also NP-hard to decide whether a given set of
points on the grid admits an alternating perfect matching if points are allowed to be be
horizontally or vertically aligned. However, Kano [Kan09] had previously shown that such
a perfect matching can always be constructed on the grid if points are not allowed to be
horizontally or vertically aligned. Motivated by the hardness of deciding whether a given
point set admits a Hamiltonian orthogeodesic alternating path on the grid we studied the
problem of finding an orthogeodesic alternating path on the grid with maximum length
and we presented a factor-3 approximation algorithm whose running time is O(n log2 n).
In contrast to this, we showed that there are point sets for which there does not exist an
orthogeodesic alternating path on the grid containing much more than half the number of
points.

Open problems The algorithm we presented for computing a Hamiltonian orthogeodesic
alternating path off the grid needs two bends on some of the edges. While it is not always
possible to construct a path with at most one bend per edge, it would be interesting
characterize the point sets admitting such a path and to devise an efficient algorithm for
computing such a path, if it exists. Further, it is an interesting open problem to study the
gap between the factor-3 algorithm approximation of the longest orthogeodesic alternating
path and the presented upper bound for the worst-case ratio of an approximation algorithm.
Finally, there are several variations of the problem that might be interesting for future

work. First, we can consider two-colored orthogeodesic point set embedding problems for
various other classes of graphs, such as cycles, trees and planar or outerplanar graphs. Second,
we can consider similar problems for more than two colors. Straight-line alternating paths
on multi-colored point sets have been studied by Merino et al. [MSU06] but orthogeodesic
alternating paths do not seem to have been considered on multi-colored point sets as of
yet. And third, it would also be interesting to study a variant of the problem in which both
the points in the plane and the vertices of the graph are colored and we ask for a point-set
embedding of the graph such that a colored vertex may only be mapped to a point with the
same color. We may think of the colors as encoding different functionalities of the vertices
in the network. This problem is already capable of modeling complex constraints for the
placement of the vertices.

195

Chapter 8 Hamiltonian Orthogeodesic Alternating Paths

196

Chapter 9

Generalizing Geometric Graphs

Network visualization is essential for understanding the data obtained from huge real-world
networks such as flight-networks, the Internet or social networks. Although we can compute
layouts for these networks reasonably fast, even the most recent display media are not
capable of displaying these layouts in an adequate way. Moreover, the human viewer may
be overwhelmed by the displayed level of detail. The increasing amount of data therefore
requires techniques aiming at a sensible reduction of the visual complexity of huge layouts.
We consider the problem of computing a generalization of a given layout reducing the

complexity of the drawing to an amount that can be displayed without clutter and handled
by a human viewer. That is, we consider the geometric network construction problem of
constructing a small network that is to resemble a given large network both visually and
structurally. We take a first step at formulating graph generalization within a mathematical
model and we consider the resulting problems from an algorithmic point of view. Although
these problems are NP-hard in general, we provide efficient approximation algorithms as
well as efficient and effective heuristics. At the end of the chapter we showcase some sample
generalizations. This chapter is based on joint work with Edith Brunel, Andreas Gemsa,
Ignaz Rutter and Dorothea Wagner [BGK+12].

9.1 Introduction
As a natural consequence of the increasing amount of available data we are frequently facing
large and even huge networks such as road and flight networks, the Internet and social networks
with millions of vertices. Visualization of these networks is a key to assessing the inherent
graph-based information via human inspection. There are several methods for computing
layouts of huge graphs with millions of vertices within a few minutes [HK02b, KCH03, HJ05].
But, how do we display such layouts? Modern HD displays feature only roughly 2 Mio

pixels and a standard A4 page allows only roughly 8.7 Mio dots at a resolution of 300 pixels
per inch. Although these numbers do sound adequate for large-scale graph visualization
at first glance, both media are not at all suited for displaying huge graphs with millions of
vertices. Even if we require only a minimal distance of 10 pixels or dots between the vertices
of the graph, which yields a distance between vertices of roughly 3 millimeters on the screen
and less than 1 millimeter on paper, then we can display only several thousand vertices, and
not too many edges. If we additionally seek to display graph structure and keep visual clutter
low, the number of vertices we can display degrades even further and may go down as far as
less than a hundred for dense graphs.
Even worse, the human perception is not capable of extracting detailed information from

197

Chapter 9 Generalizing Geometric Graphs

huge layouts with millions of vertices. Since, by a simple counting argument, there are
incompressible adjacency matrices [LV08], a graph with only 1 Mio vertices may encode
incompressible information of up to 125 Gigabytes. This exceeds by a factor of 3.6 the average
daily information consumption of an average American estimated at 34 (highly compressible)
Gigabytes of information in the current report on American Consumers [BS09].

Related Work Known approaches to coping with the huge amount of data by allowing for
some kind of abstraction can be categorized into structural and geometric methods. While
structural methods create a new layout for the data, typically using a clustering of the graph,
geometric methods are applied to a given layout maintaining the user’s mental map [MELS95].

Graph-theoretic clustering methods, which can be used to cluster the graph for visualization
are discussed in [Gae05]. Eades and Feng [EF97] describe a multilevel visualization method
for clustered graphs with the aim of visualizing network-based data that has been clustered
hierarchically at different levels of abstraction induced by the hierarchy of the clustering. A
force-directed layout algorithm based on a hierarchical decomposition of the graph is given
by Quigley and Eades [QE01]. This method allows for visualizing the graph at different
levels of abstraction by computing a layout based on a hierarchical grouping of the vertices
of the graph. Harel and Koren [HK02a] present a multi-scale algorithm with the purpose of
producing nice drawings on large and small scale, respectively. Different levels of abstraction
of the graph are obtained by iteratively coarsening the graph. Multi-scale drawing methods
are combined with fisheye views by Gansner et al. [GKN05]. Their approach is to compute
a layout of a graph whose level of detail deteriorates with increasing distance to the focal
node of the layout, that is, they provide a topological version of classical fisheye visualization
techniques. Abello el al. [AKF01] discuss graph sketches for very large graphs based on
mapping clusters of the graph to certain regions of the screen. Their notion of a sketch is
based on a hierchcical clustering of the graph and is mainly focused at exploring the graph via
a detail-on-demand strategy without providing a good approximation of the graph’s structure
and geometry. Rafiei and Curial [RC05] study the generalization of graphs by sampling.
Classical fisheye visualizations [Fur86, SB92], on the other hand, can be directly applied

to a given layout and apply a distortion to a given layout to emphasize the structure of the
drawing in a certain area of interest. The resolution of the drawing deteriorates towards the
boundary of the drawing and parts of the drawing in this area are usually densely cluttered.
Abello et al. [AKY05] study the visualization of large graphs with compound-fisheye views and
treemaps, employing hierarchical clustering and a treemap representation of this clustering.
Further, edge bundling techniques [TE10, HvW09] aim at reducing the complexity of layouts
by bundling similar edges.
Generalization has received considerable attention in cartography [MRS07]. Apart from

this, Mackaness and Bear [MB93] highlight the potential of graph theory for map gener-
alization. Saalfeld states the map generalization problem as a straight-line graph drawing
problem [Saa95] and formulates a number of challenges resulting from this perspective.
Among others, he asks for a rigorous mathematical model for graph-based generalizations
and provable guarantees. We are not aware of any work aiming at assessing this problem to
its full extent.

198

9.1 Introduction

(a) Vertex-Clutter (b) Edge-Clutter (c) Vertex-Edge-Clutter

Figure 9.1: Illustration of different types of clutter.

Contribution We take a first step towards establishing a mathematical model for the
problem of generalizing geometric graphs. A key to assessing the problem of computing
a suitable generalization is to find an adequate measure of the quality or appropriateness
of a generalization. It is essential to understand the geometric and combinatorial features
resulting in the visual complexity of geometric graphs and how they affect human perception.
The geometric features of the drawing include, among others, the distributions of points and
edges as well as the distribution of crossings, the shapes of the faces of the arrangement,
especially the outer face, as well as symmetries and peculiarities. The combinatorial features
include connectivity, structure and length of shortest paths as well as, for instance, planarity.
Although we are far from fully understanding the impact of the these features on the human
perception we try to incorporate a carefully selected set of these features into our model of a
generalization. The generalization should maintain the spirit of the drawing of the graph
and preserve the prominent features while reducing the amount of detailed information to an
amount that can be displayed without clutter and handled by a human viewer. Our model is
based on the fact that vertices have a fixed size and edges have a fixed width on the screen.
Visual clutter refers to an agglomeration of overlapping visual features in a limited area that
renders these features indistinguishable. Our goal is to either avoid or reduce visual clutter.
We identify three types of clutter.

Vertex-Clutter occurs when two or more vertices are too close to each other. It may render
the drawing unusable due to hidden edge information as illustrated in Figure 9.1a.

Edge-Clutter occurs when too many edges cross a limited area. Even if vertices are far
enough apart, edge clutter may lead to indistinguishable edge information as illustrated
in Figure 9.1b.

Vertex-Edge-Clutter occurs when a vertex is too close to an edge. In this case, we are unable
to tell, whether the vertex is incident to the edge or not as illustrated in Figure 9.1c.

We devise a framework that allows for assessing all types of clutter in an incremental way
by modeling the elimination or reduction of each type of clutter as an optimization problem,
which we analyze in terms of complexity. We show that these problems are NP-hard in
general and we provide approximation algorithms as well as effective and efficient heuristics
that can be applied to huge graphs within reasonable time.

199

Chapter 9 Generalizing Geometric Graphs

Preliminaries In this chapter, we model a geometric graph as a pair G = (P,E) such
that P ⊆ R2 is a finite set of n points in the plane and E is a set of m straight-line segments
with endpoints in P . If not otherwise stated, graph refers to a geometric graph throughout
this chapter. For p ∈ P and a non-negative number r ∈ R+

0 , we denote by B(p, r) the disk
with center p and radius r. We model the finite resolution of a screen by assuming that each
point p occupies the locus of points whose distance to p is bounded by s ∈ R+

0 and, similarly,
each edge e occupies the locus of points whose distance to e is bounded by w ∈ R+

0 .
A generalization of G is a pair (H,ϕ) where H = (Q,F) is a geometric graph with Q ⊆ P

such that ϕ : P → Q maps vertices of G to vertices of H and F is a subset of edges resulting
from a contraction of G according to ϕ. Since the subgraph induced by ϕ−1(q) is contracted
into a single vertex, we call this subgraph the cluster of q, denoted by Cq. Given Q ⊆ P , we
denote by ν : P → Q the Voronoi mapping, which maps p ∈ P to its closest neighbor in Q
with respect to the Euclidean metric. We call the corresponding clusters Voronoi clusters. We
especially focus on this mapping since it minimizes the sum of the distances

∑
p∈P d(p, ϕ(p))

between the original vertices and the points to which they are mapped in the generalization.
Hence, this mapping seems to be a natural choice. Throughout the chapter distance refers to
the Euclidean metric.

Organization of the Chapter In Section 9.2, we consider the problem of eliminating vertex-
clutter. We discuss our model for the generalization of the vertex set and show NP-hardness
of the corresponding optimization problem. We further show that the size of the generalized
point set can be approximated efficiently and we devise an efficient heuristic for further
optimization. In Section 9.3, we study the reduction of edge-clutter. We show that it is in
general NP-hard to find a sparse or short subset of the edges maintaining monotone tendencies.
When the original graph is complete, however, or if we are not restricted to use edges of
the original graph, we can efficiently compute a sparse graph approximately representing
monotone tendencies of the edges. In Section 9.4, we model the problem of reducing vertex-
edge clutter and we show how to compute a drawing that allows for unambiguously deciding
whether an edge is incident to a vertex or not, thus effectively eliminating vertex-edge clutter.
We showcase and discuss some sample generalizations in Section 9.5.

9.2 Generalizing the Vertex Set without Vertex-Clutter
In this section we consider the problem of computing a generalization (H,ϕ) without vertex
clutter for a geometric graph G = (V,E), where H = (Q,F). We focus on the case that ϕ
is the Voronoi-mapping assigning each vertex in P to its nearest neighbor in Q. In order
to avoid vertex-clutter, we require a minimal distance r ∈ R+

0 between the vertices of a
generalized geometric graph. Let % : P → R+

0 be a function that maps a positive real number
%(p) ≥ r to every point p ∈ P . For each vertex p ∈ Q in the generalized graph we require that
the disk B(p, %(p)) does not contain any other point from Q. We call a point set Q with this
property a %-set of P . This prerequisite, however, must be balanced with additional quality
measures such as the size of the %-set, the clustering induced by ϕ and the distribution of the
points in Q in order to avoid trivial solutions such as a single vertex. Clearly, it is desirable
to maximize the size of a %-set in order to retain as many vertices of the original graph as
possible. That is, even in the presence of other optimization goals we may assume that the

200

9.2 Generalizing the Vertex Set without Vertex-Clutter

vertex set Q of the generalization constitutes an inclusion-maximal %-set of the original point
set P .

Choosing % ≡ r uniformly for all points p ∈ P may have a severe effect on the distribution
of the points when maximizing the size of a %-set since the distances to the nearest neighbors
in an inclusion-maximal %-set tend to be uniformly distributed regardless of the original
distribution. However, it may be more appropriate to approximate the distribution of the
original point set. In order to approximate this distribution by an inclusion-maximal %-set we
can choose % as follows. Let p0 be the point that maximizes the number of points in B(p, r)∩P
over all p ∈ P and let k = |B(p0, r)∩P | − 1 denote the number of points in this disk that are
different from p0. For each p ∈ P let dk(p) ≥ r denote p’s distance to its k-nearest neighbor
in P . By choosing %(p) = dk(p) ≥ r any inclusion-maximal point set will have approximately
the same distribution as the original point set since for each point in the generalized point
set we discarded the same amount of points from the original graph.
Since, in general, it is not clear which behavior is more appropriate, we introduce a

parameter α ∈ [0, 1] and let the user decide by setting %(p) := max{r, αdk(p)}. That is, the
user can choose between retaining as many points in areas with low clutter as possible (α = 0)
and approximating the distribution of the point set (α = 1) as well as interpolations between
the two extremes.
We consider two measures to assess the quality of a %-set Q. While the size of Q is a

measure of the amount of data that is retained, the quality of the clustering induced by ϕ is a
measure for the amount of data that is lost due to the contraction of the vertices. There are
several established ways of assessing the quality of clusterings, such as coverage, performance,
conductance [Gae05], and modularity [BDG+08]. Since the information contained in the
inter-cluster edges is retained in the generalization, we concentrate on assessing the quality
of the clusters based on the intra-cluster edges. We consider a measure similar to coverage,
which we adapt to our purpose as follows. For each cluster Cq let nq denote the number of
vertices and mq denote the number of edges in Cq, respectively. We define the local coverage
of a cluster Cq by lcov(Cq) = 2mq/(nq(nq − 1)) , that is, as the amount of intra-cluster
coherence that is explained by the intra-cluster edges. The local coverage of the generalization
is defined as lcov(H,ϕ) = minq∈Q lcov(ϕ−1(q)) .
In order to reduce vertex-clutter, we consider the following multi-objective optimization

problem. Given a geometric graph G = (P,E), a non-negative radius r ∈ R+
0 and α ∈ [0, 1]

the Local Coverage Cluster Packing (LCCP) problem is to compute a %-set Q ⊆ P
and a mapping ϕ : P → Q that maximizes both |Q| and lcov(H,ϕ).

Problem Local Coverage Cluster Packing (LCCP)
Instance: Geometric graph G = (P,E), r ∈ R+

0 , α ∈ [0, 1]

Solution: %-set Q ⊆ P , mapping ϕ : P → Q

Goal: maximize lcov(H,ϕ), maximize |Q|

First we show that several single-criteria optimization variants of this multi-criteria op-
timization problem are NP-hard. Then we show how to approximate the size of a %-set
efficiently and we devise an efficient heuristic for balancing the size of a %-set with the quality
of the induced local coverage.

201

Chapter 9 Generalizing Geometric Graphs

9.2.1 Complexity
The problem of computing a %-set of maximum size for α = 0 can be reduced to the problem of
computing a maximum independent set in the intersection graph of the disks with radius r/2
centered at the points in P . Clark et al. [CCJ90] prove that this problem is NP-hard in
unit-disk graphs, even if the disk representation of the graph is given.

Corollary 9.1. Maximizing the size of a %-set is NP-hard for α = 0.

Next, we show that it is also NP-hard to maximize the local coverage in the induced
clusters of a %-set as well as the total size of the generalization obtained by choosing a %-set
if the clustering is obtained by the Voronoi mapping induced by the points in Q.

Theorem 9.1. Maximizing lcov(H, ν) of a generalization (H, ν) is NP-hard for α = 0.

Proof. We prove the theorem by reduction from the NP-hard problem Planar Monotone
3-sat [dBK10]. Let U = {x1, . . . , xn} be a set of Boolean variables and let C = C1∧C2 · · ·Cm
be 3-sat formula. Then C is called monotone if all clauses consist only of positive or only
of negative literals. Let G = (U ∪ C, E) be the bipartite graph, on the clauses and variables,
where E contains the edge (xi, Cj) if and only if the literal xi or its negation is contained
in Cj . A monotone rectilinear representation of a monotone 3-sat formula is a rectilinear
drawing of G such that the following conditions are met, as illustrated in Figure 9.2.

(i) The variables and clauses are drawn as axis-aligned boxes such that all variable boxes
are on a horizontal line.

(ii) The edges are drawn as vertical line segments connecting the corresponding boxes.

(iii) The drawing does not contain any crossings.

An instance of Planar Monotone 3-sat consists of a monotone rectilinear representation
of a planar monotone 3-sat instance and we wish to decide, whether the corresponding 3-sat
instance is solvable.
A %-set with local coverage 1 is called a perfect %-set. A %-set is perfect if and only if the

graphs induced by the vertices in each of the Voronoi faces defined by Q are cliques. Given a
monotone rectilinear representation of a planar monotone 3-sat formula we will construct
a corresponding instance I = (G = (P,E), %) of problem LCCP such that I contains a
perfect %-set if and only if the 3-sat formula is satisfiable. For reasons of simplicity our

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4

Figure 9.2: Monotone rectilinear representation of the 3-sat formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

202

9.2 Generalizing the Vertex Set without Vertex-Clutter

(a) Graph (b) True (c) False (d) Illegal

Figure 9.3: Variable gadget

(a) True (b) False (c) Illegal

Figure 9.4: Literal gadget

construction is based on a disconnected graph with collinear points, but the construction
can be modified in a straightforward way to obtain similar results for connected graphs
with vertices in general position. We choose % ≡ 1.25 and we construct G from a set of
variable/literal gadgets, transmitter/bend gadgets and clause gadgets, which we will describe
subsequently. We will use the following trivial observation.
Observation 9.1. Every perfect %-set of G contains at least one vertex of each clique of G.

Variable/Literal Gadget. We distinguish between basic and extended variable and literal
gadgets, respectively. The basic variable gadgets incorporate the functionality needed to
correctly represent the variables. These gadgets can be extended to transmit their state along
the transmitters. Each basic variable gadget consists of three vertically aligned cliques of size
three and four, respectively, as illustrated in Figure 9.3. Each clique consists of vertically
aligned points at distance 1, and the cliques are separated by a vertical gap of 0.5.

Due to Observation 9.1 a perfect %-set of G must contain at least one vertex in each of the
cliques. Note that we cannot choose two vertically subsequent vertices in any of the cliques,
since they do not constitute a %-set. Due to the chosen vertical distribution of the vertices,
the vertices of any %-set closest to the gaps must be chosen symmetrically to the bisector of
the two cliques. Otherwise, the bisector of these vertices will intersect the edges of one of the

203

Chapter 9 Generalizing Geometric Graphs

(a) True (b) False (c) Illegal State

(d) satisfied (e) dissatisfied

Figure 9.5: (9.5a)–(9.5c) Bend gadget, (9.5d)–(9.5e) Clause gadget.

cliques as illustrated in Figure 9.3d. Furthermore, we cannot choose the two vertices closest
to the gap since they do not constitute a valid %-set. Hence, there are only two valid %-sets
of the basic variable gadget, corresponding to the true and false state of the corresponding
variable, as illustrated in Figure 9.3b and 9.3c, respectively. The variable gadgets can be
extended in order to connect them to the transmitter gadgets. In order to extend the variable
gadgets, we substitute the cliques of size 3 at the corresponding end by a clique of size 4.

The literal gadgets are composed of basic and extended variable gadgets that are horizontally
aligned. The horizontal gap between the gadgets is variable and can be chosen to be 1 or 1.5,
as illustrated in Figure 9.4.
Transmitter/Bend Gadget. The transmitter gadgets consist of two vertically aligned cliques
of size 4 that are separated by a gap of 0.5 similar to the variable gadgets. When stacked
upon the extended variable gadgets with a vertical gap of 0.5 the transmitter gadgets can be
in one of two valid states corresponding to the assignment of the variable. The bend gadgets
consist of one vertical and one horizontal transmitter gadget as illustrated in Figure 9.5.
Figure 9.5c illustrates that the state cannot change at the transition between the horizontal
and the vertical transmitter segment. Such a change would result in locate coverage strictly
smaller than 1.
Clause Gadget. Finally, the clause gadget is constructed as illustrated in Figure 9.5. It
consists of three small gadgets that are arranged in a T -shaped fashion and which are
constructed exactly as the topmost two cliques of the basic variable gadget. The functionality

204

9.2 Generalizing the Vertex Set without Vertex-Clutter

of the clause is realized by a small triangle arranged in the middle of the T-shaped figure.
If all literals corresponding to the clause are false, then each of the triangle’s vertices is
contained in the %-ball of one of the vertices contained in the corresponding %-set. Hence,
none of the vertices of the triangle may be contained in the %-set and, thus, the vertices of
the triangle are mapped to a neighboring point resulting in local coverage strictly less than 1.
This is illustrated in Figure 9.5e. If, on the other hand, at least one of the variables is in a
true state, then one of the triangle’s vertices can be included in the %-set. The vertices of
the triangle are chosen in such a way that the bisector between any of these vertices and the
closest vertex corresponding to a true assignment does not intersect any of the cliques of the
clause. As illustrated in Figure 9.5d, this leads to a Voronoi diagram that does not intersect
the edges of G, resulting in a perfect %-set.

Clearly, a satisfying assignment of the 3-sat formula can be transformed into a perfect %-set
of G. Conversely, assume that we are given a perfect %-set of G. As argued, the variable
gadgets can be in one of two states in this case as illustrated in Figure 9.3. This state is
likewise represented in the adjacent transmitters and will thus be transmitted without error
to the clauses. Since the %-set is perfect, one of the central triangle’s vertices of each clause
gadget must be in the set. Hence, at least one of the adjacent transmitters must be in a
true state, corresponding to the assignment of one of the literals. Hence the states of the
variables as in Figure 9.3 correspond to a satisfying assignment of the 3-sat formula. A
sample reduction is illustrated in Figure 9.6.
Since the reduction is based on deciding whether the given graph contains a perfect %-set

whose size is equal to the number of cliques in G it yields that both the maximization of
local coverage as well as the maximization of the size of the %-set with given minimum local
coverage are NP-hard.

9.2.2 Approximating the Maximum Size of a Generalization
Although it is unlikely that we can efficiently compute a %-set with maximum size, we show
that we can approximate the size of a maximum %-set.

Theorem 9.2. Let G be a geometric graph and let r ∈ R+
0 and α ∈ [0, 1] be given. In O(kn+

n log5 n(log logn)2) time we can compute a generalization H of G that approximates the
maximum number of vertices of a generalization by a factor of (7k + 2)/3, where k =
maxp∈P |B(p, %(p)) ∩ P | − 1 .

In order to prove Theorem 9.2 we use the following auxiliary lemma.

Lemma 9.1. Let p0 be a point in the plane and let k ∈ N. Then there are at most 6k
points Q such that p0 is among the k closest points for each of the points q ∈ Q.

Proof. We first establish the somewhat simpler claim that there are at most 6 points p1, . . . , pt
with t ≤ 6 such that for each pi no point is closer to pi than p0, that is, p0 is the closest point
to each pi. Assume without loss of generality that p1 is closest to p0 and consider the infinite
ray r1 starting in p0 in the direction of p1. Let p2 be the next point to p1 in the clockwise
cyclic order of p1, . . . , pt around p0, as illustrated in Figure 9.7. Without loss of generality we
may assume that p2 is such that the disk D2 centered at p2 with radius d(p2, p0) touches p1.
If this is not the case, we rotate p2 around p0 counter-clockwisely until it touches p2. By the

205

Chapter 9 Generalizing Geometric Graphs

Figure 9.6: Sample reduction of the 3-sat formula (x1∨x2∨x3)∧(x1∨x3∨x4)∧(x2∨x3∨x4).
The black points constitute a perfect %-set corresponding to the assignment x1 =
true, x2 = true, x3 = true, x4 = false.

choice of p2 there will be no point in the disk around p2 in its new position. If D2 touches
both p0 and p1, then its center must be on the bisector b of p1 and p2. Since it must also
be outside D1, the disk centered at p1 with radius equal to d(p0, p1), p2 cannot be closer
to p1 on b than the intersection x of b and the boundary of D1. Since p0, p1 and x form the
corners of a equilateral triangle, the angle between p0p1 and p0p2 must be at least 60 degrees.
By repeating the argument, it is clear that the angle between p0p1 and p0pi increases by
60 degrees for each i = 2, . . . , t. After at most 6 steps, this angle is at least 360 degrees.
Hence there are at most 6 points with the desired property. Since we can put at most k − 1
additional points in each of the disks, the claim of the lemma holds.

206

9.2 Generalizing the Vertex Set without Vertex-Clutter

p0

p1

γ

p2 bx

Figure 9.7: Illustration for the proof of Lemma 9.1

Now we are ready to prove Theorem 9.2.

Proof of Theorem 9.2. Let H be the graph on the set of points such that pq is a (directed)
edge if and only if q ∈ B(p, %(p)). The graph H contains an independent set of size s if and
only if G contains a %-set of this size. Each independent set in H corresponds to a %-set in G
since each point in H is connected to all points that are closer than %(p) and it is connected
to all points q such that p is in the %(q) disk around q. On the other hand, each %-set in G
induces an independent set due to this construction.
By choice of %, each vertex has out-degree bounded by k = maxp∈P |B(p, r) ∩ P | − 1 for

any value of α. There is an ingoing edge from q into p if and only if p is among the k
closest neighbors of q. By Lemma 9.1 there are at most 6k points such that p is among the
closest k points for each of these points. Hence, the in-degree of each vertex is bounded
by 6k. In total, each vertex has degree at most 7k. Hence, by a result due to Halldórsson
and Radhakrishnan [HR97] we can approximate the maximum size of an independent set by
a factor of (7k + 2)/3. The algorithm greedily chooses the minimum degree vertex in each
step and can be implemented to run in time O(kn), given the graph H.
In order to compute H we locate the points in a closed disk by a circular range query

in O(logn+ k) time using O(n log5 n(log logn)2) preprocessing time [CCPY86]. Hence, the
total running time is O(kn+ n log5 n(log logn)2).

Based on this approximation, we heuristically compute a %-set Q balancing both the size
of Q and the local coverage of the Voronoi clustering induced by Q as follows. For p ∈ P
let m̃(p) denote the number of edges whose endpoints are both contained in B(p, %(p)/2) and
let ñ(p) denote the number of points in B(p, %(p)). We can use these values to compute an
estimate of the local coverage as summarized in the following lemma.

Lemma 9.2. Let Q be an inclusion-maximal %-set and let α = 0. Further, let H = (Q,F)
be the generalization obtained from G = (P,E) by the Voronoi-mapping ν. Then the value

min
q∈Q

{ 2m̃(q)
ñ(q)(ñ(q)− 1)

}
is a lower bound for lcov(H, ν).

207

Chapter 9 Generalizing Geometric Graphs

Proof. For α = 0 we have % ≡ r. Whenever p is chosen as a cluster center in Q, the points
in B(p, r/2) are closer to p than to any other point in Q, since the closest point to p in Q has
distance to p at least r. Hence, the edges in B(p, r/2) are intra-cluster edges of Cp. On the
other hand, the number of points in each of the clusters is bounded by ñ(p) whenever α = 0
and Q is an inclusion-maximal %-set. To see this, consider any vertex q that is not contained
in B(p, r), but closer to p than to any other cluster center. Then q is contained in none of
the disks centered in the cluster centers and, thus, q must be a cluster center itself, since Q
is inclusion-maximal. Hence, the claim holds.

Based on Lemma 9.2 we propose a heuristic, called Greedy Weight Heuristic, that
operates as follows. First we compute an estimate of 2m̃(q)/(ñ(q)(ñ(q) − 1)) for each p ∈
P since computing the exact value involves complicated algorithms and data structures.
Subsequently, we sort the points according to these estimates in O(n logn) time and iteratively
consider the points in this order. If the current vertex is not covered by the %-disk of a
previous vertex, then it is chosen for the %-set, otherwise it is discarded.
Instead of computing m̃(p) and ñ(p) exactly, we estimate these numbers by counting the

number of vertices and edges in the bounding boxes of the disks B(p, %(p)/2). To count the
number of edges we use a 4-dimensional range searching query on a data structure containing
tuples of points corresponding to edges in E with query time O(log3m) [Cha88]. We use
the 2-dimensional counterpart to locate points. Further, we use a data structure for dynamic
nearest neighbor queries with O(log2 n) query time [BS80], into which we insert the selected
points to decide whether the current point is covered by a previously selected point. The
total running time is O((n+m) log3m+ n log2 n).

9.3 Minimizing Edge-Clutter
In order to reduce the clutter resulting from an excess of edges in certain areas we must
filter out some of the edges without destroying the visual appearance of the graph. The total
length of the edges seems to be a good measure for the clutteredness of the graph since it is
proportional to the ink used for the drawing. While a minimum spanning tree will minimize
this quantity, it is unlikely to preserve the visual appearance of the graph. We therefore
require that monotone tendencies of the edges are preserved in order to best maintain the
mental map of the adjacencies between vertices of the graph. This also motivated from a
recent work by Huang et al. [HEH09], whose controlled user experiments seem to suggest
that geodesic paths are more likely to be explored when reading a graph drawing.
Let ` be a line in the plane and let S = (p1, . . . , pk) be a sequence of points. We say

that S is `-monotone if the order of the orthogonal projections of p1, . . . , pk onto ` is the
same as the order of the points in S. Let G = (P,E) be a geometric graph and let (H,ϕ)
be a generalization of G such that H = (P, F), that is, F ⊆ E. We say that H is a
monotone generalization of G if for every edge e ∈ E with endpoints p and q there is a p-q-
path πe in H such that πe is `e-monotone, where `e is the line defined by the endpoints of e.
Given G = (P,E) the Shortest Geodesic Subgraph (SGS) problem asks for a monotone
generalization H of G minimizing the total length of H.

208

9.3 Minimizing Edge-Clutter

f

` r

t

80◦

80◦ 80◦
120◦

(a)

R+

L+

L−

R−

(b)

Figure 9.8: Overview of the reduction from 3-sat to Shortest Geodesic Subgraph. A
kite with foot point f , top point t and left and right points r and ` (a), and
the arrangement of the kites in the reduction with the corresponding regions for
clause vertices (b).

Problem Shortest Geodesic Subgraph (SGS)
Instance: Geometric graph G = (P,E), δ ∈ R+

0

Solution: Geometric graph H = (P, F) such that F ⊆ E and such that H contains a
monotone path for each edge e ∈ E

Goal: minimize total length of H

First, we show that Shortest Geodesic Subgraph is NP-hard.

Theorem 9.3. Shortest Geodesic Subgraph is NP-hard.

Proof. We reduce from monotone 3-sat, a variant of 3-sat where each clause contains either
only positive or only negative literals. Monotone 3-sat is NP-complete [GJ79]. Let ϕ be an
instance of monotone 3-sat with variables x1, . . . , xn and clauses C1, . . . , Cm. We construct
the following instance Gϕ of Shortest Geodesic Subgraph. For each variable x we create
a kite consisting of vertices `, r, t and f as shown in Figure 9.8a. Note that the angles at f , `
and r are strictly less than 90◦, and the angle at t is strictly more than 90◦. The two edges
incident to the top vertex t are called top edges, the edges f` and fr are called the left and
right side edges, respectively. We place the kites so that their foot points lie evenly spaced
on the x-axis and the kites are disjoint. Denote by s` and sr the slopes of the left and right
side edges of a kite, respectively. The region R+ is the region below the x-axis and to the
right of the line through the bottom point of the rightmost kite with slope −1/sr (that is, it
is perpendicular to the right sides of the kites). Further, we denote by L+ the region that is
above the horizontal line defined by the topmost points of the kites and to the left of the
line with slope −1/sr through the foot point of the leftmost kite. We define R− and L−

analogously, with sr replaced by s`.
It follows immediately from the construction that a path that is monotone in the direction

from a point in R+ to a point in L+ may not contain any right edge of a kite as this would
imply a turn of more than 90◦, which is not monotone. Analogously, monotone paths from L−

to R− may not contain left edges of kites. In our reduction the kites will play the role of
variables, and edges from R+ to L+ (from L− to R−) will play the role of clauses with only
positive (only negative) literals.
For each clause Ci consisting of only positive literals, we add a clause vertex c1

i into R+

and a clause vertex c2
i in L+. We add connector edges that connect c1

i to the foot points of all

209

Chapter 9 Generalizing Geometric Graphs

R−

L−

cc

L+

R+ff ′

x h

Figure 9.9: Illustration for the proof of the first claim. There is no monotone path in Gϕ
replacing the edge cf since every path avoiding this edge first visits a footpoint f ′
of a kite before it visits a point x ∈ L+ whose orthogonal projection onto the line
defined by c and f is to the left of the projection of f ′.

kites that correspond to variables that occur in Ci and that connect c2
i to all the left points

of kites that correspond to variables that occur in Ci. Finally, we add the clause edge c1
i c

2
i .

We treat the clauses consisting of only negative literals analogously, except that we place the
new vertices in L− and R−, respectively, and we connect the new vertices in R− to the right
kite points instead to the left.
This completes our construction, and we claim that an optimal solution of this instance

allows us to decide whether the initial formula ϕ was satisfiable. We will make this more
precise in the following. A subset of edges of Gϕ is called tight if it contains both top edges
of each kite, all connector edges, and exactly one of the two side edges of each kite. We now
claim the following.

Claim 9.1. Any feasible solution contains a tight edge set.

Proof of Claim. First note that the top vertex of each kite is incident to only two edges, hence
at least one of them must be in any feasible solution. However, the left edge is not monotone
in the direction of the right edge and vice versa. Hence, a feasible solution necessarily contains
both of them.

Next, we show that all edges from clause vertices in L− or R+ to foot vertices of kites must
be contained in every solution. Let c be a vertex in L− (the case c in R+ is symmetric) and
let f a foot point of a kite that is adjacent to c. We now consider the paths from c to f that
avoid the edge cf in our graph. Since G contains no edge connecting two vertices of different
kites, any path from c to f that avoids cf must contain at least one vertex x 6= c that is in
one of the four regions L+, L−, R−, and R+. Note that, by construction of the region L−,
the line orthogonal to cf is at least as steep as the left side of any kite, and hence the points
in R− and in R+ lie to the right of the line that is orthogonal to cf through f , and thus are
not part of any monotone connection from c to f as illustrated in Figure 9.9. Now assume
that x is in L+ or L−, and denote by f ′ the first vertex after c on a cf -path that avoids the
edge cf . The regions L+ and L− lie to the left of the line h that is orthogonal to cf through
the foot point of the leftmost kite. Therefore both the edge cf ′ and the subpath from x to f
must cross this line, and hence project to the same point on the line segment from c to f .
This shows that the path is not monotone, and hence cf must be contained in any feasible
solution.

210

9.3 Minimizing Edge-Clutter

R−

L−

L+

R+f

x

x′

Figure 9.10: Illustration for the proof of the first claim. In each of the kites at least one of
the side edges must be present. Otherwise, any replacing path for f` must use
an edge xx′ that is not monotone with respect to f`.

Next, consider a vertex c in L+ and a corresponding edge c` to the left vertex of a kite
(again the case c in R− and edge cr where r is the right vertex of a kite is symmetric). As
before, every path from c to ` avoiding c` must contain a vertex x 6= c belonging to one of
the four regions. Again, the regions R− and R+ are to the right of the line orthogonal to c`
through `, and can thus not be contained in a monotone c`-path. Hence, we can assume
that x is in L+ or L−. Let `′ be the first vertex after c on a c`-path that avoids the edge c`.
If x is in L−, consider the line orthogonal to c` through the foot point of the leftmost kite. By
construction this line is at least as steep as the right side of a kite, and hence the region R+ is
to its left. Since any path from c to x must contain a foot vertex of a kite, both the subpath
from c to x and the subpath from x to f must cross this line, and thus project to the same
point on the edge c`. Hence the path would not be monotone and we can assume that x is
in L+. Considering the line orthogonal to c` through the left point of the leftmost kite as
above rules out the existence of such a monotone path.

It remains to show that at least one side edge of each kite must be in any feasible solution.
Let f be the foot point of a kite K with left point `, right point r and top point t. We
show that G does not contain a monotone f`-path that avoids both f` and fr. First observe
that all foot points of kites to the right of K project before f on the line through f and `,
directed from f to `, and hence cannot be contained in a monotone f`-path. Similarly, all
non-foot vertices of kites to the left of K project behind ` on this line, and hence are also
not contained in monotone f`-paths. The points in R+ and all points in L+ can be ruled
out similarly. Since a monotone f`-path needs to contain an edge that connects a vertex
whose y-coordinate is at most the y-coordinate of f to a vertex whose y-coordinate is at least
the y-coordinate of `, and we cannot use any edge of a kite, the only option is that it uses an
edge from a vertex x in L− to a vertex x′ in R− as illustrated in Figure 9.10. However, the
line orthogonal to such an edge is steeper than the edge f`, and hence xx′ is not monotone
with respect to f`. This completes the proof of the claim.

Note that the size, as well as the total length, is the same for all tight edge sets, and hence
this size forms a lower bound for the size of a geodesic subgraph. We claim that this bound
can be met if and only if ϕ is satisfiable.

Claim 9.2. There exists a tight set that is feasible if and only if ϕ is satisfiable.

Proof of claim. Note that a tight set is completely specified by giving for each kite the
information whether its left or right edge is contained in the set.

211

Chapter 9 Generalizing Geometric Graphs

Assume that ϕ is satisfiable and take a satisfying assignment. We construct a tight set E′
by taking the left side of a kite if and only if the corresponding variable has the value true
in the assignment. We now argue that the corresponding set is feasible. The only edges
for which we have to check the existence of a monotone replacement path are the clause
edges. Let c1

i c
2
i be a clause edge with c1

i in R+ and c2
i in L+. The edge c1

i c
2
i by construction

corresponds to a clause Ci with only positive literals. Let xj be a satisfied literal (and thus
a satisfied variable) in Ci, and let Kj denote the corresponding kite with foot point f and
left point `. By construction E′ contains the edges c1

i f, f` and `c2
i , which together form a

monotone c1
i c

2
i -path. The argument for a clause edge c1

i c
2
i with c1

i in L− and c2
i in R−, which

corresponds to a clause with only negative literals, is analogous. This proves that the tight
set E′ is feasible.
Conversely, assume that E′ is a feasible tight set. We construct a truth assignment by

setting a variable to true if and only if the left edge of the corresponding kite is in E′. Now
consider a clause Ci containing the variables xu, xv and xw as positive literals (the case of only
negative literals is symmetric). If Ci is not satisfied by our assignment then E′ contains none
of the left edges of the three kites corresponding to xu, xv and xw. However, by definition the
edge set must contain a monotone c1

i c
2
i -path. Such a path may not use any right edge of any

kite as this would not be monotone. Hence it necessarily contains a left edge of some kite
since E′ does not contain any of the clause edges. This implies that any monotone path must
first visit the foot point of one of the kites corresponding to xu, xv, xw, then pass on to a
vertex x 6= c1

i in L− or R+ and from there to the foot point of another kite. By construction
all points in R+ lie to the right of the line that is orthogonal to c1

i c
2
i through the foot of the

rightmost kite. This excludes the case that x is in R+. Similarly, the line orthogonal to c1
i c

2
i

through the foot of the leftmost kite separates the points in R− from the foot points of all
kites. Hence the edges from x to its two incident foot points both cross this line and hence
the path is not monotone. This is a contradiction, and hence E′ must contain the left edge
of at least one of the kites corresponding to xu, xv and xw, thus implying that Ci is satisfied.
This proves the claim.

Note that the size L is the same for all tight edge sets. The first claim shows that any
geodesic subgraph has length at least L. And thus, the second claim implies that ϕ is
satisfiable if and only if Gϕ admits a geodesic subgraph of length at most L. Since the
construction can easily be performed in polynomial time this concludes the proof.

As we have seen, the restriction to edges from the input graph makes it difficult to
construct short monotone subgraphs. One possibility is thus to drop this constraint and to
allow arbitrary edges. Additionally, we would like to control the distance of the monotone
path πe and the edge it is approximating in terms of monotonicity. This is motivated by the
observation that the shortest monotone generalization of a clique, whose vertices are arranged
equidistantly on a circle, is given by the convex hull of the point set. Given a line segment s
with length `s and a point p with distance dp from s we call the ratio dp/`s the drift of p
from s. The drift of a path πe with endpoints pq is defined as the maximum drift of any
point on πe from the segment pq. Given a geometric graph G = (P,E) and a non-negative
real number δ ∈ R+

0 the Sparse Geodesic Network (SGN) problem asks for a geometric
graph H = (P, F) with minimum total length such that for each edge e in E there is an
`e-monotone path πe with drift at most δ, where `e denotes the line defined by the endpoints
of e.

212

9.4 Vertex-Edge-Clutter

Problem Sparse Geodesic Network (SGN)
Instance: Geometric graph G = (P,E), δ ∈ R+

0

Solution: Geometric graph H = (P, F) such that H contains a geodesic path for each
edge e ∈ E whose vertices are at distance at most δ · |e| from the straight line e

Goal: minimize |F |

We show the following.

Lemma 9.3. Given a (complete) geometric graph G = (P,E), the Delaunay graph D(P)
contains for each edge e ∈ E an `e-monotone path πe with drift at most 1/2.

Proof. Let P be a set of points and let p, q ∈ P . Without loss of generality we assume that p
and q are on the x-axis such that x(p) < x(q). According to Dobkin et al. [DFS90] we can
construct an x-monotone path in the Delaunay graph D(P) of P as follows. Let V(P) denote
the Voronoi diagram of P and let p1, . . . , pk be the ordered points corresponding to the Voronoi
cells that are traversed when following the line from p to q. Then the path p, p1, . . . , pk, q is
an x-monotone path in the Delaunay graph. Further, all points pi are contained within the
disk with radius d(p, q)/2 centered in the midpoint of the segment pq. Hence, the drift is at
most 1/2.

Although the Delaunay graph seems to be well suited to represent monotone tendencies, this
result also shows the limitations of allowing arbitrary edges. In the following we therefore focus
on subgraphs of the original graph and describe a greedy heuristic for computing a monotone
generalization with bounded drift δ and short total length, which we call Monotone Drift
Heuristic. Given a geometric graph G = (P,E) and a maximal drift δ we sort the edges of G
with respect to increasing length in O(m logm) time. Then we consider the edges e1, . . . , em in
this order and iteratively construct a sequence of graphs H0, H1, . . . ,Hm, where H0 = (P, ∅).
We insert the edge ei into Hi−1 whenever there is no `ei-monotone path with drift at most δ in
Hi−1. This can be tested by performing a modified depth-first search exploring only monotone
subpaths in O(n+m) time. Hence, the total running time of this approach is O(nm+m2).

9.4 Vertex-Edge-Clutter
Vertex-edge-clutter is the most complicated type of clutter since it involves both vertices and
edges and the selection of these features cannot be handled independently as in the previous
sections. On the other hand, this type of clutter may be considered as the least annoying type
of clutter. While vertex-edge clutter is caused by edges that are close to a vertex resulting
in the difficulty to determine correct incidences,the human perception is rather good at
determining whether a line passes a disk through the center or not. For instance, it is easy to
see that the leftmost line in Figure 9.11a is not incident to the vertex although it crosses the
vertex. Additionally, the human perception is also good at determining whether a line has a
bend or not, which is illustrated in Figure 9.11a.
Hence, as long as there is neither vertex-clutter nor edge-clutter and as long as no pair

of edges incident to a common vertex form a 180◦-angle, we will be able to unambiguously
tell whether an edge is incident to a vertex or not. In order to attack vertex-edge clutter

213

Chapter 9 Generalizing Geometric Graphs

we therefore propose the following optimization problem. For a pair of edges incident to a
common vertex p we define the angular straight-line deviation as the smaller of the two angles
that is enclosed by the lines defined by the two edges, respectively. The angular straight-line
deviation of p is then defined as the minimum angular straight-line deviation over all pairs of
edges incident to p, as illustrated in Figure 9.11b. The angular straight-line deviation of a
geometric graph G is the minimum angular straight-line deviation over all vertices of G. Note,
that the angular straight-line deviation is maximized if all angles are close to a right angle.
Given a geometric graph G = (P,E) and a non-negative value r ∈ R+, the Optimal Angle
Adjustment problem is to find a new position for each vertex p inside B(p, r) minimizing
the angular straight-line deviation of the resulting geometric graph.

Problem Optimal Angle Adjustment
Instance: Geometric graph G = (P,E), r ∈ R+

0

Solution: Geometric graph H = (Q,F) and a mapping f : P → Q such that d(p, f(p)) ≤ r
and such that f(p)f(q) ∈ F if and only if pq ∈ E

Goal: maximize the angular straight-line deviation of H

Note that this problem differs considerably from the problem of maximizing the angular
resolution of a graph, defined as the minimum angle over all pairs of adjacent edges. The
optimal angular resolution of a star-shaped graph with an odd number n of vertices, for
instance, will result in zero straight-line deviation, while it is obvious that the optimal
straight-line deviation is positive. We tackle the Optimal Angle Adjustment problem
by maximizing the vertices’ distances from the lines defined by the edges incident to their
neighbors. Let G = (P,E) be a geometric graph and let v ∈ P be a vertex. Let N(v) denote
its neighbors in G. Further, let E(v) denote the edges incident to v and let F (v) denote the
set of edges incident to the vertices in N(v) but not to v. By moving v we change the angles
formed by pairs of edges in E(v) as well as the angles formed by pairs of edges (e, f) such
that e ∈ E and f ∈ F , respectively. Let LF (v) be the set of lines defined by the edges in

(a) Line Perception

α
β

p

(b) Straight-line deviation

Figure 9.11: Figure (a) shows two examples where we can clearly distinguish whether an edge
in incident to a vertex. On the left side, it is clearly visible that the vertex is
not incident to the edge although it intersects the edge. On the right side, it is
clear that the vertex is incident to the edges since are not aligned. Figure (b)
shows an illustration of the angular straight-line deviation of a vertex p. In the
drawing the angular straight-line deviation is defined by the angle α.

214

9.4 Vertex-Edge-Clutter

v

(a) (b)

v

(c)

Figure 9.12: Illustration for the proof of Theorem 9.4. (a) A vertex v and its neighbors as well
as the arrangement of lines induced by the respective edges in LE(v) and LF (v).
(b) Intersection of the circle with projections of the graphs Gc (dashed) and
locally optimal positions (black dots) in the faces. (c) Globally optimal position
and resulting new drawing.

F (v) and let LE(v) be the set of lines defined by all pairs of vertices in N(v). A vertex v
along with the lines defined by the edges in LE(v) and LF (v) is illustrated in Figure 9.12a.
Note, that there will be an angle of 180 degrees involving an edge incident to v if and only
if v is placed on one of the lines in LE(v) ∪ LF (v). Given p ∈ R2 we denote by µv(p) the
minimum distance of p to the lines in LE(v) ∪ LF (v). We prove the following.

Theorem 9.4. Given a graph G = (P,E), a vertex v ∈ P and a positive radius r ∈ R+

we can compute a new position p∗ for v in B(v, r) such that µv(p∗) > 0 and such that p∗
maximizes µv(p) over all p ∈ B(v, r) in O(t3α(t)) time where t = min{∆2,m}, ∆ denotes
the maximum degree of G and α(·) denotes the inverse Ackermann function.

Proof. First, we compute the set of edges LF (v)′ incident to v’s neighbors, but not to v,
that intersect B(v, r) as well as the set of lines LE(v)′ defined by all pairs of v’s neighbors
intersecting B(v, r). Let L = LE(v)′ ∪ LF (v)′. We compute the arrangement of lines in L
in O(|L|2) time. Over each of the resulting faces C we compute the lower envelope of the
hyperplanes defining the distance to the boundaries of the faces and project the graph
GC defined by the resulting 3-dimensional polytope onto the plane. This is illustrated in
Figure 9.12b.

The lower envelope of a set of n hyperplanes can be computed in O(n2α(n)) time where α(·)
denotes the inverse of the Ackermann function [EGS89]. Hence the lower envelopes can be
computed in time O(|L|2α(|L|)) for each face, resulting in a total complexity of O(|L|3α(|L|)).
For each face C we inspect the vertices of GC in B(v, r) as well as its intersection with B(v, c)
and thus compute the point p∗ maximizing µv in B(v, r). Then we update the position of v
as illustrated in Figure 9.12c. Since L is bounded by max{∆2,m} we obtain the claimed
time complexity. Further, since r > 0 and therefore B(v, r) is non-degenerate, there must
be a non-degenerate face in the arrangement containing a point p∗ in its interior such
that µ(p∗) > 0.

Using Theorem 9.4 we can incrementally compute a new position for each vertex v such
that none of the edges incident to v encloses an angle of 180 degrees with any other edge.
Since the angles between pairs of edges that are not incident to v are not affected by this

215

Chapter 9 Generalizing Geometric Graphs

operation, we can iteratively apply Theorem 9.4 to the vertices one after another to obtain a
drawing with strictly positive angular straight-line deviation. At the same time this approach
heuristically maximizes this deviation.

Note that we may assume that we apply the angle adjustment to a generalized graph whose
complexity tends to be significantly lower than the complexity of the original graph, that is,
both m and ∆ should be considerably smaller.

9.5 Sample Generalizations
In order to evaluate the quality of the described heuristics and in order to obtain estimates
for the running time, we implemented the described Greedy Weight Heuristic and
Monotone Drift Heuristic in C++ using the BOOST library [boo] and the CGAL
library [cga]. All generalizations were computed on a standard Intel Core 2 Duo processor
running at 2.00 GHz with 2 GB RAM.
We performed our experiments on the benchmark set of graphs listed in Table 9.1 on

page 226. These graphs have between 1,000 and 100,000 vertices and between 3,000 and
2,000,000 edges, respectively. The table lists, for each graph, an index that is used to identify
the graphs in Figure 9.13 as well as its size. All but the graphs marked with ? have been taken
from the University of Florida sparse matrix collection [Dav94]. The graph clique-planar
is a planar graph with an implanted clique. The graph lunar-vis is a LunarVis [GGW08]
layout of a snapshot of the Internet graph at the autonomous systems level that has been taken
from the data collected by the University of Oregon Routeviews Project [rou]. The graph
email is a force-based visualization of the graph obtained from the e-mail communication at
the faculty of informatics at the Karlsruhe Institute of Technology during a fixed amount of
time. The graphs osm_berlin and osm_isleofman are street networks of Berlin, Germany,
and Isle of Man, respectively, that have been extracted from the OpenStreetMap data [osm11].
The graphs from the University of Florida sparse matrix collection have additionally been
layouted using the sfdp multi-scale force-based layouter from the graphviz library [EGK+03].

For each of the graphs listed in Table 9.1 as well as for both α = 0 and α = 1, we performed
generalizations with 10 different radii ri = ∆/n+(∆/

√
n−∆/N) · i in the range [∆/n,∆/

√
n]

for i = 0, . . . , 9, where ∆ := xmax − xmin is the width of the drawing. For each run, we
measured the time t1 of the Greedy Weight Heuristic and the time t2 of the Monotone
Drift Heuristic. Further, we collected the number of vertices nH and the number of
edges mH of the resulting generalized graphs.
Even for the largest input graphs with several thousand vertices and over a million edges,

the observed running times were less than 5 minutes. However, most of the running time
is caused by the Monotone Drift Heuristic, which has a quadratic worst-case running
time. For the Greedy Weight Heuristic, the observed running time was less than 5
seconds for all graphs.
Figure 9.13 shows the running time of the heuristics as a function of the size nH + mH

of the generalized graphs. Figure 9.13a shows the running time t1 of the Greedy Weight
Heuristic, Figure 9.13b shows the running time t2 of the Monotone Drift Heuristic
and Figure 9.13c shows the resulting combined running time. In order to display all data in
one chart, we employed a log-log-scale plot for these figures. We added a line to each chart
displaying the results of a linear regression, applied to the log-transformed data. That is,

216

9.5 Sample Generalizations

nH + mH

t 1
 [s

ec
]

102 104 106

10
−2

1
10

2

(a) Vertex Clutter

nH + mH
t 2

 [s
ec

]
102 104 106

10
−2

1
10

2

(b) Edge Clutter

nH + mH

t 1
+

t 2
 [s

ec
]

102 104 106

10
−2

1
10

2

(c) Total

0 10000 30000 50000

0.
0

0.
4

0.
8

1.
2

nH + mH

t 1
+

t 2
 [s

ec
]

7777
77

7
7

7

8888
8

8
88

8

999
99

999

9

1010101010
1010

10

10

1414141414
1414 14

14

212121212121

21
21

21 25
2525

252525

25

25

25

26
2626

26
26

26
26

2626

(d) 0.3 ≤ t < 3

0 100000 200000

0
5

10
15

nH + mH

t 1
+

t 2
 [s

ec
]

1212121212121212

12
1616
16
16
1616

16

16

16

1818181818
18
1818

18

28
28
28

282828
28

28

28

292929292929
29

29

29

31313131313131
3131

31

31

31

3636363636

36
36

(e) 3 ≤ t < 20

0 100000 200000 300000
0

50
10

0
15

0
20

0
nH + mH

t 1
+

t 2
 [s

ec
]

1111111111111111
11

131313131313
13

13

13

15151515151515 15
15

1717171717171717
17

1919
19
19

19

19

19

19 19

(f) > 20

Figure 9.13: Running times in seconds of the generalization heuristics with respect to the size
of the generalization in a log-log-scale plot for α ∈ {0, 1} and drift = 0.3 (a)–(c)
and running times for the individual graphs in a linear-scale plot for α = 1
and drift = 0.3 (d)–(f). For reasons of clarity, Figure (a) contains only the graphs
with 0.3 ≤ t1 + t2 < 3, Figure (b) contains only the graphs with 3 ≤ t1 + t2 < 20
and Figure (c) contains only the graphs with t1 + t2 ≥ 20.

for x = nH + mH and for each y ∈ {t1, t2, t1 + t2} we computed ay and by minimizing the
linear least-squares function

min
ay ,by∈R

N∑
i=1

(log yi − (ay log xi + by))2

where xi and yi denote the measured sizes and running times of the single experiments
for i = 1, . . . , N , respectively. The results suggest that the running time of the Greedy
Weight Heuristic t1 ≈ e−10.4578x0.9076 is approximated by a function that is slightly
sub-linear in the size of the generalized graph and the running time of the Monotone Drift
Heuristic t2 ≈ e−15.95x1.56 is approximated by a super-linear but sub-quadratic function in
the size of the generalized graph. The combined running time is approximately t1 + t2 ≈
e−13.105x1.328, which is super-linear.
Figures 9.13d–9.13f display the running times for α = 1 for the individual graphs of our

benchmark on a linear scale. Figure 9.13d contains all graphs for which t1 + t2 was at most 3

217

Chapter 9 Generalizing Geometric Graphs

seconds, Figure 9.13e contains all graphs whose maximum running time was between 3 and 20
seconds and Figure 9.13f contains all graphs whose running time was more than 20 seconds.
With only a few exceptions, such as ex3sta1, TF16 and conf5_4-8x8-05, the running times
seem to be slightly sub-linear or slightly super-linear in the size of the generalized graph.
The results for α = 0 are similar.

Next, we shortly discuss the generalized graphs. Figure 9.14 shows how the parameter α
affects the generalization. While the sizes of the generalized graphs for α = 0 and α = 1 will,
in general, differ considerably for a fixed radius r, we chose generalized graphs with roughly
the same sizes in order to illustrate the effects of choosing α = 0 and α = 1, respectively.
Figure 9.14 clearly shows that the generalizations with α = 1 are better suited at preserving
the distribution of the original point set. However, this is only achieved at the price of a
higher resolution of the resulting drawing. On the other hand, the homogeneous distribution
of the points resulting from α = 0 does not seem to capture the geometric properties of the
original very well. Indeed, it seems that setting α = 0 is not well suited for most of the graphs
we inspected due to this behavior. Therefore, all remaining generalization are performed
with α = 1 if not otherwise stated.

Figure 9.15 shows how the radius r and the drift δ impact the resulting generalizations
for α = 1. To illustrate the effects of δ we applied the Greedy Weight Heuristic and
Monotone Drift Heuristic for different values of r and δ to a planar graph with an
implanted clique whose vertices have been arranged equidistantly on a cycle. While none of
the edges of the clique is distinctly perceivable in the original drawing, a higher drift helps
remedying this without destroying the impression of a clique even without generalizing the
vertex set, as can be seen in the first row of Figure 9.15. Note that the clique in the middle
of the drawing remains a clique when setting δ = 0 for all values of r. With increasing δ,
the clique becomes much sparser but is still perceivable as a rather dense subgraph in the
generalized graph for all radii.
Finally, Figures 9.16–9.24 show some selected sample generalizations. First, we discuss

how the heuristics perform on the graphs we used to illustrate the various types of clutter in
Figure 9.1c. These graphs as well as the results of the heuristic generalization are displayed in
Figures 9.16–9.18. Note that the displayed generalized graphs have only 2–5% of the vertices
of the respective originals. Clearly, both vertex-clutter and edge-clutter can be significantly
reduced without changing the main impression of the graph. However, two drawbacks of our
approach are immediately obvious from these illustrations.

First, consider the graph oix and its generalization in Figures 9.17a and 9.17b, respectively.
In the original, there are many edges between a few vertices on the left and the vertices
in the bottom center. Apparently, these edges are mapped to only few monotone paths in
the generalization, which changes the impression of the density of the edges. This could be
tackled by emphasizing the edges in the generalization according to the number of edges that
were mapped to it. As another approach to this problem we could try to approximate the
geometric edge distribution. That is, similar to our approximation of the point-set distribution
we could try to remove more edges from regions containing few edges and removing fewer
edges in regions with many edges. In contrast to approximating the point-set distribution,
however, it is not clear how to achieve this in a straightforward way since a single edge may
cross both dense and less dense regions in the drawing.
Second, consider the graph PDS10 and its generalization in Figures 9.18a and 9.18b,

respectively. Clearly, the topmost vertices of the generalization show that our approach may

218

9.5 Sample Generalizations

(a) original (n=7920, m=31680)

(b) generalization (n=2104, m=8585) (d) generalization (n=2098, m=8188)

(c) generalization (n=1305, m=5636) (e) generalization (n=1358, m=5678)

Figure 9.14: Effects of parameter α on the commanche_dual graph from the University of
Florida sparse matrix collection [Dav94]. (a) Original, (b), (c) Generalization
with α = 1, (d), (e) Generalization with α = 0.

219

Chapter 9 Generalizing Geometric Graphs

drift= 0 drift= .15 drift= .2

r = 0

orig. (n=2423, m=11672) gen. (n=2424, m=9380) gen. (n=2424, m=9111)

r = 70

gen. (n=326, m=1860) gen. (n=326, m=1728) gen. (n=326, m=1657)

r = 100

gen. (n=203, m=1172) gen. (n=203, m=1120) gen. (n=203, m=1090)

r = 200

gen. (n=80, m=442) gen. (n=80, m=424) gen. (n=80, m=420)

r = 300

gen. (n=45, m=238) gen. (n=45, m=228) gen. (n=45, m=226)

Figure 9.15: Effect of radius and drift on the graph clique-planar, a planar graph with an
implanted clique. All generalizations with α = 1.

220

9.5 Sample Generalizations

(a) original (n=106675, m=248390) (b) generalization (n=5649, m=17273)

Figure 9.16: Streetmap data of Berlin [osm11] (osm_berlin).

create unwanted adjacencies. These adjacencies are the result of contracting vertices that are
close to each other and working on the contracted edge set. While the edges are not false in
the sense that each edge in the contraction corresponds to at least one edge of the original,
these edges create the wrong visual impression. This problem could be approached by trying
to approximate the features of the contracted vertex sets. For instance, the average degree of
the contracted vertex sets will be roughly two for most of the problematic vertices in these
figures, while the resulting degree in the generalization is larger.

The remaining figures serve as a further visual benchmark of the generalization heuristics.
While the general (geometric) impression of the graphs are reasonably well maintained, some
further issues for future research can be observed.
Consider, for instance the graph ukerbe1_dual and its generalization illustrated in Fig-

ure 9.22a and 9.22b, respectively. While the density of the point set and the size of the faces is
maintained quite well, most of the faces are triangulated in the generalization, whereas most
of the faces of the original contain four vertices. Further, consider the cube graph illustrated
in Figure 9.23. The topological structure of the generalized graph is rather different from
the original. Although the vertices contracted into single clusters are close to each other
both geometrically and with respect to graph-distance, the cubic structure is not maintained.
Again this may be remedied by approximating the features of the contracted vertices, such
as average degree.
While the proposed heuristics do not solve the generalization problem in all its facets,

especially with respect to the topological features of the graph, they seem to be well suited
at maintaining the geometric impression of the originals and, thus, form good starting points
for future research on this problem. In order to overcome the current difficulties, however,
we must explicitly include topological features of the original graph into the generalization
process.

221

Chapter 9 Generalizing Geometric Graphs

(a) original (n=17233, m=74436) (b) generalization (n=397, m=2134)

Figure 9.17: LunarVis Layout of the Internet at the autonomous-systems level [GGW08]
(lunar-vis).

(a) original (n=16558, m=149658) (b) generalization (n=910, m=3520)

Figure 9.18: Generalization of the graph PDS10 from the University of Florida sparse matrix
collection [Dav94].

222

9.5 Sample Generalizations

(a) original (n=1036, m=3736) (b) generalization (n=130, m=630)

Figure 9.19: Generalization of the graph stufe from the University of Florida sparse matrix
collection [Dav94].

(a) original (n=1050, m=29156) (b) generalization (n=157, m=1110)

Figure 9.20: Generalization of the graph msc01050 from the University of Florida sparse
matrix collection [Dav94].

223

Chapter 9 Generalizing Geometric Graphs

(a) original (n=1242, m=10426) (b) generalization (n=469, m=2608)

Figure 9.21: Generalization of the graph dwt_1242 from the University of Florida sparse
matrix collection [Dav94].

(a) original (n=1866, m=7076) (b) generalization (n=234, m=1062)

Figure 9.22: Generalization of the graph ukerbe1_dual from the University of Florida sparse
matrix collection [Dav94].

224

9.5 Sample Generalizations

(a) original (n=24300, m=69984) (b) generalization (n=2093, m=13546)

Figure 9.23: Generalization of the graph aug3d from the University of Florida sparse matrix
collection [Dav94].

(a) original (n=44514, m=201050) (b) generalization (n=958, m=5763)

Figure 9.24: Generalization of the graph lpl3 from the University of Florida sparse matrix
collection [Dav94].

225

Chapter 9 Generalizing Geometric Graphs

Table 9.1: Benchmark set of graphs used for our experiments, sorted according to number
of vertices. All graphs, except those marked with ?, are from the University
of Florida sparse matrix collection [Dav94]; clique-planar is a planar graph
with an implanted clique, lunar-vis is a LunarVis layout of the Internet graph
at the autonomous-systems level [GGW08], email is a force-based layout of the
email network of the faculty of informatics at the Karlsruhe Institute of Technol-
ogy and osm_berlin and osm_isleofman are street networks extracted from the
OpenStreetMap data [osm11].

Index Name Vertices Edges
1 bcspwr09 1036 3736
2 bcsstk08 1050 29156
3 bcsstk14 1072 12444
4 bcsstk26 1074 12960
5 can_1072 1133 10902
6 clique-planar? 1141 7465
7 bcsstk35 1242 10426
8 bcsstk36 1723 6511
9 bcsstk37 1733 22189
10 bodyy4 1806 63454
11 c-48 1821 52685
12 cti 1866 7076
13 ex3sta1 1919 32399
14 ford1 1922 30336
15 g7jac060sc 1960 11187
16 jan99jac060 1961 5156
17 jan99jac100sc 2363 7680
18 tandem_vtx 2423 11672
19 TF16 3345 19404
20 dwt_1242 6290 16466
21 email? 7920 31680
22 ex33 16558 149658
23 ex3 16782 678998
24 jagmesh8 16840 96464
25 aug3d 17233 74436
26 cep1 17546 121938
27 commanche_dual 18354 166080
28 conf5_4-8x8-05 18454 253350
29 lpl3 18728 101576
30 nemscem 23052 1143140
31 pds10 24300 69984
32 sstmodel 24494 51256
33 msc01050 25503 1140977
34 netz4504 30237 1450163
35 lunar-vis? 34758 432346
36 osm_berlin? 35460 406632
37 osm_isleofman? 41228 254364
38 plat1919 44514 201050
39 rajat02 49152 2064384
40 stufe 68908 431724
41 ukerbe1_dual 106675 248390

226

9.6 Conclusion and Open Problems

9.6 Conclusion and Open Problems
We have undertaken a first step at studying the problem of generalizing geometric graphs
within a rigorous mathematical model. We formalized the problem by considering an
incremental framework modeling the elimination or reduction of different types of clutter
as optimization problems, which we analyzed in terms of complexity. Since these problems
turned out to be NP-hard in general, we also devised efficient approximation algorithms
as well as efficient heuristics. We showed how to heuristically eliminate vertex-clutter in
O((n + m) log3m + n log2 n) time and how to reduce edge clutter in O(nm + m2) time
considering geometric features such as point distributions and geodesic tendencies. After the
elimination of vertex-clutter and edge-clutter we can expect the graph to be much smaller than
the original graph. Hence, even larger complexities may scale accordingly. Thus, even the
relatively high complexity of our heuristic for reducing vertex-edge clutter may be practical.
Even without this step, however, the resulting generalizations exhibit considerably less clutter
and are easier to analyze. We showcased some generalizations produced by our heuristics in
Figures 9.14–9.24.

Open problems The problem of generalizing geometric graphs is problem with many facets.
We have taken a first step at formalizing and studying the problem and designing efficient
and practical algorithms. While the presented results are promising, there are many open
problems. For instance, it is not clear if we can approximate both the local coverage and the
size of a %-set in the vertex generalization step. On the theoretical side, the complexity of
the Local Coverage Cluster Packing problem remains un-answered for different type
of mappings and the complexity of the optimal angle adjustment problem is also open. An
interesting open problem with applications beyond the scope of the generalization problem is
the question whether it is possible to approximate the size of a shortest geodesic subgraph,
possibly in the presence of a limited drift. This problem is interesting in its own right since
it relates to problems such as computing sparse spanners.
In addition to these problems we should study the determinants of a good generalization

based on user studies. It is unclear how humans would go about the task of drawing a
suitable generalization and we should try to find out which generalizations are considered
good by users and which are not. Further, the generalization of geometric graphs should be
considered in a dynamic scenario with user interaction. When zooming in an out, the various
generalizations should be consistent.

227

Chapter 9 Generalizing Geometric Graphs

228

Chapter 10

Conclusion

In this thesis we have studied a collection of various combinatorial and geometric network
construction problems. First, we considered the problem of enumerating and generating
degenerate graphs uniformly at random. We introduced a special new labeling scheme
that is superior to the classical labeling scheme for degenerate graphs since the distribution
of the unlabeled degenerate graphs induced by generating labeled degenerate graphs by
this new labeling scheme is closer to the desired uniform distribution on the unlabeled
graphs. We used this labeling scheme to design efficient uniform samplers and enumeration
algorithms for the thus labeled degenerate graphs. Second, we turned our attention to
classical augmentation problems on trees asking for an augmentation that is optimal with
respect to routing cost and we presented algorithms for these problems that are optimal
or near-optimal up to a logarithmic factor. Since realistic network construction problems
often need to find a balance between several optimization criteria we studied a framework of
network construction problems with one maximization goal and one minimization goal, which
we combined by considering the ratio of the two goals. We performed a thorough study of the
complexity of this problem for various classes of graphs and under various constraints and we
presented hardness and inapproximability results as well as efficient algorithms for restricted
or relaxed variants of the problem, including a fully polynomial-time approximation scheme.
Interestingly, a recurring pattern was that we could solve some of the purely combinatorial
problems using concepts from geometry, even though the considered problem variants did not
have an immediate connection to geometry. While, in some sense, a similar argument could
be made for all problems that can be formulated within the framework of linear programming,
we made a more direct use of geometry by using such concepts as upper envelopes, tangent
query and Voronoi diagrams, that is, classical problems from computational geometry.
In the second part of this thesis, we considered geometric network construction problems.

First, we studied various network embedding problems. We introduced a new drawing style
based on shortest orthogonal links and studied both algorithmic and combinatorial properties
of various variants of the point-set embedding problems for this drawing style. We presented
several hardness-results and efficient algorithms. Further, we studied the orthogeodesic
embedding problem from a combinatorial perspective and provided upper bounds for the
minimum value f(n) such that all general point sets with f(n) points are universal for various
classes of trees with n vertices subject to various restrictions on the embedding. Additionally,
we studied a colored version of the orthogeodesic embedding problem for paths and matchings
and provided NP-hardness results and an approximation algorithms on the grid as well as
an efficient exact algorithm without the restriction to the grid. Finally, in Chapter 9, we
studied the problem of generalization geometric graphs, that is, the problem of constructing

229

Chapter 10 Conclusion

a small network that both visually and structurally resembles a given larger network. This
problem has applications in network visualization and cartography. We presented a first
formalization of this problem to its full extent in a formal mathematical model and studied
the complexity of the resulting problems. While the resulting optimization problems are
NP-hard, we further presented efficient approximation algorithms as well as effective and
easy-to-implement heuristics and showcased the resulting generalizations.

Outlook
We have already pointed out various directions for future research concerning the specific
problems considered in this thesis in the respective chapters. Therefore, we address some of
the computational network construction problems from a broader point of view here.

Artificially Generated Network Data As networks are rapidly developing in growth and as
they are increasingly finding their way into various applications and everyday life—from social
networks and their analysis over route planning applications to complex integrated circuit
design—the need for algorithmic solutions to the various kinds of computational problems
involving networks will probably increase and the interest in algorithms for networks will
gain further momentum. Efficient algorithms for these tasks are often obtained by combining
theoretical algorithmic results with experience from practical implementations. Algorithm
engineering is therefore built on not only on the theory of algorithms but also on the
experimental analysis of implementations.

While highly efficient algorithms are typically custom-tailored for a specific application and
the respective algorithms are therefore usually tested on real-word data, there are various
reasons for relying not only on real-world data but also on artificially generated data when
performing an experimental study for an implementation. On the one hand, real-world data
may be hard to obtain, for instance, if the data is sensitive or if it is not yet available. On
the other hand, even if plenty of data is available, there are good reasons for additionally
using artificially generated data for experiments. For instance, it may be expected that future
networks for the application that is being developed will be much larger than the networks
that are currently available. In this case, large, artificially generated networks can help
assessing whether algorithms are scalable. Another reason is that performing experiments
solely on real-world data will, in some sense, result in overfitting the algorithm to the test
data. If the underlying networks change over time, these algorithms may not be as efficient
on the modified networks as they have been on the original networks on which they have been
tested. In this case, testing with artificially generated data will increase the robustness of
algorithms in terms of efficiency. Finally, testing algorithms with artificially generated data
is more likely to reveal errors in the implementation since the characteristics of uniformly
generated artificial network data are typically less biased than those of real-world data, and
therefore, artificially generated data is more likely to exhibit characteristics that are not
present in real-world data.
Since realistic networks often exhibit specific graph-theoretic properties, the need for

custom-tailored graph generators capable of generating network data with specified properties
will probably increase as the number of algorithmic solutions for network tasks increases.

230

Generating graphs with non-trivial properties involves many interesting and complex combi-
natorial and algorithmic problems and constitutes an interesting field of future research.
Apart from studying generators for these problems from a combinatorial point of view,

however, a major challenge is to reduce the gap between theory and practice. While there are
major research efforts on the theory of uniform graph generators for various classes of graph,
algorithms for generating graphs are in practice often implemented on the fly to satisfy the
experimenters’ current needs. Since the choice of the network generator may, however, have
a severe effect on the outcome of systematic tests on the data, it is important to use uniform
and, where this is not possible, at least complete generators. However, only efficient and
easy-to-implement uniform algorithms will eventually find their way into widely used test
suites.

Interactive Network Design As network construction tasks are becoming increasingly more
complex and time-consuming, many network construction problems that are still solved
manually today will have to be solved with the aid of computers in an at least partially
automated way in the future. However, the increasing complexity of these problems also makes
it harder to formalize the network construction problems within a rigorous mathematical
model and, even if this succeeds, the resulting formulations are often complicated to tackle
algorithmically. As an example, consider the problem of generalizing geometric graphs that
we studied in Chapter 9. While we do have a fairly good intuitive understanding this task
it is nevertheless far from being straight-forward to formalize. This is mainly due to the
complex set of rules governing the generalization process with respect to geometry, topology
and visual appearance as well as multiple, conflicting optimization goals.
On the other hand, many realistic network construction problems involve domain-specific

constraints and optimization goals and, therefore, algorithms for these problems need to
be adaptable in an easy way. Generalizing a geographic map, for instance, is different
from generalizing a visualization of a social network, although these problems do have
many features in common. Additionally, it is to be expected that algorithms for network
construction problems will increasingly be used by non-experts who will nevertheless wish to
adapt algorithms in order to compute custom-tailored solutions. As an example consider a
route planning system for mobile navigation in cars. While it is reasonable to assume that
users would like to compute the shortest route with respect to some metric, many users will
have different preferences and needs and will, therefore, prefer slightly different routes.

Algorithm designers must therefore devise algorithms with intuitive and adaptive interfaces
that are capable of computing good solutions to complex network construction tasks in which
the optimum is not clearly defined, either due to a lack of a rigorous mathematical model or
in the case when there are several conflicting optimization goals. While most people using
mobile navigation gadgets know that it can be quite annoying if the suggested route does not
meet his or her expectations, there is little that users can do against it at the moment. A
first approach to this problem is to present users with several Pareto-optimal alternatives,
thus, providing the user with the possibility to interact with the algorithm. However, this
does not solve the problem to a satisfactory extent.
With more complex network construction tasks, such as the generalization of geometric

graphs or transportation problems evolving in logistics, the set of reasonable alternatives
may be too large and no set of alternative solutions may be suitable for display to a user.

231

Chapter 10 Conclusion

Therefore, we need more elaborate mechanisms for interaction with the algorithms. Given
an initial solution that is optimal with respect to some set of constraints and optimization
goals we may subsequently wish to refine this solution in multiple ways. For instance, we
may wish to avoid only a part of a computed route or we would like to reduce the amount
of displayed data in only a certain part of the computed generalization while increasing the
amount in other parts of the generalization. Typically, however, it is not desired to compute
a new solution from scratch, but to modify a given solution in the least possible so as to
incorporate the new restrictions.
Although many network augmentation algorithms can be used in an interactive scenario

already and although interaction is, in principle, supported by generic techniques such as
constraint programming and integer programming, the implications of interaction are only
just beginning to be studied from an algorithmic point of view and may therefore constitute
an interesting field of future research with many applications.

Geometric Network Construction and Network Embedding Network embedding plays a
role in both the construction of tangible networks and in the visualization of network-based
data. With the increasing use of computer-aided design not only for integrated circuits but
also, for instance, in architectural applications, we are facing many challenging computational
network construction problems. For instance, we may wish to automatically compute the
layout of the electrical wiring in a large housing complex. The design of such a network
is underlying a complex set of constraints resulting from the geometry of the building
and technical building regulations. On the other hand, such a network should be failsafe,
serviceable and not too expensive. These restrictions affect both the geometrical features
of the network and the structural properties alike. To the best of our knowledge, this
problem has not yet been thoroughly addressed and there are many similar geometric network
construction problems that may yield interesting directions for future research.

Further, as network-based data is increasing and since visualization of data in the network-
metaphor seems to be accessible to users in an intuitive way, we are likely to witness
an increasing interest in graph drawing as well as new fields of application for network
visualization. But even today, network visualization already plays an important role for
software-engineers, biologists, sociologists and many more. While there is a multitude of
generic algorithms for visualizing network data, there are many challenging tasks with
respect to integrating a multitude of additional domain-specific constraints. Apart from
handling these constraints, network visualization tools must provide intuitive mechanisms for
manipulating the resulting visualizations in order to readjust parts of the automatic layout
the user does not like. This, too, is an interaction of the user with the layout algorithm
and presents new interesting problems in graph drawing that are only just beginning to
be studied. Further, we are still a rather long way from understanding the aesthetic rules
guiding humans in the task of network visualization. Only this understanding, however, can
enable algorithm designers to further enhance automatically computed layouts. Therefore,
we will need to devise algorithms that can be custom-tailored in multiple ways and we need
to put more effort into understanding the users’ preferences.
Additionally, since network visualization is often used for network analysis, we need to

generate analytical layouts that are capable of conveying meaningful analytics and significant
statistics of the underlying data to enable decision making based on these layouts. A key

232

challenge in this field of application is to find layouts that are both aesthetically pleasing and
convey reliable information on the data.
Finally, with the increasing use of network visualization we need adaptive and versatile

generalization techniques to display the visualizations on a multitude of different display
media. This is even further emphasized by the increasing use of office applications on small
screens of mobile devices. While generalization used to be done by hand, for instance, in
cartography for a long time, the increasing availability of network data and the fact that
layouts are increasingly computed on the fly, highlights the need for automatic generalization.
As in the visualization of network-based data, we are only just beginning to understand the
mechanisms underlying this complex task and there are many related open problems for
future research.

Although network construction problems with various characteristics have been studied
extensively, there are still many interesting open problems and future challenges. Therefore,
computational network construction will remain an interesting and important area of research
in computer science.

233

Bibliography

[ABCC06] David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. The
Traveling Salesman Problem: A Computational Study. Princeton University
Press, 2006. 3

[ACD+11] Patrizio Angelini, Enrico Colasante, Giuseppe Di Battista, Fabrizio Frati, and
Maurizio Patrignani. Monotone drawings of graphs. In Ulrik Brandes and
Sabine Cornelson, editors, Proc. 18th Internat. Symp. Graph Drawing (GD’10),
volume 6502 of Lecture Notes Comput. Sci., pages 13–24. Springer-Verlag, 2011.
120

[ACG+02] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, and
Alberto Marchetti-Spaccamela. Complexity and Approximation – Combinatorial
Optimization Problems and Their Approximability Properties. Springer-Verlag,
2nd edition, 2002. 18

[AFG09] Patrizio Angelini, Fabrizio Frati, and Luca Grilli. An algorithm to construct
greedy drawings of triangulations. In Ioannis G. Tollis and Maurizio Patrignani,
editors, Proc. 8th Internat. Symp. Graph Drawing (GD’08), volume 5417 of
Lecture Notes Comput. Sci., pages 26–37. Springer-Verlag, 2009. 120

[AG09] Noga Alon and Shai Gutner. Linear time algorithms for finding a dominat-
ing set of fixed size in degenerated graphs. Algorithmica, 54:544–556, 2009.
10.1007/s00453-008-9204-0. 22

[AGHT03] Manuel Abellanas, Alfredo García, Ferran Hurtado, and Javier Tejel. Caminos
alternantes (in Spanish). In X Encuentros de Geometría Computacional,
Sevilla, Spanish 2003, pages 7–12, 2003. (English version available on Ferran
Hurtado’s web page). 170

[AGLHP+99] Manuel Abellanas, Jesus Garcia-Lopez, Gregorio Hernández-Peñalver, Marc
Noy, and Pedro A. Ramos. Bipartite embeddings of trees in the plane. Discrete
Applied Mathematics, 93(2-3):141–148, 1999. 170

[AKF01] James Abello, Jeffrey Korn, and Irene Finocchi. Graph sketches. In Proc.
IEEE Symp. Information Visualization 2001 (INFOVIS’01), pages 67–71. IEEE
Computer Society, 2001. 198

[AKY05] James Abello, Stephen Kobourov, and Roman Yusufov. Visualizing large
graphs with compound-fisheye views and treemaps. In János Pach, editor,
Graph Drawing, volume 3383 of Lect. Not. Comput. Sci., pages 431–441.
Springer-Verlag, Berlin / Heidelberg, 2005. 198

235

Bibliography

[And79] A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions.
Inform. Process. Lett., 9(5):216–219, 1979. 80

[AS72] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical
Functions With Formulas, Graphs, and Mathematical Tables. Dover, 10 edition,
1972. 38

[AU90] Jin Akiyama and Jorge Urrutia. Simple alternating path problem. Discrete
Mathematics, 84(1):101–103, 1990. 170

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–
856, 1995. 114

[Bál03] Vojtech Bálint. The non-approximability of bicriteria network design problems.
J. of Discrete Algorithms, 1:339–355, June 2003. 91

[BDG+08] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE
Trans. Knowledge and Data Engineering, 20:172–188, 2008. 201

[BDL08] Melanie Badent, Emilio Di Giacomo, and Giuseppe Liotta. Drawing colored
graphs on colored points. Theoretical Computer Science, 408(2-3):129–142,
2008. 148

[Ber41] Andrew C. Berry. The accuracy of the gaussian approximation to the sum
of independent variates. Transactions of the American Mathematical Society,
49(1):122–136, 1941. 31, 32

[BETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis,
editors. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, 1999. 3, 14

[BFW73] D. E. Boyce, A. Farhi, and R. Weischedel. Optimal network problem: a
branch-and-bound algorithm. Environment and Planning, 5(4):519–533, 1973.
3

[BGG+07] Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, and Dorothea
Wagner. Generating Graphs with Predefined k-Core Structure. In Proceedings
of the European Conference of Complex Systems (ECCS’07), October 2007. 24

[BGG+08] Michael Baur, Marco Gaertler, Robert Görke, Marcus Krug, and Dorothea
Wagner. Augmenting k-Core Generation with Preferential Attachment. Net-
works and Heterogeneous Media, 3(2):277–294, June 2008. 22

[BGK07] Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Generating labeled
planar graphs uniformly at random. Theor. Comput. Sci., 379(3):377–386,
2007. 23

[BGK+12] Edith Brunel, Andreas Gemsa, Marcus Krug, Ignaz Rutter, and Dorothea
Wagner. Generalizing Geometric Graphs. In Proceedings of the 19th Interna-
tional Symposium on Graph Drawing (GD’11), Lecture Notes in Computer
Science. Springer-Verlag, 2012. to appear. 197

236

Bibliography

[BK94] Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings.
In Jan van Leeuwen, editor, Proc. 2nd Ann. Europ. Symp. Algorithms (ESA’94),
volume 855 of Lecture Notes Comput. Sci., pages 24–35. Springer-Verlag, 1994.
123

[BK08] Hans L. Bodlaender and Arie M. Koster. Combinatorial optimization on graphs
of bounded treewidth. The Computer Journal, 51(3):255–269, May 2008. 11

[BKN08] Béla Bollobás, Alexandr Kostochka, and Kittikorn Nakprasit. Packing d-
degenerate graphs. Journal of Combinatorial Theory, Series B, 98(1):85–94,
2008. 22

[BKRW10] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Drawing
orthogonal graphs with flexibility constraints. In Ulrik Brandes and Sabine
Cornelsen, editors, Proc. 18th Internat. Symp. Graph Drawing (GD’10), volume
6502 of Lecture Notes Comput. Sci., pages 92–104. Springer-Verlag, 2010. 122,
123

[BKW10] Reinhard Bauer, Marcus Krug, and Dorothea Wagner. Enumerating and
Generating Labeled k-Degenerate Graphs. In Proceedings of the 7th Workshop
on Analytic Algorithmics and Combinatorics (ANALCO ’10), pages 90–98.
SIAM, 2010. 19

[BM07] Gunnar Brinkmann and Brendan D. McKay. Fast generation of planar graphs.
MATCH - Communications in Mathematical and in Computer Chemistry,
58(2):323–357, 2007. 23

[BMS97] Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms
to embed trees in a point set. Journal of Graph Algorithms and Applications,
2(1):1–15, 1997. 147

[Bod93] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. In STOC ’93: Proc. 25th Ann. ACM Symp. Theory of
Computing, pages 226–234, New York, NY, USA, 1993. ACM. 99

[boo] Boost C++ libraries, version 1.42. http://www.boost.org. 216

[Bor26] Otakar Borůvka. O Jistém Problému Minimálním (About a Certain Minimal
Problem) (in Czech, German summary). Práce Mor. Prírodoved. Spol. v Brne
III, 3, 1926. 2

[Bos02] Prosenjit Bose. On embedding an outer-planar graph on a point set. Compu-
tational Geometry: Theory and Applications, 23:303–312, 2002. 147

[Bra08] Franz J. Brandenburg. Drawing planar graphs on 8
9n

2 area. Electronic Notes
in Discrete Mathematics, 31:37–40, 2008. 148

[BS80] Jon Louis Bentley and James B. Saxe. Decomposable searching problems I.
Static-to-dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.
208

237

Bibliography

[BS09] Roger E. Bohn and James E. Short. How much information? 2009 Report
on American consumers. Global Information Industry Center, University of
California, San Diego, 2009. 198

[BZ11] Vladimir Batagelj and Matjaž Zaveršnik. Fast algorithms for determining
(generalized) core groups in social networks. Advances in Data Analysis and
Classification, 5:129–145, 2011. 10.1007/s11634-010-0079-y. 22

[Cab06] Sergio Cabello. Planar embeddability of the vertices of a graph using a fixed
point set is NP-hard. J. Graph Algorithms Appl., 10(2):353–363, 2006. 120,
147

[Car08] Juan-Antonio Carballo. Chip Design for Non-Designers: An Introduction.
PennWell Corp., 2008. 2

[CCC06] Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new
method for solving fixed-cardinality optimization problems. In Proc. 2nd
Internat. Workshop on Parameterized and Exact Computation (IWPEC’06),
pages 239–250, 2006. 22

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs.
Discrete Mathematics, 86(1-3):165–177, 1990. 202

[CCPY86] Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee-Keng Yap.
New upper bounds for neighbor searching. Information and Control, 68(1-
3):105–124, 1986. 207

[cga] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
216

[CGS11] Francis Chin, Zuyu Guo, and He Sun. Minimum Manhattan network is
NP-complete. Discrete Comput. Geom., 45:701–722, 2011. 121

[Cha77] R. Chandrasekaran. Minimal ratio spanning trees. Networks, 7(4):335–342,
1977. 92, 107

[Cha88] Bernard Chazelle. Functional approach to data structures and its use in
multidimensional searching. SIAM J. Comput., 17:427–462, June 1988. 176,
208

[CKM+09] Josef Cibulka, Jan Kynčl, Viola Mészáros, Rudolf Stolař, and Pavel Valtr.
Hamiltonian alternating paths on bicolored double-chains. In Ioannis G. Tollis
and Maurizio Patrignani, editors, Graph Drawing, volume 5417 of Lecture
Notes Comput. Sci., pages 181–192. Springer-Verlag, 2009. 170

[CL05] Kai-min Chung and Hsueh-I Lu. An optimal algorithm for the maximum-
density segment problem. SIAM J. Comput., 34(2):373–387, 2005. 92

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. Mit Press, 3 edition, 2009. 9, 15

238

Bibliography

[CP07] Altannar Chinchuluun and Panos Pardalos. A survey of recent developments in
multiobjective optimization. Annals of Operations Research, 154:29–50, 2007.
90, 91

[Cre97] Pierluigi Crescenzi. A short guide to approximation preserving reductions.
In Proc. 12th Ann. IEEE Conf. Computational Complexity, pages 262–273,
Washington, DC, USA, 1997. IEEE Computer Society. 18

[CZ01] Leizhen Cai and Xuding Zhu. Game chromatic index of k-degenerate graphs.
J. Graph Theory, 36(3):144–155, 2001. 22

[Dav94] Timothy A. Davis. University of florida sparse matrix collection. NA Digest,
92, 1994. 216, 219, 222, 223, 224, 225, 226

[dBK10] Mark de Berg and Amirali Khosravi. Optimal binary space partitions in
the plane. In M. Thai and S. Sahni, editors, Computing and Combinatorics,
volume 6196 of Lect. Not. Comput. Sci., pages 216–225. Springer-Verlag,
Berlin / Heidelberg, 2010. 202

[DBT88] Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representa-
tions of acyclic digraphs. Theor. Comput. Sci., 61:175–198, 1988. 120

[Dem07] Erik Demaine. Simple polygonizations. http://erikdemaine.org/polygoniza-
tion/, 2007. Accessed May 30, 2009. 121

[Dev86] Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,
Berlin / Heidelberg, 1986. 25, 28, 30

[DF79] René Dionne and Michael Florian. Exact and approximate algorithms for
optimal network design. Networks, 9:37–60, 1979. 3, 68

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and
completeness II: On completeness for W[1]. Theoretical Computer Science,
141(1-2):109–131, 1995. 113

[DFS90] David Dobkin, Steven Friedman, and Kenneth Supowit. Delaunay graphs
are almost as good as complete graphs. Discrete & Computational Geometry,
5:399–407, 1990. 213

[DGFF+12] Emilio Di Giacomo, Fabrizio Frati, Radoslav Fulek, Luca Grilli, and Marcus
Krug. Orthogeodesic Point-Set Embedding of Trees. In Proceedings of the
19th International Symposium on Graph Drawing (GD’11), Lecture Notes in
Computer Science. Springer-Verlag, 2012. to appear. 147

[DGGK+12] Emilio Di Giacomo, Luca Grilli, Marcus Krug, Giuseppe Liotta, and Ignaz
Rutter. Hamiltonian Orthogeodesic Alternating Paths. In Proceedings of the
22nd International Workshop on Combinatorial Algorithms, Lecture Notes in
Computer Science. Springer-Verlag, 2012. to appear. 169

[DKS09] Guoli Ding, Jinko Kanno, and Jianning Su. Generating 5-regular planar graphs.
Journal of Graph Theory, 61(3):219–240, July 2009. 24

239

Bibliography

[DLT10] Emilio Di Giacomo, Giuseppe Liotta, and Francesco Trotta. Drawing colored
graphs with constrained vertex positions and few bends per edge. Algorithmica,
57:796–818, 2010. 148

[DS98] Egbert Dierker and Karl Sigmund, editors. Karl Menger: Ergebnisse eines
mathematischen Kolloquiums, chapter Bericht über das Kolloquium 1929/130.,
page 130. Springer-Verlag, Wien/New York, 1998. 2

[DVW96] Alain Denise, Marcio Vasconcellos, and Dominic J. A. Welsh. The random
planar graph. Congressus Numerantium, 113:61–79, 1996. 23

[DW71] S. Dreyfus and R. Wagner. The Steiner problem in graphs. Networks, 1(3):195–
207, 1971. 92

[DWW+11] Ling Ding, Weili Wu, James K. Willson, Hongjie Du, and Wonjun Lee. Con-
struction of directional virtual backbones with minimum routing cost in wireless
networks. In INFOCOM, 2011 Proceedings IEEE, pages 1557–1565, April 2011.
3

[EF97] Peter Eades and Qing-Wen Feng. Multilevel visualization of clustered graphs. In
Stephen North, editor, Graph Drawing, volume 1190 of Lecture Notes Comput.
Sci., pages 101–112. Springer-Verlag, Berlin / Heidelberg, 1997. 198

[EGK+03] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. Graphviz and dynagraph – static and dynamic graph
drawing tools. In M. Junger and P. Mutzel, editors, Graph Drawing Software,
pages 127–148. Springer-Verlag, 2003. 216

[EGS89] Herbert Edelsbrunner, Leonidas Guibas, and Micha Sharir. The upper enve-
lope of piecewise linear functions: Algorithms and applications. Discrete &
Computational Geometry, 4:311–336, 1989. 215

[EH66] Paul Erdős and András Hajnal. On chromatic number of graphs and set-
systems. Acta Mathematica Hungarica, 17:61–99, 1966. 10.1007/BF02020444.
22

[ELLW10] Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen K. Wismath.
Universal sets of n points for one-bend drawings of planar graphs with n
vertices. Discrete Comput. Geom., 43:272–288, 2010. 120, 148

[Epp95] David Eppstein. Subgraph isomorphism in planar graphs and related problems.
In Proc. 6th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 632–640.
SIAM, 1995. 99

[Erw00] Martin Erwig. The graph Voronoi diagram with applications. Networks,
36(3):156–163, 2000. 74

[ES35] Paul Erdős and George Szekeres. A combinatorial problem in geometry.
Compositio Mathematica, 2:463–470, 1935. 158, 159

240

Bibliography

[ES05] Niklas Eén and Niklas Sörensson. MiniSat v1. 13-a SAT solver with conflict-
clause minimization. SAT, 2005:2–3, 2005. 166

[Ess42] Carl-Gustav Esseen. On the Liapunoff limit of error in the theory of probability.
Arkiv for Matematik, Astronomi och fysik, A28(9):1–19, 1942. 31, 32

[Ess56] Carl-Gustav Esseen. A moment inequality with an application to the central
limit theorem. Skandinavisk Aktuarietidskrift, 39:160–170, 1956. 31, 32

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-
Verlag, 2006. 17

[FGG08] Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Improv-
ing the stretch factor of a geometric network by edge augmentation. SIAM J.
Comput., 38:226–240, March 2008. 75

[FLS02] Matteo Fischetti, Giuseppe Lancia, and Paolo Serafini. Exact algorithms for
minimum routing cost trees. Networks, 39(3):161–173, 2002. 68

[For87] Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,
2:153–174, 1987. 72, 73

[Fra94] András Frank. Mathematical Programming: State of the Art, chapter Connec-
tivity augmentation problems in network design, pages 34–63. University of
Michigan, 1994. 68

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge
University Press, Cambridge, January 2009. 20

[Fur86] George W. Furnas. Generalized fisheye views. SIGCHI Bull., 17:16–23, April
1986. 198

[Fus09] Éric Fusy. Uniform random sampling of planar graphs in linear time. Randoms
Structures and Algorithms, 35(4):464–522, December 2009. 23

[Gab83] Harold N. Gabow. An efficient reduction technique for degree-constrained
subgraph and bidirected network flow problems. In STOC’83: Proc. 15th Ann.
ACM Symp. Theory of computing, pages 448–456, New York, NY, USA, 1983.
ACM. 63

[Gab90] Harold N. Gabow. Data structures for weighted matching and nearest com-
mon ancestors with linking. In Proc. 1st Ann. ACM-SIAM Symp. Discrete
Algorithms, SODA ’90, pages 434–443, Philadelphia, PA, USA, 1990. Society
for Industrial and Applied Mathematics. 110

[Gae05] Marco Gaertler. Clustering. In U. Brandes and T. Erlebach, editors, Network
Analysis, volume 3418 of Lect. Not. Comput. Sci., pages 178–215. Springer-
Verlag, Berlin / Heidelberg, 2005. 198, 201

241

Bibliography

[GGW08] Robert Görke, Marco Gaertler, and Dorothea Wagner. Lunarvis - analytic
visualizations of large graphs. In Proc. 15th Internat. Conf. Graph Drawing,
GD’07, pages 352–364, Berlin / Heidelberg, 2008. Springer-Verlag. 216, 222,
226

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.
15, 16, 92, 112, 124, 134, 182, 209

[GK11] Sachin Garg and Gaurav Kanade. Topology construction for rural wireless mesh
networks – a geometric approach. In Beniamino Murgante, Osvaldo Gervasi,
Andrés Iglesias, David Taniar, and Bernady Apduhan, editors, Computational
Science and Its Applications - ICCSA 2011, volume 6784 of Lecture Notes
Comput. Sci., pages 107–120. Springer-Verlag, Berlin / Heidelberg, 2011.
10.1007/978-3-642-21931-3_9. 3

[GKL05] Michael H. Goldwasser, Ming-Yang Kao, and Hsueh-I Lu. Linear-time algo-
rithms for computing maximum-density sequence segments with bioinformatics
applications. J. Comput. Syst. Sci., 70(2):128–144, 2005. 92

[GKN05] Emden R. Gansner, Yehuda Koren, and Stephen C. North. Topological fisheye
views for visualizing large graphs. Visualization and Computer Graphics, IEEE
Transactions on, 11(4):457–468, July-August 2005. 198

[GKO+09] Xavier Goaoc, Jan Kratochvíl, Yoshio Okamoto, Chan-Su Shin, Andreas
Spillner, and Alexander Wolff. Untangling a planar graph. Discrete Comput.
Geom., 42(4):542–569, 2009. 121

[GMPP91] Peter Gritzmann, Bojan Mohar, János Pach, and Richard Pollack. Embedding
a planar triangulation with vertices at specified points. Amer. Math. Monthly,
98(2):165–166, 1991. 147

[GO97] Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Combinatorial
and Computational Geometry,, chapter Pseudoline Arrangements. CRC Press,
1997. 78

[Gro92] Harald Gropp. Enumeration of regular graphs 100 years ago. Discrete Mathe-
matics, 101(1-3):73–85, 1992. 24

[GT01] Ashim Garg and Roberto Tamassia. On the computational complexity of
upward and rectilinear planarity testing. SIAM J. Comput., 31(2):601–625,
2001. 123

[GV08] Petr Golovach and Yngve Villanger. Parameterized complexity for domina-
tion problems on degenerate graphs. In Hajo Broersma, Thomas Erlebach,
Tom Friedetzky, and Daniel Paulusma, editors, Graph-Theoretic Concepts in
Computer Science, volume 5344 of Lecture Notes Comput. Sci., pages 195–205.
Springer-Verlag, Berlin / Heidelberg, 2008. 10.1007/978-3-540-92248-3_18. 22

242

Bibliography

[HC05] Sun-Yuan Hsieh and Ting-Yu Chou. Algorithms and Computation, volume
3827 of Lecture Notes Comput. Sci., chapter Finding a Weight-Constrained
Maximum-Density Subtree in a Tree, pages 944–953. Springer-Verlag, Berlin /
Heidelberg, 2005. 92

[HC08] Sun-Yuan Hsieh and Chih-Sheng Cheng. Finding a maximum-density path in
a tree under the weight and length constraints. Information Processing Letters,
105(5):202–205, 2008. 92

[HEH09] Weidong Huang, Peter Eades, and Seok-Hee Hong. A graph reading behav-
ior: Geodesic-path tendency. In Proc. IEEE Pacific Symp. Visualization
(PacificVis’09), pages 137–144, 2009. 120, 208

[HJ05] Stefan Hachul and Michael Jünger. Drawing large graphs with a potential-field-
based multilevel algorithm. In János Pach, editor, Graph Drawing, volume
3383 of Lect. Not. Comput. Sci., pages 285–295. Springer-Verlag, Berlin /
Heidelberg, 2005. viii, 197

[HK02a] David Harel and Yehuda Koren. A fast multi-scale method for drawing large
graphs. Journal of graph algorithms and applications, 6:179–202, 2002. 198

[HK02b] David Harel and Yehuda Koren. Graph drawing by high-dimensional embedding.
In Graph Drawing (GD’02), Lect. Not. Comput. Sci., pages 207–219. Springer-
Verlag, 2002. 197

[HKLS04] Ferran Hurtado, Rolf Klein, Elmar Langetepe, and Vera Sacristán. The
weighted farthest color Voronoi diagram on trees and graphs. Computational
Geometry, 27(1):13–26, 2004. 74

[How10] Tharon Howard. Design to Thrive: Creating Social Networks and Online
Communities that Last. Morgan Kaufmann, 2010. 2

[HR97] Magnus Halldórsson and Jaikumar Radhakrishnan. Greed is good: Approxi-
mating independent sets in sparse and bounded-degree graphs. Algorithmica,
18:145–163, 1997. 207

[Hur06] Ferran Hurtado. Personal communication, 2006. 121, 122

[HvW09] Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for graph
visualization. In Proc. 11th Eurographics/IEEE-VGTC Symp. Visualization,
pages 983–990, 2009. 198

[IAN10] Toshimasa Ishii, Yoko Akiyama, and Hiroshi Nagamochi. Minimum augmenta-
tion of edge-connectivity between vertices and sets of vertices in undirected
graphs. Algorithmica, 56(4):413–436, 2010. 68

[Inc08] Wolfram Research, Inc. Mathematica, version 7.0. Champaign, Illinois, 2008.
38

243

Bibliography

[Inm66] Ross B. Inman. A denaturation map of the lambda phage DNA molecule
determined by electron microscopy. Journal of Molecular Biology, 18(3):464–
476, 1966. 92

[JLK78] David S. Johnson, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. The
complexity of the network design problem. Networks, 8(4):279–285, 1978. 3, 68

[JSJK06] Manoj K. Jha, Paul Schonfeld, J.-C. Jong, and E. Kim. Intelligent Road
Design. WIT Press, 2006. 2

[Kan09] Mikio Kano. Discrete geometry on red and blue points on the plane lattice.
In Proc. Japan Conf. Computational Geometry and Graphs (JCCGG 2009),
pages 30–33, 2009. 169, 171, 180, 185, 195

[KCH03] Yehuda Koren, Liran Carmel, and David Harel. Drawing huge graphs by
algebraic multigrid optimization. Multiscale Modeling and Simulation, 1:645–
673, 2003. viii, 197

[Kir83] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12(1):28–35, 1983. 72

[KKK+11a] Mong-Jen Kao, Bastian Katz, Marcus Krug, D.T. Lee, Martin Nöllenburg,
Ignaz Rutter, and Dorothea Wagner. Connecting Two Trees with Optimal
Routing Cost. In Proceedings of the 23rd Canadian Conference on Computa-
tional Geometry (CCCG ’11). University of Toronto Press, 2011. to appear.
67

[KKK+11b] Mong-Jen Kao, Bastian Katz, Marcus Krug, D.T. Lee, Ignaz Rutter, and
Dorothea Wagner. The Density Maximization Problem in Graphs. In Ding-
Zhu Du and Bin Fu, editors, Proceedings of the 17th Annual International
Conference on Computing Combinatorics (COCOON’11), Lecture Notes in
Computer Science. Springer-Verlag, 2011. to appear. 89

[KKL+11] Rolf Klein, Marcus Krug, Elmar Langetepe, D.T. Lee, and Dorothea Wag-
ner. Constructing Optimal Shortcuts in Directed Weighted Paths and Trees.
In Proceedings of the 27th European Workshop on Computational Geometry
(EuroCG’11), 2011. 67

[KKP93] David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden
path: time bounds for all-pairs shortest paths. SIAM J. Comput., 22:1199–1217,
December 1993. 87

[KKRW09] Bastian Katz, Marcus Krug, Ignaz Rutter, and Alexander Wolff. Manhattan-
Geodesic Point-Set Embeddability and Polygonization . Technical Report
2009-17, ITI Wagner, Karlsruhe Institute of Technology (KIT), 2009. 119

[KKRW10] Bastian Katz, Marcus Krug, Ignaz Rutter, and Alexander Wolff. Manhattan-
Geodesic Embedding of Planar Graphs. In David Eppstein and Emden R.
Gansner, editors, Proceedings of the 17th International Symposium on Graph
Drawing (GD’09), volume 5849 of Lecture Notes in Computer Science, pages
207–218. Springer-Verlag, 2010. 119

244

Bibliography

[KKS04] Atsushi Kaneko, Mikio Kano, and Kazuhiro Suzuki. Path coverings of two sets
of points in the plane. In János Pach, editor, Towards a Theory of Geometric
Graphs, volume 342, pages 99–111. American Mathematical Society, 2004. 170

[KKY00] Atsushi Kaneko, Mikio Kano, and Kiyoshi Yoshimoto. Alternating Hamilton
cycles with minimum number of crossings in the plane. Internat. J. Comput.
Geometry Appl., 10(1):73–78, 2000. 171

[Kle08] Achim Klenke. Probability Theory – A Comprehensive Course. Springer-Verlag,
Berlin, 2008. 25

[Klo94] Ton Kloks. Treewidth, Computations and Approximations. Lecture Notes
Comput. Sci. Springer-Verlag, 1994. 99, 100

[KM11] Lukasz Kowalik and Marcin Mucha. 35/44-approximation for asymmet-
ric maximum tsp with triangle inequality. Algorithmica, 59:240–255, 2011.
10.1007/s00453-009-9306-3. 3

[KMR97] D. Karger, R. Motwani, and G. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18:82–98, 1997. 10.1007/BF02523689. 112

[Kn09] Arie Koster and Xavier Mu noz, editors. Graphs and Algorithms in Communica-
tion Networks: Studies in Broadband, Optical, Wireless and Ad Hoc Networks.
Texts in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
2009. 2

[KPT08] Jan Kynčl, János Pach, and Géza Tóth. Long alternating paths in bicolored
point sets. Discrete Mathematics, 308(19):4315–4321, 2008. 170

[KS10] Victor Korolev and Irina Shevtsova. An improvement of the Berry-Esseen
inequality with applications to Poisson and mixed Poisson random sums.
Scandinavian Actuarial Journal, 2010. 31, 32

[Kur30] Kazimierz Kuratowski. Sur le Probleme des Courbes Gauches en Topologie.
Fundamenta Mathematicae, 15:271–283, 1930. 11

[Kur04] Maciej Kurowski. A 1.235 lower bound on the number of points needed to
draw all n-vertex planar graphs. Information Processing Letters, 92(2):95–98,
2004. 148

[KV03] Jeong Han Kim and Van H. Vu. Generating random regular graphs. In STOC
’03: Proc. 35th Ann. ACM Symp. Theory of Computing, pages 213–222, New
York, NY, USA, 2003. ACM. 24

[KvL84] Mark R. Kramer and Jan van Leeuwen. VLSI Theory, volume 2 of Advances
in Computing Research, chapter The complexity of wire routing and finding
minimum area layouts for arbitrary VLSI circuits, pages 129–146. JAI Press,
1984. 3

245

Bibliography

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs: Methods
and Models, volume 2025 of Lecture Notes Comput. Sci. Springer-Verlag, 2001.
14

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few
bends suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115–129, 2002.
120, 148

[LC08] Hsiao-Fei Liu and Kun-Mao Chao. Algorithms for finding the weight-
constrained k longest paths in a tree and the length-constrained k maximum-
sum segments of a sequence. Theor. Comput. Sci., 407(1-3):349–358, 2008.
92

[Lei80] Charles E. Leiserson. Area-efficient graph layouts. In 21st Ann. IEEE Symp.
Foundations of Computer Science, pages 270–281, Los Alamitos, CA, USA,
1980. IEEE Computer Society. 3

[Lew09] Ted G. Lewis. Network Science: Theory and Applications. Wiley, 1 edition,
2009. 3

[LJC02] Yaw-Ling Lin, Tao Jiang, and Kun-Mao Chao. Efficient algorithms for locating
the length-constrained heaviest segments with applications to biomolecular
sequence analysis. J. Comput. Syst. Sci., 65(3):570–586, 2002. 92

[LLL09] D. T. Lee, Tien-Ching Lin, and Hsueh-I Lu. Fast algorithms for the density
finding problem. Algorithmica, 53(3):298–313, 2009. 92

[LNN06] Hoong Chuin Lau, Trung Hieu Ngo, and Bao Nguyen Nguyen. Finding a length-
constrained maximum-sum or maximum-density subtree and its application to
logistics. Discrete Optimization, 3(4):385–391, 2006. 95

[Lok09] Daniel Lokshtanov. New Methods in Parameterized Algorithms and Complexity.
PhD thesis, University of Bergen Norway, 2009. 92

[LV08] Ming Li and Paul M.B. Vitnyi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer-Verlag, New York, 3 edition, 2008. 198

[Mar04] Dániel Marx. Eulerian disjoint paths problem in grid graphs is NP-complete.
Discrete Appl. Math., 143(1-3):336–341, 2004. 122

[MB93] William A. Mackaness and Kate M. Beard. Use of graph theory to support map
generalization. Cartography and Geographic Information Science, 20:210–221,
1993. 198

[McC07] James D. McCabe. Network Analysis, Architecture, and Design. The Morgan
Kaufmann Series in Networking. Morgan Kaufmann, 3 edition, 2007. 3

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment
and the mental map. Journal of Visual Languages & Computing, 6(2):183–210,
1995. 198

246

Bibliography

[MN90] Kurt Mehlhorn and Stefan Näher. Dynamic fractional cascading. Algorithmica,
5:215–241, 1990. 10.1007/BF01840386. 142, 144

[MRS+98] Madhav V. Marathe, R. Ravi, Ravi Sundaram, S. S. Ravi, Daniel J.
Rosenkrantz, and Harry B. Hunt. Bicriteria network design problems,. Journal
of Algorithms, 28(1):142–171, 1998. 91

[MRS07] William A. Mackaness, Anne Ruas, and L. Tiina Sarjakoski, editors. Generali-
sation of Geographic Information. Cartographic Modelling and Applications.
Elsevier B.V., 2007. 198

[MSU06] Criel Merino, Gelasio Salazar, and Jorge Urrutia. On the length of longest
alternating paths for multicoloured point sets in convex position. Discrete
Mathematics, 306(15):1791–1797, 2006. 195

[MTB76] Gabriel Macaya, Jean-Paul Thiery, and Giorgio Bernardi. An approach to
the organization of eukaryotic genomes at a macromolecular level. Journal of
Molecular Biology, 108(1):237–254, 1976. 92

[MW11] Sascha Meinert and Dorothea Wagner. An Experimental Study on Generating
Planar Graphs. In Mikhail Atallah, Xiang-Yang Li, and Binhai Zhu, editors,
Proc. 7th Internat. Conf. Algorithmic Aspects in Information and Manage-
ment (AAIM’11), volume 6681 of Lecture Notes Comput. Sci., pages 375–387.
Springer-Verlag, 2011. 20

[Nag00] Hiroshi Nagamochi. Recent development of graph connectivity augmentation
algorithms. IEICE Trans. Inf. And Syst., E83-D(3):372–383, 2000. 68

[New10] Mark Newman. Networks: An Introduction. Oxford University Press, 1 edition,
2010. 3

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006. 17

[Nut09] Zeev Nutov. Approximating connectivity augmentation problems. ACM Trans.
Algorithms, 6:5:1–5:19, December 2009. 68

[O’R88] Joseph O’Rourke. Uniqueness of orthogonal connect-the-dots. In G.T. Tous-
saint, editor, Computational Morphology, pages 97–104. North-Holland, 1988.
121, 122, 126

[osm11] Openstreetmap database. online, 2011. http://www.openstreetmap.de/. 216,
221, 226

[OvL81] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in
the plane. Journal of Computer and System Sciences, 23(2):166–204, 1981. 95

[PM11] Chutima Prommak and Sujitra Modhirun. Optimal wireless sensor network
design for efficient energy utilization. In Proc. 2011 IEEE Workshops of
Internat. Conf. Advanced Information Networking and Applications, WAINA
’11, pages 814–819, Washington, DC, USA, 2011. IEEE Computer Society. 3

247

http://www.openstreetmap.de/

Bibliography

[PT02] János Pach and Géza Tóth. Monotone drawings of planar graphs. In Prosenjit
Bose and Pat Morin, editors, Proc. 13th Internat. Symp. Algorithms Comput.
(ISAAC’02), volume 2518 of Lecture Notes Comput. Sci., pages 647–654.
Springer-Verlag, 2002. 120

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Veterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing, chapter 5.12
Padé Approximants, pages 245–246. Cambridge University Press, New York, 3
edition, 2007. 38

[PW01] János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graph. Combinator., 17(4):717–728, 2001. 121

[QE01] Aaron Quigley and Peter Eades. Fade: Graph drawing, clustering, and visual
abstraction. In J. Marks, editor, Graph Drawing, volume 1984 of Lect. Not.
Comput. Sci., pages 77–80. Springer-Verlag, Berlin / Heidelberg, 2001. 198

[Qua60] Richard E. Quandt. Models of transportation and optimal network concstruc-
tion. Journal of Regional Science, 2(1):27–45, 1960. 3

[Rap86] David Rappaport. On the complexity of computing orthogonal polygons from
a set of points. Technical Report SOCS-86.9, McGill University, Montréal,
1986. 120, 122, 126

[RC05] Davood Rafiei and Stephen Curial. Effectively visualizing large networks
through sampling. In Visualization, 2005. VIS 05. IEEE, pages 375–382,
October 2005. 198

[RCS86] Raghunath Raghavan, James Cohoon, and Sartaj Sahni. Single bend wiring.
J. Algorithms, 7(2):232–257, 1986. 121

[RGGO11] César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. Traveling
salesman problem heuristics: Leading methods, implementations and latest
advances. European Journal of Operational Research, 211(3):427–441, 2011. 3

[rou] University of Oregon Routeviews Project. http://www.routeviews.org/. 216

[RS84] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width.
Journal of Combinatorial Theory, Series B, 36(1):49–64, 1984. 114

[RS95] Neil Robertson and Paul D. Seymour. Graph Minors XIII. The Disjoint Paths
Problem. Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. 100

[RS04] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004. Special Issue
Dedicated to Professor W.T. Tutte. 11

[RSM+96] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi.
Spanning trees – short or small. SIAM J. Discret. Math., 9:178–200, May 1996.
116

248

Bibliography

[RW93] Franz Rendl and Gerhard Woeginger. Reconstructing sets of orthogonal line
segments in the plane. Discrete Math., 119(1-3):167–174, 1993. 121

[RW06] Ronald C. Read and Nicholas C. Wormald. Number of labeled 4-regular graphs.
Journal of Graph Theory, 4(2):203–212, 2006. 24

[RW09] Frank Ruskey and Aaron Williams. The coolest way to generate combinations.
Discrete Mathematics, 309(17):5305 – 5320, 2009. 60

[RZ00] Gabriel Robins and Alexander Zelikovsky. Improved steiner tree approximation
in graphs. In Proc. 11th Ann. ACM-SIAM Symp. Discrete Algorithms (Soda’00),
SODA ’00, pages 770–779, Philadelphia, PA, USA, 2000. Society for Industrial
and Applied Mathematics. 92

[SA95] Micha Sharir and Pankaj K. Agarwal. Davenport–Schinzel Sequences and their
Geometric Applications. Cambridge University Press, 1995. 79

[Saa95] Alan Saalfeld. Map generalization as a graph drawing problem. In Roberto
Tamassia and Ioannis G. Tollis, editors, Graph Drawing, volume 894 of Lect.
Not. Comput. Sci., pages 444–451. Springer-Verlag, Berlin / Heidelberg, 1995.
ix, 198

[Sar10] S. Bry Sarte. Sustainable Infrastructure: The Guide to Green Engineering and
Design. Wiley, 1 edition, 2010. 2

[SB92] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In
Proc. SIGCHI Conf. Human Factors in Computing Systems, CHI ’92, pages
83–91, New York, NY, USA, 1992. ACM. 198

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-
SIAM Symp. Discrete Algorithms (SODA’90), pages 138–148, 1990. 120

[Sch05] Alexander Schrijver. On the history of combinatorial optimization (till 1960). In
George L. Nemhauser Karen Aardal and Robert Weismantel, editors, Discrete
Optimization, volume 12 of Handbooks in Operations Research and Management
Science, pages 1–68. Elsevier, 2005. 2

[Sco69] A. J. Scott. The optimal network problem: Some computational procedures.
Transportation Research, 3(2):201–210, 1969. v, 3, 68

[Sco00] John P. Scott. Social Network Analysis: A Handbook. Sage Publications Ltd,
2 edition, 2000. 3

[Sei83] Stephen B. Seidman. Network Structure and Minimum Degree. Social Networks,
5:269–287, 1983. 22

[Sei88] Raimund Seidel. Constrained Delaunay triangulations and Voronoi diagrams
with obstacles. Technical Report 260, IIG-TU Graz, Austria, 1988. 73

[SIN07] Xiao Zhou Shuji Isobe and Takao Nishizeki. Total colorings of degenerate
graphs. Combinatorica, 27(2):167–182, March 2007. 22

249

Bibliography

[SP80] J. M. S. Simões-Pereira. Erdős-Hajnal well-orderings and n-degenerate graphs.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,
50(1):101–107, December 1980. 22

[SW] Petra Schuurman and Gerhard Woeginger. Approximation schemes – a tutorial.
preliminary version of a chapter in the book "Lectures on Scheduling", to appear
in 2011. 103

[SW99] Angelika Steger and Nicholas C. Wormald. Generating random regular graphs
quickly. Comb. Probab. Comput., 8(4):377–396, 1999. 24

[Tam87] Roberto Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM J. Comput., 16(3):421–444, 1987. 123

[TE10] Alexandru Telea and Ozan Ersoy. Image-based edge bundles: Simplified
visualization of large graphs. Computer Graphics Forum, 29(3):843–852, 2010.
198

[TNU09] Satoshi Tayu, Kumiko Nomura, and Shuichi Ueno. On the two-dimensional
orthogonal drawing of series-parallel graphs. Discrete Appl. Math., 157(8):1885–
1895, 2009. 123

[Val81] Leslie G. Valiant. Universality considerations in VLSI circuits. IEEE Trans.
Comput., 30:135–140, February 1981. 3

[WC04] Bang Ye Wu and Kun-Mao Chao. Spanning trees and optimization problems.
Chapman & Hall/CRC, Boca Raton, 2004. 68

[WCT99] Bang Ye Wu, Kun-Mao Chao, and Chuan Yi Tang. An efficient algorithm for
the length-constrained heaviest path problem on a tree. Inf. Process. Lett.,
69(2):63–67, 1999. 92

[Wer68] Christian Werner. The role of topology and geometry in optimal network
design. Papers in Regional Science, 21(1):173–189, 1968. 3

[WLB+99] Bang Ye Wu, Giuseppe Lancia, Vineet Bafna, Kun-Mao Chao, R. Ravi, and
Chuan Yi Tang. A polynomial-time approximation scheme for minimum
routing cost spanning trees. SIAM J. Comput., 29:761–778, 1999. 68

[Won80] Richard T. Wong. Worst-case analysis of network design problem heuristics.
SIAM Journal on Algebraic and Discrete Methods, 1(1):51–63, 1980. 68

[Wor99] Nicholas C. Wormald. Models of random regular graphs. In Surveys in
Combinatorics, pages 239–298. Cambridge University Press, 1999. 24

[Wu09] Bang Ye Wu. An optimal algorithm for the maximum-density path in a tree.
Inf. Process. Lett., 109(17):975–979, 2009. 92, 95

250

Index

L-shaped, 13
D(n, k), 28
D(n,m, k), 28
S(n, k), 48
S(n,m, k), 48
%-set, 200

perfect, 202
k-spaced, 182
BMDS, 91
LCCP, 201
Orthogeodesic Polygonization, 126
Hamiltonian Cycle, 123
HCC, 123
Labeled Orthogeodesic Matching, 122
Labeled Orthogeodesic PSE, 122
Longest Path, 112
Optimal Angle Adjustment, 214
RMDS, 91
Rooted Longest Path, 112
SGN, 212
SGS, 208
Hamiltonian Orthogeodesic Alter-

nating Path on the Grid, 180
Optimal Routing Cost Augmentation,

69
Optimal Routing Cost Replacement,

69
Partition, 16
3-Partition, 16, 134, 186
2-spaced, 149
4-planar, 122

above, 137
adjacent, 9
angular straight-line deviation, 214
approximation algorithm, 18
approximation ratio, 18
automorphism group, 10

below, 137
bend, 13
bi-objective, 90
bounding box, 12
branch set, 11

caterpillar, 10, 154
chain

length, 13
monotone, 13
orthogeodesic, 13
orthogonal, 13
polygonal, 13

cluster, 200
clutter, 199

edge-clutter, 199
vertex-clutter, 199
vertex-edge-clutter, 199

combinatorial embedding, 138
construction cost, 12
contract, 10
convex hull, 13
coreness, 22
critical, 137
cycle, 10

simple, 10

decision problem, 15
density, 91

penalized, 91
distance, 12
distribution, 26

k-restricted binomial, 26
binomial, 27
continuous, 26
discrete, 26
normal, 27
uniform, 27

distribution function, 26

251

Index

dominate, 137
drawing, 13

orthogeodesic, 14, 120
orthogonal, 14, 119
polyline, 14
straight-line, 14

drawing style, 14
drift, 212

edge, 9
directed, 9
downward, 137, 180
length, 11
source, 9
target, 9
undirected, 9
upward, 137, 180
weight, 12

embed, 14
endpoints, 9
expected value, 26

face, 14
outer, 14

fixed-parameter tractable, 17
forest, 10
FPT, 17
FPT-algorithm, 17
FPT-reducible, 17
FPTAS, 18, 103

generalization, 200
generator

complete, 20
uniform, 20

graph, 9
admissible, 137
connected, 10
degenerate, 21
directed, 9
finite, 9
geometric, 9, 200
labeled, 20
outerplanar, 14
planar, 14
simple, 9
strongly degenerate, 21

undirected, 9
unlabeled, 20
well-ordered degenerate, 22

graph isomorphism, 10
grid, 12

grid point, 12
integer grid, 12

host, 90
hull, 140, 180

implication rule, 138
incident, 9
instance

size, 15
inversion method, 28
isomorphism, see graph isomorphism

leaf, 10
local coverage, 201
loop, 9

minor, 11
forbidden minor, 11
minor-closed, 11
minor-free, 11

multi-graph, 9

neighbor, 9
neighborhood, 27
network, 9
NP-complete, 15
NP-hard, 15

odd partition, 130
optimal network problem, 68
orthogeodesic chain, 13

L-shaped, 13, 148
horizontal, 13
vertical, 13

orthogonal representation, 123

parameterization, 17
parameterized problem, 17
Pareto-optimal, 90
path, 9

alternating, 170
bottommost, 180

252

Index

Hamiltonian, 170
length, 9
nice path, 127
simple, 10

pattern, 90
point

depth, 130
even, 126
height, 130
odd, 126

point set
balanced, 170
butterfly, 177
degenerate, 126
diagonal, 156
equitable, 170
general, 122, 148
negative diagonal, 156
positive diagonal, 156
universal, 148

point-set embedding, 14, 120, 147
polygon, 13

inside, 13
outside, 13
simple, 13

polygonal chain, 13
polygonization, 126
polynomial-time reducible, 15
pre-embedding, 141
predecessor-degree, 27
proportional, 28
pseudo-line, 77
pseudo-polynomial, 16
PTAS, 18

random uniform [0, 1]-variate, 27
random variable, 26

real, 26
random variate, 27
random variate generator, 27
root, 10
routing cost, 11, 68

weighted, 12

sparse, 136
spine, 154

Steiner constraints, 91
stretch, 130
strictly above, 137
strictly below, 137
strongly NP-complete, 16
strongly NP-hard, 16
subgraph, 10

induced, 10
successor-degree, 27
symmetric group, 10

tree, 10
above, 10
below, 10
height, 10
rooted, 10

tree decomposition, 11
bags, 11
treewidth, 11

upper envelope, 77
upper hull, 95

variance, 26
vertex, 9

internal, 10
weight, 12

viable, 90
Voronoi cell, 13
Voronoi cluster, 200
Voronoi diagram, 13

additively weighted, 72
Voronoi mapping, 200

well-ordered degenerate graph, 27

253

Index

254

List of Publications

Journal Articles
[1] Augmenting k-Core Generation with Preferential Attachment. Networks and

Heterogeneous Media, 3(2):277–294, June 2008. Joint work with Michael Baur, Marco
Gaertler, Robert Görke, and Dorothea Wagner. 22

Articles in Refereed Conference Proceedings
[2] Generalizing Geometric Graphs. In: Proceedings of the 19th International Sympo-

sium on Graph Drawing (GD’11), Lecture Notes in Computer Science. Springer-Verlag,
2012. to appear. Joint work with Edith Brunel, Andreas Gemsa, Ignaz Rutter, and
Dorothea Wagner. 197

[3] Orthogeodesic Point-Set Embedding of Trees. In: Proceedings of the 19th Inter-
national Symposium on Graph Drawing (GD’11), Lecture Notes in Computer Science.
Springer-Verlag, 2012. to appear. Joint work with Emilio Di Giacomo, Fabrizio Frati,
Radoslav Fulek, and Luca Grilli. 147

[4] Hamiltonian Orthogeodesic Alternating Paths. In: Proceedings of the 22nd
International Workshop on Combinatorial Algorithms, Lecture Notes in Computer
Science. Springer-Verlag, 2012. to appear. Joint work with Emilio Di Giacomo, Luca
Grilli, Giuseppe Liotta, and Ignaz Rutter. 169

[5] Orthogonal Graph Drawing with Flexibility Constraints. In: Ulrik Brandes and
Sabine Cornelsen, editors, Proceedings of the 18th International Symposium on Graph
Drawing (GD’10), volume 6502 of Lecture Notes in Computer Science, pages 92–104.
Springer-Verlag, 2011. Joint work with Thomas Bläsius, Ignaz Rutter, and Dorothea
Wagner.

[6] Connecting Two Trees with Optimal Routing Cost. In: Proceedings of the 23rd
Canadian Conference on Computational Geometry (CCCG ’11). University of Toronto
Press, 2011. to appear. Joint work with Mong-Jen Kao, Bastian Katz, D.T. Lee, Martin
Nöllenburg, Ignaz Rutter, and Dorothea Wagner. 67

[7] The Density Maximization Problem in Graphs. In: Ding-Zhu Du and Bin
Fu, editors, Proceedings of the 17th Annual International Conference on Computing
Combinatorics (COCOON’11), Lecture Notes in Computer Science. Springer-Verlag,
2011. to appear. Joint work with Mong-Jen Kao, Bastian Katz, D.T. Lee, Ignaz Rutter,
and Dorothea Wagner. 89

255

http://i11www.ira.uka.de/extra/publications/bggkw-acgpa-08.pdf
http://dx.doi.org/10.1007/978-3-642-18469-7_9

List of Publications

[8] Gateway Decompositions for Constrained Reachability Problems. In: Paola
Festa, editor, Proceedings of the 9th International Symposium on Experimental Algorithms
(SEA’10), volume 6049 of Lecture Notes in Computer Science, pages 449–461. Springer-
Verlag, May 2010. Joint work with Bastian Katz, Andreas Lochbihler, Ignaz Rutter,
Gregor Snelting, and Dorothea Wagner.

[9] Preprocessing Speed-Up Techniques is Hard. In: Proceedings of the 7th Con-
ference on Algorithms and Complexity (CIAC’10), volume 6078 of Lecture Notes in
Computer Science, pages 359–370. Springer-Verlag, 2010. Joint work with Reinhard
Bauer, Tobias Columbus, Bastian Katz, and Dorothea Wagner.

[10] Synthetic Road Networks. In: Proceedings of the 6th International Conference
on Algorithmic Aspects in Information and Management (AAIM’10), volume 6124 of
Lecture Notes in Computer Science, pages 46–57. Springer-Verlag, 2010. Joint work with
Reinhard Bauer, Sascha Meinert, and Dorothea Wagner.

[11] Enumerating and Generating Labeled k-Degenerate Graphs. In: Proceedings
of the 7th Workshop on Analytic Algorithmics and Combinatorics (ANALCO ’10), pages
90–98. SIAM, 2010. Joint work with Reinhard Bauer and Dorothea Wagner. 19

[12] Manhattan-Geodesic Embedding of Planar Graphs. In: David Eppstein and
Emden R. Gansner, editors, Proceedings of the 17th International Symposium on Graph
Drawing (GD’09), volume 5849 of Lecture Notes in Computer Science, pages 207–218.
Springer-Verlag, 2010. Joint work with Bastian Katz, Ignaz Rutter, and Alexander Wolff.
119

[13] Minimizing the Area for Planar Straight-Line Grid Drawings. In: Seok-Hee
Hong, Takao Nishizeki, and Wu Quan, editors, Proceedings of the 15th International
Symposium on Graph Drawing (GD’07), volume 4875 of Lecture Notes in Computer
Science, pages 207–212. Springer-Verlag, January 2008. Joint work with Dorothea
Wagner.

[14] Generating Graphs with Predefined k-Core Structure. In: Proceedings of the
European Conference of Complex Systems (ECCS’07), October 2007. Joint work with
Michael Baur, Marco Gaertler, Robert Görke, and Dorothea Wagner. 24

Articles in Non-Refereed Workshop Proceedings
[15] Constructing Optimal Shortcuts in Directed Weighted Paths and Trees. In:

Proceedings of the 27th European Workshop on Computational Geometry (EuroCG’11),
2011. Joint work with Rolf Klein, Elmar Langetepe, D.T. Lee, and Dorothea Wagner. 67

Thesis
[16] Minimizing the Area for Planar Straight-Line Grid Drawings. Master’s thesis,

Universität Karlsruhe, 2007.

256

http://dx.doi.org/10.1007/978-3-642-14355-7_6
http://www.springerlink.com/content/e1j7683r32134456/
http://i11www.iti.uni-karlsruhe.de/members/krug/publications/files/kw-mapsl-200 7.pdf
http://i11www.ira.uka.de/extra/publications/bggkw-ggpcs-07.pdf
http://i11www.iti.uni-karlsruhe.de/members/krug/publications/files/k-mapsl-2007 .pdf

	Zusammenfassung
	Introduction
	Preliminaries
	Networks and Graphs
	Geometry and Graph Drawing
	Complexity
	Fixed-Parameter Tractability
	Approximation Algorithms

	Enumerating and Generating Well-Ordered Degenerate Graphs
	Preliminary Remarks
	Introduction
	Random Variate Generator for the Restricted Binomial Distribution
	Preliminaries
	Inversion Method
	The Restricted Binomial Distribution

	Approximating the Restricted Binomial Distribution
	Generating Well-Ordered Degenerate Graphs
	Generators for D(n,k)
	Generators for D(n,m,k)

	Generating Well-Ordered Strongly Degenerate Graphs
	Enumerating Well-Ordered Degenerate Graphs
	Enumerating D(n,k) and S(n,k)
	Enumerating D(n,m,k) and S(n,m,k)

	Concluding Remarks

	Optimal Routing Cost Tree Augmentation
	Introduction
	Connecting Two Trees
	General Distance Functions
	Euclidean Metric
	General Metrics

	Optimal Shortcuts in Trees
	Reduction to Pseudo-Line Arrangements
	Computing the Envelope in Linear Time
	Extension to Directed Tree Networks
	Undirected Paths

	Concluding Remarks

	The Density Maximization Problem in Graphs
	Introduction
	The Bi-constrained Maximum Density Subgraph Problem
	Trees and Almost-Trees
	Graphs with Bounded Treewidth

	An FPTAS for Relaxed Density Maximization
	Maximum Density Subgraphs with Structural Constraints
	Parametric Search and Application
	Steiner Constraints

	Concluding Remarks

	Orthogeodesic Embedding of Planar Graphs
	Introduction
	Orthogeodesic Embeddability
	Orthogeodesic Point-Set Embeddability
	Orthogeodesic Polygonization
	Labeled Orthogeodesic Point-Set Embeddability
	Sparse Labeled Orthogeodesic Point-Set Embeddability
	Concluding Remarks

	Orthogeodesic Embeddings of Trees
	Introduction
	Planar Orthogeodesic Point-Set Embeddings
	Planar L-Shaped Orthogeodesic Pointset Embeddings
	Non-Planar L-Shaped Orthogeodesic Point-Set Embeddings
	Concluding Remarks

	Hamiltonian Orthogeodesic Alternating Paths
	Introduction
	Hamiltonian Orthogeodesic Alternating Paths
	Hamiltonian Orthogeodesic Alternating Paths on the Grid
	Long Orthogeodesic Alternating Paths on the Grid
	Concluding Remarks

	Generalizing Geometric Graphs
	Introduction
	Generalizing the Vertex Set without Vertex-Clutter
	Complexity
	Approximating the Maximum Size of a Generalization

	Minimizing Edge-Clutter
	Vertex-Edge-Clutter
	Sample Generalizations
	Conclusion and Open Problems

	Conclusion
	Bibliography
	Index
	List of Publications

