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Tag der mündlichen Prüfung: 21. Dezember 2011

Referent: Prof. Dr. Vincent Heuveline
Korreferent: Prof. Dr. Olivier Le Mâıtre
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Abstract

Generalized Polynomial Chaos (gPC) presents an efficient spectral method for
stochastic processes or fields. However, it is known that gPC exhibits a convergence
breakdown in cases involving strong nonlinear dependencies on random parameters.
The first part of this work describes the application of gPC in context of ordinary
differential equations subject to random quantities and introduces new hybrid ap-
proaches involving time-dependent basis functionals in a decomposed probability
space, which allow for a significant increase of the numerical accuracy and improve-
ment of the convergence properties of gPC. The second part of this work is devoted
to the computation of stochastic time-periodic solutions to the unsteady stochas-
tic incompressible Navier-Stokes equations. Thereby, a new numerical algorithm
has been developed based on Newton’s method and optimization techniques, which
transfers the uncertainty of the simulation time interval into the governing equa-
tions.

Zusammenfassung

Generalized Polynomial Chaos (gPC) stellt eine effiziente Spektralmethode für
stochastische Prozesse dar. Es ist bekannt, dass gPC in Fällen starker nichtlin-
earer Abhängigkeiten bzgl. stochastischer Parameter ein schlechtes Konvergenzver-
halten aufzeigt. Der erste Teil dieser Arbeit betrachtet gPC für gewöhnliche Dif-
ferentialgleichungen unter Einfluss stochastischer Größen. Hierbei wird ein neues
hybrides numerisches Verfahren vorgestellt, welches auf zeitabhängigen Basisfunk-
tionalen auf einer Gebietszerlegung des Wahrscheinlichkeitsraumes basiert. Dieses
ermöglicht es sehr hohe Genauigkeiten in der numerischen Lösung zu erzielen und
die Konvergenz von gPC deutlich zu verbessern. Der zweite Teil dieser Arbeit
betrachtet gPC zur Berechnung zeit-periodischer Strömungsvorgänge, welche mit-
tels den instationären stochastischen inkompressiblen Navier-Stokes Gleichungen
modelliert werden. Hierbei wird eine neuer numerischer Algorithmus basierend
auf dem Newton- und Optimierungsverfahren entwickelt, welcher die stochastische
Periodenlänge im zeitlichen Intervall der Simulation auf die zugrunde liegenden Dif-
ferentialgleichungen überträgt.
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Chapter 1.

Introduction

Many physical phenomena can be modeled by systems of differential equations de-
scribing the interaction of system variables subject to predefined parameters. In
practice, their solution often requires adequate numerical solvers, since for many
applications no analytical solution can be derived. Thereby, the accuracy of a
numerically computed solution is determined by three major classes of error con-
tributions:

• Model error:
In practice, one often relies on approximations of physical relations, e.g., by
modeling not exactly known system characteristics or by simplifications of
complex interactions within an exact model. In fluid flow problems, for ex-
ample, the incompressible Navier-Stokes equations represent a reasonably sim-
plified model of their compressible version within an appropriate framework,
for which a constant fluid density can be assumed. However, such approxi-
mations need to be validated carefully a posteriori to ensure a small model
error contribution, otherwise it cannot be guaranteed that the solution of the
underlying model is actually a solution to the exact physical system.

• Numerical error:
The numerical solution of the model equations is based on a finite dimensional
discretization of the continuous quantities, e.g., by a polynomial approxima-
tion of smooth functions. This introduces an additional source of errors,
whose influence on the solution process has to be controlled in an adequate
way. This can be achieved, for example, by a priori and a posteriori error
estimation techniques. Furthermore, the solution of a corresponding discrete
system in high dimensions often employs iterative numerical solvers, which
in practice can only evaluate a finite number of iterations. Since on stan-
dard computer architectures only a finite precision of the computed values
is available, additional round-off errors are introduced, which especially for
ill-conditioned problems can provide a significant impact on the solvability of
the model equations.

• Data error:
The third class of errors involves the data needed to determine system pa-
rameters a priori to accurately describe the underlying model. In practice,
information about the data is often subject to noisy measurements or even not
available at all. A deterministic approach is to neglect the noise within the
data and approximate it by some deterministic reference value, which, for ex-
ample, can be determined by filter techniques. However, if such an approach
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is used, no sensitivity information with respect to the data error within the
solution of the underlying model is available. Therefore, there exist many
different techniques which try to capture the data error propagation to ob-
tain reliable validity of the computed results. One example is to model the
lack of information by an uncertainty model, which represents a stochastic
approach to estimate the sensitivity subject to the probability distribution of
the modeled data.

The main focus of this work lies on the quantification of error propagations resulting
from uncertainty models of system parameters (data errors), which in literature is
referred to as ”Uncertainty Quantification” (UQ). Its aim is to provide feasible in-
formation regarding the sensitivity of a solution with respect to stochastic variations
in system parameters, thereby taking into account the evolution of the probability
distribution of the random input. An abstract view on UQ can be stated by the
following:

Suppose one seeks a solution u of some modelM subject to some data d satisfying:

M(u; d) = 0. (1.1)

Furthermore, suppose that the data d is random and parameterized by some vector-
valued random variable denoted by ξ, i.e., d = d(ξ). Hence, equation (1.1) implicitly
introduces a functional dependency of a solution u on the random input ξ, i.e., u =
u(ξ). Therefore, the value of u depends on the realization of the random variable
ξ. Usually one is interested in computing specific outcomes of u or determining
its stochastic moments, e.g., its mean or variance. This can be accomplished by
various numerical methods, for which two major representatives are highlighted in
the following, the second one being elaborated on within this work.

1.1. Monte Carlo methods

Monte Carlo methods present a popular approach to compute stochastic moments
of a solution by deterministic numerical simulations based on random realizations of
the input data. The standard technique is to generate a finite sequence of random
samples ξ1, ξ2, ξ3, . . . , ξM , M ∈ N, by so-called ”pseudo” random number genera-
tors. Afterwards, to each sample ξi a deterministic solution ui := u(ξi) is computed
via:

M(ui; d(ξi)) = 0, (1.2)

for i = 1, . . . ,M . The stochastic moments of u can be estimated based on the
computed solutions {ui}Mi=1, e.g., for the expectation E(u) of u it holds:

E(u) = lim
M→∞

1

M

M∑
i=1

uipi, (1.3)

whereas pi := P(ξ = ξi) denotes the probability of the event {ξ = ξi}, i = 1, . . . ,M .
This reflects the quite simple and powerful way of determining information about
a stochastic quantity u without imposing specific regularity requirements, which
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makes it also very robust. Since only independent resolutions of deterministic mod-
els are required, the deterministic systems can be computed in parallel in a trivial
way. Furthermore, the fact that no changes in a deterministic model are required
to determine a stochastic solution results in a very attractive feature of the method
itself. However, the convergence rate of Monte Carlo methods is relative low and
behaves asymptotically like O(1/

√
M) as M → ∞ [25]. This can provide a huge

drawback if the resolution of a single deterministic system is numerically expen-
sive and a high accuracy of the resolved model is required. There exist techniques,
e.g., ”Quasi Monte Carlo”, ”Latin-Hypercube” or ”variance reduction” methods
[28, 29, 30], which improve the convergence rate, however, obtaining high accura-
cies still requires a large number of realizations. An alternative approach, which
will be the main focus of this work, is given by spectral methods which may exhibit
significantly higher convergence rates.

1.2. Spectral methods

Spectral methods provide a substantially different approach towards the resolution
of the model equation (1.1). Their aim is to construct a functional dependency of
the solution u on the random input ξ, such that:

u(ξ) =
∞∑
i=0

uiψi(ξ), (1.4)

whereas {ψi}∞i=0 denotes a set of selected basis functionals and {ui}∞i=0 denotes
deterministic ”modes” of u. Note that usually, such a series representation will
result in additional regularity requirements on the solution u, e.g., u being square-
integrable with respect to the underlying probability space. If possible, the deriva-
tion of the modes can be carried out analytically, otherwise by utilizing sampling or
projection techniques [25]. The two latter approaches mainly differ in the fact, that
projection techniques require a change of the model M by a projection onto the
space spanned by the basis functionals {ψi}∞i=0. This is not the case for sampling
based strategies, which only require multiple deterministic resolutions of the model
M.

The main focus of this work lies on a specific representative of such spectral meth-
ods, given by the so-called ”generalized Polynomial Chaos” (gPC) expansion [47]
based on the original ”Homogeneous Chaos” introduced in [46]. It became increas-
ingly popular within the last two decades and is based on choosing the basis {ψi}∞i=0

to consist of orthogonal polynomial functionals exhibiting exponential convergence
rates for square-integrable random variables. The gPC expansion has been success-
fully applied in various field, such as solid and fluid mechanics [15, 24, 27] and pro-
vides a powerful method to obtain high accuracies for low to moderate sized model
equations. However, it is also known that the standard gPC approach exhibits
a convergence breakdown in cases involving strong nonlinear dependencies on the
random input, e.g., in context of stochastic discontinuities or long-term integration,
especially arising in the field of stochastic dynamical systems [14, 19, 20, 26, 43].
In this work, these problem classes are being elaborated on by considering repre-
sentatives of stochastic ordinary differential equations (SODEs) and the unsteady
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stochastic incompressible Navier-Stokes equations (SNSE). For the SODEs, new
modifications towards gPC are developed, which significantly increase the accuracy
of gPC and therefore making it possible to apply gPC with respect to strong non-
linear dependencies. Furthermore, a new efficient numerical method is developed
for computing time-periodic stochastic solutions to the SNSE, therefore extending
the field of application of gPC towards this complex problem class and overcoming
the previously mentioned convergence breakdown of gPC.

1.3. Outline

This work is structured in the following way: Chapter 2 provides a detailed review of
the generalized Polynomial Chaos expansion and corresponding Galerkin projected
systems for differential equations subject to a random input. Thereby, especially
the sparsity structure resulting from the projection of the model equations is being
analyzed. Chaper 3 is focused on the application of gPC to stochastic ordinary
differential equations, whereas new modifications of the standard gPC approach are
introduced, which are able to capture the evolution of the probability distribution
in time more efficiently. These are based on a change of the probability measure and
a decomposition of the probability space. Chapter 4 introduces the application of
gPC to the SNSE using the so-called ”Spectral-Stochastic-Finite-Element-Method”.
Thereby, the governing equations are put into an appropriate analytical framework
for which numerically stable stochastic Finite-Element discretization schemes are
derived. In Chapter 5 the results of Chapter 4 are applied to time-periodic fluid
flow problems to which end a new numerical method is developed, which enables
the computation of a period and a corresponding initial condition in a stochastic
framework based on an iterative approach. Conclusions from this work are drawn
in Chapter 6.



Chapter 2.

Generalized Polynomial Chaos

In 1938, Norbert Wiener [46] introduced the so-called ”Homogeneous Chaos” as
the span of Hermite polynomial functionals of a Gaussian process. ”Polynomial
Chaos” (PC) is defined as a member of this set. It is a Fourier-Hermite series
expansion, for which Cameron and Martin proved in 1947 [4], that the orthogonal
representation converges to any square-integrable functional. In context of stochas-
tic processes, this implies that the Homogeneous Chaos converges to any stochastic
process of second order, which was put in a broader framework involving more gen-
eral probability distributions, referred to as ”generalized Polynomial Chaos” (gPC)
by Xiu and Karniadakis in 2002 [47]. Ghanem and Spanos pioneered in 1991 [15]
the application of the Polynomial Chaos expansion to problems arising in the field
of solid mechanics employing a Finite-Element discretization in the space variable.
This chapter will introduce the basic concepts of generalized Polynomial Chaos and
analyze the system structure resulting from a stochastic Galerkin projection.

2.1. Polynomial Chaos

Consider, without loss of generality, a real-valued random variable X = X(ω)
according to some probability space (Ω,F ,P). Here, Ω denotes the sample space,
F ⊂ 2Ω a filtration, and P a probability measure. Furthermore, it is assumed that
X is square-integrable, i.e., X ∈ L2(Ω) = {X : E(X2) <∞}, whereas

E(X) :=

∫
Ω
X dP (2.1)

denotes the expectation of X. For a sequence of centered, normalized and mu-
tually orthogonal Gaussian random variables {ξi}∞i=1 define Γ̂p to be the space of
polynomials in {ξi}∞i=1 having a polynomial degree of less than or equal to p ∈ N.
Furthermore, define Γp ⊂ Γ̂p to be the set of polynomials, which belong to Γ̂p and
which are orthogonal to Γ̂p−1. The space spanned by Γp shall be denoted by Γ̃p.
Then, the Cameron and Martin theorem [4] yields:

Γ̂p = Γ̂p−1 ⊕ Γ̃p, L2(Ω) =
∞⊕
i=0

Γ̃i. (2.2)

Here, the subspace Γ̃p of L2(Ω) is called the p-th Homogeneous Chaos, whereas Γp
is called the Polynomial Chaos of order p. Therefore, the original Polynomial Chaos
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expansion of X can be represented in the form [25]:

X(ω) = a0H0 +
∞∑
i1=1

ai1H1(ξi1(ω)) +

∞∑
i1=1

i1∑
i2=1

ai1i2H2(ξi1(ω), ξi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3H3(ξi1(ω), ξi2(ω), ξi3(ω)) + . . . , (2.3)

whereas Hn(ξi1 , . . . , ξin) denotes the multi-dimensional Hermite polynomial of order
n in terms of the multi-dimensional independent standard Gaussian random variable
ξ = (ξi1 , . . . , ξin). Note that this expansion corresponds to the discrete version of
the decomposition originally introduced by Wiener [46], which employs integrals
instead of summations. Furthermore, the Polynomial Chaos expansion converges
in mean-square to X, i.e.,

lim
p→∞

E

a0H0 + · · ·+
∞∑
i1=1

· · ·
in−1∑
in=1

ai1...inHn(ξi1 , . . . , ξin)−X

2 = 0. (2.4)

The multi-dimensional Hermite polynomials are constructed via a tensor product
of the corresponding one-dimensional Hermite polynomials, resulting in:

Hn(ξi1 , . . . , ξin) = (−1)n exp(
1

2
ξtξ)

∂n

∂ξi1 · · · ∂ξin
exp(−1

2
ξtξ). (2.5)

To simplify the notation, equation (2.3) can be recasted to obtain the form:

X(ω) =
∞∑
i=0

xiψi(ξ(ω)), (2.6)

since there exists a one-to-one correspondence between the polynomials {ψi} with
coefficients {xi} and {Hn} with coefficients {ai1 , . . . , ain}. The basis functionals
indeed form an orthogonal and complete basis in L2(Ω), whereas the orthogonality
is expressed by:

〈ψi, ψj〉 = 〈ψi, ψi〉δij . (2.7)

Here, δij denotes the Kronecker–Delta and 〈·, ·〉 denotes the inner product, defined
by:

〈f(ξ), g(ξ)〉 :=

∫
supp w(·)

f(ξ)g(ξ)w(ξ) dξ, (2.8)

whereas the weight function w is given by:

w(ξ) :=
1√

(2π)n
exp(−1

2
ξtξ) (2.9)

as the joint probability density function of the multi-dimensional independent stan-
dard Gaussian random variable ξ. Taking the inner product is the same as taking
the expectation of the functionals, i.e.,

〈f(ξ), gξ)〉 = E(f(ξ)g(ξ)) =

∫
Ω
f(ξ)g(ξ) dP. (2.10)
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Remark 2.1. The Hermite polynomials {ψi}∞i=0 are ordered starting from lower
polynomial degree up to the higher degrees. Therefore, for a two-dimensional ran-
dom vector ξ = (ξ1, ξ2) this expansion reads:

X = a0H0 + a1H1(ξ1) + a2H1(ξ2)

+ a11H2(ξ1, ξ1) + a12H2(ξ1, ξ2) + a22H2(ξ2, ξ2) + . . . (2.11)

= x0ψ0 + x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4 + x5ψ5 + . . . (2.12)

= x0 + x1ξ1 + x2ξ2 + x3(ξ2
1 − 1) + x4ξ1ξ2 + x5(ξ2

2 − 1) + . . . . (2.13)

2.2. Generalization

In practical applications, it is desirable that the series in (2.6) converges fast, since
especially for computational purposes, the series needs to be truncated at some fi-
nite integer, which preferably should be of small value. Being a spectral polynomial
expansion, an exponential convergence rate is optimal [47]. Although for the decom-
position of a Gaussian random variable a first order expansion is exact, other types
of non-Gaussian random variables may exhibit low convergence rates and hence re-
quire a large truncation order. Therefore, Xiu and Karniadakis [47] introduced the
so-called ”Askey-Chaos” and with it the ”generalized Polynomial Chaos”, which
essentially replaces the Hermite polynomials {Hi} by other polynomials, denoted
by {Ii}, which are orthogonal with respect to the underlying probability density
function of the random vector ξ.

To distinguish between the classical Hermite-Chaos in terms of a Gaussian ran-
dom variable ξ the notation for the random vector is changed to ζ within this section
to emphasize the possibility of other types of probability distributions. Therefore,
the generalization of the Polynomial Chaos expansion reads:

X(ω) = a0I0 +

∞∑
i1=1

ai1I1(ζi1(ω)) +

∞∑
i1=1

i1∑
i2=1

ai1i2I2(ζi1(ω), ζi2(ω))

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3I3(ζi1(ω), ζi2(ω), ζi3(ω)) + . . . . (2.14)

For example, if X is chosen to be represented in terms of uniformly distributed ran-
dom variables, then the {Ii} are chosen to be Legendre polynomials. The ”Askey-
Chaos” is listed in Table 2.1 and gives an overview which polynomials correspond
to certain types of distributions (continuous and discrete ones).

Remark 2.2. For discrete distributions, the integral in (2.8) is replaced by a sum,
which yields:

〈f(ζ), g(ζ)〉 =
∑
ζ

f(ζ)g(ζ)w(ζ). (2.15)

It is possible to extend gPC even further, by allowing arbitrary probability densi-
ties and hence construct corresponding orthogonal polynomials. Another possibil-
ity is to even allow for non-polynomial representations, e.g., by using trigonometric
functionals. However, there exist probability distributions, such as the log-normal
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Probability distribution Askey-Chaos Support

Continuous Gaussian Hermite-Chaos (−∞,∞)
Gamma Laguerre-Chaos [0,∞)
Beta Jacobi-Chaos [a, b]
Uniform Legendre-Chaos [a, b]

Discrete Poisson Charlier-Chaos {0, 1, 2, . . .}
Binomial Krawtchouk-Chaos {0, 1, 2, . . . , N}
Negative binomial Meixner-Chaos {0, 1, 2, . . .}
Hypergeometric Hahn-Chaos {0, 1, 2, . . . , N}

Table 2.1.: Askey-Chaos corresponding to certain types of probability distributions.

distribution, for which the series in (2.14) does not converge to any second order
random variable, since a momentum condition does not hold, which was shown to
be a necessary requirement for convergence [11], based on a generalization of the
Cameron and Martin theorem [4]. Since a log-normal distributed random variable
can be recast in terms of a Gaussian random variable, a Hermite-Chaos can provide
an alternative to achieve convergence for this case.

2.3. Spectral Galerkin projection of differential equations

Suppose, a solution u is sought to some differential equation with stochastic pa-
rameters, given by:

L(u, x, t;ω) = f(x, t;ω), a.s. in Ω, (2.16)

whereas L denotes some differential operator involving derivatives of u in the time
variable t ∈ [0, T ] ⊂ R and space variable x ∈ D ⊂ Rd in an open and bounded do-
main D for some d ∈ N. Here, for simplicity it is assumed that there exists a unique
and scalar valued solution u to equation (2.16) with finite second order moments
according to some prescribed boundary and initial conditions. Furthermore, ω ∈ Ω
denotes a sample from the sample space Ω and represents the stochastic nature of
the differential equation. Suppose, that the stochastic influence can be parameter-
ized and approximated by some finite dimensional random vector ξ = (ξ1, . . . , ξL)
of dimension L ∈ N. One possibility and popular technique to derive such a fi-
nite approximation is given by the so-called ”Karhunen-Loève decomposition” [25],
based on a spectral expansion of the covariance function of the random vector ξ.
Therefore, equation (2.16) can be recast in a parameterized form:

L(u, x, t; ξ) = f(x, t; ξ). (2.17)

Because of the stochastic dependency of the differential equation on ξ, the solution
u itself is a random field in space and time, i.e., u = u(x, t; ξ). Since u is assumed
to be square-integrable for all (x, t) ∈ D× [0, T ], it has a convergent gPC expansion
pointwise in D×[0, T ]. Depending on the probability distribution of ξ the expansion
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polynomials {ψi} are chosen according to the Askey-Chaos (see Table 2.1) and u is
approximated via a finite dimensional gPC expansion of order No ∈ N:

u(x, t; ξ) ≈ uP (x, t; ξ) :=

P∑
i=0

ui(x, t)ψi(ξ), (2.18)

whereas for the actual number of terms P + 1 employed in (2.18) it holds:

P + 1 =
(No+ L)!

No!L!
. (2.19)

Here, for simplicity the notation of ω is dropped and ψi(ξ) := ψi(ξ(ω)) almost surely
in Ω. Note, that in this context the gPC expansion has been extended to the case
of stochastic processes and random fields by a pointwise gPC expansion of u in Ω
leading to a separation of the functional dependency of u on the deterministic space
and time variable (x, t) ∈ D×[0, T ] and the stochastic random vector ξ. For the rest
of this work the deterministic coefficients {ui}Pi=0 arising in a gPC expansion will
be referred to as ”stochastic modes” or simply ”modes”. Furthermore, the notation
uP will be dropped for notational convenience such that u itself may denote its
gPC expansion employing a finite number of terms, therefore also dropping the
approximation symbol ”≈”. It will be explicitly stated if u and uP should need to
be distinguished within some context.

Next, the discretization (2.18) is inserted into the governing equations (2.16)
resulting in:

L(
P∑
i=0

uiψi, x, t; ξ) = f(x, t; ξ). (2.20)

At this point, a Galerkin projection is employed, ensuring that the residual of (2.16)
is orthogonal to the space spanned by the Chaos Polynomials. This is achieved by
multiplying equation (2.20) with ψj , j = 0, . . . , P and taking the inner product
〈·, ·〉, leading to:〈

L(

P∑
i=0

uiψi, x, t; ξ), ψj

〉
= 〈f(x, t; ξ), ψj〉 , ∀j = 0, . . . , P. (2.21)

The resulting coupled system (2.21) is deterministic and of size P + 1. Hence,
taking the stochastic dependency into account leads to a blown up system size
by a factor of P + 1, with respect to a corresponding deterministic problem. In
literature, this phenomenon is often referred to as ”curse of dimensionality”. It is
important to note, that when no explicit stochastic influence is given by L, i.e.,
L 6= L(·; ξ) and furthermore, L is linear in u, the system deteriorates to a fully
decoupled structure, leading to P + 1 independent computable problems. This can
easily be verified by observing that the following relation holds for a linear operator
L for all j = 0, . . . , P :〈

L(
P∑
i=0

uiψi, x, t; ξ), ψj

〉
=

P∑
i=0

〈ψi, ψj〉L(ui, x, t), (2.22)

= 〈ψj , ψj〉L(uj , x, t), (2.23)
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No\L 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 6 10 15 21 28
3 4 10 20 35 56 84
4 5 15 35 70 126 210
5 6 21 56 126 252 462
6 7 28 84 210 462 924

Table 2.2.: Number of unknown modes P + 1 in gPC. No denotes the maximum
polynomial degree of the Chaos Polynomials and L the dimension of the
random vector ξ.

by the orthogonality of the Chaos Polynomials {ψi}Pi=0.

At this point any appropriate deterministic solver can be employed when solving
the system of differential equations (2.21) for the modes ui, i = 0, . . . , P . However,
as can be seen from Table 2.2 the system size grows extremely fast due to the
factorial dependency of the size P +1 on the parameters No and L (cf. Eq. (2.19)).
This illustrates a huge numerical challenge, especially when the discretization of
the deterministic part is numerically expensive itself.

The stochastic moments of u, e.g., the mean and the variance, can be calculated
by a weighted sum of the computed modes ui. For the mean it holds:

E(u)(x, t) =

〈
P∑
i=0

ui(x, t)ψi, 1

〉

=

P∑
i=0

ui(x, t)〈ψi, 1〉 = u0(x, t), (2.24)

since 〈ψi, 1〉 = 0 for i > 0 due to the orthogonality of the polynomials to ψ0, for
which, without loss of generality, can be assumed that ψ0 ≡ 1. For the variance σ2

it holds:

σ2(u)(x, t) = E(u2)(x, t)− (E(u)(x, t))2

=

〈
P∑
i=0

P∑
j=0

ui(x, t)uj(x, t)ψi, ψj

〉
− u2

0(x, t)

=
P∑
i=0

P∑
j=0

ui(x, t)uj(x, t)〈ψi, ψj〉 − u2
0(x, t)

=
P∑
i=0

u2
i (x, t)〈ψi, ψi〉 − u2

0(x, t)

=
P∑
i=1

u2
i (x, t)〈ψi, ψi〉. (2.25)
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2.4. Sparsity structure of a Galerkin projected system

This section aims at analyzing the sparsity structure of systems arising in the con-
text of stochastic Galerkin projections. Especially, bilinear and trilinear forms with
a dependency on some random vector ξ are addressed, since these can be used as an
abstract representation of stochastic weak formulations typically arising in context
of Finite-Element discretizations of stochastic partial differential equations.

2.4.1. Linear projected systems

Consider the abstract stochastic problem:

Find u ∈ L2(Ω)⊗ V such that

a(u, v; ξ) = l(v), ∀v ∈ L2(Ω)⊗W, (2.26)

for some given bilinear form a, linear form l and vector spaces V and W . Since this
section is only concerned with the structure of the corresponding Galerkin projected
system, it is assumed that there exists some unique solution u ∈ L2(Ω)⊗ V , which
solves (2.26). This problem class includes, for example, a weak formulation of the
stochastic Poisson problem, given by:

Find u ∈ L2(Ω)⊗H1
0 (D) such that

ν(ξ)(∇u,∇v) = (f, v), ∀v ∈ L2(Ω)⊗H1
0 (D), (2.27)

for some open bounded Lipschitz domain D ⊂ R2, a given right hand side f and
some stochastic diffusion coefficient ν ∈ L2(Ω), whereas (·, ·) denotes the inner
product on L2(D).

Since all quantities are assumed to be square-integrable in Ω, they posses a con-
vergent gPC expansion, which approximation employing P + 1 terms is given by:

u =

P∑
i=0

uiψi, (2.28)

v =
P∑
i=0

viψi, (2.29)

a =
P∑
i=0

aiψi. (2.30)

Therefore, the Galerkin projected system reads:

P∑
k=0

P∑
j=0

ak(uj , vi)ckji = l(vi), (2.31)

for all i = 0, . . . , P , whereas the third order tensor T3 = (cijk)
P
i,j,k=0 is defined by

cijk :=
〈ψiψj , ψk〉
〈ψk, ψk〉

. (2.32)
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Equation (2.31) can be recast in operator form, which reads:

P∑
j=0

Aijujckji = l(vi), ∀i = 0, . . . , P, (2.33)

whereas

Aijuj :=

P∑
k=0

ak(uj , vi)ckji, ∀i = 0, . . . , P. (2.34)

Therefore, (2.33) represents a linear system of equations given by:
A00 · · · A0P

... · · ·
...

... · · ·
...

AP0 · · · APP



u0
...
...
uP

 =


l(v0)

...

...
l(vP )

 . (2.35)

The main focus of this section is to analyze the sparsity structure of the system
operator A = (Aij)

P
i,j=0 defined in (2.35). To this purpose, a sparsity ratio S is

being defined by:

S :=
#{(i, j) : Aij 6= 0}

(P + 1)2
≤ 1, (2.36)

which represents a measure for the general number of nonzero blocks in A divided
by the total number of blocks (P + 1)2. It is important to note, that this ratio is
defined for a generic operator A resulting from (2.33), i.e., the sparsity ratio S is
independent of the concrete definition of the bilinear form a, instead it measures
the contribution of the stochastic tensor T3 on the structure of system (2.35) in
a generic way. The calculation of S can be carried out easily by identification of
tuples (i, j), i, j = 0, . . . , P , for which ckji = 0 for all k = 0, . . . , P .

Table 2.3, Fig. 2.1 and Fig. 2.2 illustrate the dependency of S on the dimen-
sion L of the random vector ξ and the employed polynomial degree No in the gPC
approximation of the bilinear form a. Here, black blocks represent block entries
which can be nonzero in general. It can be observed that for increasing dimension
L the sparsity ratio of A decreases almost linear in L, whereas for increasing poly-
nomial degree No the sparsity ratio S is subject to a small variation. Note, that
for L = 1 there do not exist any general nonzero blocks, leading to a sparsity ratio
of S = 1. However, the blocks Aij , i, j = 0, . . . , P are often sparse themselves, e.g.,
due to a Finite-Element discretization of the deterministic variables, introducing
an additional sparsity.

2.4.2. Quadratic nonlinearity

Similar to the previous section, the system structure resulting from a Galerkin pro-
jection of a trilinear form shall be analyzed in the following. This is motivated
by the problem definition stated in Chapter 5, which involves a quadratic nonlin-
earity resulting from a stochastic convection term of the Navier-Stokes equations.
Therefore, the model problem for this section reads:
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(a) Sparsity structure for No = 2, L = 5.
Sparsity ratio S = 0.524. (P + 1)2 = 441.

(b) Sparsity structure for No = 3, L = 5.
Sparsity ratio S = 0.49. (P + 1)2 = 3136.

(c) Sparsity structure for No = 4, L = 5.
Sparsity ratio S = 0.553. (P + 1)2 = 15876.

(d) Sparsity structure for No = 5, L = 5.
Sparsity ratio S = 0.547. (P + 1)2 = 63504.

Figure 2.1.: Sparsity structure plots for varying polynomial order No and fixed
dimension L of the random vector ξ.

L\No 1 2 3 4 5

1 1 1 1 1 1
2 0.778 0.833 0.84 0.867 0.864
3 0.625 0.7 0.7 0.748 0.746
4 0.52 0.6 0.584 0.643 0.64
5 0.444 0.524 0.49 0.553 0.547

Table 2.3.: Sparsity ratio S for varying polynomial degree No and dimension L of
the random vector ξ.
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(a) Sparsity structure for No = 3, L = 2.
Sparsity ratio S = 0.84. (P + 1)2 = 100.

(b) Sparsity structure for No = 3, L = 3.
Sparsity ratio S = 0.7. (P + 1)2 = 400.

(c) Sparsity structure for No = 3, L = 4.
Sparsity ratio S = 0.584. (P + 1)2 = 1225.

(d) Sparsity structure for No = 3, L = 5.
Sparsity ratio S = 0.49. (P + 1)2 = 3163.

Figure 2.2.: Sparsity structure plots for varying dimension L of the random vector
ξ and fixed polynomial order No.

Find u ∈ L2(Ω)⊗ V such that

n(u, u, v; ξ) = l(v), ∀v ∈ L2(Ω)⊗W, (2.37)

whereas n defines some trilinear form according to the vector spaces L2(Ω)⊗V and
L2(Ω)⊗W subject to some random vector ξ of dimension L. One example is given
by a stochastic convection term (cf. Chapter 5), for which n is being defined by:

n(u, ū, v; ξ) := T (ξ)((u · ∇ū), v) + a(u, v), (2.38)

for T ∈ L2(Ω), a being a bilinear form and u, ū, v ∈ L2(Ω)⊗H1
0 (D)2∩{u : ∇·u = 0}

on some open, bounded and Lipschitz spatial domain D ⊂ R2.
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Following an analog derivation of the corresponding Galerkin projected system
as for the linear case, one obtains the following system of equations:

P∑
k=0

P∑
j=0

P∑
l=0

nk(uj , ul, vi)ckjli = l(vi), ∀i = 0, . . . , P, (2.39)

whereas the corresponding gPC expansions employing a finite number of terms are
given by:

n(u, ū, v; ξ) =
P∑
k=0

nkψk(ξ), (2.40)

u =

P∑
i=0

uiψi, (2.41)

v =

P∑
i=0

viψi. (2.42)

Note, that the main difference to the linear case is reflected by the fact that the
third order tensor T3 is replaced by a corresponding fourth order tensor T4 =
(cijlk)i,j,l,k=0,...,P given by

cijlk :=
〈ψiψjψl, ψk〉
〈ψk, ψk〉

. (2.43)

Again, equation (2.39) can be recast in operator form, such that
N00 · · · N0P

... · · ·
...

... · · ·
...

NP0 · · · NPP



u0
...
...
uP

 =


l(v0)

...

...
l(vP )

 , (2.44)

whereas the nonlinear block operators Nij , i, j = 0, . . . , P are defined by:

Nijuj :=
P∑
k=0

P∑
l=0

nk(uj , ul, vi)ckjli, ∀i = 0, . . . , P. (2.45)

However, there is no corresponding general sparsity structure observable as being
the case for the linear operator involving the third order tensor T3, resulting in a
sparsity ratio S = 1 for the nonlinear system given in (2.44). Therefore, the Galerkin
projection does not introduce additional sparsity in general. However, the fourth
order tensor T4 is sparse itself [25], which also plays an important role, since many
of its entries are equal to zero resulting in a significant reduction of the summands in
(2.39). Especially, if the assembly of the operators Nij , i, j = 0, . . . , P is numerically
costly, the total assembly of the system matrix N = (Nij)

P
i,j=0 benefits heavily from

the sparsity of T4. A similar result is valid regarding the third order tensor T3 [25].





Chapter 3.

Time-dependent generalized Polynomial
Chaos for ordinary differential equations

A well known difficulty when employing gPC is the possible convergence breakdown
in cases involving strong nonlinear dependencies on the random vector ξ. These
cases can occur, for example, when dealing with long term integration or stochastic
discontinuities in context of differential equations. Since a stationary, i.e., time-
independent approach is used, the time evolution of the probability distribution of
the solution to some underlying differential equation cannot be captured efficiently
after some application dependent critical time. This can be seen clearly when tak-
ing a look at the discretization parameter No (cf. Chapter 2), which only allows
for nonlinear dependencies up to the order of No, since only polynomials of max-
imum order No are employed in a corresponding gPC expansion. This problem
has been studied in various works, e.g., [8, 14, 26, 38, 44, 45], leading to promis-
ing modifications towards gPC to overcome the mentioned convergence breakdown.
This chapter will recapitulate and extend one of the more recent approaches intro-
duced by Gerritsma et al. [14], termed the ”time-dependent generalized Polynomial
Chaos” (TD-gPC), in context of ordinary differential equations subject to a random
input. Furthermore, the statements of this chapter are based on the published work
of the author in [19, 20] of the year 2011.

3.1. Nonlinear dependencies on the random input

Although gPC exhibits exponential convergence for a lot of numerical applications,
the question arises if an optimal convergence property can be maintained through-
out a time- and space-dependent numerical simulation. For elaboration on this
question, a simple one-dimensional ordinary differential equation will be consid-
ered, showing that the standard gPC expansion is failing quickly to approximate
the exact solution accurately. Therefore, the model equations are given by:

d

dt
u(t; ξ) = −k(ξ)u(t; ξ), for t ∈ (0, T ], (3.1)

u(0; ξ) = 1, (3.2)

whereas ξ ∈ L2(Ω) and k(ξ) := 1
2(1 + ξ). The reason why this problem is being

considered lies in its simple structure and the fact that its exact solution uexact can
be calculated analytically and is given by:

uexact(t; ξ) = exp(−k(ξ)t), t ∈ [0, T ]. (3.3)
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(a) Analytical and computed mean. (b) Analytical and computed variance.

(c) Relative error mean. (d) Relative error variance.

Figure 3.1.: Calculated mean and variance employing gPC for P = 4, 5, 6 and their
corresponding relative errors subject to a uniformly distributed input.

Taking a closer look on uexact by expressing it through its series representation

uexact(t; ξ) =

∞∑
n=0

(−1)n
(1 + ξ)ntn

2nn!
, (3.4)

it is observable that if t > 0 gets large the nonlinear dependencies on ξ become
more dominant. However, a gPC expansion of order No, i.e.,

u(t; ξ) =

P∑
i=0

ui(t)ψi(ξ), (3.5)

whereas P = No (note that L = 1 for this case, cf. Chapter 2), is restricted
to a time-independent fixed maximum polynomial degree of order P . Therefore
(3.5) is only capable of representing nonlinear dependencies on ξ up to the order
of P . This leads to an increasingly poor approximation quality for large t > 0,
since the decomposition is only accurate for early times t < tcrit. This convergence
breakdown is illustrated by a numerical computation of the mean and the variance
of a solution to (3.1), (3.2), for which the relative errors between the exact uexact
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(a) Analytical and computed mean. (b) Analytical and computed variance.

(c) Relative error mean. (d) Relative error variance.

Figure 3.2.: Calculated mean and variance employing gPC for P = 4, 5, 6 and their
corresponding relative errors subject to a Gaussian distributed input.

and computed solution uP are defined by:

εmean :=
|E(uexact)− E(uP )|
|E(uexact)|

, (3.6)

εvariance :=
|σ2(uexact)− σ2(uP )|

|σ2(uexact)|
. (3.7)

Fig. 3.1 and Fig. 3.2 depict the mean and the variance of an exact and com-
puted solution to the model problem (3.1), (3.2) and their corresponding relative
errors arising from the numerical discretization employing a 4th order Runga-Kutta
scheme with a homogeneous time step size ∆t = 0.001. Fig 3.1 considers a Uni-
form distributed ξ ∼ U(−1, 1), while Fig. 3.2 considers a Gaussian distributed
ξ ∼ N (0, 1), both employing a gPC expansion of order P = 4, 5, 6. It can be
observed, that for increasing time t > 0 the gPC expansion is not capable of rep-
resenting the solution’s moments accurately, leading to quickly growing unfeasible
relative error levels of the order of O(1) for both the mean and the variance.

Summing up, due to the fixed order P of the gPC the errors are growing in time.
This can be attributed to the fact that only nonlinear dependencies on ξ up to the
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order P can be approximated accurately. Since the solution uexact is of exponential
type, this restriction does not suffice anymore if t > 0 gets large enough leading to
unacceptable error levels. Hence, the generalized Polynomial Chaos expansion is
only efficient for times t < tcrit for which the nonlinear dependencies do not have a
huge impact on the solution’s stochastic dynamic behavior.

3.2. Time-dependent basis functionals

This section is focused on the illustration of the basic principles of the time-
dependent gPC (TD-gPC) for a scalar valued stochastic process u = u(t; ξ) subject
to a random input ξ with some arbitrary probability distribution. Generalizations
to systems of differential equations will be given in Section 3.3.

It is assumed that u ∈ L2(Ω) for all times t ≥ 0, such that a standard gPC expan-
sion can be employed at each time t. Recapitulate, that a P th order decomposition
of u reads:

u(t; ξ) =
P∑
i=0

ui(t)ψi(ξ), (3.8)

whereas ψi, i = 0, . . . , P , denote the Chaos Polynomials according to the Askey-
Chaos (cf. Table 2.1). Note, that since ξ is assumed to be scalar valued, the
maximum polynomial degree No employed in the gPC expansion of u is equal to
the number of terms minus one within equation (3.8), i.e., No = P . At this stage,
the gPC expansion is only capable of representing nonlinear dependencies on ξ up
to the order P (cf. Section 3.1). Therefore, it is desirable to reduce the degree of the
nonlinear dependency ideally towards a linear dependency at each time t > 0, which
would yield an optimal (exact) expansion, since all coefficients corresponding to the
nonlinear parts would vanish. Therefore, the gPC expansion would be capable of
representing u accurately at each time t ≥ 0.

The questions at this point are: Is a decrease in the degree of the nonlinear
dependency possible? and if yes, then how? An answer to these questions will be
given in the following subsections.

3.2.1. Transformation of the probability measure

For the subsequent analysis the time t is fixed at t = t∗ > 0. It is observed that a
new random variable η can be defined by:

η(ξ) := u(t∗; ξ) =

P∑
i=0

ui(t
∗)ψi(ξ). (3.9)

The properties of η are that it is a functional depending on ξ and representing
the discretized solution at time t = t∗. Furthermore, since it is assumed that u is
square-integrable at all times t ≥ 0, the same holds for η, i.e., η(ξ) ∈ L2(Ω). The
goal at this stage is to express u via a transformed gPC expansion with respect
to η, which is trivial at t = t∗. However, for t > t∗ this will result in nonlinear
dependencies on η of lower order compared to the dependencies on ξ leading to a
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better approximation quality of the stochastic dynamics of u. Carrying out this
step, a ”transformed” decomposition of u in terms of η is given by:

u(t; η) =

P∑
i=0

ũi(t)ψ̃i(η), for t ≥ t∗. (3.10)

Here, {ũi}Pi=0 denote the modes with respect to the new Chaos Polynomial basis
functionals {ψ̃i}Pi=0, which satisfy the orthogonality condition:∫

supp Fη

ψ̃i(η)ψ̃j(η) dFη(η) = 〈ψ̃i, ψ̃i〉δij , i, j = 0, . . . , P, (3.11)

whereas Fη denotes the probability distribution function of η. Note, that this
expansion is a further extension of the Askey-Chaos (cf. Table 2.1), with respect
to the probability distribution of u at t = t∗. However, in order to be able to
determine the new basis {ψ̃i}Pi=0, knowledge about Fη is required. In practical
calculations, computing Fη is often not feasible, therefore the integration in (3.11)
is transformed back to ξ in order to be able to use the knowledge about the initial
probability distribution on ξ, resulting in:∫

supp Fη

ψ̃i(η)ψ̃j(η) dFη(η) =

∫
R
ψ̃i(u(t∗; ξ))ψ̃j(u(t∗; ξ))fξ(ξ) dξ, (3.12)

for i, j = 0, . . . , P , with fξ denoting the probability density function of ξ.

3.2.2. Projection onto the new basis

When dealing with ordinary differential equations, one needs to specify new initial
conditions at t = t∗ such that a Galerkin projection in terms of η can be applied
for t > t∗. This can be achieved by a projection of u onto the new basis via the
following relations, which hold almost surely in Ω:

P∑
i=0

ui(t
∗)ψi(ξ) =

P∑
i=0

ũi(t
∗)ψ̃i(η) (3.13)

⇒
P∑
i=0

ui(t
∗)〈ψi, ψ̃j〉 =

P∑
i=0

ũi(t
∗)〈ψ̃i, ψ̃j〉, j = 0, . . . , P (3.14)

⇒ ũj(t
∗) =

P∑
i=0

ui(t
∗)
〈ψi, ψ̃j〉
〈ψ̃j , ψ̃j〉

, j = 0, . . . , P by orthogonality. (3.15)

The inner product 〈ψi, ψ̃j〉 taking into account ψi and ψ̃j can be calculated by:

〈ψi, ψ̃j〉 =

∫
R
ψi(ξ)ψ̃j(u(t∗; ξ))fξ(ξ) dξ. (3.16)

Usually, the first functional ψ̃0 is being defined as a constant functional equal to 1.
For a polynomial basis the next functional can be defined as a linear polynomial with
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leading coefficient equal to 1, namely, ψ̃1(η) := η−α for some α ∈ R. Recapitulate,
that at t = t∗ it holds:

η =
P∑
i=0

ũi(t
∗)ψ̃i(η), (3.17)

which can be simplified to the conditions

ũ0(t∗) + ũ1(t∗)(η − α) = η (3.18)

ũi(t
∗) = 0, i ≥ 2, (3.19)

leading to ũ0(t∗) = α and ũ1(t∗) = 1. By taking the expectation in (3.13) and
interchanging integration and summation one obtains:

P∑
i=0

ui(t
∗)〈ψi〉 =

P∑
i=0

ũi(t
∗)〈ψ̃i〉. (3.20)

Due to the orthogonality conditions for both ψi and ψ̃i with respect to the constant
functional 1, i.e., 〈ψi, 1〉 = 0 and 〈ψ̃i, 1〉 = 0 for i > 0, it holds:

u0(t∗) = ũ0(t∗). (3.21)

Therefore, in the case of a scalar valued ordinary differential equation subject to a
random input, the modes after the ”transformation of measure” at time t = t∗ are
analytically given by:

ũ0(t∗) = u0(t∗), (3.22)

ũ1(t∗) = 1, (3.23)

ũi(t
∗) = 0, for i ≥ 2, (3.24)

if a polynomial basis is employed with ψ̃0 = 1 and a normalized leading coefficient
of ψ̃1. This allows for a numerically cost efficient way of transforming the solution
u onto the new basis functionals in the random space. However, Section 3.2.3
will introduce modifications to the time-dependent gPC expansion, for which the
analytical expressions will not hold, requiring the solution of the projected system
given by equation (3.15). Note, that the computation of the mean and the variance
of a solution u can be carried out analog to the case employing the standard gPC
expansion, i.e.,

ū(t) = u0(t), (3.25)

σ2(u)(t) =

P∑
i=1

ui(t)
2〈ψ̃i, ψ̃i〉, (3.26)

due to the orthogonality of the Chaos Polynomials {ψ̃i}Pi=0.
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3.2.3. Modified TD-gPC

When dealing with a system of ordinary differential equations d
dtu = f(u, t; ξ),

which involves an explicit dependence of the right hand side f on the random input
ξ, the basis as being constructed in the previous section might not be sufficient.
This issue is being illustrated in the following example:

Suppose f = f(u; ξ) := −ξu for some initial scalar stochastic input random
variable ξ subject to some arbitrary probability distribution. Differentiating f with
respect to t by applying the chain rule, yields:

di

dti
f(u; ξ) = (−1)i+1ξi+1u, i ≥ 0. (3.27)

Furthermore, the Taylor expansion of u is given by:

u(t∗ + ∆t; η) = u(t∗; η) + ∆t
d

dt
u(t∗; η) +

(∆t)2

2

d2

dt2
u(t∗; η) + . . . , (3.28)

= η −∆tξη +
(∆t)2

2
ξ2η − . . . . (3.29)

From this it can be seen that a basis in terms of η cannot approximate the time
derivatives of u in an exact way due to the explicit dependence of f on ξ. There-
fore, TD-gPC as introduced in the previous section is not feasible for this class of
applications leading to an error contribution of order O(∆t). However, it is possible
to overcome this drawback by defining a new basis in terms of η and ξ via a Tensor
product, such that u can be expressed by the expansion:

u(t;ω) =

P∑
i=0

Q∑
j=0

uij(t)ψi(η(ω))φj(ξ(ω)), (3.30)

whereas {ψi}Pi=0 and {φj}Qj=0 are orthogonal polynomials with respect to the prob-
ability distribution of η and ξ, respectively. By a technical calculation it can be
easily shown that such a basis is capable of representing the time derivatives of u
to the order of O((∆t)Q+1). The next section will demonstrate this basis extension
with respect to a system of differential equations and give numerical results, which
display the improved convergence behavior.

3.3. System of differential equations - A linear oscillator

To the present knowledge of the author, the modifications of TD-gPC described
in Section 3.2.3 have not been yet considered for systems of differential equations,
except in the work of the author himself [19]. In the original work of Gerritsma
et al. [14] only the non-modified version of TD-gPC has been applied to a system
of differential equations, yet subject to a variation of the approach outlined in the
following. The results presented in [19] are being elaborated on within the next
sections, showing how the modifications in Section 3.2.3 can be adapted in that
context. This is exemplified considering a linear oscillator exhibiting stable limit
cycles. For this problem it is well known that the classical gPC expansion fails to
capture the dynamics of the solution after some certain critical time [26].
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3.3.1. Model equations

Consider the equations of motion of a linear oscillator in two dimensions:

d

dt
x1(t) = x2(t), (3.31)

d

dt
x2(t) = −qx1(t), (3.32)

for t ∈ [0, T ] ⊂ R with q > 0, position x1 and impulse x2 = ẋ1. The frequency
of the system is

√
q/2π and the initial conditions are set to x1(t = 0) = 1 and

x2(t = 0) = 0. In the following a random frequency, i.e., q = q(ξ) = q0 + q1ξ, shall
be considered subject to a scalar random variable ξ, which is uniformly distributed
within the real interval (−1, 1), i.e., ξ ∼ U(−1, 1). The analytical solutions can
easily be calculated and are given by:

x1(t; ξ) = cos(
√
q(ξ)t), (3.33)

x2(t; ξ) = −
√
q(ξ) sin(

√
q(ξ)t). (3.34)

Here, it can already be seen that the solution (x1, x2) has a strong nonlinear de-
pendency on the random frequency

√
q/2π.

3.3.2. Discretization employing TD-gPC

Since in contrast to the previous sections a vector-valued problem in two dimensions
is being considered, the procedure, as described in Section 3.2.3, is extended to this
case and analyzed at some reset time t = t∗ > 0. The starting point is the standard
gPC discretization of x1 and x2 given by:

x1(t; ξ) =
P∑
i=0

x1,i(t)Li(ξ), (3.35)

x2(t; ξ) =

P∑
i=0

x2,i(t)Li(ξ), (3.36)

whereas {Li}Pi=0 denotes the Legendre polynomials in terms of the uniformly dis-
tributed random variable ξ. Here it holds No = P , since a one-dimensional random
input is being considered (cf. Chapter 2). Therefore, the index i of Li, i = 0, . . . , P ,
equals to the degree of the considered Legendre polynomial. At some reset time
t = t∗ two new random variables are defined corresponding to the solution compo-
nents:

η(1)(ξ) :=

P∑
i=0

x1,i(t
∗)Li(ξ), (3.37)

η(2)(ξ) :=
P∑
i=0

x2,i(t
∗)Li(ξ). (3.38)

From this point on, a multi-dimensional stochastic input, given by η(1) and η(2),
has to be considered. This needs to be taken into account when employing a gPC
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expansion in terms of the new random variables. However, since η(1) and η(2)

are dependent random variables via ξ, a modification to the standard approach
is suggested to maintain orthogonality of the multi-dimensional basis functionals.

Therefore, first orthogonal Chaos Polynomials ψ
(i)
j , i = 1, 2, j = 0, . . . , P , are being

computed with respect to each random variable η(i), i = 1, 2, such that:∫
ψ(i)
s (η)ψ(i)

r (η)fη(i)(η) dη = 〈ψ(i)
s , ψ(i)

s 〉δsr, s, r = 0, . . . , P, i = 1, 2. (3.39)

This can be achieved, for example, by employing a Gram-Schmidt orthogonaliza-
tion method, subject to a ”twice is enough” modification [16], which improves the
numerical stability. Note that the computation of the integral in (3.39) can be
transformed to the original random variable ξ as described in Section 3.2.1 to avoid
the explicit calculation of the probability density functions fη(i) of η(i), i = 1, 2.

Next, a new temporary basis is defined by a tensor product of the corresponding
Chaos Polynomials via:

xk(t; η
(1); η(2)) =

∑
0≤i+j≤P

x̃k,ij(t)ψ
(1)
i (η(1))ψ

(2)
j (η(2)), t ≥ t∗, k = 1, 2, (3.40)

which equivalently can be expressed by:

xk(t; η
(1); η(2)) =

M∑
j=0

xk,j(t)φj(η
(1), η(2)), t ≥ t∗, k = 1, 2, (3.41)

via a one-to-one correspondence between the basis functionals and coefficients in
equations (3.40) and (3.41), whereas for the number of terms M + 1 in (3.41) it
holds:

M + 1 =
(P + 2)!

P !2!
=

(P + 1)(P + 2)

2
. (3.42)

Note that at this stage, the basis polynomials {φi}Mi=0 are not orthogonal to each
other because of the dependency of η(1) and η(2), introduced through ξ. Therefore,
the basis is once again orthogonalized via a Gram-Schmidt method in two dimen-
sions, maintaining an orthogonal projection of x1 and x2. To this end an orthogonal
basis is defined by:

ψ0 := 1, (3.43)

ψi(η
(1), η(2)) := φi(η

(1), η(2))−
i−1∑
j=0

〈φi, ψj〉
〈ψj , ψj〉

ψj(η
(1), η(2)), i = 1, . . . ,M. (3.44)

Since now an orthogonal basis is employed, it is straight forward to calculate the
required initial conditions at t = t∗ by a projection similar to the one introduced
in Section 3.2.3:

x
(new)
k,j (t∗) =

M∑
i=0

x
(old)
k,i (t∗)

〈ψ(old)
i , ψ

(new)
j 〉

〈ψ(new)
j , ψ

(new)
j 〉

, for j = 0, . . . ,M, k = 1, 2. (3.45)
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Here, x
(old)
k,j and x

(new)
k,j , j = 0, . . . , P , k = 1, 2 denote the modes of the solution

(x1, x2) before and after the reset step at t = t∗, respectively. Similary, ψ
(old)
j

and ψ
(new)
j denote the corresponding Chaos Polynomials before and after the reset

step, respectively. Note, that in case of the first reset within the simulation time
interval [0, T ] all modes of the ”old” solution with index i > P are set to zero.
However, it is also possible to start with a lower expansion order and add the new
required terms initialized with zero when needed. The procedure described above
is then repeated at every qualified time step, which can be identified by some error
estimation criteria [14] or chosen to be each time step within the time discretization
procedure.

For post processing purposes the mean x̄1, x̄2 and the variances σ2(x1), σ2(x2)
can be calculated in the same manner as for the standard gPC expansion via:

x̄i(t) = xi,0(t), (3.46)

σ2(xi)(t) =

M∑
j=1

(xi,j)
2 〈ψj , ψj〉, (3.47)

for i = 1, 2, due to the orthogonal nature of the projection.

3.3.3. Extension of the modified TD-gPC

Before stating the numerical results, one major drawback of TD-gPC is analyzed
as already described in Section 3.2.3, namely a convergence breakdown when the
uncertain parameter is explicitly involved within the differential equation (this is
the case here) and not exclusively in initial conditions. For this purpose the second
equation of the model problem (3.32) is investigated in more detail:

d

dt
x2 = −q(ξ)x1. (3.48)

Employing any deterministic time-discretization scheme represented by some func-
tion g, w.l.o.g. subject to a homogeneous time step size ∆t > 0, results in:

x2(t+ ∆t; ξ) = g(x1(t; ξ), x1(t+ ∆t; ξ), t; ξ). (3.49)

Here the explicit dependency of g on ξ is crucial. If changing the variables from ξ to
η(i), i = 1, 2 due to TD-gPC, an optimal representation of the solution x1, x2 itself
is obtained at every time step, however, the solution’s time evolution cannot be
captured accurately, i.e., its time derivative in terms of the new random variables
cannot be represented efficiently in a TD-gPC expansion, since g is still depending
on the initial random variable ξ. Hence, when progressing in time, the error made
because of a poor representation of the time derivative increases steadily, leading
to unfeasible results similar to the case exemplified in Section 3.2.3. Therefore,

the temporary basis ψ
(1)
i , ψ

(2)
i is modified to take into account the initial random
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variable ξ, resulting in:

x1(t; η(1), η(2), ξ) =

P∑
0≤i+j≤P

Q∑
k=0

x
(1)
ijk(t)ψ

(1)
i (η(1))ψ

(2)
j (η(2))Lk(ξ), (3.50)

x2(t; η(1), η(2), ξ) =

P∑
0≤i+j≤P

Q∑
k=0

x
(2)
ijk(t)ψ

(1)
i (η(1))ψ

(2)
j (η(2))Lk(ξ), (3.51)

whereas Lk, k = 0, . . . , Q, denote the Legendre polynomials in terms of ξ according
to a gPC expansion of order Q. Next a new orthogonal basis {ψj}Mj=0 is constructed
analog to the procedure described in the previous section, resulting in:

xi(t; η
(1), η(2), ξ) =

M∑
j=0

x
(i)
j (t)ψj(η

(1), η(2), ξ), t ≥ t∗, i = 1, 2, (3.52)

with the number of terms given by:

M + 1 =
(P + 1)(P + 2)(Q+ 1)

2
. (3.53)

Note, that the number of terms M+1 employed in the modified TD-gPC is of factor
(Q + 1) larger then a corresponding standard TD-gPC expansion as described in
Section 3.3.2. The calculation of the initial values at time t = t∗ is carried out using
the projection described in (3.45). The same holds regarding the calculation of the
mean and the variance.

3.3.4. Numerical results

Next, numerical results are presented with respect to various TD-gPC expansion
orders. The random frequency is defined to be:

q(ξ) := 4π2(1 + 0.2ξ). (3.54)

An explicit Runge-Kutta scheme of order 4 is employed for time discretization with
a homogeneous time step size ∆t = 0.001 to minimize the error contributions intro-
duced by the time discretization. Furthermore, a reset is carried out in every time
step throughout the simulation interval [0, 75]. To reduce the errors arising from
the numerical integration a Gauss-Legendre quadrature rule with 100 quadrature
points is employed. The results concerning the absolute errors of the time trajecto-
ries of the mean and the variance as well as their relative errors regarding the first
solution component x1 are presented in Fig. 3.3 and Fig. 3.4, respectively. Since a
discretization employing the time-dependent approach results in some certain total
number of modes M + 1, the results of TD-gPC are compared to the standard gPC
using the same number of modes M + 1, e.g., P = 2 and Q = 2 for a TD-gPC
expansion equals a total number of M + 1 = 18 modes, i.e., P = 17 for a standard
gPC expansion.

As expected, the standard gPC employing Legendre polynomials is only capable
of following the solution for early times even for a large number of modes. The
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(a) Standard Legendre Chaos P = 17. (b) Standard Legendre Chaos P = 17.

(c) Time-dependent variant P = 2, Q = 2. (d) Time-dependent variant P = 2, Q = 2.

Figure 3.3.: Evolution of the trajectories corresponding to the mean and the vari-
ance for the standard gPC of order P = 17 and the time-dependent
variant employing P = 2, Q = 2, both equal to a total number of 18
modes.

time-dependent approach, however, is performing slightly worse if Q = 0, i.e., the
errors arising from a poor representation of the time derivative start to dominate
quickly. If this is taken into account by increasing the expansion order Q to Q = 1
and Q = 2, TD-gPC converges to almost exact results w.r.t. the relative errors.
Optimal results are achieved employing P = 2 and Q = 2, which lead to an optimal
basis to represent the solution itself and its time derivative. It is interesting to point
out the convergence property regarding P and Q in context of TD-gPC. If compar-
ing the results for P1Q1 and P2Q1 there are no significant errors improvements
achieved. In contrast, comparing the results for P2Q0, P2Q1 and P2Q2 an expo-
nential convergence property is observable with respect to Q. However, using P = 0
and Q > 0, TD-gPC is actually equal to the standard gPC and therefore leading
to unfeasible results. This emphasizes the importance of choosing an optimal basis
both for the solution itself as well as for its time derivative.
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(a) Relative error of the mean with a total
of 6 modes each.

(b) Relative error of the variance with a total
of 6 modes each.

(c) Relative error of the mean with a total
of 12 modes each.

(d) Relative error of the variance with a total
of 12 modes each.

(e) Relative error of the mean with a total
of 18 modes each.

(f) Relative error of the variance with a total
of 18 modes each.

Figure 3.4.: Relative errors of the mean and the variance of x1 corresponding to
various discretization parameters.
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3.4. Analysis of the reset steps

The key point of applying the (modified) TD-gPC approach to systems of differ-
ential equations lies in the shift of the nonlinear complexity towards the numerical
evaluation of the integrals involved when computing the inner-product of the Chaos
basis functionals {ψi}Mi=0. For simplicity, the analysis is elaborated on the first reset
step at time t = t∗ and only the non-modified TD-gPC version is being considered.

The goal is to evaluate the inner-product:

〈ψiψj , ψk〉 =

∫
ψi(η)ψj(η)ψk(η)fη(η) dη, (3.55)

for some i, j, k ∈ {0, . . . ,M}. As described in the previous sections, the integration
in (3.55) is transformed to the original random variable ξ via the relation:

〈ψiψj , ψk〉 =

∫
ψi(u(t∗; ξ))ψj(u(t∗; ξ))ψk(u(t∗; ξ))fξ(ξ) dξ, (3.56)

whereas u denotes the solution of the underlying system of ordinary differential
equations, u being expressed by:

u(t; ξ) =
M∑
i=0

ui(t)ψ̃i(ξ), (3.57)

for t < t∗, where {ψ̃i}Mi=0 shall denote the Chaos Polynomials before the reset.
Here, without loss of generality, the same expansion order M is assumed before and
after the reset step at time t = t∗ (note that unnecessary modes can be set equal
to zero). The determination of (3.56) is carried out by utilizing an appropriate
Gaussian quadrature rule according to the probability distribution represented by
fξ of ξ. Therefore, (3.56) is approximated by a finite number Nq of terms:

〈ψiψj , ψk〉 ≈
Nq∑
n=1

wn(ψi ◦ u)(ξn)(ψj ◦ u)(ξn)(ψk ◦ u)(ξn), (3.58)

whereas Nq denotes the number of quadrature points, wn the corresponding weights
and ξn the corresponding quadrature points. Since u and ψM are both polynomials
of degree M , (ψM ◦u) is a polynomial of degree M2. To ensure an exact integration
of (3.56), recall that Gaussian quadratures are exact for polynomials of degree
2Nq − 1 [37], leading to the condition:

Nq = d3M
2 + 1

2
e, (3.59)

whereas d·e denotes the ceiling function. Applying this analysis to further reset
times yields:

Nq = d3M
Nr + 1

2
e, (3.60)

whereas Nr denotes the current number of the reset step. This, of course, is a worst-
case estimate leading to the requirement of a high number Nq of quadrature points
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when progressing in time by reseting the basis, even for low expansion orders M .
This presents a major drawback of the TD-gPC approach, however, since at every
reset step the solution u is transformed to obtain a linear expansion, it is expected
that the contribution of higher order modes remains low for a certain time period.
Therefore, the high nonlinear orders in (3.56) only have a small contribution to the
integral, leading to a much more accurate numerical integration than the estimate
suggests. However, this observation relies on numerical results and is certainly
application dependent. Therefore, it is still an open question if there exist more
accurate numerical integration approaches which remain numerically cost effective.

3.5. Local approach for time-dependent generalized
Polynomial Chaos

One major drawback of the (modified) TD-gPC is the fast growing number of
modes resulting for even low expansion orders P and Q. Therefore, although the
method itself is leading to accurate results, the numerical cost which comes along
with solving a coupled system of differential equations for a high number of modes
increases significantly, especially when the discretization of the deterministic part
of the system is quite expensive. Hence, it is necessary to think about possibilities
of reducing the numerical cost and making the computation of the modes feasible.
To achieve this goal this section introduces a local approach to TD-gPC, motivated
by the ”multi–element generalized Polynomial Chaos” introduced by Wan and Kar-
niadakis [44, 45] and based on the published work of the author in [19], resulting in
a domain decomposition of the probability space employing time-dependent basis
functionals in each element. This leads to the task of solving N independent prob-
lems, whereas N denotes the number of elements used, employing a smaller number
of basis functionals in each sub-problem compared to solving the global problem.

3.5.1. Domain decomposition

Following the procedure described in [44, 45] the sample space Ω is decomposed
implicitly by decomposition of the range of ξ. Note, that here it is not assumed
that ξ is scalar valued, instead it holds range(ξ) =: B ⊂ (R ∪ {−∞,∞})d for some
d ∈ N. Furthermore, ξ denotes the original stochastic input to the system before
being transformed via the reset steps in context of TD-gPC. The decomposition of
Ω is carried out in the following way:

Let {Bj}Nj=1 be a disjoint interval decomposition of B, such that:

B =

N⋃
j=1

Bj , Bj1 ∩Bj2 = ∅ for j1 6= j2, (3.61)

Bj := [aj1, b
j
1)× [aj2, b

j
2)× · · · × [ajd, b

j
d]. (3.62)

Therefore, Bj defines a multi-dimensional interval of dimension d for every j =
1, . . . , N . Note, that if ±∞ ∈ Bj for some j, as this is the case for the Gaussian

distribution, usually Bj is decomposed by Bj = (−∞, aj∗) ∪̇ [aj∗, b
j
∗] ∪̇ (bj∗,∞) and
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all refinements are carried out on the middle element [aj∗, b
j
∗]. The choice of aj∗ and

bj∗ is distribution and application dependent.

To achieve a decomposition of the sample space Ω the indicator function Ij is
introduced, which is defined by:

Ij =

{
1 if ξ ∈ Bj ,
0 otherwise.

(3.63)

Hence, a decomposition of Ω is given by Ω =
⋃N
j=1 I

−1
j (1), since I−1

i (1)∩I−1
j (1) = ∅

for i 6= j. Now in each element Bj a local random variable ξj is defined via

ξj = (ξj1, ξ
j
2, . . . , ξ

j
d) : I−1

j (1) 7→ Bj for j = 1, . . . , N subject to the corresponding
conditional probability distribution function fj defined by:

fj(ξ
j |Ij = 1) =

f(ξj)

P(Ij = 1)
, (3.64)

whereas f(·) denotes the probability density function of the globally defined random
variable ξ. In practice the random variable ξjk restricted to the element [ajk, b

j
k) is

rescaled by the transformation:

ξjk =
bjk − a

j
k

2
Y j
k +

bjk + ajk
2

, (3.65)

subject to a new random variable Y j
k defined in (−1, 1). Therefore, the probability

density function f̄j(·) of the vector Y j = (Y j
1 , . . . , Y

j
d ) is given by:

f̄j(yj) = det

∣∣∣∣∣
(
∂ξj

∂yj

)N
j=1

∣∣∣∣∣ fj(ξj(yj) | Ij = 1) =
f(ξj(yj))

P(Ij = 1)

d∏
k=1

bjk − a
j
k

2
. (3.66)

3.5.2. Problem structure

The strength in decomposing the probability space lies in the independency of the
resulting local problems [44, 45]. Therefore, after decomposing the probability space
into N elements, N independent problems on the corresponding probability spaces
(I−1
j (1),F ∩ I−1

j (1),P(·|I−1
j (1)) for j = 1, . . . , N have to be solved. Now the time-

dependent approach can be applied in each single element, i.e., given a solution
u(j) = u(j)(ξj) in each element j, a new random variable ηjk is introduced by:

ηjk :=

M∑
i=0

u
(j)
i (tk)ψi(η

j
k−1, ξ

j), (3.67)

for a reset time step t = tk, whereas ηj0 := ξj . The solution u(j) is then expressed

in terms of ηjk and ξj as described in Section 3.3 and the procedure is repeated at
every time step qualifying for a reset, e.g., every time step or a time step defined
by some error estimation criteria.
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3.5.3. Calculation of the stochastic moments

Since a change of variables is performed in each element, the stochastic moments
such as the mean and the variance need to be calculated independently in each
element and combined afterwards. Therefore, first the mean and the variance have
to be calculated locally according to Section 3.3, denoted by ū(j) and σ2(u(j)),
j = 1, . . . , N . Next, according to Bayes’s theorem and the law of total probability
[45], the global stochastic moments of order m, denoted by µm, can be calculated
via:

µm(u)(t) ≈
N∑
j=1

P(Ij = 1)µm(u(j))(t). (3.68)

Hence, the global mean is approximated by the weighted sum of the local mean
values, i.e.,

ū(t) ≈
N∑
j=1

P(Ij = 1)ū(j)(t). (3.69)

For the variance it holds:

σ2(u)(t) = µ2(u)(t)− µ1(u)(t)2

≈
N∑
j=1

P(Ij = 1)µ2(u(j))(t)

−
N∑
j=1

N∑
k=1

P(Ij = 1)P(Ik = 1)µ1(u(j))(t)µ1(u(k))(t)

=
N∑
j=1

P(Ij = 1)

(
σ2(u(j))(t) + (ū(j))2 − ū(j)(t)

N∑
k=1

P(Ik = 1)ū(k)(t)

)

=

N∑
j=1

P(Ij = 1)
(
σ2(u(j))(t) + ū(j)(t)(ū(j)(t)− ū(t))

)
. (3.70)

3.5.4. Local TD-gPC algorithm

If no adaptive refinement of the probability space with respect to the number of
elements N is employed, the numerical implementation of the local TD-gPC is
carried out straight forward if a global TD-gPC solver is available. The numerical
cost involved is due to the orthogonalization of the basis functionals in each element
for every reset step. The number of reset steps can be reduced when employing
suitable reset criteria, e.g., the observation of the magnitudes of modes representing
nonlinear dependencies as introduced in [14] can lead to a significant reduction of
the numerical cost. However, defining a reset criteria introduces an extra source of
errors, therefore, here it is chosen to apply TD-gPC in every time step. A summary
of the local TD-gPC algorithm is given in Algorithm 3.1.
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Algorithm 3.1 Local TD-gPC for calculating the mean and the variance

1: Choose the number of elements N and discretization orders P and Q
2: Choose an appropriate time discretization method and let NT denote the num-

ber of time steps
3: for j = 1→ N do

4: Construct the local conditional random variable η
(j)
0 := ξ(j) w.r.t. the initial

stochastic input

5: Transform η
(j)
0 to a random variable Y (j) defined on (−1, 1) via (3.65) and

set η
(j)
0 = Y (j)

6: for i = 1→ NT do
7: Construct a new random variable η

(j)
i according to TD-gPC via η

(j)
i−1 , ξ(j)

and the local solution u(j)

8: Construct a new set of orthogonal basis functionals {ψ(j)
i } depending on

η
(j)
i and ξj w.r.t. P and Q

9: Generate new local initial conditions according to TD-gPC
10: end for
11: Store the calculated local mean ū(j) and variance σ2(u(j))
12: end for
13: Post processing of the stored local quantities

3.6. Numerical results for the local TD-gPC

In this section the effect of employing the local TD-gPC is demonstrated in context
of a simple one-dimensional ordinary differential equation, representing the class of
long term integration related problems, and the more challenging Kraichnan-Orszag
three mode problem [31], which is representing the class of stochastic discontinuities.
The focus lies on the illustration of the convergence properties and the analysis of
the trade off between solving N independent local problems and employing an
(M + 1)-dimensional TD-gPC in each element.

3.6.1. A simple one-dimensional ODE

This problem has been studied in various work, e.g., [14, 44], and also in Section
3.1 having the advantage that its simplicity allows to calculate an exact solution
analytically. The governing equations are given by:

du

dt
= −k(ξ)u, (3.71)

u(0) = 1, (3.72)

subject to a uniformly distributed random variable ξ ∼ U(−1, 1), where it is further
assumed that k(ξ) = 1

2(1 + ξ). Therefore, the exact solution, its mean and variance
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(a) Mean (b) Variance

Figure 3.5.: Relative ‖ · ‖2-error in time with respect to various orders of Chaos
expansions with varying number of elements.

are given by:

u(t; ξ) = exp(−k(ξ)t), (3.73)

ū(t) =
1− exp(−t)

t
, (3.74)

σ2(u)(t) =
1

2t
(1− exp(−2t))−

(
1− exp(−t)

t

)2

, (3.75)

respectively. This clearly shows the increasing nonlinear dependency of u on ξ for
increasing time t due to the exponential type of the solution, which leads to a poor
convergence property when employing the standard gPC (cf. Section 3.1). Here, the
focus is restricted on the convergence behavior of the local time-dependent gPC. For
the numerical computation a Runge-Kutta scheme of 4th order is employed with a
homogeneous time step size ∆t = 0.001 to minimize the error contributions arising
from the time discretization. For numerical integration a Gauss-Legendre quadra-
ture rule with 100 quadrature points is employed. Furthermore, the probability
space is decomposed employing equidistant elements.

The absolute errors are measured in the discrete euclidean norm ‖ · ‖2, i.e.,

‖ū− ūexact‖2 =

√√√√(∑
n

(ū(tn)− ūexact(tn))2

)
, (3.76)

‖σ2(u)− σ2(uexact)‖2 =

√√√√(∑
n

(σ2(u)(tn)− σ2(uexact)(tn))2

)
, (3.77)

for all discrete time steps tn = n∆t within the simulation interval [0, 100]. For
computation of the associated relative errors, the absolute errors are divided by
the euclidean norm of the exact mean or variance, respectively. Figure 3.5 depicts
the relative error evolution for this problem. It clearly displays an exponential
convergence behavior with increasing convergence rate when refining the elements,
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which is in good agreement with the results shown for the multi-element gPC in [44].
Therefore, if high accuracy is desired there is the possibility of choosing between
a specific high order P and Q or a high number of elements to be used. This is
important, since due to the independence of the local problems it is possible to
obtain a trivial parallelization when computing the results in parallel, which leads
to a very efficient solver. Hence, a small expansion order, e.g., P = 1 and Q = 1,
which equals a total number of modes M+1 = 4, is already sufficient to achieve high
accuracies with respect to the whole simulation time interval [0, 100]. Of course, this
model problem is small with respect to its dimension, but it serves the purpose of
demonstrating the fast convergence property of the local time-dependent approach
to the exact solution.

3.6.2. The Kraichnan-Orszag three mode problem

Problem definition

The Kraichnan–Orszag three mode problem [31] is known to fail in a short time
when employing gPC due to a discontinuous dependency on the initial conditions.
It therefore represents a challenging benchmark problem, which has been studied
in various contexts, such as adaptive multi-element gPC in [44, 45] and TD-gPC in
[14]. It is a nonlinear three-dimensional system of ordinary differential equations
given by:

dx1

dt
= x2x3, (3.78)

dx2

dt
= x3x1, (3.79)

dx3

dt
= −2x1x2, (3.80)

with x1(t = 0) = α + 0.01ξ, x2(t = 0) = 1.0 and x3(t = 0) = 1.0, subject to a
uniformly distributed random variable ξ ∼ U(−1, 1). It is known [14, 44] that the
critical range of α for which there is a strong dependency on the initial conditions
is given by (0.9, 1). Therefore, the following analysis is focused on α = 0.995.

Numerical results

When employing TD-gPC in each element, the discretization parameter Q is set
to Q = 0, since no direct stochastic input is given within the system of differential
equations. Still, the size of the system is quite large and given by:

M + 1 =
(P + 3)!

P !3!
=

(P + 1)(P + 2)(P + 3)

6
= O(P 3). (3.81)

This illustrates the necessity of keeping the order P of the expansion small, such
that the resulting number of modes M+1 remains low. For the numerical computa-
tions a Runge-Kutta solver of 4th order is used to solve the deterministic part with
a homogeneous time step size ∆t = 0.001. Furthermore, an equidistant refinement
of the interval (−1, 1) is employed resulting in N = 2i elements for each refine-
ment level i. Relative errors are measured in the L2-norm defined in (3.76),(3.77).
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(a) Mean (b) Variance

Figure 3.6.: Relative ‖ · ‖2-error in time with respect to various orders of Chaos
expansions with varying number of elements.

For numerical integration a Gauss-Legendre quadrature rule with 100 quadrature
points is employed. Since there is no analytical solution available for this problem,
the results are compared to a discretization employing N = 64 elements and an
expansion order P = 3.

Fig. 3.6 shows exponential convergence behavior in P as well as in N (with an
exception for N ≤ 2) for both the mean and the variance of the first component x1

of the solution. This is in good agreement with the results obtained for the one-
dimensional problem given in Section 3.6.1. From this it follows that when utilizing
parallel computation of the sub-problems on each element (which is possible in a
trivial way due to the independence of the sub-problems) it is possible to achieve
same accuracies by either refining P or N , e.g., P1N32 is almost as accurate as
P3N1 but only requires M +1 = 4 modes for the P = 1 case instead of M +1 = 20
modes for the P = 3 case. Since the size M + 1 is depending on the size of the
corresponding deterministic system (here this equals 3), the local time-dependent
method is expected to increase its efficiency in reducing the numerical cost in trade
off to parallel computation of the sub-problems even further for larger systems of
differential equations.





Chapter 4.

Spectral-Stochastic-Finite-Element-
Method for the unsteady stochastic
incompressible Navier-Stokes equations

The previous chapter is focused on the generalized Polynomial Chaos expansion in
context of systems of ordinary differential equations subject to random parameters
and initial conditions. The second part of this work, starting with this chapter, is de-
voted to the application of the gPC to systems of partial differential equations given
by the unsteady stochastic incompressible Navier-Stokes equations subject to uncer-
tainties introduced in initial and boundary conditions or right hand sides. Galerkin
projected systems arising from a gPC expansion of the stochastic Navier-Stokes
equations have been analyzed in various works, see for example [1, 24, 25, 27, 43, 48].
This chapter will introduce the governing equations and demonstrate how the prob-
ability and deterministic spaces can be discretized appropriately. Therefore, first
the discretization is outlined for the deterministic equations and afterwards trans-
fered to the stochastic case. Furthermore, numerically stable Finite-Element spaces
are derived for the stochastic Galerkin projected system.

4.1. The unsteady deterministic incompressible
Navier-Stokes equations

Many physical systems describing a fluid flow in some domain D × [0, T ] ⊂ Rd ×
R, d = 2, 3 can be modeled by the unsteady incompressible Navier–Stokes equations
[36], whereas the following, so-called ”primitive” variables play an important role:

• Density ρ : D × [0, T ]→ R+,

• Velocity u : D × [0, T ]→ Rd,

• Pressure p : D × [0, T ]→ R.

Since, an incompressible flow shall be considered, the density ρ is assumed to be
constant, i.e., ρ ≡ ρ0 ∈ R+. Furthermore, only Newtonian fluids will be considered,
resulting in a linear stress tensor model introducing the scalar kinematic viscosity
ν ∈ R+. Therefore, for an open domain D with Lipschitz-continuous boundary
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Γ = ∂D the unsteady incompressible Navier-Stokes equations (NSE) read:

∂tu+ (u · ∇)u− ν∆u+
1

ρ
∇p = f, in D × (0, T ), (4.1)

∇ · u = 0, in D × (0, T ), (4.2)

u = uD, on Γ× [0, T ], (4.3)

u(t = 0) = uI , in D, (4.4)

for uD defined on Γ × [0, T ], f defined on D × (0, T ) and uI defined on D. Note,
that Γ denotes the so-called ”Dirichlet” boundary, since the constraint is directly
prescribed for the velocity values. The following definition is taken from [40]:

Definition 4.1. A solution (u, p) is called a classical solution to the Navier-Stokes
equations, if it satisfies (4.1)–(4.4) and the regularity conditions:

u ∈ [C2(D × (0, T ))]d, (4.5)

p ∈ C1(D × (0, T )). (4.6)

Usually one doesn’t seek for a classical solution to the Navier-Stokes equations
due to the high regularity requirements on (u, p). A common way to reduce those is
by introducing the concept of a weak solution. Therefore, the equations (4.1) and
(4.2) are expressed in a variational formulation. To this end the following functional
spaces are defined [12, 13, 35, 40]:

• Q := {p ∈ L2(D) :
∫
D p dx = 0},

• V := [H1
0 (D)]d,

• Vdiv := {v ∈ V : ∇ · v = 0,weak sense},

• Hdiv := {v ∈ [L2(D)]d : ∇ · v = 0 in D, v · ~n = 0 on Γ, trace sense},
whereas ~n denotes the unit outward normal vector on Γ.

Before stating the variational (weak) formulation of the NSE consider the follow-
ing calculation:

For every v ∈ V it holds via integration by parts:∫
D

∆u · v dx = −
∫
D
∇u : ∇v dx+

∫
∂D
v · ∇u · ~n dΓ︸ ︷︷ ︸

=0, since v∈V

= −
∫
D
∇u : ∇v dx, (4.7)

∫
D
∇p · v dx = −

∫
D
p∇ · v dx+

∫
∂D
pv · ~n dΓ︸ ︷︷ ︸

=0, since v∈V

= −
∫
D
p∇ · v dx. (4.8)

Therefore, the variational (weak) formulation of the NSE is given by [32, 40]:
For given f ∈ L2(0, T ;Hdiv) and uI ∈ Hdiv, find u(t) ∈ uD+V and p(t) ∈ Q such

that for almost every t ∈ (0, T )

(∂tu, v) + ((u · ∇)u, v) + ν(∇u,∇v)− (p,∇ · v) = (f, v), ∀v ∈ V, (4.9)

(∇ · u, q) = 0, ∀q ∈ Q, (4.10)

u(t = 0) = uI , in D, (4.11)

whereas (·, ·) denotes the inner-product on L2(D).
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Definition 4.2. A solution (u, p) is called a weak solution to the Navier-Stokes
equations if it satisfies (4.9)–(4.11) and the regularity conditions:

u(t) ∈ uD + V, (4.12)

p(t) ∈ Q, (4.13)

for almost every t ∈ (0, T ).

It can also be shown that u is almost everywhere equal to a continuous function,
so that (4.4) remains meaningful [40]. Note that the functions v, q arising in
the variational formulation are referred to as ”test functions” and u, p as ”trial
functions”. An alternative weak formulation of the NSE reads [32]:

Given f ∈ L2(0, T ;Hdiv) and uI ∈ Hdiv, find u ∈ L2(0, T ;Vdiv) ∩ L∞(0, T ;Hdiv)
such that

(∂tu, v) + ((u · ∇)u, v) + ν(∇u,∇v) = (f, v), ∀v ∈ V, (4.14)

u(t = 0) = uI , in D, (4.15)

for homogeneous Dirichlet boundary conditions, i.e., uD ≡ 0. For this formulation
the existence and uniqueness of a solution satisfying (4.14) and (4.15) in the two
dimensional case has been proven [32, 40]. However, for the three dimensional case,
it is still an open question whether the solution is unique.

Any solution of (4.9)–(4.10) is also a solution to (4.14), (4.15). The converse is
true provided the solution fulfills specific regularity requirements given in [32].

For discretizations employing Finite-Elements, as will be discussed in the follow-
ing section, it is numerically more feasible to use the weak formulation involving the
pressure variable, the so-called ”mixed-type formulation”, since defining an appro-
priate discretization space, which ensures the divergence-free condition can become
quite complicated.

4.2. Space and time discretization of the deterministic
equations

Solving the weak formulation of the NSE (4.9)–(4.11) in practical computations re-
quires an appropriate discretization employing a finite number of unknowns both in
the space and time variable. Here, the so-called Rothe method [7] is chosen, refer-
ring to a Finite–Difference approximation of the time variable and a Finite–Element
approximation of the space variable for the time discretized system, which will be
explained in the following subsections. Furthermore, it is notationally convenient
for the numerical analysis to consider the following notation of the NSE:

(∂tu, v) + n(u, u, v) + a(u, v) + b(p, v) = (f, v), (4.16)

b(q, u) = 0, (4.17)

with the bilinear forms a and b and the trilinear form n defined by

n(u, ū, v) := ((u · ∇)ū, v), (4.18)

a(u, v) := ν(∇u,∇v), (4.19)

b(p, v) := −(p,∇ · v), (4.20)
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for u, ū, v ∈ H1(D), p, q ∈ Q. Note, that this variational formulation reflects a
saddle-point structure, which plays an important role for numerical stability of the
corresponding discretized systems. This issue will be addressed later within this
section.

4.2.1. Time discrectization by a Crank-Nicolson scheme

The continuous system (4.16) and (4.17) can be time discretized by various dis-
cretization methods. Here and for the rest of this work, the focus is on the so-called
Crank-Nicolson scheme [5] belonging to the class of Finite-Difference approxima-
tions. Let a partition of the time interval [0, T ] consisting of NT elements be given
by:

[0, T ] =

NT−1⋃
n=0

[tn, tn+1], (4.21)

(ti, ti+1) ∩ (tj , tj+1) = ∅, i 6= j. (4.22)

A homogeneous discretization can be parameterized by a step length ∆t > 0, re-
sulting in tn := n∆t for n = 0, . . . , NT . Otherwise, for given time steps tn the time
step length ∆tn is defined by ∆tn := tn − tn−1. Therefore, the Crank-Nicolson
scheme for the unsteady incompressible Navier-Stokes equations reads:

(
un − un−1

∆tn
, v) +

1

2
(n(un, un, v) + n(un−1, un−1, v)) (4.23)

+
1

2
(a(un, v) + a(un−1, v)) + b(pn, v) =

1

2
((fn, v) + (fn−1, v)),

b(q, un) = 0, (4.24)

for all v ∈ V and q ∈ Q, whereas un := u(t = tn) ∈ uD + V, pn := p(t = tn) ∈
Q, fn := f(t = tn) ∈ L2(Hdiv) for n = 0, . . . , NT . Note that the treatment of the
pressure term in (4.23) and the divergence–free condition (4.24) is different from
the time discretization of the velocity variable. This is due to the fact that the
divergence–free condition (4.24) is required to hold for every time step, which influ-
ence on (4.23) is given by the pressure variable allowing for an implicit enforcement
of (4.24) at every time step. It has been shown, that the Crank-Nicolson method
is A-stable and of second order in time [41, 42], however it also belongs to the class
of implicit time discretizations and therefore requires the solution of a PDE system
in the space variable for each time step.

4.2.2. Linearization by Newton’s method

The time-discretized system (4.23), (4.24) requires an appropriate space discretiza-
tion, such that the resulting system becomes finite dimensional. However, before
introducing adequate discretized function spaces the nonlinearity of (4.23) arising
in the trilinear form n is being linearized. This comes into play when the nonlin-
ear system (4.23), (4.24) is solved by Newton’s method [6], which is an iterative
method requiring the solution of the linearized weak formulation of the NSE in
every iteration.
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To simplify the notation for the derivation of the linearized system, (4.23) and
(4.24) are denoted by:

F (un, pn, v, q) = [gn−1, 0]t, (4.25)

whereas F and gn−1 are defined by:

F (u, p, v, q) := [F1(u, p, v), F2(u, q)]t, (4.26)

F1(u, p, v) := (u, v) +
∆tn

2
n(u, u, v) +

∆tn
2
a(u, v) + ∆tnb(p, v) (4.27)

− ∆tn
2

(fn, v),

F2(u, q) := b(q, u), (4.28)

gn−1 := (un−1, v)− ∆tn
2
n(un−1, un−1, v)− ∆tn

2
a(un−1, v) (4.29)

+
∆tn

2
(fn−1, v).

Note, that F : ((uD + V )×Q× V ×Q) −→ R2 and gn−1 ∈ R. The linearization of
(4.25) requires the computation of the Gâteaux directional derivative of F w.r.t. u
and p in a direction denoted by ū ∈ uD + V and p̄ ∈ Q respectively. The Gâteaux
directional derivative (if it exists) denoted by J(u, p, v, q) : (uD + V )×Q −→ R2 is
defined by [49]:

J(u, p, v, q)[ū, p̄] := lim
h→0

F (u+ hū, p+ hp̄, v, q)− F (u, p, v, q)

h
. (4.30)

An easy calculation shows that the Gâteaux directional derivative exists and is
given by:

J(u, p, v, q)[ū, p̄] =

[
(ū, v) +

∆tn
2

(n(u, ū, v) + n(ū, u, v)) +
∆tn

2
a(ū, v) + ∆tnb(p̄, v)

b(q, ū)

]
,

(4.31)
which is representing the left hand side of a linear system of PDEs with respect to
ū and p̄.

As being mentioned in the beginning of this subsection, Newton’s method shall be
applied to solve the time-discretized system (4.25) for every time step. In this con-
text, Newton’s method starts with an initial guess [un0 , p

n
0 ] and iteratively computes

the following iterates via the relation:

[unk+1, p
n
k+1] = [unk + ūnk , p

n
k + p̄nk ], (4.32)

−J(unk , p
n
k , v, q)[ū

n
k , p̄

n
k ] = F (unk , p

n
k , v, q)− [gn−1, 0]t ∀v ∈ V, q ∈ Q, (4.33)

whereas k denotes the iteration index. It is well-known that if the initial guess is
”close enough” to a solution, Newton’s method is of quadratic convergence order
[6]. However, ensuring that the initial guess is ”close enough” to a solution can
become a complicated task, which might not be solvable at all in practice. In those
cases one often relies on modifications of the Newton method, such as so-called
”Inexact Newton” [6, 10] and ”Quasi Newton” [6, 23] approaches. One natural, not
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necessary optimal, choice of the initial guess is given by the solution of the previous
time step, i.e., [un0 , p

n
0 ] = [un−1, pn−1].

The so-called Newton step (4.33) requires the solution of a linearized system of
PDEs for the velocity and pressure updates ūnk , p̄nk . Since this system is still infinite
dimensional, an appropriate space discretization needs to be employed, which is
described in the following subsection.

4.2.3. Space discretization by the Finite-Element method

The starting point for employing the Finite-Element method [2, 3] is the system of
PDEs given by the Newton step (4.33). Since the application of the Finite-Element
method shall be independent of the time step tn, it suffices to consider one specific
Newton iteration with index k in (4.33) for which the following simplified notation
is employed:

Seek u ∈ uD + V and p ∈ Q such that

−Jk(v, q)[u, p] = Fk(v, q), ∀v ∈ V, q ∈ Q, (4.34)

whereas

Jk(v, q)[u, p] := J(unk , p
n
k , v, q)[u, p], (4.35)

Fk(v, q) := F (unk , p
n
k , v, q)− [gn−1, 0]t, (4.36)

for a given Newton iterate unk and pnk and a right hand side gn−1 resulting from the
previous time step.

The task is to construct finite dimensional vector spaces Vh ⊂ V and Qh ⊂ Q
for the trial and finite dimensional vector spaces Wh ⊂ V and Rh ⊂ Q for the
test functions. Note, that the requirement that the discretized spaces are sub-
spaces of the continuous spaces represent the so-called ”conforming” method. It
is possible to violate this condition, e.g., by allowing Vh 6⊂ V , leading to so-called
”non-conforming” methods [2, 3]. However, the focus of this work is restricted on
conforming approaches. Furthermore, by substitution of the continuous spaces V
and Q by their corresponding discrete subspaces Vh, Qh, Wh and Rh in (4.34),
the solution is projected via the L2-inner-product onto the discrete spaces of the
test functions Wh and Rh, which in literature is referred to as being a Galerkin or
Petrov-Galerkin projection [2, 3], depending if the discrete spaces for the solution
variables and test functions do coincide or not. However, in this work only Galerkin
projections are being considered leading to the requirement Vh = Wh and Qh = Rh.
With these restrictions the discrete problem reads:

Seek uh ∈ uDh + Vh and ph ∈ Qh such that

−Jk(vh, qh)[uh, ph] = Fk(vh, qh), ∀vh ∈ Vh, qh ∈ Qh, (4.37)

whereas uDh is a L2-projection of uD onto Vh.
Choosing appropriate discretization spaces Vh and Qh is a non-trivial task. Since

(4.37) represents a mixed-type approach [2, 3, 17], i.e., the velocity and pressure
variables are sought in different vector spaces, special care needs to be considered
to ensure numerical stability of the discretization. In fluid flow problems it is
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Figure 4.1.: Degrees of freedom of the Taylor-Hood elements defined on triangles
for polynomial degrees P1 (linear), P2 (quadratic) and P3 (cubic).

known that the critical condition for numerical stability is the requirement that Vh
and Qh fulfill the so-called ”Ladyshenskaja-Babuška-Brezzi” condition (LBB) [2],
since for the linearized system uniform ellipticity can be proved based on G̊arding’s
inequality provided that the time step sizes ∆tn are sufficiently small [3]. The LBB
condition is given by:

∃β > 0 : sup
vh∈Vh\{0}

b(qh, vh)

‖vh‖
≥ β‖qh‖, ∀qh ∈ Qh\{0}. (4.38)

One well established choice of Vh and Qh satisfying the LBB condition (4.38) is
given by the so-called ”Taylor-Hood” elements [2]. For simplicity it is assumed
that the spacial domain D is polygonal such that there exists a triangulation Th of
D employing triangles, rectangles, tetrahedrons or hexahedrons, depending on the
space dimension d of D. Then the Taylor-Hood spaces of degree n ∈ N are defined
by [2, 17, 39]:

Vh := {vh ∈ C(D)d ∩H1
0 (D)d; vh|T ∈ Pdn(T ), ∀T ∈ Th}, (4.39)

Qh := {qh ∈ C(D) ∩ L2(D); qh|T ∈ Pn−1(T ), ∀T ∈ Th}, (4.40)

whereas

Pn(T ) := {u ∈ C(T ) : u(x1, x2) =
∑

i+j≤n,i,j≥0

cijx
i
1x
j
2, T = triangle}, (4.41)

Pn(T ) := {u ∈ C(T ) : u(x1, x2) =
∑

i,j≤n,i,j≥0

cijx
i
1x
j
2, T = rectangle}, (4.42)

denote the sets of polynomials of degree n defined on the domain T ∈ Th with
analog definitions for tetrahedrons and hexahedrons. Therefore, Vh and Qh are
finite dimensional vector spaces, whereas each can be represented by a set of basis
functions being piecewise polynomials themselves, notated by:

Vh = span{φ1, . . . , φN}, (4.43)

Qh = span{χ1, . . . , χM}. (4.44)

Here, the space dimensions N and M are defined by: N := dim{Vh} and M :=
dim{Qh} such that vh(x) =

∑N
i=0 v

i
hφi(x) and qh(x) =

∑M
i=0 q

i
hχi(x) for all vh ∈ Vh,

qh ∈ Qh and x ∈ D with some coefficients vih ∈ R for i = 1, . . . , N and qih ∈ R for
i = 1, . . . ,M . Fig. 4.1 depicts the corresponding degrees of freedom for the Taylor-
Hood elements defined on a triangle for varying polynomial degrees. Applying these
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discretizations within the Newton step (4.37) one has to solve a linear system of
equations for the unknowns [~uh, ~ph]t in each Newton iteration k, given by:[

A B
Bt 0

] [
~uh
~ph

]
=

[
~F1

~F2

]
, (4.45)

whereas ~uh = [u1
h, . . . , u

N
h ]t ∈ RN , ~ph = [p1

h, . . . , p
M
h ]t ∈ RM , A ∈ RN,N , B ∈ RN,M ,

~F1 ∈ RN , and ~F2 ∈ RM , which structure does reflect the saddle-point nature of the
problem. Here, the matrices A = (aij)i,j=1,...,N and B = (bij)i=1,...,N,j=1,...,M and

the right hand sides ~F1 = (F i1)i=1,...,N and ~F2 = (F i2)i=1,...,M are defined by:

aij = (φj , φi) +
∆tn

2
(n(unk , φj , φi) + n(φj , u

n
k , φi)) +

∆tn
2
a(φj , φi), (4.46)

bij = ∆tnb(χj , φi), (4.47)

F i1 = F1(unk , p
n
k , φi)− gn−1, (4.48)

F i2 = ∆tnF2(unk , χi), (4.49)

within the Newton iteration k.

4.3. The unsteady stochastic incompressible Navier-Stokes
equations

Based on the approaches outlined for the deterministic case in the previous section,
the mathematical framework is extended towards the stochastic context in the fol-
lowing, whereas the uncertainties are introduced via boundary conditions, initial
conditions or right hand sides. The consideration of an uncertain viscosity term is
not within the focus of this section, however, its treatment can be carried out in an
analog way.

4.3.1. Strong and weak formulation

It is assumed that there exists a stochastic model, which appropriately describes
the underlying uncertainties within the considered system. Furthermore, it is
assumed that the uncertainties can be parameterized via some random vector
ξ = (ξ1, . . . , ξL) ∈ RL of dimension L ∈ N, whereas ξi, i = 1, . . . , L, are uncor-
related real-valued random variables, ξ belonging to some underlying probability
space (Ω,F ,P), whereas Ω is a set of samples, F ⊂ 2Ω a filtration and P some
probability measure (cf. Chapter 2). Since the uncertainties shall be introduced
via boundary conditions, initial conditions or right hand sides, the parameterized
unsteady stochastic incompressible Navier-Stokes equations (SNSE) read [25]:

∂tu(ξ) + (u(ξ) · ∇)u(ξ)− ν∆u(ξ) +
1

ρ
∇p(ξ) = f, in D × (0, T ), (4.50)

∇ · u(ξ) = 0, in D × (0, T ), (4.51)

u(ξ) = uD(ξ), on Γ× (0, T ), (4.52)

u(t = 0; ξ) = uI(ξ), in D, (4.53)
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whereas the equations (4.50)–(4.53) are required to hold almost surely in Ω. Note,
that in contrast to the deterministic case, u = u(x, t; ξ) is a random field itself due
to the implicit dependency on the random vector ξ through the partial differential
equation. Adapting the definitions given for the deterministic case pointwise in
the probability space motivates the following definition for classical solutions to the
SNSE:

Definition 4.3. A solution (u, p) is called a classical solution to the stochastic
Navier-Stokes equations, if it is satisfies (4.50)–(4.53) almost surely in Ω and

u ∈ [L2(Ω)]d ⊗ [C2(D × (0, T ))]d, (4.54)

p ∈ L2(Ω)⊗ C1(D × (0, T )). (4.55)

As being the case in the deterministic framework, usually one seeks a solution
which satisfies a weak formulation due to the high regularity requirements for a
classical solution. The derivation of such a weak formulation can be approached by
different strategies. Here, first the underlying probability space is being discretized,
which will result in a deterministic system of PDEs for which a similar treatment
as in the previous section will be employed. An alternative approach is given by
defining test and trial functions on the tensor space of L2(Ω) and the corresponding
deterministic spaces, as introduced in Section 4.2.3 and employing a corresponding
variational formulation [25]. However, both approaches are equivalent, provided
that a gPC expansion for representing L2(Ω) is employed.

Since the focus of this work is on applying a stochastic Galerkin projection em-
ploying generalized Polynomial Chaos, recall that the gPC expansion of a classical
solution to the Navier-Stokes equations is given by (cf. Chapter 2):

u(x, t; ξ) =

∞∑
i=0

ui(x, t)ψi(ξ), (4.56)

p(x, t; ξ) =

∞∑
i=0

pi(x, t)ψi(ξ), (4.57)

pointwise in D × (0, T ), whereas {ψi}∞i=0 is an orthogonal polynomial basis of L2(Ω)
with deterministic modes ui and pi, i = 0, . . . ,∞ defined on D × (0, T ). The dis-
cretization of the probability space is carried out via truncation of the series by
restricting the maximum polynomial degree to No ∈ N, such that the total number
P + 1 of modes is given by:

P + 1 =
(No+ L)!

No!L!
, (4.58)

whereas L denotes the dimension of the random vector ξ.

This defines a stochastic approximation employing a finite number of terms, i.e.,
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u ≈
∑P

i=0 uiψi and p ≈
∑P

i=0 piψi, which by insertion into (4.50)–(4.53) yields:

P∑
i=0

∂tuiψi +
P∑
i=0

P∑
j=0

(ui · ∇)ujψiψj − ν
P∑
i=0

∆uiψi +
1

ρ

P∑
i=0

∇piψi = f, (4.59)

P∑
i=0

∇ · uiψi = 0, (4.60)

P∑
i=0

uiψi = uD, (4.61)

P∑
i=0

ui(t = 0)ψi = uI , (4.62)

almost surely in Ω and in D × (0, T ), Γ× [0, T ] and D, respectively. The Galerkin
projection is carried out by multiplying these equations by some ψk for all k =
0, . . . , P , and taking the expectation, i.e., the inner-product on L2(Ω), denoted
by 〈·, ·〉 such that due to the orthogonality of the Chaos Polynomials {ψk}Pk=0 the
resulting coupled deterministic system of PDEs reads:

∂tuk +
P∑
i=0

P∑
j=0

(ui · ∇)ujcijk − ν∆uk +
1

ρ
∇pk =

〈f, ψk〉
〈ψk, ψk〉

, in D × (0, T ), (4.63)

∇ · uk = 0, in D × (0, T ), (4.64)

uk =
〈uD, ψk〉
〈ψk, ψk〉

, on Γ× [0, T ], (4.65)

uk(t = 0) =
〈uI , ψk〉
〈ψk, ψk〉

, in D, (4.66)

for all k = 0, . . . , P , whereas

cijk :=
〈ψiψj , ψk〉
〈ψk, ψk〉

∈ R, i, j, k = 0, . . . , P, (4.67)

defines a tensor of third order (cf. Chapter 2), which accounts for the coupling
terms in equation (4.63). Due to the Galerkin projection, the resulting system
(4.63)–(4.66) is deterministic, whereas the solution is represented by a finite num-
ber of modes. Analog to the variational formulation outlined in Section 4.1, the
corresponding variational formulation for (4.63)–(4.66) reads:

For given f ∈ [L2(Ω)]d ⊗ L2(0, T ;Hdiv) and uI ∈ [L2(Ω)]d ⊗ Hdiv, find uk(t) ∈
uDk + V and pk(t) ∈ Q, for k = 0, . . . , P , such that for almost every t ∈ (0, T ):

(∂tuk, v) +
P∑
i=0

P∑
j=0

((ui · ∇)uj , v)cijk

+ν(∇uk,∇v)− (pk,∇ · v) = (fk, v), ∀v ∈ V, (4.68)

(∇ · uk, q) = 0, ∀q ∈ Q, (4.69)

uk(t = 0) = uI,k, in D, (4.70)
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for all k = 0, . . . , P , whereas:

uDk :=
〈uD, ψk〉
〈ψk, ψk〉

, (4.71)

fk :=
〈f, ψk〉
〈ψk, ψk〉

, (4.72)

uI,k :=
〈uI , ψk〉
〈ψk, ψk〉

. (4.73)

Note, that in theory one could also allow for varying test function spaces with
respect to the mode number k = 0, . . . , P . However, this work is restricted to the
case of a single space V for the velocity test functions and a single space Q for the
pressure test functions.

Definition 4.4. A solution {(uk, pk)}Pk=0 is called a weak solution to the stochastic
Navier-Stokes equations if it satisfies (4.68)–(4.70) and the regularity conditions:

uk(t) ∈ uDk + V, (4.74)

pk(t) ∈ Q, (4.75)

for almost every t ∈ (0, T ) and k = 0, . . . , P .

The definition of a weak solution to the stochastic Navier-Stokes equations implies
that the continuous trial spaces are all the same for the velocity and pressure modes,
respectively. However, the discretized trial spaces are allowed to vary for each
stochastic mode, which requires an appropriate numerically stable choice due to
the saddle-point structure of the problem. This will be addressed in detail in the
following section.

The existence and uniqueness of a weak solution to the stochastic Navier-Stokes
equations is a critical issue. Even in the deterministic case, at least the uniqueness
of a weak solution is still an open question in three space dimensions. Of course,
the results of Section 4.1 can be applied pointwise in Ω, however, to the present
knowledge of the author a proof of existence and uniqueness of a weak solution to
the stochastic Navier-Stokes equations as stated in this work is still effort of ongoing
research.

4.3.2. LBB condition for the stochastic weak formulation

The space and time discretization of (4.68)–(4.70) can be carried out very similar
to the approach outlined in Section 4.2, i.e., first the time variable is discretized
via a Crank-Nicolson scheme and the resulting semi-discrete system is further dis-
cretized by employing Finite-Elements. However, for numerical stability it should
also be ensured that the LBB condition (4.38) is satisfied within the stochastic con-
text, when defining appropriate Finite-Element spaces for the velocity and pressure
modes. The following corollary will show, that numerically stable Finite-Elements
are given by a tensor product of the Taylor-Hood elements (cf. Section 4.2.3) for
every mode.
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Corollary 4.5. Let Th be a triangulation of a polygonal domain D consisting of
triangles, rectangles, tetrahedrons or hexahedrons and

Vh := {vh ∈ C(D)d ∩H1
0 (D)d; vh|T ∈ Pdn(T ), ∀T ∈ Th}, (4.76)

Qh := {qh ∈ C(D) ∩ L2(D); qh|T ∈ Pn−1(T ), ∀T ∈ Th}, (4.77)

with respect to some degree n ∈ N. Furthermore, let b̃ : [Qh]P+1× [Vh]P+1 −→ R be
defined by

b̃(~qh, ~vh) :=

P∑
i=0

b(qi,h, vi,h), (4.78)

with ~qh = [q0,h, . . . , qP,h]t ∈ [Qh]P+1 and ~vh = [v0,h, . . . , vP,h]t ∈ [Vh]P+1. Then it
holds:

∃β > 0 : sup
~vh∈[Vh]P+1\{0}

b̃(~qh, ~vh)

‖~vh‖1
≥ β‖~qh‖1, ∀~qh ∈ [Qh]P+1\{0}, (4.79)

whereas

‖~xh‖1 :=

P∑
i=0

‖xi,h‖, ~xh ∈ [Xh]P+1, (4.80)

with Xh being Vh or Qh, respectively.

Proof. It is known from Section 4.2.3 that for the chosen discretization spaces Vh
and Qh the LBB condition

∃β > 0 : sup
vh∈Vh\{0}

b(qh, vh)

‖vh‖
≥ β‖qh‖, ∀qh ∈ Qh\{0}, (4.81)

holds. Furthermore, let ε > 0, then for a given arbitrary qh ∈ Qh\{0} there exists
some v̄h ∈ Vh, v̄h 6= 0, such that:

b(qh, v̄h)

‖v̄h‖
> sup

vh∈Vh\{0}

b(qh, vh)

‖vh‖
− ε. (4.82)

Next, define ~̄vh := [v̄h, . . . , v̄h]t ∈ [Vh]P+1\{0}. Hence, for a given arbitrary ~qh :=
[q0,h, . . . , qP,h]t ∈ [Qh]P+1\{0} it holds:

sup
~vh∈[Vh]P+1\{0}

b̃(~qh, ~vh)

‖~vh‖
≥ b̃(~qh, ~̄vh)

‖~̄vh‖

=

∑P
i=0 b(qi,h, v̄h)∑P

i=0 ‖v̄h‖

=
1

P + 1

P∑
i=0

b(qi,h, v̄h)

‖v̄h‖

>
1

P + 1

P∑
i=0

(
sup

vh∈Vh\{0}

b(qi,h, vh)

‖vh‖
− ε

)
, by (4.82).



4.3. The unsteady stochastic incompressible Navier-Stokes equations 51

From equation (4.81) it follows:
∃β > 0 ∀~qh = [q0,h, . . . , qP,h]t ∈ [Qh]P+1\{0} :

sup
~vh∈[Vh]P+1\{0}

b̃(~qh, ~vh)

‖~vh‖
>

1

P + 1

(
P∑
i=0

‖qi,h‖β − ε

)

=
1

P + 1
(‖~qh‖β − ε) , (4.83)

since β is independent of the choice of ~qh ∈ [Qh]P+1\{0}. Letting ε→ 0 completes
the proof.

Corollary 4.5 basically states that if for each mode of the trial and test functions
the Taylor-Hood elements are employed, the corresponding LBB condition to the
SNSE holds, which suggests a numerically stable Finite-Element discretization.

4.3.3. Structure of the discretized system

When the discretization spaces Vh and Qh are fixed for every mode, as introduced
in the previous section, there is an equivalent way of determining the discretized
system [25]. One could also start with a variational formulation only considering the
deterministic parts of the solution, such that by applying the procedure described
in Section 4.2 one obtains a stochastic linear system, similar to (4.45):[

A(ξ) B(ξ)
Bt(ξ) 0

] [
~uh(ξ)
~ph(ξ)

]
=

[
~F1(ξ)
~F2(ξ)

]
, (4.84)

whereas ~uh(ξ) = [u1
h(ξ), . . . , uNh (ξ)]t ∈ L2(Ω;RN ), ~ph(ξ) = [p1

h(ξ), . . . , pMh (ξ)]t ∈
L2(Ω;RM ), A(ξ) ∈ L2(Ω;RN,N ), B(ξ) ∈ L2(Ω;RN,M ), ~F1(ξ) ∈ L2(Ω;RN ), and
~F2(ξ) ∈ L2(Ω;RM ), which exact definitions can be obtained by an analog stochastic
representation of the variables defined in (4.45). Note that N = dim{Vh} and
M = dim{Qh}. The P th order gPC expansion of A, B, ~uh, ~ph, ~F1 and ~F2 reads:

A(ξ) =

P∑
i=0

Aiψi(ξ), B(ξ) =

P∑
i=0

Biψi(ξ), (4.85)

~uh =

P∑
i=0

~ui,hψi(ξ), ~ph =

P∑
i=0

~pi,hψi(ξ), (4.86)

~F1 =

P∑
i=0

~Fi,1ψi(ξ), ~F2 =

P∑
i=0

~Fi,2ψi(ξ), (4.87)

whereas Ai ∈ RN,N , Bi ∈ RN,M , ~ui,h ∈ RN , ~pi,h ∈ RM , ~Fi,1 ∈ RN and ~Fi,2 ∈ RM for
i = 0, . . . , P . Introducing these gPC expansions into equation (4.84) and applying
a stochastic Galerkin projection on the space spanned by the Chaos Polynomials
span{ψi, i = 0, . . . , P} (cf. Section 4.3.1) one obtains the fully discretized system:

P∑
i=0

P∑
j=0

[
Ai Bi
Bt
i 0

] [
~uj,h
~pj,h

]
cijk =

[
~Fk,1
~Fk,2

]
, ∀k = 0, . . . , P, (4.88)
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whereas cijk denotes the entries of the third order tensor defined in Section 4.3.1.
Equivalently, one can recast (4.88) such that the fully discretized system has the
following structure:

P∑
i=0



[
Aici00 Bici00

Bt
ici00 0

]
· · ·

[
AiciP0 BiciP0

Bt
iciP0 0

]
... · · ·

...
... · · ·

...
... · · ·

...[
Aici0P Bici0P
Bt
ici0P 0

]
· · ·

[
AiciPP BiciPP
Bt
iciPP 0

]


︸ ︷︷ ︸

∈R(P+1)(N+M),(P+1)(N+M)



~u0,h

~p0,h
...
...
...

~uP,h
~pP,h


︸ ︷︷ ︸

∈R(P+1)(N+M)

=



~F0,1

~F0,2
...
...
...
~FP,1
~FP,2


︸ ︷︷ ︸

∈R(P+1)(N+M)

.

(4.89)
Also, it is possible to reorder the solution vector, such that the saddle-point struc-
ture is reflected more concretely. This results in the equivalent system:

P∑
i=0




Aici00 · · · AiciP0

... · · ·
...

... · · ·
...

Aici0P · · · AiciPP



Bici00 · · · BiciP0

... · · ·
...

... · · ·
...

Bici0P · · · BiciPP


Bt
ici00 · · · Bt

iciP0
... · · ·

...
... · · ·

...
Bt
ici0P · · · Bt

iciPP

 0


︸ ︷︷ ︸

∈R(P+1)(N+M),(P+1)(N+M)



~u0,h
...
...

~uP,h
~p0,h

...

...
~pP,h


︸ ︷︷ ︸

∈R(P+1)(N+M)

=



~F0,1
...
...
~FP,1
~F0,2
...
...
~FP,2


︸ ︷︷ ︸

∈R(P+1)(N+M)

.

(4.90)
Therefore, it can be observed more clearly, that the saddle-point structure of the
deterministic problem is preserved within the stochastic context, requiring the use
of numerically stable Finite-Element spaces, e.g., the Taylor-Hood elements intro-
duced in Section 4.3.2. Furthermore, the size of the system matrix is a factor of
(P + 1)2 larger than the corresponding system matrix of a deterministic system.
Therefore, one often relies on numerical strategies, which try to solve (4.90) in a
matrix-free approach to avoid assembly time and reduce the memory requirements.
However, the third order tensor defined by its entries cijk, i, j, k = 0, . . . , P , is
sparse (cf. Chapter 2), such that many entries of the system matrix do not need to
be computed and stored, resulting in a sparse structure of the system matrix itself
with additional sparsity introduced through the Finite-Element discretization.



Chapter 5.

Periodic orbits of the unsteady stochastic
incompressible Navier-Stokes equations

Solutions to fluid flow problems can be categorized roughly by three classes, namely
steady state, time-periodic and unsteady without specific repeating patterns. In the
stochastic context, a gPC expansion exhibits a similar convergence breakdown as
being elaborated on in Chapter 3 for unsteady problems, which makes the use
of gPC for the solution of the SNSE only applicable for limited time intervals.
Therefore, this Chapter restricts its attention towards the determination of time-
periodic solutions to the SNSE using gPC as the next hierarchy step to the steady
state case. Such solutions are usually referred to as ”periodic orbits” in context
of dynamical systems, which are characterized by some period and initial condi-
tion exhibiting stable limit cycles. Their determination often plays an important
role in transition phases between laminar and turbulent states arising in fluid flow
problems. If uncertainties are involved, the period and initial condition become
random quantities themselves such that a deterministic time discretization scheme
can only be applied in sampling based strategies without imposing specific modifica-
tions. Therefore, this chapter introduces a new numerical method for determining
solutions of the SNSE, which are almost surely periodic subject to a stochastic
period, by extending a deterministic approach introduced by Duguet et al. [9] to
the unsteady stochastic incompressible Navier-Stokes equations using the Spectral-
Stochastic-Finite-Element-Method introduced in Chapter 4. This makes it possible
to characterize all trajectories of the random events by a functional representation
of the stochastic period and initial condition with respect to the random input.

5.1. Problem definition

Recall the unsteady stochastic incompressible Navier-Stokes equations (SNSE) (cf.
Chapter 4), which are given by:

∂tu(ξ) + (u(ξ) · ∇)u(ξ)− ν∆u(ξ) +
1

ρ
∇p(ξ) = 0, in D × (0, T̃ ), (5.1)

∇ · u(ξ) = 0, in D × (0, T̃ ), (5.2)

u(ξ) = uD(ξ), on Γ× (0, T̃ ), (5.3)

u(t = 0; ξ) = uI(ξ), in D, (5.4)

almost surely in Ω subject to an open and bounded domain D ⊂ Rd, a Lipschitz-
continuous Dirichlet boundary Γ ⊂ ∂D and time interval [0, T̃ ], whereas ξ repre-
sents a finite dimensional random vector defined on some underlying probability
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space (Ω,F ,P). Note, that no external forces are being considered resulting in a
zero valued right hand side in equation (5.1). The uncertainty is introduced by
boundary uD and initial conditions uI leading to an uncertain period T = T (ξ) for
almost surely time-periodic solutions. For the rest of this chapter a fundamental
assumption shall hold:

Assumption 5.1. There exists a time-periodic solution u to (5.1)–(5.3), charac-
terized by some initial solution u(t = 0) = uI ∈ [L2(Ω)]d ⊗ [C2(D)]d satisfying
(5.2)–(5.3) and period T ∈ L2(Ω), T̃ ≥ T ≥ α > 0 almost surely in Ω, for some
α ∈ R, such that for all t ∈ [0, T (ξ)]:

u(x, t+ T (ξ); ξ) = u(x, t; ξ), ∀x ∈ D, (5.5)

almost surely in Ω, whereas u ∈ [L2(Ω)]d ⊗ [C2(D × (0, T̃ ))]d) satisfies (5.1)–(5.4).

The main problem in computing stochastic periodic orbits arises from the stochas-
tic nature of the period T . A standard gPC computation, based on a deterministic
time-discretization method (cf. Chapter 4) will have difficulties in capturing the
stochastic variations of the period, since the trajectories of a solution to the SNSE
depend on a random event ω ∈ Ω. Therefore, the approach outlined in the following
aims at representing the stochastic period as some additional random input within
the SNSE, introducing a new random variable, which computation requires an ad-
ditional condition to the SNSE. Therefore, this allows the use of a deterministic
simulation time interval to compute a pair of initial condition and period, since
the uncertainty within the time interval is transfered towards the system equations.
This is achieved by introducing a new scaled time variable λ which is defined by:

λ :=
t

T (ξ)
, pointwise in Ω, t ∈ [0, (1 + δT )T (ξ)], (5.6)

whereas δT ∈ R is some predefined deterministic time length, which is allowed
to become positive as well as negative valued. Note that λ is a random variable
itself, however, its range is deterministic and restricted to the scaled time interval
[0, 1 + δT ] almost surely in Ω. Furthermore, λ ∈ L2(Ω), provided that the period
T satisfies T ≥ α > 0 almost surely in Ω, which is assumed in Assumption 5.1.
The rescaling with respect to λ has an effect on the time derivative within equation
(5.1) for which it holds by applying the chain rule:

∂tu(x, λ; ξ) =
∂

∂t
(u(x, λ; ξ)), (5.7)

=
∂λ

∂t

∂

∂λ
u(x, λ; ξ), (5.8)

=
1

T (ξ)
∂λu(x, λ; ξ) (5.9)

almost surely in Ω. Introducing the scaled time λ into (5.1)–(5.3) results in a scaled
version of the unsteady stochastic incompressible Navier-Stokes equations:

∂λu(ξ) + T (ξ)(u(ξ) · ∇)u(ξ)

−νT (ξ)∆u(ξ) +∇p̃(ξ) = 0, in D × (0, 1 + δT ), (5.10)

∇ · u(ξ) = 0, in D × (0, 1 + δT ), (5.11)

u(ξ) = uD(ξ), on Γ× (0, 1 + δT ), (5.12)
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almost surely in Ω. For the rest of this chapter equations (5.10)–(5.12) are being
referred to as scaled Navier-Stokes equations, or shortly S-SNSE, for notational
convenience. Note that the pressure variable has been redefined by:

p̃(ξ) :=
T (ξ)

ρ
p, (5.13)

almost everywhere in D × (0, 1 + δT ) and almost surely in Ω, which reduces the
computational complexity due to a simplified system structure (cf. Section 5.2).
In the following the tilde notation for the pressure variable p̃ will be dropped for
notational convenience.

To formulate the problem definition for this chapter, the following operator is
defined:

I(uI , T, λ) := uI +

∫ λ

0
∂λu, (5.14)

whereas u ∈ [L2(Ω)]d ⊗ [C2(D × (0, 1 + δT ))]d) satisfies (5.10)–(5.12) up to the
scaled time λ for a given initial condition uI and period T as stated in Assumption
5.1. Therefore, the problem definition for finding stochastic periodic orbits of the
stochastic Navier-Stokes equations reads:

Find some uI ∈ [L2(Ω)]d⊗ [C2(D)]d satisfying (5.11)–(5.12) and a corresponding
T ∈ L2(Ω), T ≥ α > 0 almost surely in Ω, such that:

‖I(uI , T, 1)− uI‖L2(D) = 0, a.s. ⇔
√
E‖I(uI , T, 1)− uI‖2L2(D)

= 0. (5.15)

Note that
√

E‖ · ‖2
L2(D)

defines a norm on Ω×D, since
√
E‖ · ‖2

L2(D)
= ‖ · ‖L2(Ω×D),

which in the following shall be denoted by ‖ · ‖. Furthermore, it is important
to emphasize that no uniqueness of an initial condition satisfying (5.15) is to be
expected.

5.2. Variational formulation

As introduced in Chapter 4 the system in (5.10)–(5.12) shall be expressed in a
variational formulation, enabling the use of Finite-Elements in the spatial domain
and reducing the regularity requirements on a solution to the scaled Navier-Stokes
equations. Therefore, first u, p, T, uD are approximated by their corresponding gPC
expansion employing a finite number of terms:

T (ξ) =
PT∑
i=0

Tiψi(ξ), (5.16)

u(x, λ; ξ) =

P∑
i=0

ui(x, λ)ψi(ξ), (5.17)

p(x, λ; ξ) =
P∑
i=0

pi(x, λ)ψi(ξ), (5.18)

uD(x; ξ) =
P∑
i=0

uDi (x)ψi(ξ). (5.19)
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Here, the truncation parameters P T for the period and P for the velocity and
pressure variables satisfy:

(P T + 1) =
(NoT + L)!

NoT !L!
, (5.20)

(P + 1) =
(No+ L)!

No!L!
, (5.21)

whereas L ∈ N denotes the dimension of the random vector ξ = (ξ1, . . . , ξL),
NoT ∈ N the maximum polynomial degree employed for the period and No ∈ N the
maximum polynomial degree employed for the velocity and pressure variables. Next,
these discretizations are inserted into the scaled Navier-Stokes equations (5.10)–
(5.12) and the stochastic Galerkin projection onto the space spanned by the Chaos
Polynomials, i.e., onto span{ψi, i = 0, . . . , P}, is applied as described in Section
4.3.1, resulting in:

∂λuk +
PT∑
i=0

P∑
j=0

P∑
l=0

Ti(uj · ∇)ulcijlk

−ν
PT∑
i=0

P∑
j=0

Ti∆ujcijk +∇pk = 0, in D × (0, 1 + δT ), (5.22)

∇ · uk = 0, in D × (0, 1 + δT ), (5.23)

uk = uDk , on Γ× (0, 1 + δT ), (5.24)

for k = 0, . . . , P , whereas the corresponding 4th and 3rd order tensors are defined
by:

cijlk :=
〈ψiψjψl, ψk〉
〈ψk, ψk〉

, (5.25)

cijk :=
〈ψiψj , ψk〉
〈ψk, ψk〉

. (5.26)

for i = 0, . . . , P T and j, l, k = 0, . . . , P . Note that both tensors have a sparse
structure (cf. Chapter 2), which leads to many zero valued coupling terms in
(5.22). Furthermore, the redefinition of the pressure variable in (5.13) plays an
important role, since the pressure term appears completely decoupled in (5.22),
which would not be the case if the pressure term would still involve a product
with the stochastic period T (ξ), as being the case for the viscosity term. However,
the number of coupling terms within (5.22) is significantly increased in comparison
to the standard unscaled formulation stated in Section 4.3.1 due to the nonlinear
convective term. This has a significant impact on the computational complexity
when assembling the stiffness-matrix and residuals by a numerical solver.

Having stated the stochastic Galerkin projected system (5.22)–(5.23), a varia-
tional formulation can be derived analog to the variational formulation outlined in
Section 4.3.1, resulting in:
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For given period modes Tk, k = 0, . . . , P T find uk ∈ uDk + V and pk ∈ Q,
k = 0, . . . , P such that:

(∂λuk, v) +
PT∑
i=0

P∑
j=0

P∑
l=0

Ti((uj · ∇)ul, v)cijlk

+ν

PT∑
i=0

P∑
j=0

Ti(∇uj ,∇v)cijk − (pk,∇ · v) = 0, ∀v ∈ V, (5.27)

(∇ · uk, q) = 0, ∀q ∈ Q, (5.28)

almost everywhere in (0, 1 + δT ) for k = 0, . . . , P subject to a given initial con-
dition uI with test function spaces V and Q defined in Section 4.1. Note that
the variational formulation implies a predefined value for the stochastic period T ,
which suggest an iterative approach when computing a pair of period T and corre-
sponding initial condition uI . This will be explained in detail within the following
section. Furthermore, the integration operator I introduced in (5.14) is adapted to
the variational formulation, i.e.,

I(uI , T, λ) := uI +

∫ λ

0
∂λu, (5.29)

whereas u =
∑P

i=0 uiψi, with ui ∈ uDi + V almost everywhere in (0, 1 + δT ) for
i = 0, . . . , P , satisfies (5.27)–(5.28) up to the scaled time λ for a given initial
condition uI =

∑P
i=0 uI,iψi, with uI,i ∈ uDi +V , i = 0, . . . , P , and period T ∈ L2(Ω).

5.3. Solution procedure

In the following an iterative method, based on a deterministic approach introduced
by Duguet et al. [9], will be described to compute a pair of initial condition uI
and period T satisfying (5.15), employing Newton’s method, Finite-Elements and
optimization techniques.

The iterative numerical algorithm starts by choosing some appropriate initial

guesses u0
I =

∑P
i=0 u

0
I,iψi and T 0 =

∑PT

i=0 T
0
i ψi for the initial condition and period,

respectively. The choice of these initial guesses has a strong impact on the conver-
gence behavior of the iteration procedure, since it involves Newton’s method as will
be shown later within this section. Furthermore, for Newton’s method it is known
[6] that it only converges if the initial guess is ”close enough” to a solution, which
in general cannot be guaranteed.

Fixing some iteration index, say k, a distance vectorDk : [0, 1+δT ] −→ [L2(Ω)]d⊗
[H1(D)]d is defined by:

Dk(λ) := ukI − I(ukI , T
k, λ), λ ∈ [0, 1 + δT ]. (5.30)

Therefore, ‖Dk‖measures the distance between a current iterate ukI and its terminal
state I(ukI , T

k, λ) at time λ, subject to the current period iterate T k. The goal of
the iteration procedure is to obtain convergence such that ‖Dk‖ → 0 as k →∞.

Achieving this goal is carried out by two essential steps:
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Figure 5.1.: Schematic view of a trajectory starting at some initial condition uI
with distance vector D(λ̄) and time derivative ∂I

∂λ of the terminal state
at minimization time λ̄.

• A predictor–corrector step for determining a new period iterate T k+1,

• Newton’s method for determining a new initial condition iterate uk+1
I .

5.3.1. A predictor-corrector step for the period update

So-called ”predictor-corrector” algorithms are a concept of algorithms which first
try to estimate a solution to some given problem and afterwards aim to correct
the error associated with the prediction. For the period update such a prediction
can be obtained by determining some deterministic scaling time λ̄ ∈ [0, 1 + δT ],
which minimizes λ 7→ ‖Dk(λ)‖2 subject to the mean ξ̄ of ξ. Therefore, λ̄ provides
an estimate for a new period iterate with respect to the mean ξ̄ of the random
input vector and serves as a global scaling information for every other realization
of ξ. This leads to a deterministic optimization problem, for which the necessary
optimality criteria reads:

αk(λ) := 2

∫
D
Dk(λ)∂λI(ukI , T

k, λ) dx = 0, subject to ξ̄, (5.31)

which can be easily derived by differentiating λ 7→ ‖Dk(λ)‖2 with respect to λ and
taking into account that the operators involved are deterministic with respect to
ξ̄. Equation (5.31) basically states that the critical points satisfying the optimality
criteria require the distance vector Dk to be orthogonal to the tangential vector
∂I
∂λ of the time trajectory of the corresponding terminal state, which is depicted in
Figure 5.1. Therefore, the minimization point ensures that the trajectory returns
closest to the initial condition ukI at time λ̄.

Furthermore, the predefined δT ∈ R has an effect on the number of critical
points satisfying (5.31). Its choice is certainly application dependent and it should
be ensured that the trajectory is able to return at least once closest to the initial
condition.
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A straight forward way of solving (5.31) is by monitoring αk(λ) at every discrete
time step, say λn, whereas n denotes some time iteration index. If a sign change
of αk(λ) is observed for two time steps λn and λn+1, then a critical point can
be approximated by a linear interpolation between λn and λn+1, such that for a
homogeneous time discretization, characterized by some constant time step length
δλ > 0, the interpolation reads:

λcritn := nδλ+
−δλαk(λn)

αk(λn+1)− αk(λn)
> 0. (5.32)

For a non-homogeneous time stepping an analog defined linear interpolation can be
applied.

The exact minimization point λ̄ can be approximated by λcritn , whereas n is chosen
such that:

‖Dk(λn)‖ is minimal w.r.t. n. (5.33)

For δλ sufficiently small, (5.33) provides an accurate approximation of the exact
minimization point, having the advantage that the distance ‖Dk(λ)‖ does not need
to be approximated by some further interpolation, instead it suffices to monitor the
quantities ‖Dk(λn)‖.

In a deterministic framework, this prediction would be sufficient to obtain a new
period iterate T k+1 [9]. However, since the underlying problem is of a stochastic
nature, the calculated minimization time λ̄ is only optimal for the mean ξ̄ of ξ
by construction. In general, other realizations of ξ will not satisfy the optimality
criteria (5.31) at λ = λ̄. Therefore, a stochastic correction step needs to be applied,
which ensures that the distance between the initial condition and terminal state
remains minimal almost surely in Ω. Hence, such an appropriate correction term,
say dλ ∈ L2(Ω), is required to satisfy:

dλ = arg min
dλ
‖ukI − I(ukI , T

k, λ̄+ dλ)‖2, (5.34)

which leads to a stochastic nonlinear optimization problem. It is also possible to skip
the deterministic prediction step and try to solve (5.34) directly. However, having
a prediction λ̄, the stochastic correction term dλ can be assumed to be small in
magnitude, provided that different realizations of ξ don’t cause a large variation in
the corresponding terminal states. This justifies a linearization approach, whereas
the terminal state I(ukI , T

k, λ̄+ dλ) is approximated by its first order Taylor series
representation around λ̄, i.e.,

I(ukI , T
k, λ̄+ dλ) ≈ I(ukI , T

k, λ̄) + ∂λI(ukI , T
k, λ̄)dλ, a.s. in Ω. (5.35)

Furthermore, since dλ ∈ L2(Ω), dλ can be approximated by a gPC expansion of
order P T given by:

dλ(ξ) ≈
PT∑
i=0

dλiψi(ξ), (5.36)

with dλi ∈ R, i = 0, . . . , P T . Inserting (5.35) and (5.36) in (5.34) one obtains
a linearized stochastic optimization problem for the stochastic modes dλi, i =
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0, . . . , P T , of the correction term dλ:

min
dλ0,...,dλPT

‖Dk(λ̄)− ∂λI(ukI , T
k, λ̄)

PT∑
j=0

dλjψj‖2. (5.37)

Lemma 5.2. The optimization problem, given in equation (5.37), is convex, and
the necessary and sufficient conditions for the minimizing stochastic mode vector
~dλ = [dλ0, . . . , dλPT ]t ∈ RPT are given by:

A ~dλ = b, (5.38)

whereas A ∈ RPT ,PT and b ∈ RPT are defined by:

Aml :=

PT∑
i=0

PT∑
j=0

cijlm(∂λI(ukI , T
k, λ̄)i, ∂λI(ukI , T

k, λ̄)j), (5.39)

bm :=

PT∑
i=0

PT∑
j=0

cijm(Dk(λ̄)i, ∂λI(ukI , T
k, λ̄)j), (5.40)

with (·, ·) denoting the L2-inner-product on D. The corresponding gPC coefficients
of ∂λI and Dk are given by:

∂λI(ukI , T
k, λ̄)i =

〈∂λI(ukI , T
k, λ̄), ψi〉

〈ψi, ψi〉
, (5.41)

Dk(λ̄)i =
〈Dk(λ̄), ψi〉
〈ψi, ψi〉

, (5.42)

for i = 0, . . . , P T .

Proof. For deriving the optimality criteria and showing that (5.37) is convex, it
is sufficient to determine the Jacobian and Hessian of (5.37) with respect to the
stochastic modes dλi, i = 0, . . . , P T . For the Hessian it will be shown that it is
positive semi-definite, which proves the convexity. From this it follows that setting
the Jacobian equal to zero provides the necessary and sufficient condition for the
minimization vector ~dλ = [dλ0, . . . , dλPT ]t ∈ RPT . Furthermore, for notational
convenience, İk and Dk are defined by İk := ∂λI(ukI , T

k, λ̄) and Dk := Dk(λ̄).
Therefore, the optimality criteria can be derived by:

∂

∂dλm
‖Dk(λ̄)− ∂λI(ukI , T

k, λ̄)

PT∑
l=0

dλlψl‖2 = 0, ∀m = 0, . . . , P T , (5.43)

⇔ − 2E[(Dk − İk
PT∑
l=0

dλlψl, İ
kψm)] = 0, ∀m = 0, . . . , P T , (5.44)

⇔ E[(İk
PT∑
l=0

dλlψl, İ
kψm)] = E[(Dk, İkψm)], ∀m = 0, . . . , P T . (5.45)
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Introducing the gPC expansions İk =
∑PT

i=0 İ
k
i ψi and Dk =

∑PT

i=0D
k
i ψi into (5.45)

one obtains for all m = 0, . . . , P T :

E[(
PT∑
i=0

İki ψi

PT∑
l=0

dλlψl,
PT∑
j=0

İkj ψjψm)] = E[(
PT∑
i=0

Dk
i ψi,

PT∑
j=0

İkj ψjψm)], (5.46)

⇔
PT∑
i=0

PT∑
j=0

PT∑
l=0

〈ψiψjψl, ψm〉(İki , İkj ) =

PT∑
i=0

PT∑
j=0

〈ψiψj , ψm〉(Dk
i , İ

k
j ). (5.47)

Dividing by 〈ψm, ψm〉 gives the stated optimality criteria. To prove the convexity
one has to determine the second partial derivatives of (5.37) with respect to some
dλm and dλn, n,m = 0, . . . , P T :

hmn :=
∂2

∂dλn∂dλm
‖Dk(λ̄)− ∂λI(ukI , T

k, λ̄)
PT∑
l=0

dλlψl‖2 (5.48)

=
∂

∂dλn
(−2E[(Dk − İk

PT∑
l=0

dλlψl, İ
kψm)]) (5.49)

= 2E[(İkψn, İ
kψm)]. (5.50)

This defines the Hessian H := (hmn)P
T

m,n=0, for which it needs to be shown that
it is positive semi-definite such that the convexity of the optimization problem is
proved. Therefore, consider some given vector y = [y0, . . . , yPT ]t ∈ RPT , y 6= 0, and
observe that the following relations hold:

ytHy =
PT∑
m=0

PT∑
n=0

ymhmnyn, (5.51)

= 2
PT∑
m=0

PT∑
n=0

ymE[(İkψn, İ
kψm)]yn, (5.52)

= 2E[(

PT∑
m=0

ymψmİ
k,

PT∑
n=0

ynψnİ
k)], (5.53)

= 2‖
PT∑
m=0

ymψmİ
k‖2 ≥ 0. (5.54)

Therefore, H is positive semi-definite, which completes the proof.

Having determined the stochastic correction term dλ, the new period iterate T k+1

can be obtained by

(λ̄+ dλ) =
T k+1

T k
⇔ T k+1 = (λ̄+ dλ)T k, (5.55)

by definition of the scaled time λ (set t = T k+1, cf. Eq. (5.6)). Further calculation
yields:

T k+1
m = λ̄T km +

PT∑
i=0

PT∑
j=0

dλiT
k
j cijm, m = 0, . . . , P T , (5.56)
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for the corresponding modes T k+1
m , m = 0, . . . , P T , of the period iterate T k+1 =∑PT

m=0 T
k+1
m ψm.

Summing up, the determination of the new period update T k+1 requires the
solution of a deterministic reference problem, given by the deterministic Navier-
Stokes equations, for the mean ξ̄ of the random input ξ to obtain a deterministic
scaling information and the solution of a linear system of equations, as stated in
Lemma 5.2, for P T unknowns to determine a stochastic correction term, which can
be carried out by employing standard direct numerical solvers.

5.3.2. Newton’s method for updating the initial condition

Updating the period iterate ensures that the terminal state has a minimal distance
with respect to the current initial condition iterate ukI . Ideally, this minimal distance
would be equal to zero, for which the algorithm would terminate, however, in general
the minimum is greater than zero, which necessitates a correction of ukI such that
the distance can be decreased further. To this end, the updated distance vector, say
Dk+1/2 : [L2(Ω)]d ⊗ [H1(D)]d −→ [L2(Ω)]d ⊗ [H1(D)]d, subject to the new period
iterate T k+1 is defined by:

Dk+1/2(uI) := uI − I(uI , T
k+1, 1), (5.57)

such that ‖Dk+1/2‖ measures the distance between the variable initial condition uI
and its terminal state I(uI , T

k+1, 1) after one cycle with respect to the period T k+1.
Therefore, Newton’s method applied to Dk+1/2(uI) = 0 yields the desired update
formula for the new iterate uk+1

I for the initial condition. This update is given by
one Newton step, which reads:

uk+1
I = ukI + dukI , (5.58)

−Jk[dukI ] = Dk+1/2(ukI ), (5.59)

whereas Jk[du
k
I ] denotes the Jacobian of Dk+1/2 with respect to uI in direction dukI

at uI = ukI . Since Jk[du
k
I ] involves the Jacobian of the Navier-Stokes equations in

direction dukI , it provides a sensitivity information of the terminal state at λ = 1
with respect to the initial condition dukI .

Solving the linear system in (5.59) can be carried out by using the ”Generalized
Minimal Residual Method” (GMRES method, [33]), which belongs to the class of
iterative solvers based on an approximation of the solution dukI within the Krylov-
space KNK (du, Jk) of some given dimension NK , defined by:

KNK (du, Jk) := span{du, Jk[du], J2
k [du], . . . , JNKk [du]}, (5.60)

for the predefined initial Krylov-iterate du := −Dk+1/2(ukI ). The GMRES method
iteratively constructs the Krylov-space KNK (du, Jk), whereas in each GMRES itera-
tion one evaluation of Jk[δu] for each GMRES iterate, say δu, needs to be performed.
When no analytical expression for Jk is available, or the system size is too large
to effectively compute Jk, one often relies on matrix-free approaches, which avoid
the explicit calculation of the Jacobian Jk [6, 9]. One possibility is to approximate
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Jk[δu] by Finite-Differences [6, 9], e.g.,

Jk[δu] ≈
Dk+1/2(ukI + εδu)−Dk+1/2(ukI )

ε
, (5.61)

for some very small ε > 0. However, the quality of the approximation strongly
depends on the choice of ε. Furthermore, it requires to solve the scaled Navier-Stokes
equations in their nonlinear form with respect to the initial conditions ukI + εδu
and ukI . As the following section will show, this is unnecessary since solving the
linearized scaled Navier-Stokes equations will be sufficient, which also provide an
exact evaluation of Jk[δu].

5.3.3. Sensitivity of the terminal state with respect to the initial
condition

The update formula given in (5.58) requires the solution of (5.59). As stated in
the previous section, the GMRES method provides an iterative solution approach,
whereas for some given iterate, say δu, the ”effect” of the Jacobian Jk[δu] has
to be evaluated. This can be carried out by solving the linearized Navier-Stokes
equations, which will be elaborated on in the following. This plays a very important
role for the reduction of the overall numerical cost involved within the algorithm,
since the solution of each Newton step (5.59) requires multiple solutions within the
GMRES method such that there is a huge benefit in solving ”only” linear unsteady
problems.

Since the ”implicit function theorem” plays an important role for proving the
sufficiency of the linear equations, it shall be recapitulated, whereas its exact for-
mulation is taken from [49] without proof:

Theorem 5.3 (Implicit Function Theorem). Let X,Y , and Z be Banach spaces
over R, and let

F : U(u∗I , u
∗) ⊂ X × Y → Z (5.62)

be a Cn-map on an open neighborhood of the point (u∗I , u
∗) such that F (u∗I , u

∗) = 0
holds and 1 ≤ n ≤ ∞. Suppose that the operator (partial Fréchet differential)

Fv(u
∗
I , u
∗) : Y → Z is bijective. (5.63)

Then the following statements hold true:

(i) There exist numbers r > 0 and ρ > 0 such that, for each given uI ∈ U , the
equation F (uI , u) = 0 has a unique solution u ∈ Y with ‖u−u∗‖ ≤ r. Denote
this solution by u(uI).

(ii) The function uI 7→ u(uI) is Cn on U . In particular, for the Fréchet differen-
tial u′(uI) it holds

u′(uI) = −Fu(uI , u(uI))
−1FuI (uI , u(uI)) for all uI ∈ U. (5.64)

The application of the Jacobian Jk to some δu can further be simplified by:

Jk[δu] = δu− JNSk [δu], (5.65)



64 Chapter 5. Periodic orbits of the SNSE

by definition of Dk+1/2, whereas JNSk denotes the Jacobian of the terminal state
I(ukI , T

k+1, 1) in direction δu. Therefore, the focus is shifted towards the com-
putation of JNSk [δu], which for the following analysis will be denoted by J [δu]
for notational convenience. Furthermore, to simplify the derivation of the linear
model, divergence free vector spaces for the velocity u arising from the S-SNSE are
assumed, such that the pressure variable can be neglected. Also, the strong formu-
lation of the S-SNSE is being considered, provided that the velocity variable fulfills
the regularity requirements of a classical solution to the stochastic Navier-Stokes
equations. In an analog yet more technical way, the results of this section can be
transfered to the mixed-type variational formulation involving the pressure variable
with less regularity requirements on the velocity u.

Hence, the Navier-Stokes operator F is defined by:

F (uI , u) :=

∂λu+ T (u · ∇)u− νT∆u
u|Γ − uD

u(λ = 0)− uI

 , (5.66)

such that F (uI , u) = 0 represents the S-SNSE in their strong formulation subject to
a Dirichlet-condition uD. Furthermore, let u∗I := ukI , then there exists a solution u∗

such that F (u∗I , u
∗) = 0 (cf. Chapter 4). It can be shown that F is C∞-differentiable

[22] in a neighborhood of (u∗I , u
∗). The directional Gâteaux derivative of F with

respect to u in direction ū can be easily calculated and reads:

Fu(uI , u)[ū] =

∂λū+ T (ū · ∇)u+ T (u · ∇)ū− νT∆ū
ū|Γ

ū(λ = 0)

 . (5.67)

Assuming that the partial Fréchet derivative Fu is bijective in a neighborhood of
(u∗I , u

∗) allows the use of the implicit function theorem 5.3 and therefore it holds:

−Fu(uI , u)u′(uI) = FuI (uI , u), (5.68)

for all (uI , u) in a neighborhood of (u∗I , u
∗). Note, that u′(uI)[δu] = J [δu] for a

direction δu. Therefore inserting this relation into equation (5.68) at (uI , u) =
(u∗I , u

∗) with respect to the direction δu yields:

−

∂λv + T (v · ∇)u∗ + T (u∗ · ∇)v − νT∆v
v|Γ

v(λ = 0)

 =

 0
0
−δu

 , (5.69)

for v := J [δu].
Summing up, the computation of the directional derivative J [δu] of the terminal

state I(ukI , T
k+1, 1) with respect to uI in direction δu does not require a solution of

the nonlinear form of the S-SNSE. Instead, given an iterate ukI and its corresponding
terminal state I(ukI , T

k+1, 1), it suffices to solve a linearized version of the S-SNSE
subject to homogeneous Dirichlet boundary conditions on the boundary Γ ⊂ ∂D and
initial condition δu, with linearization around the trajectory of the velocity between
the initial condition ukI and its terminal state I(ukI , T

k+1, 1) as stated in equation
(5.69). Note that this provides a significant reduction in the computational cost of
the overall iteration procedure compared to a Finite-Difference approximation of
the Jacobian (cf. Eq. (5.61)), especially since the computation of the Jacobian in
direction δu needs to be performed for every GMRES iteration δu.
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Algorithm 5.1 Computation of stochastic periodic orbits

1: Choose initial guesses u0
I and T 0

2: Choose tolerances ε > 0 and kmax ∈ N
3: k ← 0
4: Compute terminal condition u0

T ← I(u0
I , T

0, 1) (nonlinear stochastic NS)
5: r0 ← ‖u0

I − u0
T ‖/‖u0

I‖
6: while k < kmax and rk > ε do
7: k ← k + 1
8: Compute global scaling λ̄ ∈ R (nonlinear deterministic NS)

9: Compute stochastic correction dλ =
∑PT

i=0 dλiψi (nonlinear stochastic NS)

10: Update period modes T km ← λ̄T k−1
m +

∑PT

i=0

∑PT

j=0 dλiT
k−1
j cijm

m = 0, . . . , P T

11: Compute terminal condition ukT ← I(uk−1
I , T k, 1) (nonlinear stochastic NS)

12: Solve Newton step −Jk[dukI ]← uk−1
I − ukT (linear stochastic NS)

13: Update initial condition ukI ← uk−1
I + dukI

14: Compute terminal condition ukT ← I(ukI , T
k, 1) (nonlinear stochastic NS)

15: rk ← ‖ukI − ukT ‖/‖ukI‖
16: end while
17: Postprocessing

5.3.4. The algorithm

This section shortly recapitulates the algorithm introduced in the previous sec-
tions. As can be seen from Algorithm 5.1, the computation of a periodic orbit starts
by introducing initial guesses u0

I and T 0 for the initial condition and period, as well
as the maximum number of iterations kmax and an error tolerance ε > 0 for the
relative distance error between a current iterate ukI and its corresponding terminal
state I(ukI , T

k, 1) with respect to the period iterate T k within the iteration k.

The bulk of the computational cost is certainly the requirement of solving the
stochastic Navier-Stokes equations and its linear and deterministic counterparts
multiple times within each iteration, i.e., one iteration requires the solution of
three nonlinear stochastic Navier-Stokes problems, one linearized stochastic Navier-
Stokes problem and one deterministic nonlinear Navier-Stokes problem. Therefore,
the numerical efficiency of this algorithm strongly depends on the numerical effi-
ciency on the available numerical solvers for the stochastic Navier-Stokes equations.
Especially, in context of high Reynolds number flows, a numerically stable Finite-
Element discretization along with the stochastic Galerkin projection requires a large
number of degrees of freedom to capture all dynamics of the flow. This necessitates
the development and use of efficient parallel numerical solvers, employing memory
distribution and thread parallelization.

5.4. Flow around a circular domain

The algorithm described in the previous sections shall be verified employing a
benchmark problem originally introduced in [34]. It is a two-dimensional prob-
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Figure 5.2.: Employed geometry and triangulation of a 2d-channel with a circular
domain. Mesh refinement level RL = 0.

lem in space, which describes a flow of an incompressible fluid around a circular
domain within a channel of length L and height H. Its exact geometrical data and
a Finite-Element mesh consisting of triangles for a mesh refinement level RL = 0 is
depicted in Fig. 5.2 with L = 2.2, H = 0.41. The circular domain has a diameter
of D = 0.1 and its center-point has the coordinates (cx, cy) = (0.2, 0.2). For the de-
terministic case it is known [34] that the problem exhibits a time-periodic solution
for a Reynolds number Re ≈ 100 resulting in a periodic vortex shedding scheme
behind the circular domain (the flow is considered from left to right, cf. Fig. 5.2),
also known as ”Kármán vortex street” [36]. This suggests a similar time-periodic
behavior of the stochastic Navier-Stokes equations making it a suitable benchmark
problem for the algorithm.

No-slip boundary conditions are considered for Γw ⊂ ∂Ω = (0, L) × (0, H). The
inflow boundary condition at Γi ⊂ ∂Ω is set to be a stochastic parabolic profile,
i.e.,

u1(0, y, t; ξ) = 4uinflow
1 (ξ)y

(H − y)

H2
, y ∈ [0, H], t ≥ 0, (5.70)

u2(0, y, t; ξ) = uinflow
2 (ξ), y ∈ [0, H], t ≥ 0, (5.71)

with u = [u1, u2] denoting the components in x- and y-directions of the velocity
u, respectively. In the following sections, a one-dimensional and a two-dimensional
uniformly distributed random input ξ will be considered, whereas uinflow

1 (ξ) and
uinflow

2 (ξ) will be defined later according to the numerical examples. For the outflow
boundary condition at Γo ⊂ ∂Ω so-called ”do-nothing” boundary conditions are
applied [21]. These represent natural boundary conditions arising from the weak
formulation of the SNSE by requiring all boundary integrals at Γo to vanish in their
sum, i.e., ∫

Γo

∇ui · ~n− pi~n dx = 0, i = 0, . . . , P, (5.72)

whereas ui and pi, i = 0, . . . , P denote the stochastic modes of the velocity and
pressure variable, respectively and ~n denotes the outward unit normal vector on the
boundary Γo. Since this boundary condition results in a unique pressure variable,
no additional requirements, such as

∫
Ω p dx = 0, are necessary.
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Furthermore, the kinematic viscosity ν is set to ν = 0.001 and the density ρ is set
to ρ ≡ 1 for all benchmark computations. For time integration a Crank-Nicolson
scheme (cf. Section 4.2.1) with a homogeneous time step size ∆t = 0.01 for the
unscaled time variable t is employed. The according time step length δλ for the
scaled time variable λ is defined by:

δλ :=
∆t

T k(ξ̄)
, (5.73)

with respect to a period iterate T k at iteration k and the mean ξ̄ of the random
input ξ. Therefore, the time step size can vary for each iteration k of the algorithm,
depending on the value T k(ξ̄) of the period iterate T k at ξ̄. The spatial variable
is discretized employing the Finite-Element mesh depicted in Fig. 5.2 and Taylor-
Hood elements of polynomial degree equal to 2 for each stochastic mode of the
velocity variable and a corresponding polynomial degree equal to 1 for each pressure
mode (cf. Section 4.2.3). Furthermore, the computations are carried out using the
Finite-Element software HiFlow3 [18].

5.4.1. One-dimensional random input

In this section a one-dimensional random input ξ ∼ U(−1, 1), uniformly distributed
in the interval (−1, 1), is being considered. The random quantities uinflow

1 (ξ) and
uinflow

2 (ξ) for the inflow boundary conditions (5.70) and (5.71) are set to:

uinflow
1 (ξ) := 1.5 + 0.1ξ, (5.74)

uinflow
2 (ξ) := 0. (5.75)

This results in a uniformly distributed Reynolds number Re ∼ U(93.3̄, 106.6̄),
whereas the Reynolds number is calculated by:

Re(ξ) =
2

3

uinflow
1 (ξ)D

ν
. (5.76)

Therefore, a time-periodic solution of the SNSE can be expected. The numeri-
cal computations are carried out on the Finite-Element mesh depicted in Fig. 5.2
employing one larger mesh refinement level, i.e., RL = 1. The convergence of
the iterative algorithm is measured by monitoring the total and mode-wise rela-
tive errors, εtotal and εmode,i, i = 0, . . . , P , respectively. These measure the errors
between the initial condition for the velocity and its corresponding terminal state
with respect to the current period iterate and are defined by:

εtotal :=

√√√√(E‖ukI − I(ukI , T
k, 1)‖2L2(D)

E‖ukI‖2L2(D)

)
, (5.77)

=

√√√√(∑P
i=0 ‖uki,I − Ii(ukI , T k, 1)‖2L2(D)〈ψi, ψi〉∑P

i=0 ‖uPi,I‖2L2(D)
〈ψi, ψi〉

)
, (5.78)
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(a) Total rel. error. (b) Mode-wise rel. error.

Figure 5.3.: Total and mode-wise relative error developments with respect to the
number of iterations.

(a) Absolute view. (b) Zoom.

Figure 5.4.: Evolution of the normalized period modes with respect to the number
of iterations.

and

εmode,i =

√√√√(‖uki,I − Ii(ukI , T k, 1)‖2L2(D)

‖uki,I‖2L2(D)

)
, (5.79)

for i = 0, . . . , P , both error terms are subject to some iteration index k. Note
that {uki,I}Pi=0 and {Ii(ukI , T k, 1)}Pi=0 denote the modes of the corresponding gPC

expansion of uI and I(ukI , T
k, 1) given by:

ukI =

P∑
i=0

uki,Iψi, (5.80)

I(ukI , T
k, 1) =

P∑
i=0

Ii(u
k
I , T

k, 1)ψi. (5.81)
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(a) Vorticity mode: 0. Mean.

(b) Vorticity mode: 1. Linear influence of ξ.

(c) Vorticity mode: 2. Quadratic influence of ξ.

(d) Vorticity mode: 3. Cubic influence of ξ.

(e) Vorticity mode: 4. Fourth order influence of ξ.

Figure 5.5.: Computed vorticity of the velocity modes of the initial condition at
iteration index k = 21.
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For the computations an initial guess at iteration index k = 0 for the initial con-
dition uk=0

I and period T k=0 has to be defined. For the initial condition uk=0
I a

fully developed deterministic flow computed by a standard deterministic unsteady
Navier-Stokes solver has been taken as an initial guess, whereas all modes greater
or equal to index 1 are set to zero. For the period T k=0 the initial guess has been
taken as T k=0

0 = 0.33 for the mean of the period and zero otherwise.
Fig. 5.3 depicts the evolution of the total and mode-wise relative errors with

respect to the iterations of the algorithm for a gPC expansion order NoT = No = 4
leading to P +1 = 5 modes for the velocity, pressure and period variables. Further-
more, Fig. 5.4 presents the results concerning the evolution of the period modes,
which have been normalized with respect to their value at iteration index k = 21 to
illustrate their convergence behavior more clearly. Note, that the computed period
modes at iteration index k = 21 are given by:

T k=21
0 = 3.32 · 10−1, (5.82)

T k=21
1 = −2.44 · 10−2, (5.83)

T k=21
2 = 1.21 · 10−3, (5.84)

T k=21
3 = −5.72 · 10−5, (5.85)

T k=21
4 = 1.76 · 10−6. (5.86)

In Fig. 5.3 a decrease in 5 orders of magnitude, both for the total and mode-wise
relative errors, with respect to the errors introduced by the initial guess can be
observed within 15 iterations. However, the total relative error begins to stagnate
for iteration numbers k > 15, which is due to the fixed time step size ∆t = 0.01 for
the physical time variable t and the fixed gPC expansion orders NoT and No.

It can be expected, that a higher time discretization resolution along with a larger
gPC expansion order are able to decrease the error levels even further. However,
concerning the period solution at iteration index k = 21, it seems that the expansion
order NoT for the period is large enough, due to the decreasing magnitude of the
period modes.

In Fig. 5.5 the vorticity of each mode of the initial condition at iteration index
k = 21 is depicted. Thereby, the vorticity vort(u) for a two-dimensional velocity
field u = [u1, u2] is defined by:

vort(u) :=
∂u2

∂x
− ∂u1

∂y
, (5.87)

which does reflect the vortex shedding scheme of every mode of the initial condition
more clearly. In addition the magnitudes of the vorticity of each mode exhibit
a decrease, which reflects the convergence property of the gPC expansion of the
velocity field. Note that the computation of the vorticity is carried out by a post
processing step, since it is a derived quantity from the velocity field.

Further numerical simulations have been computed subject to different initial
guesses for the iterative algorithm for lower inflow variability levels. Thereby, it
was observed that the results exhibit quite varying behaviors, including steady
state and periodic solutions similar to the analyzed case within this section. Hence,
the algorithm strongly depends on the initial guess such that further constraints
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(a) Total rel. error. (b) Mode-wise rel. error depending on ξ1 only.

(c) Mode-wise rel. error depending on ξ2 only. (d) Mode-wise rel. error depending on mixed
forms of ξ1 and ξ2.

Figure 5.6.: Total and mode-wise relative error developments with respect to the
iterations. Plots show results concerning modes according to depen-
dencies on ξ1, ξ2 only and on mixed forms of ξ1ξ2.

need to be prescribed a priori, e.g., by minimizing the norm of the initial condition
reducing the number of possible solutions. These aspects, however, will be addressed
in future work.

5.4.2. Two-dimensional random input

Next, the one-dimensional random input defined in the previous section is extended
to a two-dimensional random vector ξ = [ξ1, ξ2] to illustrate the convergence behav-
ior of the algorithm in context of multi-dimensional random input. Therefore, to
keep the necessary gPC expansion order low, only a slight variation on the x- and
y-component of the velocity profile inflow boundary condition is introduced, such
that:

uinflow
1 := 1.5 + 0.01ξ1, (5.88)

uinflow
2 := 0.01ξ2. (5.89)
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(a) Modes according to ξ1 only. (b) Modes according to ξ2 only.

(c) Modes according to mixed forms of ξ1 and ξ2.

Figure 5.7.: Evolution of the normalized period modes with respect to the iterations.
Plots show results concerning modes according to dependencies on ξ1,
ξ2 only and on mixed forms of ξ1ξ2.

Here, ξ1 and ξ2 are assumed to be independent and uniformly distributed within
the interval (−1, 1).

For the numerical computations a gPC expansion order NoT = No = 3 is em-
ployed resulting in P + 1 = 10 number of modes for the velocity, pressure and
period variables. Furthermore, the numerical computations are carried out on the
Finite-Element mesh depicted in Fig. 5.2. The total and mode-wise relative errors
are measured in the same way as for the one-dimensional case and are depicted in
Fig. 5.6. For this setting, a fully developed stochastic flow computed by a standard
gPC solver of the unsteady equations has been taken as an initial guess for the
initial condition. The initial guess for the period is the same as in the previous
section and given by T k=0

0 = 0.33 and zero for all higher order modes.

The evolution of the relative errors exhibit an exponential convergence rate.
Thereby, the error levels begin to stagnate after k > 10 number of iterations similar
to the one-dimensional case, due to the restriction given by the time-discretization
step length ∆t and the number of terms P + 1 employed in the gPC expansion.
Furthermore, it can be seen in Fig. 5.7 that the evolution of the period modes
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(a) Vorticity mode: 0. Mean.

(b) Vorticity mode: 1. Single influence by ξ1 only (linear).

(c) Vorticity mode: 2. Single influence by ξ2 only (linear).

(d) Vorticity mode: 3. Single influence by ξ1 only (quadratic).

(e) Vorticity mode: 4. Mixed influence by ξ1 and ξ2 (both linear).

Figure 5.8.: Computed vorticity of the velocity modes of the initial condition.
Modes 0 to 4 at iteration index k = 15.
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(a) Vorticity mode: 5. Single influence by ξ2 (quadratic).

(b) Vorticity mode: 6. Single influence by ξ1 (cubic).

(c) Vorticity mode: 7. Mixed influence by ξ1 and ξ2 (quadratic in ξ1, linear in ξ2).

(d) Vorticity mode: 8. Mixed influence by ξ1 and ξ2 (linear in ξ1, quadratic in ξ2)

(e) Vorticity mode: 9. Single influence by ξ2 (cubic).

Figure 5.9.: Computed vorticity of the velocity modes of the initial condition.
Modes 5 to 9 at iteration index k = 15.
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depending on ξ2 is subject to larger variations for the first few iterates compared
to the modes only depending on ξ1, however, all modes eventually stabilize after
k > 7 number of iterations. Note that as in the previous section the period modes
depicted in Fig. 5.7 are normalized with respect to their values at iteration index
k = 15, which are given by:

T k=15
0 = 3.32 · 10−1, T k=15

5 =3.06 · 10−6 (5.90)

T k=15
1 = −2.42 · 10−3, T k=15

6 = −2.02 · 10−4 (5.91)

T k=15
2 = 9.73 · 10−5, T k=15

7 = −1.43 · 10−6 (5.92)

T k=15
3 = −1.53 · 10−4, T k=15

8 = −6.44 · 10−6 (5.93)

T k=15
4 = −3.23 · 10−7, T k=15

9 = −1.83 · 10−7. (5.94)

Furthermore, all modes of the initial condition (cf. Fig. 5.8 and Fig. 5.9) exhibit a
time-periodic vortex shedding scheme behind the circular domain, which is in good
agreement with the results regarding a deterministic reference problem.

In summery, both the one- and the two-dimensional case are able to demonstrate
the convergence of the algorithm for different types of random input, which is the
focus of this section. Future work will address the numerical results related to
the approximation quality of limit-cycles for various realizations of the random
input and provide a comparison between sampling and projection approaches for
calculating the corresponding trajectories. Furthermore, stabilization techniques
for the Newton increments by an optimal control framework will be analyzed.





Chapter 6.

Conclusions

Generalized Polynomial Chaos provides an efficient technique of representing square-
integrable stochastic processes or fields by means of a spectral projection. However,
it also suffers from a convergence breakdown when applied to problems involving
nonlinear dependencies of a high degree on some random input, which, for example,
can arise from long term integration or stochastic discontinuities. Therefore, this
work is divided into two parts, whereas the first one is devoted to the application of
gPC towards stochastic ordinary differential equations and the second one towards
stochastic partial differential equations represented by the unsteady stochastic in-
compressible Navier-Stokes equations.

Within the first part of this work a new hybrid gPC approach is introduced,
which relies on a local variant of a modified version of the ”time-dependent general-
ized Polynomial Chaos” (TD-gPC), originally introduced by Gerritsma et al. [14].
Thereby, the mentioned modifications refer to an extension of TD-gPC involving an
orthogonalized tensor product of two different types of basis functionals given by
the standard gPC basis and the basis functionals computed by a transformation of
the probability measure within TD-gPC. Hence, the modified variant is able to cap-
ture the evolution in time of the probability distribution of the solution itself and its
time derivative, therefore significantly improving the convergence behavior of the
standard gPC. This has been verified successfully on a system of stochastic ordi-
nary differential equations given by a linear oscillator exhibiting stable limit-cycles.
However, the modified TD-gPC variant introduces additional numerical cost, which
is mainly related to a significantly increased system size arising from the number of
terms within the expansion. To this end, a new local approach has been developed,
which decomposes the underlying probability space into a finite number of stochas-
tic independent elements in which the modified TD-gPC variant can be applied
using a lower expansion order to achieve the same accuracies as compared to the
global approach. This results in a trade-off between the number of elements and
the expansion order employed allowing for a reduction of the numerical complexity
if the independent problems are computed in parallel. The local TD-gPC has been
numerically verified on two benchmark problems given by a simple scalar evolution
equation and the more challenging Kraichnan-Orszag three mode problem.

However, there are still open questions regarding TD-gPC in general. The main
issue is related to the transformation of the probability measure, which is based on
a re-orthogonalization of the basis functionals. Thereby, the complexity is shifted
towards the numerical evaluation of the inner products within the space of square
integrable functionals on the probability space. In this work a Gaussian quadra-
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ture rule has been applied to this purpose subject to a large number of quadrature
points to maintain an accurate numerical integration, which introduces a significant
increase in the numerical costs. Therefore, this topic needs further study to develop
robust modifications of TD-gPC which require less basis transformations resulting
in less evaluations of inner products or which utilize other numerical integration
schemes. Nonetheless, TD-gPC along with its variants still provides a powerful
method to solve problems involving strong nonlinearities with a high accuracy, for
which the standard gPC approach will fail. Furthermore, future work will address
the extension of TD-gPC to the class of stochastic partial differential equations
which introduce additional complexity due to the dependency on a spatial variable.

The second part of this work is devoted to the application of the standard gPC
to the unsteady stochastic incompressible Navier-Stokes equations (SNSE). The
focus is on computing stochastic time-periodic solutions to the SNSE by means
of a Galerkin projected system with respect to a gPC expansion of the random
quantities. Therefore, a new iterative algorithm has been developed based on a
deterministic version originally introduced by Duguet et al. in [9] employing op-
timization techniques as well as Newton’s method. The algorithm is transfers the
period variable from the time integration domain into the governing equations, re-
sulting in a deterministic range for the time variable of the unsteady problem. To
be able to compute a period iterate, a predictor-corrector step first computes an
estimate based on a deterministic reference problem and afterwards corrects the
error associated with the prediction for almost every stochastic realization. This
minimizes the error between the initial condition of the SNSE and its correspond-
ing terminal state. To be able to decrease the errors further, an inexact Newton
method is applied to compute a new iterate for the initial condition. These steps are
repeated until convergence is achieved, which is monitored by the distance between
the initial condition and its terminal state.

The algorithm has been verified on a stochastic benchmark problem describing
the fluid flow around a circular domain in two space dimensions. Therefore, a one-
dimensional and a two-dimensional uniformly distributed random input introduced
within the inflow boundary conditions have been considered. Both cases exhibit an
exponential convergence rate of the relative errors with respect to the number of
iterations of the algorithm. However, the accuracy still depends on the employed
time discretization step size and the number of terms within the gPC expansion,
such that the errors begin to stagnate after a certain number of iterations. Fur-
thermore, the computation of a solution strongly depends on the initial guess of
the initial condition and period such that further constraints need to be prescribed
a priori which reduce the number of possible solutions. This can be achieved, for
example, by requiring the norm of the initial condition to be minimal. Furthermore,
the experience showed that the choice of forcing terms within the employed inexact
Newton method plays a crucial role regarding the convergence behavior of the algo-
rithm. Especially for high Reynolds number flows adequate numerical stabilization
techniques need to be developed to increase the robustness of the underlying inex-
act Newton method, e.g., by adaption of so-called ”globalization techniques” [9] to
the stochastic context. Future work will address these open questions in detail and
extend the algorithm to other problem classes involving time-periodic solutions.
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Inexact Newton method

The inexact Newton method (INM) is an extension of the classical Newton’s method
(NM), allowing each Newton iteration to solve the corresponding linear problem in
a numerically inexact way [6]. Thereby, the approximation quality of each linear
problem can be prescribed by relative error bounds in context of iterative linear
solvers, such as the ”Generalized Minimal Residual Method” (GMRES method)
[33]. For illustration of the INM consider a continuously differentiable function
F : Rn → Rn in a neighborhood of some x∗ ∈ Rn, for which it holds: F (x∗) = 0 and
F ′(x∗) = d

dxF (x∗) is regular. Furthermore, assume that F ′ is Lipschitz-continuous
at x∗ with a constant L > 0, i.e.,

‖F ′(x)− F ′(x∗)‖ ≤ L‖x− x∗‖, (A.1)

for every x ∈ Uε(x∗) ⊂ Rn, whereas Uε(x
∗) denotes the ball with radius ε > 0 and

center point x∗ in Rn. The classical NM to determine a zero x∗ of F is described
in Algorithm A.1. It is well known that the convergence properties of the classical
NM strongly depend on the choice of the initial guess x0 [6].

The main computational cost involved within Algorithm A.1 is due to the solution
of a linear system of equations in every Newton iteration (A.2). Especially for high
dimensions n this constitutes a very challenging task. To reduce the numerical
costs, Eisenstat and Walker [10] proposed an INM using so-called ”forcing-terms”,
which determine the necessary approximation quality of a solution in each Newton
iteration, such that convergence can be maintained. The algorithm for the INM
is stated in Algorithm A.2. Employing an iterative linear solver in each inexact
Newton step (A.3) will require less iterations compared to the same linear solver
in a standard Newton step (A.2), since the forcing terms ηk, k = 0, 1, 2, . . ., allow
the relative error for an update value dxk within (A.3) to be greater then zero in
contrast to (A.2) leading to a reduction of the numerical cost involved in solving
the linear system. However, this can result in a larger number of Newton iterations,
since the quadratic convergence property of the classical NM in a neighborhood of
the solution x∗ can be violated [6]. Hence, there is a trade-off between undersolving
the linear system and the additional required Newton iterations needed to solve the
nonlinear problem.

A.1. Forcing terms

In [10] Eisenstat and Walker introduced two choices to determine the forcing terms
ηk, k = 0, 1, 2, . . ., within the INM. The first choice is given by:
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Algorithm A.1 Classical Newton’s method

1: Choose some initial guess x0 ∈ Uε(x∗)
2: for k = 0 until convergence do
3: Solve

−F ′(xk)dxk = F (xk) (A.2)

4: Update xk+1 ← xk + dxk
5: end for

Algorithm A.2 Inexact Newton method

1: Choose some initial guess x0 ∈ Uε(x∗)
2: for k = 0 until convergence do
3: Find some ηk ∈ [0, 1) and dxk such that

‖F (xk) + F ′(xk)dxk‖ ≤ ηk‖F (xk)‖ (A.3)

4: Update xk+1 ← xk + dxk
5: end for

Choice 1: Given η0 ∈ [0, 1), choose

ηk =
‖F (xk)− F (xk−1)− F ′(xk−1)dxk−1‖

‖F (xk−1)‖
, k = 1, 2, . . . , (A.4)

or

ηk =
|‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)dxk−1‖|

‖F (xk−1)‖
, k = 1, 2, . . . . (A.5)

The second choice is given by:
Choice 2: Given γ ∈ [0, 1], α ∈ (1, 2] and η0 ∈ [0, 1), choose

ηk = γ

(
‖F (xk)‖
‖F (xk−1)‖

)α
, k = 1, 2, . . . . (A.6)

The main difference between both choices lies in the fact that Choice 1 represents
the agreement of the nonlinear model with respect to its local linear model, which
is not the case for Choice 2. However, monitoring this agreement is not a necessary
condition for achieving convergence of the INM, instead the optimal choice is cer-
tainly application dependent. Furthermore, Choice 2 requires the a priori definition
of two parameters, namely γ and α, which have a strong impact on the convergence
behavior of the INM [10].

In practice [10], it was observed that the forcing terms occasionally can become
too small far away from the solution, e.g., by a coincidental good agreement between
F and its local linear model in Choice 1. Therefore, it is possible to introduce
additional safeguards, which prevent the forcing terms to become too small too
quickly by monitoring the relation between ηk and ηk−1. The safeguards are defined
by [10]:

• Choice 1 safeguard:

Modify ηk by ηk ← max{ηk, η
(1+
√

5)/2
k−1 } whenever η

(1+
√

5)/2
k−1 > 0.1.
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Algorithm A.3 Inexact Newton backtracking method

1: Choose some initial guess x0 ∈ Uε(x∗)
2: Choose t ∈ (0, 1), ηmax and 0 < θmin < θmax < 1
3: for k = 0 until convergence do
4: Choose an initial ηk ∈ [0, ηmax] and dxk such that

‖F (xk) + F ′(xk)dxk‖ ≤ ηk‖F (xk)‖ (A.7)

5: while ‖F (xk + dxk)‖ > [1− t(1− ηk)]‖F (xk)‖ do
6: Choose θ ∈ [θmin, θmax]
7: Update dxk ← θdxk and ηk ← 1− θ(1− ηk)
8: end while
9: Update xk+1 ← xk + dxk

10: end for

• Choice 2 safeguard:
Modify ηk by ηk ← max{ηk, γηαk−1} whenever γηαk−1 > 0.1.

Note, that the value (1 +
√

5)/2 refers to a convergence rate of the INM described
in [10]. Furthermore, it should be ensured that the forcing terms remain within
(0, 1] by introducing the requirement ηk < ηmax ≤ 1 for all k = 0, 1, 2, . . ..

A.2. Backtracking

As being mentioned earlier, the classical NM as well as the INM only exhibit local
convergence, i.e, the sequence of iterates xk, k = 0, 1, 2, . . ., converges to a solution
x∗ only if the initial guess x0 is sufficiently close to x∗. In many practical compu-
tations, this can provide a huge restriction since determining such an appropriate
initial guess might be very difficult or its determination might not even be possible
at all. Therefore, in practice one often relies on so-called ”globalization” techniques
[6]. This does not mean that the Newton methods converge for every initial guess
x0, instead one aims for a significant enlargement of the set of appropriate initial
guesses for which convergence can be achieved. One popular example is given by
the so-called ”backtracking” method [10], which is stated in Algorithm A.3. The
classical NM as well as its inexact version might suggest correction steps dxk within
some iteration k, which cause the updated iterate xk+1 to ”jump” out of the con-
vergence domain of x∗, which can happen, for example, if the gradient F ′(xk) is
close to singular. In this case, the backtracking method allows the update correc-
tion dxk to be damped by some scalar in order to achieve a numerical stabilization
of the INM. The determination of such a damping factor (cf. Algorithm A.3, step
6) can be accomplished by different strategies. A natural choice is to determine
some θ ∈ [θmin, θmax] for which θ 7→ ‖F (xk + θdxk)‖2 is minimal. However, this
also introduces additional numerical cost, since multiple evaluations of the residual
F (xk +dxk) need to be performed, which can be numerically expensive themselves.
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