

 Karlsruhe Reports in Informatics 2012,3
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Semi-Automatic Security Testing of
Web Applications from a Secure
Model

Matthias Büchler, Johan Oudinet, Alexander Pretschner

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Semi-Automatic Security Testing of Web
Applications from a Secure Model

Matthias Büchler
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
buechler@kit.edu

Johan Oudinet
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
oudinet@kit.edu

Alexander Pretschner
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
pretschner@kit.edu

Abstract—Web applications are a major target of attackers.
The increasing complexity of such applications and the subtlety
of today’s attacks make it very hard for developers to manually
secure their web applications. Penetration testing is considered an
art; the success of a penetration tester in detecting vulnerabilities
mainly depends on his skills. Recently, model-checkers dedicated
to security analysis have proved their ability to identify complex
attacks on web-based security protocols. However, bridging the
gap between an abstract attack trace output by a model-checker
and a penetration test on the real web application is still an open
issue. We present here a methodology for semi-automatic testing
web applications starting from a secure model. First, we mutate
the model to introduce specific vulnerabilities present in web
applications. Then, a model-checker outputs attack traces that
exploit those vulnerabilities. Next, the attack traces are translated
into concrete test cases by using a 2-step mapping. Finally,
the tests are executed on the real system using an automatic
procedure that may request the help of a test expert from time
to time. A prototype has been implemented and evaluated on
WebGoat, an insecure web application maintained by OWASP.
It successfully reproduced RBAC and XSS attacks.

I. INTRODUCTION

Since web applications handle sensitive data, ensuring their
security is important and a prerequisite for their use in
business contexts. Web applications usually are not monolithic
but consist of several distributed components. During the
development of the use communication protocols and the web
components, different tools and programming languages may
be used. White-box penetration testing tools like (Kieyzun
et al., 2009) usually require that all applications are developed
in the same language (e.g., PHP for Ardilla) which is usually
not the case in distributed environments (not mentioning that
having access to the source code of every component is also an
issue in practice). Unfortunately, current black-box penetration
testing tools are not really effective due to the weaknesses of
the crawling step that misses lots of potential interaction with
the user (e.g., the output page may depend on the parameters
provided by the user and it is hard to guess those parameters
in general); see (Doupé et al., 2010) for an evaluation of such
penetration scanners that show evidence of those weaknesses.

In our work, we assume there is a formal model M for the
specification of the System Under Validation (SUV) (coming
up with such model is a classical issue in Model-Based Testing
(MBT) and more details are given in subsection IV-C). This
model is secure as it does not violate any of the specified

security goals (i.e., a model-checker will report M |= ϕ for
all security properties ϕ defining the security goals of the
model). Otherwise, it would mean the specification of the SUV
is known to be insecure and there would be no reason to test
security properties of any implementation that refinesM. Note
that a modeler can make use of existing tools (Armando and
Compagna, 2008; Turuani, 2006) to fix an insecure model,
which should be done before starting the implementation.

Taking advantage of the model describing the specification
could help black-box penetration testing tools in discovering
vulnerabilities issues. Recently, model-checkers dedicated to
security analysis have proved their ability to identify complex
attacks on web-based security protocols (Armando et al., 2011).
However, bridging the gap between an abstract attack trace
output by a model-checker and a penetration test on the real web
application is still an open issue. We present here a methodology
for semi-automatic testing web applications starting from a
secure model. First, we mutate the model to introduce specific
vulnerabilities present in web applications. Then, a model-
checker outputs attack traces that exploit those vulnerabilities.
Next, the attack traces are translated into concrete test cases by
using a 2-step mapping. Finally, the tests are executed on the
real system using an automatic procedure that may request the
help of a test expert from time to time. To evaluate our approach,
we implemented a prototype1 for a RBAC and an XSS lesson in
WebGoat2, an insecure web application maintained by OWASP.

Problem Statement: We address several problems related
to a complete method for testing web applications from secure
models, which describe the system at an abstract level. First,
how to make use of a model-checker to generate interesting test
cases from a secure model. Second, how to semi-automatically
instantiate such interesting test cases from the level of the
model to the level of the implementation. Third, how to guide
a penetration tester when the Test Execution Engine (TEE)
needs his help to execute one step of the test cases.

Contributions: The main contribution using the method-
ology presented in this paper is the ability to exploit a model
describing a Web application at the browser level (i.e., without
low-level communication knowledge) to guide a penetration
tester in finding attacks based on logical vulnerabilities (e.g.,

1A demo video is available at: http://zvi.ipd.kit.edu/26 500.php
2https://www.owasp.org/index.php/Category:OWASP WebGoat Project

http://zvi.ipd.kit.edu/26_500.php
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

a missing check in a Role-Based Access Control (RBAC)
system, non-sanitized data leading to Cross-Site Scripting
(XSS) attacks). The main parts of the approach are as follows:
• Mutation operators related to real vulnerabilities in Web

applications: Starting from a secure model, we provide a
few mutation operators that reflect the potential presence
of specific vulnerabilities and allow a model-checker to
generate attack traces that exploit those vulnerabilities.

• Web Application Abstract Language (WAAL): The in-
stantiation of abstract attack traces into executable test
cases is done by using a 2-step mapping approach.
First, the message-based attack trace is mapped to an
intermediate language for Web applications, called WAAL.
As this intermediate language is independent from the
web application under test, test experts do not need to
provide the second mapping, from WAAL to source code.

• Semi-automatic Test Execution Engine (TEE): The TEE
automatically executes test cases at the browser level,
using the Selenium framework3. If an action cannot be
performed at the browser level (e.g., an item cannot be
selected from a drop-down menu), the TEE may ask for
the help of a test expert to provide corresponding HTTP
requests; hence the semi-automatic procedure.

Figure 1. Overview of the testing process

Organization: The paper is organized as follows. In
section II, we present how to generate abstract test cases from
a secure model (i.e., the left part of Figure 1). In section III,
we explain the instantiation and execution of the generated
attack traces (i.e., the right part of Figure 1). This testing
process has been applied to some lessons in WebGoat and we
show the experimental results in section IV. Finally, we review
the related work in section V and conclude in section VI. A
description of the tool architecture is presented in the Appendix.

II. AUTOMATIC GENERATION OF TEST CASES FROM
SECURE MODEL

In this section, we describe the general approach to automat-
ically generate test cases from a secure model. The principle
is described in subsection II-A. Then, the method is illustrated

3http://seleniumhq.org/

in subsection II-B on a concrete web application: a lesson in
WebGoat that manages user profiles.

A. Principle

We assume a secure model M as a starting point to the
test case generation (i.e., M |= ϕ with ϕ ∈ Φ for a set of
interesting security properties Φ). The security properties Φ
(e.g., confidentiality, authenticity, authorization) are assumed to
be provided together with the secure model. In our tools, they
are formalized using the AVANTSSAR Specification Language
(ASLan++) as it is the input language for model-checkers
dedicated to security analysis (AVANTSSAR, 2011).

Figure 2. Process to build a library of interesting mutation operators

The model itself is built using abstract messages that are
defined by the modeler. These messages represent common
actions a user of the web application can perform. The idea is
that these abstract messages are sent to the server to tell it which
action the client wants to perform. For example, in the WebGoat
lessons that we consider later, these abstract messages may
represent the following actions: log in to the web application,
view profiles of different users, delete profiles, update profiles,
and so on. Thus, the modeler does not care about details at
the browser/protocol level but only about abstract messages
that represent web application actions.

As the model is considered secure, all its traces satisfy all
specified security properties ϕ ∈ Φ. Thus, the model-checker
does not exhibit any counter-example. Checking M |= ¬ϕ
is of limited help either since the generated counterexamples
constitute all traces of the model—a filter for test case selection
is missing. Hence, in order to use a model-checker for testing
purposes, we must modify either M or ϕ such that the model-
checker returns counter-examples, which then can be turned into
test cases. If we modify ϕ into ϕ′ such thatM 6|= ϕ′, the model-
checker will return a trace fromM that is irrelevant to check the
violation of ϕ (becauseM |= ϕ). As a consequence, we modify
M into M′ by using a predefined set of mutation operators
that are relevant for the SUV. Therefore, if M′ 6|= ϕ, the
model-checker will return counter-examples that are interesting
for testing if the implementation has such security holes.

Figure 2 shows how the library of interesting mutation
operators is created from a manual analysis of a learning
set of vulnerable web applications. First, each vulnerability ω
is associated to the security properties ϕ that are violated by
attacks exploiting this vulnerability. Then, we try to inject this

vulnerability into a secure model of the application such that
a model-checker can exhibit an attack that exploits this vulner-
ability. If this is possible, the corresponding mutation operator
is considered as interesting for “injecting” the vulnerability ω
into a secure model. As every vulnerability is associated to
security properties, it is possible to select a set of interesting
mutation operators for a specific security property.

After having applied a mutation operator to an original model,
the model-checker may provide a trace from this mutated model
that violates a security property. This trace is called an attack
trace because it shows which sequence of abstract messages
have to be exchanged in order to lead the system to a state
where the security property is violated. To illustrate this process,
we consider a concrete example based on WebGoat.

B. Test case generation for authorization flaws in WebGoat

Access control aims at ensuring that confidential data are
restricted to authorized users only. If the access control is
enforced by the presentation layer only (i.e., hiding buttons or
links that are not authorized to the user), then an intruder can
get access to the confidential data by using a Direct Request
attack4 (i.e., asking directly the resource via a GET or POST
request). An example of this vulnerability can be found in
the WebGoat “Bypass Data Layer” lesson, where a malicious
employee can access other employees’ profiles even though he
is not authorized to see them.

In this WebGoat lesson, a user must log in before viewing
an HTML page that contains a list of employee’s names
together with HTML buttons, which represent actions that
can be performed: search staff, view profile, delete profile, and
log out. Only names of employee profiles the user is authorized
to view are displayed.

A secure model of this application has been developed in
ASLan++. Even though ASLan++ was created for security
protocols, the language can naturally be used to model web
applications as well. For a full description of ASLan++, please
refer to (AVANTSSAR, 2011). For example, the actions a user
has to perform to access a profile are modeled as follows:

body { % of User
% Login
Actor ->* S: login(Actor,password(Actor,S));
S -> Actor: listStaffOf(Actor);
% ViewProfile
if (Actor->isAuthorizedToView(?A)) {
Actor *-> S: viewProfileOf(A);
S *->* Actor: A.?Profile;

}

A user (Actor) sends her credential to a web server (S), via a
confidential channel (->*), and gets back, only if her credential
is accepted by S, the page listStaffOf(Actor) that lists
the user names whose profiles she is authorized to view. Then,
she asks for viewing A’s profile, via an authentic channel (*->)
as she is already logged in. If she is authorized to view A’s
profile (as defined by the RBAC system), S will send her the
profile over an authentic and confidential channel (*->*).

4http://cwe.mitre.org/data/definitions/425.html

The communication represents the important steps a user has
to perform to view a profile. We call such model a message-
based model because it models the different abstract messages
(e.g., login, viewProfileOf) that are exchanged when a
user performs an action at the frontend of the web application.

The server entity is modeled as well such that the defined
security goals are not violated. For example, the viewProfile
request is handled as follows:

% ViewProfile action
on(?U *-> Actor: viewProfileOf(?A)

& authenticated(?U)
& ?U->isAuthorizedToView(?A)): {

% Get A’s profile
select{on(hasProfile(A,?Profile)):{}}
Actor *->* U: A.Profile;}

The environment is also part of the model. Here, we show
a subset of the real system environment (only two authorized
users, tom and jerry, are represented).

body { % of Environment
% Set profiles
jerry->hasProfile(jerryProfile);
tom->hasProfile(tomProfile);
% Jerry is authorized to visit tom’s profile
jerry->isAuthorizedToVisit(tom);
% Let assume that tom has been compromised
% Then i can play tom’s role
dishonest(tom);
iknows(inv(ak(tom))); iknows(inv(ck(tom)));
iknows(inv(pk(tom)));
i->isAuthorizedToVisit(tom);
iknows(password(tom, server));
iknows(tomProfile);
% Create a session between the honest user
% jerry and the web server
new Session(jerry, server);}

In the WebGoat lesson description, a penetration tester must
log in as tom and try to access to an unauthorized profile for
this user, for example jerry’s profile. By default, there is only
one dishonest agent in ASLan++, called i. Marking tom as a
compromised user allows the model-checker to consider the
scenario when a penetration tester can log in as tom. Thus,
the environment described in the model should reflect as much
as possible the real environment.

Finally, the goal that a profile can only be accessed by an
authorized user is defined as follows:

goals
secret_profiles:
forall A P. [](iknows(P) & A->hasProfile(P)

=> i->isAuthorizedToView(A));

which means if a malicious user i gets access to the
profile P (i.e., iknows(P)) that belongs to user A (i.e.,
A->hasProfile(P)), i must be authorized to do so (i.e.,
i->isAuthorizedToView(A)).

Now that we have the security goals and a secure model,
we can apply the test case generation method presented before.
The first step consists in mutating the secure model to inject
potential vulnerabilities that are relevant for the defined security
goals. Here, we have a secrecy goal that relies on a RBAC

system. A missing check is a common authorization flaw that
could be exploited here. Thus, the tool uses the corresponding
mutation operator: removing an authorization check at the
server entity. After applying this mutation operator, the modified
part of the model looks like follows:

% ViewProfile action
on(?U *-> Actor: viewProfileOf(?A)

& authenticated(?U)
%% Authorization check has been removed:
%%%%% & ?U->isAuthorizedToView(?A)
): {
% Get A’s profile
select{on(hasProfile(A,?Profile)):{}}
Actor *->* U: A.Profile;}

Giving this mutated model to the Cl-Atse model checker (Tu-
ruani, 2006) an attack is found and reported as follows:
VIOLATED :

s e c r e t p r o f i l e s [A= j e r r y , P= j e r r y P r o f i l e] % on l i n e 122

MESSAGES:
<tom> −>∗ server : l o g i n (tom , password (tom , server))
server −> <tom> : l i s t S t a f f O f (tom)
<tom> ∗−> server : v i ewPro f i l eO f (j e r r y)
server ∗−>∗ <tom> : j e r r y . j e r r y P r o f i l e

The model checker reports a violation of the
secret_profiles property. In addition the MESSAGES

section shows a sequence of messages that drives the model
to a state where the reported security property is violated.

In the first step a user, pretending to be tom, logs into
the server by sending the login message which contains
the shared password. As the password is correct, the server
agent (server) acknowledges the request by sending back
the staff list of tom. Then, the user tom tries to request the
specific profile of jerry that he should not be allowed to view
according to the RBAC system (the model specifies that only
jerry is authorized to view his profile). Actually, tom tries
this request because he is modeled as a compromised user
and thus an intruder acts maliciously on behalf of tom. As
the authorization check isAuthorizedToView at the server
side has been removed by the mutation operator, the request
by tom is accepted and jerry’s profile is sent back to tom.

The abstract trace must be instantiated and executed to find
out if the real implementation is vulnerable to this attack. This
is the subject of the next section.

III. INSTANTIATION AND EXECUTION OF TEST CASES

The mapping of the abstract attack trace to executable source
code is a multi-step process because it consists of application-
dependent and application-independent information. To separate
the two kinds of information, we add an additional intermediate
level (Ë in Figure 1) in between the abstract attack trace layer
(Ê in Figure 1) and the implementation layer (Ì in Figure 1).
These three layers have different purposes. Layer Ê describes
the abstract attack trace as it is given by the output of the model
checker. The abstract attack trace consists of a sequence of
messages that are exchanged between the defined agents. Layer
Ë describes an intermediate layer where the same abstract
attack trace of layer Ê is described using actions of WAAL, a

dedicated language for web applications. WAAL is a language
to describe how exchanged messages between agents can be
generated and verified in terms of actions a user performs in a
web browser. Finally layer Ì describes the instantiated attack
trace in terms of source code. In addition it shows how the
TEE reacts if an error or exception occurs during the execution
of the attack trace.

First, the TEE is described in subsection III-A to have a clear
understanding how the abstract test cases must be instantiated
to be executable. Then, after describing WAAL in subsec-
tion III-B, we present in subsection III-C the first mapping
from application-dependent messages to the intermediate level.
Finally the second mapping, from the intermediate level to
executable test cases, is presented in subsection III-D. As
WAAL actions are application-independent, the last mapping
can be reused for testing other web applications. Both mappings
are illustrated with an application to the WebGoat lesson
presented in subsection II-B.

A. Test Execution Engine (TEE)

The TEE is responsible for running test cases and reporting
verdicts. A test case is a sequence of descriptions of controlled
and observed messages. Controlled messages are also called
stimuli and observed messages are also called reactions. As
such, with the reactions, a test case encodes the expected
behavior with respect to the stimuli.

Running a test means applying the stimuli to the SUV and
observing the SUV reactions (the actual reactions). Building a
verdict means to compare the actual reactions to the expected
reactions. If they conform, we say the test passes. If they do
not, we say that the test fails. The result of this comparison is
called the verdict. In our context, we generate attack traces.
If we successfully reproduce an attack on a SUV, then our
terminology applies as follows. As the expected reaction says
that the attack should not be reproduced by the SUV (which
is in conformance with the SUV’s specification), then we say
that the attack has been reproduced, but the test has failed.

Having in mind this terminology, let us describe now the
language used at the intermediate level.

B. Web Application Abstract Language (WAAL)

WAAL is an abstract language for web application actions at
browser level. The purpose of this language is to define actions
that an end user can perform from a browser to either send
messages to a Web server or check its responses. Thus, WAAL
actions are split into two sets: Browser Interface Actions (BIAs)
and Verification Actions (VAs).

Figure 3. Browser Interface Actions (BIAs)

Browser Interface Actions (listed in Figure 3) represent a
small but complete set of atomic actions that a user can perform
when he uses a web application (e.g., follow a link, click on
a button, type text into a text field). More complex actions
can be described by a combination of such atomic actions. For
example, log in via a form may correspond to the sequence:
select the name from a menu, type the password into a text
field, and click on the login button. Since it works at the
Browser level, BIAs are close to API methods from Selenium,
a Web application testing framework. However, BIAs are not
API methods at source code level but abstract browser actions
and therefore they are technology independent.

Figure 4. Verification Actions (VAs)

Verification Actions (listed in Figure 4) are used to verify
whether an observed response matches with an expected one.
A user can either verify the received message at HTML or
HTTP level. The verification is performed according to a user
provided criterion.

The BIA and VA sets define the foundations for WAAL:

WAAL = (BIA∗ ×VA∗)∗

In other words, a valid word in WAAL is a sequence of actions
that either produces (BIA∗) or verifies (VA∗) protocol-level
messages. Note that we consider sequences only (and not trees)
because this language is intended to represent the abstract attack
trace at the browser level. Since a trace from a model-checker is
an abstract message sequence, a sequence of actions at browser
level is sufficient to represent such traces.

C. Mapping from abstract model level to browser level

1) General principle: The output of the model checker is an
abstract attack trace that consists of a sequence of exchanged
messages. Each message m has a sender agent S, a receiver
agent R and a channel C. Thus, the input layer L1 for the
mapping to WAAL is defined as follows:

L1 = (A× C ×A×M)∗

where A is the set of agents, C is the type of channel used
(confidential, authentic, or both), and M is the set of abstract
messages exchanged between two agents.

The mapping τ1 maps each message m (together with its
sender, receiver and channel) to a pair of sequences that
generates and verifies m:

τ1 : (A× C ×A×M)→ (BIA∗ × V A∗)

The actual mapping depends on the sender and the receiver.
Each agent described in the model is either part of the SUV —
the TEE can observe his behavior — or is simulated (stubbed)
by the TEE. The former kind of agent is denoted by the set
Ao, for observed agents, while the latter is denoted by the set

As, for simulated agents. Partitioning the agent set A into Ao

and As is the responsibility of the test expert.
Given these two sets, the sequence of BIAs for S → R : m

is constructed as follows:{
(bia1, bia2, . . . , bian), if S ∈ As

(), if S ∈ Ao

where n ∈ N and biai ∈ BIA for all 1 ≤ i ≤ n. Thus, if the
sender S is a simulated agent, the message m is mapped to a
sequence of BIAs such that the message m is generated by a
web browser after executing this sequence. If the sender is an
observed agent, the TEE does not need to generate anything.

In addition to Ao and As, the sequence of VAs also depends
on an assumption about the channel, namely whether sent
messages can be assumed to be delivered unmodified. This
assumption is called integrity assumption.{

(), if S ∈ As ∧ integrity
(va1, va2, . . . , van), otherwise

where n ∈ N and vai ∈ V A for all 1 ≤ i ≤ n. Thus, a message
m is mapped to a sequence of VAs such that a browser can
verify the received message m by executing this sequence. The
only case where the TEE does not need to verify m is when m
has been sent over an integrity channel by a simulated agent.

In addition to mapping every message from the attack trace
to sequences of actions in WAAL, the test expert must also
provide an initialization block (BIA 0 in Figure 5) in order
to prepare the execution of the attack trace. This initialization
block is also described as actions in WAAL.

Let us now give a concrete example of this mapping, by
using again the WebGoat lesson on authorization flaws.

2) Application to WebGoat: According to the model, the
agent server is in Ao as it is part of the SUV and the agent
tom is in As as it is a compromised user and therefore must be
controlled by the TEE. For our example, we also assume the
integrity of messages sent over the channels. Thus, messages
generated by simulated agents do not have to be verified.

The abstract attack trace found by the model-checker
(presented in subsection II-B) consists of four messages
(login, listStaffOf, viewProfileOf, profileOf). List-
ing 1 shows the mapping of these four messages to sequences
of actions in WAAL; Only the BIAs and VAs relevant to the
attack trace are shown.

In addition to the mapping of the attack trace, the initial-
ization block in WAAL (BIA 0) provides a way to put the
system into a state suitable to run the attack trace. For the
WebGoat example, this initialization block follows some links
to reach the login page of the lesson under test.

D. Mapping from WAAL to executable source code

Once the attack trace is translated into WAAL actions, the
remaining step to be able to execute the test case is to map
these WAAL actions into executable statements. In contrast to
the first mapping τ1 (from abstract messages to WAAL actions)
that is application dependent, the second mapping τ2 (from

Figure 5. Instantiation and Execution Methodology

τ1(login(usr, pwd)) =
((selectItem(employeeList, usr),
intputText(passwordField, pwd),
clickButton(login)), ())

τ1(listStaffOf(usr)) = ((),
(checkHTML(criterionFor(listStaffOf(usr)))))

τ1(viewProfileOf(usr)) =
((selectItem(profileList, usr),
clickButton(ViewProfile)), ())

τ1(profileOf(usr)) = ((),
(checkHTML(criterionFor(profileOf(usr)))))

Listing 1. Mapping of WebGoat abstract actions to WAAL

WAAL to source code) is done once and for all, except if the
technologies used by the TEE change.

1) General principle: At the source code layer, two API
interfaces are used in cooperation, even though they operate
on different abstraction levels. The first API works at the
browser level and is then close to WAAL, which makes the
translation of WAAL actions to this API easier. The second
API works directly at the protocol level and is then close to
Web application communication protocol. The second API is
needed only if an action cannot be performed by the first API.
In that case, the TEE may request the help of a test expert for
providing the corresponding protocol-level message.

In Figure 5, there are three kinds of blocks at the source
code level: Browser Action (BA), Guide Action (GA), and
Recovery Action (RA). A BA block corresponds to an action
performed on a browser. A RA block corresponds to a recovery
action performed after a failure from a BA, related to a Browser
Interface Action. A failure in a BA block is either a runtime
exception (e.g. a browser object where an action should be

invoked does not exist) or the response of the BA block
corresponds to a runtime exception from the SUV (e.g. the
webserver returns an “authentication required” response instead
of the desired webpage). A GA block occurs when a BA block
related to a Verification Action fails. GA and RA blocks belong
to either the browser or the protocol level, depending on the
failure that triggers those actions. Both GA and RA may ask
a test expert to provide additional information.

The mapping τ2 : BIA ∪VA→ (BA× RA)∗ ∪ (BA×GA)∗

maps each WAAL action to a sequence of BA, RA and GA with
τ2 (a) ∈ (BA× RA)∗ if a ∈ BIA and τ2 (a) ∈ (BA×GA)∗

if a ∈ VA.
If the TEE can successfully execute every BA block, which

is done in a fully automatic way, then the verdict is determined
as follows: if the actual reactions of the SUV conform to the
expected reactions of the test cases — this verification is done
by the BA blocks related to VA actions —, the attack has been
reproduced and therefore the test has failed; otherwise, the test
has passed.

However, a BA block may fail due to several reasons of
different nature. For example, an input element is disabled, in
read only mode, or its maxLength attribute is set to a value
smaller than the size of the text to type in. Another example is
a button that is disabled or totally missing, and therefore the
BA block cannot click on it. For some failures of this kind, it
might be possible to execute a recovering action and continue
the test execution.

If an error occurs when executing a BA block, the TEE
changes its operational mode and a RA (resp. GA) block is
executed in order to recover from this error (resp. review the
decision). There are three different ways of recovering after
a BA block has failed: (i) prepend missing information to
the BA block and execute it again; (ii) find an alternative
way to execute the BA block and resume just after it; (iii)
move to the protocol level, provide the corresponding message,

and resume after the next protocol-level message (which may
be after several BA blocks). For the following examples of
these recovering methods, the browser level represents HTML
elements including their actions, and the protocol level is HTTP.

As an example for the prepend case, let BA be an action to
check the content of a webpage. This action may fail because
the user is not authenticated and first has to provide credentials.
In the case of basic access authentication, this request for
credentials can be automatically detected and therefore it is
not necessary to provide this step as WAAL actions. Thus, a
possible action in GA could be that the TEE asks the test expert
for the credentials or that they are read from a configuration
file. Then, the TEE reconfigures the used component by adding
the credentials and re-requests the website again. Requesting a
website and adding credentials can both be performed at the
browser level.

For the alternative case, let us consider an HTML button
element that triggers an event if the user clicks on it and this
event is the execution of a defined JavaScript function. If the
HTML button is disabled, the click event can not be triggered
by the BA block. A possible alternative action, performed
by the corresponding RA block, is to execute the JavaScript
function directly, by using a different API call.

An example where the TEE has to switch to the protocol
(HTTP) level is the following one. Assume that a BA block
tries to select an element from a list and sends this value to the
server by clicking on a button. This action may fail because
the element is not present in the list. In that case, the TEE
presents some sample HTTP messages to the test expert (e.g.,
by generating the HTTP messages corresponding to choosing
another element from the list). Then, the TEE asks the test
expert to provide the correct HTTP message. This message
is sent and the BA block that follows this HTTP message is
executed afterwards. It is worth noting that the underlying
assumption when a RA creates some HTTP samples is that the
agent state may be restored afterwards. Thus, as soon as the
TEE intercepts and drops the HTTP requests, the RA block
can generate as many samples as possible.

2) Application to WebGoat: For our example, we consider
the Selenium Framework at the browser level and the Apache
HTTPComponents project5 at the protocol level. Selenium
provides WebElement objects to represent HTML elements and
WebDriver objects to represent “the Browser” at the source code
level. These objects provide API functions to find an element
in the browser object (HtmlUnitDriver.findElement()),
to access the current webpage of the browser
(HtmlUnitDriver.getPageSource()), or to perform
a click action on an HTML element (WebElement.click()).

Due to space constraints we only provide one example
mapping for WebGoat. Listing 2 shows how the WAAL
action selectItem, that is part of Listing 1, is mapped to
Selenium source code. The result is a Java function that takes
as parameters: a connection object, the name of the list and
the name of the item that should be selected from that list.

5http://hc.apache.org/

Connect s e l e c t I t e m (Connect conn , S t r i n g l i s t I D , S t r i n g i t em){
t r y {

conn . c o n v e r t T o H t m l D r i v e r () ;
/ / Get t h e c o r r e s p o n d i n g l i s t
c1 = ” / / a [c o n t a i n s (t e x t () , ’ ” + l i s t I D + ” ’)] ” ;
l i s t = conn . d r i v e r H t m l . f i n d E l e m e n t (By . x p a t h (c1)) ;
/ / S e l e c t t h e i t e m from t h e l i s t
c2 = ” / / a [c o n t a i n s (t e x t () , ’ ” + i t em + ” ’)] ” ;
l i s t . f i n d E l e m e n t (By . x p a t h (c2)) . c l i c k () ;

} catch (E x c e p t i o n e) {
/ / A c t i v a t e RA Block

}
re turn conn ;

}

Listing 2. Mapping of τ2 (selectItem(listID, item))

The function then executes the following actions: (i) find the
HTML list element, (ii) click on the corresponding item from
this list. The try-catch block captures runtime exceptions and
executes the corresponding RA block.

IV. EVALUATION: APPLICATION TO WEBGOAT

In the evaluation, we investigated the following three research
questions:

RQ1. Can we successfully exploit a vulnerability at the
concrete level?

RQ2. How many times do test experts have to be guided?
RQ3. What is the advantage of modeling the system at the

abstract message level instead of the protocol level?

A. Methodology

We implemented a prototype of our methodology to answer
these questions. This prototype is based on ASLan++ for the
modeling language, CL-AtSe for the model-checker, Selenium
and Apache HTTPComponents for the TEE, and the analysis
of two WebGoat lessons from different domains (RBAC
and XSS) for developing the mutation operator library. This
library contains a mutation operator that represents a missing
authentication check (the vulnerability present in the RBAC
lesson) and a mutation operator that introduces a non sanitizing
action according to the vulnerability in the XSS lesson.

Then, we applied this prototype on four different lessons (two
about RBAC and two about XSS) of the WebGoat application,
including the two lessons used for the mutation operator
library. Since models of these four lessons did not exist, we
manually built a secure model for each lesson according to our
experience, the descriptions, and the source code of the lessons.
We applied the mutation operator for missing authentication
checks to both the lessons “Bypass Business Layer Access
Control” (Lesson 1) and “Bypass Data Layer Access Control”
(Lesson 2). The mutation operator for non sanitizing actions was
applied to the lessons “Stored XSS” (Lesson 3) and “Reflected
XSS” (Lesson 4). Next, the model checker produces abstract
attack traces for all four lessons. Using the 2-step mapping
described in section III, we instantiated these attack traces using
the Selenium Framework and the Apache HTTPComponents.
Finally, we executed the instantiated attack traces to check
whether they are reproducible on the SUV.

http://hc.apache.org/

Figure 6. Instantiation

B. Results

A short answer to the first question is yes, we were able
to successfully exploit the vulnerabilities present in the four
WebGoat lessons we analyzed. We executed the instantiated
attack traces produced as described in subsection IV-A. The
attack traces are successfully executed because the WebGoat
lessons contain the vulnerabilities captured by the applied
mutation operators. Successfully means: tom can delete his
profile even though he is not authorized to do so (Lesson 1),
tom gets access to jerry’s profile even though he is not
authorized to view this profile (Lesson 2), tom can store
javascript code in his profile that is successfully executed when
jerry views tom’s profile (Lesson 3), and tom can enter
javascript code as a search query expression that is returned
as part of the response and finally executed (Lesson 4).

Our approach can successfully be applied to all these lessons
because the existing vulnerabilities in such lessons can be
expressed and described as mutation operators. Nevertheless,
there are other lessons (e.g., HTTP splitting attacks) that require
details on modeling communication at HTTP level. Since our
approach is based on models using high level browser actions,
such attacks are not addressed by our approach.

To answer the second question, we execute the instantiated
attack traces and compare the number of messages that the test
expert has to provide to the total number of generated messages.
For Lesson 1, the test expert has to be guided only for the
second request message that asks for jerry’s profile. The
reason for this is that jerry’s name is not present in the web
page and hence cannot be selected by the Selenium framework.
Therefore, the test expert is guided with messages for other
profiles and finally has to provide the correct request message.
Another reason why only one message needs guidance from
the test expert is that many messages belong to the preparation
phase, which relies on functionality of the WebGoat lesson.
The attack itself happens in the last request and is therefore
the only message that potentially needs the help of the test

expert. In our case, the difference between provided sample
messages (to guide the test expert) and the desired messages
(as specified in the attack trace) is rather small and only differ
in one numerical identifier. Assuming that the mapping from
textual representation of the profile to its numerical ID is
given or can be learned (e.g., from another webpage of the
lesson), the desired message may be generated automatically
after some structural analysis. This is actually very specific to
the considered WebGoat lesson and has not been implemented
in our prototype yet. Nevertheless, our methodology guides
the test expert to come up with the correct desired message.

For Lesson 2, exactly the same reasoning applies with the
minor detail that not the employee ID but rather the action
name has to be provided by the test expert. Despite that, there
is no fundamental difference to Lesson 1.

For Lessons 3 and 4, in addition to the attack trace, a database
of (javascript code, verification code) tuples is needed. The
javascript code is injected in every possible input element of
non-sanitizing actions. Then, the verification code is used to
check if the corresponding javascript code has been executed
successfully. At the browser level all necessary actions can be
performed automatically. The attack traces for Lessons 3 and
4 are instantiated for each (javascript code, verification code)
tuple. The TEE does not need to be guided for both lessons.

For assessing the benefit of modeling the system at the
browser level instead of the protocol level, we compare the
number of needed parameters at each layer of abstraction
(see Table I), as they appear in our lessons. The column
“model” shows how many parameter we need for the message
at the modeling level. The same is done for actions at
WAAL level, and for the HTTP protocol level. For example,
there are only 2 parameters (username, password) at the
model level for the login message. At WAAL level we
need 5 parameters (dropDownID, username, passwordID,
password, and login button ID) to express the same action,
whereas the corresponding HTTP message consists of 13 header

lines and 1 content section. The small number of parameters at
the model level with regards to the number of parameters at the
protocol level is an indication for improved understandability
at the model level.

Table I
NUMBER OF PARAMETERS PER ABSTRACTION LEVEL

Abstraction level

Message model WAAL protocol

login 2 5 14
listStaffOf 1 1 7
viewProfileOf 1 3 14
profileOf 1 1 7
deleteProfileOf 1 3 14
editProfileOf 1 16 14
searchProfileOf 1 4 14

C. Discussion

The provenance of models is always an issue in MBT and
it is unclear if MBT is cost-effective due to the necessity of
managing two artifacts: code and model. Nevertheless, there
also is solid evidence for the merits of this approach (Grieskamp
et al., 2011). Indeed, the high-level abstraction used by the
models in our approach makes it possible to build a secure
model from a web application by just using a browser, without
looking at the HTTP communication. In fact, we needed 1 PM
to build the first model and only 2 weeks to build the three
other models, which indicates that a secure model can be built
in a rather small amount of time by someone familiar with the
SUV. There are also existing results to infer a model directly
from a web application (Halfond et al., 2009).

We analyzed the source code of WebGoat to identify
some vulnerabilities to turn them into mutation operators for
ASLan++ models. However, this source code analysis is not
necessary if mutation operators for the targeted vulnerabilities
are already available. Indeed, the mutation operators were
successfully applied to the new models to find further attacks.

The number of parameters in Table I may be misleading. For
example, for the profileOf message, there is only 1 parameter
in both the model abstraction and WAAL, but it corresponds to
the user name in the model and to a criterion for distinguishing
the profile inside a HTML page, which is more complex than
just the user name. In general, parameters at a lower level
are more complex to define than parameters at a higher level
of abstraction. Note also that the abstract editProfileOf
message corresponds to changing any mutable field from the
profile; hence the 16 WAAL parameters since there are 13
fields in a profile.

V. RELATED WORK

Our work is at the intersection between MBT and penetration
testing (pentesting). As we rely on mutation operators to
introduce implementation-level vulnerabilities into the secure
model and on model-checkers to generate attack traces, we
describe here works related to mutation testing and security
testing from a model-checker.

On one hand, security testing is usually performed by
penetration testers that either use manual techniques, based on
their knowledge and by following guidelines like the OWASP
testing guide6, or automated techniques thanks to penetration
testing tools7. Such tools differ from our work as they do not
rely on models for generating test cases. Doupé et al. (2010)
evaluated such “point-and-click pentesting” tools and found
that the crawling part (discovering new pages) is a critical and
challenging task for these tools that determines the overall
ability to detect vulnerabilities by black-box web vulnerability
scanners. One way to overcome this weakness is to use a
white-box testing approach, dedicated to applications written
in a specific language. For example, the Ardilla tool (Kieyzun
et al., 2009) looks for SQL injections and XSS attacks in
PHP applications but does not address the problem of user
interactions. The Apollo tool (Artzi et al., 2010) does address
user interactions but is restricted to PHP crashes or malformed
HTML outputs. Such white-box testing tools combine concrete
and symbolic (concolic) executions (Godefroid et al., 2008) by
using a modified PHP virtual machine.

On the other hand, formal models and model-checkers have
been used for test case generation since at least 1998 (Am-
mann et al., 1998), in a variety of contexts that has been
surveyed elsewhere (Fraser et al., 2009). Most of this work
concentrates on generating test cases that satisfy structural
criteria on the model (e.g., state coverage, transition coverage,
MC/DC coverage). As there is still no evidence of a strong
relationship between such coverage criteria and fault detection
effectiveness (Martin and Xie, 2007), we choose to rely on
a domain-specific fault model. Our work is closely related to
mutation testing (DeMillo et al., 1979; Jia and Harman, 2011).
Even though mutation testing usually aims at assessing the
effectiveness of a test suite to detect small syntactic changes
introduced into a program, it can also be used to generate and
not assess test cases. This idea was successfully applied for
specification-based testing from AutoFocus, HLPSL or SMV
models in the security context (Ammann et al., 2001; Büchler
et al., 2011; Dadeau et al., 2011; Wimmel and Jürjens, 2002).
Our work differs in that we start by real vulnerabilities in
web applications and correlate them with specific mutation
operators. Moreover, we do not stop after test generation but
also provide a semi-automatic way to execute the generated test
cases on real implementations, in our case, a web application.

More recently, Armando et al. (2011) have described work
closely related to ours but for protocols instead of web
applications. They start from an already insecure model
described at the HTTP level and provide an automatic testing
approach that relies on a mapping from each abstract HTTP
element in the model to HTTP messages suitable for the SUV.
The fully automatic procedure is achieved at the price of
describing the model at the HTTP level. Even though this low
level description is acceptable for protocols, we think it is more
suitable to describe web applications at a higher abstraction and

6https://www.owasp.org/images/5/56/OWASP Testing Guide v3.pdf
7http://sectools.org

https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf
http://sectools.org

ask, if needed, the test expert to provide additional information
during the testing procedure.

VI. CONCLUSION

We have presented a complete method for semi-automatically
testing a Web application starting from a secure model. The first
challenge was to find a way to use a model-checker for security
testing although the model is secure. In order to get interesting
attack traces from the model-checker, we introduce potential
vulnerabilities in the model that are relevant for the System
Under Validation (SUV), including Cross-Site Scripting (XSS)
attacks. We analyzed known vulnerabilities in web applications
to come up with corresponding mutation operators for models
developed in ASLan++. This language was initially created
for security protocols but is also suitable for web application
specifications. We have seen that our mutation operators allow
a model-checker to generate interesting attack traces.

The specification is modeled at a high abstraction level
(i.e., abstract messages like login, viewProfileOf or
deleteProfileOf, editProfileOf, searchProfileOf).
Thus, even if our mutants are suitable for generating attack
traces, the second challenge is to bridge the gap between the
model abstraction and the real implementation to be able to
(automatically) execute such attacks on the SUV. We presented
a 2-step mapping for this purpose. The idea behind these two
mappings is that the second one can be reused for testing other
web applications. Thus, we introduced an abstract language
(WAAL) to describe the attack traces at the browser level.
The second mapping presented in this paper is suitable for
translating actions described in WAAL to API calls using the
Selenium testing framework.

Finally, the Test Execution Engine (TEE) automatically
executes the attack trace when it is possible to reproduce
it at the browser level. Otherwise, the TEE switches to the
protocol level and may request the help of a test expert to
execute an action, from the attack trace, at this lower level.

This methodology has been implemented and applied to
widely popular WebGoat lessons. The high abstraction level
for modeling the specification makes it easy to understand the
secure model, without knowing the interactions at the protocol
level between the web application and its users. Although the
attack trace is described at this high level, the TEE is able
to automatically reproduce most of it and for the rest, the
intervention needed from a test expert is not very demanding
as the TEE can guide him by providing some templates. We
are aware that we have presented only a small preliminary
set of experiments and we plan to conduct more experiments
in the future. We are currently working on augmenting the
library of mutation operators to represent the most common
vulnerabilities in Web applications8. We are also working on
extending our prototype to handle side-effect scripts, mainly
for avoiding interference with the TEE.

8https://www.owasp.org/index.php/Top 10 2010-Main

ACKNOWLEDGMENT

This work was partially supported by the FP7-ICT-2009-5
Project no. 257876, “Secure Provision and Consumption in the
Internet of Services” (http://www.spacios.eu).

REFERENCES

P. Ammann, W. Ding, and D. Xu, “Using a model checker to
test safety properties,” in ICECCS, 2001, pp. 212–221.

P. E. Ammann, P. E. Black, and W. Majurski, “Using model
checking to generate tests from specifications,” in ICFEM,
1998, pp. 46–54.

A. Armando and L. Compagna, “Sat-based model-checking
for security protocols analysis,” in IJISEC, 2008, pp. 3–32.

A. Armando, D. Balzarotti, R. Carbone, A. Merlo, and
G. Pellegrino, “From model-checking to automated testing
of security protocols: Bridging the gap,” 2011, submitted.

S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. Ernst, “Finding bugs in web applications using
dynamic test generation and explicit-state model checking,”
TSE, vol. 36, no. 4, pp. 474–494, 2010.

AVANTSSAR, “Deliverable 2.3 (update): ASLan++ specifica-
tion and tutorial,” 2011, available at http://www.avantssar.eu.

M. Büchler, J. Oudinet, and A. Pretschner, “Security mutants
for property-based testing,” in TAP, 2011, pp. 69–77.

F. Dadeau, P.-C. Héam, and R. Kheddam, “Mutation-based
test generation from security protocols in HLPSL,” in ICST,
2011, pp. 240–248.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Program
Mutation: A New Approach to Program Testing,” in Infotech
State of the Art Report, Software Testing, 1979, pp. 107–126.

A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest:
an analysis of black-box web vulnerability scanners,” in
DIMVA, 2010, pp. 111–131.

G. Fraser, F. Wotawa, and P. Ammann, “Testing with model
checkers: a survey,” STVR, vol. 19, no. 3, pp. 215–261, 2009.

P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox
fuzz testing,” in NDSS, 2008, 16 pages.

W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman,
“Model-based quality assurance of protocol documentation:
tools and methodology,” STVR, vol. 21, pp. 55–71, 2011.

W. Halfond, S. Anand, and A. Orso, “Precise interface identi-
fication to improve testing and analysis of web applications,”
in ISSTA, 2009, pp. 285–296.

Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” TSE, vol. 37, no. 5, pp.
649–678, 2011.

A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst,
“Automatic creation of sql injection and cross-site scripting
attacks,” in ICSE, 2009, pp. 199–209.

E. Martin and T. Xie, “A fault model and mutation testing of
access control policies,” in WWW, 2007, pp. 667–676.

M. Turuani, “The CL-AtSe protocol analyser,” in RTA, ser.
LNCS, 2006, vol. 4098, pp. 277–286.

G. Wimmel and J. Jürjens, “Specification-based test generation
for security-critical systems using mutations,” in ICFEM,
2002, pp. 471–482.

https://www.owasp.org/index.php/Top_10_2010-Main
http://www.spacios.eu
http://www.avantssar.eu

APPENDIX
ARCHITECTURE OF THE SPACITE TOOL

Figure 7. TEE architecture

The SPaCiTE tool takes as input a secure model described in
ASLan++(AVANTSSAR, 2011). Even thought ASLan++ was
created for security protocols, the language can naturally be
used to model web applications as well. In particular the
definition of access control policies in web application is
simplified by the availability of horn clauses. The model is
described in terms of abstract messages exchanged by different
web application components. These messages describe the
interaction between the components at a high level (e.g.,
login, viewProfile, updateProfile), ignoring details
about underlying protocols or communication information.

The SPaCiTE tool injects some known vulnerabilities into the
secure model such that a model checker may report Abstract
Attack Traces (AATs) that exploit these vulnerabilities. An
AAT is a sequence of abstract messages together with their
sender and receiver. Then, using a web-application-dependent
mapping, these high level messages are mapped to browser
actions that generate these messages. Browser actions are parts
of an intermediate language called WAAL. WAAL actions are
mapped to executable code by an internal, framework-specific
mapping. The first mapping is provided as an input to the tool.
Finally this concrete test case is executed against the SUV by
the TEE, described in Figure 7.

The SUV components are split into two distinct sets (i.e.,
simulated and observed components). The simulated agents
are part of the TEE, which is responsible for emitting the
messages they are supposed to send according to the AAT.
Observed components run in their normal environment except
that their communication channels are monitored by proxies.
Thus, the TEE can observe messages exchanged between
observed components. An additional proxy is put in front of
the TEE to intercept sent messages when the TEE is generating
template messages for the test expert; these messages are not
part of the AAT and therefore they must not reach any other
component.

	2012,3_Titelbl
	main
	Introduction
	Automatic Generation of Test Cases From Secure Model
	Principle
	Test case generation for authorization flaws in WebGoat

	Instantiation and Execution of Test Cases
	Test Execution Engine (TEE)
	Web Application Abstract Language (WAAL)
	Mapping from abstract model level to browser level
	General principle
	Application to WebGoat

	Mapping from WAAL to executable source code
	General principle
	Application to WebGoat

	Evaluation: Application to WebGoat
	Methodology
	Results
	Discussion

	Related Work
	Conclusion
	Appendix: Architecture of The SPaCiTE Tool

