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Kurzfassung

Inhalt dieser Arbeit ist die Charakterisierung von lichtemittierenden Halbleiterquan-

tenpunkten mit Röntgenstrahlung. Die Arbeit besteht aus zwei Teilen:

Im ersten Teil wird eine ”in-situ” anwendbare Mess- und Analysemethode entwickelt,

mit Hilfe derer sich Gestalt, Verdehnung und chemische Zusammensetzung von Quan-

tenpunkten messen lässt. Zu diesem Zweck wird ein bereits existierendes Streumod-

ell, das ”iso strain scattering” (ISS) Modell, durch zusätzliche Berücksichtigung des

Streubeitrags des Substrates unter und zwischen den Quantenpunkten angepasst. Das

Ergebnis ist ein ganzheitliches Model, das in dieser Arbeit ”Holistic Iso Strain Scatter-

ing” (HISS) Modell getauft wird. Es ermöglicht, in wenigen Schritten Schlüsselinfor-

mationen aus den Röntgenstreudaten zu extrahieren. Die experimentellen Anforderun-

gen können aufgrund des geringeren Bedarfs an Messpunkten im Vergleich zu konven-

tionellen Herangehensweisen reduziert werden. Die Methode ist dadurch robust, schnell

und ”in-situ” anwendbar.

Im zweiten Teil der Arbeit werden verschiedene Quantenpunktproben mit den Rönt-

genmethoden charakterisiert. Dabei kommen sowohl die neu entwickelte Methode,

basierend auf dem HISS Modell, als auch konventionelle Methoden zum Einsatz. In

diesen Studien werden Gestalt, Größe, Verspannung, chemische Zusammensetzung und

Anordnung der Quantenpunkte zueinander in Abhängigkeit der Herstellungsparameter

gemessen. In einer ersten Studie werden die Auswirkungen von Erwärmungsphasen

nach abgeschlossenem Wachstum untersucht. In einer zweiten Studie werden Proben

mit verschiedenem Aluminiumgehalt verglichen und so der Einfluss der chemischen

Zusammensetzung auf die Quantenpunkteigenschaften untersucht. Resultierend wer-

den die Herstellungsparameter, die sich daraus ergebenden Eigenschaften und schließlich

die Qualität der Lichtemission miteinander in Zusammenhang gebracht.
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Abstract

Subject of this thesis is the characterization of light emitting semiconductor quantum

dots with x-rays. The thesis consists of two parts:

In the method development part a measurement routine and analysis procedure for

in-situ measurements of shape, strain and chemical composition of quantum dots is

developed. For this purpose an already existing scattering model, the iso strain scat-

tering (ISS) model is adapted by including the contribution of the substrate below and

around the dots. The result is a holistic iso strain (HISS) model. It allows to extract

key information from scattering data within very few steps. The experimental require-

ments can be relaxed due to a reduced need of data. The method is robust, fast and

in-situ applicable.

In the second part of the thesis different quantum dot samples are characterized with

x-ray methods. Thereby the new technique based on the HISS model, that was intro-

duced in the first part of the thesis, and conventional techniques are used. In those

studies the quantum dot parameters such as shape, size, strain, chemical composition

and positional ordering are measured in dependence of the production parameters. In

a first study the effects of post growth annealing are investigated. In a second study

samples with different aluminum contents are compared in order to study the effect

of chemical composition on the quantum dot properties. In conclusion the production

parameters, the resulting quantum dot properties and the quality of the light emission

are related to each other.
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Bereitstellung und Erläuterung seiner Simulationsprogramme gilt ihm mein herzlicher

Dank.

Den beiden Diplomanden (mittlerweile Doktoranden) Marthe Kaufholz und Philipp
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1 Introduction and Aims of the

Thesis

1.1 X-Ray Characterization of Quantum Dots

Nanoscience is one of the most important and most promising sources of technolog-

ical innovation. According to the ”Bundesministerium für Bildung und Forschung”

(BMBF), nanotechnology has the potential to contribute essentially to the solution of

major challenges to society such as energy supply and health care (26).

Photonic semiconductor nanostructures are particularly important nano materials. Their

outstanding optoelectronic properties can be used for example in efficient solar cells,

laser devices for medical applications or energy saving lightening systems (25, 37, 47,

59, 85). In semiconductor technology a stepwise rapprochement towards the nano scale

was seen. Driven by the desire to make use of the quantum confinement effect, first

thin layers, later wires and finally dots were produced in oder to limit the electron

movement to 2-, than 1- and finally 0-dimensions (10, 11, 12). Due to the resulting

quantum confinement effect these nanosized dots are typically called quantum dots.

Besides production technologies robust characterization methods for quantum dots

are needed since the knowledge about their physical properties and parameters is es-

sential to understand the later device performance and the important relation with the

production process.

In order to ”image” quantum dots a resolution far better than the resolution of visible

light (several hundred nm), given by Abbey’s equation that limits the resolution to a

value of approximately half of the wavelength, is needed. This means that either the

Abbey limit has to be overcome (e.g. by the use of near field scanning optical mi-

croscopy or mechanical methods like atomic force microscopy (AFM) or, alternatively,

very small wavelengths must be used (e.g. electron beam or X-ray techniques).

An optimal characterization requires a complementary mix of different methods. In

case of light emitting semiconductor quantum dots the outer morphology (shape and
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1. INTRODUCTION AND AIMS OF THE THESIS

size) is often imaged by AFM or scanning electron microscopy (SEM). The inner struc-

ture (internal distribution of chemical composition and strain) can be accessed by x-ray

diffraction techniques (6, 7, 8, 9, 43, 51, 89) or transmission electron microscopy (TEM)

(42, 61). Photo luminescence (PL) measurements are often used as first evaluation of

the later device performance.

While the local methods (AFM, STM, etc.) today directly deliver real space images

in very high quality and resolution (2), the X-ray diffraction techniques generate mea-

surement data, usually given in reciprocal space, and the analysis procedures of the

reciprocal space data is still far from a robust routine and requires computational effort

and expert knowledge. The recent trend towards in-situ and real time measurements

(15, 70, 71, 99) however further strengthens the need of x-ray methods since they are

in-situ applicable.

1.2 Aims of the Thesis

The thesis has two principal aims: the development and the application of in-situ suited

characterization methods for morphology, strain, chemical composition and positional

ordering of semiconductor nanostructures.

In the method development part a new x-ray based nanotomography method

that provides real space images of quantum dots showing the internal distribution

of strain and chemical composition has to be developed. The method must be

robust, easy to handle and in-situ applicable. In the past the dream to provide

such a nanotomography method has led to two approaches:

1. Coherent diffraction imaging approaches (CDI) (22, 40, 46, 50, 51, 53, 64,

76, 103, 104) exploit suitable constraints based on a priori knowledge and apply

automatized algorithms to directly transfer reciprocal space data into real space

images. Even through this approach has recently been successfully extended to

the technologically relevant case of strongly strained semiconductor nanostruc-

tures (52), it is yet far behind a robust routine method for broad applications.

The need to measure very large and complete reciprocal space maps results in

very long measurement time, which makes it unsuited to follow fast evolving pro-

cesses in real time.

2. The so-called iso strain scattering model (ISS) (35, 39, 48, 87) introduces a

2



1.2 Aims of the Thesis

number of approximations and simplifications by focusing on the most impor-

tant structure elements which are directly extractable from key features in the

measured reciprocal space maps. As it is, the model suffers from increasing inac-

curacy for decreasing size of the investigated dots and it is not applicable in case

of the technologically relevant, and thus small quantum dots, that are measured

in this thesis. That happens, since an essential part of ”key features”, addressed

by the ISS-model to the dot, is not generated by the quantum dots but rather by

substrate regions outside the dot.

The principle ”as simple as possible, as precise as necessary” is however strongly

appealing, especially for the robust use and application to large sample series in

technological studies and in case of in-situ experiments. The general idea of the

iso strain scattering concept can (and should) be kept, but a correct interpreta-

tion of the key features needs a more general model that includes all parts of the

sample and thus the contribution from the substrate. The development of such

an holistic iso strain model (here referred to as ”HISS” model) will be part of

this thesis. Based on this HISS model, a direct analysis that provides real space

images of the distribution of strain and chemical composition is developed. The

in-situ applicability of the new developed method is experimentally demonstrated.

In the section on Quantum dot characterization, a study which re-

lates quantum dot properties to growth parameters and device performance is

performed. The characterization method based on the HISS model, that is de-

veloped in the first part of this thesis will play an essential role.

The leitmotif for this study is to investigate the redistribution of material driven

by the principle of minimization of the elastic-(”strain-”) energy in the system.

The most prominent effect of the material redistribution is the growth of the dots

itself. Similar to rain drops on the window, a 3D-agglomeration of material is

energetically preferable to a thin 2D-layer. While in a thin layer the deposited

material is intensively strained to fulfill the epitaxy condition, a dot allows ef-

fective strain relaxation at the top. The details of the dot growth such as, size,

shape, facets, ordering (82) and the remaining strain distribution is of interest in

this study. All features that contribute to the minimization of elastic energy can

be tailored by the growth conditions and determine the later device performance.

The growth conditions and processing parameters will be classified according to

the question in how far they accelerate or slow down the strain relaxation by ma-
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1. INTRODUCTION AND AIMS OF THE THESIS

terial redistribution. The conditions are ”close the thermodynamic equilibrium”

if they allow for material distribution and strain relaxation, e.g. by high growth

temperatures, slow growth speed or growth interruptions, post growth annealing

or the use of high mobility materials. In the opposite case the conditions are ”far

from thermodynamical equilibrium”.

Two concrete growth- or process- conditions should be investigated in detail. The

first is a post growth annealing treatment. The effect of post growth annealing

on morphology, strain and ordering of quantum dots should be investigated. For

this purpose two InGaAs quantum dot samples have to be measured. Both sam-

ples were grown on GaAs(001) substrate under identical conditions away from

thermodynamical equilibrium. After growth, one sample was taken out of the

growth chamber, the other one was post growth annealed. By comparison of the

two samples, the effect on size, shape and positional ordering of this post growth

annealing treatment should be studied. AFM and x-ray scattering methods are

therefore applied. Grazing incidence small angle scattering (GISAXS) and AFM

should be used to determine the shape and to measure the positional ordering

before and after annealing. Grazing incidence diffraction (GID) measurements

should contribute to the interpretation of positional correlation as strain driven

phenomenon.

The aim of the second study, is the investigation of the effect of chemical com-

position. For this purpose a series of three AlxGa0.4−xIn0,6 QD samples grown

on GaAs(001) with varying AL concentration (x = 0, 0.08 and 0.19) was used.

The reason for replacing Gallium by Aluminum is the different surface mobil-

ity. Aluminum is less mobile on the GaAs surface and might therefore have

a restraining effect on the QD growth, possibly similar to conditions ”far from

thermodynamical equilibrium”. The aim of this study is to investigate the effect

of chemical composition on size, shape, ordering, but also on internal material

distribution and strain. For this purpose the new analysis method, based on

the HISS model, and conventional methods should be used. From these results,

the relation between the nominal Al concentration, the internal distribution of

chemical composition and strain and, finally, the emission wavelength should be

established.
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2 Background in Methods and

Theory

2.1 Description of the Scattering Process

The discovery of x-ray diffraction in 1912 by Max von Laue, Walter Friedrich and

Paul Knipping initialized a capacious development of diffraction theory. Together

with Max von Laue, also Paul Peter Ewald (Ewald’sphere), William Henry and

William Lawrence Bragg (Bragg equation) have to be mentioned among the pio-

neers in the field.

Nowadays extended theoretical work is available and the difficulty a ”diffraction-

ist” has to face can be phrased as ”when to use what”. The principle desire is

to have a theory that is as simple as possible, but as precise as necessary. Two

commonly used theoretical approaches are the kinematical theory (4, 16, 29, 33),

that is based on the assumption of one single scattering process, and the dy-

namical theory (3, 4, 65, 98), that considers the possibility of multiple scattering

(see below for details). Furthermore there are mixed forms, like the distorted

wave born approximation (DWBA), which is introduced later in this thesis. The

kinematical theory is attractive because of its extremely convenient use. If it is

combined with the far-field (Fraunhofer) approximation the scattering amplitude

is identified as Fourier transformation (FT) of the electron density of the scatter-

ing object. In that way, a very elegant concept to display scattering maps (the

reciprocal space) and a short mathematical formalism (FT) for quick and easy

forward calculation (from the sample to its scattering amplitude) and backward

calculation (from the scattering amplitude to the sample) is on hand. However,

the well known challenge, that only the scattered intensity, which is the abso-

lute square of the complex scattering amplitude, can be experimentally measured

whereby the phase information is lost remains (phase problem of scattering).

Since kinematical theory assumes weak interaction between the radiation and the

scattering object, the application to nanostructures seems absolutely appealing.

Grazing incidence diffraction geometries (GID and GISAXS), that are used in this

thesis, however, aggravate effects that are neglected in kinematical theory such

5



2. BACKGROUND IN METHODS AND THEORY

as total external reflection and multiple scattering. Those effects are described

in numerous theoretical work (6, 8, 29, 94, 94) and considered in this thesis.

The methodical goal of this thesis requires to find an analysis procedure that

profits from (kinematical) simplicity, overcomes the phase problem of scattering

and accounts for as much dynamical effects as necessary. To reach this goal, a

reductionist philosophy is followed. The information that is extracted from the

scattering maps is reduced to a few key parameters of the dot. These key param-

eters can be accessed by key features that they generate in the scattering map.

The mathematical relation between the key parameters in real space and the key

features in reciprocal space is very convenient and, as it will be shown in this

thesis, independent of the choice of theory (kinematical or dynamical). The next

chapters will demonstrate that many changes take place if multiple scattering

effects or refraction corrections are included in the simulation, but the relation

between the key features in reciprocal space and key parameters in real space

always remains valid which makes the procedure extremely robust.

Of course, these key parameters do not deliver a complete picture of the dot, but

this complete picture is obtained if the key parameters are used as constraint for

standard finite element modeling (FEM).

In the past, the idea to extract key parameters in real space from key features

in reciprocal space was realized within the iso strain scattering concept (35, 39, 44,

45, 48, 87). Besides assumptions and approximations concerning the scattering

behavior this concept also contains assumptions and approximations concerning

the scattering object itself (iso strain area model). In chapter 3 these assumptions

will be critically tested and probed in detail. The results will lead to a new

model, the holistic iso strain model (chapter 3). The necessary basics, i.e. ,the

kinematical theory, selected dynamical effects and the conventional iso strain

scattering concept, are sketched on the following pages.

The deviations are done following ref. (29). The starting point of the derivation

are Maxwell’s equations in matter

∇D = ρf (2.1)

∇B = 0 (2.2)

6



2.1 Description of the Scattering Process

∇× E = −∂B

∂t
(2.3)

∇×H =
∂D

∂t
+ jf (2.4)

with

D = ε0E + P (2.5)

and

B = µ0 (H + M) (2.6)

The aim on the next pages is the derivation of the scalar wave equation 2.18 from

Maxwell’s equations. the first step is the application of ∇× to equation 2.3:

∇× (∇× E) = ∇×
(
− ∂

∂t
B

)
(2.7)

With a× (b× c) = b(ac)− c(ab) one has

∇(∇E)−∆E = − ∂

∂t
∇×B (2.8)

In the following the response of the material in the external field is assumed to be

linear and isotropic. Furthermore the material is assumed to be non conducting

(jf = 0) and non magnetic (µ(r) = 1). Equation 2.5 and 2.6 reduce to

D = ε0ε(r)E (2.9)

and

B = µ0H. (2.10)

Equation 2.4 can be written as

∇×B = µ0ε0ε(r)
∂

∂t
E. (2.11)

Inserting 2.11 in 2.8 with leads to:

∇(∇E)−∆E = −µ0ε0ε(r)

(
∂

∂t

)2

E (2.12)

or with c0 = 1√
µ0ε0

∆E = ∇(∇E) +
ε(r)

c2
0

(
∂

∂t

)2

E (2.13)

7



2. BACKGROUND IN METHODS AND THEORY

If there is no free charge ρf = 0, ε(r) ≈ 1 follows and one has ∇E = 0. Equation

2.13 reduces to the wave equation in vacuum

∆E =
1

c2
0

(
∂

∂t

)2

E (2.14)

which for E(r, t) = E0e
i(kr−ωt) delivers the vacuum dispersion relation

k2 =
ω2

c2
0

(2.15)

Inserting 2.15 in 2.13 and using the same Ansatz as above delivers

∆E = ∇(∇E)− ε(r)K2E (2.16)

with the relation ε(r) = 1 + χ(r) for the dielectric function one obtains

(
∆ +K2

)
E = ∇(∇E)−K2χ(r)E (2.17)

The term V̂ (r) = graddiv − K2χ(r) is now identified as the operator of the

scattering potential and one can finally write

(
∆ +K2

)
E(r) = V̂ (r)E(r) (2.18)

This wave equation has to be solved. For this purpose, the Green’s function

concept will be applied according to (29). The Green function is defined as

solution for a delta distribution as inhomogeneity of the wave equation(
∆ +K2

)
G0(r− r′) = δ3(r− r′) (2.19)

The final solution of 2.18 can be written in the quantum mechanic notations with

help of Green’s function

E(r) = Ei(r) +

∫
d3(r′)G0(r− r′)V̂(r′)E(r′) (2.20)

or in bra-ket notation

| E〉 =| Ei〉+ Ĝ0V̂ | E〉 (2.21)

8



2.1 Description of the Scattering Process

where | Ei〉 denotes the incident wave. It should be mentioned that there is an

analogy between the concept of the Green’s function and the procedure in section

2.1.1. In kinematical theory the electron is considered as a point scatterer. The

scattering strength of an electron is not infinite, but expressed with the classical

electron radius rel. Its scattering solution is described by the Thomson formula

(see equaution 2.28). The similarity between the Thomson scattering formula

and the solution of 2.19 for the Green function

G(r− r′) = − 1

4π

eiK|r−r′|

|r− r′|
(2.22)

is visible. Also the later procedure is similar in kinematical theory and in case of

using Green’s concept. In both cases the solution for the total scattering response

is obtained by coherent addition of the responses to delta like distortions (Green’s

function), respectively the responses of single electrons (Thomson scattering).

A look at equation 2.21 shows a problem. The term on the right hand side, which

gives the solution for the total wave | Ei〉 contains this solution itself. One can

express the problem by using a scattering operator, that acts on the incident wave

(see (29) or (17))

E(r) = Ei(r) +

∫
d3(r′)G0(r− r′)T̂(r′)Ei(r

′) (2.23)

or in bra-ket notation

| E〉 =| Ei〉+ Ĝ0T̂ | Ei〉 (2.24)

The scattering operator is now expressed as infinite sum with the scattering

potential

T̂ = V̂ + V̂Ĝ0V̂ + V̂Ĝ0V̂Ĝ0V̂ + ... (2.25)

Principally the integral form of the wave equation 2.20 and 2.23 could be solved

by continuing the successive iterations. However, it can be shown easily that the

series of successive iterations converges very slowly, and moreover, the expression

for higher iterations of the wavefield are extremely complicated (29). At this point

further considerations concerning the scattering object are helpful. Two special

cases are discussed. The first case is the scattering from a very large, perfect

crystal. Instead of using the successive iterations, the differential wave equation

2.18 is solved. For this purpose one can make use of the perfect periodicity of the

9



2. BACKGROUND IN METHODS AND THEORY

sample by writing the solution of the wave equation in the form of a Bloch wave.

This is done in dynamical theory and describes the scattering of large perfect

crystals.

The very small nano sized quantum dots in this thesis, however, represent another

case. They are far from the assumption of very large perfect crystals. The

dots are not larger than a couple of atomic layers. Furthermore, strain and

strain relaxation disturbs the ”perfect” periodicity. However, nano objects do

not dramatically disturb the incident wave. Therefore it is possible to start from

a kinematical approach and later correct the result by including specific dynamical

effects within the Distorted Wave Born Approximation (DWBA).

2.1.1 Kinematical Theory

The general kinematical diffraction theory is described in many textbooks (4,

16, 29, 33). Its fundamental essence is the assumption of one single scattering

act (equation 2.26). This means that after being scattered by one electron the

x-ray photon cannot be scattered by another electron again (29). The scattering

operator is approximated by the first term of equation 2.25.

T̂ ≈ V̂ (2.26)

The derivation of the kinematical theory on the next pages is systematically build

up. Starting point is the scattering of one electron. Similar to the scattering re-

sponse to a delta like distortion (Green function equation 2.22), the scattering

response of one point scatterer, i.e., the electron, is considered as starting point.

Coherent summation of the scattering of all electrons in one atom leads to the

scattering amplitude of the atom, called atomic form factor. The coherent sum-

mation of the atomic form factors of all atoms in a unit cell leads to the structure

factor. Finally the coherent summation of the structure factors of an infinite

number of unit cells leads to the (theoretical) scattering of an infinite crystal. In

order to obtain the scattering of an object the shape function has to be intro-

duced. It ”cuts” a certain area (later called ”iso strain area”) out of the infinite

crystal which in Fourier space becomes physically evident as shape scattering, for

example as besselrings (see below).

This gradual coherent adding to complexity can be compared to the concept of

the Green function. The response of the system is obtained by adding the re-

sponses of delta like distortions (electrons). Finally, the fundamental statement

10



2.1 Description of the Scattering Process

of kinematical theory is obtained. If combined with the far-field (Fraunhofer-)

approximation, the scattering amplitude of an object is the FT of its electron

density and, thus, represents tho object in reciprocal space.

Before starting with mathematical formalism, all assumptions are listed. In chap-

ter 3, this list is discussed in detail, tested and evaluated step by step.

Assumptions of kinematical approximation:

1. Only one single scattering act; no multiple scattering

2. Elastic scattering; the modulus of the wave vector is always kept the same

3. Every electron inside the sample ”feels” the undisturbed primary incident

wave

4. Interaction of X-rays with electrons in vacuum; refraction index n=1 every-

where; no refraction at the air to sample

5. The incident wave is plane and monochromatic; perfectly sharp wavelength

selection, no divergence of the incident beam The far field (Fraunhofer-)

approximation:

6. The distance between sample and detector is large compared to the dimen-

sions of the coherent scattering object

Scattering from the Electron: Thomson Scattering

The starting point of the kinematical approach is the scattering by one scattering

center which is an electron. The monochromatic and plane incident wave (red

lines in figure 2.1):

E0(r, t) = ε̂E0e
i(k0r−ωt) (2.27)

is scattered by one single electron. The scattered wave amplitude Es is expressed

with the incident wave by the Thomson scattering formula

Es(r, t) = −E0
rel
|r− r′|

Cei(k0r′−ωt)eik|r−r′|) (2.28)

11



2. BACKGROUND IN METHODS AND THEORY

Figure 2.1: Gradually adding to complexity. Starting from the scattering of one single
atom (Thomson scattering) the mathematical description of the scattering of an Atom unit
cell and infinite crystal is achieved by step by step coherent summation. The scattering of
a specific object is calculated by reducing the infinite crystal with its shape function (see
equation 2.36).

The scattering response from the electron is a spherical wave (Huygens’ Princi-

ple). The amplitude of the scattered wave corresponds to the amplitude of the

incident wave multiplied by the ”scattering length” rel of the electron and the

direction dependent polarization factor C (see figure 2.2). The absolute value of

the scattered wave vector modulus k = |ko| is the same as before the scattering

process (elastic scattering). The phase obtains an additional term corresponding

the phase evolution during the travel from the sample to the detector (retardation

traveling along |R− r|, see figure 2.1). Furthermore a minus in front of the term

indicates an additional 180◦ phase shift. This phase shift refers to a refractive in-

dex of the material smaller than unity and in so far the minus sign is a lookahead

to later interpretation, since until now n=1 was assumed (see (33)page 62).

The polarization factor C corresponds to

C =

{
1 in case of π-polarization,

cos(2θ) in case of σ-polarization.

Scattering of the Atom far from Resonances - the Atomic Form Factor

In the following the wave field scattered by one atom is calculated by coherent

summation of the scattering responses of all Thomson scatterers (electrons) inside

the atom. The positions of the electrons are distributed statistically according

to the quantum mechanical charge density ρ(r). The time dependence, that is

12



2.1 Description of the Scattering Process

Figure 2.2: Dependence of the polarization factor C on the scattering angle and the
polarization (π- or σ-) of the incident wave. source: (29)

present in equation 2.28, was suppressed in equation 2.29, since the integration

time per measurement step is very long compared to the high x-ray oscillation

frequencies. It should be recalled that the x-ray detectors will not record the scat-

tering amplitude as a complex number but the scattered intensity Is = |Es(Q)|2

which is the absolute square of the scattering amplitude and thus a real number

(phase problem).

Es(r) = −E0Crel

∫
Vatom

ρ(r′)

|r− r′|
eikor′eiko|r−r′|d3r′ (2.29)

To further simplify this term, the Fraunhofer (farfield-) approximation

ko |r− r′| ≈ k0r − ksr
′ (2.30)

with

ks = k0
r

r
(2.31)

is applied and one obtains

Es(r) ≈ −E0Crel
eik0r

r

∫
Vatom

d3r′ρ(r′)e−i(ks−k0)r′

= Const ·
∫
Vatom

d3r′ρ(r′)e−iQr′

= Const · fi(Q)

(2.32)

The last expression contains two interim goals. The difference between the in-

coming and the scattered wave vector (momentum transfer) was defined as the

scattering vector Q = ks − k0. Thus the combination of kinematical theory and

13



2. BACKGROUND IN METHODS AND THEORY

Fraunhofer approximation delivered the important measurement coordinate Q.

The Fourier integral after the constant factor in 2.32 expresses the scattering

response of one atom. It is called atomic form factor and is listed in the interna-

tional tables of crystallography for the different elements.

The second goal during the derivation of kinematical theory already appears since

the mathematical expression of the atomic form factor (integral in the second line

in equation 2.32) corresponds to the FT of the electron density. Generalizing this

result to any electron density delivers the most important issue of kinematical

theory: In the far field (Fraunhofer approx.) the scattering amplitude of an ob-

ject is proportional to the FT of this electron density ρ(r). The relation will allow

to transform from real or r-space to reciprocal or Q-space by forward and invers

FT. It should be mentioned again that detectable is not the scattering amplitude

but the intensity which is I ∝ |E|2 and has ”lost” the phase term (phase problem).

Figure 2.3: The incident wave vector ko defines the Ewald sphere. In case of elastic
scattering (|k0| = |ks|) the scattered wave vector ends here. The difference ks − k0 = Q
defines the measurement coordinate of the scattering experiment. The illustration depicts
the special case of a symmetrical diffraction geometry.

Scattering from the Unit Cell - The Structure Factor

In this thesis the scattering around the Bragg peaks is of high interest since it

contains the footprint of the Quantum dots. The absolute Bragg peaks position

or the peak intensity is not used since it is generated by the substrate, and the

substrate unit cell is anyway well known. Nevertheless it is important to consider

the scattering strength of different Bragg peaks in order to choose the one around

which the reciprocal space should be measured. To obtain the scattering of one

14



2.1 Description of the Scattering Process

complete unit cell the process is continued: Coherent adding of the atomic form

factors of all atoms inside one unit cell delivers the scattering response of the unit

cell:

F (Q) =
S∑
j=1

fj(Q)e−iQr′j (2.33)

When the scattered wave fields of all electrons were coherently added up to calcu-

late the scattering of the atom, the electron positions were given by the quantum

mechanical density function and the summation was done within an integral.

The atom positions in the unit cell r′j are discrete. Hence, integration reduces to

discrete summation. The result is the scattering from the unit cell, the so called

structure factor. All materials investigated in this thesis are group III-V alloys

and have zincblende structure. Thus, F (Q) is given by

F (h,k,l) =


4fIII + 4fV in case h+k+l=4n e.g.(004),(220) ”strong”

4fIII + 4ifV in case h+k+l=4n+1 e.g. (113) ”medium”

4fIII − 4fV in case h+k+l=4n+2 e.g. (002),(006) ”weak”

4fIII − 4ifV in case h+k+l=4n+3 e.g. (115) ”medium”

(2.34)

From this table one can see that the (220) reflection that was selected for the

GID measurements is classified ”strong”. The movement of the atoms around

the equilibrium positions r′j due to quantum mechanical fluctuations on the one

hand and thermal movement (phonon) on the other hand leads to attenuation

of the coherent x-ray scattering peaks. Thermal vibrations can be expressed by

the Debye-Waller factor. It will be shown in chapter 3 that HISS, the special

model and analysis procedure introduced in this thesis, does not depend on the

absolute intensity of scattering data. The Debye-Waller factor is thus not rele-

vant here.

The Reciprocal Space Representation of Nanostructures -
Clouds around the Reciprocal Lattice Points

In case structure factors are coherently summed over an infinite crystal, the scat-

tering condition results. The scattering condition is fulfilled in case the scattering

vector corresponds to a reciprocal lattice vector (see textbooks,e.g., ).
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2. BACKGROUND IN METHODS AND THEORY

Up to now, the scattering response of single electrons were coherently added to

obtain the response of an ensemble of electrons in the atom, the atomic form

factor. Coherent summing the scattering of all atoms inside a unit cell delivered

the structure factor and the coherent adding the unit cell scattering of unit cells

inside an infinite extended crystal delivered the reciprocal lattice. In this para-

graph the infinite extended crystal will be reduced to a realistic object, e.g., an

iso strain area inside a quantum dot. The electron density of an infinite, perfect

crystal can be expressed by the real space (crystal) lattice with the electron den-

sity of the unit cell ”pinned” to each lattice point. Mathematically this ”pinning”

corresponds to a convolution of the functions:

ρinf.cryst.(r) = (ρuc(r)⊗ ρlatt.(r)) (2.35)

To obtain a finite object (e.g. an iso strain area) the expression for the infinite

crystal is multiplied with the shape function Ω(r):

Ω(r) =

{
1 inside the sample

0 outside
(2.36)

that is ”carving” the object out of the infinite crystal:

ρsample(r) = Ω(r)(ρuc(r)⊗ ρlatt.(r)) (2.37)

The FT of a product of two functions corresponds to the convolution of the FT

of the single functions and vice versa. The FT of 2.37 results in:

ρFTsample(Q) = ΩFT (Q)⊗ (ρFTuc (Q) · ρFTlatt.(Q)) (2.38)

The terms in equation 2.38 can be interpreted step by step with the help of

the objects of interest in this thesis (e.g. the iso strain areas inside the Quan-

tum dots). These objects are described by their ”outer” shape and their internal

crystallographic properties such as crystal lattice and unit cell. These real space

features are represented in reciprocal space. The real space crystal lattice is repre-

sented in reciprocal space by the reciprocal lattice. The unit cells are represented

by the ”brightness” of the reciprocal lattice points via the structure factor; the

”outer” shape is represented by the blurring of the reciprocal lattice points (see

figure 2.4). Later, another real space property of quantum dots, the positional

ordering and its reciprocal space representation will be introduced.
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2.1 Description of the Scattering Process

Figure 2.4: Illustration of the ”blurring” of reciprocal lattice points. The FT of the
shape function of an object leads to a specific distribution (orange clouds) of the scattering
amplitude around the reciprocal lattice points. (taken from (5))

Summary

In summary, the main achievements of kinematical theory were illustrated in this

section. The combination of kinematical theory and Fraunhofer approximation

enabled the measurement coordinate Q for the scattering experiment and the

concept of understanding the scattering amplitude as the the FT of the electron

density of the sample given in reciprocal space coordinates.

2.1.2 X-Ray Reflection - Selected Dynamical Effects

This thesis focuses on the specific distribution of the scattering amplitude around

the reciprocal lattice points (orange clouds in figure 2.4). To measure this dis-

tribution two diffraction geometries, i.e., GID and GISAXS are used and will be

introduced in section 2.2. The mentioned techniques cannot be fully treated in

the kinematical approximation. The dynamical effects, that are necessary in this

context, are introduced in this section.

One challenge during the x-ray characterization of quantum dots in this thesis is

the fact that the structure of interest is situated on or closely below the sample

surface. For best signal to noise ratio the probing area or probing depth should

be reduced to a nanometer thin surface slice of the sample. Grazing incidence

diffraction techniques (GID and GISAXS) are very appealing, since the radia-

tion and, thus, the probing area can be concentrated exactly to the surface close

volume. These techniques make use of refraction and (total) external reflection

at interfaces between materials with different refraction indices. In kinematical
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2. BACKGROUND IN METHODS AND THEORY

approximation where n=1 is assumed, these effects are obviously not considered.

For this reason the theory on x-ray reflection/refraction is summarized here. The

reflectivity,i.e ,the Snell’s law and values for the penetration depth will be given.

Finally, another aspect appears. If reflection at the surface has to be consid-

ered (and diffraction is considered anyway), also combinations of reflection and

diffraction have to be discussed. These multiple scattering events will be handled

by using the Distorted Wave Born Approximation (DWBA).

To start with surface reflection and refraction effects one has to go back to

equation 2.18 before the kinematical approximation was introduced:

(
∆ +K2

)
E(r) = V̂ (r)E(r) (2.39)

In case no free charges exist, the scattering potential can be simplified to

V̂ (r) = −K2χ(r) leading to the Helmholtz equation:

(
∆ +K2

)
E(r) = −K2χ(r)E(r) (2.40)

The Ansatz of planes waves E(r) = ei(kr−ωt) delivers:

k2 =
√
εK2 (2.41)

with χ(r) = ε(r)− 1, or

|k| = n |K| (2.42)

with n =
√
ε. This means that the length of the wave vector (i.e. the radius of the

Ewald’s sphere) compared to the vacuum wave vector depends on the refraction

index n. For the semiconductor materials GaAs, InAs and AlAs n is smaller

than 1 (Energy=8KeV). The radius of the Ewald’s sphere in the material is thus

smaller than the one in vacuum (see figure 2.5).

Boundary Conditions

According to classical electrodynamics, the tangential components of the wave

vectors are continuous at every point of the interface. This can only be fulfilled,

if the in-plane components of the wave vectors on both sides of the interface are

the same (29).

Ki
|| = Kf

|| = kt|| (2.43)
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2.1 Description of the Scattering Process

Figure 2.5: The different refraction indices in vacuum and material result in different
radii of the respective Ewald’s sphere. Together with the conservation of the tangential
component of the wave vector (equation 2.43) the Snell’s law and the critical angle of total
external reflection can be derived.

From the geometry in figure 2.5 and the angles α, it follows that

|K| cos(αi) = |K| cos(αf ) = n |K| cos(αt) (2.44)

from equality of equation 2.44 one can directly derive the

Reflection Law

αi = αf (2.45)

The intensity maximum that appears according to the reflection law at αi = αf
is called ”specular reflection”.

Snell’s Law

The second equality in equation 2.44 leads to the Snell’s refraction law

cos(αi)

cos(αt)
= n (2.46)

The incident angle is defined as the angle between the surface and the incident

beam. (In some literature, the angle between the surface normal and the incident

beam is defined as incident angel. In this case the well known sin-functions appear

in equation 2.46.)
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Total External Reflection and the Critical Angle

In case the incidence αi angle is equal to or smaller than the critical angle αc, the

radiation ”propagates” with αt = 0. From Snell’s law (equation 2.46) follows for

this case

cos(αc) = n (2.47)

and the radiation can not (or hardly) penetrate the material. Approximating

cosαc ≈ 1 − (αc)2

2
and using n = 1 − δ with δ = 2πρrel

k2 delivers the relation

between the critical angle and the average electron density.

αc = λ

√
rel
π
ρ(r) (2.48)

material critical angle αC [◦]

GaAs 0.308
InAs 0.318
AlAs 0.263

Table 2.1: critical angles of GaAs, InAs and AlAs at λ = 1.45Å

The measurement of the critical angle directly gives access to the electron

density of a material and vice versa. Wave fields traveling parallel to the surface

inside a material can be generated by realizing the values of the incident angles

around the critical angle. In that way a concentration of the wave field and, thus,

the probing area to the region close to the surface is possible. In case these waves

leave the material, refraction occurs again and the exit angle is αc. This intensity

peak at αc is called Yoneda peak, or Yoneda wing. The values for the critical

angels of the materials, that are investigated in this thesis, are given in table 2.1.

Penetration Depth

So far the critical angle of total external reflection was introduced. It was shown,

that if a wave hades a material surface under this angle, it will continue its

way parallel to the surface. According to this consideration the wave cannot

penetrate in the material at all. In reality, an evanescent wave with very small

20



2.1 Description of the Scattering Process

Figure 2.6: Penetration depth of the evanescent wave inside the sample in dependence
of the incident angle for Silicon and GaAs. (λ = 1.54 Å) Source: (58)

penetration depth (exponentially decreasing intensity below the surface) occurs.

More detailed theory allows to calculate the penetration depth of the evanescent

wave (19, 20). Figure 2.6 displays the dependence of the penetration depth on

the incident angle. One can see that a penetration depth of only 10 nm can be

realized. Such a penetration depth is perfectly adapted to measure the surface-

close nano objects and, as seen later, nano-sized iso strain areas just below the

surface inside the substrate.

Distorted Wave Born Approximation (DWBA)

On the previous pages refraction and reflection at the interface between two media

with different refraction index n was considered. In order to make use of resulting

effects, like total external reflection, grazing incidence angles in the order of the

critical angles are used in the experimental geometries GID and GISAXS. This

means that conditions to foster surface reflection are intentionally chosen. So

far it becomes clear that reflection cannot be neglected. For the GID geometry,

where diffraction and reflection are combined (see below), the consideration of

multiple scattering events is inevitable and exceeds the kinematical assumption.

A commonly used approach to consider multiple scattering events is the distorted

wave born approximation (DWBA) (29, 36, 69). The principle idea of DWBA is

to divide the scattering potential V̂(r) from equation 2.18 in two parts.

V̂(r) = V̂A(r) + V̂B(r) (2.49)

21



2. BACKGROUND IN METHODS AND THEORY

In this thesis the multiple scattering processes that are considered in DWBA are

combinations of diffraction and reflection. Four different ”channels” take 4 possi-

ble combinations of reflection and diffraction into account (see figure 2.7). These

processes are dynamical reflections at the surface of the substrate, considered

by V̂A(r), in combination with the kinematical diffraction in the quantum dots,

described by V̂B(r).

The final scattering is the coherent sum of the contributions. Since the reflections

at the substrate enable a momentum transfer uniquely along the z-coordinate (see

figure 2.7) one may conclude that only the Qz component of the scattering ampli-

tude changes due to the use of the different DWBA channels. The reason for this

is the lateral symmetry of the reflecting surface. One might further conclude that,

in case the data is anyway integrated along Qz, the differences concerning change

of the Qz distribution can be neglected and the final 2D result, after integration,

does not depend on using or not using the DWBA channels. However, this argu-

mentation is misleading. Clearly, only the Qz component is affected by reflections

at the surface, but interference of the radiation which was scattered according

to different channels has to be considered. This is important since interference

between waves scattered according to different channels may be constructive or

destructive depending on the path difference,i.e., the height above the substrate

inside the dot where the radiation was diffracted. Due to the vertical strain gra-

dient that exists inside the dot, this position dependence is automatically linked

to a strain dependence. That means that interference between Born channels

might darken of enlighten the reciprocal space map along coordinates that reveal

strain e.g. Qrad and that are not oriented along Qz. In section 3.2 this effect

is investigated mathematically and illustrated by simulations of diffraction maps

with 4-channel and one-channel DWBA.

2.2 Scattering and Diffraction Geometries

Different kind of information, that should be gained by scattering or diffraction

experiments, is included in different parts of the reciprocal space. As derived

above, the shape of nano objects is enclosed in the blurred surrounding of the

reciprocal lattice points. Depending on the area in reciprocal space, the speed and

the circumstances, in which these areas should be measured, different scattering

and or diffraction techniques are differentiated. In figure 2.8 an overview of the
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Figure 2.7: The four different channels of the distorted wave Born approximation
(DWBA). The first channel corresponds to the kinematical approximation. The other
three channels depict consecutive combinations of reflection and diffraction processes. In
these cases the qz component of the scattered photon changes compared to kinematical
theory. Image source: (49)

most common diffraction and scattering techniques is given.

Surface sensitive grazing incidence methods access the lattice points situated in

the sample surface plane (turquoise plane in figure 2.8). The (hk0) reflections

(surface normal (001)) can be accessed by grazing incidence diffraction (GID).

In the special case of (000), i.e. the origin of reciprocal space, the corresponding

method is called grazing incidence small angle scattering (GISAXS).

In this thesis the (220) and the (000) lattice point were measured. The details for

both, the measurement of (220) in GID geometry and the measurement of (000)

in GISAXS, are explained in the next two paragraphs.

Figure 2.8: Overview on different experimental geometries. Depending on the orien-
tation between the atomic planes corresponding to the reflection and the sample surface
symmetrical (SXRD), asymmetrical (AXRD) and grazing incidence (GID) x-ray diffrac-
tion can be distinguished. Grazing incidence small angle scattering (GISAXS) is method
to record the scattered intensity around the origin of reciprocal space. Source: (5).
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2.2.1 Grazing Incidence Small Angle X-ray Scattering (GISAXS)

Grazing incidence small angle scattering (GISAXS) is a scattering technique that

measures the reciprocal space around its origin i.e the (000) reciprocal lattice

point. At the center of this reciprocal lattice point, the diffraction vector is

zero (Q = 0) and the diffraction condition is always fulfilled. This means that

the FT of the shape function (see figure) of any objects under investigation is

pinned to that lattice point independent of its real space crystallographic lattice

parameter. Therefore, the method is sensitive to shape and morphology but

not sensitive to real space lattice parameter or strain. In so far there is overlap

between the outcome of GISAXS measurements and other morphology sensitive

methods, like AFM for example. This creates a comfortable situation: For every

kind of information that should be obtained and every measurements situation

(e.g. in-situ) the most appealing method can be chosen. In this thesis, the general

real space images of the outer morphology of the dots is taken from AFM and

SEM measurements. For the characterization of specific and important features

GISAXS measurements are used. These features are

• side facets visible in GISAXS through the side facet truncation rods (yellow

color in 2.11),

• positional correlation visible in GISAXS through the correlation peaks

(red colored intensity spots in 2.11)

• and average aspect ratio of the lateral dot extensions visible in GISAXS

through the inverse average aspect ratio of the shape scattering (blue colored

cloud in 2.11)

Now the mathematical description of the relation between these three QD fea-

tures and their apparition in the GISAXS data will be introduced. Principally,

the measurement of the (000) lattice point requires scattering angles close to zero.

This motivates the term ”small angle scattering”. In case of free nano objects,

forward scattering is possible in transmission geometry. In case the nano objects

are situated on top or closely below the surface of a comparably thick substrate,

a transmission geometry through the substrate is unfavorable and the special

grazing incidence geometries, that are described above (total external reflection),

have to be used. Figure 2.9 displays the typical grazing incidence geometry of
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the GISAXS technique.

Figure 2.9: Geometry of the GISAXS set-up. The value of the grazing incident angle
αi is typically chosen around the critical angle αc which is approximately 0.3◦ in case of
GaAs and a wavelength of 8 KeV. The intensity along the outgoing angles αf contains
the typical features: sample horizon, yoneda wing and specular reflection. The outgoing
in-plane angles 2Θ are typically between −2◦ and 2◦. Source: (49)

Two scattering planes can be distinguished: the horizontal plane, in which

lies the 2Θ|| angle (rose color), and the coplanar plane, containing the incident

and exit angles αi and αf (blue color). In reciprocal space qx, qy (in-plane) and

qz, qx (out-of-plane) are associated with these planes.

In kinematical approximation the scattering amplitude around the reciprocal lat-

tice point was described by the FT of the shape function of the scattering object.

This approximation holds well for the in-plane, but not for the out-of-plane di-

rection, since the refraction corrections affect the qz component of the scattered

photon and thus the out of plane intensity distribution. Due to the reflection and

refraction at the surface, two intensity maxima (see figure 2.9) along qz appear,

that are not explained in kinematical theory. These are the so called Yoneda wing

(106) at αf = αc and the specular reflection at αf = αi. The two peaks would

coincide if one choses the incident angle exactly equal to the critical angle.

In this thesis only specific information has to be extracted from the GISAXS

maps (see above). In order to start the analysis it is very convenient to integrate

the 3D intensity distribution along qz around the position of the Yoneda level. In

that way, in case of GISAXS, most specific information can be extracted from the
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resulting qx, qy intensity map according to kinematical theory. One needs to un-

derstand the refraction and reflection theory in order to realize an advantageous

scattering geometry (grazing incidence) or in order to select a suited qz integra-

tion range (around Yoneda). For most steps of the analysis itself, the refraction

and reflection corrections can again be neglected. As seen later this approach is

valid only for GISAXS but not for GID. In the next three paragraphs it is step by

step explained how the specific information is extracted from the GISAXS maps.

Truncation Rods

The QDs under investigation are made from crystalline material and thus tend

to develop side facets rather than a round shape in order to reach an energetic

minimum of the surface energy. These side facets can be very small and it is

sometimes difficult to resolve the facets and their crystallographic orientation

with microscopy techniques. In this case GISAXS measurements are appealing,

since the facets generate a characteristic and easy to resolve feature in reciprocal

space: the facet truncation rod (TR)(54, 74).

In order to introduce the TR, a thin layer of a crystalline material is considered.

The surface normal of the layer is oriented along z in a standard kartesian co-

ordinate system. The thickness of the layer is t, along x and y it is infinitively

extended. The electron density inside the layer is ρLayer. Its shape function can

be written

Ω(x, y, z) = Θ(z)−Θ(z − t) (2.50)

where

Θ(z) =

{
1 z ≥ 0

0 z < 0
(2.51)

is the heavy side function. The FT of the shape function is

ΩFT (Q) = 4π2t · sinc
(
Qz

t

2

)
e−iQz

t
2 δ(Q||) (2.52)

This means that around the reciprocal lattice points the scattering amplitude of a

thin layer is concentrated in a streak (see delta function), the so called truncation

rod (TR). The truncation rods are oriented along the direction of the surface

normal of the layer. The intensity inside the TR is modulated according to the

”sinc” function term. It is visible in equation 2.52 that the periodicity of the sinc
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function is determined by the layer thickness. Very often this oscillation is used

in order to measure the thickness of thin layers. In this thesis the TR’s are used

in order to reveal the existence and the orientation of side facets of quantum dots.

The side facets of dots have a finite sizes. Nevertheless they can be compared

to the infinite layer since they generate TRs in reciprocal space. Those TRs are

not infinitesimal thin but they have finite thicknesses. From their orientation

the orientation of the facets can be determined in analogy to the example of the

infinitely extended thin layer.

Figure 2.10: Illustration of side facet truncation rods (TR). Plane facets generate facet
Truncation rods in reciprocal space. From the orientation of theses rods the orientation of
the facets of the object (e.g. Quantum dot) in real space can directly be deduced.

This will be done in chapter 4 where the appearance of side facets during

post growth annealing is studied. In the GISAXS data example (figure 2.11) the

projection of the side facets TR is seen as yellow streaks in the center of the image.

Positional Correlation of the Dots

In chapter 2.1.1 the scattering amplitude around a reciprocal lattice point was

identified as the FT of the shape function of the object under consideration.

During the experiment not only one quantum dot, but a large number of dots is

simultaneously illuminated. The size of the footprint on the sample (including

enlargement due to the grazing incidence) is approximately 0.2 mm x 100 mm in

case of GISAXS. The radiation is fully coherent only within the coherence vol-

umes. The coherent domain, which is the area on the sample, that is coherently
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illuminated, is about 100 µm2 large. This means that during the GISAXS mea-

surement approximately 10000 Dots are coherently illuminated. To clarify the

difference between the measurement of an ensemble of dots and a single dot, two

scenarios are distinguished: randomly distributed positions of the dots and cor-

related positions. The cases are distinguished by the correlation function C(r, r’)

(29)

C(r, r′) = 〈χ0(r)(χ0(r′))∗〉 (2.53)

The zero-th Fourier coefficient of the polarizability χ0 is proportional to the elec-

tron density and thus to the position of the dots. The polarizability can be

expresses by the position vector of the n-th dot Rn and the shape function Ω(r)

of the dot. The covariance M(r− r′) is

M(r− r′)

= |∆χ0|2
[∑
m,n

〈Ω(r−Rm)Ω(r′ −Rn)〉 −
∑
m,n

〈Ω(r−Rm)〉 〈Ω(r′ −Rn)〉

]
(2.54)

where ∆χ0 = χobject0 −χmatrix/vacuum0 is the contrast in χ0 between the dot and

its neighborhood. For the sake of simplicity it is assumed here that all dots have

the same form and lie in the same plane (surface of the substrate). In the first

step their positions are assumed to be random. The scattered intensity is (29)

Irand.pos = Ii
K6

16π2A

∣∣ωFT (Q)
∣∣2G||(Q||) (2.55)

where A is the irradiated sample surface. One can see that the scattered intensity

is still proportional to the FT of the shape function ΩFT (Q). The fact that not

a single dot, but an ensemble of dots is measured just increased the scattering

signal by a constant factor. Since the lateral geometrical factor G||

G||(Q||) =

〈∑
m,n

e−iQ||(R||m−R||n)

〉
(2.56)

is constant in case the dots are not ordered. The intensity distribution in recip-

rocal space is entirely determined by the shape of a single dot. In the following

the case of correlated positions of the dots is considered. Two models for the dot

arrangement are discussed following the approach of (29).
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2.2 Scattering and Diffraction Geometries

Short-Range-Order Model

Figure 2.11: Example of an typical GISAXS image. Three main features can be identified
on the scattering image (right) and related to the real space model (left): 1. the truncation
rods from the facets, visible in yellow on the RSM and marked with the black lines, 2. the
FT of the QD shape (blue cloud) and 3. the QD ordering (red correlation peaks). source:
(75)

In this model the position of a particular dot depends only on the position of

the neighboring dots. Here only the one dimensional version will be derived, a

two-dimensional model can be obtained by analogous way. The lateral position

of the m-th dot is Xm. The distance between a dot and its neighbor is Lm =

Xm −Xm−1. If the total number of dots N is very large, the lateral geometrical

factor is (16, 29, 68)

G||(Q||) = N

[
1 + 2Re

(
η

1− η

)]
(1− δQ||,0) +N2δQ||,0 (2.57)

where

η =
〈
e−iQ||L

〉
(2.58)

is the characteristic function of the probability distribution of L. The dispersion

of L depends on the order m of the gamma distribution of the distance L by

σL = 〈L〉√
m

. The geometrical factor now exhibits maxima in points

Q||p ≈ p
2π

〈L〉
, p = 0,±1,±2, ... (2.59)

The better ordered the dots are (i.e. the larger m), the narrower the maxima,

later called correlation peaks, are. The width of the correlation peaks will be
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used in order to estimate the quality of ordering. The position of the correlation

peaks in reciprocal space reveals the characteristic dot to dot distance and the

direction of ordering. In the GISAXS data example (figure 2.11) four correlation

peaks (red colored intensity maxima labeled C2D) are visible. They reveal order-

ing along the {100} directions.

Long-Range-Order Model

Until now short range ordering was considered. This kind of ordering happens

in case neighboring dots interact with each other, while the interaction of dots

that are afar from each other can be neglected. An example for this interaction

might be forces between the dots that are mediated by the surrounding substrate

strain.

Another type of ordering is the long-range-ordering. The introduction of this type

of ordering is taken from (29), where also graphical illustrations can be found.

In a one dimensional long-range-order model, a periodic ideal lattice with the

period L is assumed. The dots are displaced from the lattice points by random

displacements Um. It is assumed that 〈Um〉 = 0 and 〈Um, Un〉 = σ2δmn, where

σ is the root mean square displacement of the objects from their ideal positions.

The lateral geometrical factor for N dots is (29, 105)

G||(Q||) = N(1−D2) +D2

∣∣∣∣∣
N∑
m=1

e−iQ||Lm

∣∣∣∣∣
2

(2.60)

where

D =
〈
e−iQ||U

〉
≡ e−σ

2Q2
||/2. (2.61)

The factor D is analogous to the static Debye-Waller factor defined in Chapter 5

and its formula has been obtained assuming a normal distribution of the random

displacements Um.

The lateral geometrical factor exhibits a sequance of latzeral maxima for

Q||p ≈ p
2π

L
, p = 0,±1,±2, ... (2.62)

In contrast to the short-range-order model, the width of the maxima is constant

and independent of σ. The width of the maxima is inversely proportional to the

number of dots occurring in a coherent domain (see above). In case the sample
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2.2 Scattering and Diffraction Geometries

is large and fully covered, by the dots the width of the maxima reveals the size

of the coherent domain. Their height decreases with increasing σ. If the long-

range-order model is valid, the integrated intensity is not directly determined by

the shape of the objects. An example for long-range-ordering could be dots on a

surface that shows a regular surface mesh, for example after surface reconstruc-

tion. In case the dots preferably grow in a certain point of this mesh, long range

ordering might occur.

Average Aspect Ratio of the Lateral Dot Extensions

After the side facets and the positional correlation, now the average aspect ra-

tio of the lateral dot extensions in considered. Principally this information is

extractable from single dots in one AFM image, however, the mentioned aspect

ratio is of enormous importance and needs to be measured with high statistical

relevance, since the strain field, that is induced around the dot into the substrate,

will be considered as driving force for the positional ordering. This strain field

depends on the shape and its symmetry, in particular on the ratio between the

lateral extensions of the dot along different directions. Therefore this ratio has to

be measured with high statistical relevance, i.e. averaged from thousands of dots.

In the following the formalism that will be used to extract the ratio between the

lateral extensions of the dots from GISAXS data is introduced.

The Quantum dot is considered to be a stack of round shaped flat discs with

different radii r and diameter D. The 2D scattering of such a disc is proportional

to the square of its 2D FT

I(Q||) ∝
∣∣ΩFT (Q||)

∣∣2 ∝ ∣∣∣∣2πr2J1(Q||r)

Q||r

∣∣∣∣2 (2.63)

where J1 denotes the first order Bessel function. Figure 2.12 illustrates such a

quantum dot model and the corresponding scattering amplitudes.

It can be seen that the width of the central maximum and the distances be-

tween higher orders of the shape scattering are inverse proportional to the radius

of the discs. Consequently from the oscillation period along Q|| the diameter of a

disc can be extracted. It was shown that, especially for grazing incidence condi-

tion, non kinematical effects such as refraction and multiple scattering affect the

Qz intensity distribution. In order to still apply kinematical theory, the intensity

was integrated along Qz around the Yoneda level and projected to the in-plane

31



2. BACKGROUND IN METHODS AND THEORY

Figure 2.12: Illustration of a quantum dot model composed by a stack of discs with
different diameter. The radii of the 2D FT of these disc ”Bessel rings” are inversely
proportional to the diameter. After integration along Qz all ”Bessel rings” overlap in the
in-plane reciprocal space projection.

map. Thus non kinematical effects are faded out. Since GISAXS is not sensitive

to strain, the bessel rings that are generated by different discs at different z po-

sition all overlap in the scattering map (see figure 2.12). A smooth blue cloud

instead of distinct oscillations is therefore visible in the experimental GISAXS

data (see figure 2.11). The absolute diameter of each disc cannot be extracted.

However, in case the discs are not round, the ratio between the diameter along

different directions can be extracted in a very simple way. The ratio between the

average dot diameter D110

D110
corresponds to the inverse ratio of the extensions of

the blue cloud
D̃110

D̃110
(figure 2.11).

D110

D110

=
D̃110

D̃110

(2.64)

As described later in detail, the problem of overlapping contributions from dif-

ferent discs is overcome in GID, since the discs are separated by different lattice

parameters. At this point the GISAXS analysis is ”reduced” to the ratio of the

diameter along different directions. One must recall that this information will

play an essential role later in this thesis, since the asymmetry in shape might be

responsible for the induction of asymmetric strain around the dot, which will be

discussed later as driving force for asymmetric positional ordering.

In summary, GISAXS and AFM measurements are used in this thesis to deter-
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mine the quantum dot shape. While the general shape picture is delivered from

AFM, the GISAXS measurements are focused on three important dot features.

These are side facets, positional dot ordering and in-plane dot symmetry (i.e.,

ratio between the lateral extensions along different directions). All features will

play an essential role during the dot characterization in chapter 4 of this thesis.

2.2.2 Grazing Incidence Diffraction (GID)

Grazing incidence diffraction (GID) is a technique to measure the scattered in-

tensity around in-plane reciprocal lattice points. In this thesis the (220) in-plane

lattice point is selected, since it is ”strong”(table 2.34) and accessible with conve-

nient wavelengths. Similar to the GISAXS technique, GID makes use of refraction

effects (see section 2.2). The experimental setup of the GID experiment (figure

2.13) is therefore similar to that of GISAXS, shown in figure 2.9. Again the sam-

ple surface is hit by the radiation under a small ”grazing” angle. In opposite to

GISAXS, not the small angle scattered radiation is recorded but the radiation

that was Bragg diffracted by atomic planes perpendicular to the surface. The 2θ

angle is not ”small” but corresponds to values that are large enough to fulfill the

in-plane Bragg condition.

Figure 2.13: GID geometry. The incident, the forward scattered and the diffracted beam
are visible. While GISAXS measures the forward scattered beam the GID measurement
records the radiation that was Bragg diffracted. The 2θ angle is given by the Bragg law. It
can be seen that in opposite to GISAXS where the scattering of all parts of the dot widely
overlaps, a separation according to the lattice parameter differences occurs. source: (18)
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During the introduction of the kinematical theory in section 2.1.1, it was shown

that the FT of the shape function is ”pinned” to every reciprocal lattice point

(figure 2.4). The exact position of the reciprocal lattice points depends on the real

space lattice parameter. The fact, that materials with different ”natural” lattice

parameters are brought together in epitaxy, indicates the presence of different

lattice parameters in the sample. Therefore, the position of the (220) reciprocal

lattice point is not clearly defined. Usually its position is given with reference

to the relaxed substrate lattice parameter. The position differs for regions in

the sample with other lattice parameter. In order to still evaluate the GID data

according to simple considerations a second approximation in addition to the

kinematical approximation, the so called iso strain scattering (ISS) concept, will

be used. Since in this thesis major development is done in the area of the ISS

model, a description of the principles of the ISS approximation, as it is commonly

known, is given in the next paragraph. In the subsequent paragraph, the new

development of a holistic iso strain model (HISS), that is one of the major

achievements of this thesis, is depicted.

2.3 Quantum dot scattering - the iso-strain scattering

model

The iso-strain scattering concept was developed about a decade ago (35, 36, 48).

It introduces a number of approximations and simplifications. The ISS concept

suggested that ”by identifying key features of the x-ray intensity distribution in

reciprocal space, one can directly reconstruct the geometry as well as the distribu-

tion of local lattice parameter and material composition. Thus, a transformation

of scattering data from quantum dots to nanometer-scale tomographic images is

achieved” (35).

On the following pages the iso strain model ”as it is” is described and explained.

In the conventional iso strain model (35, 39, 48, 87) the dot is assumed to be a

stack of laterally extended, slightly curved areas with constant lattice parameter

a, the noted iso strain areas (ISAs):

ρdot =
∑
i

ρISAi (2.65)

Following kinematical theory, the scattering signal of one single ISA is propor-

tional to the absolute square of the FT of its electron density modulo absolute
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scaling:

I(Q) ∝
∣∣FT [ρISA(r)

]∣∣2 = |Si(Q)|2 (2.66)

The iso strain scattering model claims that the scattering of the whole dot can

be approximated by the incoherent superposition of the scattering signals of the

single ISAs.

I(Q) ∝

∣∣∣∣∣∑
i

Si(Q)

∣∣∣∣∣
2

≈
∑
i

|Si(Q)|2 (2.67)

where Si(Q) is a complex number. In equation 2.67 the mixed terms are neglected.

Figure 2.14: Schematic drawing of the scattering of a free standing quantum dot ac-
cording to the iso-strain (ISS) model. Left side: the quantum dot is represented as stack of
iso-strain areas. Each ISA has its own lateral extension Di and its own lattice parameter
ai. The reciprocal space images is assumed to be the incoherent sum of the FT of the
single ISAs. The lattice parameter defines the position in reciprocal along Qrad, the radius
of the Bessel rings represented also by the periodicity of the intensity oscillations along
Qang defines the lateral size of the ISA.

This means that the scattering of the whole dot is assumed to be the simple sum

of the scattering of the single ISAs, neglecting interference between the scattering

amplitude of different ISAs. The validity and applicability of this approximation

is tested later in this thesis.

In the conventional iso strain model in three analysis steps the strain, the size,

and the height above the substrate is determined for the ISAs.
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Extracting the Strain of an ISA from the
∣∣H i
∣∣

Every ISA has its own lattice parameter ai. Therefore, the reciprocal space

contribution of different ISAs (shape scattering of the disc) is centered around a

certain Hi position ∣∣H i
∣∣ =
√
h2 + k2 + l2 · 2π

ai
(2.68)

From this H i value the lattice parameter inside the iso strain area i is deduced.

Extracting the size of an ISA from the Intensity oscillation along qang

The shape of the ISA generates shape scattering in reciprocal space. The shape

scattering is analyzed according to the coordinate q, which is defined by

qi = Q−Hi (2.69)

The intensity profile along qiang contains the shape scattering (shape oscilla-

tion) of the ISAs. The periodicity of the oscillation indicates the ISA diameter

D. To extract the diameter of the ISA i, the Intensity profile is reviewed along

a line that crosses Qi
rad parallel to the Qang axis. The position of the first order

scattering maximum qimax delivers Di via

Di =
2 · f
qimax

. (2.70)

In case of circular shaped ISAs, f = 5.13 is the value of the first order maximum

of (J1(x)/x)2. J1 denotes the first order Bessel function. In this way the pair

(ai;Di) is obtained for every ISA.

Extracting the ISA position above the surface - Intensity along Qz

In this thesis the analysis of the reciprocal space data is performed on the basis

of 2D intensity maps. For this purpose the measured 3D intensity is projected to

the Qrad, Qang-plane. The exact intensity distribution along Qz (perpendicular

to the sample) is not used for the analysis since the data is integrated along

this direction. However, principally it is possible to extract the position of each

ISAs (at least for those above the sample surface) by analyzing the intensity

distribution along Qz. Here, since the intensity is integrated along Qz, it is

important to understand the Qz intensity distribution in order to choose a proper
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integration ranges for the projection.

Since (220) reflections are measured the lattice vector lies parallel to the sample

surface (Hz = 0) and one has

qz = Qz −Hz = Qz (2.71)

To calculate the intensity distribution along Qz, which is perpendicular to the

sample surface, dynamical terms are essential due to refraction and reflection

effects at the surface. It was shown in chapter 2.1.2 that combinations of surface

reflection and diffraction can be treated with a specific DWBA approximation.

In the formula for the intensity distribution of an ISA, situated at z above the

surface, the transmission function t is replaced by a special transmission function

tfps that includes the four-process scattering (fps) that is used in DWBA (see

figure 2.7) (36)

F z
total(Qz, z, αi, αf ) = F z(Qz)t

fps(αi, z)t
fps(αf , z) (2.72)

with

tfps(α, z) = 1 + r(α). (2.73)

The reflectivity and transmittivity are usually given as (36)

r(α̂) =
α̂−
√
α̂2 − 1

α̂ +
√
α̂2 − 1

(2.74)

and

t(α̂) =
2α̂

α̂ +
√
α̂2 − 1

(2.75)

with the reduced coordinates

α̂ =
α

αc
(2.76)

and

ẑ = kαcz (2.77)

The Intensity distribution along Qz after including the surface reflection is now

given in two parts. In case αf is smaller than the critical angle (α̂ < 1) one has

(36)

Ifps(α̂, ẑ) = 2 + 2(2α̂2 − 1) cos 2α̂ẑ + 4α̂
√

1− α̂2 sin 2α̂ẑ (2.78)

from the maximum of that distribution the height z of the iso strain area above

the surface can be determined (36)

z =
1

kαmax
arccos

αmax

αc
(2.79)
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Figure 2.15: The distribution of tfps along αf is shown for ISAs situated at different ẑ.
One can see that the maximum shifts from the critical angle to lower values for larger z.
Above αc oscillations become visible for large z values, that correspond to the kinematical
view. The red ares marks the typical integration range. source: (36)

The intensity distribution for α̂ > 1 is

Ifps(α̂, ẑ) = 1 +
2α̂− 1− 2α̂

√
α̂2 − 1

2α̂− 1 + 2α̂
√
α̂2 − 1

+ 2
α̂−
√
α̂2 − 1

α̂ +
√
α̂2 − 1

cos 2ẑα̂ (2.80)

One can recognize the oscillation of period 2ẑ in the formula. That is the oscilla-

tion period that one expects from kinematical theory (sinc-function). Principally

it is possible to derive the ẑ value of every ISA from that period. As seen from

the theoretical curves in figure 2.15 the intensity is very low in this area and it

could not be accessed experimentally.

The integration area for Qz is typically chosen close around αc in order to ”catch”

all maxima. The highest ISA in the sample, which is the top of the dots is at

around ẑ ≈ 1, 1. At higher z values no ISAs exist in the sample. The integration

area is illustrated with a red background in figure 2.15.

One has to state that in the conventional ISS model, ISAs are assumed only above

the sample surface at ẑ > 0. The Qz intensity distribution of ISAs underneath

the sample surface is not considered in the conventional model. It is clear from

this point that another approach is needed for ISAs underneath the surface. Such

an approach will be proposed in chapter 3.1 of this thesis.

38



2.3 Quantum dot scattering - the iso-strain scattering
model

Ensemble of the Iso strain areas

The schematic drawing in figure 2.14 shows the FT of three casually selected ISAs

placed at different Qrad positions in reciprocal space. The accuracy is optimized,

if the number of determined ISAs inside the Dot is possibly high, since in that

case, the vertical extension of every single ISA is small and the assumption of

identical strain inside is suited. In figure 2.16 the overlap of a large number of

the FT’s of different ISA’s is depicted.

Figure 2.16: Left: Schematic drawing of graphical overlap of the FT’s of a set of ISA’s.
Right: The calculation of the reciprocal space intensity based on a realistic QD FEM
model. During the calculation, the FTs of different ISAs were coherently added. A matlab
based algorithm, developed by Dr. Daniil Grigoriev, was used.

Figure 2.16 can be used for an interesting comparison: On the left side the

simple graphical overlap of the FTs of single slices leads to the characteristic

horseshoe like curved maxima in the upper area. The same curves are visible on

the calculated image. During the calculation, coherent summation of the com-

plete QD was used. The difference between both pictures is very delicate. In both

cases similar maxima are visible. The incoherent summation can never produce

extinction. At the lower part, where the rings do not overlap, a constant flat

background is created. In case of the coherently calculated map, the addition of

complex numbers with different phase enables extinction. Therefore zero inten-

sity is possible. This effect is visible by comparing both pictures. The maxima

are similar on the left and on the right. The smooth background in the lower part
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of the left image does not exist in the right one. Instead destructive interference

has ”killed” the intensity.

In the next chapter, the accuracy of the iso-strain model will be evaluated

in detail for the quantum dots of interest in this thesis. It will be seen, that,

as it is, the model suffers from increasing inaccuracy for decreasing size of dots.

That happens because an essential part of the key features addressed to the dot

by the conventional ISS model are generated by the strained regions in the sub-

strate. However, the principle ”as simple as possible, as precise as necessary” is

strongly appealing especially for the robust use and application to large sample

series in technological studies. Therefore, a new model, the holistic Iso strain

model (HISS), will be proposed that overcomes the essential limitations.

Summary

In this chapter the theoretical background for the later method development as

well as method application (i.e. quantum dot study) was introduced. This in-

cluded the kinematical scattering theory, selected dynamical effects and a short

introduction to the iso-strain scattering model. Two measurement techniques,

GID and GISAXS, were described in detail.

In case of kinematical scattering theory it was shown that stepwise coherent

summation of the scattering amplitude of one single electron (Thomson scatter-

ing) finally leads to the scattering amplitude of an object. It was shown that if

kinematical theory and Fraunhofer approximation are combined, the scattering

amplitude can be interpreted as the FT of the electron density, i.e., its reciprocal

space representation. In this way, the FT of the shape function for example is

”pinned” to every reciprocal lattice point.

After the introduction of refraction and reflection theory at interfaces, GID and

GISAXS techniques that enable the measurement of the scattering amplitude

around the two reciprocal lattice points (000) and (220) were introduced. It was

shown how side facets, positional ordering and the lateral aspect ratio of the dots

can be extracted from GISAXS data.

In case of the GID-measurement the situation is more complicated since in this

geometry the exact position of the (220) reciprocal lattice point is lattice pa-

rameter dependent. Therefore, areas of the quantum dot with different lattice
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parameters will appear in reciprocal space at different positions. In order to still

use simple considerations during the analysis, an additional model, the conven-

tional iso-strain model was introduced.

Both, the kinematical approximation itself and the iso strain model, are assump-

tions that neglect physical effects which are assumed to be small. It is necessary to

qualitatively and quantitatively test the accuracy. This will be done in the special

case of the quantum dots that are relevant in this thesis in the next chapter.
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3 Methodical Development

3.1 Methodical Development 1 - The Holistic Iso-strain

Model

In the previous paragraph the kinematical theory and the conventional iso strain

scattering model were introduced. Both are based on a number of approximations

that neglect physical effects. In this chapter the validity of these approximations

is qualitatively and quantitatively evaluated. I will be shown that the principals

of the conventional iso strain approximation are surprisingly well suited, but it

suffers from incompleteness, especially in case of small QDs, that a most relevant

in this thesis. This incompleteness leads to misinterpretations that refer to more

than 50% of the relevant data in some cases.

A new model, the holistic iso strain (HISS) model, is introduced in this chapter

in order to overcome the limitations an enable correct interpretation of the key

features.

Test Quantum Dot for the forward Calculation - generated with FEM

In order to test the accuracy of the kinematical and the ISS approximation a ”test-

QD” with exactly known shape, chemical composition and strain distribution is

needed to perform forward calculations of scattering maps. The correctness of

the backward analysis can be evaluated in that way. In order to obtain a realistic

test-QD, the shape and the chemical composition are chosen according to the

typical QDs of interest in this thesis. The test-QD consists of In0,9Ga0,1As dots

onGaAs(001) substrate. A realistic strain distribution for the test-QD is obtained

by finite element modeling (FEM).

Detailed descriptions of FEM can be found in (14, 60, 93) for example. A

description of the finite element modeling process of the test-QD that is used in

this thesis is given in (86). On the next pages the principles of the calculation are

illustrated. The result will be intensively discussed since they give first evidence

for the need of the HISS model.

The strain in the QD and the substrate is generated as a consequence of heteroepi-
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Figure 3.1: Test-QD for the forward calculation of scattering maps. The size and
chemical composition are chosen according to the ”real” QDs under investigation in the
later chapter. Realistic strain distribution inside the dot and the substrate is calculated
via the FEM method for the depicted test-QD model.

tactical growth. The term epitaxy is derived from the Greek word epi, meaning

”above”, and taxis, meaning ”in ordered manner”. Heteroepitaxy describes an

energetic favorable connection of two materials, where perfect matching of the

lattice parameter and crystallographic orientation at the interface is achieved.

In that way, atomic bonding (covalent or mixed covalent ionic in case of Si or

GaAs) is continued atom by atom throughout the interface. The price to pay is

compressive in-plane strain in the material with the larger and tensile in-plane

strain inside the material with the smaller lattice parameter. With increasing

distance from the interface this strain relaxes. Efficient elastic strain relaxation

is possible if the material is organized in 3D dots instead of a 2D layer, which

already explains, as seen late in detail, the reason for the dot growth.

Lattice Mismatch and Elastic Properties as Input for FEM

The difference between the substrate and dot lattice parameter is expressed by

the mismatch m:

m =
arlxdot − arlxsub

arlxsub
(3.1)

where arlx is the relaxed bulk lattice parameter. In case of the test-QD, that con-

sists of In0,9Ga0,1As/GaAs(001), the natural bulk lattice parameter is calculated

according to Vegard’s law

aInxGa1−xAs = xaInAs + (1− x)aGaAs (3.2)

and the mismatch is

m =
arlxIn0,9Ga0,1As

− arlxGaAs
arlxGaAS

= 1, 0645 (3.3)
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which means, that the bulk lattice parameter of the test-QD material is approx-

imately 6.5% larger than the one of the substrate. In the FEM calculations the

lattice parameter difference is indirectly expressed via a different thermal expan-

sion coefficient αth. Increasing the temperature by ∆T leads to ”thermal strain”,

that represents the larger lattice parameter of the dot:

εTij = αth∆Tδij (3.4)

If the material can freely expand, the actual strain corresponds to the ”thermal

strain”. This represents the case where the dot material is totaly relaxed, i.e.,

εij(~x) = εTij (3.5)

There are no remaining forces. The epitactical connection of areas with different

lattice parameters induces strain. The different lattice parameter are expressed

via different koiefficients αth. In this case a strain difference, called elastic strain

εEkl(~x), exists between the thermal strain (free expansion) and the actual strain:

εEkl(~x) = εij(~x)− εTij (3.6)

The corresponding forces, called stress, can be expressed by Hooke’s law

σij(~x) = cijklε
E
kl(~x) = cijkl[εkl(~x)− α∆Tδkl] (3.7)

where cijkl is the elasticity tensor of the material. In case of GaAs and InAs the
elasticity tensors are

cGaAs =



1.4505 · 10−7 2.625 · 10−8 5.32 · 10e−8 0 0 0

2.625 · 10−8 1.4505 · 10−7 5.32 · 10−8 0 0 0

5.32 · 10−8 5.32 · 10−8 1.181 · 10−7 0 0 0

0 0 0 3.245 · 10−8 0 0

0 0 0 0 5.94 · 10−8 0

0 0 0 0 0 5.94 · 10−8



cInAs =



1.0387 · 10−7 2.4685 · 10−8 4.526 · 10−8 0 0 0

2.4685 · 10−8 1.0387 · 10−7 4.526 · 10−8 0 0 0

4.526 · 10−8 4.526 · 10−8 8.329 · 10−8 0 0 0

0 0 0 1.9015 · 10−8 0 0

0 0 0 0 3.959 · 10−8 0

0 0 0 0 0 5.959 · 10−8


respectively. The elasticity tensor of a compound, for example the test-QD

In0,9Ga0,1As/GaAs(001), is calculated by linear interpolation of the matrix ele-

ments:

ccomp = 0, 9cInAs + 0, 1cGaAs (3.8)
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3. METHODICAL DEVELOPMENT

The input parameter for the FEM calculation can now be summarized. First

the shape of the test-QD has to be fixed. This automatically leads to boundary

conditions. The points at the dot to vacuum interface can only move within the

interface plane. Variations of the perpendicular to this plane would increase or

reduce the dot volume. The physical material properties are introduced by a)

the material dependent bulk lattice parameter (expressed via thermal expansion

coefficients) and b) by the material dependent elasticity matrix.

Due to limited calculation capacity the size and shape of one elementary volume

(”finite element”) needs to be larger than the physical unit cell. For highest

efficiency the density of elementary volumes is high wherever abrupt strain gra-

dients are expected and low elsewhere. The explicit mesh density of the QD in

this investigation can be seen (86) figure 4.2.1.

Discussion of the FEM Result

The raw result of the FEM analysis is the 3D displacement field ∆u(x), that

describes the absolute shift of a point in the QD model in comparison to its

position in the fully relaxed case. For the scattering experiment not the absolute

displacement of atoms is relevant, but the local distance between atomic planes.

This distance changes compared to the fully relaxed situation only if neighboring

points were shifted by different amounts. Thus, the relevant quantity for the

scattering experiment are the partial derivatives of the displacement

εij :=

(
δui
δxj

+
δuj
δxi

)
(3.9)

Which is a 3x3 matrix, called strain tensor. The diagonal elements of the strain

tensor are called principal strains. The values on the diagonal correspond to a

change in atomic plane distance along the three principal tensor axis. These dis-

tances are increased for εii > 0 or reduced if εii < 0. The non-diagonal elements

are called shear strains. The shear strains preserve the distances between the

atomic planes but changes their orientation.

In the diffraction experiments in this thesis only the (220) reflection is investi-

gated. This means that only the εxx component of the strain tensor is of interest,

where x denotes one main axis of the strain tensor that is oriented exactly along

the direction of the diffraction vector (220).
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3.1 Methodical Development 1 - The Holistic Iso-strain Model

Figure 3.2: Strain inside and around the test-QD. Only one fourth of the complete QD
model is depicted in order to enable the ”insight” view. Due to symmetry this fourth
contains the complete information. The color scale indicates the ε110/110 component of the
strain tensor. The values are shown as percentage difference of the lattice parameter of
the strained material relative to the relaxed substrate lattice parameter. Positive values
indicate lattice parameter larger than the substrate lattice parameter, negative values
correspond the lattice parameter smaller than asub. Inside the substrate both are visible:
Red color underneath the dot depicts tensile strain, while the blue color around the dot
depicts compressive strain.
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3. METHODICAL DEVELOPMENT

Figure 3.3: Iso strain areas in the dot and the substrate. 2D slices trough the 3D FEM
model (figure 3.2) are depicted. Horizontal slices (left) show the iso strain areas in the
substrate (upper one) and the dot (lower one). In both cases areas with homogeneous
strain can be seen. Also in the substrate ISA, the lattice parameter variation from left to
right is smaller than 0.5 %.

The measurement unity and the definition of strain component need further

explanation. In general, the term strain denominates the deviation of the local

lattice parameter from its relaxed bulk value. The application of this definition is

difficult, since the relaxed lattice parameter depends on the chemical composition.

For the test-QD the chemical composition is well known. In the realistic case it

is not known in advance. Therefore, as measurement unity, the deviation of the

local lattice parameter from the substrate lattice parameter is used:

ε110/110(r) =
alocal(r)− asub

asub
(3.10)

asub denotes the relaxed bulk lattice parameter of the substrate. Generally

a is the lattice parameter along the (110) axis, which is oriented parallel to the

diffraction vector (220).

Figure 3.2 indicates the strain inside the test-QD and its surrounding substrate.

The value 0 stands for the relaxed substrate lattice parameter. Positive values
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3.1 Methodical Development 1 - The Holistic Iso-strain Model

indicate lattice parameter larger than the substrate lattice parameter, negative

values correspond to lattice parameter smaller than asub. As expected, it is seen

that the dot relaxes towards the top. In case of full relaxed In0,9Ga0,1As, the value

is 0, 0645. One can see that at the top the material is ”half” relaxed (≈ 0, 03). At

the bottom a small deviation from the substrate lattice parameter (about 1%) is

visible. This lattice parameter is coniniously induced inside the substrate. Only

after a depth of 5 − 6 nm under the dot (which corresponds to the dot height)

relaxed substrate is visible. Around the tensile strained area underneath the dot,

blue parts are visible. These parts represent compressive strain. Its origin can

be intuitively understood. In case tensile strain is induced by the dot inside the

substrate underneath the dot, the need for space is compensated by compressive

strain around this area. At the border between compressive and tensile straine

areas the lattice parameter gradient is very sharp. It changes from 1% to -5%

within very small distances.

In order to investigate the dot and substrate strain a little closer, 2D cuts thought

the 3D model are shown in figure 3.3. The upper left map illustrates a horizontal

cut though the dot 2 nm above the substrate. It can be seen that the complete

cross section is homogeneously red colored (fig. 3.3 upper left). In order to see

the small difference, the color scale was refined compared to the vertical cut. If

one follows the values from left to right through the vertical center of the red

area, the strain variation is smaller than 0,001. Thus, the lattice parameter fluc-

tuation is less than 0, 1% inside this iso strain area. This already suggests good

validity of the iso strain approximation. Nevertheless the validity of the iso strain

scattering approximation is quantitatively evaluated later in this thesis.

More surprising is the 2D cut thought the substrate 2 nm underneath the dot.

Again a homogeneous red colored part is visible, that suggests the existence of

iso strain areas in the substrate. This iso strain area is not delimited by vacuum

(end of the quantum dot), but it is delimited by blue color (compressive strain)

at the top and bottom and by green color (relaxed substrate lattice parameter)

on the left and right. Again the scale has to be refined in order to see lattice

parameter differences inside this iso strain area. Fluctuation of approx 0, 7% can

be seen, which is a little more than in case of the cut through the dot. Scattering

simulations will show that these iso strain areas in the substrate are homogenious

enough in the inside and delimited enough towards the outside to generate thik-

ness oszillations that contribute to the key features. The scattering of the test-QD
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can not be investigated within the conventional iso strain scattering model, since

the iso strain areas in the substrate (fig. 3.3 upper left) would be completely

neglected. In order to include these areas, a new model, the holostic iso strain

scattering model, is now introduced.

Holistic Iso Strain Scattering Model

The holistic iso strain (HISS) model intends to describe the scattering of free

standing quantum dots including the scattering contribution of the substrate. As

shown later, the substrate contribution is essential to correctly interpret the key

features in reciprocal space, that are fully addressed to the dot by the conventional

iso strain model.

Figure 3.4 depicts the full calculation (left) and the interpretation of the scat-

tering according to the iso strain model (right). The full calculation is done in

the following. The FEM result represents a 3D matrix. For every point in this

matrix the position x,y,z and the strain component εxx is known. The density

of these points is intentionally inhomogeneous (high density in areas with high

expected strain modulations and vice versa). From this matrix very thin lateral

slices of a thickness of 2Å (adapted to the Mono layer thickness) are extracted.

For these slices a homogeneous distribution (grid) of data points is calculated

by positional interpolation of the values of the inhomogeneous distributed data

points from the FEM model.

The calculation of the scattering map is done in the following way. According

to kinematical theory the scattering amplitude is

A(Q) =

∫
V z

∫
V y

∫
V x

ρ(r)eiQrdxdydz (3.11)

Since the full model was segmented in a number N of ”sufficiently thin” lat-

eral slices ρi(r) the ”Riemann segmentation” can be applied to substitute the

z-integral:

A(Q) ≈
N∑
i=1

∫ ∫
ρi(r||)e

iQ||r||eiQzzi

dr|| (3.12)

This conversion to a discrete sum does not represent the iso strain model. The
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3.1 Methodical Development 1 - The Holistic Iso-strain Model

Figure 3.4: Scattering from single lateral slices through the test-QD. Left: The full
calculation of the scattering from the actual strain values is given. Right: Schematic
illustration of the scattering according to the iso strain model. The lattice parameter
inside one iso strain area is constant in this model. The scattering thus corresponds to
Bessel like rings that are centered around the reciprocal space values, that correspond to
the lattice parameter of the corresponding iso strain area.
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strain values inside each slice ρi(r) are not assumed to be homogeneous. They are

the real values from the FEM simulation. The strain distribution inside two of

these slices, one thought the substrate and one through the dot, is visible in figure

3.3. Since the thickness of the layers is extremely thin the thickness oscillations

have extremely large oscillation periods along qz and can be approximated by 1.

the total scattering amplitude is thus calculated by

A(Q) ≈
N∑
i=1

Si(Q||)e
iQzzi

(3.13)

where

Si(Q||) =

∫ ∫
ρi(r||)e

iQ||r||dr|| (3.14)

Si(Q||) is shown for selected layers in figure 3.4 on the left side. It becomes

clear that the strain values inside one slice are not exactly identical. If they

were, the FT would correspond to homogeneous and concentric Bessel circles

centered around exactly one reciprocal space position, that corresponds to the

homogeneous strain value, like illustrated on the right side of figure 3.4. Instead

the rings are not homogeneous. They seem to be ”opened” at the lower part and

more intense at the upper part. The approximation of concentric rings in general,

however, seems well suited in case of the slices through the dot, and a little less,

but still accurate in case of the slices through substrate.

The essence of the HISS model is the correct interpretation of the key features

in the scattering map. These key features are the first order shape scattering

oscillations, i.e. the radius and position of the Bessel rings from each iso strain

area. The calculated rings in figure 3.4 are not perfect Bessel rings. While Si(Q||)

from the ISA at the top of the dots is very close to that approximation, the circles

are less complete the lower the iso strain area is situated. Only ring fragments

are visible due to the heterogeneous inner strain distribution. However, the two

key parameters that are later used in the analysis, the radius and the position

of every S(Q) are perfectly predicted. This means that the HISS model is not

suited to predict the whole reciprocal space map, but, as far as key features are

visible in the measurement data, the HISS model enables to extract the lattice

parameter and diameter of every ISA from the position and radius of the Bessel

rings in the scattering map. The corresponding mathematical relations are

|H|i =
√
h2 + k2 + l2 · 2π

ai
(3.15)
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and

Di =
2 · f
qimax

. (3.16)

In case of circular shaped ISAs f = 5.13 is the value of the first order side

maximum of (J1(x)/x)2. J1 denotes the first order Bessel function. In this way

the pair (ai;Di) is obtained for single ISAs.

Until know single ISAs and the scattering of single ISAs was considered. In the

realistic experiment all iso strain areas contribute, if the complete reciprocal space

map is measured. At one measurement point a certain number of iso strain areas

contributes even simultaneously. The question arises whether the HISS model

also describes the reciprocal space map of the complete QD model, which means

the scattering from all iso strain areas, including possible interference. According

to kinematical theory, the scattering of the ensemble of iso strain areas is the

coherent summation of the scattering of the single iso strain areas:

I total(Q) ∝

∣∣∣∣∣
N∑
i

Si(Q||)e
iQzzi

∣∣∣∣∣
2

(3.17)

where S(Q) is a complex number. In figure 3.4 only the Amplitude of S(Q) was

depicted. In order to evaluate the weight of the contribution of the substrate and

the dot separately

Idot(Q) ∝

∣∣∣∣∣∑
i∈dot

Si(Q||)e
iQzzi

∣∣∣∣∣
2

(3.18)

and

Isub(Q) ∝

∣∣∣∣∣∑
i∈sub

Si(Q||)e
iQzzi

∣∣∣∣∣
2

(3.19)

is also calculated. The result (given in figure 3.5) is very surprising.

The key features, which are the first order shape scattering maxima, are visible

on all three maps. They are marked with a dashed line in case of the dot scattering

and with a continuous line in case of the substrate scattering. On the scattering

map of the total system both lines are visible. It is very surprising that the

substrate contribution tends to be the dominant source for the key features. It

can be seen that more that 50% of the visible key features in the total map

are generated by the substrate. From this picture one has to conclude that the

interpretation in the conventional ISS model, that adresses all key features to the
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3. METHODICAL DEVELOPMENT

Figure 3.5: Comparison of contribution of the substrate and the dot to the total scat-
tering map. The key features are marked with a dashed line in case of the dot scattering
and with a continuous line in case of the substrate scattering map. On the scattering map
of the total system both lines are visible. It can be seen that more that 50% of the visible
”key” features in the total map are generated by the substrate and not by the dot.
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dot, is incomplete. The contribution of the dot, especially the iso strain areas

that are situated at the top of the dot, generate nice and pronounced Bessel rings

as long as they are alone, not in neighbourship with the rest of the model. In

case the scattering of the ensemble is calculated, the top areas seem to loose

importance while the bottom and substrate iso strain areas gain weight. The

ration between dot and substrate contribution depends on the concrete case.

The principle behind that effect is the interference of the scattering of different

iso strain areas, that enhances or reduces the relative contribution of single ISAs,

once the scattering of the ensemble is calculated. A detailed study is given in the

next paragraph.

Summary - Holistic Iso-Strain (HISS) Model

In this section the holistic iso strain (HISS) model was introduced. It was shown

that the HISS model is able to deliver a correct interpretation of the key features

in reciprocal space. The model offers the possibility to extract the diameter and

the lattice parameter of all iso strain areas in the sample. The conventional iso

strain model neglects the contribution of the substrate. In our case of small

technological relevant dots more than 50% of the key features would be untruely

addressed to the dot by the conventional iso strain model. In the next paragraph

the HISS model is tested under different scenarios arrising from the inclusion

of dynamical effects. In the after next paragraph an express analysis method is

introduced that combines the outcome from the HISS analysis with finite element

methods and thus delivers tomogaphic QD images containing strain and chemical

composition distribution.

3.2 Study of Interference between Iso Strain Areas and

Multiple Scattering Effects

In the previous paragraph it was shown that the HISS model allows to extract

the lattice parameter and the diameter of every iso strain area (in the dot and

the substrate). This result might be surprising. Interference of the scattering

response of different iso strain areas for sure leads to a scattering result for the

whole system, that does not simply correspond to the incoherent summation of

the scattering of the single ISAs. It is therefore not obvious that the scattering of

every single ISA is identifiable in the final map of the ensemble and, even more,
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suited to extract D and a. In this paraghraph the effect of interference between

the scattering of different ISAs and the influence of dynamical effects is qualita-

tively studied.

In the following the scattering of the ensemble is calculated by coherent summa-

tion of the scattering of the single ISAs

I(Q) =
∣∣A(Q||, Qz)

∣∣2 ∝ ∣∣∣∣∣
N∑

i=1,2,...

Si(Q||)e
iQzzi

∣∣∣∣∣
2

(3.20)

and by incoherent summation. In this case, first, the square amount of the

complex scattering amplitude of each ISA is calculated, afterwards the summation

is done. The coherent sum is thus replaced by the incoherent sum:∣∣∣∣∣
N∑

z=1,2,...

Sz(Qlat)e
iQzrz

∣∣∣∣∣
2

≈
N∑

i=1,2,...

∣∣∣Si(Q||)eiQzzi
∣∣∣2 (3.21)

Figure 3.6 depicts the result according to both calculation types. As one might

have expected, the total absolute intensity is much larger in case of coherent

summation. In order to compare also the relative intensity distribution, both

maps are normalized. Surprisingly, the intensity distribution is very similar on

both maps. Only a careful comparison reveals the small differences. In case

of incoherent summation the individual contribution of every ISA is intuitively

understandable: The large ISAs at the bottom of the dot contribute more than

the small ones at the top of the dot. Thus, a continuous decay of intensity is

seen along a vertical centered line from the substrate peak towards the lower

end of the map. In case of coherent summation the contribution of different iso

strain areas is less regular. The same decay as in case of incoherent summation

is visible, however, the intensity decay is superposed by another modulation: At

the value of 31, 1nm−1 and additional intensity enhancement is visible. The ratio

between the contribution of different ISAs in case of coherent summation is not

the same as in case of incoherent summation. The first order maxima of the shape

scattering of each ISA is clearly visible in both cases. Even if the peak value is

differently predicted depending on whether coherent or incoherent addition is

used, its position is the same for both calculation types.

Here one can already state that coherent summation leads to slight enhancement

of the contribution of certain iso strain areas in comparison with the others.

This slight enhancement does not prohibit the identification of single iso strain
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Figure 3.6: Comparison of coherent summation (pure kinematical theory) and incoher-
ent summation according to the HISS concept. Surprisingly the total scattering map is
very similar in both cases. Figure 3.10 illustrates the condition that is necessary for that
similarity of the scattering maps.
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Figure 3.7: Illustration of the question to answer: How do waves that are diffracted at
different ISAs interfere?

areas and it does not disturb the analysis of the position of the first order shape

scattering.

Principally this result is sufficient to reason the later analysis procedure. For a

more complete understanding, the reason, why only slight intensity modulations

but never real destructive interference between the scattering of different iso strain

areas can be observed, is investigated in the following.

Figure 3.7 illustrates the question to answer. If one wants to investigate how the

scattering response from different ISAs interferes, one needs to take a closer look

at their phase differences. Two sources for phase differences can be identified.

1. Path difference: The wave scattered at the higher positioned ISA traveled

less way than the one at the lower ISA (compare standard reflectivity).

Their path difference corresponds to a phase difference (∆Qz).

2. Strain: Different ISAs have a different lattice parameter and thus diffracts

at different angles (∆Q||).

Point number two is treated first. Principally one might think that never more

than one ISA is excited at once by the incident radiation, since Bragg’s law

is only fulfilled for discrete pairs of incident angle (θ) and lattice parameter a,

within a very small acceptance interval (Darwin width). Figure 3.8 explains via

”Umwegeanregung” why at one incident angle θ also ISAs that do not fulfill

the Bragg law can be exited. Besides the kinematical single diffraction process,

also combinations of diffraction and diffuse scattering must be considered. It is

possible that a phoiton arrives at an angle that is unsuited to fulfill the bragg
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Figure 3.8: Illustration of ”Umwegeanregung”. Besides the directly exited ISA also
other ISAs are exited at one incident angle due to multiple scattering effects that allow
combinations of diffuse scattering and diffraction.

condition of a certain ISA, but after diffuse scattering e.g. by the dot shape the

Bragg condition might be fulfilled. Also other combinations are possible. Details

are described in textbooks (29).

In the example of figure 3.8 the dashed line corresponds to the Ewald’s sphere

(its large radius allows a line-approximation) of an incident wave entering at an

angle θ that is is chosen to directly excite an ISA at the bottom of the QD. It

can be seen, that besides the direct excited ISA scattering response, the Ewald’s

sphere crosses also areas of diffuse scattering that do belong to other ISAs. An

estimation revealed, that the highest situated ISA that is still exited is situated

approximately 4 nm above the substrate. In case of ideal QDs (having all ab-

solutely the same shape) the higher order shape scattering oscillations are more

pronounced (compare the calculation with the experiment) and points in recipro-

cal space more far from the direct excited area contribute due to resonant diffuse

scattering via ”Umwegeanregung” (29).

So far, one can state that the simultaneously excited area in the QD during the
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Figure 3.9: Different ISAs are situated at different positions. The path difference that
waves scattered at those ISAs is small compared to the wavelength and thus corresponds
only to a very small phase shift.

measurement is a thin lateral layer through the dot. The very rough strain gradi-

ent (quantum dots are formated in order to enable efficient strain relaxation) from

down to the top of the model allows only a very thin slice inside the volume to be

directly excited at once. Only via ”Umwegeanregung” the neighbor slices (above

and below) are also exited, however much less than the directly excited one. The

excitation intensity of one ISA drops down very fast with larger distance to the

direct excited area. ISAs situated more than 4 nm away from the direct excited

ISA are not at all or only very little excited vie ”Umwegeanregung”. This means

that, from this point of view, interference between the scattering of different ISAs

is possible, but very limited in space.

path difference - why is the HISS model sufficiently precise?

Since the question whether the scattering of different ISAs can principally inter-

fere, even if different ISAs have different lattice parameter, is answered positive.

In the next step it should be explained why, in spite of possible interference, the

coherent and the incoherent summation of Sz(Qlat) leads to very similar results.

The path difference between waves diffracted at different ISAs is be calculated

according to:

∆s = zsinαi + zsinαf (3.22)

60



3.2 Study of Interference between Iso Strain Areas and Multiple
Scattering Effects

The path difference can be written as an integer number times λ plus a phase

difference:

∆s = nλ+ xλ (3.23)

The incident and exit angles are kept constant (αi = 0.35, and αf = 0.3 which

is the Yoneda level). For these condition the phase difference with reference to

the ISA at z=0 can be calculated as a function of z. Figure 3.10 indicates the

phase difference between waves scattered at iso strain areas at different height z

above the surface.

Figure 3.10: The phase difference between waves that are scattered at different Iso strain
areas (situated at different height z above the substrate) is illustrated. Only the phase
shift due to different positions of the ISAs is considered. The fact that different iso strain
areas have different lattice parameter is not included in this phase shift.

Figure 3.10 indicates that the phase difference between the waves scattered

at different ISAs is very small. For sure, the phase difference increases with

increasing distance between ISAs, but since the QDs are extremely small, the

phase difference even for the most distant ISA-ISA pair is less than Π. This

explains, why the phase difference shown in figure 3.10 is never sufficient to

generate destructive interference.

Using the information of figure 3.10 the result in figure 3.6 can be interpreted.

It was seen that, while in case of incoherent addition all ISAs contribute in a

regular way to the final scattering map, in the coherent case the ISAs situated in
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the center of the QD seemed to contribute more to the scattering map than the

ISAs situated at the lower and uper ends of the QD model. A look at the phase

differences in figure 3.10 shows that the maximal phase between the scattering of

ISAs situated in the center is approximately π
2
. This is not enough to essentially

weaken its contribution. The scattering of ISAs situated at the very top has a

phase difference, that is only little smaller than π compared to the scattering

of those, that are situated at the bottom of the model. This means, that these

scattering signals weaken each other visibly. Destructive interference to zero does

not happen, since either the top or the bottom can be directly excited. The other

part is only excited via Umwegeanregung and thus very week.

Nevertheless the weakening of the contribution of the ISA at the top and bottom

(or the strengthening of those at the center) can be observed, if one compares the

coherently with the incoherently calculated scattering map. Again, it should be

repeated, that this weakening or strengthening is a visible, but small effect, that

changes the intensity distribution in the scattering map. The position of the first

order Bessel maxima, that will be used in the HISS analysis, stays unchanged.

So far the assumptions needed in the HISS model (identification of the scattering

of every ISA in the scattering map and usability of the position of the first order

shape scattering maxima) was probed and evaluated.

Assumptions of Kiematical Approximation:

It was shown in the previous paragraph that the specific approximations of the

HISS model are justified. In this paragraph the kinematical approximation is

tested and evaluated. It is found that there is more difference between using

kinematical theory or allowing multiple scattering than between using or not

using the HISS approximations. This is in so far surprising as the kinematical

approximation is widely used and accepted while the HISS approximation seems

to be very rough et the first look. One must state that this comparison holds for

the special case of the small QDs investigated in this thesis.

To start the evaluation of kinematical theory all kinamaticals assumptions are

again listed:

1. Elastic scattering: modulus of wave vector is always kept constant

2. No extinction or absorption: every electron inside the sample ”feels” the

undisturbed primary incident wave

62



3.2 Study of Interference between Iso Strain Areas and Multiple
Scattering Effects

Compound absorption coefficient [1/cm]

GaAs 384.49
InAs 394.76
AlAs 245.43

Table 3.1: Absorption coefficients of GaAs, InAs and AlAs at a wavelength of 8 KeV

3. The incident wave is plane and monochromatic: perfectly sharp wavelength

selection, no divergence of the incident beam

4. Far field (Fraunhofer) approximation: the distance between sample and

detector is large compared to the dimensions of the scattering object

5. Only interaction of x-rays with electrons in vacuum; refraction index n=1

everywhere; no refraction at the air to sample interface, ect..

6. No multiple scattering: every gamma-photon interacts only once with the

sample.

Assumption 1 and 2

Besides the elastic scattering process, also inelastic interactions, where the pho-

ton changes its wavelength, are principally possible and therefore the assumptions

number 1 and 2 are put into question. Absorption, extinction (reduction of the

incident wave due to scattering) and the Compton effect (partial energy shift plus

change in propagation direction) all reduce the intensity of the incident wave dur-

ing its way through the sample. The assumption that every electron inside the

sample ”sees” the same incident wave has to be discussed.

To avoid absorption only wavelengths around 8 KeV, far away from any absorp-

tion edge of the materials, are used. The absorption coefficients µ for GaAs InAs

and AlAs are given in table 3.1.

The coefficients reflect the different atomic numbers. If now one assumes that

the photons travel under the angle of 0.35◦ diagonally through the quantum dot,

a maximal path length of 40 nm through the dot has to be traversed. In case

the dot would fully consist of InAs, which has the highest absorption coefficient,

a fraction of only 3.6 · 10−3 would be absorbed. Therefore the small size of the
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Compound extinction length [µm]

GaAs 0.672
InAs 0.569
AlAs 0.683

Table 3.2: Extinction length of GaAs, InAs and AlAs at a wavelength of 8 KeV

quantum dots supports and validates the neglection of absorption inside the dot.

The extinction length of GaAs, InAs asd AlAs are listed in table 3.2.

The weakening of the incident wave due to extinction is thus more important

than its weakening due to absorption. After traveling through 40 nm of GaAs,

about 6% of the intensity are ”lost” due to extinction. As shown later, only a part

of the dot is simultaneously in Bragg condition. That means that the intensity

loss due to extinction is even smaller than 6%.

From this point of view the assumption number 2 can already be approved to

be valid: Since the quantum dots are very small, absorption and extinction can

be neglected inside the dot volume and it is suited to assume that the whole dot

”feels” the incident wave field without absorption or extinction. For the large

bulk substrate underneath the dots these assumptions are clearly incorrect. An

electron deep inside the substrate feels only the rest of the incident radiation

that is already weekended through absorption and extinction. This issue finally

solves the apparent violation of the energy conservation law. Instead of increasing

with the number of scatterers N by N2 as kinematically predicted, the scattered

intensity from the substrate is reduced. The exact value of the substrate peak

intensity is not used at any point of the analysis procedure that will be presented

in this thesis. The deviation from kinematical theory concerning the substrate

peak intensity is therefore noted at this point, but it stays without any influence

for the later approach.

The last aspect in this consideration is the Compton effect. This effect might

be problematic, since it does not only contribute to the absorption, but photons

(with reduced energy) could reach the detector after a Compton knock. How-

ever, the Compton scattering is dominant compared to the photoelectric process

in case that the primary photon energy is ”in the order of the rest mass of the

electron” mc2 = 511keV or higher. The use of radiation of 8keV -photons dimin-
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ishes this effect. Furthermore the extremely small number of Compton photons

has no strong dependence of the scattering angle and gives rise to a smoothly

varying background (33), which does not disturb the later analysis procedure

that is independent of absolute intensities.

So far assumptions number 1 and 2 could be approved. Due to the small

dot volume, extinction and absorption do not dramatically reduce the primary

intensity during the traveling through the dot. From this point of view the

conclusion, that every electron inside the dot ”sees” the same incident wave, is

suited. Later it will be shown that the electrons in the dot might ”see” even

more than the incident wave. If multiple scattering is considered, the electron

might see the incident wave field plus wave fields, that already interacted with

the sample elsewhere (e.g. by surface reflection) and now pass through the dot.

This is treated within the Distorted Wave Born Approximation (DWBA) later in

this chapter.

Assumption 3 and 4

In the following the assumptions 3 and 4 can be validated by considering the

experimental setup.

In realistic experiments the incident wave is neither plane nor monochromatic.

The two undulator beamlines, that were used for the experiments, are very close

to these requirements. The energy resolution and the incoming divergence of the

two experimental stations are both very small ∆E
E

< 10−4 and ∆Θin < 0, 001◦.

The size of the resolution element along ω is thus essentially smaller than the

necessary sampling width in that direction. Since quantum dots are nanometer

sized objects, the shape scattering in reciprocal space is spread over large dis-

tances. The sampling must therefore cover a big area (around 2◦ in ω), but the

step width can be large (0.01◦) in the present experiments. The real space view

to deal with divergence and imperfect energy resolution is the look to the size of

the coherence volume. The longitudinal and transversal coherence length are

Ll =
λ2

2∆λ
(3.24)

and

L
h/v
t = λ

d

Sh/v
(3.25)
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Sh/v is the horizontal and vertical source size, d the Distance between the source

and the sample and ∆λ the wavelength resolution. In case of ID01 one has: Ll =

1, 3µm, Lht = 56µm and Lvt = 311µm. In case of ID10B one has: Ll = 1, 3µm,

Lht = 6, 7µm and Lvt = 2701µm. On the one hand this coherence length is easily

large enough to coherently illuminate one nanometer sized quantum dot. In case

of the GISAXS experiments even a large number of dots (several thousands) are

illuminated coherently, giving rise to the ordering peaks. On the other hand the

coherence volume is small compared to the sample to detector distance (about 1

m). This means that the incoming divergence and the imperfect energy resolution

help to fulfill the Fraunhofer approximation.

So far the kinematical assumptions from 1 to 4 could be evaluated and ap-

proved by standard discussion and easily accessible information about the beam-

line parameters.

Assumption 5 and 6

The last two kinematical assumptions (5 and 6) cannot be evaluated and approved

on the basis of simple consideration. It is clear that refraction can not be neglected

since the existence of the critical angle of total external reflection and thus the

GID and GISAXS methods in principle are based on this effect. Since there is a

considerable chance to be (specular) reflected at the surface (Fresnel coefficient),

one must consider not only the diffraction process, but also the pure reflection and

even more difficult combinations of diffraction and surface reflection processes.

The assumption of one single interaction between sample and x-ray radiation and

the assumption of n=1 inside the sample do not hold. The Distorted Wave Born

Approximation offers a possibility to deal with multiple scattering effects.

Now, the mistake, coming from neglecting refraction corrections and multiple

scattering, has to be qualitatively evaluated. The theoretical background of this

dynamical effects (especially refraction and multiple scattering) was introduced in

the theory part of the thesis. Now, 4 different scattering scenarios are calculated

and compared. They exactly refer to the QDs of this thesis. In these scenarios

multiple scattering effects and the iso strain scattering approximation can be

switched ”on and off” on demand. In that way the effect and the mistake by

applying these approximations can be precisely studied. The different reciprocal

space maps (according to different scattering scenarios) have been calculated for
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the test-QD model (figure hier).

Scenario 1: Kinematical Theory

In this scenario the pure kinematical approach is simulated (see 3.11 a). The

different contributions Sz(Qlat) from each layer at the height z are coherently

added. The square of the scattering amplitude is calculated after the summation.

A(Q||, Qz) ∝
N∑

i=1,2,...

Si(Q||)e
iQzzi

(3.26)

and

I(Q) =
∣∣A(Q||, Qz)

∣∣2 ∝ ∣∣∣∣∣
N∑

i=1,2,...

Si(Q||)e
iQzzi

∣∣∣∣∣
2

(3.27)

Figure 3.11: Scattered intensity around the (220) reflection, calculated according to
the 4 different diffraction scenarios: kinematical (a), kinematical + DWBA(b), iso strain
scattering (c), iso-strain scattering + DWBA (d).
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Scenario 2: DWBA

This option extends the limits of kinematical theory. Multiple scattering effects,

such as the combination of specular surface reflection and diffraction, are consid-

ered according to the DWBA concept (see figure 2.7). The mathematical formal-

ism that was used for the simulation (figure 3.11 b) is developed in the following.

One can start from the kinematical equation 3.26. The term Sz(Q||) remains

unchanged, since it is not affected by the change of Qz (reflection on a plane

surface). The exponent function is split again according to Qz = kinz − koutz in

order to let the incident (kinz ) z-wave component (kinz ) and the z-wave component

after interaction koutz reappear.

A(Q||, Qz) ∝
N∑

i=1,2,...

Si(Q||)e
iQzzi

=
N∑

i=1,2,...

Si(Q||)e
ikin

z zi

e−ik
out
z zi

(3.28)

Now the term eik
in
z rz is identified as the incident wave and e−ik

out
z rz as outgoing

wave. In kinematical theory the incident wave to the QD is always equal to the

primary wave (from the source). In DWBA one must consider, additionally to

the primary wave, a wave field that was first reflected at the surface and than hits

the QD. The already reflected wave propagates with −kinz . The total wave that

reaches the dot is written as eik
in
z rz +Re−ik

in
z rz . Where R is the Fresnel coefficient:

R(kz, Kz) =
kz −Kz

kz +Kz

(3.29)

with k and K as the wave vectors in vacuum and inside the sample.

The same idea holds for the outgoing wave. Not only the wave field that comes

directly from the diffraction with the QD, but also a wave that is reflected at the

surface after the interaction with the dot, leaves the sample. Instead of the kine-

matical expression e−ik
out
z rz , the outgoing wave is replaced by e−ik

out
z rz +Reik

out
z rz .

Inserting the new expressions for the incident and outgoing z-wave field in equa-

tion 3.27 delivers:

I(Q||, Qz) ∝

∣∣∣∣∣
N∑

i=1,2,...

Si(Q||)
{
eik

in
z zi

+Re−ik
in
z zi
}{

e−ik
out
z zi

+Reik
out
z zi

}∣∣∣∣∣
2

(3.30)
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During the experiment kinz = kfixz is fixed according to the incident angle (0,35◦).

The calculation algorithm is then written as:

I(Q||, Qz)

∝

∣∣∣∣∣
N∑

i=1,2,...

Si(Q||)
{
eik

fix
z zi

+Re−ik
fix
z zi

}{
e−i(k

fix
z −Qz)zi

+Rei(k
fix
z −Qz)zi

}∣∣∣∣∣
2

(3.31)

This formula was applied to simulate the scenario 2: kinematical theory +

DWBA. If the two brackets in equation 3.31 are expanded, one obtains the four

terms corresponding to the four channels of DWBA depicted in figure 2.7.

Comparing scenario 1 (pure kinematical) and scenario 2 (kinematical + DWBA),

one finds differences in the intensity distribution. It can be seen that the inten-

sity close to the substrate Bragg peak seems enhanced, while the intensity at the

bottom of the RSM (coming from the top of the island) seems reduced. This is

a very important insight. If one would analyse these two maps by evaluating the

intensity profiles as frequently done in literature, one might think that scenario 1

depicts data from a quantum dot that is more relaxed than the RSM in scenario

2, since more intensity is diffracted in a region that corresponds to relaxed lattice

parameters. This interpretation can not hold since both maps are calculated on

the basis of the same test-QD. The different intensities can be explained by the

interference between the different channels in DWBA. One must consider inter-

ference between the primary wavefield, diffracted at a volume at the height z

in the dot and the wave field that first traveled to the substrate, was specular

reflected and than diffracts at the volume at z in the dot. The two wave fields

have traveled a different path. This path, depends on the height z. The larger

z, the higher is the path difference and the phase difference. If z=0 (close to

the substrate) this path/phase difference is close to 0, leading to constructive

interference. If z has a critical value z’ the path length difference corresponds

to π and destructive interference occurs. For even larger z values constructive

interference follows ect. We can state that a volume inside the QD contributes

with different weight to the reciprocal space map depending on its height z inside

the dot. This effect was recently published (72). In that publication a 2D plot

showing the weight, with which a volume at height z contributes to the RSM, was

calculated depending in the incident angle. The same calculation for the wave-
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length of 8 KeV was calculated by M. Kaufholz (55) and is depicted in figure 3.12.

Figure 3.12: Contribution weight of a scattering volume inside the dot. Depending on
the incident angle and the position z of the volume above the sample surface, constructive
and destructive interference between the different DWBA channels leads to different contri-
bution weights of the volume to the reciprocal space map. The calculation was performed
for a photon energy of 8 KEV. Source: (55)

Interference between the different DWBA channels leads to a modulated

weight of contribution to the RSM of volumes that are inside the QD at dif-

ferent height z above the surface. At z=0 in-phase interference leads to enhanced

contribution, at z ≈ 6nm out of phase interference leads to reduced contribution

of the volumes at z=6 nm to the RSM. The QDs in this thesis are about 5-6

nm high. This means that the bottom of the dots contributes with enhanced

intensities to the RSM, while the top contribute with reduced intensities. This

explains why the iso strain scattering concept, that neglects the substrate, fails in

case of small dots. The dot contributes with reduced intensity to the RSM com-

pared to the substrate, if DWBA is ”switched on”. Large dots are high enough

to reach the next constructive interference between the DWBA channels at ap-

proximately z=14 nm. In this case volumes inside the dot (around a height of

z=14) contribute with enhanced intensities. The ratio between substrate and dot

contribution weights shifts towards the dot and the conventional iso strain model

(that neglects the substrate) gains accuracy.
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Besides the very important z dependence, figure 3.12 also indicated the depen-

dence of the contribution weight on the incident angle. Principally it can be seen

that below the critical angle the modulations are very pronounced. In this case the

reflectivity coefficient is 1 and the primary and the already specular reflected wave

have the same intensities. Therefore interference leads to strong enhancement or

total destruction of the intensity. For incident angles larger than the critical angle,

the specular reflected wave is weaker than the primary one. Interference between

both modulates the contribution weight, however, never completely annihilates it.

In summary one can state that the extension of the kinematical approximation

to kinematical approximation + DWBA leads to redistribution of the intensity

on the RSM due to interference between the DWBA channels. Depending on the

height z above the substrates, volumes in the dots contribute with enhanced or

reduced intensity the the RSM. This effect shifts the total contribution ration

between dot and substrate towards the substrate in case of small dots. This

explains, why the conventional iso strain model, that neglects the substrate com-

pletely, holds better for large dots than for small ones.

Scenario 3: Holistic Iso Strain Scattering

The approximations of the HISS model were already evaluated in previous para-

graphs. Kinematical theory was compared to kinamatical theory + HISS approx-

imations. In this section the HISS approximation is shown again. It has to be

studied, whether neglecting the possibility of interference between the scattering

response of different ISAs is also justified, if multiple scattering is ”switched on”

(scenario 4) or ”of” (scenario 3). The kinematical (and coherent term)

I(Q) =
∣∣A(Q||, Qz)

∣∣2 ∝ ∣∣∣∣∣
N∑

i=1,2,...

Si(Q||)e
iQzzi

∣∣∣∣∣
2

(3.32)

is replaced according to the HISS approximation

∣∣∣∣∣
N∑

i=1,2,...

Si(Q||)e
iQzzi

∣∣∣∣∣
2

≈
N∑

i=1,2,...

∣∣∣Si(Q||)eiQzzi
∣∣∣2 (3.33)
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Scenario 4: Iso Strain Scattering + DWBA

In this section the combination of HISS approximation and the multiple scattering

via DWBA is investigated. The two brackets, that after expansion lead to the 4

DWBA channels, are visible again in equation 3.34. In difference to scenario 3,

now the terms are incoherently added. This is visible in the calculation of the

square before summation:

I(Q||, Qz)

∝
N∑

i=1,2,...

∣∣∣Si(Q||){eikfix
z zi

+Re−ik
fix
z zi

}{
e−i(k

fix
z −Qz)zi

+Rei(k
fix
z −Qz)zi

}∣∣∣2
(3.34)

The result (figure 3.11(c)) corresponds to the expectations based on the pre-

vious 2 scenarios. The shift of intensity from the lower part of the RSM (top of

the dots) towards the region around the substrate peak can be seen, since the

contribution weight (see figure 3.12), resulting from interference between different

DWBA channel, is enhanced towards the bottom of the QD.

Conclusions for the HISS-analysis method

In the previous paragraph the kinematical approximation and the iso strain scat-

tering approximation were tested. To obtain a qualitative evaluation of these

approaches different scattering maps around the 220 reflection were simulated in

GID geometry for the same QD model, but with different scattering scenarios. It

is found that, depending on the scenario, different scattering maps are obtained.

Switching the possibility of multiple scattering effects ”on and off” or using co-

herent or incoherent addition of the scattering of the single ISAs leads to different

scattering maps.

The differences between the scenarios can be summarized. While in the simplest

approximation (kinematical theory+incoherent addition of the scattering of the

different ISAs) every ISA contributes with the same intensity to the reciprocal

space map, the distribution of the contributions becomes unequal in case of the

other scenarios.

It is possible to draw a real space map that indicates which part of the QD

model contributes with what intensity. This map shows periodic oscillations. It
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is a characteristic of small QDs that their size is smaller than the length of this

periodicity. Complete destructive interference between ISAs is possible for large,

but not for small QDs. Nevertheless, even within the small area of the QDs

of this thesis, a slight modulation of the contribution weight can be observed.

Models or analysis procedures that claim to predict the scattered intensity must

include these effect. Thereby it is intersecting that the wide accepted kinemati-

cal assumption seems to be even more rough than the assumption of incoherent

addition of the scattering of different ISAs. Since in the HISS model intensi-

ties do not play any role, the model does not need any of those approximations.

While the absolute and also the relative intensity of the first order oscillation

maxima changes visibly depending on the specific scenario, its position remains

unchanged. The use of this position is therefore not dependent on the validity

of kinematical theory and it does not depend on the assumption of incoherent

summation of the scattering responses from different ISAs. The amount of infor-

mation that is extracted from the scattering map according to the HISS analysis

is, for sure, reduced to a minimum. Its quality in terms of robustness is increased

to a maximum.
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3.3 methodical development 2 - the express analysis

Since the validity of the HISS model was in case of small dots was shown in details

before the complete analysis procedure that is based on the HISS model will be

explained in this paragraph.

The analysis routine is described in the following. Every ISA has its own lattice

parameter ai. The reciprocal space contribution of a certain ISA is centered

around by Hi, which is used to determine ai according to equation 3.15

At a certain Hi the intensity profile along qang contains the key feature, which is

the lateral shape scattering (shape oscillations) of the ISA. The position of the

first order maximum Qi
max of these oscillations delivers the diameter Di of the

ISA via equation 3.16.

In case of circular shaped ISAs f = 5.13 is the value of the first side maximum

of (J1(x)/x)2. J1 denotes the first order Bessel function. In this way the pair

(ai;Di) is obtained for every ISA without defining whether this ISA is situated

in the dot or in the substrate.

The further procedure is demonstrated on the three QD samples, that were

used for a light emission study (81). The samples consist of AlxGa0.4−xIn0,6As

QDs on GaAs(001) and differ by their nominal Al content (x = 0, 0.08 and 0.19),

leading to emission wavelengths between 660 nm and 940 nm. Details can be

found in (81).

The x-ray measurements were performed in grazing incidence diffraction (GID)

geometry at a wavelength of 8.1 and 8.14 KeV at the ID01 and ID10B beamlines

of the European Synchrotron Facility (ESRF), respectively. At ID01 micro focus-

ing optics were used to reduce the beam size at the sample position to 1.2×2 µm,

which allows sufficient angular resolution for the outgoing beam in combination

with a 2D-detector (pixel size: 50 µm, distance from the sample: 91 cm). At

ID10B a Ge(111) crystal analyzer in combination with a line detector was used.

Preliminary GID measurements were performed at the ANKA SCD beamline.

The first analysis step is the identification of the key features (black line in

Figure 3.13(a) in the RSM). Along this line several points are picked. From the

Qang, Qrad values of these points the curves a(D) are directly calculated according

to equation (3) and (4), leading to the three data sets for three different samples

in figure 3.13(c). That way the lattice parameter and lateral size of every ISA
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Figure 3.13: (a) Measured and (b) simulated reciprocal space map around the 220
reflection. The intensity perpendicular to the Qang/Qrad plane was integrated from 0.42
nm−1 to 0.47 nm−1, the incident angle αi was 0.2◦. The first order shape scattering
maxima (black lines) are visible. Along these lines the black points in (c) are selected. The
continuous lines in (c) depict the FEM simulation. The in-situ data (red circles) is shifted
upwards by 0.3% to avoid overlap.

is obtained. These values deliver exactly the necessary information to determine

the complete QD image if combined with FEM. With FEM calculations alone

the system is under-defined, since whether the chemical composition has to be

given as input to calculate the strain or vice versa. The situation changes, if the

strain curves from the GID analysis (fig.3.13) are used as constraint for FEM

simulation. In this case unique solutions are found (see figure 3.14).

Figure 3.14: FEM data indicating the lattice parameter relative to the substrate for the
three samples with different nominal Al concentrations (0, 8 and 17%). The different color
scale bars for the dot and the substrate have to be notived.
Even if the nominal Indium concentration is 60% in all cases, a material redistribution
inside the dots is visible. The models distinguish a bottom part with smaller and a top
part with higher Indium concentrations. From left to right a decrease in size and an increase
in the Indium concentration at the bottom is visible.

The FEM calculation procedure follows a systematic. The absolute D-axis
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position of the FEM simulated curve a(D) is obtained by choosing the appropri-

ate lateral QD size (equation 3.16). The corresponding slope and curvature can

be adapted by varying the amount and distribution of strain creating material

(InAs in the present case) along the vertical axis. The concentration of Al is not

reflected by FEM calculation, since GaAs and AlAs have nearly identical lattice

parameter and elastic properties. The absolute QD height can be taken from

SEM or AFM, if available, or from the Qz intensity profiles, as frequently done

in the past (e.g.(39)). The precision of the aaproach is illustrated by the gray

curve in figure 3.13 that belongs to a QD with the same chemical composition

and distribution as the Al = 0%-sample, but with a 1.2 nm reduced lateral size.

A significant shift to smaller D values is visible. The sensitivity to the size can

be estimated to approx 0.1 nm. Comparing the grey curve with the Al = 8%

curve, differences in slope and curvature indicate differences in material compo-

sition and distribution. A change of only 1 − 2% of In-concentration leads to

visible deformation of the curves and disagreement with the experimental data.

Within a 5% frame the effect can be compensated by changing the size of the

region, in which this content exists. The precision is suited to enable process and

performance relevant optimization, such as positional ordering and light emission.

A cross check of the method is shown in figure 3.13(b). A full reciprocal space

map based on the FEM model for the Al=0% sample (figure 3.14 first Model),

that resulted from the described analysis, is calculated (see ref. (27) for details).

Conformity with the measured reciprocal space map is visible.
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erty and Performance Study

4.1 Introduction into Quantum Dot Growth with Molec-

ular Beam Epitaxy

Molekular Beam Epitaxy

All samples that are characterized in this thesis are grown by Molecular Beam

Epitaxy (MBE). An overview of this technique can be found in (73) ”Basics of

Molecular Beam Epitaxy”. Even if this thesis is focused on the x-ray characteriza-

tion, some technical growth aspects are shortly mentioned here, since the results

of the x-ray characterization are discussed in relation to the growth conditions

or post growth processing. Especially the material selection (indium, aluminum,

gallium, arsenic), the growth speed and the growth temperature will play an

essential role for the interpretation of the x-ray scattering data in chapter 4.2.

The derivation of the equations until the end of this paragraph are cited

according to Ref. (73). A pure substance in a closed ultra high vacuum (UHV)

at constant temperature T is considered. An equilibrium is established between

the gas and the condensed phase (73). The equilibrium gas pressure peq is a

function of the temperature and can be approximated by the Clapeyron equation

(96).

Peq(T ) = A exp

(
∆H

kbT

)
(4.1)

Here ∆H is the evaporation enthalpy and kB the Bolzmann constant. In

case of compound materials (e.g. GaAs) one must consider the possibility of

coexistence of several phases. Besides solid gallium arsenide GaAs(s) also solid

arsenic As(s) or liquid gallium Ga(l) may appear (see the phase diagram figure

4.1).

In the region 1 the reactions between the components are

GaAs(s) 
 Ga(g) +
1

2
As2(g) (4.2)
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Figure 4.1: Simplified phase diagram (T-x section, temperature and relative material
content) for GaAs. (s) is the solid and (l) the liquid phase. A gas phase is always present.
Two regions (1 and 2) are distinguished. source: ref.(73)

and

2As2(g) 
 As4(g) (4.3)

The associated mass action equation (32, 73) is

PGaP
1
2
As2

= KGaAs = 2.73 · 1011 exp

(
−4.72

kbT

)
(4.4)

If T < 450◦, the PAS4 contribution can be neglected and the total pressure is

given by:

PT = PGa + PAs2 =
KGaAs

P
1
2
As2

+ PAs2 . (4.5)

If in a compound like GaxAs1−x the partial pressure of Gallium for example is

bigger than the Arsenide one, the composition of the condensed phase will be

enriched with Gallium and the partial pressure is reduced. If a minimum for a

certain x exists, this will be asymptotically reached. In this point the sublimation

is congruent and the equation for a minimum of the pressure is

dPT
dPAs2

=
dPT
dPGa

= 0 (4.6)

The solution using equation 4.5 brings the result

PGa = 2PAs2 =
(
2K2

GaAs

) 1
3 (4.7)

This corresponds to congruent sublimation of GaAs. When the temperature

increases over a certain temperature Tmax, the pressure of the more volatile com-
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Compounds KIII/V Tmax(◦C)

GaAs 2.73·1011 exp
(
− 4.72
kBT

)
630

InAs 7.76·1011 exp
(
− 4.43
kBT

)
508

AlAs 1.63·1010 exp
(
− 5.39
kBT

)
902

Table 4.1: material dependency of growth temperatures

ponent, in this case arsenic, increases faster and there will be no minimum in the

region 1. Under this condition, a liquid gallium phase is created. The tempera-

ture Tmax is called ”temperature of maximum sublimation”. Tmax is calculated

imposing PGa from equation 4.7 equal to the value of the gallium pressure over the

liquid gallium. Table 4.1 indicates Tmax and KIII/V for the compound materials

that are used in this thesis.

A short look to this table intuitively motivates the next two chapters. The

effect of post growth annealing on shape and ordering of InAs/GaAs quantum

dots is investigated. To enable efficient material mobility for the quantum dot

growth (see next paragraph) the temperature is kept high. For InAs the table

indicates the high limit at Tmax = 508(◦C). The temperature chosen for this

study was T = 500(◦C) which is slightly below Tmax = 508. The very high value

of Tmax = 902(◦C) in case of AlAs already gives a hint why AlAs can be used as

diffusion barrier. Once one quantum dot layer is grown, the sample must be kept

at growth temperature in order to grow the subsequent layers. During this time

the already grown layer risks to be affected by thermal diffusion. Small barriers

of AlAs at the material interface can avoid or reduce the interdiffusion. Another

aspect of using AlAs is studied in chapter 4.2.3. Here the reduced material

mobility of AlAs compared to GaAs leads to smaller quantum dots and reduces

strain relaxation (see following chapters).

Quantum Dot Growth

In the previous paragraph the conditions, e.g. temperature and pressure, that

are necessary to deposit solid InAs, AlAs or GaAs on the substrate, were drafted.

All quantum dots in this thesis were grown on GaAs(001). The lattice parameter

and band gap of Indium- Aluminum- and Gallium arsenide are listed in table 4.2.

It is visible in table 4.2 that AlAs and GaAs have very similar lattice parame-
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Compounds lattice parameter[Å] band gap [eV]

AlAs 5.662 2.16
GaAs 5.6532 1.42
InAs 6.0583 0.35

Table 4.2: lattice parameter and band gap

Figure 4.2: The epitaxy condition forces the lateral lattice parameter of the film and the
substrate to adapt leading to tetragonal distortion. After the growth of a critical thickness,
3D islands start to form. source: ref. (97)

ter, while InAs differs by approximately 7% from GaAs. It becomes immediately

clear that elastic energy is induced into the system, if InAs is epitactically grown

on GaAs. This elastic energy can be reduced by reorganisation of the material,

for example by the growth of Quantum Dots (see (10, 23, 41, 80)and figure 4.2).

On one hand the formation of the dots reduces the elastic energy that resulted

from the tetragonal distortion, on the other hand the formation of dots brings

new surfaces and edges into the system. The total elastic energy is therefore given

by (66):

Etot = Erelax + Esurf + Eedge (4.8)

The formation of quantum dots reduces the first term Erelax, changes the

second, and increases the third. The final equilibrium shape of quantum dots

was calculated in the past (38, 56, 62, 66, 91). It is important to state that the

equilibrium shape is usually not reached. Several constraints, such as material

mobility, time, surface properties of the substrate, etc., cause variations to the

equilibrium shape. A sequence of shapes adapted to the stepwise deposition of
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Figure 4.3: Proposed sequence of shapes for the growth of InAs quantum dots on
GaAs(001) by Kratzer et al. Small quantum dots (a), are bounded by {137} and

{
111
}

facets. Growth proceeds mostly through layer-by-layer growth on the {137} facets; how-
ever, the newly grown layers do not make contact with the (001) substrate (b). As a result,
{110} and {111} facets develop at the lower end of the added layers, giving the quantum
dot an increasingly steeper appearance (c)(e) (66).

material was suggested in (66)(see figure: 4.3).

In the next chapter the transition of shape, strain and positional ordering

during post growth annealing is experimentally studied.

4.2 Effect of Post Growth Annealing on Shape and Or-

dering

The effect of post growth annealing (79) is investigated comparing two InGaAs

Quantum Dot samples. The growth and the AFM characterization were done by

the group of Daniel Schaadt at the University of Karlsruhe. The x-ray scatter-

ing and diffraction measurements and analysis is part of this thesis. According

to the short growth theory one expects that the quantum dots undergo change

during post growth annealing, that intends to reduce the energy in the system.

According to the predictions (figure 4.3) a trend towards more facets is expected.

However, other effects, such as positional ordering contribute to the strain mini-

mization and are therefore investigated. The results are also published in (75).

Self organization phenomena of positional correlation of QDs are usually stud-
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Figure 4.4: Visualization of the deformation of lattice planes due to strain in and around
a 3D island. The corresponding local strain energy density at the surface before and during
formation of the islands is shown schematically at the top figure. (88)

ied in multilayers where strain driven ordering occurs progressively during the

multilayer growth.

In case of InGaAs QDs on GaAs(001) two different ordering types were found so

far. The first type is a one dimensional (1D) two fold symmetric arrangement in

chains elongated along [110] (100). The second type is a two dimensional (2D)

four fold symmetric arrangement along the [100] and [010] axis (84). In case of

InGaAs QDs on (311B) substrates two analogue types of correlation have been

observed (28, 102). For quantum dot multilayer structures several publications

report a transition from one to the other correlation type. This transition in the

multilayer parameter space could be achieved by changing the substrate surface

orientation (83), the spacer layer thickness (102) and the number of layers (84).

The effect of self ordering is most commonly explained by interplay of sev-

eral factors such as crystallographic orientation, structure and temperature of the

substrate, vertical and lateral material transfer (growth rate, in-plane mobility of

ad-atoms) and several multilayer parameters.

The key mechanism of self-organization is usually attributed to the anisotropic

elastic forces between the dots. The strain field induced by the QDs inside the

surrounding host material was highlighted several times as driving force for po-

sitional correlation (24, 30, 92, 101). Ordering helps to minimize the strain

mediated elastic interaction energy between neighboring islands.

Clearly the multilayer sequences supports the ordering. However, already for
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single layer of InGaAs QDs on GaAs(001) ordering phenomena (84) have been

reported. The conditions fostering the occurrence of ordering already in the first

layer therefore gain interest.

The present work studies shape and ordering for the case of single layer InGaAs

QDs on GaAs(001). We report the evolution of shape and ordering during post

growth annealing. The study combines atomic force microscopy and strain and

shape sensitive x-ray methods to gain insight into the mechanism of ordering.

sample preparation

The samples were prepared in a Riber 21 compact molecular beam epitaxy sys-

tem. Epiready GaAs(001) substrates were degassed at 150◦C for 1 h in a load lock

chamber. Oxide desorption was carried out by keeping substrates at 600◦C for 20

min under constant As4 flux. The 2x4 surface reconstruction was clearly observed

in the reflection high-energy electron diffraction pattern. A 250 nm thick GaAs

buffer layer was deposited at 570 ◦C, followed by the deposition of 2.1 monolayer

(ML) InAs at 500 ◦C. The growth rates of GaAs and InAs are 0.44 and 0.068

ML/s, respectively. Two samples are compared: One sample stayed unannealed,

since it was rapidly cooled to room temperature. The other sample was kept at

growth temperature for 5 min under constant As4 flux and then rapidly cooled.

After removal from the ultra-high vacuum (UHV) system the samples were cov-

ered with protective photo resist.

X-ray measurement set up

X-ray scattering measurements were performed with synchrotron radiation at

the ESRF beamlines ID10B and ID01, and the ANKA beamline SCD. Shortly

before starting measurements the photoresist was removed and the samples were

placed inside a protective environment. Grazing incidence small angle scattering

(GISAXS) was carried out at a wavelength of λ=1.53 Å, making use of a position

sensitive line detector in combination with a Si(111) analyzer. Grazing incidence

diffraction (GID) was performed at λ=1.5028 Å based on a micro focused incident

beam (1.2 µm×2.5µm) and recording the diffraction pattern by a two dimensional

CCD detector. This arrangement ensured quite fast data recording with sufficient

resolution.
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Figure 4.5: The two color maps (c) and (d) display the measured in-plane GISAXS data
of the corresponding samples before (a) and after annealing (b) (αi=0.7◦ and 0.8◦). Atomic
force micrographs (500x500 nm2) show real space images of the QDs (a) before and (b)
after annealing. The red arrows in (b) indicate the direction of QD positional correlation.
The 3D models propose the shape of the QDs (e) before and (f) after annealing.

AFM results

The AFM analysis reveals that the density of the dots decreased considerably

from 92 µm−2 to 56 µm−2 after annealing, while the size decreased slightly from

56 nm to 48 nm. The average height also decreased from 7.5 to 5 nm. That

confirms the expectations from literature, where coarsening of dots has been ob-

served at the beginning of annealing treatment while after critical annealing time

a decrease in height and radius occurs due to enforced indium desorption (31, 67).

Within the accessible scanned area of a 5x5 µm2 AFM image, the Fourier Trans-

form (FT) analysis did not display any clear positional correlation, neither before

nor after annealing.

X-ray Results

Figure 4.5 shows two color maps (c) and (d) of the measured in-plane GISAXS

intensity distribution in reciprocal space. The maps are achieved by projecting

the measured 3D intensity distribution onto the q110/q110 plane. All relevant scat-
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tering contributions can be depicted by projecting along q001 the interval from 0.4

nm−1 to 0.75 nm−1. Thereby enhanced diffuse scattering at the Yoneda wings

(αf = αc) is included and the coherent specular reflection peak (αf = αi) is

excluded (where αi,αf and αc are the incident and exit angles and the critical

angles of total external reflection). The reader may notice the logarithmic scale

of the color maps.

Three main features can be observed in the GISAXS pattern. Side facets of QDs

generate truncation rods (TR). The yellow shafts in the center of the maps are

projections of that TRs onto the q110/q110 plane. The clouds of diffuse scattering

(blue areas indicated by the dashed lines) contain the squared FT of the QD

shape. From the symmetry of the clouds we can conclude on the symmetry of

the QD shape in real space. Positional correlation of QDs cause characteristic

features of enhanced diffuse scattering intensities (visible in red in the image (d)

of figure refGISAXmitAFM, which are related to the covariance functions of the

scattered wave amplitudes (95).

In image (c) TR projections of two side facets are clearly visible, while six TRs

of side facets appear after annealing (d). The in-plane directions of the TRs in

reciprocal space directly indicate the crystallographic orientation of the corre-

sponding QD side facets. The full 3D analysis resulted in (119), (119) faceted

dots before (e) and (117), (117), (107), (107), (017), (017) faceted QDs after an-

nealing (d). Appearance of {117} facets after post growth annealing at 500◦C

was reported recently (67). The substrate TR contributes only to the central

intensity spots as it is oriented perpendicular to the plane of projection.

The blue cloud in (c) is elongated if compared to (d). That is a fingerprint of the

elongated base along [110] in case of the non-annealed QDs. Elongated shaped

dots are typical for this material system. The reason for this shape asymmetry is

the different surface diffusion length along the [011] and the
[
110
]

direction due

to surface reconstruction (84). In case of the annealed sample (panel d), the blue

cloud in the GISAXS pattern has the shape of a rounded octagon. No essential

difference between the extension along the [110] and the [110] direction exists

anymore. Thus it can be concluded that the annealing procedure gave time to

compensate the limited diffusion length in the [011] direction and therefore the

base shape of the dots became more symmetrical.

The non-annealed sample (c) does not show any positional correlation, while four

correlation peaks C2D positioned along [010] and [100] are clearly identified in
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Figure 4.6: Upper part: continuum elasticity modeling (CEM) of the strain around a
Quantum Dot. Three components of the strain tensor εxx, εyy and εϕϕ are plotted. The
coordinates x,y,ϕ correspond to the crystallographic directions [110][110] and [010]. Lower
part: GID measurements around the

[
220
]
, [220] and [040] reflection. (αi = 0.35◦)

case of the annealed sample (d). The distance between opposite peaks is 0.34

nm−1, which corresponds to 37 nm correlation length in real space and reveals

a close neighboring as it is also confirmed by AFM. Even if all positions of the

correlation peaks are slightly compressed toward the C1D direction, the findings

give evidence for dominant 2D dot-dot ordering.

Interpretation - Shape and Ordering

The strain field around dots is determined by both, the elastic properties of the

host crystal and the shape of the dot. The elastic property of bulk GaAs has a

four fold symmetry in the (001) plane. In ref.(84) it was shown that in case of

elongated dots the shape contribution is different along
[
110
]

and along [110].

Therefore the symmetry of the strain field around the dots is reduced from four

fold to two fold, explaining the finding of two fold symmetric correlation for such

structures.

The measurements give clear evidence for the formation of a dominant four fold

symmetric correlation type after annealing. Simultaneously we observe dots with
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rounded octagonal bases. Thus the shape contribution to strain is nearly iden-

tical in both, the [110] and [110] direction, and the symmetry of the strain field

around the dots is close to be four fold, as expected from the elastic properties

of InAs and GaAs for (001) substrate.

The results of analytical strain simulation in upper part of figure 4.6 illustrate

that symmetry. There the strain field around a dot with a round base has been

calculated based on a continuum elasticity model (CEM) (1). It can be seen that

for elastically equivalent [110] and [1-10] directions the corresponding strain com-

ponents εxx and εyy are complementary, corresponding to a four fold symmetric

lattice displacement field.

The GID measurements in figure 4.6, lower part, confirm this behavior, since

we measured nearly identical intensity distributions in the reciprocal space maps

around the [220] and [220] reflections. Comparing the CEM calculations of the

strain component εϕϕ (oriented along [010]) to the previous, we find strong dif-

ferences. And, in accordance to that, the GID intensity map around the [040]

reflection differs strongly from the maps around [220] and [220] and (all maps are

normalized by structure factors).

We may conclude that the four fold symmetry of the strain field is responsi-

ble for the generation of the four fold symmetric correlation of the dots, which

became visible in the GISAXS measurements (figure 4.5 d). The favorite di-

rections of alignment are the elastically weak [010] and [100] directions. The

observed small compression of the correlation pattern away from the [100] /[010]

correlation directions is possibly caused by residual effects from surface dynamics

(63, 77, 78, 90).

Conclusion

In summary four fold symmetric 2D lateral ordering of QDs after post growth

annealing is found while no ordering can be seen for the non-annealed QDs.

Concluding, ordering phenomena as already observed for growth close to thermo-

dynamic equilibrium can also be achieved by growth away from thermodynamic

equilibrium and subsequent post growth annealing. Elongated shape of dots, as

shown recently (84), may cause the 1D (two fold symmetric) correlation type,

while dots with higher symmetric bases allow to form 2D (four fold symmetric)

ordering. Post growth annealing may transform the dot shape from elongated to

round and therefore may represent a possibility to favor either the 1D or the 2D
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correlation type.

4.3 Effect of Chemical Composition on Shape Ordering

and Light Emission

For this study In0.6Ga0.4−xAlxAs/GaAs(001) QDs were grown. Sample by sam-

ple the gallium content was gradually replaced by aluminum. In table 4.2 it

can be seen that gallium and aluminum have nearly the same lattice parameter

and they also have very similar elastic properties. From this point of view ex-

changing one by another should not change the equilibrium (energetic minimum)

shape of the dots. The band gap of AlAs (2.16 eV) is considerably larger than

the one of GaAs (1.42) and a shift in the light emission wavelength is expected.

In the following study a series of In0.6Ga0.4−xAlxAs/GaAs(001) QDs with alu-

minum contents of x=0, 0.08, 0.12, 0.17 and 0.19 is investigated. The study

combines scanning electron microskopy (SEM), photo luminescence (PL) and x-

ray measurements (GISAXS and GID). The sample growth, the SEM and the PL

measurements were performed by the collaboration partner, the group around

Sven Höfling and Thomas Schlereth (Optoelectronic Materials and Devices I,

Universität Würzburg). The corresponding results are published by Schlereth et

al.(81). The x-ray measurements and analysis are part of this thesis. An ”x-ray

publication” is in progress (57).

Sample Growth

All samples were grown by solid source molecular beam epitaxy (MBE) on (100)

oriented GaAs substrates. The sample structure consists of a 200 nm GaAs

buffer layer, followed by a 200 nm Al0.4Ga0.6As barrier layer, on which 4.9 ML

of AlxGa0.4−xIn0.6As was deposited for QD formation. The QD layer was over-

grown by another 200 nm Al0.4Ga0.6As barrier layer and the sample was finished

with an uncapped QD layer, nominally identical to the buried one. The QD

layer was grown in several submonolayer cycles of consecutive Al0.29Ga0.59In0.12As,

Ga0.83In0.17As and InAs depositions via controlling the shutter time of the cor-

responding effusion cells. Between each cycle a growth interruption of 10 s was

introduced to enhance the surface migration ability of the deposited elements.

AlAs, GaAs and InAs growth rates of 0.5, 1.0 and 0.2 µm/h were chosen. The

samples were grown at a substrate temperature of 570◦C. For the QD layer de-
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Figure 4.7: ((a)(e)) SEM images of uncapped AlxGa0.4−xIn0.6As QD samples with a
nominal Al content x of (a) 0, (b) 0.08, (c) 0.12, (d) 0.17 and (e) 0.19. (f) An SEM image
showing the same sample as in (e) with lower magnification. The surface is tilted by 70◦.
to enhance the height contrast. source: ref. (81)

position the temperature was lowered to 520◦C. Samples with AlxGa0.4−xIn0.6As

QDs of different compositions x=0, 0.08, 0.12, 0.17 and 0.19 have been fabricated.

SEM Results - Real Space Images

In figure 4.7 SEM images of the uncapped AlxGa0.4−xIn0.6As QD samples with

a nominal Al content x of 0, 0.08, 0.12, 0.17 and 0.19 (figure 4.7) are displayed.

It can easily be seen that the QD surface density significantly increases with

increasing Al content, whereas the average QD diameter decreases. By raising

the Al content x from 0 to 0.19, the QD density increases almost by a factor of 3

from 3.91010 to 1.11011 cm−2, and the average QD diameter decreases from 23

to 16 nm. This very dense QD layer is homogeneous on the whole sample, as

can be seen from figure 4.7 (f), which shows a larger area of the sample ( 4 m2).

GISAXS Results - Size, Shape and Ordering

Figure 4.8 depicts the SEM images together with in-plane GISAXS measurements.

The blue cloud reveals the FT of the QD shape as explained in the theoretical
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Figure 4.8: (ae) SEM images of uncapped AlxGa0.4−xIn0.6As QD samples with a nominal
Al content x of (a) 0, 0.12 and 0.19. Below, the corresponding in-plane GISAXS images are
shown. The QD size decrease in the real space SEM images is reflected in an size increase
of the reciprocal space picture.

part. The decrease in size of the dots in real space corresponds to an increase in

the size of the corresponding features in reciprocal space. The symmetry of the

blue clouds are similar comparing all three cases. From left to right they seem

scaled up, but the characteristic picture remains the same. This means that the

round QD shape is similar in all cases, just the size decreases with increasing Al

content. Furthermore, the shapes of the blue clouds resemble the measurements

of the post growth annealed sample in the previous paragraph. The same close

to elastic energy minimized equilibrium shape can either be reached by growth

interruptions (10 seconds between each cycle in this example) or by post growth

annealing treatment as in the previous paragraph.

The most interesting part of the in-plane GISAXS study might be the inves-

tigation of positional correlations of the quantum dots. The red rings inside each

GISAXS map reveal these correlations (see GISAXS introduction). All rings con-

tain peaks with enhanced intensities along the [100] /[010]directions. This means

that exactly the same correlation directions as for the post growth annealed sam-

ple in the previous chapter are found. In the post growth annealed case the

correlation directions were explained by shape induced strain driven ordering.

The present findings in this chapter confirm this concept. As these samples have

a similar shape as the post growth annealed sample in the previous chapter, also

the strain field around the dots inside the substrate is similar concerning its sym-
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metries. As consequence, the same ordering type, namely ordering along the

[100] /[010]directions, has to occur. Comparing the dots with different Al content

it was stated that the shape is similar in terms of symmetry, but the absolute

size is different. Consequently the directions of ordering are the same, indepen-

dent of the Al content, but the characteristic distances are different. As the dots

are scaled up or down in size depending on the Al contend, also the strain field

around the dots scales up in its dimensions. This leads to different characteristic

distances, which is perfectly visible in the GISAXS maps. The red rings have

the same symmetry in all cases showing peaks at the [100] /[010] directions, but

the radii of the rings are systematically increasing from left to right indicating

decreasing characteristic distances from 54 nm over 41.9 nm to 31,2 nm.

GID - Strain and Chemical Composition

In the previous paragraph the shape and positional ordering in dependence of the

Al concentration was investigated. Conclusions on the strain around the quantum

dots inside the substrate could be derived. In this paragraph the strain inside the

quantum dots as well as the chemical composition and its distribution inside the

dots is investigated. On the one hand this will contribute to the explanation of

the emission wavelength in the next paragraph, on the other hand the strain in-

vestigation enlightens the growth mechanism and therefore delivers explanations

for the different QD sizes found just in the previous paragraph.

The analysis of the GID measurements was done with the new express method

that is proposed in this thesis and described above. Nevertheless the main ideas

should be quickly repeated in order to relate intuitively the measurements in

figure 4.9 with the results in figure 4.10. On the first look one sees that the

middle GID picture for the x=0.08 sample differs from the two others in terms

of background intensity and length of the Ewaldsphere streak. The reason is the

different measurement configuration. The x=0.08 image was taken in the parallel-

beam-plus-analyzer-configuration leading to higher signal to noise sensitivity and

supresion or air scattering. One advantage of the express analysis is that all

these measurement artifacts do not need to be considered. The only parameters

that are extracted are the position and curvature (not even the intensity!) of

the first order shape scattering maximum, indicated with the white dashed lines

(figure 4.9). The width between the left and the right arc along Qang indicates the
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Figure 4.9: SEM and GID images for the samples with an Al content of x=0, 0.08 and
0.19. The middle one was measured in the parallel-beam-plus-analyzer-configuration (see
4.1.1), the other two GID images are taken with focused-beam-plus-2D-detector configu-
ration. The white lines indicate the first order shape scattering maximum. In case of the
x=0 sample the second order shape scattering maximum is also visible.

diameter (inverse proportional) of the ISA, the position of a certain point along

Qrad indicates the lattice parameter. The decrease of the QD size from sample to

samplke (from the left to the right image) is visible in figure 4.9). The slope of

the white line can be understood as a measure of strain gradient. The complete

analysis was done for three of the five samples and resulted in the models in figure

4.10.

Figure 4.10 displays the FEM models, for which the a(D) profiles correspond

best to the measurement. It is visible that the QD size decreases from 29 nm

over 24, 5 nm to 22, 5 nm. Indium is concentrated in the upper part of every

QD in higher concentrations than the nominal value of 60% that follows from the

deposition rate. Differences between the three samples are seen at the bottom,

where the Indium concentrations are lower, especially in case of small Aluminum

contents. This might be surprising since the nominal Indium concentration was

kept constant in all 3 cases. The observations can be explained as follows: The

replacement of Ga by Al does not appear in the FEM models, since AlAs and

GaAs have very similar lattice parameters and elastic properties. Replacing one

by the other does not affect the strain, if all other parameters are constant (81).

However, during deposition Al changes the material mobility. The bond strength

of Al to As is about 25% higher than the one of Ga to As (81). More Aluminum
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Figure 4.10: FEM data indicating the lattice parameter relative to the substrate for the
three samples with different nominal Al concentrations (x=0, 8 and 17%). Please notice
the different color scale bars for the dot and the substrate.
Even if the nominal Indium concentration is 60% in all cases, a material redistribution
inside the dots is visible. The models distinguish a bottom part with smaller and a top
part with higher Indium concentrations. From left to right a decrease in size and an increase
in the Indium concentration at the bottom is visible.

therfore reduces the surface migration ability. As a consequence the dots grow

less in size and the diffusion of AlAs/GaAs inside the dot is reduced. The In con-

centration thus remains higher in this case. The first effect, the reduction of size,

was already described in (81). Concerning the chemical composition, however,

we find little differences between the samples, especially between the Al = 0%

sample and the others. So far the previous assumption of identical strain and

composition in all cases can be refined. This might forward the interpretation of

different light emission wavelenghts.

PL - Light Emission

The photoluminescence (PL) measurements were performed by the collaboration

partner, the group around Sven Höfling and Thomas Schlereth (Optoelectronic

Materials and Devices I, Universität Würzburg) before the beginning of this the-

sis and they are published in (81). The results are discussed here as they are in

direct relation with the results of the x-ray investigation.

Figure 4.11 displays the results of the low temperature photoluminescence

measurements. It is visible that the emission wavelength decreases with increasing

Al concentration, if the In concentration is kept constant. Lower In concentrations

also lead to a decrease in emission wavelength. As mentioned already the light
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Figure 4.11: Left: Interpolated contour plot of the PL wavelength (T = 8 K) for samples
with different In and Al concentration. The samples with an Indium content of 0.6 and
different Al contents are the samples that are investigated with x-ray methods in this thesis.
The open circles show some data points used to create the figure and the way they where
acquired. Some data points (filled circles) are labeled with their corresponding QD surface
densities to show, how the QD density can be tailored for a chosen emission wavelength.
The triangular border represents the boundaries of the accessible In and Al concentrations.
For the blank spots in the triangle not enough data points for an interpolation have been
available. Right: Low temperature (8 K) PL emission wavelengths of AlxGa1−x−yInyAs
QD samples with different Al and In concentrations. Source: (81)

emission of semiconductor quantum dots is dependent on the natural emission

wavelength Egap of the composite material, the strain inside Estrain and the size

of the quantum dot due to quantum mechanical confinement Econf . In (81) a

simple model is used, that assumes that the transition energy of the QDs can be

treated as the sum of these three factors:

Eemission = Egap + Estrain + Econf (4.9)

For a quaternary alloys like AlxGa1−x−yInyAs the first term is calculated (34)

according to:

Egap = 1.519 + 1.36x− 1.584y + 0.55xy + 0.22x2 + 0.475y2 (4.10)

The second term is the contribution of strain to the bandgap. The relationship

between strain and bandgap is described in (13). The energy shift due to strain

is approximated by the energy shift of the heavy hole band (EHH), which is given

by:

∆Estrain ≈ ∆EHH = H − S (4.11)
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Figure 4.12: Example of the relation between stress and strain. Source: (13)

whereby H and S are related to the strain tensor through the a and b deformation

potentials (see table 4.3). H is proportional to the change in volume of the

crystal lattice created by strain. The shear strain energy S is proportional to the

asymmetry in the strain parallel and perpendicular to the stress plane.

H = a · (ε1 + ε2 + ε3) (4.12)

S = b · (1

2
(ε1 + ε2)− ε3) (4.13)

The epitactical growth of alloys on a substrate usually leads to biaxial strain

due to the lattice mismatch (see figure 4.12) and one can write:

ε ≡ anative − asub
anative

(4.14)

and

ε1 = ε2 = −ε (4.15)

ε3 =
2C12

C11

ε (4.16)

whereby anative is calculated according to Vegard’s law. Together with the

values from table 4.3 Estrain can finally be calculated.
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Compounds Lattice Constant a b C11 C12

Å [eV] [eV] [1011dyn/cm2] [1011dyn/cm2]

GaAs 5.6533 -8.68 -1.7 11.88 5.38
InAs 6.0583 -5.79 -1.8 8.329 4.526
AlAs 5.6611 -7.96 -1.5 12.02 5.70

Table 4.3: Strain parameter in III-V semiconductors. Source: (13)

In Al Lat. size d height h Egap Estrain Econf Ecalculated Emeasured

(%) (%) (nm) (nm) (eV) (eV) (eV) (eV) (eV)

60 8 19,2 5,6 0,886 0,145 0,157 1,188 1,362
60 17 15,7 5,3 1,033 0,145 0,158 1,336 1,473

Table 4.4: calculated and measured emission wavelength for the QD samples with Al
content of x=0,08 and x=0,17. Homogeneous material distribution inside the DQs corre-
sponding to the nominal deposition rates was assumed for the calculations. source: (81)

The third and last term in equation 4.9 is the contribution from the quantum

confinement Econf . The following equation shows the relationship between energy

level and dimension spacing:

Enx,ny ,nz =
~2π2

2m

[(
nx
Lx

)2

+

(
ny
Ly

)2

+

(
nz
Lz

)2
]

(4.17)

The Energy values for the 3 different QD samples are listed in table 4.4. As

expected, the wavelength decreases strongly with increasing Al concentration.

The interpretation is twofold: Firstly the incorporation of Al into the QDs in-

creases the separation of the energetic levels of electrons and holes in the QD by

increasing the natural bandgap Egap. Secondly the QD dimensions are changed

with impact on the confinement Econf . The trend is reproduced in the calculated

data. However, the calculated emission wavelength is approximately 10% too low

(81).

Here one has to mention that the calculation in table 4.4 assumes that the ma-

terial is homogeneously distributed inside the quantum dots and the chemical

composition is equal to the nominal values following from the deposition rates.

The results of the GID measurements in figure 4.10 show at least for Indium a
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In Al Lat. size d height h Egap Estrain Econf Ecalculated Emeasured

(%) (%) (nm) (nm) (eV) (eV) (eV) (eV) (eV)

25 8 19,2 5,6 1,274 0,045 0,157 1,476 1,362
30 17 15,7 5,3 1,352 0,048 0,158 1,558 1,473

Table 4.5: Calculated and measured emission wavelength for the QD samples with Al
content of x=0,08 and x=0,17. The values for the Indium concentration and the strain are
taken from the GID measurements.

clearly inhomogeneous material distribution inside the dots. High concentrations

of Indium are found at the top of the dots, while lower ones are found at the bot-

tom. These results confirm a strain minimizing material redistribution, that was

several times observed in case of other QD systems (27, 35, 87). These changed

Indium concentrations influence dramatically the emission wavelength. The top

of the quantum dot with 90% Indium would not emmit visible light at all. The

emission wavelength for the bottom part are calculated in table 4.5.

The values for the Indium concentration in table 4.5 are taken from the GID

results (see figure 4.10). The changed Indium concentration has two effects: Egap
changes due to different semiconductor material composition and also Estrain is

changed. The lowering of the strain contribution can intuitively be understood:

The driving force for the material redistribution inside the quantum dot is the

minimization of strain energy. Therefore the final QD strain has to be lower than

the strain in a theoretical QD with homogeneous material distribution.

One can see that the values for the emission wavelength that are based on the QD

properties found with the x-ray investigation, match better to the measured emis-

sion wavelength than the calculated emission wavelength deduced from the nom-

inal composition values. It becomes clear that the material redistribution inside

the quantum dots contributes essentially to the value of the emission wavelength,

even more than the confinement effect. However, one important limitation of the

present x-ray study has to be mentioned. The QDs that were investigated are

free standing QDs. For the PL measurements the dots have to be overgrown. It

was shown that this changes the shape and the chemical distribution (21). There-

fore it is approximative to conclude from the free standing dot properties on the

emission of the dots after overgrowth. In this context the methodical develop-

ment, that was done in this thesis, may become important. It was shown that
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the method detects iso strain areas underneath the dot inside the substrate. The

reason was the sharp strain gradient at the edges of the buried iso strain areas,

that give rise to shape oscillations. In the same manner one can expect shape

oscillations from buried Quantum dots. This means that the proposed method

may be applicable to buried QDs. In this way the QDs could be investigates in

the same overgrown condition as they are when they emit light.

Conclusion

In summary a series of In0.6Ga0.4−xAlxAs/GaAs(001) quantum dots with chang-

ing Al content was investigated. For all dots a rather symmetrical round shape

was found in GISAXS, revealing a condition close to the energetic minimum equi-

librium shape. In the previous paragraph this equilibrium shape was achieved

by post growth annealing, in this series many short growth interruptions seem

to have a similar effect giving sufficient time and mobility to reach the energetic

minimum. The concept of shape induced positional ordering of the dots discussed

in the previous series was confirmed. The same energetic minimum shape that

led to four fold symmetric dot ordering in the previous series again let to the

same ordering type. Even more, the up and down scaling in dot-size resulted in

up and down scaling of the characteristic dot to dot distances.

For the interpretation of the GID measurements the express analysis method, that

was introduced in the previous paragraph could be applied. It revealed drastic

material redistribution inside the dots compared to the nominal values. Again the

strain and the strain minimization are the driving force for this inner material re-

distribution. The effect on the emission wavelength was calculated and discussed.

Surprisingly, the redistribution of Indium inside the dots contributes more to the

emission wavelength number than the confinement effect. The mechanism that

is responsible for smaller sized dots in case of high Aluminum concentrations was

confirmed by the GID measurements.

4.4 In-situ Experiments

The next milestone in the field of x-ray characterization of QDs is the in-situ

experiment and the actual in-situ application of the express analysis method.

For this purpose an in-situ UHV chamber, that provides UHV connectivity to

growth chambers and further sample processing (annealing, overgrowth etc. ) in
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Figure 4.13: In-situ characterization stage at the ANKA synchrotron. The growth
chamber (insert on the right) can be placed onto the diffractometer at the synchrotron
beamline (e.g. at ANKA-Nano, ESRF ID03 or other) for in-situ x-ray measurements. The
green lines on the right indicate the accessible angular range for the x-Ray beam, that was
realized by two large beryllium windows. The possibility of UHV connection enables sample
transfer to other growth chambers and a big number of complementary characterization
methods, that are available for example in the neighbored UHV cluster.

isochronous combination with x-ray measurements, was designed at the institute

(see figure 4.13).

First in-situ annealing experiments under arsenic atmosphere could be per-

formed. InGaAs QDs were overgrown by 10 nm of GaAs and in-situ annealed

at constantly increasing temperature. The red curves in figure 4.14 are in-situ

data of these measurements. A right shift and a reduction of slope and curvature

between the two temporal evolution points at T=235◦C; t=50min (full circles)

and T=423◦C; t=112min (empty circles) is visible. Material inter diffusion leads

to a blow-up of the buried ISAs and a reduction of the strain and the composition

gradient.

In-situ applicability of the express method and the applicability to buried quan-

tum dots could be shown. The detailed analysis and further in-situ experiments

are projected as part of the PHD work of P. Schroth started in summer 2011.
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Figure 4.14: In-situ measurement at two different temporal evolution points. The circles
reveal data directly extracted from selected areas along the first order shape scattering
maxima. They indicate the lateral size D and the lattice parameter of the iso strain areas.
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5 Discussion

The results of this thesis can be classified in two parts, a methodical develop-

ment part, and a quantum dot characterization part. The aim of the methodical

part was the development of an x-ray method for semiconductor quantum dot

characterization which is simple, robust and in-situ applicable, but at the same

time sufficiently precise to be technologically relevant. For this purpose the con-

ventional iso strain scattering model was reviewed first. It was found that the iso

strain approximation itself, i.e., the incoherent addition of the scattering responds

of single iso strain areas, is sufficiently precise. However, the conventional ISS

model leads to misinterpretations, in particular in the technologically important

case of small dots, since an essential part of ”key features” addressed by the ISS-

model to the dot, is not generated by the quantum dots, but rather by strained

regions outside the dot.

In order to overcome this limitation, a new holistic iso strain model, that includes

iso strain areas in the dot as well as in the substrate, was developed. The model

was verified on the basis of simulated data and later applied to real experiments.

The functionality could be proofed on a sample series that was produced for a

light emission study. These results are simultaneously part of the quantum dot

characterization study. The in-situ applicability of the new method was exempli-

fied.

In the second part of the thesis two quantum dot series were studied with

conventional and with the new developed methods. In the first series the effect of

post growth annealing on shape and ordering was studied. Four fold symmetric

2D lateral ordering of QDs after post growth annealing was found, while no order-

ing was seen for the non-annealed QDs. Hence, ordering phenomena as observed

for growth close to thermodynamic equilibrium (second sample series) can also be

achieved by growth away from thermodynamic equilibrium and subsequent post

growth annealing. The concept of strain driven ordering that is mediated by the

shape induced inter dot strain was clearly supported. An elongated shape of dots

may cause a 1D (two fold symmetric) correlation type, while dots with higher

symmetric bases allow to form 2D (four fold symmetric) ordering. Post growth
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annealing may transform the dot shape from elongated to round and therefore

may represent a possibility to favor either the 1D or the 2D correlation type.

The same type of shape and ordering which was found in the post growth an-

nealed growth annealed sample has been observed for all samples in the second

sample series. In this study multiple growth interruptions of 10 seconds guaran-

teed a condition of shape and ordering close to the thermodynamical equilibrium.

The difference between the samples was the nominal content of Aluminum. A

size reduction related to higher Al content already described by SEM measure-

ments could be confirmed by the x-ray analysis. In addition, strain and internal

chemical distribution of InAs could be measured by applying the new method

that was developed in the first part of this thesis based on the HISS model. In-

stead of homogeneous material distribution corresponding to the nominal value

(from deposition rate), higher concentrations are found at the top of the dots

and lower ones at the bottom. The material redistribution and the related strain

relaxation acts dramatically on the light emission wavelength. In fact, this effect

is bigger than the often discussed confinement effect. Thus, the new developed

analysis method contributed to a better understanding of the light emission and

could reduce the discrepancy between the calculated and the measured emission

wavelength.

The in-situ applicability of the new analysis method based on the holistic

iso strain model was exemplified. For future in-situ studies the new developed

method enables time resolved in-situ studies of quantum dots, for example at the

ANKA synchrotron. First experiments are already in process.

The development of an holistic iso strain scattering model clarified the role

of the substrate during scattering experiments. In future, this knowledge might

not only serve in a simple, robust and in-situ applicable analysis method, but

might also become an integral part of more complex and automatized analysis

algorithms such as used for phase retrieval for example.
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and G. J. Salamo. Phys. Rev. Lett., 96:066108, 2006. 3

[83] M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, Zh. M.

Wang, Yu. I. Mazur, P. Schäfer, M. Hanke, R. Köhler,
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