

 Karlsruhe Reports in Informatics 2012,2
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Rewriting Induction + Linear Arithmetic =
Decision Procedure

 Stephan Falke and Deepak Kapur

 2012

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Rewriting Induction + Linear Arithmetic =
Decision Procedure

Stephan Falke1 and Deepak Kapur2

1 Institute for Theoretical Computer Science, KIT, Germany
stephan.falke@kit.edu

2 Dept. of Computer Science, University of New Mexico, USA
kapur@cs.unm.edu

Abstract. This paper presents new results on the decidability of in-
ductive validity of conjectures. For this, a class of term rewrite systems
(TRSs) with built-in linear integer arithmetic is introduced and it is
shown how these TRSs can be used in the context of inductive theorem
proving. The proof method developed for this couples (implicit) inductive
reasoning with a decision procedure for the theory of linear integer arith-
metic with (free) constructors. The effectiveness of the new decidability
results on a large class of conjectures is demonstrated by an evaluation
of the prototype implementation Sail2.

1 Introduction

Reasoning about the partial correctness of programs often requires proofs by
induction, in particular for reasoning about recursive functions. There are two
commonly used paradigms for inductive theorem proving: explicit induction and
implicit induction. In explicit induction (see, e.g., [9, 39, 30, 11, 12, 22, 31, 38]), a
concrete induction scheme is computed for each conjecture, and the subsequent
reasoning is based on this induction scheme. Here, an induction scheme explicitly
gives the base cases and the step cases, where a step case consists of an obligation
and one or more hypotheses. In implicit induction (see, e.g., [33, 21, 26, 24, 16, 27,
34, 7, 1, 37]), no concrete induction scheme is constructed a priori. Instead, an
induction scheme is implicitly constructed during the proof attempt.

Implicit induction is largely based on term rewriting. While ordinary term
rewrite systems (TRSs) are a well-understood formalism for modelling algo-
rithms, they lack in expressivity since they don’t support built-in data struc-
tures such as integers. In the first part of this paper, an expressive class of TRSs
(called Z-TRSs) with built-in linear integer arithmetic is introduced. The seman-
tics of integers can be utilized in Z-TRSs in the form of linear integer arithmetic
constraints (LIA-constraints). Then, an inductive proof method for Z-TRSs is
developed. This method couples implicit induction with a decision procedure
for the theory LIAC, which combines linear integer arithmetic with the (free)
constructors of the Z-TRS.

While inductive proof methods can be automated, they do not provide a
decision procedure since proof attempts may diverge, fail, or need intermediate

2 Stephan Falke and Deepak Kapur

lemmas. In program verification, however, a decision procedure that can be used
as a “black box” is preferable since an interactive use of inductive reasoning
methods is typically only possible by trained experts. The goal of the second
part of this paper is to derive conditions on Z-TRSs and conjectures under which
the proof method can be used as a decision procedure, i.e., will always produce a
proof or disproof. These conditions are based on properties of the rewrite rules in
a Z-TRS that can be pre-computed during parsing. As we show experimentally
in this paper, checking whether a conjecture satisfies the conditions is easily
possible and requires much less time than attempting a proof or disproof.

Work on identifying conditions under which (explicit) inductive theorem
proving with ordinary TRSs provides a decision procedure was initiated in [29]
and later extended in [17, 18], also see [25]. These previous papers impose strong
restrictions on both the TRSs and the conjectures. The functions defined by
the TRS have to be given in such a way that any function f may only make
recursive calls to the function f itself. Often, it is necessary to allow calls to
other auxiliary functions or even mutually recursive definitions. Both of these
possibilities are supported in this paper.

All of [29, 17, 18] impose the restriction that the conjectures contain a sub-
term of the form f(x1, . . . , xn) for a defined function f and pairwise distinct
variables x1, . . . , xn. This term is then chosen for the construction of the induc-
tion scheme upon which the proof is based. In this paper, much like in [15],
this restriction is relaxed by making it possible to base the induction proof on
a subterm where the arguments are not necessarily pairwise distinct variables.
The result in this paper are however much more general than [15] since that
paper did not yet consider Z-TRSs. As a result, many conjectures which could
not be handled previously can now be decided.

The integration of a decision procedures for the theory of linear integer arith-
metic into inductive reasoning has been previously considered in [10, 28, 3], with
the main focus on contextual rewriting which integrates rewriting with decision
procedures. The proof method developed in this paper is in general incomparable
to these methods, though, since instead of the more complex contextual rewriting
without constraints, regular constrained rewriting is employed. This gives rise to
an elegant and intuitive proof method. Inductive theorem proving for TRSs with
constraints has been investigated in [8]. That method, however, does not sup-
port LIA-constraints and is thus incomparable to the method presented below.
Another method for inductive theorem proving with constrained TRSs has been
presented in [36], but that paper is only available in Japanese, unfortunately
making it impossible for us to compare the inductive proof methods.

The results of this paper have been implemented in the prototype Sail2.
The results of an evaluation on a large collection of examples are extremely
encouraging. The checks for determining whether a conjecture falls in a decidable
class of formulas can be efficiently implemented, taking less than 1% of the total
time needed for a proof attempt. This suggests that the proposed method is
viable as a decision procedure for inductive validity.

In summary, the contributions of the present paper are:

Rewriting Induction + Linear Arithmetic = Decision Procedure 3

1. The introduction of a semantically expressive class of term rewrite system
with linear integer arithmetic constraints.

2. The development of an inductive proof method for this class of rewrite sys-
tems that is based on the implicit induction paradigm coupled with a decision
procedure for the theory that combines linear integer arithmetic and (free)
constructors.

3. The identification of conditions on conjectures (both linear and nonlinear)
and term rewrite systems under which this proof method is a decision pro-
cedure for inductive validity.

4. An implementation of the inductive proof method and a demonstration of
the effectiveness of the approach on many examples.

The remainder of this paper is organized as follows: Section 2 introduces Z-
TRSs and Section 3 investigates properties of Z-TRSs that are needed in the
context of inductive theorem proving. The inductive proof method for Z-TRSs
is introduced in Section 4. Next, Section 5 investigates conditions under which
the inductive proof methods can be used for deciding inductive validity. Section
6 discusses the implementation in Sail2 and presents an empirical evaluation.
Finally, Section 7 concludes.

2 Z-TRSs

This section introduces Z-TRSs, a class of constrained TRSs that contains linear
integer arithmetic as the built-in constraint theory. This class of TRSs can be
seen as a simplified special case of the constrained equational rewrite systems
(CERSs) from [14]. We assume familiarity with the notions and concepts from
(many-sorted) term rewriting and refer to [5] for details.

For Z-TRSs, built-in integers are modeled using the function symbols FLIA =
{0 : → int, 1 : → int, − : int → int, + : int × int → int}. Recall that Z
is an Abelian group with unit 0 that is generated using the element 1. Integers
thus satisfy the following properties ELIA:

x+ y ≈ y + x
x+ (y + z) ≈ (x+ y) + z

x+ 0 ≈ x
x+ (−x) ≈ 0

We use a simplified notation for terms built using + and −, e.g., x − y instead
of x+ (−y), 2 instead of 1 + 1, etc.

Properties of the built-in numbers are modeled using the predicate symbols
P = {>, ≥, '}. The rewrite rules of Z-TRSs then have constraints over these
predicate symbols that guard when a rewrite step may be performed. To this
end, an atomic LIA-constraint has the form t1 P t2 for a predicate symbol P ∈ P
and terms t1, t2 ∈ T (FLIA,V) (where V is a set of variables). The set of LIA-
constraints is the closure of the set of atomic LIA-constraints under > (truth), ¬
(negation), and ∧ (conjunction). The Boolean connectives ∨, ⇒, and ⇔ can be

4 Stephan Falke and Deepak Kapur

defined as usual. Also, LIA-constraints have the expected semantics. The main
interest is in LIA-satisfiability (i.e., the constraint is true for some instantiation
of its variables) and LIA-validity (i.e., the constraint is true for all instantiations
of its variables). Notice that both of these properties are decidable.

For Z-TRSs, FLIA is extended by a signature F of function symbols. In the
following, terms denote members of T (F ∪ FLIA,V) unless otherwise noted. A
sequence t1, . . . , tn of terms is also denoted by t∗. Notions extend from terms to
sequences of terms in the obvious way.

The left-hand sides of rules in a Z-TRS may not contain arithmetical opera-
tions, i.e., they need to satisfy the following condition.

Definition 1 (Z-Free Terms). A term t is Z-free iff it does not contain any
occurrences of function symbols from FLIA.

Now the class of Z-TRSs is defined as follows.

Definition 2 (Z-TRSs, Defined Symbols, Constructors). A Z-rule is a
rewrite rule of the form l→ rJϕK where l and r are terms with sort(l) = sort(r)
such that l is Z-free and ϕ is a LIA-constraint. If ϕ = >, then l → r can be
written instead of l→ rJϕK. A Z-TRS is a finite set of Z-rules. For a Z-TRS R,
the set of defined symbols is D(R) = {f | f = root(l) for some l→ rJϕK ∈ R}.
For f ∈ D(R), the set R(f) = {l → rJϕK ∈ R | root(l) = f} are the rules
defining f . The set C(R) = F −D(R) denotes the constructors of R.

Notice that the assumption that l is Z-free is not severe in practice since an
occurrence of a term t ∈ T (FLIA,V) in the left-hand side can be replaced by a
fresh variable xt if xt ' t is added to the constraint of the rule.

It is assumed in the following that C(R) does not contain any function symbol
with resulting sort int, i.e., no new constructors for Z are added. This is, of
course, a natural assumption and no restriction.

Example 3. The following rules determine whether x is a divisor of y for two
integers x, y:

divides(x, y)→ divides(−x, y) Jx < 0 ∧ y ≥ 0K
divides(x, y)→ divides(x,−y) Jx ≥ 0 ∧ y < 0K
divides(x, y)→ divides(−x,−y) Jx < 0 ∧ y < 0K
divides(x, y)→ true Jx ≥ 0 ∧ y ' 0K
divides(x, y)→ true Jx ' 0 ∧ y > 0K
divides(x, y)→ false Jx > 0 ∧ y > 0 ∧ x > yK
divides(x, y)→ divides(x, y − x) Jx > 0 ∧ y > 0 ∧ y ≥ xK

Then D(R) = {divides} and C(R) = {true, false}. 4

The use of LIA-constraints makes it necessary to restrict the substitutions
that may be used for rewriting with R.

Definition 4 (Z-Based Substitutions). A substitution σ is Z-based iff σ(x)∈
T (FLIA,V) for all variables x of sort int.

Rewriting Induction + Linear Arithmetic = Decision Procedure 5

The restriction that left-hand sides of rules are Z-free allows for a simple
definition of the rewrite relation of a Z-TRS since LIA can be disregarded for
matching. Notice that the matching substitution needs to be Z-based in order
to make sure that validity of the instantiated LIA-constraint can be decided.

Definition 5 (Rewrite Relation of a Z-TRS). Let R be a Z-TRS and let s
be a term. Then s→R,Z t iff there exist a constrained rewrite rule l→ rJϕK ∈ R,
a position p ∈ Pos(s), and a Z-based substitution σ such that

1. s|p = lσ,
2. ϕσ is LIA-valid, and
3. t = s[rσ]p.

Example 6. Using the Z-TRS from Example 3, divides(2,−6)→R,Z divides(2, 6)
→R,Z divides(2, 4) →R,Z divides(2, 2) →R,Z divides(2, 0) →R,Z true using the
first, seventh (three times), and fourth rule. 4

3 Termination, Quasi-Reductivity, and Confluence

In the context of inductive theorem proving with ordinary TRSs it is typically
required that the TRS satisfies certain properties. This section introduces these
properties for Z-TRSs. Additionally, it is discussed how these properties can be
ensured for a class of Z-TRSs that is sufficient for many practical purposes.

The first condition on a Z-TRS is that it is terminating, i.e., that →R,Z
is well-founded. While this is in general undecidable, the methods for proving
termination of CERSs developed in [14] are applicable since Z-TRSs can be seen
as a restricted kind of CERSs. These methods are based on the dependency pair
approach and have been implemented in the termination tool AProVE.

Example 7. Termination of the Z-TRS from Example 3 can be easily established
using AProVE. 4

For the other properties that a Z-TRS needs to satisfy, the following definition
is needed.

Definition 8 (Constructor Ground Terms and Substitutions). A ground
term t is a constructor ground term if t ∈ T (C(R)∪FLIA). A ground substitution
σ is a constructor ground substitution if σ(x) is a constructor ground term for
all variables x.

In order to exclude degenerate cases, it is assumed that each sort has at least
two distinct constructor ground terms. Notice that every constructor ground
substitution is Z-based since C(R) does not contain any function symbol with
resulting sort int.

The second property of a Z-TRS R that is needed for inductive theorem
proving is that the defined functions inD(R) are total, i.e., result in a constructor
ground term when applied to constructor ground terms.

6 Stephan Falke and Deepak Kapur

Definition 9 (Quasi-Reductivity). A Z-TRS R is quasi-reductive iff every
ground term of the form f(t1, . . . , tn) with f ∈ D(R) and constructor ground
terms t1, . . . , tn is reducible by →R,Z.

Notice that quasi-reductivity is a special case of sufficient completeness [19].
The final property required of a Z-TRS is confluence, where the definition of
confluence is as follows.

Definition 10 (Confluence). A Z-TRS R is confluent iff ←∗R,Z ◦ →∗R,Z ⊆
→∗R,Z ◦ ←∗R,Z.

Confluence implies the uniqueness of normal forms, whereas quasi-reductivity
together with termination implies that each ground term can be reduced to a
constructor ground term. Thus, if all three properties are satisfied, each ground
term has a unique constructor ground term normal form.

Checking whether a Z-TRS is quasi-reductive and confluent is a hard problem
in general. Thus, a restricted class of Z-TRSs is considered in the following. For
this class, checking for quasi-reductivity is easily possible. Furthermore, Z-TRSs
from this class will always be confluent. First, it is required that the left-hand
sides of rules are linear and constructor-based. This is important in order to
check for quasi-reductivity. In order to ensure confluence, it is required that
the rules are “disjoint” in the sense that at most one rule is applicable to each
position in any term. Notice that two rules might have identical left-hand sides
as long as the conjunction of the LIA-constraints of these rules is unsatisfiable.

Definition 11 (Orthogonal Z-TRSs). A Z-TRS R is orthogonal iff

1. For all l→ rJϕK ∈ R, the term l is linear and has the form f(l1, . . . , ln) with
l1, . . . , ln ∈ T (C(R),V).

2. For any two rules l1 → r1Jϕ1K, l2 → r2Jϕ2K, either l1 = l2
3 or l1, l2 are not

unifiable after their variables have been renamed apart.
3. For any two non-identical rules l1 → r1Jϕ1K, l2 → r2Jϕ2K with l1 = l2, the

constraint ϕ1 ∧ ϕ2 is LIA-unsatisfiable.
4. Whenever l1 → r1Jϕ1K, . . . , ln → rnJϕnK are all rules with identical left-hand

sides, then the constraint ϕ1 ∨ . . . ∨ ϕn is LIA-valid.

Example 12. The Z-TRS from Example 3 is orthogonal since conditions 1 and
2 are obviously satisfied, the disjunction of the constraints of all rules is LIA-
valid, and the conjunction of the constraints of any two distinct rules is LIA-
unsatisfiable. 4

Using conditions 1, 2, and 4 of this definition, the following decidability
result can be obtained by reducing quasi-reductivity of orthogonal Z-TRSs to
quasi-reductivity of ordinary TRSs.

Theorem 13. It is decidable whether an orthogonal Z-TRS is quasi-reductive.

3 This could be relaxed by identifying terms that only differ by a variable renaming.

Rewriting Induction + Linear Arithmetic = Decision Procedure 7

Somewhat surprisingly, orthogonal Z-TRSs are always confluent, regardless
of whether they are terminating or not. This result follows from conditions 1, 2,
and 3 in Definition 11 since these conditions imply that orthogonal Z-TRSs are
a suitable generalization of orthogonal ordinary TRSs (which are also known to
be confluent [35], regardless of whether they are terminating or not).

Theorem 14. Every orthogonal Z-TRS is confluent.

4 Inductive Theorem Proving With Z-TRSs

In the following, it is assumed thatR is a terminating quasi-reductive orthogonal
Z-TRS, which implies that R is confluent.

The atomic conjectures in inductive theorem proving are equalities between
terms. In this paper, a generalized form of these atomic conjectures is used that
also incorporates a LIA-constraint.

Definition 15 (Atomic Conjectures). An atomic conjecture has the form
s ≡ tJϕK where s and t are terms with sort(s) = sort(t) and and ϕ is a LIA-
constraint. If ϕ = >, then s ≡ t can be written instead of s ≡ tJϕK.

Notice that atomic conjectures satisfy the same requirements as the rewrite
rules in Z-TRSs except that neither s nor t is required to be Z-free. Intuitively,
an atomic conjecture s ≡ tJϕK is true whenever sσ and tσ are “equal” up to the
rules of R and the properties of ELIA for all constructor ground substitutions σ
that make ϕ true.

Definition 16 (Inductive Theorems). An atomic conjecture s ≡ tJϕK is an
inductive theorem iff sσ ↔∗R∪ELIA,Z tσ for all constructor ground substitutions σ
such that ϕσ is LIA-valid. A set of atomic conjectures is an inductive theorem
iff all of its elements are inductive theorems.

The inductive theorem proving method for Z-TRSs developed in this paper
is based on Reddy’s term rewriting induction [34]. The presentation follows [1,
2]. The main idea of this method is to expand certain subterms of an atomic
conjecture using narrowing with the rewrite rules of R.

Definition 17 (Basic Terms). A Z-free term t is basic iff t = f(t1, . . . , tn)
where f ∈ D(R) and t1, . . . , tn ∈ T (C(R),V).

Expansion of a basic subterm is now done as follows. Notice that the con-
straints of the atomic conjecture and the rewrite rule are combined and instanti-
ated and that the unifier σ is always Z-based due to the requirements on Z-TRSs
and atomic conjectures.

Definition 18 (Expd). For an atomic conjecture s ≡ tJϕK and a basic term u
such that s = C[u], the set Expdu(s, t, ϕ) is defined as

Expdu(s, t, ϕ) = {C[r]σ ≡ tσJϕσ ∧ ψσK | l→ rJψK ∈ R, σ = mgu(u, l) exists,
and ϕσ ∧ ψσ is LIA-satisfiable }

8 Stephan Falke and Deepak Kapur

Here, it has been assumed that the variables of l → rJψK have been renamed to
be disjoint from the variables of s ≡ tJϕK.

Example 19. Consider the atomic conjecture divides(x, x) ≡ true for the Z-
TRS from Example 3. For s = divides(x, x), t = true, u = s, and ϕ = >,
Expdu(s, t, ϕ) = {divides(−x,−x) ≡ true Jx < 0 ∧ x < 0K, true ≡ true Jx ≥
0 ∧ x ' 0K, divides(x, x− x) ≡ true Jx > 0 ∧ x > 0 ∧ x ≥ xK}. 4

The following technical result relates the atomic conjectures in Expdu(s, t, ϕ)
to the atomic conjecture s ≡ tJϕK and the rules in R. It is needed for the
soundness proof of the inductive proof method (see Theorem 28 below).

Lemma 20. Let s ≡ tJϕK be an atomic conjecture and let u be a basic term
such that s = C[u].

1. sσ →R,Z ◦ ↔Expdu(s,t,ϕ),Z tσ for all constructor ground substitutions σ such
that ϕσ is LIA-valid.

2. If v ↔Expdu(s,t,ϕ),Z w, then v ↔∗R∪{s≡tJϕK},Z w.

The inductive proof method for Z-TRSs is given by the inference system
in Figure 1. Here, the notation s ≡̇ tJϕK is used to stand for one of s ≡ tJϕK
and t ≡ sJϕK. The inference rules operate on tuples 〈E,H〉, where E consists of
atomic conjectures that are to be proven and H consists of atomic conjectures
that have been oriented as rewrite rules. These rules constitute the hypotheses in
a proof by induction. The goal of an inductive proof attempt is to obtain a tuple
of the form 〈∅, H〉 starting from the tuple 〈E, ∅〉. As shown below, this implies
that E is an inductive theorem. On the other hand, if none of the inference rules
is applicable to 〈E′, H ′〉 where E′ 6= ∅, then the inductive proof attempt fails.
Finally, an inductive proof attempt may also diverge (i.e., not terminate) or end
in ⊥. As shown in Theorem 30, the later constitutes a disproof of (at least) one
of the atomic conjectures from E.

The inference rule Expand uses Definition 18 to expand a basic subterm of
an atomic conjecture. Then, this atomic conjecture is oriented as a rewrite rule
and added to the set H of hypotheses. Notice that this addition is only allowed
if the Z-TRS consisting of R ∪H and this newly obtained rule is terminating.
This restriction is needed in order to obtain a sound inductive proof method.

The rule Simplify uses simplification with R and the hypotheses in H. For
this, the constraint of the atomic conjecture that is to be simplified is taken
into account by considering the following rewrite relation. It only differs from
Definition 5 in condition 2, which now requires that the instantiated constraint
of the rewrite rule is valid under the assumption of the constraint of the atomic
conjecture that is getting simplified.

Definition 21 (Rewrite Relation of a Z-TRS on Constrained Terms).
Let R be a Z-TRS, let s be a term, and let ψ be a LIA-constraint. Then sJψK→R,Z
tJψK iff there exist a constrained rewrite rule l → rJϕK ∈ R, a position p ∈
Pos(s), and a Z-based substitution σ such that

Rewriting Induction + Linear Arithmetic = Decision Procedure 9

Expand
〈E] {s ≡̇ tJϕK}, H〉

〈E ∪ Expdu(s, t, ϕ), H ∪ {s→ tJϕK}〉
if R∪H ∪ {s→ tJϕK}
terminates and s is Z-free

Simplify
〈E] {s ≡̇ tJϕK}, H〉
〈E ∪ {s′ ≡̇ tJϕK}, H〉

if sJϕK→R∪H,Z s
′JϕK

Case-Simplify
〈E] {s ≡̇ tJϕK}, H〉

〈E ∪ {s′ ≡̇ tJϕ′K | s′Jϕ′K ∈ Casep(s, ϕ)}, H〉

Delete
〈E] {s ≡̇ tJϕK}, H〉

〈E, H〉
if s↔∗ELIA,Z t or ϕ is LIA-unsatisfiable

Theory>
〈E] {s ≡̇ tJϕK}, H〉

〈E, H〉
if s, t do not contain symbols from D(R)
and ϕ⇒ s ' t is LIAC-valid

Theory⊥
〈E] {s ≡̇ tJϕK}, H〉

⊥
if s, t do not contain symbols from D(R)
and ϕ⇒ s ' t is not LIAC-valid

Fig. 1. The inference system I, where s ≡̇ tJϕK denotes one of s ≡ tJϕK and t ≡ sJϕK.

1. s|p = lσ,
2. ψ ⇒ ϕσ is LIA-valid, and
3. t = s[rσ]p.

The inference rule Case-Simplify combines a case split with simplification
using R (but not using H). It makes use of the following definition.

Definition 22 (Case). For a term s, a LIA-constraint ϕ, and a position p ∈
Pos(s), the set Casep(s, ϕ) is defined as

Casep(s, ϕ) = {s[riσi]pJϕ ∧ ψiσiK | li → riJψiK ∈ R′, s|p = liσi,
and ϕ ∧ ψiσi is LIA-satisfiable }

Here, R′ = {l1 → r1Jψ1K, . . . , ln → rnJψnK} ⊆ R contains all rules whose left-
hand side match s|p. The construction can only be performed if σ1, . . . , σn are
Z-based and ϕ⇒ ψ1σ1 ∨ . . . ∨ ψnσn is LIA-valid.

Notice that the rule Case-Simplify can be used in order to simulate the rule
Simplify in cases where Simplify uses a rule from R and not a hypothesis from H.
The rule Delete removes trivial atomic conjectures, and the rules Theory> and
Theory⊥ apply to atomic conjectures that do not contain any defined symbols
and make use of a decision procedure for the theory LIAC that combines the
linear theory of integers with the constructor symbols from C(R).

Definition 23 (LIAC). For a Z-TRS R, the theory LIAC has the form LIAC =
(FLIAC,PLIAC,MLIAC) where

1. FLIAC = C(R) ∪ FLIA

10 Stephan Falke and Deepak Kapur

2. PLIAC = {', ≥, >}4
3. MLIAC = (M, (fLIAC)f∈FLIAC

, (P LIAC)P∈PLIAC
) where M = T (C(R) ∪ Z), the

function symbols in {0, 1,+,−} and predicate symbols in PLIAC are inter-
preted in the obvious way, and fLIAC(t1, . . . , tn) = f(t1, . . . , tn) for f ∈ C(R).

LIAC-validity and LIAC-satisfiability are decidable and decision procedures
have been implemented, for instance in the SMT-solver CVC3 [6].

Example 24. For two lists, maxlist(xs, ys) computes the list containing the point-
wise maximum of these lists, stopping as soon as either list is empty. The function
zip combines two lists into a list of pairs. Finally, fst takes a list of pairs and
projects these pairs to their first components.

maxlist(xs, nil)→ nil
maxlist(nil, cons(y, ys))→ nil

maxlist(cons(x, xs), cons(y, ys))→ cons(x,maxlist(xs, ys)) Jx ≥ yK
maxlist(cons(x, xs), cons(y, ys))→ cons(y,maxlist(xs, ys)) Jy > xK

zip(xs, nil)→ pnil
zip(nil, cons(y, ys))→ pnil

zip(cons(x, xs), cons(y, ys))→ pcons(pair(x, y), zip(xs, ys))
fst(pnil)→ nil

fst(pcons(x, y), zs)→ cons(x, fst(zs))

Consider the atomic conjecture fst(zip(xs, xs)) ≡ maxlist(xs, xs). The following

derivation is a proof of this conjecture using the inference system I:

〈 {fst(zip(xs, xs)) ≡ maxlist(xs, xs)}, ∅ 〉
Expand

〈 { fst(pnil) ≡ maxlist(nil, nil),

fst(pcons(pair(x, x), zip(xs, xs)) ≡ maxlist(cons(x, xs), cons(x, xs)) },
{ fst(zip(xs, xs))→ maxlist(xs, xs) } 〉

Simplify∗

〈 {nil ≡ nil, cons(x, fst(zip(xs, xs))) ≡ cons(x,maxlist(xs, xs))},
{fst(zip(xs, xs))→ maxlist(xs, xs)} 〉

Delete
〈 {cons(x, fst(zip(xs, xs))) ≡ cons(x,maxlist(xs, xs))},
{fst(zip(xs, xs))→ maxlist(xs, xs)} 〉

Simplify
〈 {cons(x,maxlist(xs, xs)) ≡ cons(x,maxlist(xs, xs))},
{fst(zip(xs, xs))→ maxlist(xs, xs)} 〉

Delete 〈 ∅, {fst(zip(xs, xs))→ maxlist(xs, xs)} 〉

For the application of the inference rule Expand, notice that the second zip-rule
does not produce any new atomic conjectures since the left-hand side of the
second rule is not unifiable with zip(xs, xs). In Simplify∗, only the rules from R
are used for simplification. In the single Simplify step, the inductive hypothesis

4 Strictly speaking, there is one predicate symbol 's for each sort s. To simplify
notation, these predicate symbols have been identified. Also, the predicate symbols
≥ and > take two arguments of sort int.

Rewriting Induction + Linear Arithmetic = Decision Procedure 11

from H is used. As stated in Theorem 28 below, this derivation shows that the
atomic conjecture fst(zip(xs, xs)) ≡ maxlist(xs, xs) is an inductive theorem since
the final state of the derivation has an empty set of atomic conjectures. 4

The notation 〈E,H〉 `I 〈E′, H ′〉 is used to denote that the tuple 〈E′, H ′〉
has been obtained from 〈E,H〉 by one of the inference rules in Figure 1 and `∗I
denotes the reflexive-transitive closure of `I .

Next, several properties of the inference system I are shown. First, ap-
plication of any inference rule leaves the convertibility relation of R, E, H,
and ELIA on ground terms unchanged. In particular, if 〈E, ∅〉 `∗I 〈∅, H〉, then
↔∗R∪E∪ELIA,Z = ↔∗R∪H∪ELIA,Z on ground terms.

Lemma 25. If 〈En, Hn〉 `I 〈En+1, Hn+1〉 using an inference rule other than
Theory⊥, then ↔∗R∪En∪Hn∪ELIA,Z = ↔∗R∪En+1∪Hn+1∪ELIA,Z on ground terms.

The soundness proof of the inference system I is based on the following
lemmas. The first lemma shows that if 〈E, ∅〉 `∗I 〈∅, H〉, then each application
of an atomic conjecture from E can be simulated by a “valley proof” using R
and H.

Lemma 26. If 〈En, Hn〉 `∗I 〈∅, H〉 using inference rules other than Theory⊥,
then ↔En,Z ⊆ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R∪H,Z on ground terms.

Using this property, the following statement can be shown. It relates the final
set of hypotheses H to the rules of the Z-TRS R.

Lemma 27. If 〈E, ∅〉 `∗I 〈∅, H〉 using inference rules other than Theory⊥, then
→H,Z ⊆ →R,Z ◦ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R∪H,Z on ground terms.

With these lemmas at hand, soundness of the inductive proof method based
on the inference system I can be shown.

Theorem 28. If 〈E, ∅〉 `∗I 〈∅, H〉, then all atomic conjectures in E are inductive
theorems.

Example 29. This example considers the definition of divides from Example 3
and adds the following number-theoretic functions:

div(x, y)→ −div(−x, y) Jx < 0 ∧ y ≥ 0K
div(x, y)→ −div(x,−y) Jx ≥ 0 ∧ y < 0K
div(x, y)→ −div(−x,−y) Jx < 0 ∧ y < 0K
div(x, y)→ 0 Jx ≥ 0 ∧ y ' 0K
div(x, y)→ 0 Jx ≥ 0 ∧ y > 0 ∧ y > xK
div(x, y)→ div(x− y, y) + 1 Jx ≥ 0 ∧ y > 0 ∧ x ≥ yK
gcd(x, y)→ gcd(−x, y) Jx < 0 ∧ y ≥ 0K
gcd(x, y)→ gcd(x,−y) Jx ≥ 0 ∧ y < 0K
gcd(x, y)→ gcd(−x,−y) Jx < 0 ∧ y < 0K
gcd(x, y)→ y Jx ' 0 ∧ y ≥ 0K
gcd(x, y)→ x Jx > 0 ∧ y ' 0K
gcd(x, y)→ gcd(x− y, y) Jx > 0 ∧ y > 0 ∧ x ≥ yK
gcd(x, y)→ gcd(x, y − x) Jx > 0 ∧ y > 0 ∧ y > xK

12 Stephan Falke and Deepak Kapur

Then, the conjectures

div(x, x) ≡ 1 Jx 6' 0K
div(x, y) ≡ −1 Jy 6' 0 ∧ y ' −xK
div(x, y) ≡ x Jy ' 1K

{ div(x, y) ≡ −x Jy ' −1K, div(x, y) ≡ x Jy ' 1K }
divides(x, x) ≡ true

divides(x, y) ≡ true Jx ' −yK
divides(x, y) ≡ true Jx ' 1K

{ divides(x, y) ≡ true Jx ' −1K, divides(x, y) ≡ true Jx ' 1K }
gcd(x, x) ≡ x Jx ≥ 0K
gcd(x, x) ≡ −x Jx ≤ 0K
gcd(x, y) ≡ 1 Jy ' 1K

{ gcd(x, y) ≡ 1 Jy ' −1K, gcd(x, y) ≡ 1 Jy ' 1K }

can be proved fully automatically using the inference system I. For the conjec-
ture divides(x, x) ≡ true, a successful derivation is as follows:

〈 {divides(x, x) ≡ true}, ∅ 〉
Expand

〈 { divides(−x,−x) ≡ true Jx < 0K, true ≡ true Jx ' 0K,
divides(x, x− x) ≡ true Jx > 0K },
{ divides(x, x)→ true } 〉

Simplify
〈 { true ≡ true Jx < 0K, true ≡ true Jx ' 0K,

divides(x, x− x) ≡ true Jx > 0K },
{ divides(x, x)→ true } 〉

Simplify
〈 { true ≡ true Jx < 0K, true ≡ true Jx ' 0K,

true ≡ true Jx > 0K },
{ divides(x, x)→ true } 〉

Delete3 〈 ∅, {divides(x, x))→ true} 〉

Here, the constraints in the conjectures have been slightly simplified in order to
ease presentation). 4

The inference system I cannot only be used in order to prove inductive
theorems. For this, it needs to be shown that the inference rule Theory⊥, which
allows to disprove atomic conjectures, is sound.

Theorem 30. If 〈E, ∅〉 `∗I ⊥, then at least one atomic conjecture in E is not
an inductive theorem.

Example 31. Consider the atomic conjecture fst(zip(xs, ys)) ≡ xs, where fst and
zip are the functions from Example 24. For this conjecture, the following deriva-
tion can be obtained using the inference system I:

Rewriting Induction + Linear Arithmetic = Decision Procedure 13

〈 {fst(zip(xs, ys)) ≡ xs}, ∅ 〉
Expand

〈 {fst(pnil) ≡ xs, fst(pnil) ≡ nil, fst(pcons(pair(x, y), zip(xs, ys))) ≡ cons(x, xs)},
{fst(zip(xs, ys))→ xs} 〉

Simplify∗
〈 {nil ≡ xs, nil ≡ nil, cons(x, xs) ≡ cons(x, xs)}, {fst(zip(xs, ys))→ xs} 〉

Delete2 〈 {nil ≡ xs}, {fst(zip(xs, ys))→ xs} 〉
Theory⊥ ⊥

By Theorem 30, fst(zip(xs, ys)) ≡ xs is not an inductive theorem. Furthermore,
the derivation can be used to obtain a concrete counterexample for the conjec-
ture: xs = cons(n, ns) and ys = nil. 4

Example 32. For the functions from Example 29, the conjectures

div(x, x) ≡ 1

gcd(x, x) ≡ x

can be disproved fully automatically using the inference system I (the first one
is falsified by x = 0, the second one by any negative x). 4

5 Inductive Theorem Proving as a Decision Procedure

While the inference system I from Section 4 provides a completely mechanical
way to prove or disprove inductive conjectures once a strategy for the application
of the inference rules has been fixed, it does not provide a decision procedure for
inductive validity since derivations of the system may diverge or fail. The reason
for a possible divergence is the inference rule Expand which could be applied
again and again.

The goal of this section is to derive conditions on Z-TRSs and conjectures
under which the inference system I can be used as a decision procedure, i.e.,
will always produce a proof or disproof of a conjecture if a suitable strategy
on the use of the inference rules is employed. These conditions are based on
properties of the rewrite rules in a Z-TRS that can be pre-computed during
parsing. Thus, checking whether a conjecture satisfies the conditions under which
I provides a decision procedure is easily possible and requires much less time
than attempting a proof or disproof. Previous work on identifying conditions
under which inductive theorem proving provides a decision procedure is discussed
in Section 1.

Much of the material presented in this section has appeared in preliminary
form in [15]. The use of Z-TRSs and constrained rewriting is a significant gen-
eralization, however, since [15] was based on ordinary rewriting and did not
support the combination of integers with (free) constructors (but was restricted
to either natural numbers or (free) constructors).

5.1 Simple Decidable Conjectures

For the purpose of decidable induction, a simple class of function definitions is
considered. In its simplest form, functions may only make recursive calls to them-
selves. Furthermore, nesting of recursive calls is not permitted. This is captured

14 Stephan Falke and Deepak Kapur

by the following definition (this is related to the definition of T -based functions
in [29, 18]).

Definition 33 (LIAC-Based Functions). A function g ∈ D(R) is LIAC-based
iff all right-hand sides of rules in R(g) have the form C[g(r∗1), . . . , g(r∗m)] for a
context C over C(R)∪FLIA such that r∗k ∈ T (C(R)∪FLIA,V) for all 1 ≤ k ≤ m.

In order to ensure that a non-linear hypothesis is applicable to all recursive
calls of a LIAC-based functions after application of the Expand rule, it needs to
be ensured that the corresponding arguments of the recursive calls are “equal”.
More precisely, this needs to be required only under the assumption that these
arguments are equal in the left-hand side of the rule since Expand does otherwise
not create any new atomic conjectures to which the hypothesis needs to be
applied. Notice that this property depends only on the rules in R(g) and is
independent of the conjecture.

Definition 34 (ImpEq). Let g be LIAC-based. Then 〈i, j〉 ∈ ImpEq(g) iff 1 ≤
i < j ≤ arity(g) such that the ith and jth argument of g have the same sort and,
for all g(l∗)→ C[g(r∗1), . . . , g(r∗m)]JϕK ∈ R(g),

ϕ ∧ li ' lj ⇒
m∧
k=1

rk,i ' rk,j

is LIAC-valid and rk,i, rk,j are Z-free for all 1 ≤ k ≤ m.

Hence, if a term of the form g(l∗)σ is simplified using the rule g(l∗) →
C[g(r∗1), . . . , g(r∗m)]JϕK and 〈i, j〉 ∈ ImpEq(g), then rk,iσ = rk,jσ for all 1 ≤ k ≤
m whenever liσ = ljσ. The set ImpEq(g) can easily be computed from the rules
defining g with the help of a decision procedure for LIAC.

Example 35. The following orthogonal Z-TRS determines whether a list is point-
wise bigger than another list of the same length:

ptwise(nil, nil)→ true
ptwise(nil, cons(y, ys))→ false
ptwise(cons(x, xs), nil)→ false

ptwise(cons(xs, xs), cons(y, ys))→ ptwise(xs, ys) Jx ≥ yK
ptwise(cons(x, xs), cons(y, ys))→ false Jy > xK

Then 〈1, 2〉 ∈ ImpEq(ptwise). So see this, notice that the implications from Defi-
nition 34 are trivially true for the first, second, third, and fifth rules since these
rules do not contain any recursive calls. For the fourth rule, the LIAC-validity of

x ≥ y ∧ cons(x, xs) ' cons(y, ys)⇒ xs ' ys

is easily shown. 4

Rewriting Induction + Linear Arithmetic = Decision Procedure 15

Notice that the definition of ImpEq requires that the argument are equal in
all recursive calls in all rules. Using rewriting with constraints, this requirement
can be relaxed so that more function definitions satisfy it. For recursive calls
that can already by simplified to a term not containing the defined symbol, the
ImpEq requirement does not need to be satisfied since the inductive hypothesis
does not need to be applied to this recursive call.

Example 36. Consider the function divides from Example 3 again. Then, the
ImpEq requirement is satisfied for the first through sixth rules. For the final rule,
the ImpEq requirement is not satisfied since x > 0 ∧ y > 0 ∧ y ≥ x ∧ x ' y ⇒
x ' y − x is not LIAC-valid. However, the atomic conjecture divides(x, x− x) ≡
true Jx > 0∧ x > 0∧ x ≥ xK generated in a proof attempt of divides(x, x) ≡ true
simplifies using →R,Z to true ≡ true Jx > 0 ∧ x > 0 ∧ x ≥ xK using the rewrite
rule divides(x, y) → true Jx ≥ 0 ∧ y ' 0K. Thus, the inductive hypothesis does
not need to be applied for this obligation. 4

In order to be as general as possible, we consider simplification using the infer-
ence rule Case-Simplify (recall that Case-Simplify subsumes Simplify for rewriting
using R). The effect of repeated applications of Case-Simplify is captured by the
following definition.

Definition 37 (Simplification Trees). Let s be a term and let ϕ be a LIA-
constraint. A simplification tree for sJϕK is a non-empty tree whose nodes are
labelled with terms and LIA-constraints and whose root is labelled with sJϕK such
that for every internal node labelled with tJψK, the node has one child for every
t′Jψ′K ∈ Casep(t, ψ) and this child is labelled with t′Jψ′K.

Using simplification trees, the set ImpEq can be relaxed as follows.

Definition 38 (ImpEq ′). Let g be LIAC-based. Then 〈i, j〉 ∈ ImpEq ′(g) iff 1 ≤
i < j ≤ arity(g) such that the ith and jth arguments of g have the same sort and,
for all rules g(l∗)→ C[g(r∗1), . . . , g(r∗m)]JϕK ∈ R(g) and all 1 ≤ k ≤ m, either

1. ϕ ∧ li ' lj ⇒ rk,i ' rk,j is LIAC-valid and rk,i, rk,j are Z-free, or
2. the ith and jth arguments of g have sort int and there exists a simplification

tree for g(r∗k)Jϕ∧ li ' ljK such that all leaves in this tree have labels the form
tJψK for a term t ∈ T (C(R) ∪ FLIA,V) and a LIA-constraint ψ.

Example 39. Continuing Example 36,

divides(x, y − x) Jx > 0 ∧ y > 0 ∧ y ≥ x ∧ x ' yK

true Jx > 0 ∧ y > 0 ∧ y ≥ x ∧ x ' y ∧ x ≥ 0 ∧ y − x ' 0K

is a (degenerate) simplification tree that satisfies the conditions from case 2 in
Definition 38. Thus, 〈1, 2〉 ∈ ImpEq ′(divides). Similarly, 〈1, 2〉 ∈ ImpEq ′(gcd) and
〈1, 2〉 ∈ ImpEq ′(div). 4

16 Stephan Falke and Deepak Kapur

Notice that ImpEq ′ strictly subsumes ImpEq and remains easily computable.
The first version of decidable conjectures is now given as follows. Notice that
only a simple form of basic terms is allowed, but that non-linearity is possible.

Definition 40 (Simple Conjectures). A simple conjecture is an atomic con-
jecture of the form g(x∗) ≡ t such that the following conditions are satisfied:

1. R∪ {g(x∗)→ t} is terminating.
2. The function g is LIAC-based.
3. x∗ consists of variables and t ∈ T (C(R) ∪ FLIA,V).
4. Whenever xi = xj for i < j, then 〈i, j〉 ∈ ImpEq ′(g).

Example 41. For the Z-TRS from Example 35, the conjecture ptwise(xs, xs) ≡
true is simple. For the Z-TRS from Example 3, the conjecture divides(x, x) ≡ true
from Example 29 is simple. For the Z-TRS from Example 29, the conjectures
div(x, x) ≡ 1 and gcd(x, x) ≡ x from Example 32 are simple. 4

Theorem 42. Using the strategy Expand ·Case-Simplify∗ · Simplify∗ · (Theory> ∪
Theory⊥)∗, where Simplify uses only hypotheses from H, it is decidable whether
a simple conjecture is an inductive theorem.

The concept of LIAC-based functions is quite restrictive since a LIAC-based
function may only make recursive calls to itself and not to any other function.
The next definition generalizes this idea by considering a set of function symbols
that may make recursive calls to each other (this is essentially the definition of
jointly T -based functions in [15]). Notice that nested recursive calls are not
allowed, though.

Definition 43 (LIAC-Based Functions–Version 2). A set of functions G =
{g1, . . . , gn} ⊆ D(R) is LIAC-based iff all right-hand sides of rules in R(G) have
the form C[gk1(r∗1), . . . , gkm(r∗m)] for some context C over C(R)∪FLIA such that
r∗i ∈ T (C(R) ∪ FLIA,V) and gki ∈ G for all 1 ≤ i ≤ m.

Example 44. This example computes the pointwise average of two lists (stopping
as soon as either list is empty) and uses the auxiliary function avg:

avg(x, y)→ avg(y, x) Jx > yK
avg(x, y)→ x Jy ≥ x ∧ y − x ≤ 1K
avg(x, y)→ avg(x+ 1, y − 1) Jy ≥ x ∧ y − x > 1K

avglist(xs, nil)→ nil
avglist(nil, cons(y, ys))→ nil

avglist(cons(x, xs), cons(y, ys))→ cons(avg(x, y), avglist(xs, ys))

Since avglist makes a recursive call to avg, it is not LIAC-based. However, the set
{avg, avglist} is LIAC-based. 4

In order to ensure that non-linear hypotheses are still applicable, the defini-
tion of ImpEq and ImpEq ′ needs to be adapted as well. For this, the idea is to
collect conditions on all members of a LIAC-based set of functions under which

Rewriting Induction + Linear Arithmetic = Decision Procedure 17

recursive calls to one of these functions g have equal arguments in positions i
and j or can be rewritten to terms from T (C(R) ∪ FLIA,V). These conditions
are of the form 〈g′, i′, j′〉, meaning that equality of the arguments in positions i′

and j′ of the function g′ ensures the desired property.

Definition 45 (ImpEq and ImpEq ′–Version 2). Let G = {g1, . . . , gn} be a
LIAC-based set of functions. Then 〈g, i, j, Γ〉 ∈ ImpEq(G) for g ∈ G iff 1 ≤ i <
j ≤ arity(g) such that the ith and jth argument of g have the same sort and
Γ = {〈gk1 , i1, j1〉, . . . , 〈gkm , im, jm〉} such that for all 1 ≤ κ ≤ m, 1 ≤ iκ < jκ ≤
arity(gkκ) where the ithκ and jthκ argument of gkκ have the same sort, all rules
gk(l∗)→ C[gb1(r∗1), . . . , gbω (r∗ω)]JϕK ∈ R(G) satisfy that

ϕ ∧
∧

〈gk,i′,j′〉∈Γ

li′ ' lj′ ⇒
∧
gbι=g

rι,i ' rι,j

is LIAC-valid and all rι,i, rι,j are Z-free.

Under the same conditions on i, j and Γ , let 〈g, i, j, Γ〉 ∈ ImpEq ′(G) iff for all
rules gk(l∗)→ C[gb1(r∗1), . . . , gbω (r∗ω)]JϕK ∈ R(G) and all 1 ≤ ι ≤ ω with gbι = g,
either

1. ϕ∧
∧
〈gk,i′,j′〉∈Γ li′ ' lj′ ⇒ rι,i ' rι,j is LIAC-valid and rι,i, rι,j are Z-free, or

2. there exists a simplification tree for gbι(r
∗
ι)Jϕ ∧ θK where

θ =
∧

〈gk,i′,j′〉∈Γ , the i′th argument of g has sort int

li′ ' lj′

such that all leaves in this tree have labels the form tJψK for a term t ∈
T (C(R) ∪ FLIA,V) and a LIA-constraint ψ.

As before, the sets ImpEq(G) and ImpEq ′(G) are still easily computable from
the rules defining G with the help of a decision procedure for LIAC.

The definition of a simple conjecture immediately generalizes to LIAC-based
sets G of functions. Now, an atomic conjecture for each member of the G is
needed. Also, notice the use of ImpEq ′(G) to ensure applicability of the inductive
hypotheses.

Definition 46 (Simple Conjectures–Version 2). A simple conjecture is a
set of atomic conjectures of the form {g1(x∗1) ≡ t1, . . . , gn(x∗n) ≡ tn} such that
the following conditions are satisfied:

1. R∪ {g1(x∗1)→ t1, . . . , gn(x∗n)→ tn} is terminating.

2. The set G = {g1, . . . , gn} is LIAC-based.

3. x∗i consists of variables and ti ∈ T (C(R) ∪ FLIA,V) for all 1 ≤ i ≤ n.

4. Whenever xk,i = xk,j for i < j, then there exists an 〈gk, i, j, Γ〉 ∈ ImpEq ′(G)
such that xk′,i′ = xk′,j′ for all 〈gk′ , i′, j′〉 ∈ Γ .

18 Stephan Falke and Deepak Kapur

Example 47. In Example 44, the set {avg(x, x) ≡ x, avglist(xs, xs) ≡ xs} is
a simple conjecture. To see this, notice that 〈avglist, 1, 2, {〈avglist, 1, 2〉}〉 and
〈avg, 1, 2, {〈avg, 1, 2〉, 〈avglist, 1, 2〉}〉 are in ImpEq({avg, avglist}) since

cons(x, xs) ' cons(y, ys)⇒ xs ' ys
cons(x, xs) ' cons(y, ys)⇒ x ' y

are LIAC-valid. 4

Theorem 48. Using the strategy Expand∗ ·Case-Simplify∗ ·Simplify∗ · (Theory>∪
Theory⊥)∗, where Expand is applied once to each atomic conjecture of the set and
Simplify uses only hypotheses from H, it is decidable whether a simple conjecture
is an inductive theorem.

5.2 Simple Decidable Conjectures with Nesting

One restriction of the simple decidable conjectures from Section 5.1 is that nest-
ing of defined function symbols is not permitted. This restriction was imposed
in order to ensure that the inductive hypotheses are always applicable (if the
ImpEq ′-requirement is satisfied), resulting in an atomic conjecture whose validity
can be decided using Theory> or Theory⊥.

For atomic conjectures with nested defined function symbols, this is not al-
ways the case since Expand might introduce a context from the right-hand sides
of rules around the recursive calls. This context needs to be removed before the
inductive hypotheses can be applied. This observation leads to the concept of
compatibility, meaning that the Z-TRS can handle the contexts introduced in
right-hand sides of rules. The presentation in this section is influenced by the
presentation in [18], which presents similar results for ordinary TRSs.

First, the following definition abstracts the defining property of LIAC-based
functions and sets of LIAC-based functions.

Definition 49 (LIAC-Good Rewrite Rules and Functions). A constrained
rewrite rule l → rJϕK is LIAC-good iff r = C[g1(r∗1), . . . , gn(r∗n)] where C is a
context over C(R) ∪ FLIA and r∗1 , . . . , r

∗
n ∈ T (C(R) ∪ FLIA,V) for g1, . . . , gn ∈

D(R). A function f is LIAC-good if all rules in R(f) are LIAC-good.

In contrast to [18], the notion of compatibility is more complex and powerful
in this paper since it is based on the inference rule Case-Simplify, i.e., it uses
simplification trees. This makes the notion of compatibility more general, see
Example 51 below.

Definition 50 (Compatibility). Let g be LIAC-based, let 1 ≤ j ≤ arity(g),

and let Q be a set of LIAC-good rewrite rules. Then g is compatible with Q
on argument j iff for all f(l∗) → C[g1(r∗1), . . . , gn(r∗n)]JϕK ∈ Q such that the

jth argument of g has the same sort as f , there exists a simplification tree

Rewriting Induction + Linear Arithmetic = Decision Procedure 19

for g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm)JϕK such that all leaves in this tree

have labels of the form

D[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]Jϕ ∧ ψK

for a LIA-constraint ψ, a context D over C(R)∪FLIA, and i1, . . . , ik ∈ {1, . . . , n}
such that zi 6∈ V(D) for all 1 ≤ i ≤ n.

If Q = R(f) for a function symbol f , then g is said to be compatible with f
on argument j, and similarly for sets of function symbols.

Example 51. Consider the Z-TRS consisting of the zip-rules from Example 24
and add the following rules defining maxpair:

maxpair(pnil)→ nil
maxpair(cons(pair(x, y), zs))→ cons(x,maxpair(zs)) Jx ≥ yK
maxpair(cons(pair(x, y), zs))→ cons(y,maxpair(zs)) Jy > xK

Then maxpair is compatible with zip on argument 1. For the first two zip-rules, C
is pnil (a context without holes), and the following is a (degenerate) simplification
tree for maxpair(pnil):

maxpair(pnil)

nil

The leaf has the required form by letting D = nil. For the third zip-rule, C is
pcons(pair(x, y),�) and

maxpair(pcons(pair(x, y), z1))

cons(y,maxpair(z1)) Jy > xKcons(x,maxpair(z1)) Jx ≥ yK

is a simplification tree for maxpair(pcons(pair(x, y), z1)). Both leaves have the
required form by letting D = cons(x,�) or D = cons(y,�), respectively.

Notice that the use of simplification trees is essential in this example, i.e.,
maxpair is not compatible with zip on argument 1 if the definition of compatibility
from [18] is used. 4

While Definition 50 considers the rules in Q independently for each context
C from a right-hand side, the property from the definition can be lifted to nested
contexts C that are obtained from several rules’ right-hand sides. These contexts
can be obtained if several rules from Q are applied after another.

Definition 52 (Repeated Q-Contexts). Let Q be a set of LIAC-good rewrite
rules. For a context C and a LIA-constraint ϕ, the constrained context CJϕK
is a Q-context iff there exists a rule f(l∗) → C[g1(r∗1), . . . , gn(r∗n)]JϕK ∈ Q.
A constrained context CJϕK is a repeated Q-context iff CJϕK is a Q-context
or there exist repeated Q-contexts DJψK, C1Jϕ1K, . . . , CmJϕmK such that C =
D[C1, . . . , Cm]Jψ ∧ ϕ1 ∧ . . . ∧ ϕmK.

20 Stephan Falke and Deepak Kapur

IfQ = R(f), (repeated)Q-contexts are also called (repeated) f -contexts, and
similarly for sets of function symbols. Next, it can be shown that the property
from Definition 50 lifts from the Q-contexts considered there to repeated Q-
contexts.

Lemma 53. Let g be compatible with Q on argument j. Then, for every re-

peated Q-context CQJϕK, there exists a simplification tree for the constrained

term g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm)JϕK such that all leaves in this

tree have labels of the form

Cg[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]Jϕ ∧ ψK

for a repeated g-context CgJψK and i1, . . . , ik ∈ {1, . . . , n} such that zi 6∈ V(Cg)
for all 1 ≤ i ≤ n.

The concept of compatibility can be extended to arbitrarily deep nestings of
functions, resulting in compatibility sequences.

Definition 54 (Compatibility Sequences). Let f1, . . . , fd−1 be LIAC-based
and let fd be LIAC-good for some d ≥ 1. The sequence 〈f1, . . . , fd〉 is a com-
patibility sequence on arguments 〈j1, . . . , jd−1〉 iff fi is compatible with fi+1 on
argument ji for all 1 ≤ i ≤ d− 1.

A term s has this compatibility sequence iff

s = f1(p∗1, f2(p∗2, . . . fd−1(p∗d−1, fd(x
∗), q∗d−1) . . . , q∗2), q∗1)

such that the variables in x∗ do not occur elsewhere in s, the p∗i and q∗i are from
T (C(R) ∪ FLIA,V), and fi(p

∗
i , fi+1(. . .), q∗i)|ji = fi+1(. . .) for all 1 ≤ i ≤ d− 1.

If s is as in this definition, then s〈t〉 denotes the term obtained from s by
replacing the term fd(x

∗) by the term t.

Lemma 55. Let s be a term with the compatibility sequence 〈f1, . . . , fd〉 on ar-
guments 〈j1, . . . , jd−1〉. Then, for every rule fd(l

∗) → C[g1(r∗1), . . . , gn(r∗n)]JϕK,
there exists a simplification tree for s〈C[g1(r∗1), . . . , gn(r∗n)]〉JϕK such that all
leaves in this tree have labels of the form

D[s〈gi1(r∗i1)〉, . . . , s〈gik(r∗ik)〉]Jϕ ∧ ψK

for a LIA-constraint ψ, a context D over C(R) ∪ FLIA, and some i1, . . . , ik ∈
{1, . . . , n}.

Now simple nested conjectures generalize the simple conjectures from Section
5.1 by allowing nested defined functions on the left-hand side, provided the left-
hand side has a compatibility sequence.

Definition 56 (Simple Nested Conjectures). A simple nested conjecture is
an atomic conjecture of the form D[f(x∗)] ≡ t such that the following conditions
are satisfied:

Rewriting Induction + Linear Arithmetic = Decision Procedure 21

1. R∪ {D[f(x∗)]→ t} is terminating.
2. The term D[f(x∗)] has a compatibility sequence and f is LIAC-based.
3. x∗ consists of variables and t ∈ T (C(R) ∪ FLIA,V).
4. Whenever xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(f).

Notice that ImpEq(f) has to be used instead of ImpEq ′(f) since, if the recur-
sive calls to f can be simplified to terms from T (C(R)∪FLIA,V), the remaining
context D still prevents an application of Theory> or Theory⊥.

Example 57. Continuing Example 51, the term maxpair(zip(xs, xs)) has the com-
patibility sequence 〈maxpair, zip〉 on arguments 〈1〉. Also, 〈1, 2〉 ∈ ImpEq(zip).
Thus, maxpair(zip(xs, xs)) ≡ xs is a simple nested conjecture. 4

Theorem 58. Using the strategy Expand ·Case-Simplify∗ · Simplify∗ · (Theory> ∪
Theory⊥)∗, where Simplify uses only hypotheses from H, it is decidable whether
a simple nested conjecture is an inductive theorem.

Of course, the concept of simple nested conjectures can be extended from
LIAC-based functions to LIAC-based sets of functions, similarly to how this was
done for simple conjectures in Section 5.1. First, notice that the definition of
compatibility can already be applied to LIAC-based sets of functions.

Example 59. Take the function fst defined in Example 24 and add the following
rules defining stitch:

stitch(x, nil)→ pnil
stitch(nil, cons(y, ys))→ pnil

stitch(cons(x, xs), cons(y, ys))→ pcons(pair(x, y), stitch′(xs, ys)) Jx ≥ yK
stitch(cons(x, xs), cons(y, ys))→ pcons(pair(y, x), stitch′(xs, ys)) Jy > xK

stitch′(x, nil)→ pnil
stitch′(nil, cons(y, ys))→ pnil

stitch′(cons(x, xs), cons(y, ys))→ pcons(pair(x, y), stitch(xs, ys)) Jx < yK
stitch′(cons(x, xs), cons(y, ys))→ pcons(pair(y, x), stitch(xs, ys)) Jy ≤ xK

Then G = {stitch, stitch′} is LIAC-based and fst is compatible with G on argument
1, since for the third and fourth stitch-rule, the term fst(pcons(pair(x, y), z1))
rewrites to cons(x, fst(z1)), and similarly for the third and fourth stitch′-rule.4

Now the definition of simple nested conjectures can be revised as well, simi-
larly how this was done for simple conjectures in Section 5.1.

Definition 60 (Simple Nested Conjectures–Version 2). A simple nested
conjecture is a set of the form {D[f1(x∗1)] ≡ t1, . . . , D[fn(x∗n)] ≡ tn} such that
the following conditions are satisfied:

1. R∪ {D[f1(x∗1)]→ t1, . . . , D[fn(x∗n)]→ tn} is terminating.
2. All of D[f1(x∗1)], . . . , D[fn(x∗n)] have compatibility sequences and the set G =
{f1, . . . , fn} is LIAC-based.

3. x∗i consists of variables and ti ∈ T (C(R) ∪ FLIA,V) for all 1 ≤ i ≤ n.

22 Stephan Falke and Deepak Kapur

4. Whenever xk,i = xk,j for i < j, then there exists an 〈fk, i, j, Γ〉 ∈ ImpEq(G)
such that xk′,i′ = xk′,j′ for all 〈fk′ , i′, j′〉 ∈ Γ .

Example 61. In Example 59, the term fst(stitch(xs, xs)) has the compatibility
sequence 〈fst, stitch〉 on arguments 〈1〉, and the term fst(stitch′(xs, xs)) has the
compatibility sequence 〈fst, stitch′〉 on arguments 〈1〉. Since {stitch, stitch′} is
LIAC-based, {fst(stitch(xs, xs)) ≡ xs, fst(stitch′(xs, xs)) ≡ xs} is a simple nested
conjecture because ImpEq({stitch, stitch′}) contains 〈stitch, 1, 2, {〈stitch′, 1, 2〉}〉
and 〈stitch′, 1, 2, {〈stitch, 1, 2〉}〉. 4

Theorem 62. Using the strategy Expand∗ ·Case-Simplify∗ ·Simplify∗ · (Theory>∪
Theory⊥)∗, where Expand is applied once to each atomic conjecture of the set
and Simplify uses only hypotheses from H, it is decidable whether a simple nested
conjecture is an inductive theorem.

6 Implementation and Evaluation

The inductive proof method based on the inference system I has been imple-
mented in the prototype Sail2, the successor of Sail [15]. The implementation of
the inference rules is mostly straightforward. Functions for checking whether a
conjecture is simple or simple nested have been implemented in Sail2 as well. In
order to perform these checks as efficiently as possible, the following information
is pre-computed while parsing the Z-TRS:

1. The sets ImpEq(G) and ImpEq ′(G) are computed for each LIAC-based set
of functions G. This requires calls to CVC3 in order to check for LIAC-
satisfiability and LIAC-validity.

2. Information on the compatibility between function symbols is computed.
This is done using rewriting with the Z-TRS, and in order to ensure that
this rewriting process is terminating it is first checked whether the Z-TRS
is terminating.

In order to check for termination of R∪H as needed in the side condition of
Expand, the implementation of the methods for proving termination of CERSs
developed in [14] in the termination tool AProVE is used. Since that implemen-
tation is currently limited to Z-rules l → rJϕK with V(r) ∪ V(ϕ) ⊆ V(l), Sail2
imposes the same requirement on Z-TRSs and atomic conjectures.5 For validity
and satisfiability checking of LIA- and LIAC-constraints, the external tools Yices
[13] (for LIA-constraints) and CVC3 [6] (for LIAC-constraints) are used.

The implementation has been tested on 57 examples. This collection contains
conjectures which can be shown to be decidable using the results from Section 5
and conjectures where this is not the case. The time spent for checking whether
a conjecture is decidable as well as the time needed for (dis-)proving it have

5 The termination methods developed in [14] do not require this condition on the
variables but the implementation in AProVE does. Extending the implementation in
AProVE should be straightforward but would require some re-engineering.

Rewriting Induction + Linear Arithmetic = Decision Procedure 23

been recorded. Recall that a proof attempt requires a call to AProVE in order to
determine whether the Z-TRS together with the oriented conjectures is termi-
nating. Also recall that a proof attempt requires calls to external SMT-solvers.
The following table contains average times, the detailed results can be found at
http://baldur.iti.kit.edu/~falke/sail2/.

Checking Time SMT Time
Termination Time Other Time Total Time

within AProVE

0.019 msec 16.451 msec 102.934 msec 0.554 msec 119.957 msec

As is immediate by inspection, the most time-consuming part (over 90% of
the total time) is the termination check using AProVE. In contrast, checking
whether a conjecture is a member of the class of decidable conjectures is orders
of magnitude faster than proving or disproving it. Most of the time for the
proof attempt is spent within the external SMT solvers. While the time spent
within the SMT solvers can probably be reduced by using the SMT solver via its
API (since this would eliminates the overhead of calling an external tool), the
remaining parts of the proof attempt still require much more time than checking
whether a conjecture is a member of the class of conjectures whose inductive
validity is decidable. A more promising direction for improving the performance
of Sail2 is to shift the burden of proving termination from AProVE to a more
optimized implementation of the termination methods developed in [14].

7 Conclusions

We have presented new results on the decidability of validity for a class of con-
jectures that requires inductive reasoning. An implementation in the prototype
Sail2 has been successfully evaluated on a collection of examples. This evaluation
confirms that checking whether the inductive validity of a conjecture is decidable
is indeed much faster than attempting to prove or disprove it. This paper further
extends the results reported in [15] where decidability of inductive validity using
the paradigm of implicit induction has been investigated for the first time.

The new decidability results reported in this paper were obtained using Z-
TRSs, for which an inductive proof method based on the implicit induction
paradigm coupled with a decision procedure for the theory LIAC is given. The
development of this proof method is a contribution in itself, independent of the
decidability results about inductive validity of conjectures. The inductive proof
method does not only make it possible to prove inductive conjectures, but also
to disprove false conjectures.

There are two independent but related directions for future work. We are
interested in developing an inductive proof method for more general classes of
CERSs as defined in [14]. In contrast to Z-TRSs, these CERSs also support (non-
free) collection data structures such as sets or multisets and thus provide an even
more expressive kind of term rewrite systems. In addition, we are planning to
identify classes of conjectures with constraints and of conjectures containing
nested function symbols on both sides whose inductive validity can be decided.

24 Stephan Falke and Deepak Kapur

This may require techniques similar to [17, 18] which automatically generate
suitable generalization lemmas that are needed for deciding validity. We believe
that a combination of these techniques will lead to a very powerful decision
procedure for proving inductive properties of algorithms specified on collection
data structures such as sets or multisets.

Rewriting Induction + Linear Arithmetic = Decision Procedure 25

A Proofs

Proof of Theorem 13. Let R be an orthogonal Z-TRS and let R = {l →
r | l → rJϕK ∈ R} be the ordinary TRS obtained from R by dropping the
constraints.

First, it is shown that R is quasi-reductive iff R is quasi-reductive. The
direction from left to right is immediate since→R,Z ⊆→R. For the direction from
right to left, let f(t1, . . . , tn) be a ground term with f ∈ D(R) and constructor
ground terms t1, . . . , tn. Since R is quasi-reductive, there exists a rule l→ r ∈ R
such that f(t1, . . . , tn) = lσ. By Definition 11.4, there exists a rule l → r′JϕK ∈
R such that f(t1, . . . , tn) = lσ and ϕσ is LIA-valid. Therefore, f(t1, . . . , tn) is
reducible by →R,Z.

It thus suffices to determine whether R is quasi-reductive. But this can
easily be done, for instance using the narrowing-based method for left-linear
constructor-based ordinary TRSs in [20] that furthermore computes a set of
missing patterns, i.e., left-hand sides for rules that need to be added in order to
make R quasi-reductive. �

Proof sketch of Theorem 14. Orthogonal Z-TRSs satisfy the following prop-
erty:

Whenever s→R,Z t1 and s→R,Z t2 such that the reductions take place
at the same position, then t1 = t2.

Thus, orthogonal Z-TRSs satisfy the crucial property needed to show confluence
of orthogonal ordinary TRSs and the proof used for this result in [5, Corollary
6.3.11] immediately applies for orthogonal Z-TRSs as well since orthogonal Z-
TRSs are left-linear by Definition 11.1.

To show the above property, it can without loss of generality be assumed
that the reductions s →R,Z t1 and s →R,Z t2 take place at the root position.
Thus, there exist rules l1 → r1Jϕ1K, l2 → r2Jϕ2K and substitutions σ1, σ2 such
that s = l1σ1 = l2σ2 and ϕ1σ1, ϕ2σ2 are LIA-valid. By Definition 11.2, l1 = l2
and therefore σ1 = σ2. Now, Definition 11.3 implies that the rules l1 → r1Jϕ1K
and l2 → r2Jϕ2K are identical, i.e., t1 = r1σ1 = r2σ2 = t2. �

Proof of Lemma 20. Let s ≡ tJϕK be an atomic conjecture and let u be a basic
term such that s = C[u].

1. Since u is basic and σ is a constructor ground substitution, the term uσ
has the form f(u1, . . . , un) where u1, . . . , un are constructor ground terms.
Thus, since R is quasi-reductive, there exists a rule l→ rJψK ∈ R such that
uσ = lσ̂ and ψσ̂ is LIA-valid for some Z-based substitution σ̂. Without loss
of generality it can be assumed that V(s) ∩ V(l) = ∅, and the substitution
σ may thus be extended to obtain uσ = lσ such that ψσ is LIA-valid. Since
σ is an unifier of u and l, there exists a Z-based substitution θ such that
σ = ιθ where ι = mgu(u, l). Thus, sσ = C[u]σ = C[u]ιθ = Cιθ[uιθ] =
Cιθ[lιθ] →R,Z Cιθ[rιθ] ↔Expdu(s,t,ϕ),Z tιθ = tσ. For this, notice that ϕιθ =

26 Stephan Falke and Deepak Kapur

ϕσ and ψιθ = ψσ are LIA-valid and that rewriting is closed under application
of Z-based substitutions.

2. Let v ↔Expdu(s,t,ϕ),Z w. Then v = Ĉ[C[r]σσ̂] and w = Ĉ[tσσ̂] (or w =

Ĉ[C[r]σσ̂] and v = Ĉ[tσσ̂]) for some context Ĉ and some Z-based substi-
tution σ̂, such that σ = mgu(u, l), s = C[u], l → rJψK ∈ R, and the LIA-

constraint ϕσσ̂ ∧ ψσσ̂ is LIA-valid. Then v = Ĉ[C[r]σσ̂] ←R,Z Ĉ[C[l]σσ̂] =

Ĉ[Cσ[lσ]σ̂] = Ĉ[Cσ[uσ]σ̂] = Ĉ[C[u]σσ̂] = Ĉ[sσσ̂] →{s≡tJϕK},Z Ĉ[tσσ̂] = w
since ϕσσ̂ and ψσσ̂ are LIA-valid. �

Proof of Lemma 25. Perform a case distinction according to the inference rule
that is applied in 〈En, Hn〉 `I 〈En+1, Hn+1〉.

If this inference rule is Expand, the inclusion “⊆” is obvious. For “⊇”, it
suffices to show that v ↔Expdu(s,t,ϕ),Z w implies v ↔∗R∪En∪Hn∪ELIA,Z w for all
ground terms v, w. But this follows from Lemma 20.2 since s ≡̇ tJϕK ∈ En.

For Simplify, En = E]{s ≡̇ tJϕK}, En+1 = E∪{s′ ≡̇ tJϕK}, and Hn+1 = Hn,
where sJϕK →R∪H,Z s′JϕK. First, consider the inclusion “⊆”. For this, assume
v ↔∗R∪En∪Hn∪ELIA,Z w for ground terms v, w. If v ↔∗R∪E∪Hn∪ELIA,Z w, then
v ↔∗R∪En+1∪Hn+1∪ELIA,Z w is immediate. Otherwise, v = C[sσ], w = C[tσ] (or

w = C[sσ], v = C[tσ]), and ϕσ is LIA-valid for a Z-based ground substitution
σ. Now sJϕK→R∪Hn,Z s′JϕK implies that s = D[lτ], s′ = D[rτ], and ϕ⇒ ψτ is
LIA-valid for some l→ rJψK ∈ R ∪Hn = R∪Hn+1 and some Z-based substitu-
tion τ . Since ϕ⇒ ψτ and ϕσ are LIA-valid, ψτσ is LIA-valid as well. Therefore,
v = C[sσ] = C[Dσ[lτσ]] →R∪Hn+1,Z C[Dσ[rτσ]] = C[s′σ] →En+1,Z C[tσ] = w.
For the inclusion “⊇”, it again suffices to consider the case where v = C[s′σ],
w = C[tσ] (or w = C[s′σ], v = C[tσ])), and ϕσ is LIA-valid. Similar to above,
v = C[s′σ] = C[Dσ[rτσ]]←R∪Hn,Z C[Dσ[lτσ]] = C[sσ]→En,Z C[tσ] = w.

For the inference rule Case-Simplify, En = E] {s ≡̇ tJϕK}, En+1 = E ∪
{s′ ≡ tJϕ′K | s′Jϕ′K ∈ Casep(s, ϕ)}, and Hn+1 = Hn. First, consider the in-
clusion “⊆”. For this, assume v ↔R∪En∪Hn∪ELIA,Z w for ground terms v, w. If
v ↔R∪E∪Hn∪ELIA,Z w, then v ↔R∪En+1∪Hn+1∪ELIA,Z w is immediate. Otherwise,
v = C[sσ], w = C[tσ] (or w = C[sσ], v = C[tσ]), and ϕσ is LIA-valid for a
Z-based ground substitution σ. By the definition of Casep(s, ϕ), there exists a
s[riσi]p ≡ tJϕ ∧ ψiσiK ∈ En+1 such that ϕσ ∧ ψiσiσ is LIA-valid. Therefore,
v = C[sσ] = C[s[liσi]pσ] →R,Z C[s[riσi]pσ] →En+1,Z C[tσ] = w. For the inclu-
sion “⊇”, it again suffices to consider the case where v = C[s[riσi]pσ], w = C[tσ]
(or w = C[s[riσi]pσ], v = C[tσ])), and ϕσ∧ψiσiσ is LIA-valid. Similar to above,
v = C[s[riσi]pσ]←R,Z C[s[liσi]pσ] = C[sσ]→En,Z C[tσ] = w.

For Delete, the inclusion “⊇” is obvious since an atomic conjecture is removed
from En. For “⊆”, it suffices to notice that v ↔{s ≡̇ tJϕK},Z w for ground terms
v and w implies that ϕ is LIA-satisfiable and that v ↔{s ≡̇ tJϕK},Z w for ground
terms v and w implies v ↔∗ELIA,Z w if s ↔∗ELIA,Z t since all substitutions used in
v ↔{s ≡̇ tJϕK},Z w and in s↔∗ELIA,Z t are Z-based.

For Theory>, the inclusion “⊇” is again obvious. For “⊆”, let v ↔{s ≡̇ tJϕK},Z
w for ground terms v and w. Thus, there exists a Z-based ground substitution
σ such that v = C[sσ], w = C[tσ] (or w = C[sσ], v = C[tσ]), and ϕσ is

Rewriting Induction + Linear Arithmetic = Decision Procedure 27

LIA-valid. Since R is quasi-reductive and terminating, there exists a constructor
ground substitution σ̂ such that σ(x) →∗R,Z σ̂(x) for all variables x. Thus, v =
C[sσ] →∗R,Z C[sσ̂] ↔{s ≡̇ tJϕK},Z C[tσ̂] ←∗R,Z C[tσ] = w and it suffices to show
that C[sσ̂] ↔∗ELIA,Z C[tσ̂]. Since ϕ ⇒ s ' t is LIAC-valid and ϕσ̂ is LIA-valid
(since ϕσ is LIA-valid and σ(x) = σ̂(x) for all variables x with sort int because
σ is Z-based), sσ̂ ' tσ̂ is LIAC-valid as well. But this implies sσ̂ ↔∗ELIA,Z tσ̂ and
thus C[sσ̂]↔∗ELIA,Z C[tσ̂]. �

Proof of Lemma 26. The proof is by induction on the length k of the deriva-
tion 〈En, Hn〉 `∗I 〈∅, H〉. If k = 0, then En = ∅ and the claim is obvious. Other-
wise, 〈En, Hn〉 `I 〈En+1, Hn+1〉 `∗I 〈∅, H〉. Now ↔En+1,Z ⊆ →∗R∪H,Z ◦ ↔∗ELIA,Z
◦ ←∗R∪H,Z follows from the inductive hypothesis. Next, perform a case distinction
according to the inference rule that is applied in 〈En, Hn〉 `I 〈En+1, Hn+1〉.

If the inference rule Expand was applied, then En = E] {s ≡̇ tJϕK}, En+1 =
E ∪ Expdu(s, t, ϕ), and Hn+1 = Hn. Let v ↔En,Z w for ground terms v, w. If
v ↔E,Z w, then the claim is immediate from the inductive hypothesis. Otherwise,
v = C[sσ] and w = C[tσ] (or v = C[tσ] and w = C[sσ]) where σ is Z-based
and ϕσ is LIA-valid. By Lemma 20.1, v →R,Z ◦ ↔Expdu(s,t,ϕ),Z w and thus
v →R,Z ◦ ↔En+1,Z w. Now the inductive hypothesis implies v →∗R∪H,Z ◦ ↔∗ELIA,Z
◦ ←∗R∪H,Z w.

For the inference rule Simplify, En = E]{s ≡̇ tJϕK}, En+1 = E∪{s′ ≡̇ tJϕK},
and Hn+1 = Hn, where sJϕK →R∪Hn,Z s′JϕK. Let v ↔En,Z w for ground terms
v, w. If v ↔E,Z w, then the claim is immediate from the inductive hypothesis.
Otherwise, v ↔{s ≡̇ tJϕK},Z w, i.e., v = C[sσ] and w = C[tσ] (or v = C[tσ] and
w = C[sσ]) where σ is Z-based and ϕσ is LIA-valid. Since v′ := C[s′σ]↔En+1,Z
w, the inductive hypothesis implies v′ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R∪H,Z w. It now

suffices to show that v →R∪H,Z v′ since then v →R∪H,Z v′ →∗R∪H,Z ◦ ↔∗ELIA,Z
◦ ←∗R∪H,Z w. To see this, recall that sJϕK→R∪H,Z s′JϕK implies s = D[lτ], s′ =
D[rτ], and ϕ⇒ ψτ is LIA-valid for some l→ rJψK ∈ R ∪Hn and some Z-based
substitution τ . As in the proof of Lemma 25, v = C[sσ] = C[Dσ[lτσ]]→R∪Hn,Z
C[Dσ[rτσ]] = C[s′σ] = v′ and the claim follows since Hn ⊆ H.

For the inference rule Case-Simplify, En = E]{s ≡̇ tJϕK}, En+1 = E ∪{s′ ≡
tJϕ′K | s′Jϕ′K ∈ Casep(s, ϕ)}, and Hn+1 = Hn. Let v ↔En,Z w for ground terms
v, w. If v ↔E,Z w, then the claim is immediate from the inductive hypothesis.
Otherwise, v ↔{s ≡̇ tJϕK},Z w, i.e., v = C[sσ] and w = C[tσ] (or v = C[tσ]
and w = C[sσ]) where σ is Z-based and ϕσ is LIA-valid. By the definition of
Casep(s, ϕ), there exists a s[riσi]p ≡ tJϕ∧ψiσiK ∈ En+1 such that ϕσ ∧ψiσiσ is
LIA-valid. Since v′ := C[s[riσi]pσ] ↔En+1,Z w, the inductive hypothesis implies
v′ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R∪H,Z w. It now suffices to show that v →R∪H,Z v′

since then v →R∪H,Z v′ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←
∗
R∪H,Z w. As in the proof of

Lemma 25, v = C[sσ] = C[s[liσi]pσ] →R,Z C[s[riσi]pσ] = v′ and the claim of
the lemma therefore follows.

If the inference rule Delete was applied, then En = E] {s ≡̇ tJϕK} where
s ↔∗ELIA,Z t or ϕ is LIA-unsatisfiable, En+1 = E, and Hn+1 = Hn. If v ↔E,Z w,
then the claim follows from the inductive hypothesis. If ϕ is LIA-unsatisfiable,

28 Stephan Falke and Deepak Kapur

then s ≡̇ tJϕK cannot contribute to ↔En,Z. Otherwise, v ↔∗ELIA,Z w as in the
proof of Lemma 25 and the claim is immediate.

If the inference rule Theory> was applied, then En = E]{s ≡̇ tJϕK}, En+1 =
E, and Hn+1 = Hn, where ϕ⇒ s ' t is LIAC-valid. Again, if v ↔E,Z w, then the
claim follows from the inductive hypothesis. Otherwise, v = C[sσ] and w = C[tσ]
(or v = C[tσ] and w = C[sσ]) where ϕσ is LIA-valid. As in the proof of Lemma
25, v →∗R,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R,Z w and the claim is immediate. �

Proof of Lemma 27. Let s→ tJϕK ∈ H and v →{s→tJϕK},Z w for ground terms
v and w, i.e., v = C[sσ] and w = C[tσ] for a Z-based ground substitution σ such
that ϕσ is LIA-valid. Since R is quasi-reductive and terminating, there exists a
constructor ground substitution σ̂ such that σ(x)→∗R,Z σ̂(x) for all variables x.
Then, C[sσ] →∗R,Z C[sσ̂] →{s→tJϕK},Z C[tσ̂] ←∗R,Z C[tσ] since ϕσ̂ is LIA-valid
because σ(x) = σ̂(x) for all variables x of sort int. It thus suffices to show
C[sσ̂]→∗R,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R,Z C[tσ̂].

There exists an n such that 〈E, ∅〉 `∗I 〈En, Hn〉 `I 〈En+1, Hn+1〉 `∗I 〈∅, H〉
where Hn+1 = Hn ∪ {s → tJϕK}, En = E′n] {s ≡ tJϕK}, and En+1 = E′n ∪
Expdu(s, t, ϕ). Then, by Lemma 20.1, sσ̂ →R,Z ◦ ↔Expdu(s,t,ϕ),Z tσ̂ and thus
C[sσ̂] →R,Z ◦ ↔En+1,Z C[tσ̂] = w. But then Lemma 26 gives the desired
C[sσ̂]→R,Z ◦ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R∪H,Z C[tσ̂]. �

Proof of Theorem 28. By Lemma 25, ↔∗R∪E∪ELIA,Z = ↔∗R∪H∪ELIA,Z on ground
terms. Thus, it suffices to show that↔∗R∪H∪ELIA,Z =↔∗R∪ELIA,Z on ground terms.
For this, the following principle is used:

Assume that the following conditions are satisfied:

1. →R∪H,Z is terminating on ground terms.

2. →H,Z ⊆ →R,Z ◦ →∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←
∗
R∪H,Z on ground terms.

Then ↔∗R∪ELIA,Z = ↔∗R∪H∪ELIA,Z on ground terms.

This principle is quite similar to an abstract principle of Koike and Toyama [32]
as reported in [1, 2] but differs from that principle by incorporating ELIA.

With this principle, the statement of the theorem can be shown. The first
condition, i.e., that →R∪H,Z is terminating on ground terms, follows from the
assumption onR and from the condition of the inference rule Expand. The second
condition is the property from Lemma 27.

Thus, it remains to show correctness of the principle. The inclusion “⊆”
is obvious. For “⊇”, let T denote the set of all ground terms. It suffices to
show that for any x ∈ T , ∀y ∈ T. x →∗R∪H,Z y ⇒ x ↔∗R∪ELIA,Z y is true.
This property is shown by Noetherian induction on →R∪H,Z which, by con-
dition 1, is well-founded on ground terms. Thus, let x →∗R∪H,Z y. If x = y,
then x ↔∗R∪ELIA,Z y is obvious. Otherwise, x →R∪H,Z z →∗R∪H,Z y and hence
z ↔∗R∪ELIA,Z y by the inductive hypothesis. If x →R,Z z, then x ↔∗R∪ELIA,Z y
is immediate. Otherwise, x →H,Z z. By condition 2, there exists a c such that
x→R,Z c→∗R∪H,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R∪H,Z z. Applying the induction hypothesis to c

Rewriting Induction + Linear Arithmetic = Decision Procedure 29

and z then yields x→R,Z c↔R∪ELIA,Z ◦ ↔∗ELIA,Z ◦ ↔
∗
R∪ELIA,Z z, i.e., x↔∗R∪ELIA,Z z.

Together with z ↔R∪ELIA,Z y, this gives x↔∗R∪ELIA,Z y as desired. �

Proof of Theorem 30. Let 〈E, ∅〉 `∗I 〈En, Hn〉 `I ⊥ where En = E′n]
{s ≡̇ tJϕK} such that s, t do not contain symbols from D(R) and ϕ ⇒ s ' t is
not LIAC-valid. Therefore, there exists a constructor ground substitution σ such
that ϕσ is LIA-valid and sσ ' tσ is not LIAC-valid, which implies sσ 6↔∗ELIA,Z tσ.
Since sσ ↔En,Z tσ, Lemma 25 implies sσ ↔∗R∪E∪ELIA,Z tσ. If all atomic conjec-
tures in E are inductive theorems, then this implies sσ ↔∗R∪ELIA,Z tσ. If →R,Z is
Church-Rosser modulo ↔ELIA,Z (i.e., ↔R∪ELIA,Z ⊆ →∗R,Z ◦ ↔∗ELIA,Z ◦ ←

∗
R,Z), then

this implies sσ →∗R,Z ◦ ↔∗ELIA,Z ◦ ←
∗
R,Z tσ. But since sσ and tσ are irreducible

by →R,Z since s and t do not contain defined symbols and σ is a constructor
ground substitution, this yields sσ ↔∗ELIA,Z tσ, i.e., a contradiction.

Thus, it remains to be shown that →R,Z is Church-Rosser modulo ↔ELIA,Z.
SinceR is terminating and confluent (and thus confluent modulo↔ELIA,Z), results
from [23] imply that it suffices to show that →R,Z is strongly coherent modulo
↔ELIA,Z, i.e., that ↔∗ELIA,Z ◦ →R,Z ⊆ →R,Z ◦ ↔

∗
ELIA,Z. For this, we show that

↔ELIA,Z ◦ →R,Z ⊆ →R,Z ◦ ↔∗ELIA,Z holds. Thus, let s1 ↔ELIA,Z s2 →R,Z s3, i.e.,
there exist l1 ≈ r1 ∈ ELIA (or r1 ≈ l1 ∈ ELIA), l2 → r2JϕK ∈ R, positions
p1 ∈ Pos(s1) and p2 ∈ Pos(s2), and Z-based substitutions σ1 and σ2 such that
s1|p1 = l1σ1, s2 = s1[r1σ1]p1 , s2|p2 = l2σ2, s3 = s2[r2σ2]p2 , and ϕσ2 is LIA-valid.
Perform a case distinction on the relationship between p1 and p2.

If p1 and p2 are independent of each other, then s1 →R,Z ◦ ↔ELIA,Z is imme-
diate. Notice that p1 cannot be above or equal to p2 since σ1 is Z-based. Finally,
assume that p1 is strictly below p2, i.e., p1 = p2.q for some non-empty position
q. Notice that the position q is “inside” σ2 since l1 is Z-free and σ1 and σ2 are
Z-based. But then s1 →R,Z ◦ ↔∗ELIA,Z s2 is immediate as well. �

Proof of Theorem 42. Let g(x∗) ≡ t be a simple conjecture and consider a rule
g(l∗) → C[g(r∗1), . . . , g(r∗m)]JϕK ∈ R(g). Provided g(x∗) and g(l∗) are unifiable
and ϕσ is LIA-satisfiable for σ = mgu(g(x∗), g(l∗)), application of Expand to
g(x∗) ≡ t produces (amongst others) Cσ[g(r∗1)σ, . . . , g(r∗m)σ] ≡ tσJϕσK. After
application of Expand, the set H of hypotheses consists of the oriented conjecture
g(x∗)→ t.

Now, if xi = xj for i < j, then 〈i, j〉 ∈ ImpEq ′(g). Thus, since xi = xj implies
liσ = ljσ, the definition of ImpEq ′ yields, for all 1 ≤ k ≤ m, that either rk,iσ =
rk,jσ or there exists a simplification tree for g(r∗k)Jϕ∧ li ' ljK such that all leaves
in this tree have labels of the form tJψK for a t ∈ T (C(R) ∪ FLIA,V) and a LIA-
constraint ψ. Hence, Case-Simplify and/or Simplify using the hypothesis g(x∗)→
t ∈ H can be applied to the conjecture Cσ[g(r∗1)σ, . . . , g(r∗m)∗σ] ≡ tσJϕσK to
obtain Cσ[q1, . . . , qm] ≡ tσJϕσK, where qi is either a term in T (C(R) ∪ FLIA,V)
or qi = tτi with τi = {x∗ 7→ r∗i σ}. Since both sides are from T (C(R) ∪ FLIA,V),
either Theory> or Theory⊥ can be applied. �

Proof of Theorem 48. Let {g1(x∗1) ≡ t1, . . . , gn(x∗n) ≡ tn} be a simple set of
conjectures. Consider the atomic conjecture gk(x∗k) ≡ tk from this set and the

30 Stephan Falke and Deepak Kapur

rule gk(l∗) → C[gk1(r∗1), . . . , gkm(r∗m)]JϕK ∈ R(G). Provided gk(x∗k) and gk(l∗)
are unifiable and ϕσ is LIA-satisfiable for σ = mgu(gk(x∗k), gk(l∗)), application of
Expand to gk(x∗k) ≡ tk produces (amongst others) Cσ[gk1(r∗1)σ, . . . , gkm(r∗m)σ] ≡
tkσJϕσK. After application of Expand to each atomic conjecture in the simple set
of conjectures, the set H consists of the rules g1(x∗1)→ t1, . . . , gn(x∗n)→ tn.

Now, if xkκ,iκ = xkκ,jκ for any 1 ≤ κ ≤ m and iκ < jκ, there exists an
〈gkκ , iκ, jκ, Γ〉 ∈ ImpEq(G) such that xk′,i′ = xk′,j′ for all 〈gk′ , i′, j′〉 ∈ Γ . In
particular, all such restrictions for gk are satisfied. As in the proof of Theorem 42,
the definition of ImpEq ′ implies that Case-Simplify and/or Simplify can be applied
to Cσ[gk1(r∗1)σ, . . . , gkm(r∗m)∗σ] ≡ tkσJϕσK, resulting in a conjecture where both
sides of are from T (C(R) ∪ FLIA,V). Finally, either Theory> or Theory⊥ can be
applied. �

Proof of Lemma 53. The statement is proved by induction on CQJϕK. If CQJϕK
is a Q-context, then Definition 50 implies that there exists a simplification tree

for g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm)JϕK such that all leaves of this

tree have the form

D[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik , xj+1, . . . , xm)]Jϕ ∧ ψK

such that zi 6∈ V(D) for all 1 ≤ i ≤ n. Thus, it only remains to be shown that
DJψK is a repeated g-context. But this easily follows since g is LIAC-based and
CQ only contains symbols from C(R) ∪ FLIA.

If CQJϕK is a repeated Q-context of the form C[C1, . . . , Ck]Jψ ∧ ϕ1 ∧ . . . ∧
ϕkK for repeated Q-contexts CJψK, C1Jϕ1K, . . . , CkJϕkK, then the inductive hy-
pothesis implies that there exists a simplification tree for the constrained term
g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm)JϕK, i.e., for the constrained term
g(x1, . . . , xj−1, C[C1, . . . , Ck][z1, . . . , zn], xj+1, . . . , xm)Jψ ∧ ϕ1 ∧ . . . ∧ ϕkK, such
that all leaves in this tree have the form

D[g(x1, . . . , xj−1, u1, xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, ud, xj+1, . . . , xm)]
Jϕ ∧ ϕ′ ∧ ψ ∧ ϕ1 ∧ . . . ∧ ϕkK

where DJϕ′K is a repeated g-context and zi 6∈ V(D) for all 1 ≤ i ≤ n. Here,

ul = Cel [z1, . . . , zn] for all 1 ≤ l ≤ d. Furthermore, the inductive hypothesis

implies that there exist repeated g-context D1Jϕ′1K, . . . , DdJϕ′dK with zi 6∈ V(Dl)

for all 1 ≤ i ≤ n and 1 ≤ l ≤ d such that there exists a simplification tree

for g(x1, . . . , xj−1, ul, xj+1, . . . , xm)JϕlK such that all leaves in this tree have the

form

Dl[g(x1, . . . , xj−1, zl1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zlkl , xj+1, . . . , xm)]Jϕl ∧ ϕ′lK

for all 1 ≤ l ≤ d, where l1, . . . , lkl ∈ {1, . . . , n}. Therefore, there exists a sim-
plification tree for g(x1, . . . , xj−1, CQ[z1, . . . , zn], xj+1, . . . , xm)JϕK such that all
leaves in this tree have the form

D[D1, . . . , Dd][g(x1, . . . , xj−1, z11 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zdkd
, xj+1, . . . , xm)]

Jϕ ∧ ϕ′ ∧ ψ ∧ ϕ1 ∧ . . . ∧ ϕk ∧ ϕ′1 ∧ ϕ′dK

Rewriting Induction + Linear Arithmetic = Decision Procedure 31

where CgJθK := D[D1, . . . , Dd]Jϕ′ ∧ ϕ′1 ∧ . . . ∧ ϕ′dK is a repeated g-context. Fur-
thermore, V(Cg) = V(D[D1, . . . , Dd]) = V(D) ∪ V(D1) ∪ . . . ∪ V(Dd) does not
contain any zi for 1 ≤ i ≤ n. �

Proof of Lemma 55. Define a sequence of terms by sd = fd(xd,1 . . . , xd,md)
and si = fi(xi,1, . . . , xi,ji−1, si+1, xi,ji+1, . . . , xi,mi) for all 1 ≤ i ≤ d − 1. The
lemma is proved by showing the following statement for all 1 ≤ i ≤ d:

(†)

For the constrained term si〈C[g1(r∗1), . . . , gn(r∗n)]〉JϕK, there exists a sim-
plification tree such that all leaves in this tree have labels of the form
D[si〈gj1(r∗j1)〉, . . . , si〈gjl(r∗jl)〉]Jϕ∧ψK for some j1, . . . , jl ∈ {1, . . . , n} and a

repeated fi-context DJψK with V(D) ⊆ V(C) ∪ V̂.

Here, V̂ = {xk,j | 1 ≤ k ≤ d− 1 and 1 ≤ j ≤ mk}.
Since s〈C[g1(r∗1), . . . , gn(r∗n)]〉 = s1〈C[g1(r∗1), . . . , gn(r∗n)]〉σ for some substi-

tution σ that instantiates at most the xi,j for i 6= d by terms from T (C(R) ∪
FLIA,V), the statement of the lemma thus follows.

The statement (†) is proved by induction on d − i. In the base case, i = d
and sd〈C[g1(r∗1), . . . , gn(r∗n)]〉JϕK is C[g1(r∗1), . . . , gn(r∗n)]JϕK, i.e., it already has
the required form.

In the step case, i < d and the constrained term si〈C[g1(r∗1), . . . , gn(r∗n)]〉JϕK
is identical to fi(y

∗
i , si+1〈C[g1(r∗1), . . . , gn(r∗n)]〉, z∗i)JϕK. The inductive hypothesis

for i + 1 implies that there exists a simplification tree for the constrained term
si+1〈C[g1(r∗1), . . . , gn(r∗n)]〉JϕK such that all leaves in this tree have labels of the
form

E[si+1〈gj1(r∗j1)〉, . . . , si+1〈gjl(r∗jl)〉]Jϕ ∧ ψK

for a repeated fi+1-context EJψK with V(E) ⊆ V(C) ∪ V̂. Here, y∗i abbrevi-
ates xi,1, . . . , xi,ji−1 and z∗i abbreviates xi,ji+1, . . . , xi,mi . Thus, there also exists
a simplification tree for the constrained term si〈C[g1(r∗1), . . . , gn(r∗n)]〉JϕK such
that all leaves in this tree have labels of the form

fi(y
∗
i , E[si+1〈gj1(r∗j1)〉, . . . , si+1〈gjl(r∗jl)〉], z

∗
i)Jϕ ∧ ψK

By Lemma 53, there exists a simplification tree for this constrained term such
that all leaves in this tree have labels of the form

D[fi(y
∗
i , si+1〈gd1(r∗d1)〉, zi), . . . , fi(y∗i , si+1〈gde(r∗de)〉, z

∗
i)]Jϕ ∧ ψ ∧ ψ′K

for a repeated fi-context DJψ′K such that V(D) ⊆ V(E)∪V̂ ⊆ V(C)∪V̂. Observ-
ing that these labels are of the required form D[si〈gd1(r∗d1)〉, . . . , si〈gde(r∗de)〉]Jϕ∧
θK finishes the proof. �

Proof of Theorem 58. Let D[f(x∗)] ≡ t be a simple nested conjecture and
consider a rule f(l∗) → C[f(r∗1), . . . , f(r∗m)]JϕK ∈ R(f). Provided f(x∗) and
f(l∗) are unifiable and ϕσ is LIA-satisfiable for σ = mgu(f(x∗), f(l∗)), applica-
tion of Expand to D[f(x∗)] ≡ t produces (amongst others) the atomic conjecture

32 Stephan Falke and Deepak Kapur

D[Cσ[f(r∗1)σ, . . . , f(r∗m)σ]] ≡ tσJϕσK. After application of Expand, the set H of
hypotheses consists of the rule D[f(x∗)]→ t.

By Lemma 55, there is a simplification tree for D[Cσ[f(r∗1)σ, . . . , f(r∗m)σ]]
such that all leaves of this tree have labels of the form

E[D[f(r∗d1)σ], . . . , D[f(r∗de)σ]]JψK

for some context E over C(R) ∪ FLIA. This simplification tree can be built by
suitable applications of Case-Simplify.

Now, if xi = xj for i < j, then 〈i, j〉 ∈ ImpEq(f). Since xi = xj implies
liσ = ljσ, the definition of ImpEq yields rdk,iσ = rdk,jσ for all 1 ≤ k ≤ e
similar to the reasoning in the proof of Theorem 42. Hence, Simplify applies e
times to the above conjecture using the hypothesis D[f(x∗)]→ t ∈ H to obtain
E[tτ1, . . . , tτe] ≡ tσJϕσ∧ψK, where τk = {x∗ 7→ r∗dkσ}. Since both sides are from
T (C(R) ∪ FLIA,V), either Theory> or Theory⊥ is applicable. �

Proof of Theorem 62. Adapt the proof of Theorem 58 in the same way the
proof of Theorem 42 was adapted to obtain the proof of Theorem 48. �

Rewriting Induction + Linear Arithmetic = Decision Procedure 33

References

1. Takahito Aoto. Dealing with non-orientable equations in rewriting induction.
In Frank Pfenning, editor, Proceedings of the 17th International Conference on
Rewriting Techniques and Applications (RTA ’06), volume 4098 of Lecture Notes
in Computer Science, pages 242–256. Springer-Verlag, 2006.

2. Takahito Aoto. Soundness of rewriting induction based on an abstract principle.
IPSJ Digital Courier, 4:58–68, 2008.

3. Alessandro Armando, Michaël Rusinowitch, and Sorin Stratulat. Incorporat-
ing decision procedures in implicit induction. Journal of Symbolic Computation,
34(4):241–258, 2002.

4. Franz Baader, editor. Proceedings of the 19th International Conference on Auto-
mated Deduction (CADE ’03), volume 2741 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2003.

5. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

6. Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided Ver-
ification (CAV ’07), volume 4590 of Lecture Notes in Computer Science, pages
298–302. Springer-Verlag, 2007.

7. Adel Bouhoula. Automated theorem proving by test set induction. Journal of
Symbolic Computation, 23(1):47–77, 1997.

8. Adel Bouhoula and Florent Jacquemard. Automated induction with constrained
tree automata. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Proceedings of the 4th International Joint Conference on Automated Rea-
soning (IJCAR ’08), volume 5195 of Lecture Notes in Artificial Intelligence, pages
539–554. Springer-Verlag, 2008.

9. Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press,
1979.

10. Robert S. Boyer and J Strother Moore. Integrating decision procedures into heuris-
tic theorem provers: A case study of linear arithmetic. In Machine Intelligence 11,
pages 83–124. Oxford University Press, 1988.

11. Alan Bundy. The automation of proof by mathematical induction. In J. Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 1, chapter 13, pages 845–911. Elsevier Science Publishers, 2001.

12. Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: Meta-
Level Guidance for Mathematical Reasoning. Cambridge University Press, 2005.

13. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Thomas Ball and Robert Jones, editors, Proceedings of the 18th
Conference on Computer Aided Verification (CAV ’06), volume 4144 of Lecture
Notes in Computer Science, pages 81–94. Springer-Verlag, 2006.

14. Stephan Falke. Term Rewriting with Built-In Numbers and Collection Data Struc-
tures. PhD thesis, University of New Mexico, Albuquerque, NM, USA, 2009.

15. Stephan Falke and Deepak Kapur. Inductive decidability using implicit induction.
In Miki Hermann and Andrei Voronkov, editors, Proceedings of the 13th Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR ’06), vol-
ume 4246 of Lecture Notes in Artificial Intelligence, pages 45–59. Springer-Verlag,
2006.

16. Laurent Fribourg. A strong restriction of the inductive completion procedure.
Journal of Symbolic Computation, 8(3):253–276, 1989.

34 Stephan Falke and Deepak Kapur

17. Jürgen Giesl and Deepak Kapur. Decidable classes of inductive theorems. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of the
1st International Joint Conference on Automated Reasoning (IJCAR ’01), volume
2083 of Lecture Notes in Artificial Intelligence, pages 469–484. Springer-Verlag,
2001.

18. Jürgen Giesl and Deepak Kapur. Deciding inductive validity of equations. In
Baader [4], pages 17–31.

19. John V. Guttag and James J. Horning. The algebraic specification of abstract data
types. Acta Informatica, 10:27–52, 1978.

20. Christian Haselbach. Transformation techniques to verify imperative and func-
tional programs. Diplomarbeit, Fachgruppe Informatik, Rheinisch-Westfälische
Technische Hochschule Aachen, Germany, 2004.

21. Gérard P. Huet and Jean-Marie Hullot. Proofs by induction in equational theories
with constructors. Journal of Computer and Systems Sciences, 25(2):239–266,
1982.

22. Dieter Hutter and Claus Sengler. INKA: The next generation. In Michael A.
McRobbie and John K. Slaney, editors, Proceedings of the 13th International Con-
ference on Automated Deduction (CADE ’96), volume 1104 of Lecture Notes in
Computer Science, pages 288–292. Springer-Verlag, 1996.

23. Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo
a set of equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.

24. Jean-Pierre Jouannaud and Emmanuel Kounalis. Automatic proofs by induction
in theories without constructors. Information and Computation, 82(1):1–33, 1989.

25. Deepak Kapur, Jürgen Giesl, and Mahadevan Subramaniam. Induction and deci-
sion procedures. Revista de la Real Academia de Ciencias, Serie A: Matemáticas,
98(1):153–180, 2004.

26. Deepak Kapur and David R. Musser. Proof by consistency. Artificial Intelligence,
31(2):125–157, 1987.

27. Deepak Kapur, Paliath Narendran, and Hantao Zhang. Automating inductionless
induction using test sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.

28. Deepak Kapur and Mahadevan Subramaniam. New uses of linear arithmetic in
automated theorem proving by induction. Journal of Automated Reasoning, 16(1–
2):39–78, 1996.

29. Deepak Kapur and Mahadevan Subramaniam. Extending decision procedures with
induction schemes. In David A. McAllester, editor, Proceedings of the 17th Inter-
national Conference on Automated Deduction (CADE ’00), volume 1831 of Lecture
Notes in Artificial Intelligence, pages 324–345. Springer-Verlag, 2000.

30. Deepak Kapur and Hantao Zhang. An overview of Rewrite Rule Laboratory (RRL).
Computers & Mathematics with Applications, 29(2):91–114, 1995.

31. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, 2000.

32. Hirotaka Koike and Yoshihito Toyama. Inductionless induction and rewriting in-
duction. JSSST Computer Software, 17(6):1–12, 2000. In Japanese.

33. David R. Musser. On proving inductive properties of abstract data types. In
Proceedings of the 7th ACM Symposium on Principles of Programming Languages
(POPL ’80), pages 154–162. ACM Press, 1980.

34. Uday S. Reddy. Term rewriting induction. In Mark E. Stickel, editor, Proceedings
of the 10th International Conference on Automated Deduction (CADE ’90), volume
449 of Lecture Notes in Computer Science, pages 162–177. Springer-Verlag, 1990.

35. Barry K. Rosen. Tree-manipulating systems and church-rosser theorems. Journal
of the ACM, 20(1):160–187, 1973.

Rewriting Induction + Linear Arithmetic = Decision Procedure 35

36. Tsubasa Sakata, Naoki Nishida, Toshiki Sakabe, Masahiko Sakai, and Keiichirou
Kusakari. Rewriting induction for constrained term rewriting systems. IPSJ Trans-
actions on Programming, 2(2):80–96, 2009. In Japanese.

37. Sorin Stratulat. Combining rewriting with Noetherian induction to reason on non-
orientable equalities. In Andrei Voronkov, editor, Proceedings of the 19th Interna-
tional Conference on Rewriting Techniques and Applications (RTA ’08), volume
5117 of Lecture Notes in Computer Science, pages 351–365. Springer-Verlag, 2008.

38. Christoph Walther and Stephan Schweitzer. About VeriFun. In Baader [4], pages
322–327.

39. Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mechanizable
induction principle for equational specifications. In Ewing L. Lusk and Ross A.
Overbeek, editors, Proceedings of the 9th Conference on Automated Deduction
(CADE ’88), volume 310 of Lecture Notes in Computer Science, pages 162–181.
Springer-Verlag, 1988.

	2012,2_Titelbl
	report

