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Abstract: For coherent X-ray imaging of pure phase objects we study the
reliability of linear relations in phase-retrieval algorithms based on a single
intensity map after free-space propagation. For large phase changes and/or
large propagation distances we propose two venues of working beyond
linearity: Projection onto an effective, linear and local model in Fourier
space and expansion of intensity contrast in powers of object-detector
distance. We apply both algorithms successfully to simulated data.
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1. Introduction

Third-generation synchrotron light sources produce brilliant photon beams of spatial and tem-
poral coherence properties at the sample which are suitable for routine application of phase-
sensitive X-ray imaging methods. Within low-Z samples of low atomic number density (poly-
mers, soft biological tissue, etc.), the attenuation of highly energetic X-rays is weak, thus yield-
ing poor absorption contrast. However, such samples introduce sizable phase shifts to X-ray
wave fronts creating intensity contrast [1] downstream of the object due to a free-space prop-
agated transmission function [2–5]. Notice that phase contrast can be 103 times larger than
absorption contrast [6].

The present work reports on two novel and complementary theoretical approaches address-
ing the nonlinear, noniterative, and single-distance phase-retrieval problem. Their usefulness is
demonstrated by numerical experiments: For pure-phase objects, parallel-beam geometry [7],
and in Fresnel diffraction theory we consider the regime where the approximation of a lin-
ear and local relation between the phase shift φz=0 in the object-exit plane and intensity Iz at
a finite object-detector distance z is inapplicable. This happens for large relative phase shifts
and/or large z values (former relevant to phase-sensitive imaging, e.g., of biological organisms,
latter occurring, e.g., in measurements with bulky sample environments). That is, the relation
between φz=0 and Iz can be nonlinear and nonlocal because relative phase shifts in the object
plane or the value of z, where intensity is measured, or both are large.

2. Review of linear approaches

Let us briefly review two widely used linear relations between φz=0 and Iz pointing out their
strengths and limitations. In the small-z limit the transport-of-intensity equation (TIE) (imagi-
nary part of the paraxial equation [5, 8]) leads to the approximation

gz(�r)≈− z
k

∇2
⊥φz=0(�r) . (1)

Here gz(�r) ≡ Iz(�r)
Iz=0

− 1 is the intensity contrast,�r a vector in the plane transverse to the optical

axis, ∇⊥ the associated planar nabla operator, k ≡ 2πE
hc denotes the wave number of the incident

monochromatic X-rays, and h, c are Planck’s quantum of action, speed of light in vacuum,
respectively. Moreover, E = hν is the energy of a photon associated with a wave of frequency
ν . In the following we refer to phase retrieval based on Eq. (1) as linearized TIE because of the
truncation at linear order in z of the Taylor expansion of I(z) in the TIE. (This allows to express
∂zI(z) at z = 0 linearly in terms of g(z) yielding Eq. (1).) Equation (1) states that out of a given
phase map behind the object intensity contrast strengthens with increasing distance z. In the
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small-relative-phase limit,
∣
∣
∣φz=0

(

�r− πz
k
�ξ
)

−φz=0

(

�r+
πz
k
�ξ
)∣
∣
∣� 1 , (2)

where �ξ is the Fourier conjugate to �r, an important nonlinear and nonlocal relation between
the autocorrelation of the object’s transmission function ψz=0(�r) and the 2D Fourier transform
(F Iz)(�ξ ) [9]

(F Iz)(�ξ ) =
∫

d2r exp(−2πi�r ·�ξ )ψz=0

(

�r− πz
k
�ξ
)

ψ∗
z=0

(

�r+
πz
k
�ξ
)

(3)

simplifies to yield the linear contrast-transfer function [10–14]. Notice that relation (3) is tied to
Fresnel diffraction theory, the Fraunhofer limit of the paraxial approximation would yield a dif-
ferent relation between ψz=0(�r) and (F Iz)(�ξ ). Notice also that condition (2) is required to facil-

itate the truncation at linear order of the exponential of i
(

φz=0

(

�r− πz
k
�ξ
)

−φz=0

(

�r+ πz
k
�ξ
))

.

This exponential arises upon substituting ψz=0 =
√

Iz=0eiφz=0 into Eq. (3).
The position-space version of the contrast-transfer function reads

gz(�r)≈−2

[
∞

∑
i=1

1
(2i−1)!

( z
2k

)2i−1
(∇2

⊥)
2i−1

]

φz=0(�r) . (4)

Again, relation (2) must hold for all�r and �ξ to guarantee the validity of Eq. (4).
In Fourier space relation (4) reads

(F gz)(�ξ ) = 2 sin

(

2
π2z
k

�ξ 2
)

(F φz=0)(�ξ ) , (5)

and we will refer to phase retrieval based on Eq. (5) simply as CTF. Truncating the power-series
expansion of the sine at linear order, yields the Fourier-space version of Eq. (1). Thus Eq. (4)
reduces to Eq. (1) in the limit of small values of z

k
�ξ 2

max where |�ξ |max =
1

2Δx is the upper cutoff for
transverse spatial frequency set by the effective linear pixel size Δx of the detector.

Figures 1(b), 1(c), and 1(d) depict function log |F gz|(�ξ ) based on the standard Lena test
pattern φz=0(�r) of Fig. 1(a), scaled to a maximal phase shift φmax = 0.01, 1, 6, respectively. The
frame-like structure in log |F gz|(�ξ ) is due to the Gaussian-blurred transition from the zero-
padded region to the actual phase map, see Fig. 1(a), and truncation rods occur (crosses centered
at origin). Notice the decrease in visibility of the sinusoidal, radial modulation (rings of minima)
from Figs. 1(b) to 1(d). This indicates the failure of CTF at large φmax. Phase retrieval then is
affected by quasiperiodic texture superimposed onto the exact phase map, see Figs. 2(b), 2(c):
While Eq. (5) expects a sinusoidal modulation of (F gz)(�ξ ) this modulation does not occur at
large φmax. As a result, the zeros of the sine in Eq. (5) artificially enhance the spectrum of φz=0

by simple poles in �ξ 2. Since |F gz|(�ξ ) decays towards large |�ξ | the dominating effect comes
from the singularities associated with the most central ring of minima. Upon inverse Fourier
transformation this yields in transverse position space a 2D quasiperiodic artifact of wavelength
√

2πz
k . The amplitude of these quasioscillations rapidly grows with increasing φmax. In contrast

to that, quasiperiodic artifacts are absent in linearized TIE, compare Figs. 2(c) and 2(d). For
small relative phase shifts Fig. 2(a) demonstrates the superiority of CTF over linearized TIE.
When increasing φmax this is no longer true, see Figs. 2(b) and 2(c).

Condition (2) can also be satisfied for large φmax if z � kΔx√
2π|∇⊥φz=0|max

where the maximum

of |∇⊥φz=0| is taken over the entire field of view. Thus Eq. (4) is valid at large phase shifts
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(a) Exact 2D phase map. (b) log |F gz| at
φmax = 0.01.

(c) log |F gz| at φmax = 1. (d) log |F gz| at φmax = 6.

Fig. 1. (a) exact 2D zero-padded phase map (Lena test pattern) as input for intensity com-
putation by free-space propagation; (b), (c), and (d): intensity contrast in Fourier space,
log |F gz|(�ξ ), with maximal phase shift φmax for E = 10keV and z = 50cm. The colorbar
relates to (b), (c), and (d) only. The effective linear pixel size Δξ in Fourier space is given
as Δξ = 1

MΔx where Δx denotes the effective linear pixel size of the detector, and M is the
linear number of pixels. The yellow line in (a) depicts the line cut relating to the presenta-
tions in Figs. 2(a) and 2(b). The linear extents of the 2D position-space maps in Figs. 2,3,4,
and 5 are all set by the yellow line in (a).

when using sufficiently small values of z. In practice this may or may not be an option consid-
ering constraints imposed by a limited exposure time (imaging of processes, dose restriction,
detector dynamics) and/or a bulky sample environment. Small exposure times imply large sta-
tistical noise beating the weakly developed intensity contrast at small z. To investigate this we
introduce Poisson noise to the computed intensity at each pixel before phase retrieval. We use
a mean value of Nc times the computed, noise-free intensity ratio Iz/Iz=0 where Nc is the ex-
pected number of photons detected by a pixel. At Iz/Iz=0 ∼ 1 and Nc = 8000 this yields ∼ 1%
noise which we employ from now on. In Figs. 3(a) and 3(b) results of CTF for two distinct dis-
tances and energies are shown. Compared to Fig. 3(b) no large texture artifact occurs in Fig. 3(a)

because CTF acts like a linearized TIE retrieval: sin
(

2 π2z
k
�ξ 2

)

∼ 2 π2z
k
�ξ 2 for all �ξ . Notice, how-

ever, the importance of noise artifacts due to the small propagation distance. Figure 3(b) depicts
CTF at z = 50cm and E = 10keV where noise effects are marginal but a large texture artifact
occurs. On the other hand, linearized TIE at z= 50cm and E = 10keV yields reasonable results
but suffers from a limited resolution, compare Fig. 3(c) with Fig. 3(a).

3. Nonlinear, noniterative approaches

The above discussion indicates the need for nonlinear approaches to the retrieval of large rela-
tive phases.

3.1. Quasiparticle approach

One way to work beyond fundamental linearity is to appeal to an effective linear and local
model in Fourier space. Namely, we propose a modified CTF retrieval, dubbed projected CTF,
in the following sense: Artificial peaks in the spectrum of φz=0 introduced by CTF are re-
moved by considering an intensity contrast which is filtered in Fourier space, (F̃ gz)(�ξ ) ≡
Θ
(∣
∣
∣sin

(
2π2z

k
�ξ 2

)∣
∣
∣− ε

)

· (F gz)(�ξ ). Here 2π2z
k
�ξ 2 > π

2 , Θ denotes the Heaviside step function,

ε is the threshold for this binary filter (0≤ ε < 1), and on the left-hand side of Eq. (5) (F gz)(�ξ )
is replaced by (F̃ gz)�(ξ ). Let us discuss two physical aspects of projected CTF. First, to assure
the absence of singularities in the effective phase F φz=0 the above binary filtering is used.
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(a) Line cuts for φmax = 0.01: exact, CTF, linearized
TIE.

(b) Line cuts for φmax = 1: exact, CTF, linearized TIE.

(c) 2D CTF phase map using φmax = 6. (d) 2D linearized TIE phase map using φmax = 6.

Fig. 2. Linear phase retrieval from the computed intensity associated with Figs. 1(b), 1(c),
see (a), (b), and 1(d), see (c), (d). Since the retrieved phase is undetermined up to an additive
constant we subtract mean values to compare exact and retrieved phase. For φmax = 6, see
Fig. 2(c), a line-cut presentation of CTF as in Figs. 2(a), 2(b) no longer is adequate since
the texture fluctuations have a very large amplitude, compare with 2(d) where linearized
TIE was applied yielding reasonable retrieval at reduced resolution.

(a) 2D CTF phase map at z = 10cm,
E = 30keV; no ring of minima in
|F gz|(�ξ ).

(b) 2D CTF phase map at z = 50cm,
E = 10keV; twelve rings of
minima in |F gz|(�ξ ).

(c) 2D linearized TIE phase map at
z = 50cm, E = 10keV.

Fig. 3. 2D phase maps from linear retrieval subject to intensity computed at φmax = 1. In-
tensity is subject to Poisson noise.
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(a) log |F̃ gz| at ε = 0.01. (b) 2D projected CTF phase map at
ε = 0.01.

(c) 2D projected CTF phase map at
ε = 0.99.

Fig. 4. Intensity contrast in Fourier space after binary filtering with threshold ε and retrieved
phase maps at φmax = 1, z = 50cm, E = 10keV. Intensity is subject to Poisson noise.

Second, the use of a local relation between (F̃ gz)(�ξ ) and (F φz=0)(�ξ ) renders the latter an
effective quantity. Namely, nonlinear effects in the forward propagation of the exact phase
fundamentally imply a nonlocal relation between the Fourier transform of the latter and F gz.
Exemplarily, this can be checked by truncating at quadratic order the expansion of the exponen-
tial of phase after substitution of ψz=0 =

√
Iz=0 exp(iφz=0) into Eq. (3). The resulting relation

between F Iz and Fφz=0 is (by construction) nonlinear and (by the Fourier convolution theo-
rem) nonlocal. As a result, a �ξ dependent rescaling between the Fourier transform of the exact
phase and F φz=0 as retrieved from our modified, local version of Eq. (5) occurs. But for phase
retrieval in transverse position space, an inverse Fourier transformation needs to be applied
which averages out spurious spectral information contained in F φz=0. According to our simu-
lations, the result indeed is close to the exact phase. An analogy is the successful quasiparticle
concept in the quantum theory of condensed-matter physics and quantum field theory where a
free dispersion law is altered by strong interactions yielding a free quasiparticle. In our case, the
concept of a quasiparticle translates into the linear and local relation between effective phase
and filtered intensity while the average over particle momenta in some normalized derivative of
the partition function is analogous to inverse Fourier transformation. Namely, an�r dependent
‘action’ S�r ≡ 2π�ξ ·�r is used to define the partition function Z�r as Z�r ≡ tr exp(iS�r) where the
trace symbol is understood as a sum over all wave-vector states. We stress that projected CTF
is nonperturbative. Figure 4(a) depicts log |F̃ gz| at ε = 0.01. Comparison of Figs. 4(b) and
4(c) reveals that an increase of resolution is traded for an increase of the texture artifact when
decreasing the threshold ε . Projected CTF essentially improves CTF, compare Fig. 3(b) with
Figs. 4(b), 4(c). Notice that in the limit ε → 1 projected CTF yields results that are similar to
those of linearized TIE, compare Fig. 4(c) with Fig. 3(c).

3.2. Perturbation theory

Let us now consider another nonlinear phase-retrieval algorithm which, in contrast to CTF,
is perturbative. Namely, expanding the intensity contrast as gz(�r) ≡ ∑N

i=1 g(i)(�r)zi, the idea is
to determine coefficient g(1)(�r) as precisely as possible to solve g(1)(�r) = − 1

2k ∇2
⊥φz=0(�r), see

Eq. (1). In [15] g(1)(�r) is extracted from a fit to a stack of intensity measurements {Izi |i =
1, · · · ,N} the better the larger N is. In [16] a theoretical alternative to that approach, which
only uses a single-distance intensity map, was proposed: All coefficients g(i)(�r) are, by virtue
of the full paraxial equation, expressed by 2i transverse derivatives, appearing in terms that are

#144569 - $15.00 USD Received 21 Mar 2011; revised 17 May 2011; accepted 23 May 2011; published 7 Jun 2011
(C) 2011 OSA 20 June 2011 / Vol. 19,  No. 13 / OPTICS EXPRESS  12071



(a) For CTF. (b) For projected CTF at
ε = 0.5.

(c) For linearized TIE. (d) For linearized TIE +
PNLO.

Fig. 5. 2D maps of the modulus of the difference between exact and retrieved phase. Param-
eter values are φmax = 6, z = 50cm, E = 10keV, and intensity is subject to Poisson noise.
The colorbar applies to all images.

linear and nonlinear in φz=0. Truncating the expansion at N ≥ 2, one obtains a nonlinear partial
differential equation (PDE) for φz=0 subject to the single-distance source term gz(�r) [16]. At
N = 2 or next-to-leading order (NLO) the explicit expansion of gz(�r) reads [16]

gz(�r)≈− z
k

∇2
⊥φz=0(�r)+

z2

2k2

[
(

∇2
⊥φz=0

)2
+

1
2

∇2
⊥ (∇⊥φz=0)

2 +
(

∇⊥∇2
⊥φz=0

) ·∇⊥φz=0

]

. (6)

To approximate the solution φz=0 to the nonlinear PDE (6) perturbatively is to solve it at lead-
ing order N = 1, to use this solution in estimating the next-to-leading order (we refer to the
result as PNLO), and to finally invert the Laplacian on − k

z (gz(�r)−PNLO) [16]. This type of
nonlinear phase retrieval is dubbed linearized TIE + PNLO. As Fig. 5 indicates linearized TIE +
PNLO is useful at very large relative phase shifts. Obviously, CTF yields unacceptable results.
Comparing Figs. 5(d) and 5(c), linearized TIE + PNLO improves linearized TIE within regions
where the phase varies sufficiently slowly, compare also with [16]. This lowers the mean re-
trieval error per pixel by about 40%. Comparing linearized TIE + PNLO with projected CTF,
see Fig. 5(d) and Fig. 5(b), the mean retrieval error per pixel in the former is reduced by about
42% w.r.t. the latter. Linearized TIE + PNLO, however, may artificially hollow regions which
are bounded by strong phase slopes (transition across Lena’s eyes). Finally, let us remark that
PNLO can be modified to PNLO′ by using CTF to estimate the nonlinear terms in Eq. (6) [17].
In simulations we see that CTF + PNLO′ works whenever CTF already is excellent (typically
for φmax < 0.01). Practically, this is irrelevant because of the smallness of the correction PNLO′.
For φmax ≥ 0.1 PNLO′ exhibits large texture artifacts.

4. Summary

To summarize, we have proposed two nonlinear, noniterative single-distance phase-retrieval
algorithms. In analogy to the quasiparticle approach in strongly coupled systems [18], an ef-
fective phase in Fourier space, satisfying certain minimal requirements, assures at moderately
large phase shifts an essential improvement over fundamentally linear methods. Alternatively,
we have considered a perturbative approach [16] to the power-series expansion of intensity con-
trast [15] which works well for very large phase shifts. Our results could be useful for static
phase-contrast imaging, but they also are applicable to the imaging of structure dynamics in
nonabsorbing materials for which single-distance retrieval is essential. This extends to the case
of weak and quasistatic absorption: An absorption image Iz=0 would be taken to define intensity
contrasts {gz} for a sequence of images recorded at a single distance z > 0, think of the quick
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motion of nonabsorbing air bubbles inside a quasistatic, absorbing frame containing a nonab-
sorbing fluid. Another way of including absorption effects in single-distance phase retrieval is
to make the assumption that φz=0 = αBz=0 in ψz=0 =

√
Iz=0 exp(iφz=0 −Bz=0), compare with

Eq. (3). Here α is a real constant that is known a priori, see for example [19].
Let us briefly compare our noniterative, single-distance, nonlinear phase-retrieval algorithms

with iterative nonlinear methods, see [20]. First, iterative methods employ a sequence of
forward-backward propagations. Backward propagation is simply implemented in case of the
full Helmholtz theory (elementary wave fronts are spherical) and the Fraunhofer far-field ap-
proximation of the paraxial theory (elementary wave fronts are scaled 2D planes). In Fresnel
theory the backward-propagation part is problematic since the theory is not symmetric under
z→−z (elementary wave fronts are paraboloids). We insist on Fresnel theory because in Fraun-
hofer theory the Fourier transform of intensity at z, F Iz, is related to the integral (and not the
Fourier transform) of the autocorrelation of the object function ψ0 over the object plane. This
implies that, unlike in Fresnel theory, the small-relative-phase condition (2) does not yield a
linear relation between F Iz and Fφz=0. Namely, the lowest-order relation between φz=0 and
F Iz is

(F Iz)(�ξ )− Iz=0δ (2)(�ξ )
Iz=0

=

∫

d2r φz=0

(

�r− πz
k
�ξ
)

φz=0

(

�r+
πz
k
�ξ
)

.

This nonlinear relation is not local which makes it rather useless for noniterative, numerically
inexpensive algorithms. In the full Helmholtz theory the situation is even worse. Second, for
single-distance, iterative methods a certain amount of priori knowledge on the object is required
which we would not like to rely on. Usually, the sparser this information is the slower is the
convergence process in single-distance iterative phase retrieval [20]. Also, the slow conver-
gence of iterative algorithms may turn out to be fatal for real-time imaging. Because projected
CTF and linearized TIE + PNLO are computationally inexpensive and do not require a priori
information they represent promising alternatives.

The present work should be relevant for soft-matter and life sciences. In fact, preliminary
experimental results on the propagation phase contrast induced by Xenopus (African Clawed
Frog) embryos show that CTF is not applicable and indicate that projected CTF indeed yields
a substantial improvement over linearized TIE [21] in terms of spatial resolution.
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