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Abstract: The discontinuous Galerkin time-domain method (DGTD)
is an emerging technique for the numerical simulation of time-dependent
electromagnetic phenomena. For many applications it is necessary to
model the infinite space which surrounds scatterers and sources. As a
result, absorbing boundaries which mimic its properties play a key role
in making DGTD a versatile tool for various kinds of systems. Popular
techniques include the Silver-M̈uller boundary condition and uniaxial
perfectly matched layers (UPMLs). We provide novel instructions for
the implementation of stretched-coordinate perfectly matched layers in a
discontinuous Galerkin framework and compare the performance of the
three absorbers for a three-dimensional test system.
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1. Introduction

Numericalsimulations are essential tools to support electromagnetic and photonic experiments.
Of all the available algorithms, the Finite-Difference Time-Domain (FDTD) method [1] is most
often employed to obtain theoretical predictions. However, a couple of issues reduce the appli-
cability of FDTD. As it relies on the structured Yee grid, the algorithm does not provide a
natural way of dealing with material interfaces. Oblique and curved surfaces are subject to the
stair casing effect and lead to significant error contributions. Together with the modest second-
order accurate discretization in both time and space, this leads to demanding and challenging
simulations for many systems.

The discontinuous Galerkin time-domain (DGTD) method is an emerging alternative to
the established FDTD algorithm [2, 3]. It combines key features of finite volume and higher-
order finite element methods to an explicit time-stepping scheme. Numerous extensions, often
adapted from techniques originally created for FDTD, are available [4–7] and render DGTD a
universal tool for complex electromagnetic systems [8,9].

Limited computational resources (processor time, random access memory) invariably re-
quire the truncation of the physical world to the computational domain. The boundary of the
computational domain is usually artificial, i.e., not present in the physical model, and requires
special treatment in order not to contaminate the numerical results. A common problem is that
the boundary should be transparent to outgoing radiation. In particular, there should be no re-
flections. Boundary conditions which approximate this behavior are called absorbing boundary
conditions (ABCs). Two complementary approaches exist.

First, one can directly enforce physical boundary conditions which support outgoing radia-
tion modes but suppress reflected ones. Strategies which follow this route are called analytical
ABCs (AABCs). Even though higher-order schemes are available [10], in practice one usu-
ally employs lower order approximations of AABCs. While being relatively straightforward to
implement, they suffer from mediocre performance for oblique incidence and small distances
between the radiation source and the boundary [1].

As an alternative, B́erenger developed a novel technique in the mid 90’s [11]. His idea was to
divide the computational domain into a physical region, which is surrounded by a specially tai-
lored absorbing boundary layer. To this end, he introduced an unphysical splitting of the fields
in Maxwell’s equations. By cleverly defining additional material parameters in the boundary
layer, he was able to match the impedances of the materials in both the physical region and the
boundary layer. Thus, the interface between both is perfectly transparent for electromagnetic
waves of arbitrary frequency, polarization, and angle of incidence. Hence, he called the bound-
ary layer a perfectly matched layer (PML). Within the PML, propagating waves are attenuated.
Even though they are eventually reflected at the boundary of the computational domain, by
then they have been sufficiently suppressed to provide just an insignificant contribution to the
electromagnetic fields in the physical region (see Fig. 1).
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Fig. 1. Working principle of perfectly matched layers. Incident radiation is attenuated in
thePML region. At the boundary of the computational domain the light wave is reflected
and undergoes continued attenuation. Once it reenters the physical region, its amplitude
(typically suppressed by multiple orders of magnitude) no longer presents a significant
perturbation to the physical fields. Please note the absence of reflections at the interface
between the physical and the PML region.

Over the years, B́erenger’s original formulation was refined and generalized [1, 12–14]. To-
day, one usually implements PMLs either as an uniaxial anisotropic absorber (UPML) or inter-
prets them in terms of a complex stretching of the coordinate axes. Directions how to include
UPMLs in a DGTD framework have been known for some time [4, 5]. So far, however, corre-
sponding instructions and performance characteristics for the stretched-coordinate formulation
have not been reported in the literature.

In this paper we present a novel stretched-coordinate DGTD formulation to include PMLs.
Even though it is mathematically equivalent to the UPML formulation, it is advantageous as its
implementation is independent of material parameters. In particular, dispersive and nonlinear
materials can be terminated without additional computational effort. After providing details on
the numerical scheme we compare our implementation against a first-order accurate AABC
(Silver-Müller boundary condition) [15] and UPMLs.

2. Stretched Coordinates in Maxwell’s Equations

In a homogeneous medium plane waves propagate according to exp(i[~k ·~r−ωt]), where~k is
the wave vector andω the frequency of the wave. To achieve spatial damping either~k or~r has
to be a complex-valued vector. In 1994, Chew and Weedon proposed a coordinate stretching to
map real position vectors~r to the complex space [13]. We can include such a stretching into
Maxwell’s equations via the substitutions

∂
∂x

→
1
sx

∂
∂x

,
∂
∂y

→
1
sy

∂
∂y

,
∂
∂z

→
1
sz

∂
∂z

,

where we have introduced complex stretching factorssi . A choice commonly found in the
FDTD literature [1] is given by

si
(

ω
)

≡ κi −
σi

iω −αi
. (1)

This particular choice includes three real-valued parameters which can be tuned for optimum
performance. The main control parameter for the imaginary part ofsi is σi . For all σi = 0 we
retrieve the non-absorbing physical space as indicated in Fig. 1. A non-zero value ofαi shifts
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the pole fromω = 0 to the complex frequencyω = −iαi . Hence, this particular choice of the
stretching factor is referred to as complex frequency-shifted PML (CFS-PML). Finally,κi is
the main contribution to the real part. Instead of adding absorption to the coordinate transform,
κi > 1 effectively increases the width of the PML layer. This parameter plays an important role
for FDTD, where one often resorts to an equidistant grid. For DGTD, however, this parameter
is less relevant, since we can stretch the PML layer and the elements it consists of during the
generation of the mesh. Thus, we can assumeκi ≡ 1 without losing generality as compared to
FDTD.

In the following we will show how the inclusion of the stretching factor Eq. (1) modifies
Maxwell’s equations. For brevity, we restrict our discussion to the necessary changes to the
Ex component, for which the relevant Maxwell equation in dimensionless units (ε0 ≡ µ0 ≡ 1)
reads

−iωεEx
(

ω
)

=
1
sy

∂yHz
(

ω
)

−
1
sz

∂zHy
(

ω
)

.

Please note that the previous equation is a frequency-domain equation, where we have used the
sign convention

Ex
(

t
)

↔ Ex
(

ω
)

∂tEx
(

t
)

↔−iωEx
(

ω
) (2)

to Fourier transform between time- and frequency-domain quantities. By splitting

1
si

= 1+

(

1
si
−1

)

andintroducing two auxiliary fieldsGE
xy

(

ω
)

andGE
xz

(

ω
)

, we obtain

−iωεEx
(

ω
)

= ∂yHz
(

ω
)

−∂zHy
(

ω
)

−GE
xy

(

ω
)

−GE
xz

(

ω
)

,

GE
xy

(

ω
)

=−

(

1
sy

−1

)

·∂yHz
(

ω
)

,

GE
xz

(

ω
)

=

(

1
sz
−1

)

·∂zHy
(

ω
)

.

Now we insert the identity
1
si
−1 =

σi

iω − (σi +αi)

and multiply by the denominator, which yields

−iωGE
xy

(

ω
)

= σy∂yHz
(

ω
)

−
(

αy +σy
)

·GE
xy

(

ω
)

,

−iωGE
xz

(

ω
)

= −σz∂zHy
(

ω
)

−
(

αz+σz
)

·GE
xz

(

ω
)

.

Applying the transformation rule Eq. (2) finally leads to the time-domain formulation

ε∂tEx
(

t
)

= ∂yHz
(

t
)

−∂zHy
(

t
)

−GE
xy

(

t
)

−GE
xz

(

t
)

,

1
σy

∂tG
E
xy

(

t
)

= ∂yHz
(

t
)

−
αy +σy

σy
·GE

xy

(

t
)

,

1
σz

∂tG
E
xz

(

t
)

= −∂zHy
(

t
)

−
αz+σz

σz
·GE

xz

(

t
)

.

(3)

Similar equations for the other components of the electric field follow from cyclic permutations
of the coordinate axes. Expressions for the magnetic field can be obtained by straightforward
substitutions. Hence, Eq. (3) represents Maxwell’s equations in a stretched coordinate system.
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3. The Discontinuous Galerkin Method

Thederivation of the DG discretization for the stretched-coordinate formulation does not pro-
vide any conceptual difficulties. We briefly sketch the derivation and refer the reader to the
literature [2, 3, 5] for more details on the DG method. We start by reformulating Maxwell’s
equations with stretched-coordinate ADEs as the conservation law

Q∂tq+~∇ ·~F+S= 0. (4)

In contrast to the Maxwell problem in an unstretched space, the state vectorq must be extended
to include the auxiliary fields, i.e.,

q =
(

Ex, Ey, Ez,Hx,Hy,Hz, GE
xy, GE

xz, GE
yx, GE

yz, GE
zx, GE

zy, GH
xy, GH

xz, GH
yx, GH

yz, GH
zx, GH

zy

)T
.

Please note thatGE/H
i j denotes the auxiliary field which results from the modification of the

j-derivative for thei-component ofE or H, respectively. The material matrixQ is modified as
well and reads

Q = diag

(

ε, ε, ε, µ , µ , µ ,
1
σy

,
1
σz

,
1
σx

, . . . ,
1
σy

)

.

Finally, we define the components

Fx
(

q
)

=
(

0, Hz, −Hy, 0,−Ez, Ey, 0, 0, Hz, 0, 0,−Hy, 0, 0,−Ez, 0, 0, Ey)
T

Fy
(

q
)

=
(

−Hz, 0, Hx, Ez, 0,−Ex, −Hz, 0, 0, 0, Hx, 0, Ez, 0, 0, 0,−Ex, 0)T

Fz
(

q
)

=
(

Hy, −Hx, 0,−Ey, Ex, 0, 0, Hy, 0,−Hx, 0, 0, 0, Ey, 0,−Ex, 0, 0)T

of the flux vector~F = (Fx, Fy,Fz)
T and specify the source vector as

S=

(

GE
xy+GE

xz, . . . , GH
zx+GH

zy,
αy +σy

σy
GE

xy, . . . ,
αy +σy

σy
GH

zy

)T

.

Please note that~F is a vector with three components, where each component is a state vector
itself. Therefore, the divergence is defined in the usual fashion as~∇ ·~F≡ ∂xFx +∂yFy +∂zFz.

With the notation in place, we briefly go through the essential steps of the DG discretization.
First of all, we divide our computational domain into elements, e.g., tetrahedrons for three-
dimensional systems. Then, we restrict ourselves to a single element, where we multiply Eq.
(4) by a test functionLi and integrate over the volume of the element. Specifically, we choose
Li to be a Lagrange polynomial on the local element. Details on the polynomials and the dis-
cretization can be found in Ref. [3]. Subsequently applying Gauss’s law leads to

∫

V

(

Q∂tq ·Li −~F·~∇Li +S·Li

)

d3r = −

∫

∂V

(

n̂·~F
)

·Li d
2r ≡ 0,

wheren̂ is the outwardly directed normal vector on the surface of the element. Employing a
mathematical trick, we replace~F by~F∗, the numerical flux, and reverse the integration by parts.
This leads to

∫

V

(

Q ·∂tq+~∇ ·~F+S
)

·Li d
3r =

∫

∂V
n̂·
(

~F−~F∗
)

·Li d
2r ≡ 0,
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the strong formulation of Maxwell’s equations. In a final step, we expand the fields in terms of
theLagrange polynomials of orderp to obtain

ε∂tẼx = Dy · H̃z−Dz · H̃y−
(

G̃xy+ G̃xz
)

+M
−1

F ·
[

n̂·
(

~F−~F∗
)]

Ex
,

1
σy

∂tG̃xy = Dy · H̃z−
(

αy +σy
)

·Gxy+M
−1

F ·
[

n̂·
(

~F−~F∗
)]

Gxy
,

1
σz

∂tG̃xz = −Dz · H̃y−
(

αz+σz
)

·Gxz+M
−1

F ·
[

n̂·
(

~F−~F∗
)]

Gxz
.

(5)

Similar equations hold for the other fields. The spatial dependencies of the fields have been
absorbed into the mass matrixM , the derivative matricesDi , and the face matrixF , which act
on vectors of expansion coefficients denoted by a tilde. The definition of these matrices is given
in Ref. [5]. As with the divergence, the operationn̂·

(

~F−~F∗
)

returns a vector with the dimension
of the state vector. Hence, the subscripts of this term refer to the expansion coefficients of
the corresponding component ofq. Equation (5) represents a coupled system of first order
differential equations. As such, the time-integration is easily and efficiently accomplished using
a fourth-order five stage low-storage Runge-Kutta scheme [16,17].

In order to incorporate Eq. (5) into a DG computer code, we still require an expression for the
numerical flux~F∗. In comparison to the standard Maxwell problem, additional, non-vanishing
components were added toFx, Fy, and Fz due to the presence of spatial derivatives in the
auxiliary equations. For this reason we have to find a modified expression for the numerical
flux.

4. The Split-Flux Formulation

The numerical flux is the remaining key ingredient of the DG discretization. It is responsible for
the exchange of information between adjacent elements and, as a result, crucial for the accuracy
and stability of the whole numerical scheme. For Maxwell’s equations, the upwind flux [2,3,18]

[

n̂ ·
(

~F−~F∗
)]

~E = n̂×
Z+ ·∆~H− n̂×∆~E

Z+ +Z−
(6)

hasbeen found most beneficial because it efficiently damps unphysical modes which may be
excited during a simulation. In Eq. (6) we have used the impedanceZ± =

√

µ±/ε± and the
field differences∆~E =~E+ −~E−, ∆~H = ~H+ −~H−. Quantities with a “-” represent values in the
local element while a “+” indicates values from the corresponding neighbor.

Ultimately, our new flux should be compatible with the established formulation. In particular,
the flux components relevant for the electric and magnetic field components should correspond
to the upwind case. Hence, we propose to use

[

n̂·
(

~F−~F∗
)]

~E = n̂×
Z+ ·∆~H− n̂×∆~E

Z+ +Z−
,

[

n̂·
(

~F−~F∗
)]

GE
i j

=
3

∑
k=1

εi jk ·n j

(

Z+ ·∆~H− n̂×∆~E
Z+ +Z−

)

k

as the numerical flux for the stretched-coordinate formulation of PMLs. Please note the use
of the Levi-Civita symbolεi jk . Analog expressions hold for the magnetic field components
and the respective auxiliary equations. An interesting analogy to Bérenger’s original split field
formulation surfaces in the identity

[

n̂·
(

~F−~F∗
)]

Ex
≡
[

n̂·
(

~F−~F∗
)]

Gxy
+
[

n̂ ·
(

~F−~F∗
)]

Gxz
.
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Instead of splitting the electromagnetic fields, our stretched-coordinate formulation relies on a
splitting of the numerical flux into two contributions. Hence, the term “split-flux formulation”
seems appropriate.

To validate our numerical scheme we consider a small test system not unlike the one pre-
sented later in section 7.1. We continuously illuminate a spherical object (ε = 2.25) of diam-
eter 2 (dimensionless units) with a plane wave of wavelengthλ = 2.5. Scattered radiation is
absorbed by a single layer of stretched-coordinate PMLs. The computational domain is ter-
minated by a perfect electric conductor. After simulating for 100,000 time units, i.e., 40,000
optical cycles, we conclude that our implementation is numerically stable. Correctness is later
shown by the performance comparisons in section 7.2.

5. Briefly on Other Absorbing Boundaries

In the upcoming sections we want to compare our new stretched-coordinate formulation against
established absorbing boundaries from the literature. To allow a better understanding we
quickly review two techniques.

5.1. Silver-M̈uller Boundary Condition

The Silver-M̈uller (SM) boundary condition (BC) [15] is a first-order AABC. In contrast to
volume absorbers like PMLs, the SMBC is an actual boundary condition. Most conveniently,
it can be implemented in a DG code by modifying∆~E and∆~H for elements with missing
neighbors [5]. As a result, this boundary condition does not require additional storage or com-
putational time. Since it is basically a finite distance approximation of the radiation condition,
its accuracy, however, crucially depends on the distance between the radiation source, e.g., a
scatterer, and the boundary. As a result, there is a trade-off between accuracy and computational
overhead due to the simulation of additional space.

5.2. Uniaxial Perfectly Matched Layers

Another way to implement the PML concept is the uniaxial perfectly matched layer approach
(UPML) [4, 5]. In essence, the computational domain is enclosed by a surface layer which is
filled with an anisotropic material. In particular, the material parameters are given by

ε = Λε, µ = Λµ , Λ = diag

(

sysz

sx
,

sxsz

sy
,

sxsy

sz

)

.

Thecommon choice ofsi is [1,4,5]

si = 1−
σi

iω
,

which is identical to Eq. (1) forα = 0. Common DG implementations rely on auxiliary differ-
ential equations. For example, the modified equations forEx read

ε∂tẼx = Dy · H̃z−Dz · H̃y + ε
(

σx−σy−σz
)

· Ẽx− P̃x +M
−1

F ·
[

n̂·
(

~F−~F∗
)]

Ex
,

∂tP̃x =
(

σ2
x −σxσy−σxσz+σyσz

)

· εẼx−σxP̃x.
(7)

In this formulation, UPMLs can be used to terminate dielectric materials. For a correct treat-
ment of dispersive materials additional auxiliary equations are required. In any case, however,
the numerical flux is not changed by the UPML formulation as compared to the standard
Maxwell case.
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6. Computational Effort

Apparently, the inclusion of CFS-PMLs in Maxwell’s equations (5) leads to the rather sig-
nificant overhead of two auxiliary fields per electromagnetic field component. In comparison,
the UPML formulation Eq. (7) requires only one auxiliary field per field component. Please
note, however, that the auxiliary fields in both formulations can be omitted in regions where no
complex stretching is present, i.e.,σi = 0.

Furthermore, the stretched-coordinate formulation features matrix-vector products in the
auxiliary equations. Hence, the computational effort to calculate the right-hand sides of Eq. (5)
is significantly higher than that of the corresponding scalar operations in Eq. (7). On the other
hand, the stretched-coordinate formulation intrinsically supports dispersive materials, which
are usually implemented via auxiliary polarization currents. The UPML formulation requires
additional auxiliary fields to combine dispersive materials and PML regions. In total, the com-
putational costs of the stretched-coordinate formulation exceed those of the UPML method.
Nevertheless, it offers a systematic treatment of dispersive materials and allows to employ com-
plex frequency-shifting, which may be important for quite a few systems of interest.

7. Performance Comparison

The previous sections have discussed three different methods to absorb outgoing radiation. Both
Silver-Müller absorbing boundaries and UPMLs are established methods while our newly de-
veloped stretched-coordinate implementation has yet to prove its value. To this end, we conduct
a series of numerical experiments in order to assess the performance of each method.

7.1. Test Configuration

Our physical test system consists of a vacuum with a radiating point dipole located at the
origin. As no scatterers are present, outgoing radiation should propagate toward the infinity of
space. We model this physical problem by a cubic computational domain centered around the
origin. The computational domain consists of the actual domain of interest and a surrounding
boundary layer. The domain of interest is given by~r ∈ [−2.0, 2.0]3 in dimensionless units. The
boundary layer has a variable thickness of 0.5 · l , wherel is number of layers. A sketch of the
computational domain can be found in Fig. 2.

To avoid mesh-induced perturbations of the outgoing waves, regular meshes are used. To
this end, we divide the whole computational domain into small cubes of edge length∆x = 0.5.
In turn, each of these cubes is made up of five tetrahedrons (see Fig. 2). We further minimize
the mesh anisotropy by dividing the computational domain into eight sectors±x > 0,±y > 0,
±z> 0. Each cube is assigned to one of these sectors depending on thex-, y-, andz-coordinates
of its center. The exact configuration of the tetrahedrons which make up a cube is the same for
all cubes in a sector. The respective configurations for the other sectors follow by symmetry
operations.

We include the dipole source by means of the total-field/scattered-field method [1, 5]. The
injection surface surrounds the origin and was chosen to be as spherical as possible with the
given mesh (Fig. 2) to minimize numerical errors. The time-dependence of the dipole is given
by

~j
(

t
)

=

{

êz ·sin(ω0t) ·exp
(

−
(t−t0)

2

2w2

)

, 0≤ t ≤ 2t0
0, otherwise

whereêz represents the unit vector inz-direction. The excitation parameters in dimensionless
units are given byω0 = 0.4 ·2π, w = 1, andt0 = 5. We simulate this system for a total of 15
time units. During the simulation the time-dependence ofEz is recorded for each time stepti at
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Fig. 2. Setup of the test system. The left panel shows a surface mesh of the computational
domain.The red triangles indicate the extent of the boundary layer. The blue surface is
used for the injection of radiation as generated by an oscillating dipole located at the center
of the system. The volume mesh consists of a number of tetrahedrons, a few of which are
depicted in the right panel. As outlined in the text, five tetrahedrons make up a cube. For
better visibility, all tetrahedrons have been colored and shrunken.

three different observation points

~rA =
(

1.8,0.0,0.0
)

, ~rB =
(

1.8,1.8,0.0
)

, ~rC =
(

1.8,1.8,1.8
)

.

These points lie in close vicinity to the boundary layer. Hence, any distortions of the outgoing
waves due to the PMLs should be quite pronounced. The accuracy of the absorbing boundary
can be obtained by a simple comparison with a reference solution. Even though an analytical
reference is readily available, it is not suitable for our purpose. Each numerical simulation in-
troduces numerical errors via the spatial and temporal discretizations, which might overshadow
the influence of the boundary condition.

Instead, we perform another simulation on the much larger computational domain~r ∈
[−10.0, 10.0]3 terminated by a perfect electric conductor (PEC boundary condition). The mesh
is generated in the same fashion as outlined earlier. This system, too, is simulated for 15 time
units with the same time step as the smaller system. The light wave as emitted by the source
propagates to the boundaries of the system where it is reflected. The reflected wave travels to-
ward the center of the computational domain. As the speed of light in dimensionless units is
given by 1, a travel distance of 10 units from the center to the boundary guarantees that the field
at the observation points is not influenced by the reflected wave. Thus, the enlarged system
provides a reference solution which incorporates the same spatial and temporal discretization
errors as our performance test system.

Finally, we define the error of the absorbing boundary implementation as

Error
(

~rp
)

=

max
ti≤15

∣

∣Eabs
z

(

~rp, ti
)

−Eref
z

(

~rp, ti
)∣

∣

max
ti≤15

∣

∣Eref
z

(

~rp, ti
)∣

∣

, p = A, B,C.

This error measure represents the largest relative deviation between the reference simulation
(Eref

z ) and the one with an absorber (Eabs
z ), where we have taken the maximum over all time
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stepsti . To get a representative error measure for the whole computational domain, we define
the average error

E =
1
3

[

Error
(

~rA
)

+Error
(

~rB
)

+Error
(

~rC
)

]

.

7.2. Results

Using the setup described in the previous section we performed a number of simulations for
various parameters. For one boundary layer (l= 1), parameter scans for five different configu-
rations of absorbing boundaries were conducted. These configurations are classified as

• Only a Silver-M̈uller boundary condition without PMLs,

• UPMLs combined with a PEC boundary condition,

• UPMLs combined with a Silver-M̈uller boundary condition,

• Stretched-coordinate PMLs with a PEC boundary condition,

• Stretched-coordinate PMLs with a Silver-Müller boundary condition.

With the exception of the first (parameter-free) configuration, we varied the parameterσ in 51
steps. More precisely,σ was obtained via the formula

σ =
R
2d

, (8)

whered is the thickness of the PML layer andR is a parameter which was varied in the range
[0.0, 20.0] in steps of∆R= 0.4. Equation (8) is also used in the FDTD community, where it is
usually combined with a polynomial grading. Such a grading however, was previously shown
to have no beneficial impact on the PML error in a DGTD code [5]. Thus, we did not employ a
grading in our study. The stretched-coordinate formulation also allows us to tune the complex
frequency-shiftα, which we have varied in steps of∆α = 0.05 in the ranges[0.0, 1.0] (PEC)
and[0.0, 2.0] (Silver-Müller), respectively.

These calculations were repeated for the polynomial ordersp = 3, 4, 5, where higher or-
ders represent a finer spatial discretization. Additional simulations were performed forp = 3
with Silver-Müller boundary conditions, where we have investigated the influence of additional
layers of PMLs, i.e.,l = 2, 3. The results are depicted in Figs. 3 through 6.

Figure 3 shows the performance of the stretched-coordinate PML formulation in comparison
to UPMLs. The left panel shows the results for the computational domain being terminated
by PEC boundary conditions, while a Silver-Müller boundary condition was used in the right
panel. The averaged errorE (R,α) is mapped on a logarithmic color scale. For better visibility
each order of magnitude has been assigned a distinct color. Moreover, black lines represent
isocontours of the error in theR-α-plane. Thick lines indicate the orders of magnitude while
thin lines are isocontours defined by

log10E (R,α) ≡ 0.1·n,

wheren is an arbitrary integer. The parameter set with the minimum error is marked by a black
cross. For comparison with the UPML formulation we have added another isocontour (thick
blue line). Its level is given by the error from the optimum parameter set as determined from the
corresponding UPML simulations. Similarly, the error of the system without an absorbing layer,
but with a Silver-M̈uller boundary condition has also been included as a thick blue isocontour.
Please note that even though the last simulation does not require a boundary layer, we have kept
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Fig. 3. Performance of the stretched-coordinate formulation in comparison to UPMLs and
Silver-Müller boundary conditions forp = 3 and one layer of PMLs. The left panel shows
the average errorE for a test system terminated using the PEC boundary condition. The
right-hand side shows corresponding results with the PEC replaced by a Silver-Müller
boundary condition. Please note the logarithmic scales of the false color plots. For a de-
scription of the isocontours please refer to section 7.2.

the size of the computational domain the same for all simulations in Fig. 3. This guarantees a
fair comparison of the different techniques. Finally, the error of the SMBC and the minimum
errors of the UPML and the CFS-PML calculations are included in the respective colormaps.
This allows a quick quantitative overview on the performance of the various methods. The
panels in Figs. 4 through 6 are to be understood in this fashion, too.

The results for one layer of PMLs andp = 3, 4, 5 show quite a few similarities. For fixed
α, the variation ofR leads to strong variations of the error. IfR is too small, the PMLs do not
sufficiently absorb radiation, which is consequently (partly) reflected at the outer boundary of
the computational domain (see Fig. 1). IfR is too high, then the PMLs absorb radiation too fast,
i.e., the mesh cannot properly resolve the abrupt spatial change of the electromagnetic fields.
For extreme values ofR we would just observe a steep drop from a finite value to zero. This
situation would be comparable to a perfect electric conductor, inside of which electromagnetic
fields cannot exist. Hence, high values ofR lead to a numerically induced reflection from the
PML interface. The optimum value ofR balances both effects.

Furthermore, both UPMLs and our stretched-coordinate formulation considerably outper-
form the simple SMBC. However, combining the SM condition with PMLs helps to reduce
the error. At the same time, the error becomes less sensitive on the PML parameters. Since the
SMBC is easily implemented via the numerical flux, its usage is essentially for free and does
not introduce any computational overhead over PEC boundaries. Hence, we recommend to al-
ways accompany PMLs with a Silver-M̈uller boundary condition. For this case, table 7.2 lists
optimum parameter valuesR for various polynomial ordersp.

It is also obvious that the additional freedom in choosingα significantly reduces the error.
For p= 5 and Silver-M̈uller termination, the best error for the stretched-coordinate formulation
is one order of magnitude smaller than the corresponding UPML error (see Fig. 5). It should be
noted, though, that this impressive result strongly depends on the ratio between the wavelength
and the thickness of the PML. In experiments with other pulse parameters (increasedω0) we
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Fig. 4. Performance of the stretched-coordinate formulation in comparison to UPMLs and
Silver-Müller boundary conditions forp = 4 and one layer of PMLs. For a more detailed
explanation please refer to the caption of Fig. 3.
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Fig. 5. Performance of the stretched-coordinate formulation in comparison to UPMLs and
Silver-Müller boundary conditions forp = 5 and one layer of PMLs. For a more detailed
explanation please refer to the caption of Fig. 3.

observe thatα 6= 0 is only advantageous if the PML is small as compared to the wavelength of
the incident light. This result is consistent with the FDTD literature [1]. We also observe this
behavior in Fig. 6, where we have increased the size of the boundary region to two and three
layers. The optimum value forα is very close to 0 and the accuracy gains of the stretched-
coordinate formulation over the UPML formulation are quite small. Since the optimum value
of α crucially depends on the incident wavelength to PML width ratio, it is difficult to give
general recommendations.

A final lesson we can learn from Figs. 3 through 6 is that we can reduce spurious reflections
by improving the spatial discretization. Either we use higher-order Lagrange polynomials or we
increase the thickness of the PML layer. Both approaches effectively distribute more degrees of
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Fig. 6. Comparison of the PML performance for two and three layers andp= 3.For a more
detailed explanation please refer to the caption of Fig. 3.

Table 1.Optimal R-parameters for one layer of stretched-coordinate PMLs for various
orders p. The computational domain is terminated using a Silver-M̈uller boundary
condition. Please note that the optimal value of the complex frequency-shiftα depends
on the excitation and, thus, cannot be easily tabularized.

Order p Optimal R Minimal error E

3 6.8 6.2·10−4

4 8.0 2.2·10−4

5 8.4 6.6·10−5

freedom in the PML region. As a result, the evanescent decay of the incident radiation is much
betterresolved, and thus reflections due to an insufficient resolution are diminished.

7.3. Computational Efficiency

As we have seen in the previous section, stretched-coordinate PMLs can significantly suppress
the numerical errors introduced by the boundary of the computational domain. In this section
we provide some numbers on the associated computational overhead.

To this end, we measure the time required to simulate the test systems known from our previ-
ous studies. All systems are terminated by Silver-Müller boundary conditions. All simulations
are performed with third-order polynomials (p = 3) on a single core of an Intel® Core™ 2
Quad CPU (Q9300) running at 2.50GHz. CPU times are recorded for four systems. The first
one does not comprise any PMLs. The next ones feature single layers of UPMLs and stretched-
coordinate CFS-PMLs, respectively. The last one is surrounded by two layers of UPMLs. The
PML parameter values correspond to the best values in Fig. 3 and Fig. 6. Please note that for
these optimal parameters the error introduced by one layer of CFS-PMLs is approximately the
same as the error caused by two layers of UPMLs.

The resulting CPU times can be found in table 7.3. As compared to the single layer UPML
formulation, the stretched-coordinate formulation requires 19% more time for the same physi-
cal system. However, it provides more accurate results. On the other hand, two layers of UPMLs
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Table 2.Computational effort required for the simulation of various systems. The ta-
ble features a short system description (all systems terminated by SMBCs), the total
number of elementsNtotin the mesh, the number of PML elementsNPML in the mesh,
and the CPU time required to evolve the respective system for 15 time units (see sec-
tion 7.2). The next column compares the CPU time against the system without PMLs
and against the system with one layer of UPMLs. Finally, the last column provides an
error comparison for the different boundary conditions.
System Ntot NPML Time Relative time Error
No PMLs 5,000 — 132 s 100% / — 9.5·10−2

UPML, 1 layer 5,000 2,440 155 s +17% / 100% 2.0·10−3

CFS-PML, 1 layer 5,000 2,440 185 s +40% / +19% 6.2·10−4

UPML, 2 layers 8,640 6,080 279 s — / +80% 4.0·10−4

require 80% more time than the single layer computation, while providing only slightly more
accurateresults than the CFS-PML simulations. It should be noted, though, that in these sys-
tems an unusually large fraction of the mesh elements is filled with PMLs. In practice, the
relative number of PML elements is often below 10%, if one resorts to one layer of PMLs.

We conclude that stretched-coordinate PMLs are computationally more efficient than
UPMLs if 1) the ratio of wavelength to PML thickness is large, i.e., we have a setup where
the complex frequency-shiftα provides an advantage, and 2) one actually requires low PML
errors. In most other situations UPMLs should be sufficient.

8. Conclusion

We have presented a material-independent, stretched-coordinate based implementation of per-
fectly matched layers for the discontinuous Galerkin time-domain method for electrodynamics.
The numerical scheme employs auxiliary differential equations and introduces a split-flux for-
mulation to connect neighboring elements. A thorough investigation indicates that stretched-
coordinate PMLs are best used in conjunction with Silver-Müller absorbing boundary condi-
tions. In our test case, the new formulation yields a reflectivity which is up to one order of
magnitude smaller than that of the established UPML formulation. The reason behind this is
the increased flexibility due to the complex frequency shiftα, which helps to avoid reflections
for low-frequency waves. For many practically relevant systems, e.g., metamaterials, the ratio
of feature size to wavelength is considerably smaller than one. These systems will benefit most
from thin PMLs, and thus our novel stretched-coordinate formulation.
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