

 Karlsruhe Reports in Informatics 2012,4
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Complete Hierarchical Cut-Clustering:
A Case Study on Modularity and Expansion

Michael Hamann, Tanja Hartmann and Dorothea Wagner

 2012

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Complete Hierarchical Cut-Clustering: A Case Study on
Modularity and Expansion?

Michael Hamann, Tanja Hartmann and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)
mhamann@ira.uka.de, {t.hartmann, dorothea.wagner}@kit.edu

Abstract. We present a simple and efficient method for constructing a cut-
clustering hierarchy as introduced by Flake et al. Cut-clusterings excel by a
clearly indicated membership of the vertices to the clusters due to strong con-
nections inside the clusters compared to only weak connections outside. Their
coarseness depends on a parameter that provides a quality guarantee in terms of
expansion, which is NP-hard to compute. In this work we introduce a paramet-
ric search approach that guarantees the completeness of the resulting hierarchy
and supersedes the necessity of choosing feasible parameter values in advance or
applying a binary search to find those values. Our method is easy to implement
and in a brief running time experiment it turns out to be significantly faster than
a binary search. We further investigate the resulting clusterings with respect to
modularity, a quality measure widely used in practice. In this context we propose
a parameter-free approach that helps to estimate how well a graph can be gener-
ally clustered by cut-clusterings. With due regard to this estimation the algorithm
of Flake et al. competes surprisingly well with respect to reliable reference clus-
terings, although it is not designed to optimize modularity. Further experiments
focusing on the given guarantee on expansion exhibit that the actual expansion is
even better than guaranteed and compared to trivial bounds the guarantee consti-
tutes a true gain of knowledge.

1 Introduction

Clustering a graph means finding internally dense subgraphs, called clusters, that are
only loosely connected to the remainder of the graph. The growing interest in graph
clustering during the last decades has been driven by applications in physics and biol-
ogy as well as sociology and many other fields. Attempts of formalizing the properties
that characterize a set of good clusters resulted in a variety of different quality mea-
sures, which still affect the design of algorithms. Flake et al. [3], however, postulate a
different approach. They search for clusterings where the membership of the vertices
to a cluster is clearly indicated by strong connections inside the cluster while the con-
nections to other clusters are weaker, a condition not expressible by any of the previous
measures. This is what we call a tight clustering in the following. The strict behavior of
tight clusterings—not clearly assigned vertices remain unclustered—is desirable when-
ever it is essential that ambiguous cases are interpreted by human experts as for example

? This work was partially supported by the DFG under grant WA 654/15 within the Priority
Programme ”Algorithm Engineering”.

in sociology applications. Flake et al. introduce an algorithm that exploits properties of
minimum s-t-cuts in order to find a tight clustering depending on a parameter. This pa-
rameter controls the coarseness of the resulting clustering and constitutes a guarantee
on intra-cluster expansion, a common quality index, which is hard to compute. Different
parameter values result in at most n− 1 different clusterings, which form a hierarchy.
Having a hierarchy of tight clusterings at hand, it is then possible to choose the best
clustering with respect to any quality measure that suits a particular application.
Our Contribution. We characterize four different types of tight clusterings and in-
troduce the problem Tight Clustering, which asks for an optimal tight clustering of a
designated type with respect to a given quality measure. In this light we investigate the
behavior of the cut-clustering algorithm of Flake et al. We develop a simple paramet-
ric search approach for efficiently constructing a complete cut-clustering hierarchy and
provide a brief running time experiment in which our method outperforms a naive bi-
nary search, which contrariwise gives no guarantee on finding all different clusterings
in the hierarchy. We further conduct a comparative analysis of the modularity values
reachable by cut-clusterings. As reference we use a greedy modularity-based approach.
This, however, is not restricted to tight clusterings and thus benefits from a larger search
space. In order to assess the results as fair as possible we, hence, introduce a parameter-
free method that on the other hand helps to exclude the existence of tight clusterings
in instances of special shape. Our experiments demonstrate that the algorithm of Flake
et al. competes surprisingly well with respect to the objective of Tight Clustering and
modularity, and we reveal that the restriction to tight clusterings not necessarily causes
a substantial loss of modularity. Finally, we compare the guaranteed intra-cluster expan-
sion of the cut-clusterings to the expansion of the modularity-based references. Since
expansion is hard to compute, we consider lower bounds. Our study gives evidence
that trivial bounds do not match up to the given guarantee, and an analysis of special
non-trivial bounds further indicates that also the true expansion of the cut-clusterings
surpasses the modularity-based references.
Related Work. The cut-clustering algorithm of Flake et al. [3], CutC as a shorthand, is
the protagonist in our work. The notion of tight clusterings is introduced in [1], however,
there the clusters are called web-communities. The implementation of the modularity-
based reference algorithm, which is a greedy approach based on vertex moves [2], we
took from Lisowski [15]. The notion of modularity was introduces in [10], Montgolfier
et al. [7] study the asymptotic behavior of modularity in selected graph classes, which
helps us to explain some outlier results in our experiments. Apart from these, there is
a huge number of publications on clustering algorithms and quality measures, for an
overview see [8]. In our proofs we finally exploit some insights and lemmas on mini-
mum s-t-cuts that date back to Gomory and Hu [4] and Gusfield [5].

2 Preliminaries

Throughout this work we consider a simple, undirected, weighted graph G = (V,E,c)
with vertex set V , edge set E and a non-negative edge cost function c. In unweighted
graphs we count each edge by one. We denote the number of vertices (edges) by n := |V |
(m := |E|) and the costs of a set E ′ ⊆ E by c(E ′) := ∑e∈E ′ c(e). Whenever we consider
the degree deg(v) of v ∈V , we implicitly mean the sum of all edge costs incident to v.

2

Table 1. Overview of different types of tight subgraphs.

A subgraph S⊆V is a WC SC sSC ES

WC ∀u ∈ S c({u},S\{u})> c({u},V \S) x
SC ∃s ∈ S : ∀U ⊂ S, s /∈U c(U,S\U)≥ c(U,V \S) x

strict SC ∃s ∈ S : ∀U ⊂ S, s /∈U c(U,S\U)> c(U,V \S) x x
ES ∀U ⊂ S c(U,S\U)> c(U,V \S) x x x x

With S,T ⊂ V we write c(S,T) for the costs of all edges having one endpoint in S and
one in T . If S,T induce a cut in G, c(S,T) describes the costs of this cut. Let (S,T)
denote a minimum s-t-cut, s ∈ S, t ∈ T . The cut (S,T) is called the community cut of s
with respect to t if |S| is minimum for all minimum s-t-cuts in G. Set S is the unique
community of s while s is a representative of S, denoted by r(S), not necessarily unique.

We reserve the term node for compound vertices of abstracted graphs, which may
contain several basic vertices. A contraction by C ⊆ V means replacing the set C in G
by a single node and leaving this node adjacent to all former adjacencies u of vertices
in C, with costs equal to the sum of all former edges between C and u.

Our understanding of a clustering C(G) is a partition of V into subsets C1, . . . ,Ck,
which define vertex-induced subgraphs, called clusters. A cluster is called trivial if
it corresponds to a connected component. A vertex that forms a non-trivial singleton
cluster we consider as unclustered. A clustering is trivial if it consists of trivial clus-
ters or if k = n, i.e., all vertices are unclustered. A hierarchy of clusterings is a sequence
C1(G)≤ ·· · ≤ Cr(G) such that Ci(G)≤C j(G) implies that each cluster in Ci(G) is a sub-
set of a cluster in C j(G). We say Ci(G)≤ C j(G) are hierarchically nested. Furthermore,
we distinguish four types of tight clusterings: Those consisting of web-communities
(WC), source-communities (SC), strict source-communities and extreme sets (ES). Ta-
ble 1 gives exact definitions of the notions of the tight subgraphs in the clusterings and
an overview in which other types a particular type is nested. SCs are characterized by
the following (for a proof see App. A).

Lemma 1. A set S ⊂ V is a source-community of a vertex s ∈ S if and only if there
exists a set T ⊂ V such that (S,V \S) is a minimum s-T -cut in G = (V,E,c). We call s
the representative r(S) of S.

Remark 1. For an SC S it holds c(S,V \ S) ≤ deg(s). Otherwise it would be c(S \
{s},S) > c(S \ {s},V \ S). Furthermore, let S ⊂ V denote a community of s with re-
spect to t. Then, due to the uniqueness and minimality of S, V \S is the unique (inclu-
sion)maximal SC of t with s /∈V \S, and S is a strict SC of s.

Tight Clustering. Tight Clustering is the problem of finding a tight clustering of max-
imum quality. Regarding the different types of tight clusters in Table 1 and the variety
of existing quality indices, Tight Clustering encompasses a whole family of problems.
In this work, we focus on modularity as objective quality measure, and we require
the clusters to be at least source-communities, as SCs are closely related to mini-
mum s-t-cuts, which can be efficiently calculated. In contrast, decomposing a graph
into k web-communities is NP-hard [3], whereas all extreme sets can be computed in

3

Table 2. Overview of intra-cluster expansion bounds.

cut expansion Ψ(S,C \S) : c(S,C\S)
min{|S|,|C\S|} guarantee Ψg(C) : by parameter

trivial lower bound Ψ`(C) : c(A,C\A)
b|C|/2c non-trivial bound Ψa(C) : minC∈CΨa(C)

O(nm+ n2 logn) time [6]. The latter are either nested or disjoint. Thus, for ESs Tight
Clustering can be efficiently solved if the quality index is easy to calculate. We are in-
terested in how well CutC approximates a solution of Tight Clustering with respect to
modularity and SCs.
Quality Measures. A quality measure for clusterings is a mapping to real numbers.
Depending on the measure, either high or low values correspond to high quality. The
measures considered in this work, modularity and intra-cluster expansion, indicate high
quality by high values.

Modularity bases on the total edge costs covered by clusters. The values range
between −0.5 and 1 and express the significance of a given clustering compared to
a random clustering. Formally, the modularity M(C) of a clustering C is defined as
M(C) := ∑C∈C c(EC)/c(E)−∑C∈C(∑v∈C deg(v))2/4c(E)2, where EC denotes the set
of edges with both endpoints in C.

The intra-cluster expansion of a clustering derives from the expansion defined for
cuts. The expansion Ψ(S,C \ S) of a cut (S,C \ S) in a cluster C evaluates the ratio
of the costs and the size of the cut and is given in Table 2. The expansion Ψ(C) of
a cluster equals the minimum expansion of all cuts in C. The intra-cluster expansion
Ψ(C) of a clustering finally is the minimum expansion of all clusters in C. Note that
expansion is not defined for singleton clusters. Thus, only non-singleton clusters count
for Ψ(C). Trivial clusterings consisting of singleton clusters are omitted in the respec-
tive experiments. Computing Ψ(C) is known to be NP-hard, however, a trivial lower
bound Ψ`(C) can be easily determined from any global minimum cut (A,C \A) (see
Table 2). The expansion of such a minimum cut further constitutes an upper bound
on Ψ(C). We denote this by Ψu(C). In our experiments we compare the analog trivial
bounds Ψ`(C) and Ψu(C) to the guarantee given by the parameter of CutC, which we
denote by Ψg(C). We further consider an alternative non-trivial lower bound Ψa(C) re-
sulting from individually applying CutC to the subgraphs induced by the clusters. For
those subgraphs we want CutC to return the trivial clustering that consists of the whole
subgraph. This can be reached by accordingly choosing the parameter of CutC, which
controls the coarseness. The chosen parameter value then constitutes a non-trivial bound
Ψa(C) on the expansion of the considered cluster/subgraph. Since this method consid-
ers the clusters as independent instances ignoring the edges between the clusters, the
resulting bound Ψa(C) often lies above Ψg(C).

3 The Algorithms

In this section we review the parametric cut-clustering approach of Flake et al. and
introduce a simple method for efficiently computing all different clusterings in the pa-
rameter range. We further give a short idea of the parameter-free approach we use to
exclude the existence of tight clusterings in some particular cases.

4

3.1 Basic and Hierarchical Cut-Clustering

α1

αmax

>
>

α0

C1
C0

Cmax

<
<

<

C3
C2

<
<

C4

>

α3

>

α2

>

α4

Fig. 1. Clustering hierarchy by CutC.
Note that αmax < α0, Cmax > C0.

The basic CutC algorithm of Flake et al. works
as follows: Given a graph G and parameter
α > 0, as a preprocessing step augment G by
inserting an artificial vertex t and connecting t
to each vertex in G by an edge of costs α . De-
note the resulting graph by Gα = (Vα ,Eα ,cα).
Then apply CutC by iterating V and comput-
ing a community with respect to t for each
vertex not yet contained in a community. Since communities are either disjoint or
nested we finally get a set of (inclusion)maximal communities decomposing V . We
call such a decomposition a cut-clustering. It inherits the uniqueness of the com-
munities and, according to Remark 1, embodies a tight clustering C of strict SCs.
Furthermore it holds Ψ(C) ≥ α . Applying CutC iteratively with decreasing param-
eter values yields a hierarchy of at most n different clusterings (cp. Fig. 1). Note
that for α0 equal to the maximum edge costs in G CutC returns the trivial clus-
tering consisting of singletons, while αmax = 0 yields the connected components.

Algorithm 1: HIERARCHICAL CUTC
Input: α0 = max{c(e)|e ∈ E}, Gα0

1 C0(G)←{{v} | v ∈V}; i← 0
2 forall the v ∈V do r({v})← v
3 while Ci(G) differs from conn. comp. do
4 choose αi+1 < αi
5 G′αi+1

← contract Ci(G) in Gαi+1

6 Ci+1(G)← CutC(G′αi+1
)

7 i← i+1

8 return C0, . . . ,Ci

Algorithm 1 describes a naive hi-
erarchical approach, which exploits
the hierarchical nesting property in
order to shrink the next instance
by contracting the previous clusters
(line 5). The crucial point with this
approach, however, is the choice of α .
If we choose the next value too high
we get the previous clustering again,
which implies unnecessary effort. If
we choose the next value too low
we possibly miss a meaningful clus-
tering. Flake et al. propose a binary
search approach for the choice of α , however, this necessitates a discretization of the
parameter range and still does not prevent missing clusterings. That is why we introduce
a simple parametric search approach for constructing a complete hierarchy.

3.2 Simple Parametric Search Approach

Our simple approach for constructing a complete hierarchy of cut-clusterings exploits
the properties of cut-cost functions. The cut-cost function ωC of a set C ∈ V is a linear
function depending on α that represents the costs of cut (C,Vα \C) in Gα .

ωC :R+
0 −→ [c(C,V \C),∞)⊂R+

0

ωC(α) := c(C,V \C)+ |C| α
For two consecutive hierarchy levels Ci < Ci+1 we call α̂ the breakpoint if CutC returns
Ci for α̂ and Ci+1 for α̂ − ε . By construction, each breakpoint is an intersection point
of the cut-cost functions of two clusters Ci ⊂C j. Thus, the idea is to compute relevant
intersection points and check if they yield new clusterings.

5

Theorem 1. Let Ci < C j denote two different clusterings with parameter values αi >α j.
In time O(|Ci|) a parameter value αm with α j < αm ≤ αi can be computed such that
1) Ci ≤ Cm < C j, and 2) Cm = Ci implies that αm is the breakpoint between Ci and C j.

Proof. We observe that 1) two functions ωCi and ωC j with Ci ⊂C j intersect, as by con-
struction it is c(C j,V \C j)≤ c(Ci,V \Ci) and |C j|> |Ci|. For the intersection point α ′ it
holds ωCi(α)> ωC j(α) if α < α ′ and ωCi(α)< ωC j(α) if α > α ′ (cp. Fig. 2). Consider
2) a cluster C j ∈ C j, a child Ci ∈ Ci of C j (i.e., Ci ⊂C j) and the intersection point α ′j of
ωCi and ωC j . It is α ′j ≤ αi as otherwise (by 1) ωC j(αi) < ωCi(αi), and thus, C j 3 r(Ci)
would be a cheaper community in Gαi . If 3) r(C j) ∈Ci it is α ′j > α j. Otherwise (by 1)
ωCi(α j)≤ ωC j(α j), |Ci|< |C j|, and Ci would be a smaller community in Gα j .

To determine αm let α̂ j := maxCi⊂C j{α ′j}, suppose α̂ j := ∞ if C j is also a cluster on
level Ci. Finally define αm := minC j∈C j{α̂ j}. Due to 1)–3), α j < αm ≤ αi and αm can
be computed in time O(|Ci|). Let Cm denote the result of CutC when applied to Gαm .

Claim 1: Cm 6= C j. Let C j ∈ C j denote a cluster with α̂ j = αm. It holds αm ≥ α ′j for
all children Ci of C j and (by 1) ωCi(αm)≤ ωC j(αm), |Ci|< |C j|. This is, C j /∈ Cm.

Claim 2: If Cm = Ci then αm is the breakpoint between Ci and C j. Let Ci ∈ Cm denote
a child with α ′j = α̂ j of any cluster C j. Due to the construction of αm it is α ′j ≥ αm and
(by 1) ωC j(αm−ε)< ωCi(αm−ε). For any set C′ with Ci ⊂C′ ⊂C j ωC′ also intersects
ωC j in α ′j but with lower slope. Thus, C j is the community of r(Ci) in Gαm−ε .

Theorem 1 allows for a simple parametric search starting with the trivial clusterings
C0 < Cmax (α0 > αmax). In contrast to a binary search on the discretized parameter
range this approach definitely returns a complete hierarchy.

ωCi

ωCj

α′ α

ω(α)

Fig. 2. Intersecting
cut-cost functions.

Running time. The parametric search also outperforms the
binary search on running times, since it calls CutC at most
twice per level in the hierarchy. This yields a running time of
O((h−2)T (n)) with h the number of levels and T (n) the worst
case running time for CutC, compared to O(h log(d)T (n)) of
the binary search, where d� n is the number of discretization
steps. Furthermore, the hierarchical nesting property still al-
lows to contract the clusters on the lower level before applying
CutC, and by scheduling the recursive calls carefully such that steps descending into
the lower part are executed first we can even reuse the previously contracted structure.

As a proof of concept we conduct a brief experiment on running times of the
parametric search and the binary search. The implementation was realized within the
LEMON framework [14], version 1.2.1. The max-flow implementation provided by
LEMON runs in O(n2√m). For details on instances see Section 4. In order to discretize
the continuous parameter range for the binary search, we use between 210 and 230 steps
depending on the size of the instances. Comparing the resulting hierarchies to the com-
plete ones confirms this discretization being detailed enough to find all levels for most
of the instances. Nevertheless, we do not know how far from optimal our discretization
is, although we tried to keep the number of steps low. The difficulty to determine a
good discretization is one of the main drawbacks of the binary search approach. Both
algorithms run on an AMD Opteron Processor 252 with 2.6 GHz and 16 GB RAM.
Table 3 lists ascending CPU times of the parametric search without contraction (PasS).

6

Table 3. Running times of the parametric search without contraction (ParS) and the binary search
with (BinS cont.) and without contraction (BinS). Instances sorted by CPU times of ParS. Times
longer than six days are marked by *. See also Appendix D.

graph n m h ParS [m:s] BinS cont. [fac] BinS [fac]
celegans metabolic 453 2025 8 0.300 7.620 8.380
celegansneural 297 2148 17 0.406 8.653 9.919
netscience 1589 2742 38 4.310 4.030 11.952
power 4941 6594 66 1:25.736 8.773 15.742
as-22july06 22963 48436 33 39:54.495 12.419 20.583
cond-mat 16726 47594 80 44:15.317 14.917 27.425
rgg n 2 15 32768 160240 46 245:25.644 32.748 22.573
G n pin pout 100000 501198 4 369:29.033 * *
cond-mat-2005 40421 175691 82 652:32.163 * 21.446

The factors listed for the binary search with contraction (BinS cont.) and without (BinS)
describe how much longer the applications run compared to ParS.

ParS outperforms both binary search approaches by a factor of four up to 32. How-
ever, the running time does not only depend on the input size but also on the number
of different levels in the hierarchy. This effect can be nicely observed at the two last in-
stances. Although G n pin pout is the biggest graph in this list it takes less time to find
four levels therein than constructing 82 levels in the smaller instance cond-mat-2005.
The random geometric graph rgg n 2 15 further demonstrates the impact of constant
factors hidden in the asymptotic running time of BinS cont. Asymptotically both binary
search approaches are comparable since contraction takes only linear time in terms of
m, and is thus dominated by the max-flow computation. In practice BinS cont. performs
at least 45 contractions for this instance, each merging only few vertices. Thus, the
decreasing size of the graph does not offset the additional costs for contraction.

3.3 Parameter-Free Exclusion Approach

Our parameter-free exclusion approach (ParFree as a shorthand) aims at finding mean-
ingful maximal SCs for most of the vertices in a given instance. If these maximal SCs
are still small we conclude that there exists no coarser tight clustering of nice clusters.

ParFree considers all components separately. A maximal SCs is meaningful if it
contains at most half of the vertices of the current component. Components that are
smaller than half of the largest component in G become trivial clusters with an arbitrary
vertex as representative, which is marked green in order to illustrate the special type of
this cluster. Any other component H is decomposed into SCs by iterating the vertices
in H in a non-increasing order by their weighted degrees. Thereby the SCs are marked
with the help of further colors indicating the individual properties of the SCs.

The first vertex designates the source s. The algorithm consecutively computes the
community S of s with respect to the next vertex t that is not yet covered by an SC. If
|H\S| ≤ |H|/2 and does not intersect any previously found SC, H\S is the maximal
SC of t not containing s (cp. Remark 1). Thus t is marked blue. If |H \ S| ≤ |H|/2 but
intersects with another SC, H \S is replaced by a non-intersecting SC Q of t according
to Gusfield [5] and Gomory and Hu [4] (see Lemma 3 in App. B). Since Q is no longer
maximal, t is marked red. The representative of any other SC nested in Q becomes

7

uncolored again. If |S|< |H|/2 vertex t becomes the current source and S is an SC of s
according to Remark 1; then s is also marked red. In the end all vertices are assigned to
SCs apart from the source considered last. This source s is marked orange.

In a post-processing step the algorithm then searches for a meaningful maximal SC
of s consisting of unclustered vertices. If such an SC is found s changes from orange
to yellow. For a detailed description of the post processing and a proof of the following
lemma see Appendix C.

Lemma 2. Let v denote a blue or uncolored vertex in an SC Q. Then any coarser
possibly existing SC Q′ of v with Q⊂Q′ is also an SC of a red, orange or yellow vertex.

This is, in any coarser clustering the number of further possibly existing SCs is bounded
by the number of red, orange and yellow vertices. On the other hand, these vertices
might still induce coarser SCs, which we do not know. Thus we call the number of red,
orange and yellow vertices the uncertainty of a parfree-clustering. Figure 3(a) shows an
example of uncertainty one.

(a) Parfree-clustering. (b) Cut-clustering. (c) Modularity-based clus.

Fig. 3. Different clusterings for karate. The parfree-clustering (a) consists of one yellow ver-
tex (round) besides blue (rectangular) and uncolored ones (diamond shaped): 4 maximal non-
singleton SCs of different size, 5 unclustered vertices, uncertainty is one. (b) Cut-clus: one small
non-singleton cluster, 27 unclustered vertices. (c) mod-clus: 4 clusters of balanced size.

4 Experiments
For the experimental analysis we used several instances of the clustering testbed of
the 10th DIMACS Implementation Challenge [12] as well as the protein interaction
network bo cluster published by Jeong et al. [13] and a snapshot of the linked wiki
pages at www.dokuwiki.org (cp. Fig. 4 or Tab. 5 in App. E). Furthermore, we consider
a large number of snapshots of the email-communication network of the Department of
Informatics at KIT [11] (cp. Tab. 6 to 8 in App. E).

Modularity analysis. Our first experiment addresses the question how close cut-
clusterings can get to a modularity-optimal tight clustering with respect to SCs, and
which modularity values can be reached in general. Thus, we focus on the best cut-
clusterings in the hierarchies with respect to this objective and compare them to refer-
ence clusterings of good modularity (mod-clusterings for short) generated with the help
of a modularity-based greedy agglomerative approach [2], as computing a modularity-
optimal clustering is NP-hard [9]. Figure 4 shows the results.

8

cut-clustering modularity-based clustering parfree-clustering

0.9

0.6

0.3

0.9

0.6

0.3

0.0

m
o
d
u
la
ri
ty

20

10

5

0

c
lu
st
e
r
si
z
e
s

15

c
e
le
g
a
n
s
m
e
ta

b
.

a
s2

2
ju
ly
0
6

*
c
e
le
g
a
n
sn

e
u
ra

l

*
le
sm

is

d
o
k
u
w
ik
i
o
rg

*
n
e
ts
c
ie
n
c
e

p
o
lb
lo
g
s

p
o
w
e
r

*
k
a
ra

te

b
o
c
lu
st
e
r

c
o
n
d
-m

a
t

a
st
ro

-p
h

h
e
p
-t
h

e
m
a
il

a
d
jn
o
u
n

d
o
lp
h
in
s

*
ja
z
z

G
n

p
in

p
o
u
t

*
d
a
ta

c
o
n
d
-m

a
t-
2
0
0
5

c
o
n
d
-m

a
t-
2
0
0
3

rg
g
n

2
1
5
s0

*
p
o
lb
o
o
k
s

P
G
P
g
ia
n
tc
o
m
p
o

*
d
e
la
u
n
a
y

n
1
0

*
d
e
la
u
n
a
y

n
1
1

*
d
e
la
u
n
a
y

n
1
2

fo
o
tb

a
ll

n
o
n
S
C

c
lu
st
e
rs

c
lu
st
e
re
d

v
e
rt
ic
e
s

0.9

0.6

0.3

0.1

m
o
d
u
la
ri
ty

n
o
n
S
C

c
lu
st
e
rs

275 snapshots of the email network of the Department of Informarics at KIT.

0.9

0.6

0.3

c
lu
st
e
re
d

v
e
rt
ic
e
s

cut-clustering modularity-based clustering parfree-clustering

Fig. 4. Results of the modularity analysis of cut-clusterings, modularity-based clusterings and
parfree-clusterings. The results for the email snapshots are displayed in the lower part, the upper
part addresses the remaining instances. Instances where the uncertainty of the parfree-clustering
is at most two are marked by *. In both parts the upper charts show the ratio of clustered vertices
in the cut- and parfree-clusterings and the ratio of nontrivial clusters missing the SC-property in
the modularity-based clusterings. For the upper instances the cluster sizes are shown by whisker-
bars regarding cut-, parfree- and mod-clustering with maximum (+) and minimum (•) of the
outliers. Note that values greater than 20 are printed at the edge of the displayed range. Due to
the high number of email snapshots whisker-bars are omitted for those instances.

9

As expected the mod-clusterings are of higher modularity than the cut-clusterings
and prefer clusters of decent size. In contrast the cut-clusterings are finer with several
unclustered vertices (see also Fig. 3), which is due to the restriction to tight clusterings.
Nevertheless, the modularity of the latter increases with the amount of clustered vertices
and the size of the clusters.

The fact that for some instances CutC returns clusterings with a modularity much
lower than the references, however, does not necessarily mean that the cut-clustering
is far from the objective. The instance might just lack a tight clustering of better mod-
ularity. In order to find out if this is indeed the case we focus on the properties of the
parfree-clustering. As all clusters in this clustering, apart from those counted by the
uncertainty, constitute maximal SCs, small clusters and a low uncertainty indicate the
absence of a coarser tight clustering, which might provide a higher modularity. In this
case, it seems to be more appropriate to compare the modularity of the cut-clustering
to the value reached by ParFree. The Delaunay triangulations are nice examples where
the modularity gap between the cut-clustering and the mod-clustering is large, but the
parfree-clustering consists only of singleton clusters and has a low uncertainty. Thus
we can exclude the existence of a better tight clustering with high probability and sup-
pose the cut-clustering, which is basically the same as the parfree-clustering, is close
to a modularity-optimal tight clustering, although the reference clustering has a much
higher modularity. Note that all clusters in the references of the Delaunay triangulations
miss the SC-property. We derive the existence of such degenerated cases from the fact
that the asymptotic modularity of some graph classes is provably high [7] whereas the
same classes often lack any meaningful SC such that CutC has no chance to return a
nontrivial clustering of good modularity. In this light CutC competes surprisingly well.

For the main part of the email snapshots and for the netscience graph CutC reaches
modularity values very close to the references, which is rather unexpected since CutC
is not designed to optimize modularity. We further observe that the absolute modular-
ity values for these instances are quite high and the amount of clusters in the mod-
clusterings that miss the SC-property decreases. The common trend of both modular-
ity curves finally reveals that most instances are either difficult for both clustering ap-
proaches or for none of them. We conjecture that if there exists a tight clustering of
good modularity, CutC most often finds it.

Expansion analysis. In order to answer the question if there is an advantage from
knowing the quality guarantee given by the parameter of CutC, our second experiment
compares this guarantee to the trivial lower bound Ψ` induced by global minimum cuts.
We further study the non-trivial lower bound Ψa to get an idea on the exact expansion
values. Recall Table 2 for an overview of the different intra-cluster expansion bounds.
We consider the same cut-clusterings and mod-clusterings as before, however, we skip
the Delaunay triangulations and the football graph, as for those instances CutC returns
only singleton clusters. The results are given in Figure 5.

We observe that the trivial lower bound Ψ` in both clustering categories follows a
similar trend and stays below the guarantee Ψg for most of the instances, which con-
firms the guarantee as a truly meaningful bound. A value that exceeds Ψg appears for
example if all the non-singleton clusters are close to cliques of maximum edge costs.
This yields a trivial bound close to two times the maximum edge costs, while Ψg is

10

2.0

1.5

2.5

1.0

0.5

0.0e
x
p
a
n
si

o
n

b
o
u
n
d
s

c
e
le

g
a
n
s

m
e
ta

b
.

a
s2

2
ju

ly
0
6

*
c
e
le

g
a
n
sn

e
u
ra

l

*
le

sm
is

d
o
k
u
w

ik
i

o
rg

*
n
e
ts

c
ie

n
c
e

p
o
lb

lo
g
s

p
o
w

e
r

k
a
ra

te

b
o

c
lu

st
e
r

c
o
n
d
-m

a
t

*
a
st

ro
-p

h

h
e
p
-t

h

e
m

a
il

*
a
d
jn

o
u
n

*
d
o
lp

h
in

s

*
ja

z
z

*
G

n
p
in

p
o
u
t

d
a
ta

*
c
o
n
d
-m

a
t-

2
0
0
5

c
o
n
d
-m

a
t-

2
0
0
3

rg
g

n
2

1
5

s0

p
o
lb

o
o
k
s

Ψg Ψ`cut Ψ`modΨacut Ψamod Ψumod

P
G

P
g
ia

n
tc

o
m

p
o

2.0

1.5

2.5

1.0

0.5

0.0e
x
p
a
n
si

o
n

b
o
u
n
d
s

275 snapshots of the email network of the Department of Informarics at KIT.

Ψg ,Ψ`cut,Ψacut Ψ`mod,Ψamod

Fig. 5. Trivial and non-trivial bounds on the intra-cluster expansion of cut-clusterings and
modularity-based clusterings. For definitions of these bounds recall Table 2. In both charts the
guarantee Ψg is normalized to one, further values are displayed proportional. Instances where
Ψucut (not shown) meets the maximum lower bound in the cut-clustering are marked by *. For
those instances the maximum lower bound equals the true intra-cluster expansion in the cut-
clustering. In the lower chart Ψ`cut is shown by the monotone curve different from one, Ψ`mod is
given by the dashed line close to Ψ`cut; Ψacut and Ψamod are represented by the remaining solid
and dashed line. For the sake of readability Ψumod is omitted in the lower chart.

bounded by the maximum edge costs. On the other hand, the non-trivial lower bound
Ψa for the cut-clusterings clearly outperforms the guarantee, and thus, reveals that the
actual intra-cluster expansion in the cut-clusterings is even higher than guaranteed. At
the same time it also exceeds the analog bound for the mod-clusterings, and hence,
suggests that the cut-clusterings also outperform the expansion of the modularity-based
reference clusterings. This becomes even a fact whenever the upper bound Ψu for the
mod-clusterings drops below the maximum lower bound in the cut-clusterings, which
indeed happens for some instances. This proves a truly better intra-cluster expansion
on the latter. Finally, for some cut-clusterings we yet know the actual intra-cluster ex-
pansion, as the analog upper bound Ψu meets the lower bounds. The corresponding
instances are marked by * in the upper chart of Figure 5, for the email snapshots the
amount of those graphs is about 20%.

Conclusion. In this work we studied the behavior of the cut-clustering algorithm of
Flake et al. [3] in the light of tight clusterings and the quality measures modularity and
expansion. We introduced a characterization of different types of tight clusterings and
gave a simple but efficient approach for constructing all different levels of tight clus-
terings in the cut-clustering hierarchy formed by different parameter values. Our new
approach directly computes all breakpoints in the parameter range where new clus-

11

terings come up, and thus, outperforms binary search approaches in running time and
accuracy. Our experiments further exhibited that, although it is not designed to optimize
modularity, the cut-clustering algorithm fairly well combines the significance of tight
clusterings with a good modularity and a guaranteed intra-cluster expansion that is of-
ten better than trivial bounds, provided that there exists a reasonable tight clustering in
the given instance.

References

1. G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. Self-Organization and Identifica-
tion of Web Communities. IEEE Computer, 35(3):66–71, 2002.

2. R. Rotta and A. Noack. Multilevel local search algorithms for modularity clustering. ACM
Journal of Experimental Algorithmics, 16: 2.3:2.1–2.3:2.27, 2011.

3. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph Clustering and Minimum Cut
Trees. Internet Mathematics, 1(4):385–408, 2004.

4. R. E. Gomory and T. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, December 1961.

5. D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19(1):143–155, 1990.

6. H. Nagamochi. Graph Algorithms for Network Connectivity Problems. Journal of the Op-
erations Research Society of Japan,47(4):199–223, 2004.

7. F. de Montgolfier, M. Soto and L. Viennot, Laurent. Asymptotic Modularity of some Graph
Classes. 22nd International Symposium on Algorithms and Computation (ISAAC), pages
435-444, December 2011.

8. R. Görke. An Algorithmic Walk from Static to Dynamic Graph Clustering. Doctoral thesis,
Department of Informatics, KIT, 2010.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018288

9. U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Höfer, Z. Nikoloski and D. Wagner. On
Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172–
188, February 2008.

10. M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(026113):1–16, 2004.

11. Dynamic network of email communication at the Department of Informatics at Karlsruhe
Institute of Technology (KIT). Data collected, compiled and provided by Robert Görke and
Martin Holzer of ITI Wagner and by Olaf Hopp, Johannes Theuerkorn and Klaus Scheiben-
berger of ATIS, all at KIT. 2011. i11www.iti.kit.edu/projects/spp1307/emaildata

12. 10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering.
http://www.cc.gatech.edu/dimacs10/

13. H. Jeong, S. Mason, A. L. Barabási and Z. N. Oltvai. Centrality and lethality of protein
networks. Nature, 411(11):41, 2001

14. LEMON graph library. Library for Efficient Modeling and Optimization in Networks.
http://lemon.cs.elte.hu/trac/lemon

15. D. Lisowski. Modularity-basiertes Clustern von dynamischen Graphen im Offline-Fall. Mas-
tersthesis, Department of Informatics, KIT, 2011.
http://i11www.iti.uni-karlsruhe.de/ media/teaching/theses/da-lisowski.pdf

12

Appendix

A Omitted Proof of Lemma 1

Lemma 1. A set S ⊂ V is a source-community of a vertex s ∈ S if and only if there
exists a set T ⊂ V such that (S,V \S) is a minimum s-T -cut in G = (V,E,c). We call s
the representative r(S) of S.

Proof. Let S ⊂ V denote an SC of a vertex s ∈ S. Then (S,V \ S) is a minimum s-
(V \S)-cut. Otherwise, assume a cheaper s-(V \S)-cut (W,V \W) with s ∈W . It holds
W ⊂ S and V \S ⊂V \W and c(W,S \W)+ c(W,V \S) = c(W,V \W)< c(S,V \S) =
c(W,V \ S)+ c(S \W,V \ S), i.e, c(W,S \W) < c(S \W,V \ S). Thus, U := S \W 63 s
contradicts the SC-definition. With the same argument induces each minimum s-T -cut
an SC of s.

B Reviewing Gomory and Hu and Gusfield

Gomory and Hu [4] are the pioneers of the cut tree construction whereas Gusfield [5]
introduced a nice simplification of the approach of Gomory and Hu avoiding con-
tractions, which are pesky to implement. A cut tree T (G) = (V,ET ,cT) of a graph
G is a tree on V and represents for any vertex pair {u,v} ∈

(V
2

)
a minimum u-v-cut

θu,v in G by the cheapest edge on the unique path between u and v in T (G). Nei-
ther must this edge be unique, nor T (G). An edge eT = {u,v} of T (G) induces the
cut θu,v in G by decomposing T (G) into two connected components. The two cut-
based algorithms CutC and ParFree considered in this work basically build partial cut-
trees. Their correctness directly follows from the techniques introduced by Gomory
and Hu and Gusfield. The most important Lemma in this context is the following:

y

V \ Y Y

H
V \H

H

V \H

y deflects cut
downwards

y deflects cut
upwards

u

v

Fig. 6. Depending on y there are two differ-
ent directions to which Lemma 3 bends the cut
(H,V \H): upwards or downwards.

Lemma 3. Let (Y,V \Y) be a minimum
x-y-cut in G, with y ∈ Y . Let (H,V \H)
be a minimum u-v-cut, with u,v ∈ V \Y
and y ∈H. Then the cut (Y ∪H,(V \Y)∩
(V \H)) is also a minimum u-v-cut.

This lemma allows to bend a minimum u-
v-cut such that Y is not injured. The final
shape of the bent cut depends on the side
of the original cut containing y—roughly
speaking, the cut is “deflected” by y. In
the situation of ParFree where H \ S in-
tersects with a previously fond SC the
bent cut induces a new non-intersecting
SC of t.

C Omitted Aspects of ParFree

If there are non-singleton SCs in the current component H after the first phase of Par-
Free the post processing contracts all non-singleton SCs to a node N. Then the com-
munity S of N with respect to the last remaining vertex s is calculated. According to
Remark 1 V \S is the maximal SC of s that consists of unclustered vertices. We incor-
porate the found SC in the final parfree-clustering if |V \ S| ≤ |H|/2|. In this case, s is
colored yellow. Otherwise, s remains orange forming a singleton cluster.

Lemma 2. Let v denote a blue or uncolored vertex in an SC Q. Then any coarser
possibly existing SC Q′ of v with Q⊂Q′ is also an SC of a red, orange or yellow vertex.

Proof. Let v denote a blue vertex in an SC Q in a parfree-clustering of a component H.
This is, there exists a red, orange or yellow vertex s ∈ H \Q such that H \Q is a com-
munity of s. According to Remark 1 there is no SC of v containing Q but not s. Thus,
for any coarser SC Q′ ⊃ Q of v it is s ∈ Q′. By Lemma 1 (Q′,H \Q′) is a minimum
v-T -cut for a set T ⊆ H \Q′. Since Q ⊂ Q′ the cut (Q,H \Q) also separates v and T ,
thus c(Q′,H \Q′) ≤ c(Q,H \Q). If there was another cut cheaper than c(Q′,H \Q′)
separating T and s, this cut would also separate s and v which contradicts the fact that
(Q,H \Q) is a minimum v-s-cut. Hence (Q′,H \Q′) is also a minimum s-T -cut and Q′

is an SC of s.
Let w denote an uncolored vertex in Q. We claim that the community of s with

respect to w contains H \Q, i.e., the maximal SC of w not containing s is in Q. Then,
the previous arguments apply analogously. The claim is easy to see. Either (Q,H \Q)
is also a minimum w-s-cut, then H \Q is also the community of s with respect to w.
Or there exists a cheaper minimum w-s-cut (W,H \H), w ∈W that separates w and v.
If W 6⊂ Q, according to Lemma 3, Q could be reshaped contradicting the community
H \Q of s with respect to v. Thus it is W ⊂ Q, particularly for the community H \W of
s with respect to w.

14

D Omitted Running Times

Table 4. Running times of the parametric search without contraction (ParS) and the binary search
with (BinS cont.) and without contraction (BinS). Instances sorted by CPU times of ParS. Times
longer than six days are marked by *.

graph n m h ParS [m:s] BinS cont. [fac] BinS [fac]
jazz 198 2742 3 0.062 7.726 7.871
celegans metabolic 453 2025 8 0.300 7.620 8.380
celegansneural 297 2148 17 0.406 8.653 9.919
delaunay n10 1024 3056 2 0.470 8.930 8.994
emailgraph550K 19 491 853 33 0.771 11.855 13.850
email 1133 5451 4 1.116 8.463 8.758
emailgraph550K 26 527 1046 38 1.231 10.434 11.957
delaunay n11 2048 6127 2 1.792 9.256 8.893
netscience 1589 2742 38 4.310 4.030 11.952
bo cluster 2114 2277 19 4.355 6.007 12.800
polblogs 1490 16715 7 4.493 11.560 12.097
delaunay n12 4096 12264 2 7.226 10.914 9.870
data 2851 15093 4 11.506 8.021 9.620
dokuwiki org 4416 12914 18 39.815 12.423 15.571
power 4941 6594 66 1:25.736 8.773 15.742
hep-th 8361 15751 56 6:26.213 7.373 18.183
PGPgiantcompo 10680 24316 94 13:25.121 6.463 18.575
as-22july06 22963 48436 33 39:54.495 12.419 20.583
cond-mat 16726 47594 80 44:15.317 14.917 27.425
astro-ph 16706 121251 60 98:25.791 21.843 24.825
rgg n 2 15 32768 160240 46 245:25.644 32.748 22.573
cond-mat-2003 31163 120029 74 268:14.601 18.306 20.933
G n pin pout 100000 501198 4 369:29.033 * *
cond-mat-2005 40421 175691 82 652:32.163 * 21.446

15

E Tables of Tested Instances

Table 5. Testbed encompassing real-world networks and randomly generated graphs.

graph n m graph n m
karate 34 78 dolphins 62 159
lesmis 77 254 polbooks 105 441
adjnoun 112 425 football 115 613
jazz 198 2742 celegansneural 297 2148
celegans metabolic 453 2025 delaunay n10 1024 3056
email 1133 5451 polblogs 1490 16715
netscience 1589 2742 delaunay n11 2048 6127
bo cluster 2114 2203 data 2851 15093
delaunay n12 4096 12264 dokuwiki org 4416 12914
power 4941 6594 hep-th 8361 15751
PGPgiantcompo 10680 24316 astro-ph 16706 121251
cond-mat 16726 47594 as-22july06 22963 48436
cond-mat-2003 31163 120029 rgg n 2 15 s0 32768 160240
cond-mat-2005 40421 175691 G n pin pout 100000 501198

16

Table 6. Snapshots of the email network of the Department of Informatics at KIT.

graph n m graph n m
emailgraph550K 100.graph 304 453 emailgraph550K 101.graph 325 610
emailgraph550K 102.graph 314 513 emailgraph550K 103.graph 322 634
emailgraph550K 104.graph 288 445 emailgraph550K 105.graph 298 528
emailgraph550K 106.graph 310 498 emailgraph550K 107.graph 224 249
emailgraph550K 108.graph 296 507 emailgraph550K 109.graph 307 547
emailgraph550K 10.graph 345 654 emailgraph550K 110.graph 274 348
emailgraph550K 111.graph 213 227 emailgraph550K 112.graph 319 529
emailgraph550K 113.graph 326 569 emailgraph550K 114.graph 247 310
emailgraph550K 115.graph 325 581 emailgraph550K 116.graph 339 639
emailgraph550K 117.graph 255 298 emailgraph550K 118.graph 254 323
emailgraph550K 119.graph 338 629 emailgraph550K 11.graph 315 461
emailgraph550K 120.graph 325 570 emailgraph550K 121.graph 306 487
emailgraph550K 122.graph 291 448 emailgraph550K 123.graph 276 405
emailgraph550K 124.graph 337 614 emailgraph550K 125.graph 306 449
emailgraph550K 126.graph 250 314 emailgraph550K 127.graph 356 740
emailgraph550K 128.graph 304 481 emailgraph550K 129.graph 345 677
emailgraph550K 12.graph 309 456 emailgraph550K 130.graph 310 476
emailgraph550K 131.graph 293 434 emailgraph550K 132.graph 326 662
emailgraph550K 133.graph 248 294 emailgraph550K 134.graph 340 710
emailgraph550K 135.graph 238 282 emailgraph550K 136.graph 322 555
emailgraph550K 137.graph 221 274 emailgraph550K 138.graph 311 556
emailgraph550K 139.graph 195 212 emailgraph550K 13.graph 246 286
emailgraph550K 140.graph 295 482 emailgraph550K 141.graph 277 374
emailgraph550K 142.graph 207 231 emailgraph550K 143.graph 217 242
emailgraph550K 144.graph 206 196 emailgraph550K 145.graph 332 568
emailgraph550K 146.graph 261 330 emailgraph550K 147.graph 295 515
emailgraph550K 148.graph 311 520 emailgraph550K 149.graph 297 446
emailgraph550K 14.graph 459 893 emailgraph550K 150.graph 245 295
emailgraph550K 151.graph 44 23 emailgraph550K 152.graph 349 693
emailgraph550K 153.graph 257 336 emailgraph550K 154.graph 338 692
emailgraph550K 155.graph 279 372 emailgraph550K 156.graph 349 827
emailgraph550K 157.graph 274 344 emailgraph550K 158.graph 333 690
emailgraph550K 159.graph 287 399 emailgraph550K 15.graph 464 868
emailgraph550K 160.graph 353 652 emailgraph550K 161.graph 334 564
emailgraph550K 162.graph 345 683 emailgraph550K 163.graph 320 536
emailgraph550K 164.graph 366 822 emailgraph550K 165.graph 338 549
emailgraph550K 166.graph 242 316 emailgraph550K 167.graph 346 658
emailgraph550K 168.graph 299 465 emailgraph550K 169.graph 331 615
emailgraph550K 16.graph 491 883 emailgraph550K 170.graph 358 668
emailgraph550K 171.graph 64 45 emailgraph550K 172.graph 260 285
emailgraph550K 173.graph 90 68 emailgraph550K 174.graph 346 675
emailgraph550K 175.graph 244 280 emailgraph550K 176.graph 374 772
emailgraph550K 177.graph 258 328 emailgraph550K 178.graph 361 705
emailgraph550K 179.graph 261 338 emailgraph550K 17.graph 556 1171

17

Table 7. Snapshots of the email network of the Department of Informatics at KIT.

graph n m graph n m
emailgraph550K 180.graph 358 710 emailgraph550K 181.graph 355 622
emailgraph550K 182.graph 322 501 emailgraph550K 183.graph 289 408
emailgraph550K 184.graph 327 586 emailgraph550K 185.graph 306 450
emailgraph550K 186.graph 222 253 emailgraph550K 187.graph 339 617
emailgraph550K 188.graph 294 443 emailgraph550K 189.graph 290 405
emailgraph550K 18.graph 411 557 emailgraph550K 190.graph 342 609
emailgraph550K 191.graph 259 305 emailgraph550K 192.graph 340 618
emailgraph550K 193.graph 295 387 emailgraph550K 194.graph 231 250
emailgraph550K 195.graph 239 263 emailgraph550K 196.graph 363 820
emailgraph550K 197.graph 295 421 emailgraph550K 198.graph 381 777
emailgraph550K 199.graph 340 563 emailgraph550K 19.graph 491 853
emailgraph550K 1.graph 295 456 emailgraph550K 200.graph 361 698
emailgraph550K 201.graph 334 541 emailgraph550K 202.graph 340 577
emailgraph550K 203.graph 327 572 emailgraph550K 204.graph 291 401
emailgraph550K 205.graph 193 204 emailgraph550K 206.graph 341 579
emailgraph550K 207.graph 259 319 emailgraph550K 208.graph 331 510
emailgraph550K 209.graph 314 459 emailgraph550K 20.graph 509 1097
emailgraph550K 210.graph 354 684 emailgraph550K 211.graph 298 425
emailgraph550K 212.graph 340 579 emailgraph550K 213.graph 341 553
emailgraph550K 214.graph 344 694 emailgraph550K 215.graph 327 530
emailgraph550K 216.graph 361 691 emailgraph550K 217.graph 351 589
emailgraph550K 218.graph 249 284 emailgraph550K 219.graph 374 732
emailgraph550K 21.graph 310 278 emailgraph550K 220.graph 257 314
emailgraph550K 221.graph 338 582 emailgraph550K 222.graph 335 518
emailgraph550K 223.graph 258 269 emailgraph550K 224.graph 219 191
emailgraph550K 225.graph 324 515 emailgraph550K 226.graph 297 508
emailgraph550K 227.graph 207 200 emailgraph550K 228.graph 335 533
emailgraph550K 229.graph 278 351 emailgraph550K 22.graph 190 166
emailgraph550K 230.graph 268 286 emailgraph550K 231.graph 353 609
emailgraph550K 232.graph 325 460 emailgraph550K 233.graph 241 251
emailgraph550K 234.graph 351 684 emailgraph550K 235.graph 351 544
emailgraph550K 236.graph 365 643 emailgraph550K 237.graph 363 703
emailgraph550K 238.graph 331 463 emailgraph550K 239.graph 241 260
emailgraph550K 23.graph 393 608 emailgraph550K 240.graph 375 687
emailgraph550K 241.graph 330 494 emailgraph550K 242.graph 285 350
emailgraph550K 243.graph 268 310 emailgraph550K 244.graph 287 361
emailgraph550K 245.graph 274 328 emailgraph550K 246.graph 223 201
emailgraph550K 247.graph 223 201 emailgraph550K 248.graph 223 200
emailgraph550K 249.graph 331 476 emailgraph550K 24.graph 419 561
emailgraph550K 250.graph 314 404 emailgraph550K 251.graph 174 175
emailgraph550K 252.graph 319 425 emailgraph550K 253.graph 208 190
emailgraph550K 254.graph 199 193 emailgraph550K 255.graph 276 347
emailgraph550K 256.graph 301 425 emailgraph550K 257.graph 223 263
emailgraph550K 258.graph 288 364 emailgraph550K 259.graph 284 377
emailgraph550K 25.graph 533 999 emailgraph550K 260.graph 266 301
emailgraph550K 261.graph 283 354 emailgraph550K 262.graph 224 256

18

Table 8. Snapshots of the email network of the Department of Informatics at KIT.

graph n m graph n m
emailgraph550K 263.graph 322 435 emailgraph550K 264.graph 321 506
emailgraph550K 265.graph 291 403 emailgraph550K 266.graph 280 326
emailgraph550K 267.graph 185 163 emailgraph550K 268.graph 169 152
emailgraph550K 269.graph 175 145 emailgraph550K 26.graph 527 1046
emailgraph550K 270.graph 278 348 emailgraph550K 271.graph 238 247
emailgraph550K 272.graph 268 351 emailgraph550K 273.graph 264 287
emailgraph550K 274.graph 249 272 emailgraph550K 275.graph 144 115
emailgraph550K 27.graph 346 578 emailgraph550K 28.graph 330 709
emailgraph550K 29.graph 282 383 emailgraph550K 2.graph 309 503
emailgraph550K 30.graph 310 612 emailgraph550K 31.graph 306 562
emailgraph550K 32.graph 319 651 emailgraph550K 33.graph 307 603
emailgraph550K 34.graph 224 303 emailgraph550K 35.graph 321 628
emailgraph550K 36.graph 272 455 emailgraph550K 37.graph 209 226
emailgraph550K 38.graph 222 237 emailgraph550K 39.graph 223 283
emailgraph550K 3.graph 287 428 emailgraph550K 40.graph 305 525
emailgraph550K 41.graph 290 480 emailgraph550K 42.graph 287 498
emailgraph550K 43.graph 313 526 emailgraph550K 44.graph 244 327
emailgraph550K 45.graph 188 196 emailgraph550K 46.graph 261 384
emailgraph550K 47.graph 207 229 emailgraph550K 48.graph 319 573
emailgraph550K 49.graph 289 451 emailgraph550K 4.graph 322 504
emailgraph550K 50.graph 278 388 emailgraph550K 51.graph 309 559
emailgraph550K 52.graph 265 379 emailgraph550K 53.graph 269 360
emailgraph550K 54.graph 314 543 emailgraph550K 55.graph 305 497
emailgraph550K 56.graph 202 223 emailgraph550K 57.graph 302 533
emailgraph550K 58.graph 303 549 emailgraph550K 59.graph 257 425
emailgraph550K 5.graph 331 647 emailgraph550K 60.graph 239 282
emailgraph550K 61.graph 298 495 emailgraph550K 62.graph 307 543
emailgraph550K 63.graph 323 606 emailgraph550K 64.graph 289 454
emailgraph550K 65.graph 276 434 emailgraph550K 66.graph 251 394
emailgraph550K 67.graph 252 355 emailgraph550K 68.graph 218 266
emailgraph550K 69.graph 181 181 emailgraph550K 6.graph 333 562
emailgraph550K 70.graph 283 457 emailgraph550K 71.graph 295 474
emailgraph550K 72.graph 250 367 emailgraph550K 73.graph 179 218
emailgraph550K 74.graph 273 469 emailgraph550K 75.graph 266 458
emailgraph550K 76.graph 302 599 emailgraph550K 77.graph 277 498
emailgraph550K 78.graph 280 414 emailgraph550K 79.graph 333 673
emailgraph550K 7.graph 429 826 emailgraph550K 80.graph 262 385
emailgraph550K 81.graph 289 421 emailgraph550K 82.gaph 327 628
emailgraph550K 83.graph 220 265 emailgraph550K 84.graph 324 581
emailgraph550K 85.graph 335 612 emailgraph550K 86.graph 276 343
emailgraph550K 87.graph 241 258 emailgraph550K 88.graph 343 628
emailgraph550K 89.graph 326 582 emailgraph550K 8.graph 296 414
emailgraph550K 90.graph 239 280 emailgraph550K 91.graph 328 564
emailgraph550K 92.graph 84 54 emailgraph550K 93.graph 322 519
emailgraph550K 94.graph 252 298 emailgraph550K 95.graph 326 559
emailgraph550K 96.graph 342 665 emailgraph550K 97.graph 300 459
emailgraph550K 98.graph 219 244 emailgraph550K 99.graph 331 634
emailgraph550K 9.graph 345 654

19

	2012,4_Titelbl
	DIMACS_hCutClus_tr

