
Darko Anicic

Event Processing and
Stream Reasoning with ETALIS

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte Dissertation.

Event Processing and
Stream Reasoning with ETALIS

Dipl.-Ing. Darko Aničić

Referent: Prof. Dr. Rudi Studer
Korreferent: Prof. Dr. Opher Etzion

Prüfer: Prof. Dr. Detlef Seese
Vorsitzender der Prüfungskommission: Prof. Dr. Andreas Geyer-Schulz

Tag der mündlichen Prüfung: 09. November 2011.

Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Fakultät Wirtschaftswissenschaften

Karlsruher Institut für Technologie (KIT)

Karlsruhe 2011

i

To Vedrana and Andre

Abstract

Event Processing (EP) is concerned with detection of situations under time constraints

that are of a particular business interest. We face today a paradigm shift toward the

real time information processing, and EP has therefore spawned significant attention in

science and technology. Due to omnipresence of events, EP is becoming a central as-

pect of new distributed systems such as cloud computing and grid systems, mobile and

sensor-based systems, as well as a number of application areas including financial ser-

vices, business intelligence, social and collaborative networking, click stream analysis

and many others.

However, there are a number of issues to be considered in order to enable effective

event-based computation. A language for describing event patterns needs to feature a

well-defined semantics. It also needs to be rich enough to express important classes of

event patterns. Pattern matching should be supported in both, query-driven and event-

driven modes. A number of other event operations, such as event aggregation, filtering,

translation, enrichment and splitting, should be supported too. Since EP is a real time

processing task, an EP language needs to feature an efficient execution model. Finally,

processing only events is not sufficient in many applications. To detect complex situa-

tions of interest, EP needs to be enhanced by background knowledge. This knowledge
captures the domain of interest. Its purpose is to be evaluated during detection of events

in order to on the fly enrich events with relevant background information; to detect more

complex situations; to reason about events and propose certain intelligent recommen-

dations; or to accomplish event classification, clustering, filtering and so forth.

The ETALIS Language for Events (ELE) is a declarative rule-based language for EP. It

supports the above mentioned features, and goes beyond the state of the art by providing

stream reasoning capabilities. In this thesis, we first review related literature and extract

requirements for modern EP systems. Then we present ELE as a novel expressive

formalism that fulfils these requirements. Further on, we show how deductive stream

reasoning capabilities of ELE, together with its EP capabilities, have the potential to

provide powerful real time intelligence. We give a few extensions of the core ELE. A

number of examples and use case scenarios are developed to show the power of the

proposed EP framework. We provide a prototype implementation of the language, and

present evaluation results for implemented scenarios. Finally, we summarise the results

of this thesis and outline our view of the emerging future work.

Acknowledgements

On my journey to complete this thesis many people have contributed. Foremost, I

would like to sincerely thank to my supervisor, Prof. Dr. Rudi Studer, who gave me the

opportunity to work in his research group and continuously supported my work. Prof.

Dr. Rudi Studer has created a unique research environment that made my research both

possible and enjoyable.

I am grateful to Dr. Opher Etzion who was willing to serve as a second reviewer of

this work. I wish to sincerely thank him also for inviting me to participate in many

initiatives and collaborations within the event processing community – most notably the

joint work on The Event Processing Manifesto, and participation in the implementation

of Fast Flower Delivery use case in ETALIS.

I am indebted to my supervisor, Dr. Nenad Stojanovic, for his unmeasurable enthusiasm

and inspiration throughout my PhD studies. Ha gave me the necessary freedom to

pursue my ideas, and has continuously encouraged me to always further my work.

The work presented in this thesis would not be possible without my colleagues Dr.

Sebastian Rudolph, Dr. Paul Fodor, Jia Ding, Ahmed Khalil Hafsi and Vesko Georgiev.

Without Sebastian this thesis would not have the same level of technical profoundness.

Since the time I started the work on ETALIS, Paul has been providing immeasurable

help in implementation of ETALIS. Jia Ding, Ahmed Khalil Hafsi and Vesko Georgiev

have also greatly contributed to successful development and testing of ETALIS.

I would like to thank all the (former and present) colleagues in the Rudiverse for pro-

viding such a friendly working atmosphere. I specially need to thank my colleagues

from the iCEP group: Sinan Sen, Roland Stühmer, Jun Ma, Yongchun Xu and Dominik

Riemer. Roland Stühmer has also generously helped with the early work on ETALIS.

My parents and sister receive my sincerest gratitude and love for giving me continuous

support and encouragement in my work.

I thank my wife for giving me inspiration and energy throughout the time it has taken

to complete this thesis.

Darko Aničić

Karlsruhe, June 2011

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

I Introduction 1

1 Thesis Overview 3
1.1 Introduction . 3

1.2 Shifting Event Processing Toward More Intelligent Event Processing . . 5

1.3 Shifting Reasoning Toward Stream Reasoning 7

1.4 Aims and Objectives . 11

1.5 Thesis Organization . 14

1.6 Relation to Previous Publications . 15

2 Introduction to Event Processing 17
2.1 What is an Event? . 17

2.2 Event Programming Principles . 18

2.2.1 Events as a Means to Declare Changes 19

2.2.2 Information Push Versus Information Pull 19

2.3 Event Processing Architecture . 20

3 Introduction to Logic Programming 25
3.1 Background of Logic Programming 25

3.2 The Logic in Logic Programs . 26

3.2.1 Syntax of Definite Programs 26

3.2.2 Semantics of Definite Programs 30

3.3 The Control in Logic Programs . 33

3.3.1 Immediate Consequence Operator 34

3.3.2 SLD Resolution . 35

4 State of the Art 39
4.1 Active Databases . 39

viii Contents

4.2 Event Processing Systems . 42

4.3 Approaches for Retraction in Event Processing 46

4.4 Approaches for Out-of-Order Event Processing 49

4.5 Logic-Based Approaches in Event Processing 50

4.6 Semantic-Based Approaches . 52

4.6.1 Temporal RDF . 52

4.6.2 Stream Reasoning Approaches 53

II ETALIS Language for Events 55

5 Logic-Based Event Processing: Design Principles and Requirements 57
5.1 Formal Declarative Semantics . 57

5.2 Point-Based Versus Interval-Based Temporal Semantics 59

5.3 Seamless Integration of Events with Queries and

Domain Knowledge . 60

5.3.1 Query Processing . 60

5.3.2 Knowledge Processing . 60

5.4 Event-Driven Incremental Reasoning 61

5.5 Expressivity . 61

5.6 Set at a Time Versus Event at a Time Processing 62

5.7 Simplicity and Ease-of-Use . 63

5.8 Extensibility . 65

6 ETALIS: A Rule-Based Language for Event Processing and Reasoning 67
6.1 Introduction . 67

6.2 Syntax of the Language . 69

6.3 Declarative Semantics of the Language 73

6.3.1 Complexity Properties . 75

6.4 Examples . 75

6.4.1 An Example Application . 77

7 Operational Semantics of the Language 79
7.1 Overview . 79

7.2 Execution Model for ETALIS . 80

7.2.1 Sequence . 80

7.2.2 Conjunction . 84

7.2.3 Concurrency . 87

7.2.4 Disjunction . 87

7.2.5 Negation . 88

7.2.6 Interval-Based Operations . 88

7.2.6.1 Duration . 88

7.2.6.2 Start . 89

7.2.6.3 Equal . 89

7.2.6.4 Finish . 89

Contents ix

7.2.6.5 Meet . 90

7.3 Iterative and Aggregative Patterns . 90

7.3.1 From Event Rules to Event Iterative Rules 90

7.3.1.1 An Example Application with Iterative Rules 91

7.3.2 Implementation of Aggregative Patterns 92

7.4 Consumption Policies . 96

7.4.1 Consumption Policies Defined on Time Points 97

7.4.2 Consumption Policies Defined on Time Intervals 98

8 The Event Processing Network in ETALIS 101
8.1 Filtering . 102

8.1.1 Event Type Filter . 102

8.1.2 Event Content Filter . 102

8.2 Pattern Detection . 103

8.3 Transformation . 103

8.3.1 Projection . 103

8.3.2 Translation . 104

8.3.3 Enrichment . 104

8.3.4 Splitting . 105

8.3.5 Aggregation . 106

8.3.6 Composition . 106

8.4 Knowledge-Based Event Processing Agents 107

8.4.1 Event Processing with Transitive Closure Rules 108

8.4.2 Rule-Based Event Classification 109

8.4.3 Event Processing with Reasoning About Subclass Relationships 110

III ETALIS Extensions 113

9 Retraction in Event Processing 115
9.1 Problem Statement for Event Retraction 115

9.1.1 A Motivating Example: Processing Events with Transactions . . 116

9.1.1.1 Event Retraction with External Complex Events . . . 117

9.1.1.2 Event Retraction and Compensations 117

9.1.1.3 Summary of the Problem 118

9.2 ETALIS Formalism for Event Retraction 118

9.2.1 Event Retraction Example . 119

9.3 Operational Semantics for Retractable Event Processing 121

9.3.1 Sequence . 121

9.3.2 Conjunction . 123

9.3.3 Time-Life Window for Event Retractions 125

10 Processing Out-of-Order Events 127
10.1 Overview of Out-of-Order Event Processing 127

10.1.1 Motivating Example . 128

x Contents

10.1.1.1 Missed Complex Events due to Out-of-Order Events . 130

10.1.1.2 False Positive Complex Events due to Out-of-Order

Events . 130

10.1.1.3 Summary of the Problem with Out-of-Order Events . 130

10.2 Out-of-Order Event Processing . 131

10.3 Memory Management . 133

10.3.1 Pushed Constraints . 134

10.3.2 General and Pattern-Based Garbage Collection 135

11 EP-SPARQL: Extending ETALIS for the Semantic Web 137
11.1 Introduction . 137

11.2 The Semantic Web with Event Processing 139

11.3 Syntax of EP-SPARQL . 140

11.4 Semantics of EP-SPARQL . 143

11.5 An Example of EP-SPARQL Application 145

11.6 Operational Semantics of EP-SPARQL 147

11.6.1 Sequence . 147

11.6.2 Filter Expression . 150

11.6.3 Background Knowledge . 150

11.6.4 Equals . 151

11.7 Memory Management and Time Windows in EP-SPARQL 151

IV Practical Considerations 153

12 Implementation 155
12.1 ETALIS Architecture . 155

12.2 EP-SPARQL Implementation . 158

12.3 Interacting with ETALIS . 159

13 Evaluation 161
13.1 Performance Evaluation . 161

13.1.1 Data Sets . 162

13.1.2 Run-Time Tests for Common Event Patterns 163

13.1.3 Performance Evaluation for Knowledge-Based Event Processing 166

13.1.4 Performance Evaluation for Event Processing with Retractions . 166

13.1.5 Performance Evaluation of Out-of-Order Event Processing . . . 171

13.1.5.1 Knowledge-Based Event Processing with Out-of-Order

events . 172

13.1.5.2 Test with Real Dataset and Out-of-Order Events . . . 173

13.1.6 Performance Evaluation for Iterative Patterns 174

13.1.6.1 Test 1: Sum with Sequance 174

13.1.6.2 Test 2: Average with Sequence 175

13.1.6.3 Test 3: Maximum with Disjunction 175

13.1.6.4 Test 4: Count with Negation 177

Contents xi

13.1.6.5 Application 1: Supply Chain 177

13.1.6.6 Application 2: Stock Trade 179

13.1.7 Experimental Results for EP-SPARQL 180

13.1.7.1 Test 1: Stream Reasoning 180

13.1.7.2 Test 2: Example Applications 181

13.2 Use Case: On The Live Measurements of Environmental Phenomena . . 184

13.2.1 Additional Use Cases . 190

V Conclusions and Outlook 193

14 Summary and Conclusion 195
14.1 Summary of the Results . 195

14.2 Future Work . 198

14.2.1 Event-Driven Business Processes 198

14.2.1.1 AUnifying Framework for Event-Driven Ad-Hoc Pro-

cesses . 199

14.3 Conclusions . 200

A Appendix 203
A.1 Linked Sensor Data for Weather Stations 203

A.2 Distance Calculation . 204

Bibliography 205

Index 221

xii Contents

List of Figures

2.1 An event processing network . 21

3.1 Example definite program . 29

3.2 Example definite rules with built-in predicates 30

3.3 Example Herbrand interpretations of the program P 33

3.4 Iterative generation of immediate consequences 34

3.5 Example construction of the minimal Herbrand model 35

3.6 An SLD tree for our example definite program 37

6.1 ETALIS Conceptual Architecture . 68

6.2 Language for Event Processing - Composition Operators 71

6.3 Definition of extensional interpretation of event patterns. We use P (x) for

patterns, q(x) for rational numbers, t(x) for terms and PR for event predicates. 74

7.1 Example program . 86

9.1 Conceptual interaction of events and transactions 117

10.1 Received vs. real order of events . 130

12.1 System Diagram: ETALIS . 156

12.2 System Diagram: EP-SPARQL . 158

12.3 ETALIS interfaced with event producers and event consumers 159

13.1 Experiments for sequence operator - (a) Throughput (b) Throughput vs.

Predicate Selectivity . 163

13.2 (a) Sequence - Throughput vs. Workload Change (b) Negation - Through-

put vs. Selectivity . 164

13.3 (a) Negation - Throughput vs. Workload Change (b) Conjunction -

Throughput . 164

13.4 (a) Experiments for Disjunction Operator - Throughput (b) Evaluation

of Transitive Closure - Workload Change 165

xiv List of Figures

13.5 Experiment for Testing Computation Sharing for Sequence Operator . . 166

13.6 EP combined with Stream Reasoning 167

13.7 (a) Throughput comparison (b) Negation and revision 167

13.8 (a) Sequence - 1st event retracted (b) 2nd event retracted 168

13.9 (a) Parallel - 1st event retracted (b) Conjunction - 1st event retracted . . 169

13.10(a) Disjunction - 1st event retracted (b) Event latency 169

13.11(a) Revision time-based windows (b) Stock price change on a real data

set . 170

13.12(a) Throughput comparison (b) Memory consumption 171

13.13Throughput change as the size of companies’ relations varies from 100

to 1000 . 173

13.14Memory consumption in the knowledge-based EP test 173

13.15Stock price change on a real data set: (a) throughput (b) memory con-

sumption . 174

13.16SUM-SEQ: throughput vs. window size 175

13.17AVG-SEQ: throughput vs. window size 176

13.18MAX-OR: throughput vs. window size 176

13.19COUNT-NOT: throughput vs. window size 177

13.20(a) Throughput comparison (b) Memory consumption 178

13.21Average and maximum stock prices 179

13.22Delay caused by stream reasoning . 181

13.23Goods Delivery System: (a) Delay caused by processing (b) Memory

consumption . 182

13.24Tsunami detection histogram . 183

13.25Sensor Location Map . 185

13.26Sensor location map with marked wind areas 188

13.27(a) Complex event throughput (b) Memory consumption 190

14.1 Conceptual architecture of event-driven ad-hoc processes. 200

List of Tables

8.1 Namespace abbreviations. 110

13.1 Complex Events from Live Sensor Data. 186

13.2 Computation for pattern (13.23) from live sensor data. 188

13.3 GeoNames locations nearby KSFO weather station (SFO Airport). . . . 189

xvi List of Tables

List of Algorithms

1 Sequence. 82

2 Conjunction. 84

3 Concurrency. 87

4 Negation. 88

5 Sequence with retraction. 121

6 Conjunction with retraction. 124

7 Sequence with out-of-order events. 131

8 Sequence with constraint checks. 134

xviii List of Algorithms

Part I

Introduction

1
Thesis Overview

1.1 Introduction

The concept of Event Processing (EP) is not new. Sensing for particular observations

and acting upon their detection have been a part of human nature ever since. For exam-

ple, our organism reacts when the body feels warm. The same happens in our society

– we sense for opportunities and threats, and act accordingly to avoid troubles or take

advantages of a particular situation. As we move more to the era of Information and

Communication Technology, we also see a dramatic increase in the number of observ-
able events. A received phone call, a confirmation that a transaction has completed,

a sensor reading, and so forth – are few examples of observable events. Coping with

observable events assumes detection of events that are important, and a response to

them in a timely fashion. Since the amount of available event data is rapidly expanding

and detection needs to be performed with low latency, this task has turned to be rather

challenging [ChEA11]. Hence we need novel concepts, techniques, and systems to

automatically process events, and optimise them algorithmically to do that in a timely

fashion. Due to these new requirements, EP has emerged as a substantial new field of

computer science over the last decade.

Most businesses today collect large volumes of data continuously, and it is absolutely

essential for them to process this data in real time, so that they can take time-critical

actions [Luck02]. There are many reasons why today’s information society abounds

in large volume of continuous information (events). Few of them are to be mentioned

here.

4 1. Thesis Overview

The amount of information that is available to users at nearly the moment it is produced

is upraising on the Web. Electronic businesses and Internet explosion cause massive in-

crease in event-driven interactions (instead of request-response interactions, that have

been dominant so far). A new generation of computing, such as cloud computing,

emerges with a need for an effective real time monitoring and management. In order to

enable key characteristics of cloud computing, such as elasticity, multi-tenancy, reliabil-

ity, scalability and metering – cloud computing requires autonomic computing that is

to be extended with EP. Modern business processes management demands automation

and changes according to business events. How to detect business events and trigger

changes is a yet another topic related to EP. Efforts to make energy consumption more

efficient have recently led to the creation of smart energy grids. By using an event-

driven communication between involved parties (energy suppliers, consumers, market-

place players and so forth), smart energy grids aim to optimise energy consumption,

and hence reduce the associated costs. Further on, a real time control in manufacturing

processes increasingly interact with the underlying production machinery. The produc-

tion machinery can be seen as a source of events, since it emits condition information

about production equipment asynchronously. Asynchronous interactions are supported

by an EP architecture, and this is a yet another reason to exploit EP in manufacturing

processes. Finally let us mention the financial sector, that has dramatically changed due

to new electronic business processes and a high competition. Financial institutions have

started to use EP for feeding data into algorithmic trading systems as well as for finding

dealing opportunities across available assets. Fraud detection and surveillance are also

growth areas for EP, as well as risk monitoring that uses EP for managing market and

liquidity risks in real time.

EP is fast becoming a foundation of today’s computer and information systems. The

reason for this lays in the fact that events are everywhere (above we have mentioned

only few areas) and we need a way to make sense of them. EP is a set of techniques

and tools to help us understand and control event-driven information systems [Luck02].

We will discuss concepts and techniques of EP in Chapter 2, however at this point it is

worth to abstract what EP is about.

An event represents something that occurs, happens or changes the current state of

affairs. For example, an event may signify a problem or an impending problem, a

threshold, an opportunity, an information becoming available, a deviation and so forth.

These events are directly related to specific, measurable changes of conditions. In many

application it is however important to infer more abstract situations. It is the task of EP

to effectively derive these situations based on occurrence (or non occurrence) of several

single, ordinary events. EP therefore deals with a problem of identifying abstract situ-

ations that cannot be detected from looking only at single events. Instead, an abstract

situation (a derived event) is usually a combination of ordinary (and possibly other de-

rived) events that satisfy certain temporal and semantic conditions. Events together

with temporal and semantic conditions, that are of interest to a particular application,

are called event patterns, and are commonly specified in a special purpose languages,

called Event Processing languages.

1.2. Shifting Event Processing Toward More Intelligent Event Processing 5

In the remaining parts of this work we investigate characteristics of EP languages and

event-driven systems, in general. As a result, we spot possibilities for further advance-

ments in EP, and propose (in Chapter 6) a new language called the ETALIS Language

for Events (ELE). The language comes with a clean rule-based syntax and a declara-

tive semantics. The language is expressive enough to capture all aspects important to

EP. Moreover, we present features and extensions of ELE that go beyond the state of

the art languages [ADGI08, BGAH07, ArBW06, KrSe09, CCDF+03]. An outstanding

feature of the ELE is a capability to do logic reasoning. This capability together with

other ELE features is built into the language’s operation semantics, thereby providing

a unified framework for EP and logic reasoning. Moreover we provide the language’s

extensions to enable retractable EP (dealing with the circumstance that certain events

may be revoked, in Chapter 9), out-of-order EP (dealing with late events, in Chapter 10),
and most importantly, we provide an extension for EP and logic reasoning suitable in

the realm of the Semantic Web (in Chapter 11).

1.2 Shifting Event Processing Toward More Intelligent Event Pro-
cessing

Recently, there has been a significant paradigm shift toward real time information pro-

cessing in research as well as in industry. As mentioned in the previous section, most

businesses today collect large volumes of data continuously and it is absolutely essen-

tial for them to process this data in real time so that they can react quickly. Real time

computing has raised significant interest due to its wide applicability in areas such as

sensor networks (for on the fly interpretation of sensor data), financial services (for

dynamic tracking of stock fluctuations as well as surveillance for frauds and money

laundering), ad-hoc Business Process Management (to detect situations that demand

process changes in a timely fashion), network traffic monitoring (to detect and predict

potential traffic problems), location based services (for real time tracking and service

operation), Web click analysis (for real time analysis of users interaction with a Web

site and adaptive content delivery) and so forth.

Classical database systems and data warehouses are concerned with what happened in

the past. In contrast thereto, EP is about processing events upon their occurrence, with

the goal to detect what has just happened or what is about to happen. For example, an

event may represent a sensor reading, a stock price change, a complied transaction, a

new piece of information, a content update made available by a Web service and so

forth. In all these situations, it is reasonable to compose simple (atomic) events into

derived (complex) events, in order to structure the course of affairs and describe more

complex dynamic matters. EP deals with real time recognition of such derived events,

i.e., it processes continuously arriving events with the aim of identifying occurrences of

meaningful derived events (according to predefined event patterns or event operations).

Derived events are detected for various reasons, e.g., to trigger a time-critical action,

to be displayed on a dashboard (presenting information in real time), or to trigger an-

6 1. Thesis Overview

other event and continue an event-driven computation. In existing approaches to EP, a

derived event is represented either as a single event (that is filtered, projected, enriched

and so forth), or as a composition of other events satisfying certain temporal or spatial

relationships.

Digitalisation of information in markets, factories, and communication over Internet

has caused large volumes of data that is continuously generated. EP offers concepts

and techniques to process this data in real time. Consequentially, this means that EP

needs to effectively fulfil two requirements – high throughput and timeliness. Facing
the large volumes of generated events and the necessity of processing them in real time,

EP creates indeed a challenge in its own right. Yet, the question remains whether sole

functionality of today’s EP is enough to meet sophisticated requirements of modern

event-driven information systems. EP deals with operations that include reading, cre-

ating, transforming, and deleting events [EtNi10]. Some of these operations are com-

putationally intensive, but not intelligent. Coming back to the vision from [Luck02],

it is arguable whether EP supported by today’s event-driven systems, are expressive
enough to capture events in all their aspects. How likely is that critical decisions are

taken merely on event patterns of the type, e.g., “event a is followed by event b in the

last 10 seconds”? For some applications such patterns are expressive enough; however

for knowledge-rich applications, they are certainly not. In many applications, real time

actions need to be triggered not only by events, but also upon evaluation of additional

background knowledge. This knowledge captures the domain of interest, or context re-
lated to critical actions and decisions. Its purpose is to be evaluated during detection

of events in order to on the fly enrich events with relevant background information;

to detect more complex situations; to reason about events and propose certain intelli-
gent recommendations; or to accomplish event classification, clustering, filtering and

so forth.

In this work, we advocate a knowledge-rich EP, which apart from events, also processes

contextual knowledge (e.g., to additionally prove semantic relations among matched

events or to describe the domain in which events are interpreted). Our approach em-

ploys formal reasoning methods to generate non trivial conclusions from the contextual

knowledge. These non trivial conclusions are known as implicit knowledge, as opposed
to knowledge that is explicitly stated (e.g., information from a database). Hence, in our

approach complex events are derived not only from other events, but from implicit

knowledge too. To give a reader some feeling what we mean by semantic relations and

implicit knowledge, let us consider the following example.

Consider a traffic management system which detects roads with slow traffic, and auto-

matically modifies a speed limit on these roads. For example, the traffic on a road is

slow if two events, suggesting a slow traffic, have been reported within the last half an

hour. So how can we identify events that suggest slow traffic? Traffic can be slowed

down due to various reasons (e.g., an accident occurred, a ghost driver identified, or

due to bad weather and so forth). Further on, there may be a number of classifications

for each of these reasons. For instance, a traffic accident is classified as a head-on colli-

sion, side collision, rollover; and further, bad weather driving conditions can be caused

1.3. Shifting Reasoning Toward Stream Reasoning 7

by rain, snow, ice and so forth. There exist different types of observations which may

influence the traffic, and for each of them there may be a different suggested speed

limit.

All this, and similar information can be formally represented as a background knowl-

edge (since they are fairly static). The system can evaluate the knowledge when certain

events occur in order to better asses the situation. For instance, an event may report rain

in a particular region, and a head-on collision may have happened on a road section in

the same region. A similar situation, that requires the speed limit change, could be de-

tected due to snowfall and a ghost driver. In all cases the system will infer that occurred
events are semantically relevant with respect to the traffic monitoring, and will automat-

ically modify the speed limit on that road section (given that those events additionally

satisfy temporal constraints, i.e., they have occurred within a half an hour, as well as

spatial constraints, i.e., events originate from the same region). Therefore, such a sys-

tem enables us to specify a more abstract, high-level situations, while specific cases

related to those situations may be inferred from the background knowledge. Moreover

a situation can be assessed based on implicit knowledge (i.e., not only explicitly stated

information). We believe that such a capability in today’s EP systems would push them

toward a more intelligent EP.

Formal knowledge representation enables machine processable knowledge, as well as

derivation of implicitly stated knowledge. We want to utilise this capability to enable

detection of indirect observations that may still make influence on the overall traffic sit-

uation, e.g., to detect intelligent recommendations, to better asses the context in which

events are processed, and so forth. This powerful feature is beyond the state of the

art of existing EP systems [ADGI08, BGAH07, ArBW06, KrSe09, CCDF+03], and is

required for an intelligent real time processing.

In this work we will further purse the topic of knowledge-based EP which may help

in shifting today’s EP toward a more intelligent EP. Yet to succeed in this, we need to

adapt current knowledge processing and reasoning procedures to work over streaming
events.

1.3 Shifting Reasoning Toward Stream Reasoning

Reasoning is ability to generate non-trivial conclusions from premisses or assumptions.

There exist different types of reasoning. Logical reasoning methods were mainly di-

vided between deductive, inductive and abductive reasoning.

Deductive reasoning is reasoning that attempts to show that a conclusion necessarily

follows from a set of premises or hypotheses. The conclusion is true when premises

are true too. Logic rules define which conclusions may be drawn from which premises.

By validating logic rules, deductive reasoning proves premises and effectively attempt

to gain new knowledge. This knowledge (conclusions) is commonly called implicit
knowledge.

8 1. Thesis Overview

Inductive reasoning is reasoning that starts from a specific case or cases and attempts to

induce a general rule. That is, it begins with specific observations, and detects patterns

and regularities in order to induce a much larger set of conclusions or theories.

Abductive reasoning is reasoning that starts from an observed phenomenon, and at-

tempts to abduce a single explanation (or a few explanations) thereof (although, in

general, there may be infinitely many of them). Deduction and abduction thus differ in

the direction in which reasoning is performed. Deduction start from a set of hypothe-

ses and deduces a conclusion, while abduction begins with a conclusion and abduces

hypotheses.

While the all three methods of reasoning have their strengths in different cases, deduc-

tive reasoning starts with the assertion of a general inference rule and proceeds from

there to a guaranteed specific conclusion. In terms of EP, a general inference rule cor-

responds to an event pattern, and a specific conclusion corresponds to an instance of

a complex event. This analogy was the motivation for us to use deductive reasoning

in EP. Hence in the remaining parts of this work, when saying reasoning, we refer to

deductive reasoning (unless otherwise stated).

When we talk about knowledge representation and deductive reasoning, logic program-

ming (LP) is a relevant field of computer science. The field began in the early 1970’s1

as a direct outgrowth of earlier work in automatic theorem proving and artificial intelli-

gence (AI) [Lloy87]. The fundamental idea behind LP is to use logic as a programming

language. This idea has proved to be useful in many areas including expert systems,

problem-solving strategies, planning, game playing, and others – which in turn have

been applied in the fields of accounting, medicine, process control, financial service,

production, and human resources among others. But can concepts and techniques from

LP be used for processing events?

In LP an inference procedure is applied to logic rules of the form: If b1, ...,bn Then h,
proving a conclusion h if it can prove premisses b1, ...,bn. Rules, including premisses

and other artefacts that may be used for proving them, are kept in a knowledgebase

(KB). This mechanism is close to EP if a derived event is treated as a conclusion (h),

and is detected from more simple events (b1, ...,bn). Moreover, the condition part

(b1, ...,bn) does not necessarily need to consist of events. Instead, it my contain other

objects from a KB. It is convenient to use a KB, for example, to specify relationships
between events, knowledge about the domain of discourse, and different contexts in

which events are interpreted. More importantly, EP based on LP would enable reason-
ing over events, their relationships, entire states, and possible contextual knowledge

available for a particular domain.

In deductive reasoning the argument’s conclusion and premisses are represented by

logic (deductive) rules, and LP provides strategies for computing these rules. It has

been already shown [APPS10, KoSe86, MiSh99, LaLM98, AlBB06, BrEc07a, Hale87,

PaKB10] that EP approaches based on logic rules have various advantages. First, they

are expressive enough and convenient to represent diverse event patterns and come with

1or even earlier, 1958, when John McCarthy published his paper “Programs with Common Sense”.

1.3. Shifting Reasoning Toward Stream Reasoning 9

a clear formal declarative semantics; as such, they are free of operational side-effects.

Second, integration of query processing with EP is easy and natural (including, e.g., the

processing of recursive queries). Third, our experience with the deployment of logic

rules is very positive and encouraging in terms of implementation effort for the main

constructs in EP, as well as in providing extensibility of an EP system (e.g., the number

of code lines is significantly smaller than in procedural programming). Ultimately, a

logic-based event model allows for reasoning over events, their relationships, entire

states, and possible background knowledge available for a particular domain.

To clarify what we mean by reasoning over events and and background knowledge, let

us consider the following scenario. Suppose we use a navigation system to drive from

a city A to a city B. Our goal is to find an optimal route between the two cities, with

respect to the length of the route and the current driving conditions. Driving conditions

are monitored in real time with a similar system as described in an example traffic

management scenario from Section 1.2.

Further on, suppose that navigation system has the capability to perform deductive

reasoning. For instance, all roads and road sections are represented as facts in its KB,

and the system contains rules that explain how to find a path between two points. The

KB also contains properties about roads (e.g., which routes are motorways, and which

are single carriageway roads, toll roads, and so forth). Depending on constraints, the

system deploys deductive reasoning to find an optimal route. This task can be done

by the system, since the KB is static and we have a fixed goal to be solved. However

if we want the system to navigate us with respect to the current driving conditions, it

needs to reason on-the-fly. The initial optimal path may be altered due to the current

driving conditions on a particular route section (during the drive). Therefore the system

needs to reason about the current driving conditions (events) and the domain knowledge

(existing routes, their properties and constraints). We refer to this type of (on-the-fly)

reasoning as Stream Reasoning (SR).

Definition 1.1 Stream Reasoning is the task of conjunctively reasoning over streaming
events, and static or slowly evolving knowledge. It is, therefore, reasoning that takes
streaming events as an input, and by consulting static or slowly evolving knowledge, it
continuously derives a streaming output under time constraints. �

Static or evolving knowledge represent background knowledge. This knowledge cap-

tures event patterns, as well as the domain, or context in which events are interpreted.

stream reasoning (SR) is a capability beyond many of the state of the art approaches

in EP [ADGI08, MeMa09, BGAH07, ArBW06, KrSe09, CCDF+03], despite the fact

that there exists already a lot of (static or slowly evolving) knowledge on line avail-

able (which could be used in conjunction with EP). For example, the Linked Open

Data (LOD) initiative2 has made available on the Web hundreds of datasets and on-

tologies such as live-linked open sensor data3, UK governmental data4, the New York

2see http://linkeddata.org/
3Live linked open sensor data: http://sensormasher.deri.org/
4OpenPSI project: http://www.openpsi.org/

10 1. Thesis Overview

Times dataset5, financial ontologies6, encyclopedic data (e.g., DBpedia), linked geo-

data7. This knowledge is commonly represented as structured data (using RDF Schema

[BrGM04]). Structured data allows us to define meanings, structures and semantics

of information that is understandable for humans and intelligently processable by ma-

chines. Moreover, structured data enables reasoning over explicit knowledge in order to

infer new (implicit) information. Current EP systems [ADGI08, MeMa09, BGAH07,

ArBW06, KrSe09, CCDF+03] however cannot utilize this structured knowledge and

cannot reason about it. In this work, we address this issue, and provide a framework for

event recognition and Stream Reasoning over events and domain knowledge.

However, LP reasoning is not commonly used for highly dynamic KBs. Although

LP deals with knowledge updates, reasoning algorithms in LP are not algorithmically

optimised for reasoning over streaming events, i.e., for SR.

Apart from this, a significant difference between LP and EP systems is the underlying

computation mechanism. Computation in LP is based on, so called, request-response
interaction model while EP systems additionally support event-driven interactions (see

Subsection 2.2.2).

For given a request, an LP system will evaluate available knowledge (i.e. rules and

facts) and respond with an answer. This means that an LP system, used for EP, would

need to check if an event pattern can be deduced or not. The check is performed at

the time when such a request is posed. If satisfied by the time when the request is

processed, a complex (derived) event will be reported. If not, the pattern is not detected

until the next time the same request is processed (though it can become satisfied in-

between the two checks). Contrary to this, EP demands data-driven or event-driven
computation model (as handled by various approaches such as non-deterministic finite

automata (NFA) [ADGI08], Petri Nets [GaDi92], the RETE algorithm [Forg82] and

so forth). Unfortunately approaches grounded on NFA and Petri Nets do not feature

reasoning capabilities; and RETE may be integrated with deductive rules as it is done in

production rule systems [Alve09]. However, production rule systems in some aspects

differ from event-driven systems. For example, in a RETE-based system many rules

may be scheduled for firing when a certain event occurs. The execution order of these

rules is defined by a conflict resolution strategy. For example, Drools system8 (a RETE-

based system) implements two conflict resolution strategies: salience and LIFO (last

in, first out). In case of salience, a user can specify that a certain rule has a higher

execution priority than other rules (by assigning a higher number to it). In that case, the

rule with a higher salience will be preferred. LIFO priorities are based on recency, i.e.,

if two rules have the same priority, the rule that matches the most recent object will be

fired first. While the latter is close to the recent event consumption policy [ChMi94],

the former is not practically useful in EP systems as it is not feasible to assign a priority

number for each event pattern rule. Having an event as a first class citizen would give

5Linked Open Data from the New York Times: http://data.nytimes.com/
6Financial ontology: http://www.fadyart.com/
7LinkedGeoData: http://linkedgeodata.org
8Drools: http://www.jboss.org/drools

1.4. Aims and Objectives 11

us fine grain possibilities to select an event instance out of many possible. We will

address this topic further in Section 7.4, and show that our approach can implement

various consumption policies as defined in [ChMi94]. Moreover, having an event as

a first class citizen will also enable our approach to easier implement various other

aspects in EP (e.g., sliding windows, aggregates, retraction in EP, and out-of-order EP).

For further details between the RETE algorithm and our approach see Section 4.5.

How to effectively realise LP-based EP, thereby pushing EP toward more intelligent
EP, and by pushing reasoning toward SR is a central topic of this work.

1.4 Aims and Objectives

The discussion, so far, emphasised the fact that events are everywhere, and we need to

find a means to makes sense of them. EP has emerged in computer science as a new dis-

cipline which deals with events. Moreover by providing concepts, techniques and tools

for events, today’s EP offers a starting position for detection of complex situations in

real time. Further on, we tried to stress importance of machine processable knowledge

and reasoning in the context of EP, thereby shifting it toward a more intelligent EP.

One approach to achieve this is to apply deductive reasoning and logic programming to

EP.

This simple conclusion, however, disregards the fact that LP has not been used so far as

a common computing paradigm in EP. Some underlying concepts of EP – most notably

the event-driven interaction model (discussed in Subsection 2.2.2) – differ from the way

LP has been used so far.

Faster detections of events leave more time to respond to them, but detections based

on more accurate and complete information require more time for evaluation and less

time for response [ChSc10]. It is a trade-off between faster detections of events, and

detections based on a more accurate and complete information. An approach based

on LP may help in enabling EP with more accurate and complete information. But a

question, how feasible such an approach would be with respect to timeliness, remains

open.

The principal objective of this work is therefore to advance the development in EP

with a knowledge representation formalism that is grounded in LP. We summarise the

following questions from the above discussion as the main research questions addressed

in this work:

• Can we utilise knowledge representation (KR) techniques to formally express

both, complex event patterns and background knowledge, in a uniform formalism

for EP?

• How to effectively use logic inferencing to derive complex events in a timely

fashion?

12 1. Thesis Overview

• By realising EP with concepts from LP, can we detect more real time situations

that are otherwise undetectable with sole EP?

• Could an LP approach for EP be efficiently implemented with an event-driven

computation model (instead of commonly used request-response interactions)?

• Would an LP approach for EP be extensible enough for other specific require-

ments in EP (e.g., event retraction and out-of-order EP)?

• How much do we need to compromise on faster detections of events, to get in

return detections based on more accurate and complete information (complex

event patterns with background knowledge)?

This is by no means an exhaustive list of research questions (related to knowledge-based

EP). For example, how to utilise background knowledge for an automated creation of

event patterns (pattern mining), and further, pattern maintenance and validation are

relevant topics, see e.g., [SeSt10]. These and similar topics could be well investigated

in the realm of an LP-based approach for EP too. However in this particular work they

are out of scope, and might be a subject of our future work.

The main contributions of this thesis are as follows:

• A uniform formalism for Event Processing and Stream Reasoning. We define

an expressive complex event description language, called ETALIS Language for
Events with a rule-based syntax and a formal declarative semantics. The language

features event and static rules. While event rules are used to capture patterns

of complex events, the static rules account for (static or evolving) background

knowledge about the considered domain. The proposed formalism is expressive

enough to capture the set of all possible thirteen temporal relations on time in-

tervals, defined in Allen’s interval algebra [Alle83]. We further extended the

language to express complex iterative patterns over unbound event streams, and

apply certain aggregation functions over sliding windows. Since the language

with its extensions is based on declarative semantics, it is suitable for deductive
reasoning over event streams and the domain knowledge. The language is also

general enough to support extensions with respect to other operators and features

required in EP (e.g., event consumption policies).

• Efficient execution model. We develop an efficient, execution model to enable

Event Processing and Stream Reasoning in ETALIS Language for Events (ELE).

We propose a novel operational semantics for ELE in which complex (derived)

events are deduced or derived from simpler ones. Complex events are defined as

deductive rules, and events are represented as facts. Every time an atomic event

(relevant with respect to the set of monitored complex events) occurs, the sys-

tem updates the knowledgebase, i.e., it adds a respective fact to the internal state

of complex events. Essentially, this internal state encodes what atomic events

have already happened and what are still missing for the completion of a certain

1.4. Aims and Objectives 13

complex event. Complex events are detected as soon as the last event required

for their detection has occurred. Descriptions telling which occurrence of an

event furthers the detection of complex events (including the relationships be-

tween complex events, events they consist of, or additional domain knowledge)

are given by deductive rules and facts. Consequently, detection of complex events

then amounts to an inferencing problem.

• Event retraction model. Events are often assumed to be immutable and there-

fore always correct. Retraction (revision) in EP deals with the circumstance that

certain events may be revoked. This necessitates to reconsider complex events

which might have been computed based on the original, flawy history as soon as

part of that history is corrected. In this work we address the problem of revision
in EP, and provide it as an extension of ELE.

• Out-of-order Event Processing. In most cases events, in an event stream, are

assumed to be totally ordered: the order in which events are received by an EP

system is the same as their timestamp order. This assumption is called total order
assumption [LLDR+07]. In reality events may arrive out-of-order, for example,

due to network latencies or even machine failures. In this work we describe the

processing of complex events over event streams that may also contain out-of-
order data. By handling out-of-order events an EP system needs to keep cer-

tain events longer than they are normally needed (in order to handle late events).

Therefore, the problem of processing out-of-order events is strongly connected

to another important issue – garbage collection (an effective removal of overdue

events). This work provides a framework for processing events, including out-of-

order events too.

• Processing events in the context of the Semantic Web. While existing seman-

tic technologies and reasoning engines are constantly being improved in dealing

with time invariant domain knowledge, they lack in support for processing real
time streaming data (events). Real time Web data is valuable only if it is captured,

processed, and delivered instantly.

As already mentioned, there exists already a lot of (static or slowly evolving)

knowledge available in the realm of the Semantic Web. However this knowledge

has not yet been fully exploited in event-driven applications. To bridge the gap

between the Semantic Web and EP we propose Event Processing SPARQL (EP-

SPARQL) that extends the SPARQL language [PrSe08] with its EP and Stream

Reasoning capabilities. As such, it is a language that can be used in processing

real time data in the context of the Semantic Web applications too.

• Implementation and evaluation. We implement ETALIS Language for Events
with its extensions in a Prolog-based prototype. The implementation is open

source9. We describe the conceptual architecture of our implementation, and

develop a set of experiments to evaluate its run time performance. When possible,

9ETALIS source code: http://code.google.com/p/etalis/

14 1. Thesis Overview

we compare our evaluation results with results from a non logic programming EP

system. We also conduct an evaluation case study. The study is related to a sensor

network, dedicated to measurements of environmental phenomena (e.g., weather

observations such as wind, temperature, humidity, precipitation, visibility and so

forth). Finally, we present the study and show its implementation in ELE.

1.5 Thesis Organization

This work is organized in five parts, each containing several chapters.

The first part – Introduction – includes this chapter which gives an overview of the

thesis, and provides background information for remaining parts of it. We introduce

EP in Chapter 2 and LP in Chapter 3 as the two main building blocks of this work. The

same chapters also provide terminology which is commonly used in the remaining parts

of this thesis. Chapter 4 ends the first part by surveying the related work and comparing

it to ours.

The second part – ETALIS Language for Events – develops the main work about a new

formalism for EP and SR. We start this part by providing requirements and language

design principles in Chapter 5. We introduce the language with its rule-based syntax

and the declarative semantics in Chapter 6. The chapter also provides a number of ex-

amples which give the reader a better understanding about the language constructs and

its use in practise. Chapter 7 describes in details an execution model of our language. It

provides the operational semantics of the language, and explains how complex events

are incrementally computed under time constraints. Chapter 8 shows how event opera-

tions, as commonly defined in an event processing network (EPN), are implemented in

the proposed language.

The third part – ETALIS Extensions – provides few additional developments of ELE,

thereby proving the extensibility of the language. We start this part by introducing the

problem of event retraction, and give an execution model that handles revised events in

Chapter 9. Revision in EP may cause certain events to be revoked (although they have

already been detected). In contrast to this, out-of-order EP may cause additional detec-

tions of complex events (in presence of late events). Chapter 10 introduces problems

in EP when out-of-order events are present, and provides an extension to our formal-

ism to solve these problems. Chapter 11 motivates the need for EP in the context of

Web, in particular, in the context of the Semantic Web. We provide EP-SPARQL which

is a new language to address dynamic aspects in Semantic Web applications. It is as

an extension of the commonly used SPARQL language [PrSe08]. We provide syntax

and formal semantics of the language and devise an effective execution model for the

proposed formalism.

The forth part – Practical Considerations – gives an overview of the Event-driven Trans-

action Logic Inference System (ETALIS). It is a prototypical system that implements all

concepts developed in this work. In Chapter 12 we discuss an architecture of ETALIS,

1.6. Relation to Previous Publications 15

and give details related to practical use of the system. In Chapter 13 we present results

from a number of tests that we have conducted with ETALIS. Results are divided into

two categories. The first category reports on the performance results (i.e., run time

characteristics of the system). The second category discusses a use case study, thereby

demonstrating and emphasising functional capabilities of the system.

The fifth part – Conclusions and Outlook – summarises the presented work and gives

an outlook for the future work. In Chapter 14 we give the summary of the achieved

results, and provide more details about event-driven Business Process Management as

a promising future direction in the context of our work. Finally, the same chapter also

concludes this thesis.

1.6 Relation to Previous Publications

Most of the content in this thesis has been already published. The outline of the thesis

was previously published in a short form in [AFRS+11b] and [ARFS12a]. Motiva-

tion to combine EP with logic reasoning has its roots in our previous work [ApSA09,

AnSt09, AnSt08b, AFSS09]. The core of the second part – ELE with a rule-based syn-

tax and the declarative semantics presented in Chapter 6 – was published in [AFRS+10].

An execution model – that is described in Chapter 7 – was introduced in [AFSS09,

AFRS+10]. The work related to iterative and aggregative patterns – presented in Chap-

ter 7 and Chapter 8 – was published in [ARFS11a]. In the part three, the work on event

retractions (see Chapter 9) was published in [ARFS11b]. Out-of-order EP in ETALIS

was presented in [FoAR11]. EP extended with Semantic Web technologies was mo-

tivated in [SASM+09]. Further on, we proposed a language called EP-SPARQL in

[AFRS11a] (see Chapter 11). In the part four, Chapter 12 discusses an architecture

of ETALIS which was published in [ARFS12b]. Chapter 13 gathers evaluation re-

sults from publications [AFRS+10, ARFS11a, ARFS11b, FoAR11, AFRS11a]. In the

part five, Chapter 14 gives prospective areas where ETALIS can be effectively used,

and provides the outlook for our unfinished and future work. In particular, the use

of ETALIS for real time situational awareness in sensor networks was investigated in

[XSSA+11, SMXS+11]. We proposed to apply ETALIS to process events and linked

data in the context of the smart grids in [WASS+10]. Finally, basic concepts underlying

event-driven business processes were initially proposed in [AnSt08a].

16 1. Thesis Overview

2
Introduction to Event Processing

Event Processing (EP) is a computer science discipline that has developed a set of

techniques and tools to enable real time computing. EP techniques are grounded on

principles of event programming. An EP architecture is an important concept in EP

that helps us to better understand and control computing in EP applications. In this

chapter we give an introduction to EP, including the underlying principles and an EP

architecture.

2.1 What is an Event?

To understand what EP is about, let us start by explaining what is meant by an event.

In [EtNi10] an event is defined as an occurrence within a particular system or domain; it

is something that has happened, or is contemplated as having happened in that domain.

The word event is also used to mean a programming entity that represents such an

occurrence in a computing system.

From this definition we see that events are considered within a particular domain. In

many cases the domain endows events with a context in which they are interpreted.

In the first part of the definition, an event denotes something that happened in the real,

physical world. The second part however treats an event as a programming entity in a

computing system. Indeed, an event is a general term, and in most of the applications

we start observing the physical world, and need a means to represent and process these

observations in a computing system.

18 2. Introduction to Event Processing

An event may also denote something that “is contemplated as having happened”. In

general, a computing system generates an event when something happens, however this

does not necessarily correspond to actual occurrence. For example, a financial comput-

ing system triggers events whenever it suspects a fraud has been committed. These

events however may be false positives, and do not need to correspond to real fraud

happenings. Other examples, when an event denotes something that is contemplated as

happened, occur in systems with failures (e.g., an event is reported either due to failure

of a sensor, or failure of an event transmission system).

Later on, in Chapter 6 we will formally define an event as an entity denoted by an event

name (type), the payload carried by the event, and a timestamp.

In practise, an event represents something that occurs, happens or changes the current

state of affairs. For example, an event may signify a problem or an impending problem,

a threshold, an opportunity, an information becoming available, a deviation and so forth.

These events are directly related to specific, measurable changes of conditions. In many

application it is however important to infer more abstract situations. It is the task of EP

to effectively derive these situations based on (many) single, ordinary events.

In the remaining part of this chapter we describe basic principles which underlay EP

and enable processing of events under time constraints.

2.2 Event Programming Principles

In this section we look at basic characteristics of event programming. To understand

them, we start by looking at how applications typically interact when they are not using

events.

Request-response or request-reply is one of the basic methods that computers (appli-

cations) use to interact. In such an interaction, one involved entity (e.g., computer)

typically sends a request, and another entity replies by a response. We are used to such

an interaction as this pattern, so far, has been widely used in computer systems (e.g., a

user interaction with a web browser, or a user answering a telephone call, are typical

examples of request-response interactions). The client-server model of computing im-

plements request-response interactions, where the client represents a requester and the

server is a responder.

Request-response interactions are typically implemented in a synchronous fashion. Such
an interaction holds a connection open and waits until the response is delivered (or the

timeout period expires). Therefore, in synchronous interaction a requester is expected

to respond fairly promptly. Request-response interactions may also mix synchronous

and asynchronous communications (referred to as “sync over async”). This happens

when, for example, it is more efficient to close a connection due to a long-running in-

tensive computation or awaiting a human response. However, in its essence, a request-

response interaction is synchronous.

2.2. Event Programming Principles 19

In contrast, event programming is asynchronous. Requester and responder are replaced
by an event producer and consumer, and there is no open connection in between them.

Moreover, an event consumer does not wait for any respond. If (and when) there is one,

it will be delivered by the event producer.

Based on this difference, between request-response and event-driven paradigms, we

outline few characteristics of event-driven programming.

2.2.1 Events as a Means to Declare Changes

In declarative programming, we declare facts about things, stating that some of them

are true and others are false1. Based on these facts, an inference procedure may be em-

ployed to possibly derive truth about other things (whose truth is not explicitly stated).

However what is important is that we do not specify who may use a fact that something

is true (or false), and we do not specify when one fact can be used to infer another one.

Similarly in event-driven programming, an event indicates that something has hap-

pened. That is, an event producer declares that something has occurred or there is a

change in the current state of affairs. However, who may use this fact is not specified.
Furthermore, when this fact may be used – to possibly infer another fact – is not prede-

fined neither. Finally, the number of facts that may be derived from that fact is also not

predetermined. The notion of independence between declaration of an event and possi-

ble consequences it may produce (e.g., to be used in derivation of unspecified number

of other events, or to be used for any other purpose that has no influence whatsoever on

the cause of that event) is in EP referred to as the principle of decoupling [EtNi10].

From this perspective, event-driven programming is close to the principles of declara-

tive programming, whereas for example, programming based on request-response inter-

actions is analogue to imperative programming. There, a requester asks for a certain

processing to be done when the request is posed (similarly as an imperative program

executes a sequences of commands when the sequence is called). The order – in which

requests are processed – is important in event-driven programming, as well as in imper-

ative programming though.

2.2.2 Information Push Versus Information Pull

One significant difference between event-driven and request-response interactions is

the way how information is passed between a producer and a consumer of information.

Event-driven interactions are based on information push, while in request-response in-

teractions information is pulled. In the traditional client-server model, based on request-

response interactions, the client asynchronously pulls information from a server. On the

other hand, in an event-based interaction model, information (event) is emitted through

the asynchronous push mode.

1For simplicity reasons, a two-valued logic (with true and false) is assumed. In general, there exist

three-, four, or many-valued logics too.

20 2. Introduction to Event Processing

This characteristic of event-driven programming is one of the main drivers for adoption

of EP in modern ICT systems. The shift towards more asynchronous push interactions

is a model of choice in many application areas like production monitoring and control

systems, location-based services, algorithmic stock trading or logistics control. In all

these applications, consumers of real time information do not know a priori when the

information will be available. Hence to get the real time information, a consumer needs

to constantly poll a producer. However a consumer does not necessarily know produc-

ers which it wants information to be pulled from. Moreover information producers

typically interact with an a priori anonymous set of consumers. In all these interaction

patterns, the push model eases the real time information exchange between a producer

and a consumer.

Many Internet applications are based on the push model too, and in general, we see

a trend of shifting many Web applications towards Real Time Web applications. The

Real Time Web is a set of technologies and practices which enable users to receive in-

formation nearly as soon as it is published by its authors, rather than requiring periodic

updates. Therefore there is no need to pull information, it will be delivered to users

nearly at the moment it is published. Web applications, designed on the principles of

service-oriented architecture (SOA), are now extended with principles of event-driven

programming. For instance, no more waiting for web services to communicate from

one polling instance to another. We notice a paradigm shift from information pull to
information push; or from request-response based web services to event-driven, push-
based, web services.

2.3 Event Processing Architecture

In the previous section we have described basic principles underlying EP. In this section

we finally come to a definition of EP, and further present an architecture designed for

event programming.

According to [EtNi10], Event Processing is computing that performs operations on

events. Common event processing operations include reading, creating, transforming,

and deleting of events.

Event Processing Technical Society (EPTS) has defined Event Processing similarly (see

EPTS Glossary [LuSc11]). Note that in scientific literature and elsewhere, the term

Complex Event Processing (CEP) is used to denote the same operations as EP, but per-

formed on complex events [LuSc11]. Very often both terms are used interchangeably.

All operations on events, that we discuss in the scope of this thesis, can be with no

restriction applied to complex events too.

In this section, we will go from this rather general definition to a more detailed expla-

nation what EP is about. However we will keep discussion close to topics relevant to

this thesis. Moreover, some concepts presented here may be specific to the subject of

the thesis. For a more broad presentation of EP and an EP architecture, the interested

reader is referred to [EtNi10, Luck02, ChSc10].

2.3. Event Processing Architecture 21

Event processing architecture is a software architecture pattern promoting the reading,

creating, transforming, and deleting events. So what is an architectural pattern that may

be applied by the design and implementation of EP applications? Applications differ in

their domains (they are applied to) and requirements (they need to fulfil), however all

EP applications consists of a set of common entities organised in an event processing

network (EPN). Entities that an EPN consists of are: event producers, event consumers,

and EP as an intermediate processing in between. Figure 2.1 presents the three main

building blocks of an EPN. In the following we briefly describe each of these three

entities. For a more detailed discussion on this topic, the interested reader is referred to

[EtNi10].

Agent 1

State

Agent 4

Agent 2

Channel 1

Event
producer 1

Event
producer 3

Event
consumer 3

Event
consumer 2

Event
consumer 1

Agent 3
Event
producer 2

Event producers Event processing Event consumers

Figure 2.1: An event processing network

An event producer is an entity that introduces events into a system which implements

an EP architecture. An event producer is also known as an event source. An event

producer “listens” to an environment that is attached to, and provides events from that

environment to an attached event processing agent (EPA) (see Figure 2.1). For example,

an event producer can be attached to a physical sensor, so that when the sensor detects

a change, the producer creates an object that represents the change and emits it as an

event. In other cases, an event producer may simply be a proxy that relays events from

somewhere else.

An event consumer is an entity that receives events from a system which implements an

EPA. An event consumer “consumes” events, for instance, by reading events and using

them for business analytics, or further computation, visualisation and so forth. In other

cases, it may consume events by writing them into a log or triggering actions by them

(e.g., calling a service or generating other events).

22 2. Introduction to Event Processing

Processing, that take place between the producers and consumers, is actual EP (see

Figure 2.1). As said, this processing may involve operations on events such as read-

ing, creating, transforming, and deleting events. In general case, this processing is not

monolithic – it consists of a set of agents, each performing certain operation on events.

An EPA is a software module that processes events [LuSc11, EtNi10]. An EPA takes

events as input and, by applying an EP operation, it outputs derived (or complex) events.
Authors in [EtNi10] give the following classification of EPAs.

• Filter agent – filters out irrelevant events with respect to a filtering condition. For
instance, an agent may filter out stock price events whose price is below 10$. The

goal of a filter agent is to increase performance of an EP application by discarding

uninteresting events.

• Pattern detection agent – detects an event pattern based on certain conditions

(e.g., temporal, spatial, and various other semantic relations that can be estab-

lished among events). For instance, an agent may detect the stock price increase

when a certain number of stock events happen, denoting the price increase of X

% within a particular time (as defined by an event pattern).

• Transformation agent – transforms input events according to a transformation

operations.

Transformation agents may further be classified upon transformation operations. The

following operations have been recognised.

• Split agent – takes a single event as input and emits two or more copies of the

input event.

• Aggregate agent – takes multiple events as input and produces a single derived

event by applying an aggregation function over input events.

• Compose agent – joins two event streams similarly as two relations are joined in

relational algebra.

• Translate agent – translates an input event into an output event according to a

translation operation.

A translation operation may take one of the following two forms.

• Enrich agent – augments an input event with additional information (taken from

an external information source, e.g., a database or an ontology).

• Project agent – deletes certain information carried by an input event (similarly as

a relation from relational algebra is projected based on certain attributes).

2.3. Event Processing Architecture 23

EPAs are connected to event producers and consumers, as well as to themselves through

event channels (denoted by directed edges in Figure 2.1).

An event channel is a processing element that receives events from one or more source

processing elements, makes routing decisions, and sends the input events unchanged

to one or more target processing elements in accordance with these routing decisions

[EtNi10].

There are two reasons to use the concept of an EPN. The first reason is about usability
when designing an EP application. Namely, an architect may have better understanding

of the application when the internal intermediate EP is represented as an EPN [EtNi10].

The second reason is efficiency. Careful design of an EPN can reduce event flow within

the network, and therefore increase the overall application’s performance. An EPNmay

also enable implementation of EPAs on a distributed architecture, which can addition-

ally increase performance and scalability of an application [EtNi10].

An event processing language enables a high-level specification of an EPN. In some EP

languages, a user directly creates event flows that are mapped into an EPN. In others, a

user writes language statements which are then compiled into an EPN.

In this thesis we provide a general language for EP [AFRS+10, AFRS+11b]. The

language is found on event programming principles (see Section 2.2). It enables spec-

ification of an EPN, but the focus of the thesis is on the language itself, its underlying

principles, and EPAs that can be realised with the language (rather than on the whole

EP architecture, which additionally involves event producers, consumers, and event

channels).

EP is a field of computer science that has a great potential for further research. Basic

underlying concepts of EP and their further development toward a new Logic Program-

ming approach for EP, are major topics of this work. In response to that, in the follow-

ing chapter we introduce basic concepts of Logic Programming that are important to

remaining parts of this work.

24 2. Introduction to Event Processing

3
Introduction to Logic Programming

One of the main motivations of this thesis is to use logic to compute events. Our inten-

tion is to exploit the fundamental idea behind logic programming (LP) – to use logic as

a programming language. In the remaining parts of this work, we will devise a logic-

based formalism for expressing permitted operations on events. As preliminaries to that

goal, in this chapter we introduce basic concepts underlying LP.

3.1 Background of Logic Programming

LP began in the early 1970’s as a direct outgrowth of earlier work in automatic theo-

rem proving and artificial intelligence (AI) [Lloy87]. The idea to use logic as a pro-

gramming language has proved to be useful in many areas including bio-informatics,

medicine, social network analysis, natural language processing, fraud detection, the

Semantic Web, virtual worlds, process control, financial service, intelligent tutoring

systems, and so forth.

There has been recently renewed interest in using LP in many areas outside the tra-

ditional ones. Examples include work on cloud computing [ACCE+09], declarative

networking systems [CCHM08], natural language processing [EiGS05], robotics

[ARDRSP+07] and so forth.

Historically looking, LP has significantly evolved around Kowalski’s idea [Kowa79b].

According to that idea, an algorithm can be regarded as consisting of a logic component,

which specifies the knowledge to be used in solving problems, and a control component,

26 3. Introduction to Logic Programming

which determines the problem-solving strategies by means of which that knowledge

is used. The logic component determines the meaning of the algorithm whereas the

control component only affects its efficiency [Kowa79a].

In the nutshell, the logic explains what the problem an algorithm solves, while the

control states how the problem is solved. Kowalski has argued that such a conceptual

separation would enable computer programs to be more correct, and more easily im-

proved and modified. Moreover, a programmer could focus on specifying the logic

component of an algorithm while leaving the control to be handled solely by the logic

programming system itself. While this goal would require purely declarative program-

ming (which has not been fully achieved by Prolog-like logic programming systems),

the separation of an algorithm to its logic and control part had a strong influence on LP

in general [Lloy87].

Later on in this work, we will devise a formalism for EP that is based on logic. Our

formalism comprises the logic and the control part, hence in this chapter we will go into

fundamentals of each of these two components. Moreover the main goal of this chapter

is to provide a concise terminology that is used later in this work. Our attention will

however not cover general LP. Instead, it will focus to definite programs, as they are an
important part of LP which are also in the scope of this work. Readers without prior

knowledge to LP are referred to a more extended text on the subject [Lloy87, Apt90,

vEKo76, NiMa95, Ullm88].

3.2 The Logic in Logic Programs

This section explains what is commonly understood under the term logic in logic pro-

grams. As already said, the notion of logic is considered here in the scope of definite

programs, and in this section we explain what they are.

3.2.1 Syntax of Definite Programs

The syntax of a programming language is the set of rules used for constructing sen-

tences from symbols and words of that language. Therefore, the syntax of a program

is concerned with correct structures of that program with respect to the program’s lan-

guage. The meaning of a program – written in a programming language – is defined by

the language semantics. In this subsection we talk about the syntax of logic programs,

while in Subsection 3.2.2 we will introduce the semantics thereof.

Logic programs are built from atomic formulas of type: p(t1, t2, ..., tn), where p is a

predicate symbol and t1, t2, ..., tn are terms. An atomic formula (or more simply, an

atom) is a formula that cannot be divided into strict sub-formulas. Hence, it is the

simplest well-formed formula which is used, together with logic connectives, to build

compound formulas. The following examples are atomic formulas.

3.2. The Logic in Logic Programs 27

age(john, 30)

marriedTo(john,X)

The first formula defines an atom with a predicate name age, and two terms – john and

30. Intuitively, in a logic program we would use such an atom to denote that john’s age

is 30. The second formula defines an atom, marriedTo, which is a relation between

john and someone denoted by X . A term can therefore be a constant (e.g., john) or

a variable (e.g., X). Constants and predicate names commonly start with lower case

letters, while variables begin with upper case letters.

We also construct compound terms to implement functions. A function is an expression

of type f(t1, t2, ..., tn)where f is a function symbol of arity n and t1, t2, ..., tn are terms.

0-ary function symbols denote individual constants, and are thus terms.

For instance, functions can implement arithmetic operations such as addition +, subtrac-

tion -, less than < and so forth. These atomic formulas have predicates with predefined

meaning, often referred to as built-in predicates. Built-in predicates are used in prac-

tise to implement commonly used functions. For instance, apart from the mentioned

arithmetic operations, Prolog provides various built-in predicates to perform routine ac-

tivities like to determine the length of a list, to realise input and output operations, to

communicate with the operating system, and so forth.

An interpretation of a function does not necessarily produce a finite set of results. For

example, the less than operation (X < Y) may produce infinitely many results when

X and Y range over an infinite domain. Variables in a function can be limited in range

by other atomic formulas, thereby limiting the function itself. For example, a variable

can be limited by appearing in a ground atom. In such a case, an interpretation of a

function can be determined as a fixed interpretation (e.g., by selecting or joining certain

constants from a set of ground atoms). In Chapter 6 we will propose a formalism which

deals with functions that have a fixed interpretation.

Since the atom age(john, 30) contains only constants, it is also termed as a ground
atom. A literal is either an atomic formula or a negated atomic formula. If p(t1, t2, ..., tn)

is an atom, p(t1, t2, ..., tn) is said to be a positive literal, and ¬p(t1, t2, ..., tn) is said to

be a negative literal. A disjunction of (negative or positive) literals is called a clause.
A clause with the most one positive literal is called a definite clause or Horn clause. A

definite (Horn) clause is written as:

p0(t1, t2, ..., ti) ∨ ¬p1(t1, t2, ..., tj) ∨ ... ∨ ¬pn(t1, t2, ..., tk) (3.1)

Based on these notions, we can now give a formal definition of definite programs (Horn

logic).

Definition 3.1 A signature 〈C,F,P,V〉 for a definite program consists of a finite set
of individual names (or constants) C, a finite set of function symbols F, a finite set of

28 3. Introduction to Logic Programming

predicate symbols (or predicates) P, and a finite set of variable names V, all of which
are mutually disjoint. The function ar : F ∪P→ N associates a natural number ar(p)
with each predicate p ∈ F ∪P that defines the (unique) arity of p.

Based on a signature for Horn logic 〈C,F,P,V〉, we define the following notions:

• A term is defined such that

– if t ∈ C ∪V, i.e., t is an individual or variable name, then t is a term, or

– if f ∈ F with ar(f) = n, and if t1, . . . , tn are terms, then f(t1, . . . , tn)

is also a term.

Terms without variables are called ground terms.

• An atom is a formula of the form p(t1, t2, ..., tn) given that t1, . . . , tn are terms,
and p ∈ P is a predicate name of arity n, i.e. ar(p) = n. Atoms that contain only
ground terms are called ground atoms.

• A literal is either an atomic formula p(t1, t2, ..., tn), or a negated atomic formula
¬p(t1, t2, ..., tn).

• A definite (Horn) clause is a formula of the form:
p0(t1, t2, ..., ti) ∨ ¬ p1(t1, t2, ..., tj) ∨ ... ∨ ¬ pn(t1, t2, ..., tk)

where p0,...,pn are atoms, and every ti that occurs within these atoms is a term.

• A fact is a Horn clause that contains a single positive literal, e.g., p0(t1, t2, ..., ti).

• A definite goal is a Horn clause that contains one or more negative literals, e.g.,
¬ p1(t1, t2, ..., tj)∨ ...∨¬ pn(t1, t2, ..., tk). A definite goal can be also written in
the form of an implication:
← p1(t1, t2, ..., tj) ∧ ...∧ pn(t1, t2, ..., tk)

A set of definite (Horn) clauses is called a Horn program or a definite program. �

In the remaining part of this work we will often use the term Horn rule, which is a Horn
clause that contains one positive literal and one or more negative literals. For notational

convenience, a Horn rule is written in the form of an implication:

p0(t1, t2, ..., ti)← p1(t1, t2, ..., tj) ∧ ... ∧ pn(t1, t2, ..., tk). (3.2)

The premise of a Horn rule is called the rule body while the conclusion is called the

rule head.

Notation in (3.2) is a common way to represent a Horn rule as it is a natural expression

of an inference. The rule states that one way to prove a conclusion p0(t1, t2, ..., ti) is to

prove premisses p1(t1, t2, ..., tj) ∧ ...∧ pn(t1, t2, ..., tk). In the remaining parts of this

3.2. The Logic in Logic Programs 29

(1) shipment(s1, s2).
(2) shipment(s2, s3).
(3) dlvPath(X, Y) :− shipment(X, Y).
(4) dlvPath(X, Y) :− shipment(X,Z),dlvPath(Z, Y).

Figure 3.1: Example definite program

work, we shell use Prolog style for expressing definite (Horn) rules. The following rule

is a Prolog equivalent to rule (3.2).

p0(t1, t2, ..., ti) :− p1(t1, t2, ..., tj), ...,pn(t1, t2, ..., tk). (3.3)

Finally, sometimes we write rule (3.3) simply as:

p0 :− p1, ...,pn. (3.4)

where p0,p1, ...,pn represent atomic formulas.

To illustrates notions from Definition 3.1, let us consider an example definite program

P shown in Figure 3.1. We observe a simple supply chain scenario where goods are

shipped from one site to another – denoted by shipment(si, sj) – and we are inter-

ested to find out all delivery paths, dlvPath(X, Y), where goods are shipped.

Figure 3.1 gives an example of a definite program based on a Horn signature with a set

of constant symbolsC = {s1, s2, s3} and a set of predicate symbolsP = {shipment,
dlvPath}. Formula (1) and Formula (2) in Figure 3.1 are facts, represented as ground

atoms. Additionally, there are two rules in the example. Rule (3) states that “every

shipment from site X to site Y passes through a delivery path from X to Y ”. Rule (4)

declares that “for every shipment from site X to site Z, and an existing delivery path

from Z to Y , we may conclude that there exist an additional delivery path from site X

to site Y ”.

We can extend the rules from Figure 3.1 by adding two non-equality built-in predicates,

see Figure 3.2. The purpose of the built-in predicates is to disqualify a shipment within

a single site as a valid shipment. The example from Figure 3.1, extended with two non-

equality predicates, is not a definite program any more. Note, however, that the built-in

predicates are bound by ground atoms (1) - (2) (see Figure 3.1), and therefore these

built-in predicates still represent finite relations. In the remaining parts of this work we

will consider definite programs with function symbols with variables limited in range

(hence those with fixed interpretations).

In the next section we discuss the proper formal meaning of definite programs. That

is, we discuss based on what evidences an inferred delivery path may be considered

indeed as a valid delivery path – as it is specified by the logical semantics.

30 3. Introduction to Logic Programming

(1) dlvPath(X, Y) :− shipment(X, Y), X
= Y.
(2) dlvPath(X, Y) :− shipment(X,Z),dlvPath(Z, Y), X
= Z.

Figure 3.2: Example definite rules with built-in predicates

3.2.2 Semantics of Definite Programs

Themeaning of logic rules – that are written in a particular logic – depends on semantics
of that logic. In this section we will introduce semantics of definite programs. We give

the semantics of definite programs in a model-theoretic way. In this viewpoint, formulas

of a logic program are used to define possible worlds or models. A model describes a

world of interest, and can be used for examining what is true and what is false in that

world. For instance, given a set of logic formulas that describes an intended model, we

can ask the computer whether a certain conclusion – expressed as another logic formula

– can be drawn from that model. If yes, we say that this formula is a logic consequence
of our intended model. In general, the set of logical consequences of a logic program is

infinite. Hence an intended model of a logic program gives the user possibility to query

the program selectively for various aspects of the model.

Essentially, that is intuition behind representing worlds as models – it is a powerful

mechanism for automated computation of correct conclusions from logic programs.

However a logic program – that describes an intended model – may have other unin-

tended (valid) models too. By writing a logic program, the programmer attempts to

describe the intended model. But in general, this program may have many models. The

programmer will use the computer to draw conclusions about the intended model. But

again, since the computer does not know the programmer’s intention, to draw a conclu-

sion from a logic program it must prove the truth of the conclusion in any model of the

program (including the intended and unintended ones). Sometimes this may be a com-

putationally intensive task. However it is important to define what an intended model

is. Therefore, in this section we discuss this topic in the scope of definite programs, and

in the next section we show how an intended model can be computed.

Logic rules represent declarative statements about individuals, by establishing relations

and functions on individuals. Thus the mathematical abstraction of a world – modelled

by rules – is a non-empty set of individuals called a domain. In the scope of definite

programs, domains consist of the set of all variably-free terms. Given an alphabet A1

the set UA of all ground terms is called the Herbrand universe of A. The set BA of all

ground, atomic formulas over A is called the Herbrand base of A.

Definition 3.2 A Herbrand interpretation I of a definite program P is a non-empty
interpretation domain, and an interpretation function. The domain of I is UP . The
interpretation function maps symbols from P into this domain as follows:

1A is defined by strings of symbols that include all elements from the signature of definite programs,

including an infinite set of variables, as well as symbols for the logical connectives, parentheses, brackets

and other punctuation symbols.

3.2. The Logic in Logic Programs 31

• If c ∈ C is a constant, then cI is defined to be c itself.

• If f ∈ F is a function symbol of arity ar(f) = n, then fI is defined as
[f(t1, ..., tn)]I := fI(t1I , ..., tnI)
That is, the meaning of a compound term is obtained by applying the function de-
noted by its function symbol f to the meanings of its principal subterms t1, ..., tn,
recursively.

• If p ∈ P is a predicate symbol of arity ar(p) = n, then pI is defined as an n-
ary relation over the domain. That is, pI is a subset of Un

P , which contains all
n-tuples of ground terms.

�

Constants, function symbols, and predicates represent building blocks of more complex

formulas of the language. Therefore the interpretation of them provides a basis for

assigning true values to definite clauses in general.

The Herbrand universe consists of ground terms, but definite programs may contain

variables too. Hence we need a function to map variables of the alphabet to the domain

of an interpretation. Such a function can be also extended to map constants and function

symbols to the domain of an interpretation too.

A variable assignment is a mapping μ : V→ Up assigning a value from the interpreta-

tion domain to every variable. We let μ∗ denote the canonical extension of μ to terms

defined in the following way:

μ∗ :

⎧⎨
⎩

v �→ μ(v) if v ∈ V,

c �→ c if c ∈ C,

f(t1, . . . , tn) �→ f(μ∗(t1), . . . , μ∗(tn)) if f ∈ F,

Definition 3.3 Given an interpretation I and a variable assignment μ for I, the truth

value of a definite clause is defined as follows:

• For an atom p(t1, . . . , tn), I |=μ p(t1, . . . , tn) iff 〈μ∗(t1), . . . , μ∗(tn)〉 ∈ pI;

• For a conjunction p1 ∧ . . . ∧ pn of atoms p1, . . . ,pn, I |=μ (p1 ∧ . . . ∧ pn) iff
I |=μ p1 and . . . and I |=μ pn;

• For a definite rule p0(t1, t2, ..., ti)← p1(t1, t2, ..., tj)∧...∧pn(t1, t2, ..., tk), I |=μ

p0(t1, t2, ..., ti) whenever I |=μ p1 and . . . and I |=μ pn.
�

Definition 3.4 A Herbrand interpretation I is said to be a Herbrand model of a definite
program P iff every clause in P is true in I. That is, a Herbrand interpretation is a
Herbrand model iff it satisfies all definite rules in P for all variable assignments μ. �

32 3. Introduction to Logic Programming

If a definite program P has a model, we say that P is satisfiable or consistent. We

can derive conclusions from satisfiable programs by checking whether a conclusion –

represented as a definite clause – is satisfied in all models of P .

To illustrate the above definitions, let us go back to an example program from Fig-

ure 3.1.

The alphabet of a program consists of exactly those symbols which appear in the pro-

gram. Hence the Herbrand universe and Herbrand base can be determined from the

program itself. The Herbrand universe is defined as the following set:

UP = {s1, s2, s3}

The Herbrand base of the program’s alphabet is the set:

BP = {shipment(s1, s1),shipment(s1, s2),shipment(s1, s3),
shipment(s2, s1),shipment(s2, s2),shipment(s2, s3),

shipment(s3, s1),shipment(s3, s2),shipment(s3, s3),

dlvPath(s1, s1),dlvPath(s1, s2),dlvPath(s1, s3),

dlvPath(s2, s1),dlvPath(s2, s2),dlvPath(s2, s3),

dlvPath(s3, s1),dlvPath(s3, s2),dlvPath(s3, s3)}

Herbrand interpretations for constants and function symbols have predefined meanings.

That is, constants are mapped to themselves, and functions symbols are interpreted as

compound terms with the same principal function symbol. Hence to specify a Herbrand

interpretation, it suffices to list the relations associated with the predicate symbols. For

an n-ary predicate symbol p and an Herbrand interpretation I, the interpretation of p

consists of the following set of n-tuples: {〈t1, ..., tn〉 ∈ Un
P | I |=μ p(t1, ..., tn)} for

some variable assignment μ.

Let us consider few possible Herbrand interpretations of our example program P as

shown in Figure 3.3.

To be a Herbrand model, a Herbrand interpretation needs to satisfy all clauses in the

program. Clearly, I1 is not a model of our example program as it does not satisfy

ground atomic formulas (1) and (2). In contrast to I1, I2 does satisfy atomic formulas

(1) and (2), but does not satisfy rule (3). Namely there exist two ground instances

(shipment(s1, s2), and shipment(s2, s3)) that make the rule premiss true with no

true conclusion.

I3 is a Herbrand model of our program P as it satisfies all four clauses from the pro-

gram. Ground atomic formulas (1) and (2) are true in this model, and it is not difficult

to show that rules (3) and (4) are satisfied too. Intuitively, the meaning of a rule we can

get by substituting variables in the rule body, and if the substitution makes the premise

of the rule true, the rule head must be true too. For instance, rule (3) and rule (4) in

Figure 3.1 define the true instances of atom dlvPath(X, Y) in terms of other true

atoms. One such a true instance is dlvPath(s1, s2) which we get by substituting X

3.3. The Control in Logic Programs 33

I1 :=∅
I2 :={shipment(s1, s2),shipment(s2, s3)}
I3 :={shipment(s1, s2),shipment(s2, s3),

dlvPath(s1, s2),dlvPath(s2, s3),dlvPath(s1, s3)}
I4 :=BP

Figure 3.3: Example Herbrand interpretations of the program P

and Y in rule (3) with constants s1, s2 from a true atom shipment(s1, s2). Other two

instances are dlvPath(s2, s3) and dlvPath(s1, s3), obtained from rule (3) and rule

(4), respectively.

Finally, I4 is a model of the program too. Applying the similar reasoning as in previous

cases, we can prove that any substitution of true atoms from BP – that make premisses

of a rule in P true – will produce a true conclusion contained by BP .

In general, a Herbrand base BP of a definite program P is always a Herbrand model of

the program. However such a model is uninteresting, since every n-ary predicate of the

program is interpreted as the full n-ary relation over the domain of ground terms. Rather

we are interested in a model that reflects only information expressed by the program and

nothing more – it includes minimum number of ground atoms which follow from the

program. Such a model is called a minimal (or least) model, since we cannot make any

ground atom false and still have it as a model.

I3 is a minimal Herbrand model of our example program P . It includes only those

ground atoms that follow as logical consequences of the program. Moreover, I3 is the
unique minimal model, as no other minimal model exists for P . Every definite program

has a unique minimal model [Lloy87].

A minimal model also corresponds to the intended model of a definite program. As

pointed out in [NiMa95], the intended model is an abstraction of the world that is

described by the program. The world may be richer than the minimal Herbrand model.

However, the information not included explicitly (via facts) or implicitly (via rules) in

the program cannot be obtained as an answer to a goal. The answer corresponds to

logical consequences of the program.

The question arises how a minimal Herbrand model can be computed. This is a topic

of the following section.

3.3 The Control in Logic Programs

In the previous section we have discussed the model-theoretic semantics of definite

programs, and in this section we discuss how to find a reasonable way to turn the logic

(definite) program into a sequence of steps that compute the answer. The operational
semantics explains how to draw correct conclusions from logic programs. This section

gives only a brief introduction to the control in logic programs. For a detailed, formal

34 3. Introduction to Logic Programming

TP ↑ 0:=∅
TP ↑ (i+ 1):=TP (TP ↑ i)

TP ↑ ω:=
⋃∞

i=0 TP ↑ i

Figure 3.4: Iterative generation of immediate consequences

discussion on this matter, the interested reader is referred to textbooks [Lloy87, Apt90,

NiMa95, vEKo76].

3.3.1 Immediate Consequence Operator

A minimal Herbrand model for a definite program can be constructed by following an

approach given in the fixpoint theory. A fixpoint (or fixed point) of a function T :

D → D is a point x ∈ D that is mapped to itself by the function, that is T (x) = x.

The intuition behind the fixpoint theory is to use a fixpoint function T to construct a

minimal Herbrand model. The domain D of T is a Herbrand interpretation I. The

function takes ground instances of rules from a definite program P , and produces true

conclusions. These conclusions are elements of every model of P . The function is

applied iteratively until no more true conclusions are produced – that is, until a fixpoint

is reached.

Consider a definite program P , and one its interpretation I which includes all facts

from P . Since all facts from P must be included in every model of P , I is a subset of

a minimal Herbrand model2. Let us further consider a rule of type a0 :− a1, ...,an

(n > 0) in P . Every (ground) instantiation that makes the rule body a1, ...,an true –

with respect to I – yields a true conclusion, which is an instance of the rule head a0. It

is now possible to construct an interpretation I ′
that includes all elements from I, plus

true conclusions obtained from every instantiation of each rule in P . We can write I ′

formally as follows:

I ′
={a0 ∈ BP | a0 :− a1, ...,anis a ground instance of a rule in P and

a1, ...,an ∈ I}
The function TP such that TP (I) = I ′

is said to be the immediate consequence opera-
tor. For a definite program P it can be shown that there exists a minimal interpretation

In such that TP (In) = In, and that In is the minimal Herbrand model of P .

A common notation, used to represent elements iteratively produced by this operator, is

shown in Figure 3.4. To illustrate how the immediate consequence operator constructs

the minimal Herbrand model, let us consider again our example definite program from

Figure 3.1. In the 0th iteration I = ∅ and TP ↑ 0 = ∅. The following three iterations

are shown in Figure 3.5. Computing TP ↑ 4 would produce the same set as the one

generated by TP ↑ 3. This means that no more true conclusion can be produced, and

the fixpoint has been reached.

2If P has only facts with no rule, I is further a minimal Herbrand model of P .

3.3. The Control in Logic Programs 35

TP ↑ 0 =∅
TP ↑ 1 ={shipment(s1, s2),shipment(s2, s3)}
TP ↑ 2 ={shipment(s1, s2),shipment(s2, s3)

dlvPath(s1, s2),dlvPath(s2, s3)}
TP ↑ 3 ={shipment(s1, s2),shipment(s2, s3)

dlvPath(s1, s2),dlvPath(s2, s3),dlvPath(s1, s3)}

Figure 3.5: Example construction of the minimal Herbrand model

Note that TP ↑ i ⊆ TP ↑ (i + 1). That is, the immediate consequence operator

recomputes elements in every iteration. Such a computation is wasteful – known as

naive evaluation. We can calculate only the differenceΔTP ↑ (i+1) = TP ↑ (i+1)−
TP ↑ i between the sets computed in two successive iterations. This strategy is known

as semi-naive evaluation.

Both strategies however start from existing facts, and use clauses to derive new facts.

That is, to prove a goal we need to compute all true consequences of a given program

(possibly including those expressed as instantiations of the goal). Therefore, these

strategies are known as bottom-up evaluations. Alternatively, a top-down evaluation

would start from a particular goal, and check whether the goal is true in a world de-

scribed by a logic program. In the next section we briefly introduce such a strategy,

known as SLD-resolution.

3.3.2 SLD Resolution

The resolution principle – introduced by J. A. Robinson in [Robi65] – is a general rule

of inference for propositional logic and first-order logic. This principle has become

the basis of most logic programming systems. A refinement of resolution for definite

programs (the Horn fragment) was first described by R. A. Kowalski [Kowa74], and

termed as Selective Linear Definite clause resolution (SLD-resolution) by M. H. van

Emden.

SLD-resolution is a refutation technique. That is, to prove a goal SLD-resolution starts

from a goal which is the negation of the initial goal, and tries to prove that the goal is

false in every model of a given logic program. SLD-resolution is both sound and refuta-

tion complete for definite clauses [Clar79]. In this section we will informally introduce

SLD-resolution. For a formal discussion and theoretical properties of SLD-resolution,

the interested reader is referred to [ApvE82, Lloy87, Apt90, vEKo76, NiMa95, Clar79].

As said in Subsection 3.2.1, a definite program is a set of clauses of type:

a0 :− a1, ...,an (n ≥ 0)

where a0, ...,an are atomic formulas (subgoals). If a0 is absent, the clause is said to be

a goal. Considering a definite program P and a goal:

36 3. Introduction to Logic Programming

:− a1, ...,an (n > 0)

the question is whether the goal holds in a world described by P . Since in definite

clauses all variables are universally quantified, the goal is equivalent to:

∀X1, ..., ∀Xm¬(a1, ...,an) (n > 0)

which is by DeMorgan’s law logically equivalent to:

¬∃X1, ..., ∃Xm(a1, ...,an) (n > 0)

SLD-resolution starts from this negated goal, and aims to prove that such a statement is

false in every model of P (including the intended model too). If that is provable, then

it also true that there exist some X1, ..., Xm for which the goal a1, ...,an (n > 0) is a

logical consequence of the program P , that is:

P |= ∃X1, ..., ∃Xm(a1, ...,an) (n > 0)

If that is a case, we are interested to substitute variables X1, .., Xm with ground terms

from a given interpretation domain of P , and to get the final answer. Let us denote such

a substitution with θ, and define it as a finite set of pairs of terms {X1/t1, ..., Xm/tm}
where each ti is a ground term and Xi is a variable such that ti
= Xi and Xi
= Xj if

i
= j. The application Xθ of substitution θ to a variable X is defined as follows:

Xθ :=

{
t if X/t ∈ θ,

X otherwise

SLD-resolution checks whether the goal a1, ...,an (n > 0) is a logical consequence of

P in few steps. In each step, it selects an atomic formula p(t1, ..., tn) (which represents

a subgoal ai in the goal) and a definite clause p(s1, ..., sn) : − a
′
1, ...,a

′
m (m ≥ 0)

from P . It constructs a substitution θ such that p(t1, ..., tn)θ and p(s1, ..., sn)θ are

identical. In this way, a new goal is constructed in which the subgoal ai is substituted

by a
′
1, ...,a

′
m, and a substitution θ is applied to the atom p of arity n. We say that a

subgoal aj is proved if, by applying a substitution θj , ajθj is identical to a fact from P .

Such a subgoal may therefore be removed from the goal.

We see that, in each step, SLD-resolution tries to eliminate a subgoal from the goal by

replacing it with a clause from P , and generating a substitution. If the last step turns to

be an empty goal (corresponding to falsity), the final conclusion is the negation of the

initial goal. That is, if we reached the conclusion that :− a1, ...,an (n > 0) is false

with respect to P after k steps, then it means that:

P |= (a1, ...,an)θ1, .., θk

3.3. The Control in Logic Programs 37

To demonstrate SLD-resolution principle of inferencing, let us consider our example

program from Figure 3.1 again. Suppose the goal is to find all existing delivery paths

starting form site s1. This query can be expressed as:

:− dlvPath(s1, Y).

which is an abbreviation for ∀Y ¬dlvPath(s1, Y), and equivalent to:

¬∃Y dlvPath(s1, Y).

Hence the starting point of reasoning is that there is no Y such that the delivery path

between s1 and Y exists. If that turns not to be true, the inference procedure will lead

to a refutation.

: −������ℎ 	
, �

: −	ℎ�
���� 	
, �
3 4

	ℎ�
���� 	
, � , ������ℎ �, � : −

{�/	�}
success

1 1

: −������ℎ 	�, �
3 4

: −	ℎ�
���� 	�, �

{�/	�}
success

2

	ℎ�
���� 	�, � , ������ℎ �, � : −

1

: −������ℎ 	�, �
3 4

	ℎ�
���� 	�, � , ������ℎ �, � : − : −	ℎ�
���� 	�, �
failure failure

Figure 3.6: An SLD tree for our example definite program

Figure 3.6 shows an SLD-tree for the example program. We see that rule (3) and

rule (4) – from Figure 3.1 – provide two definitions of the delivery path, which are

represented by two corresponding labelled branches in Figure 3.6. The left branch

says that shipment(s1, Y) does not exists, i.e., the goal is unsatisfiable with P . This

is obviously false, as there exists a fact shipment(s1, s2) in P (see clause (1) in

Figure 3.1). Hence this branch leads to a refutation denoted by �, and it is possible to

find a substitution θ, for which shipment(s1, Y) and shipment(s1, s2) are identical

– that is, when Y is substituted by s2. This refutation leads to success as the branch

proves that there is Y such that the delivery path between s1 and Y exists, namely s2.

Hence we can conclude that:

P |= dlvPath(s1, s2).

38 3. Introduction to Logic Programming

The right branch is obtained when the initial goal dlvPath(s1, Y) is replaced by rule

(4), and a substitution {X/s1} is applied. By using clause (1) and applying a substitu-

tion {Z/s2}, this subgoal can be reduced to dlvPath(s2, Y). Here we get a situation

that is similar to our initial goal. That is, we can construct again two branches from rule

(3) and rule (4). The left branch succeeds with a substitution {Y/s3}, while the right
branch will fail as shipment(s3, Y), as well as shipment(s3, Z) are not true in P .

In conclusion, we have derived two answers for our initial goal, dlvPath(s1, s2) and

dlvPath(s1, s3).

As we have seen, SLD-resolution is a goal-directed strategy. The strategy aims to be

more effective than the bottom-up computation since it constrains the computation to a

given goal. On the other hand, SLD-resolution may create infinite SLD-trees in some

cases for which the bottom-up strategy ensures the termination [NiMa95]. There exist

considerable amount of work in the area of combining the two strategies – most notably

the work on query-sub-query [Ullm89, AbHV95], and magic sets [BMSU86, Chen97]

– and further to improve termination by tabling (or memorization) [Warr92].

4
State of the Art

The field of EP has recently gained considerable attention in research as well as in

industry. For general introduction to EP and its ground concepts, the interested reader

is referred to textbooks [Luck02, ChSc10, EtNi10]. These textbooks – in particular

the latter one – also present the state of the art with respect to common and advanced

features in EP systems. Nevertheless, in this section we will survey the state of the

art in EP from the point of view of specific features and the scope of this work. The

work related to ours mainly fits into following areas: active databases as predecessors

of EP systems; general EP systems and Data Stream Management Systems (DSMS),

including approaches for retractions in EP and out-of-order EP; logic-based approaches

for EP; and approaches related to data streams and the Semantic Web.

4.1 Active Databases

In order to capture relevant changes in a system and respond to those changes ade-

quately, a number of formal reactive frameworks have been proposed. Work on mod-

elling behavioural aspects of an application (using various forms of reactive rules)

started in the active database community a long time ago. Different aspects have been

studied extensively, ranging from language specifications to discussions about architec-

tural issues [PaDi99]. Active database languages use event specifications to facilitate

database triggers, which do not only listen to simple events but observe complex com-

binations of events too.

40 4. State of the Art

Simple events carry a type, their occurrence time, and possibly other parameters that

can be used in data analysis to help in detecting event patterns, or to be part of a com-

putation after detection. Complex event specifications are patterns of events which are

matched against the streams of events that occur during the run time of the system.

These patterns consist of simple event types and event operators. Simple events are

the basic (or atomic) events the system can detect. Complex events are detected from

occurrences of one or more of them. All simple events have a simple event type, which

for a database application might be insert, update, and delete. The types are used as

placeholder in event patterns.

Event patterns are structured by event operators. A given operator might have several

event types as arguments and, for example, to stipulate that the constituent events must

occur in a sequence. An event detector for the given pattern acts as a stream pattern

matcher and listens for events that satisfy the type constraints and the semantics of

the given operator. Many operators were proposed in the past, hence in the following

paragraphs we discuss several event pattern languages and their operators. Common

operators offered by many languages include conjunction (AND), disjunction (OR),

sequence (SEQ) and accumulation.

One early active database system is HiPAC [McDa89]. It is an object-oriented database

with transaction support. HiPAC can detect events only within a single transaction.

Global event detectors are proposed, which detect complex events across transaction

boundaries and over longer intervals. Ode [GeJS92b] is another active database sys-

tem with a language for the specification of event expressions. The language is also

referred to as Compose. Ode proposes several basic event operators and a number of

derived operators for ease of use and shorter syntax. The last of the classical event

specification languages discussed here is Snoop [CKAK94, ChMi94] and its succes-

sor SnoopIB [AdCh06]. Snoop provides the well supported operators: AND , OR and

SEQ , as well as additional operators such as: negation (NOT), conjunction with spec-

ified number of conjunctions (Any), an operator which captures the occurrence of an

aperiodic event bounded by two arbitrary events for providing an interval (A), an op-

erator which allows one to express the occurrence of unbound number of occurrences

of certain event in an interval (A*), an operator which triggers a periodic event (P),

an operator which repeats triggering of a periodic event (P*), and an operator which

triggers an event after certain event occurred plus certain time elapsed (Plus), for more

details see [CKAK94, ChMi94]. Early work on Snoop defines events as instantaneous

occurrences. This also holds for complex events, even in cases when their constituents

span over an interval of time. As a result, a complex event is defined on a time point too

(instead of being defined on a time interval, delimited by the start of the first constituent

event and the end of the last constituent event of that complex event). Consideration

of only a time point of detection of an event is termed as the point-based semantics.

It poses problems with nested sequences as pointed out in [GaAu02]. Interval-based

semantics for Snoop is called SnoopIB and was first published in [AdCh06]. The issue

of point-based versus interval-based semantics is further discussed in Section 5.2.

4.1. Active Databases 41

Many of active database languages belong to their respective database management

systems, or to prototypes thereof. Three of them, which have noteworthy implemen-

tation details, are described here: the Ode approach conducts complex event detection

by using automata, SAMOS uses coloured Petri nets and Sentinel uses a graph based

approach.

Complex event detection in Ode [GeJS92a] is implemented using automata. Input for

the automata is a stream of simple events. Ode thus transforms complex event ex-

pressions into deterministic finite automata. For sub-expressions which are complex

events themselves, the process is done recursively. Atomic simple events are ultimately

represented as automata of three states: a start state, an accepting state (entered upon

detection of the simple event occurrence) and a non-accepting state (entered upon de-

tection of any other simple event). Apart from providing the implementation, automata

are a convenient model to define semantics of complex event operators. A downside

of automata is that an automaton cannot accept overlapping occurrences of the same

complex event. Also event parameters pose a problem. They are either stored outside

of the automaton, or the automaton is increased greatly in the number of states to ac-

commodate the different parameters and possible values thereof.

Complex event detection in SAMOS [GaDi94] is implemented using Petri nets. Each

primitive event type is represented by a Petri net place. Primitive event occurrences

are entered as individual tokens into the network. Complex event expressions are trans-

formed into places and transitions. When constituent events are part of several expres-

sions, duplicating transitions are used to connect the simple event with the networks

requiring it. This results in a combined Petri net for the set of all event expressions.

Petri nets, like automata provide a model of the semantics of event operators. Also the

detection of overlapping occurrences is possible. Event parameters are stored in tokens

and flow through the network. Although the tokens are individual, there is no mech-

anism to deterministically choose a token if there is more than one token in a single

place.

Sentinel [Chak97] is an active object-oriented database implementing complex event

detection for the Snoop operators. Event detection follows a graph based approach.

The graph is constructed from the event expressions. Complex expressions are repre-

sented by nodes with links to the nodes of their subexpressions, down to nodes of simple

events. Event occurrences enter the bottom nodes and flow upwards through the graph,

being joined into composite occurrences. The graph is a directed acyclic graph and

generally does not form a tree for two reasons: nodes may have several parents, when

their represented expression is a part of more than one complex events. Secondly there

is no single root node as a single most complex event. A possibly conceived drawback

of Snoop, compared to the previously mentioned implementations, is that the data struc-

tures of Snoop do not represent and even clarify the semantics of the event expressions.

The logic of Snoop is hidden in the implementation of each graph node. However the

semantics of Snoop is defined externally, using event histories and describing the oper-

ators as mappings from simple event histories to complex event histories. Furthermore

Snoop defines the selection and consumption of simple events for the concurrent de-

42 4. State of the Art

tection of overlapping complex events. The four alternative definitions were proposed:

recent, chronicle, continuous and cumulative consumption polices (event contexts). We

will give more details about consumption polices and their implementation in our EP

framework in Section 7.4.

4.2 Event Processing Systems

We start this section by surveying related work in DSMS. Initially, DSMS have op-

erated on streams as temporally totally ordered data sets. This characteristic was a

discriminator between DSMS and general EP systems (which have operated on event
clouds as partially ordered sets of events). However this border is not clear any more,

and nowadays some of DSMS do not operate strictly on ordered streams. On the other

hand – given a broad definition of EP in Section 2.3 – DSMS can be considered as EP

systems too.

Work in the area of DSMS started by introducing languages that are reminiscent of SQL,

but operate on streaming data. Database execution models were also adapted to process

streams of data. Two examples are StreamSQL with a corresponding StreamBase sys-

tem1, and the Continuous Computation Language (CCL)2 which is implemented in the

Coral8 CEP Engine. Queries in these languages match patterns in streams instead of

database tables. Queries are long-running and produce incremental results in contrast

to SQL queries. In CCL sliding windows are supported, as well as joins of events.

Additionally, patterns may be specified using the operators AND , OR , SEQ and NOT.

All operators can only be applied to events limited by windows. Complex events have

to adhere to SQL schemata which prohibits nested sets (for example an event that in-

cludes a previously unknown number of constituents). Similarly, StreamSQL offers

common operators AND , OR , SEQ and NOT, as well as customizable time-based and

count-based windows.

TelegraphCQ [CCDF+03] is yet another system which derives relational operators from

SQL, including aggregates too. The system was developed as an extension of Post-

greSQL database, hence it naturally supports the analysis of historical data. Tele-

graphCQ features continuously adaptive query processing, dynamic data routing, and

operators reordering. These features enable TelegraphCQ to be distributed over multi-

ple machines.

Work in [KrSe09] accounts for a sliding window semantics that is equivalent to the tra-

ditional relational database semantics (tailored for continuous queries). The work also

introduces efficient online algorithms for the stream algebra, and provides the adaptive

runtime environment. Instead of adapting view maintenance techniques, the work car-

ries over enhances and findings from temporal databases to meet challenges of the data

stream computation model [KrSe09].

1http://streambase.com/developers/docs/latest/streamsql/index.html
2http://www.coral8.com/system/files/assets/pdf/5.2.0/Coral8CclReference.pdf

4.2. Event Processing Systems 43

Complex Event Detection and Response (CEDR) [BGAH07] is a general purpose

DSMS. Design of the CEDR system is focused on a declarative query language capa-

ble of expressing a wide range of event patterns with temporal and value correlation,

negation (non-occurrence of events), along with query directed instance selection and

consumption policies – where selection specifies which event instances will be involved

in producing output, and consumption specifies which instances will never be involved

in producing future output, and therefore can be effectively “consumed” [BGAH07].

An interesting aspect of CEDR design are correctness guarantees, which are defined in
the semantics of its operators even in the presence of out-of-order events. The authors

start from an assumption that a system needs to deal with stream imperfections, such

as latency (or out-of-order events), and provide a design which is a trade-off between

insensitivity to event arrival order and the system performance. We will further discuss

the correctness guarantees in the CEDR system, in Section 4.3, where we talk about

retraction in EP. Finally, let us mention that Microsoft StreamInsight3 is a commercial

DSMS, which is based on the CEDR system.

Amit [AdEt04] has been introduced as a pioneer tool aimed at reducing the complexity

of active applications. The tool includes both an expressive language and an efficient

run-time execution mechanism. Amit introduces the notion of an inferred event, which

is the occurrence of a significant situation that does not happen explicitly in the physical

reality. Instead, it can be logically inferred by viewing the world’s state and the history

of concrete event occurrences.

Situations are detected through the detection process, which may have different de-
tection modes. Three modes are distinguished: immediate, delayed, and deferred –

depending whether incoming events are immediately processed, or the conditions for

situation detection are evaluated at the end of the situation lifespan. Also, six different

selection strategies have been identified: first, strict first, last, strict last, each, and strict

each, see [AdEt04] for details.

EP in Amit is based on the notion of lifespan, that is the temporal context during which

situation detection is relevant. The underlying formalism specifies various event op-

erators defined on the lifespan. In particular, Amit supports joining operators (SEQ ,

AND); counting operators (atleast, atmost, nth – that are a sort of AND operators cou-

pled with OR and conditions to weight occurring “at least”, “at most”, and “the exact”

number of disjuncts, respectively); absence operators (NOT, unless); and temporal op-

erators (at, every, after – used for detection of situations upon occurrence of periodic
events generated by the tool. A situation may be detected “at” the lifespan, during

“every” periodic lifespan, or “after” the lifespan defined by a tool periodic event.

Amit enables a situations to be used as operand in definition of other situations, which

is the basic mechanism for defining nested situations (complex events).

An interesting aspect of Amit is its capability to perform semantic matching of dif-

ferent events. As stated in [AdEt04], a key denotes a semantic equivalence among

3http://msdn.microsoft.com/de-de/library/ee362541.aspx

44 4. State of the Art

attributes that belong to different events. For example, the stock-exchange attribute

in the stock-quote event, the stock-exchange attribute in the trade-start event, and the

stock-exchange attribute in the trade-end event are semantically equivalent in the sense

that they refer to a stock exchange symbol. Keys are used to match different event

instances that refer to the same entity. Amit, therefore, enables mapping between at-

tributes with semantically equivalent names. Although the notion of a key in Amit is

a simple mechanism to establish the semantic matching, it is clearly pointed out that

such a requirement is needed in EP applications.

Finally, it is worth mentioning that Amit has served as a predecessor of the E-business

Management Service4 of IBM Global Services.

ZStream [MeMa09] is a general EP framework. The framework unifies the evaluation

SEQ , AND , OR , NOT, and Kleene closure5 as variants of the join operator. ZStream

uses tree-based query plans to represent and evaluate query patterns. The framework

puts a considerable emphasise on query plan optimisations. Since a single pattern in

ZStream may have several equivalent execution plans (with different evaluation costs),

ZStream features a cost model to estimate the computation costs, and chooses the op-

timal plan with respect to the actual runtime behaviour. In particular, if we consider

that the join of two events has its left and right node, [MeMa09] proposes few possi-

ble strategies. A left-associative join couples events from left to right. This strategy is

a good choice when the rightmost event(s) in a pattern have a higher occurrence rate

than the others. By analogy, the right-associative coupling is beneficial when the left-

most event(s) have a higher rate of occurrence(s). Other combinations, like for example

bushy plan and inner plan, are possible too [MeMa09]. ZStream is able to adaptively

adjust the order in which it executes patterns on the fly, and features a dynamic pro-

gramming algorithm to efficiently search for an optimal query plan.

SASE [WuDR06, GADI08, ADGI08] is likewise a general EP framework. The focus is

given to the realisation of a pattern language with efficient evaluation of pattern queries.

The authors argue that the conventional stream query processing, based on selection-

join-aggregation patterns, is inadequate. Instead, [ADGI08] proposes a formal query

evaluation model, NFAb, which is a combination of a non-deterministic finite automa-

ton (NFA) with a match buffer (b). A non-deterministic finite automata is used to realise

a state-changing mechanism in the process of the pattern detection. The purpose of a

match buffer is to keep events selected by an NFA.

The SASE language has initially supported SEQ , NOT, and time-based sliding win-

dows [WuDR06]. Later on, it has grown in an expressive language supporting aggre-

gations and Kleene closure [ADGI08]. The work in [ADGI08] provides contribution

with respect to the event selection strategy, i.e., how to select the relevant events from

an input stream mixing relevant and irrelevant events. There are four different event

selection strategies defined. In the most stringent strategy, two selected events must

4http://www-935.ibm.com/services/us/en/it-services/gts-it-service-home-page-1.html
5Kleene closure extracts from the input stream a finite yet unbounded number of events with a partic-

ular property.

4.2. Event Processing Systems 45

be contiguous in the input stream, while in the most relaxed strategy, contiguity re-

quirements are removed and non-deterministic actions on relevant events are allowed

[ADGI08]. Additionally, the work on SASE accounts for the formal analysis of the ex-

pressive power of the language, as well as for the complexity of its detecting algorithm.

Finally, the more recent work on SASE argues that the occurrence time of events are

often not known precisely, and the events from various sources cannot be easily merged

into a single stream with a total (or partial) order. Therefore the authors in [ZhDI10]

have proposed a temporal model for unknown or imprecise event occurrence times.

Esper6 is a state of the art, open source engine for EP. The engine is based on the Event

Processing Language (EPL) – a SQL-like language with SELECT, FROM, WHERE,

GROUP BY, HAVING and ORDER BY clauses. In EPL, the notion of a table is re-

placed by the notion of a stream (as the source of data), and rows as the basic unit

of data are replaced by events. EPL is an expressive language to specify expression-

based event pattern matching (including AND , SEQ , OR , and NOT). The language

provides constructs to realise the windows (time windows, batch windows, and time

batch windows), aggregations, joining (including inner, outer, left, right, and unidirec-

tional joins), grouping, filtering, and built-in functions for use with streams of events.

Finally, Esper supports access to relational and non-relational data conjunctively used

with stream processing.

Esper supports different event type representations, ranging from plain-old Java object

events, event types specified in a map, and Extensible Markup Language (XML) events.

The map specification of event types is an interesting approach – it can eliminate the

need to use Java classes as event types, thereby making it easier to change types at

runtime or generate type information from another source. XML events are also useful

in many practical applications. If an XML schema document (XSD file) can be made

available as part of the configuration, then Esper can read the schema and appropriately

present event type metadata and validate statements that use the event type and its

properties.

Underlying the Esper pattern matching engine is a state machine implementation. Es-

per outputs detected events either in a push-based mode or in a pull-based one using

iterators. Esper engine can be integrated into other applications either as a Java or .Net

library. Finally it is worth mentioning that both centralized and clustered deployments

of Esper are possible.

Afore mentioned EP and DSMS approaches [ADGI08, WuDR06, GADI08, MeMa09,

AdEt04, BGAH07, ArBW06, KrSe09, CCDF+03, CBBC+03] are capable to handle

large volumes of streaming data with low latency. Most of them are based on languages

with well adopted SQL-like syntaxes. As such these approaches are widely used today

in automated stock trading, logistic services, transaction management, business intelli-

gence and so forth. However they are not well suited for knowledge-rich applications

including structured data, ontologies, and other forms of formally represented knowl-

edge where support for knowledge-based EP and stream reasoning (SR) is required.

6http://esper.codehaus.org/esper/documentation/documentation.html

46 4. State of the Art

In this section we have referred only to some of the most remarkable work in this area.

This is by no means a complete overview of related work. A recent and comprehensive

survey of EP and related areas can be found in [CuMa11].

4.3 Approaches for Retraction in Event Processing

EP finds its use in areas where relevant changes need to be captured under time con-

straints (at near real time), and possibly appropriate decisions need to be made upon

detected events. If certain events (that justified decision) are revoked, in some cases the

decision should be reconsidered too. Also if an event had triggered an action, and got

retracted later, the action may need to be nullified, e.g., by executing a compensation

action or amended in another way (depending on the application domain). A typical

example of these scenarios include a facility that enables either humans to cancel their

orders, or machines to abort actions or processes (e.g., transaction processing).

This conceptual framework is similar to that of truth maintenance systems in Artificial

Intelligence systems [Doyl87]. A truth maintenance system (TMS) [Doyl87, Doyl78]

is a knowledge representation method for formalizing both beliefs, and their mutual

dependencies. The name truth maintenance is due to the ability of these systems to

restore consistency. The topic of retraction in EP deals with a sort of truth maintenance,

but specifically focused to the EP domain.

Retraction (or revision) in EP is not a common feature in general EP systems. For ex-

ample in [EtNi10], retraction and out-of-order EP are considered as challenging topics

in today’s EP. However since they are in the scope of our work, this section and the

following one are devoted to the work related to these specific features.

Events and transactions are normally used together to facilitate monitoring and analysis

of transaction applications. Transaction instances generate log events and error infor-

mation. When analysing the logs, we usually want to collect and correlate only the

relevant events to a single transaction instance. But in most cases, transaction process-

ing is a distributed processing, and these log events are distributed over many machines

and applications. Therefore EP seems to be a natural approach to perform such a pro-

cessing. Also in most cases the log events are analysed periodically (e.g., every night).

EP aims to push such an analysis toward continuous and (near) real time processing.

However since transactions may fail during execution, we may need to retract certain

events which were triggered before the failure. For example, it is essential to know if

errors, faults, and time-outs have occurred during a transaction. Commercial systems,

such as the WebSphere Message Broker from IBM7 and a transaction programming

model for events from Microsoft8, offer tools for transaction monitoring and auditing.

There, transaction events are triggered during transactions executions, and certain ac-

tions are triggered by events when a transaction is committed, or aborted and rolled

7http://www.ibm.com/developerworks/websphere/library/techarticles/0911_fan/0911_fan.html
8http://msdn.microsoft.com/en-us/library/aa480462.aspx

4.3. Approaches for Retraction in Event Processing 47

back. However, in both systems, there is no possibility to retract triggered events, and

further, to examine consequences of these retractions. All events published during exe-

cution remain published.

In [DoFl06], so called dubbed transactional events were introduced. Transactional

events are used to manage complexity of concurrent programs. They combine first-

class synchronous message passing events with all-or-nothing transactions. The use of

transactional events was motivated by a more efficient implementation of special con-

structs in concurrent programs such as guarded synchronous or three-way rendezvous.

The work in [CGSP+09] introduces a publish/subscribe communication system that is

based on an optimistic transactional EP scheme. The system provides efficient coordi-

nation between time-critical, low-latency Java tasks.

Transaction compensation in Web Services were proposed in [StKa02]. It is an event-

based approach for managing compensation policies. Transaction compensation is built

as a trigger mechanism that allows a web service designer to specify compensation

rules. Events are used there to dynamically generate compensating transactions during

runtime.

Borealis [CcCC+02] features a mechanism for revision processing. The mechanism

handles erroneous input events by generating corrections of previously output query

results on data streams. The work is motivated by financial data stream sources that is-

sue “revision tuples”, amending previously issued tuples. Two strategies are proposed:

upstream and downstream processing. The former strategy “replays” previously pro-

cessed input events that were involved in the same computations as the event being

revised (i.e., a sort of bottom-up approach). The latter one “retrieves” all previously

produced complex events to which the event being revised originally contributed, and

modifies these complex events according to the revision (i.e., top-down approach).

This work has been extended in [MaCh08] by proposing a revision model based on

“replay” of the event history. The technique assumes that a stream engine maintains

an archive of recent data seen on each of its input streams. These archives are revised

when revision tuples occur, and reprocessing (replaying) the sequence of input tuples

then generates any of the query results invalidated by the revision.

While this technique is general and works well for all classes of patterns supported by

the Borealis system [CcCC+02], it requires the event history to be kept (persisted). The

history is kept as long as revision needs to be guaranteed.

In Chapter 9 we will also present an approach for revision in EP. There we also need

to keep extra data in order to enable revision. However we will see (in Section 9.2)

that we do not need to keep the whole event history (i.e., during the period of time

in which revision is guaranteed). Instead, we keep only intermediate results (goals)

relevant with respect to detected complex events. Moreover we do not need to replay
the whole history when computing revisions. The intermediate results (goals) represent

partial results, hence they enable us to obtain revisions without re-computing them from

scratch.

48 4. State of the Art

In [BGAH07] revision is considered as a problem caused by out-of-order events. That

is, due to out-of-order (late) events it is possible to revise their occurrence time as

well as the time when events are reported to the system. In contrast, we consider a

general case where not only times can be revised, but an event itself can be retracted

too. Moreover, the consequences of that retraction are amended not only on detected

patterns but also on complex patterns that are built out of them (i.e., hierarchies of

complex events).

Further on, the work in [BGAH07] is based on buffering and synchronization points.

An input stream may be blocked in between synchronization points until events are

reordered. On the other hand, we propose an approach that never blocks the input

events, i.e., we never buffer the input stream and reorder it.

An out-of-order EP with Software Transaction Memory is described in [BFSF08]. The

authors propose to use speculative execution enabling events to be processed optimisti-

cally but does not output them until all preceding events have been completed (as some

of them may be out-of-order). Here event revision, possibly caused by out-of-order

events, is avoided at the expense of having delays (and again buffers are used to cope

with late events).

In [ZhDI10] the authors observe that in real-world applications event occurrence times

are often unknown or imprecise. Therefore, they proposed a temporal model that as-

signs a time interval to each event to represent all of its possible occurrence times

and revisit pattern evaluation under this model. The authors argue that existing EP ap-

proaches assume the occurrence time of each event is always known precisely. They

relax this assumption by allowing an interval of possible time occurrences to be as-

signed (instead of a fixed, precise timestamp). Their approach is capable to efficiently

detect correct complex events regardless of which timestamp (from that interval) ap-

pears to be correct. Although this approach does not directly deal with revision per se,

it can be seen as a related work. The timestamp interval effectively ensures the correct-

ness of results in the same vein as revision guarantees correct computation of complex

events (for a given interval in which the event history or intermediate results are kept).

However revision as considered in our approach (in Chapter 9) is a more general prob-

lem in the sense that it deals also with possible retraction of events themselves, i.e., not

only corrections of their timestamp.

Finally, there exist approaches based on updates [GHMA+05, Go0̈5]. Revisions in-

validate previously processed inputs, and correct all pattern (query) results that were

produced from them. However updates do not invalidate previously processed inputs

but simply end the interval during which they were valid.

4.4. Approaches for Out-of-Order Event Processing 49

4.4 Approaches for Out-of-Order Event Processing

The field of EP has the task of processing streams of (atomic) events with the goal of

detecting derived (complex) events according to meaningful event patterns9. However,

in most cases it is typically assumed that events in an event stream are totally ordered:
the order in which events are received by the system is the same as their timestamp

order. This assumption is called total order assumption [LLDR+07]. In reality events

may arrive out-of-order due to network latencies or even machine failures. State of

the art event stream processing technology experiences significant challenges when

faced with out-of-order data arrival including output blocking, huge system latencies,

memory resource overflow, and incorrect result generation [LLGR+09]. Indeed, many

approaches for EP [ADGI08, Alve09, MeMa09, CCDF+03, DeJG07] cannot handle

out-of-order events properly. They process events at the time when they come. Hence,

a late event will have a larger timestamp than the events which have already arrived

earlier. As a consequence, systems not considering out-of-order arrival will disregard

the timestamp and may either detect incorrect complex events or fail to detect some

valid patterns that occurred [LLDR+07].

To solve this problem, other systems [LLDR+07, BGAH07, BFSF08] propose to use

buffers to keep the event history for a certain time window. If out-of-order events occur,

they will be reordered in the buffer so that the event stream afterwards can be treated

(and processed) as an in-order stream. While this approach works in general, it causes

high latency in EP, and the main requirement of EP systems is to process data (events)

with the least latency possible. So the question, how much history of events is sufficient

to be kept in memory to ensure correct processing, remains an optimisation challenge.

Work in [LLGR+09] presents two solution for processing out-of-order event streams:

aggressive and conservative strategies. The aggressive strategy works under the op-

timistic assumption that out-of-order event arrival is rare. To tackle the unexpected

occurrence of an out-of-order event and with it any premature erroneous result genera-

tion, appropriate error compensation methods are designed for the aggressive strategy.

The conservative method works under the assumption that out-of-order data is prevalent,

and thus produces output only when its correctness can be guaranteed. Authors propose

a partial order guarantee model, under which such correctness can be guaranteed. The

aggressive strategy output results immediately without waiting for out-of-order events,

but guarantees only delayed correctness. A compensation technique is utilized to cor-

rect erroneous results [LLGR+09]. The conservative strategies introduces delays in

producing output results, and exploits partial order guarantees to produce permanently

correct results.

In this work (in Chapter 10) we present a solution for out-of-order EP which does

not delay events – similarly as the aggressive strategy in [LLGR+09]. Our strategy,

however, is designed so that it is well integrated with the other parts of our logic-based

EP approach, i.e., to support both EP and stream reasoning. Moreover our approach is

9Apart from this task (also known as pattern matching), EP further addresses other issues like event

filtering, splitting, aggregation, translation and so forth, see Section 2.3.

50 4. State of the Art

general in sense that does not require an assumption about frequency of out-of-order

events to be specified.

4.5 Logic-Based Approaches in Event Processing

EP formalisms based on deductive or logic rules [BrEc07a, PaKB10, FSSB05, MoZa95,

APPS10, LaLM98] have been attracting considerable attention as they feature formal,

declarative semantics and inference capabilities. Declarative semantics of an EP sys-

tem prescribe what the system needs to detect, i.e., a user does not need to worry how
that will be detected. Also, EP systems based on deductive rules have capability to

process not only events, but also any additional background knowledge relevant with

respect to detection of complex situations in real time. Hence a rule-based approach

enables a high abstraction level and a uniform framework for programming knowledge-

based EP applications (i.e., specification of complex event patterns, contextual knowl-

edge, and their interaction). Such applications can be further supported by machine
learning tools, to automate the construction and refinement of event patterns (see, for

example [Ray09]).

However one significant difficulty encountered with logic rule-based systems is that

most of them are inherently request-response systems, i.e., not event-driven. For a

given query (request), an inference system typically evaluates available knowledge and

returns response. When used for EP, these systems cannot detect a complex event as

soon as it happens. Instead, they detect a complex event at the moment when the re-

quest is posed. Such a behavior is not adequate in EP as we expect the system to detect

a complex event as soon as it occurs (not at the moment when a request for proving

that complex event is posed). Existing approaches [LaLM98, PaKB10, FSSB05] do

not implement an event-driven mechanism. We address this issue and propose an ex-

ecution model, featuring the event-driven execution while still retaining the favorable

characteristics of logic-based approaches, including inference capabilities too.

To achieve the aforementioned aims, these approaches all represent complex events as

rules (or queries). Rules can then be processed either in a bottom-up manner [Ullm90],

a top-down manner [ChWa96, AbHV95], or in a manner that combines both

[BMSU86]. However, all these evaluation strategies have not particularly been de-

signed for event-driven computation. They are rather suited for a request-response
paradigm. That is, given (and triggered by) a request, an inference engine will search

for and respond with an answer. This means that, for a given event pattern, an event

inference engine needs to check if this pattern has been satisfied or not. The check is

performed at the time when such a request is posed. If satisfied by the time when the

request is processed, a complex event will be reported. If not, the pattern is not detected

until the next time the same request is processed (though it can become satisfied in be-

tween the two checks, being undetected for the time being). For instance, [PaKB10]

follows the mentioned request-response (or so called query-driven10) approach. It pro-

10If a request is represented as a query (what is a usual case).

4.5. Logic-Based Approaches in Event Processing 51

poses to define queries that are processed repetitively at given intervals, e.g., every 10

seconds, trying to discover new events. However, generally events are not periodic or

if so might have differing periods, and nevertheless complex events should be detected

as soon as they occur (not in a predefined time window). This holds in particular for

time-critical scenarios such as monitoring stock markets or nuclear power plants.

To overcome this issue, in [BrEc07a, Ecke08], an expressive language XChangeEQ

was proposed. The language features deductive and reactive rules for events, as well

as event queries, event composition capabilities, event accumulation, possibilities to ex-

press temporal (and other) relationships between events and so forth. The language is

accompanied with an incremental evaluation that avoids recomputing certain intermedi-

ate results every time a new event arrives. The authors use relational algebra evaluation

techniques based on incremental maintenance of materialized views [GuMu99] and

finite differencing [Ecke08, BrEc07a].

In Chapter 7 we propose an alternative evaluation strategy to this one. In comparison

to [BrEc07a, Ecke08], our goal is to target a broader class of EP features. In particular,

we cover iterative rules with sliding windows, event retractions and out-of-order EP.

Prova [KPNR+06] is a language, accompanied by a system implementation, for reac-

tive agents and EP. Prova is close to our approach in sense that it supports declarative

rules. On the other hand it is a reactive system, supporting agent programming. Com-

plex event patterns can be created in Prova as event-condition-action (ECA) rules. The

Prova language however does not provide event operators (e.g., SEQ , AND , OR , and

so forth); they rather need to be encoded as ECA rules. Prova combines imperative,

declarative and functional programming styles, and is implemented in Java.

A big portion of related work in the area of rule-based EP is grounded on the RETE

algorithm [Forg82]. RETE is an efficient pattern matching algorithm, and it has been

the basis for many production rule systems. The algorithm creates a decision tree that

combines patterns from all rules in a knowledgebase. RETE was intended to improve

the speed of forward chained production rule systems at the cost of space for storing

intermediate results. Production rules can be utilized to form complex event patterns,

in which case a RETE-based production rule system is used as an EP system. Thanks

to forward chaining of rules, RETE is also event-driven (data-driven).

The RETE algorithm was primary designed for condition action (production) rules.

Complex conditions from many such rules can be structured through a RETE network,

and some of them may be shared throughout the network. By sharing complex condi-

tions a more efficient evaluation is gained (in comparison when each condition, for each

rule, is evaluated separately). Our approach – based on event-driven backward chain-

ing (EDBC) rules – is designed for matching complex events (not complex conditions).

This means that we have one model which fits for pattern matching, as well as for

other aspects of EP (e.g., iterative rules, sliding windows, aggregates, retraction in EP,

and out-of-order events. See also Section 1.3 for further discussion on event consump-

tion policies and the RETE algorithm.). In order to address some of these issues (e.g.,

sliding windows and aggregates) systems based on the RETE algorithm implement ad-

ditional components, however the RETE algorithm itself does not provide support for

52 4. State of the Art

these aspects. On the other hand, the goal of our work is to provide a uniform approach

that naturally accommodates all the mentioned aspects related to EP.

Similar to the RETE algorithm, our approach utilises both, computation sharing and

a forward chaining inference. However, unlike RETE-based approaches (e.g., Jess11

and Drools12) that cannot handle function symbols [LFWK09], our approach which

is based on LP can handle them (as LP systems, e.g., Prolog systems can deal with

function symbols).

Close to our approach is [Hale87]. It is an attempt to implement production rules

also with a RETE-like algorithm. However, the work proposes the use of subgoals

and data-driven backward chaining rules. It has deductive capabilities, and detects

satisfied conditions in business rules (using backward chaining), as soon as relevant

facts become available. In our work, we focus on an EP language and a corresponding

EP system (not on production system), and the same argumentation as for a pure RETE

approach applies here too.

Concluding this section, many mentioned studies aim to use more formal semantics

in EP. Our approach based on ETALIS Language for Events may also be seen as an

attempt towards that goal. It includes features from general EP systems, as well as

some advanced features not found in state of the art EP systems. In its essence it is

still a rule-based inference system. Therefore it retains afore mentioned advantages of

logic-based approaches in EP. It does data-driven computation and features deductive

capabilities.

4.6 Semantic-Based Approaches

While existing semantic technologies and reasoning engines are constantly being im-

proved in dealing with time invariant domain knowledge, they lack in support for pro-

cessing time sensitive data. The work in [AdBE00] has raised the importance to express

the event semantics and relationships (e.g., subclass relationships) between events and

other entities. The authors in [AdBE00] describe the semantic abstractions and the

implied knowledge representation scheme for events. Moreover, they provide a com-

prehensive event model with a number of semantic properties for events.

More recently few approaches have emerged to address issues from this area, recog-

nising time as an important dimension in processing knowledge. In the following we

review few of them.

4.6.1 Temporal RDF

The Resource Description Framework (RDF) [KlCa04] has been widely used for ex-

pressing graph-structured data. The work in [GuHV07] introduces time as a new dimen-

11Jess: http://www.jessrules.com/
12Drools: http://www.jboss.org/drools

4.6. Semantic-Based Approaches 53

sion in RDF graphs. The authors provide a semantics for temporal RDF graphs and a

temporal query language for RDF, following concepts of temporal databases. They are

concerned with evolution of RDF graphs through time, and provide a framework for

temporal entailment and querying over changing graphs.

Our work differs from this approach in that our aim is to detect temporal complex pat-

terns under time constraints, rather than just once posing a query and getting a singular

response. We want to detect situations of interest continuously as soon as they happen.

Hence patterns need to be continuously evaluated in order to process occurrences of

relevant triples, and further to recognise complex events.

SPARQL-ST [PeSJ11] is an extension of SPARQL language [PrSe08] for complex spa-

tial and temporal queries. The language, and a corresponding implementation, deal

with temporal data (and possible reasoning about that data). However as in [GuHV07],

SPARQL-ST queries are evaluated when invoked, i.e., they are not continuously ac-

tive. The same argumentation also applies to other SPARQL approaches like Temporal

SPARQL [TaBe09], stSPARQL [KoKy10], and T-SPARQL [Gran10].

The work in [RoMM09] motivates the need for a semantic management of streaming

data. Streaming data are represented in RDF format with the purpose of its exploita-

tion in semantic-web applications (semantically annotated data and reasoning services).

For this purpose, they propose a Time-Annotated RDF model and Time-Annotated

SPARQL. However the authors explicitly mention that continuous queries, as one typ-

ical requirement of streaming data management systems, are not considered in that

work.

4.6.2 Stream Reasoning Approaches

Continuous SPARQL (C-SPARQL) [BBCG10] is a language for continuous query pro-

cessing and Stream Reasoning. It extends the SPARQL language by adding support

for window and aggregation operations. In C-SPARQL, the set of currently valid RDF

statements is determined based on a query (including its window specification), and

classical reasoning on that RDF set is performed as if it were static. In our work pre-

sented in Chapter 11, we focus more on detection of RDF triples in a specific temporal
order (e.g., sequence versus conjunction). We strongly believe that temporal related-

ness between events (e.g., a certain event happens before another event inside a sliding

window) as defined in DSMS [ADGI08, CCDF+03, CBBC+03] is required to capture

more complex patterns over RDF streaming data. Additionally, in C-SPARQL queries

are divided into a static and dynamic part. The static part is evaluated by a separate

RDF triple storage, while a stream processing engine evaluates the dynamic part of the

query. In such settings, these two parts act as “black boxes” and C-SPARQL cannot

take advantage of a query pre-processing and optimizations over the unified (static and

dynamic) data space. We propose an approach based on logic rules where the both parts

are handled in a uniform framework.

54 4. State of the Art

Streaming Knowledge Bases [WJFY08] is a reasoning tool dealing with streaming RDF

triples and computation of RDFS closures with respect to an ontology. For instance,

the tool can identify a triple from a stream having a subject that is an instance of a

certain class (or any of its subclasses that are defined in an ontology). The approach

is based on TelegraphCQ [CCDF+03] that is an efficient DSMS (see Section 4.2). In

order to speed up stream reasoning, the authors propose to pre-compute all inferences

in advance, and to store them in a database. Although this is an interesting approach,

we believe that stream reasoning demands both, on-the-fly inference capabilities and

run time performance.

The work in [BoGJ08] introduces Streaming SPARQL. The approach is built on tem-

poral relational algebra, and the authors provide an algorithm to transform SPARQL

queries to the algebra. Similarly as in [BBCG10], the approach does not detect se-

quences of RDF triples occurring in a specific order. The same holds for [BBCV+10],

where the authors propose stream reasoning based on incremental maintenance of ma-

terializations. Streaming RDF triples (as they occur) trigger an inference procedure

that maintains materializations. Although promising, it is not clear how this approach

works for multiple queries with different time window definitions (materializations in

[BBCV+10] are maintained only for one query).

In Chapter 11 we provide Event Processing SPARQL (EP-SPARQL) which is a new

language to address dynamic aspects in the realm of the Semantic Web. It is as an

extension of the commonly used SPARQL language [PrSe08]. We provide the syntax

and formal semantics of the language and devise an effective execution model for the

proposed formalism. The execution model is event-driven (data-driven) and features

SR capabilities.

Part II

ETALIS Language for Events

5
Logic-Based Event Processing: Design

Principles and Requirements

In Chapter 2 and Chapter 3 we have introduced Event Processing (EP) and logic pro-

gramming (LP). One of the main goals of this work is to combine these two areas,

thereby providing a logic-based EP. Hence, before we propose a formalism to fulfil

this goal, let us first draw basic design principles and requirements that such a formal-

ism needs to adhere to.

5.1 Formal Declarative Semantics

In Section 2.2 we have discussed events as means to declare changes, and draw a par-

allel between event-driven programming and declarative programming. Indeed, occur-

rence of an event can be treated as a declaration about something that has occurred, or

changed the current state of affairs. Who may use what, and how is that used, is not

specified. Instead, we specify rules (patterns) which define complex matters of inter-

ests. Whenever premisses of such a rule can be proved – based on occurring events and

another available knowledge – a complex event will be derived. This means that we

also declare statements about complex events. They may involve temporal, semantic,

and other relations between events. However they are declarative in their nature, i.e.,

these rules describe what patterns in their essence are, and do not specify possible ways

of detecting them, the order in which rules need to be evaluated and so forth.

58 5. Logic-Based Event Processing: Design Principles and Requirements

There exist well-known examples of declarative languages in query processing. For

example, a subset of SQL with SELECT queries is declarative. In EP both, declarative

and imperative languages, are equally popular.

In this work we will consider declarativeness as an important property, and devise a for-

malism for EP that holds this property. Further on, we will pay attention that our declar-

ative formalism features a mechanism which guarantees predictability and repeatability
of results produced by an EP system.

Recognition systems with a logic-based representation of event structures, in particu-

lar, have been attracting considerable attention because, among others, they exhibit a

formal, declarative semantics, and they are supported by machine learning tools au-

tomating the construction and refinement of event structures [APPS10].

Machine learning support per se is out of scope of this work, however we want to empha-

size importance of the declarative, rule-based semantics as a crucial principle in design-
ing an EP language. This property can further enable automated construction of both,

event patterns (queries) and a background knowledge. These features are beyond capa-

bilities of existing EP approaches [ADGI08, BGAH07, ArBW06, KrSe09, CCDF+03],

and this is one important benefit of formal rule-based approaches in EP.

Declarative programming has become of particular interest recently, as it may greatly

simplify writing parallel and distributed programs [ACCE+09, CCHM08]. Since in EP

we also often need to write parallel and distributed programs, this is one reason more

to believe that declarative programming will prevail in EP too.

On the other hand, consumption policies1 is a subject in EP that is not in-line with

declarative principles. A consumption policy typically selects one, out of several events

occurrences, and defines how multiple occurrences of the same event are consumed.

This, however, has a direct impact on event pattern rules. For instance, if an event

occurrence is consumed by rule A, it may not be available to rule B, and vice versa. As

a consequence the order in which rules A and B are evaluated matters (what is against

the principle of declarative programming).

The EP language that we will propose in Chapter 6 is declarative. We will further

provide common consumption policies as an optional feature of this formalism in Sec-

tion 7.4. It should be therefore noted that event programs – written in the proposed

language – may lose this property when interpreted under a certain consumption policy.

However, the language semantics under unrestricted policy, which is also provided in

Section 7.4, ensures the declarative property of our formalism.

Further to this topic, it is worth of mentioning that we (in Chapter 12) provide an im-

plementation of the language. The implementation is realised in Prolog, and enables

a programmer to extend event programs with Prolog specific features (some of which

are not declarative). We have adopted this design principle since Prolog – as general

1In EP, consumption policies [CKAK94] deal with the issue of selecting particular event occurrences

when there is more than one event instance applicable, and consuming events after they have been used

in patterns. We will discuss different consumption policies in Section 7.4.

5.2. Point-Based Versus Interval-Based Temporal Semantics 59

programming language – offers many advanced features. However again, a program-

mer needs to take care when writing event programs with non-declarative features, as

in that case the overall system may behave in a non-declarative manner too.

5.2 Point-Based Versus Interval-Based Temporal Semantics

Time plays a central role in EP, and EP languages are designed to express rich temporal
relations between events. For example, events A and B have both occurred but A has

occurred before B, or A has occurred simultaneously with B, are examples of temporal

relations. To detect such and similar relations, an event is characterised by a timestamp.
A timestamp that denotes an event occurrence can be defined either as a time point or
a time interval. Point-based events are instantaneous, i.e., they happen at one specific

point in time and have a duration of zero. An example of such an event is a stock market

event denoting the current stock price of a certain company.

We also refer to point-based events as atomic events. Atomic events build complex
(derived) events. It is our design principle to endow complex events with a time interval,

denoting when the event started and when it ended2. An example of an (interval-based)

complex event is an event that represents a stock market working day. This event has

duration, starting when the market opens and ending when the market closes. It is said

that – languages with interval-based events – are founded on interval-based semantics,
as oppose to languages with point-based semantics.

We have adopted an interval-based semantics for two reasons. The first reason is that

an interval-based semantics enables richer semantics. Note that if we consider events

as instantaneous, the only possible (temporal) relations between two events are before,
after, and simultaneously. In addition to those, events defined on time intervals enable

all existing temporal relations as defined by Allen’s interval algebra [Alle83]. These

temporal relations include: before, meets, overlaps, starts, during, finishes, equals to
(simultaneous). We will discuss these relations in more details in Chapter 6.

The second reason for adopting an interval-based semantics is related to possible in-

consistencies encountered with point-based events [GaAu02, PaKB10, AnSt08b]. To

illustrate this, let us consider a complex event e that is a sequence of events e1, e2, and

e3 in the following pattern e1 before (e2 before e3).

If events were not regarded to occur in a time interval, the detection time of the termi-

nating event is used as an occurrence time of the complex event. Consequentially, it

would be possible to detect e with a sequence: e1 before e2 before e3 as well as with a

sequence: e2 before e1 before e3. In order to prevent such an unintended semantics, we

use the interval-based semantics. For example, consider an intermediate event ei which

is detected when an occurrence of e2(T3, T4) is strictly followed by an occurrence of

e3(T5, T6)
3. That is, event e1 is defined on a time interval (T3, T6), for some time points

2This principle is however not a norm. A number of EP systems define both, atomic and complex

events as instantaneous.
3To follow strictly, means that T4 < T5, and not T4 ≤ T5.

60 5. Logic-Based Event Processing: Design Principles and Requirements

T3 ≤ T4 < T5 ≤ T6. In this case e will never be detectable by a sequence: e2 before
e1 before e3, as e1(T1, T2) has not happened strictly before ei(T3, T6) (i.e., T2 < T3 is

not satisfied).

5.3 Seamless Integration of Events with Queries and
Domain Knowledge

5.3.1 Query Processing

EP applications often involve query processing coupled with EP. Database information

may serve in enriching an event with additional data. For instance, a sensor event may

carry an ID which can be matched with a database relation to enrich the event with

information about the sensor source (e.g., sensor measurement units, information about

sensor precision etc.). We will see an implementation of this and similar examples in

the remaining parts of this work. However at this point, we want to raise importance of

query processing which needs to be coupled with EP.

We propose a language which integrates query processing with EP in an easy and natu-

ral way. Since our approach is based on deductive rules, query processing is performed

similarly as in deductive databases (enabling recursive queries too).

5.3.2 Knowledge Processing

In Chapter 1, we have already tried to raise importance of background (static) knowl-

edge in the context of EP. Events and event pattern rules represent temporal knowl-
edge, based on which it is possible to derive more complex dynamic matters. Apart

from this knowledge, there may exists static (or evolving) knowledge (i.e., facts, rules

and ontologies, constituting the domain knowledge). For instance, suppose an event

processing applications provides real time information about air pollution in a certain

geographic area. Then event pattern rules will calculate pollution from streaming sensor

data, while physical locations of sensors, their density, and other relevant information

are represented as a static knowledge. Note that for detection of some environmental

phenomena (e.g., gust front tornado) we need to process the background knowledge on

the fly, that is, to process it while processing real time data (events).

A considerable amount of (static or slowly evolving) knowledge has been made avail-

able through the Linked Open Data (LOD) initiative and other on line information

sources (see Section 1.2). Since this knowledge is structured, it can be used by ma-

chines, and more importantly, it can be used in conjunction with EP. Therefore an

important design decision – which underlines our approach – is to propose a formal-

ism capable to define real time situations detectable upon events as well as on domain

knowledge.

5.4. Event-Driven Incremental Reasoning 61

Note that databases and knowledgebases both contain additional information required

in EP. Knowledgebases are however a special kind of databases for knowledge man-

agement. While it is possible to query databases to get explicitly stated information,

knowledgebases, in addition, enable derivation of implicitly stated information too.

5.4 Event-Driven Incremental Reasoning

EP – as a real time processing – needs to ensure detection of derived events in a timely
fashion and in the asynchronous push mode (see Subsection 2.2.2). Our approach to

EP is founded on deductive rules. As said, deductive systems are rather suited for a

request-response computation. That is, for given a request, an inference engine will

evaluate available knowledge (i.e. rules and facts) and respond with an answer. This

means that the event inference engine needs to check if this pattern can be deduced or

not. The check is performed at the time when such a request is posed. If satisfied by

the time when the request is processed, a complex event will be reported. If not, the

pattern is not detected until the next time the same request is processed (though it can

become satisfied in-between the two checks).

In Section 3.3 we have discussed bottom-up and top-down strategies for logic pro-

grams. There exist also other strategies aiming to improve the basic evaluation strate-

gies [Ullm89, AbHV95, BMSU86, Chen97, Warr92]. Forward chaining reasoning

methods (e.g., implemented in RETE-based deductive systems) give a solution to the

issue of data-driven computation. However other issue, as pointed out in Section 1.3

and Section 4.5 remain (since this strategy was not initially designed for EP).

EP demands an event- or data-driven computation strategy as found in various ap-

proaches such as non-deterministic finite automata (NFA) [ADGI08], Petri Nets

[GaDi92], and RETE algorithm [Forg82]. Additionally, this strategy needs to satisfy

all other requirements and design principles as discussed in this and other sections (in-

cluding knowledge processing, reasoning, consumption policies, time windows, event

aggregations, and so forth).

In Chapter 7 we devise such a strategy, and discuss its implementation in Chapter 12.

5.5 Expressivity

An event processing network (EPN) comprises of event processing agents (EPAs). Ca-

pabilities of an agent to processes events depends on capabilities of an underlying for-

malism used to program that agent. Therefore expressivity of an EP language is an

important aspect in building EP applications. In Section 2.3 we have given a list of

common agents, explaining operations on events each of them performs. In the remain-

ing parts of this work, we will propose a language capable to express event operations of

all those agents, i.e., filtering, pattern detection, event transformation, splitting, aggre-

gations, composition, translation, enrichment and projection. Moreover the language

62 5. Logic-Based Event Processing: Design Principles and Requirements

can express all temporal relations from Allen’s interval algebra [Alle83], and supports

negation (where a negated event is understood as absence of that event in an interval).

5.6 Set at a Time Versus Event at a Time Processing

An event processing agent (EPA) takes one or more events as input, and creates one

ore more events as output. When creating an output, an EPA may commonly process

events either in set at a time or event at a time fashion.

In so called set at a time processing, see [ArBW06, KrSe09, CCDF+03, CBBC+03,

MWAB+02], event patterns are matched against sets of events. Similarly as in relational

algebra, event operations are represented by operations on sets of events (relations). Op-

erations are executed as events occur, but events are not processed individually. Instead,

they are handled in snapshots created by sets.

In EP, input events of an EPA are very often determined by means of a sliding window.
A sliding window serves to constrain the processing of an unbound event stream to a fi-

nite window (collection) of events that “slide” either over time or individual events. EP

systems, that are based on set at a time processing, process events from a sliding win-

dow in snapshots (i.e., as sets), and output results with a certain time granularity. Time

granularity of snapshots influences directly computational costs, memory consumption,

stream rates in downstream operators and the entire cost model [KrSe09].

In so called event at a time processing, the computation is done whenever a relevant

event occurs. That is, each event is processed individually with respect to the current

state of the computation. Occurrence of an event changes the state if the event furthers

the detection of one or more of monitoring event patterns. In this respect, the event at

a time processing is a stateful processing4 and it assumes processing of a single event,

or processing of a single event with respect to other individual event (i.e., not a set of

events).

Event consumption policy is a common feature in EP that is naturally supported by the

event at a time processing. As a consumption policy specifies how to remove unused

events from memory, individual selection of events, provided by the event at a time

processing, offers a fine-grained way to implement various policies (see for example

polices in [ADGI08] and [CKAK94]).

Furthermore, consider the detection of a sequence of events. In the set at a time pro-

cessing two event snapshots (or streams) need to be synchronised in order to detect

that an event from the second snapshot occurred after an event from the first snapshot5.

Additionally, it is important whether an event belongs to a certain snapshot, or to a

snapshot that is right before or right after it. In the event at a time processing, events

4This does not imply that with this processing, stateless operations (e.g., filtering) cannot be per-

formed or combined with stateful operations (e.g., pattern matching).
5Otherwise events from different event snapshots or streams cannot be compared with respect to their

time occurance.

5.7. Simplicity and Ease-of-Use 63

are also assumed not to be “late” (otherwise we talk about out-of-order EP, see Chap-

ter 10). However the final result of detecting a (sequence) pattern does not depend on

allocation of events in a particular snapshot. As a result, synchronisation in the set at

a time processing is more sensitive and error prone (specifically this issue may be in-

dicative with iterative rules when the output of a rule is the input of the same rule, see

Section 7.3).

Based on the above argumentation, our design decision – regarding the proposed for-

malism in this work – is to use event at a time processing.

5.7 Simplicity and Ease-of-Use

As noted in [BrEc07c, BrEc07b], expressive event languages should cover at least the

four dimensions of data extraction, event composition, temporal and causal relation-

ships, and event accumulation for non-monotonic features such as negation (absence of

events) and aggregation.

In general, the value of events – with respect to an application – comes from two as-

pects. The first aspect is related to time (as events enable real time processing), and the

second aspect is related to data (carried by events). While the time aspect – in real time

processing – is important for obvious reasons, in the following we want to emphasise

the importance of the event data too.

For example, events may be filtered out based on a filtering condition, which operates

on event data; an event pattern may be derived from few simpler events that pass certain

event data to the derived event; an aggregation function may be applied over data of

input events to generate an event with an aggregated value; event streams may be joined

on common data, similarly as two relations are joined in databases; an event may be

enriched with data from an external information source (e.g., a database or an ontology)

and so forth.

An EP language should therefore enable easy processing of data carried by events. We

follow a rule-based approach which enables easy extraction of data, and passing it via

variable bindings. Consequentially, operations such as filtering, aggregation, joining,

enrichment, and so forth, are easily expressed in this approach and have a compact

representation in event patterns.

On the other hand, since our formalism is founded in LP its use in practise demands

LP skills too. For some users, this can be a burden from the usability point of view.

However one of the main goal of our work is to enable seamless integration of EP with

stream reasoning (SR) capabilities. Therefore we have decided to enable users of our

EP formalism with the full power of LP too.

Rules can be considered as patterns of knowledge. From that point of view, it is natural

to represent event patterns as rules. SQL-based syntax is widely spread out in today’s

EP systems [ADGI08, ArBW06, KrSe09]. It is considered to be easy to understand, as

64 5. Logic-Based Event Processing: Design Principles and Requirements

many programmers today are familiar with database concepts. We propose a rule-based
syntax and argue that it is convenient for EP. We base our opinion gained on experience

in implementation of the proposed language itself, as well as on experience gained in

implementation of few use cases (see Chapter 13).

For example, let us consider the following simple pattern rules. The first pattern detects

a sequence of two instances of event e, where only instances with theName ’a’ and the

Result equals to 1 are selected. Similarly, the second pattern detects a sequence of two

instances of complex event ce1 with the same filter condition for the Result attribute.

ce1(Result)← e(Name,Result) SEQ e(Name,Result)

WHERE (Name =′ a′, Result = 1).

ce2(Result)← ce1(Result) AND ce1(Result)

WHERE (Result = 1).

Their representation in an SQL-like language of Esper6 based on [ArBW06] is shown

below.

<Query name= "ce1" text="

insert into tmpE(ceName, Result)

select ’ce1’ as ceName, e1.Result as Result

from pattern [every (+

e1=e(e1.Name=’a’ and e1.Result=1) ->

e2=e(e2.Name=’a’ and e2.Result=1))]"/>

<Query name= "ce2" text="

select ’ce2’ as Name, e1.Result as Result

from pattern [every (+

e1=tmpE(e1.ceName=’ce1’ and e1.Result=1) and

e2=tmpE(e2.ceName=’ce1’ and e2.Result=1))]"/>

As we see, complex events detected by the first pattern need to be re-inserted in a

temporal stream of events tmpE (using insert in the first Esper statement). If com-

plex event ce2 was further used in building a more complex event we would need to

insert instances of ce2 event in another temporal stream too. Consequently, very

complex (nested) events in such a language become easily unreadable. On the other

hand, with a rule-based syntax it is easy to nest (complex) events. Also it is easy to

pass data within nested events via variable bindings, which in total gives a more com-

pact and clear syntax of the language.

Finally it is worth mentioning that our prototype implementation – presented in Chap-

ter 12 – consist of about 2500 lines of Prolog code, while Esper 3.3.0 has approximately

150000 lines of code. Hence, rule-based declarative programming additionally results

in drastic reduction in code size.

6Esper is a CEP system: http://esper.codehaus.org/.

5.8. Extensibility 65

5.8 Extensibility

Extensibility of an EP language is an important design principle. EP systems are in

general used as a middleware technology, and as such, they need to be customisable to

different specific domains. Therefore, we believe that an EP language and its underly-

ing execution model need to be simple enough in order to enable possible extensions.

We follow this principle, and will propose few extensions of the main formalism in

Chapter 7.

66 5. Logic-Based Event Processing: Design Principles and Requirements

6
ETALIS: A Rule-Based Language for Event

Processing and Reasoning

In this chapter we introduce the ETALIS Language for Events (ELE)1 [AFRS+10,

AFRS+11b]. We start the chapter by giving a high level introduction to the general

problem for which the language can be used. We define formal syntax and semantics

of the ETALIS formalism. Throughout this section, we use a number of examples to

demonstrate the power of the introduced language, and demonstrate its usefulness in

practical applications.

6.1 Introduction

Informally, an event represents something that occurs, happens or changes the current

state of affairs. For example, an event may signify a problem or an impending problem,

a threshold, an opportunity, an information becoming available, a deviation and so forth.

Simple events are combined into complex (derived) events depending on their temporal,

causal and semantic relations.

The task of EP and Stream Reasoning in Event-driven Transaction Logic Inference Sys-

tem (ETALIS) is illustrated in Figure 6.12, and it can be described as follows. Within

some dynamic setting, events frommultiple event sources take place (denoted as Events

1We sometimes refer to the ETALIS Language for Events as the ETALIS formalism or just ETALIS.
2The figure is inspired by a similar illustration created by Opher Etzion and Tali Yatzkar –IBM Haifa.

68 6. ETALIS: A Rule-Based Language for Event Processing and Reasoning

in Figure 6.1). These events are also known as atomic events, and they are instanta-

neous. Notifications about these occurred events together with their timestamps and

possibly further associated data (such as involved entities, numerical parameters of the

event, or provenance data) enter ETALIS in the order of their occurrence. The core

engine of ETALIS is represented by the wheel in Figure 6.1. Later, in Section 12.1, we

will give a system diagram for the ETALIS engine.

Events

Domain Knowledge
Evaluation and

Stream Reasoning

Complex Events

Event Patterns

Figure 6.1: ETALIS Conceptual Architecture

Further on, ETALIS features a set of complex event descriptions – denoted as Event
Patterns – by means of which Complex Events can be specified as temporal constella-

tions of atomic events (see Figure 6.1). The complex events, thus defined, can in turn

be used to compose even more complex events i.e., they can be turned back as input

Events3. As opposed to atomic events, those complex events are not considered instan-

taneous but are endowed with a time interval denoting when the event started and when

it ended.

Event Patterns in Figure 6.1 suggests that ETALIS Conceptual Architecture is used for

the task of pattern matching only. This is not the case – namely in ETALIS, Event

Pattern rules are used for pattern matching, as well as for all other EPN operations (e.g.,

filtering, splitting, translation etc.). Events derived by these rules are in general called

Complex Events no matter whether a complex event is produced as a consequence of a

filtering operation or pattern matching (see Figure 6.1).

Finally – when detecting complex events – ETALIS may consult a Domain Knowledge.
For instance, consider a traffic management system that detects areas with slow traffic

(in real time). Such an area is detected when events – denoting slow traffic in a particu-

lar area – subsequently occur within a certain time span. What is a “slow” traffic, and

what is a “particular” area, for different events, roads and road subsections, is specified

3An edge, representing this possibility, is omitted to avoid cluttering the figure.

6.2. Syntax of the Language 69

as a domain or background knowledge (a more detailed version of this example is de-

scribed in Section 1.1). ETALIS can evaluate the background knowledge on the fly, pos-

sibly inferring Complex Events that involve new implicit knowledge. This knowledge is
derived as a logical consequence from event driven deductive rules, thereby providing

the Stream Reasoning capability (illustrated with the upper part of Figure 6.1).

A conceptual architecture – presented by Figure 6.1 – gives an informal introduction to

basic notions formally defined in the following sections. In Subsection 6.4.1 we will

show an implantation of the slow traffic example, and in Section 12.1 we will go into

details of an internal architecture of ETALIS.

6.2 Syntax of the Language

In Subsection 3.2.1 we have introduced the syntax of definite logic programs. In this

section – following a similar approach – we will introduce the syntax of ELE.

Formal syntax and semantics of ELE features:

• static rules accounting for static background information about the considered

domain (denoted as Domain Knowledge in Figure 6.1);

• event rules that are used to capture the dynamic information by defining patterns

of complex events (denoted as Complex Events in Figure 6.1).

Both parts may be intertwined through the use of common variables. Based on a com-

bined (static and dynamic) specification, we will define the notion of entailment of

complex events by a given event stream.

An ELE rule base4 R is composed of a static part Rs and an event part Re. Thereby,

Rs is a set of Horn clauses using the static predicates. Formally, a static rule is defined

as a : −a1, . . . , an where a, a1, . . . , an are static atoms5. Every term that a contains

is either a variable, a constant or a function symbol. Moreover, all variables occurring

in any of the atoms have to occur at least once in the rule body outside any function

application.

The event part Re allows for the definition of patterns based on time and events. Time

instants and durations are represented as nonnegative rational numbers q ∈ Q+. Events

can be atomic or complex. An atomic event refers to an instantaneous occurrence of

interest. Atomic events are expressed as ground event atoms (i.e., event predicates

the arguments of which do not contain any variables). Intuitively, the arguments of a

ground atom representing an atomic event denote information items (i.e. event data)

that provide additional information about that event.

4or ETALIS rule base
5Static rules and static atoms are, in fact, Horn rules and atoms as defined in Subsection 3.2.1. We

use here the prefix “static” only to distinguish these rules and atoms from event rules and event atoms,
as defined in the remaining part of this section.

70 6. ETALIS: A Rule-Based Language for Event Processing and Reasoning

Atomic events are combined to complex events by event patterns. An event pattern is

expressed as an event rule. Event rules describe temporal arrangements of events and

absolute time points. They can be intertwined with static rules, thus combining the

temporal arrangements of events with static relations from a knowledgebase (KB).

The following definition introduces formally central notions regarding the syntax of

ELE.

Definition 6.1 A signature 〈C,V,Fn,P
s
n,P

e
n〉 for an ELE rule base consists of:

• a set C of constant symbols including true and false
• a set V of variables (denoted by capitals X , Y , ...)
• for n ∈ N, sets Fn of function symbols of arity n

• for n ∈ N, sets Ps
n of static predicates of arity n

• for n ∈ N, sets Pe
n of event predicates of arity n, disjoint from Ps

n

Based on the signature for ELE, we define the following notions:

• A term is defined by:

t ::= c | v | fn(t1, . . . , tn) | ps
n(t1, . . . , tn)

• The set of (static / event) atoms is defined as the set of all expressions pn(t1, . . . , tn)

where p is a (static / event) predicate and t1, . . . tn are terms.

• An ETALIS rule baseR consists of a static partRs and an event partRe.

• Rs is a set of Horn clauses using the static predicates Ps
n.

• Re allows for the definition of clauses (patterns) based on time and events. Time
instants and durations are represented as nonnegative rational numbers q ∈ Q+.

• An atomic event is expressed as a ground event atom. An atomic event refers to
an instantaneous occurrence of interest.

• A complex event is expressed as a ground event atom. A complex event refers to
an occurrence with duration.

• The language P of event patterns – which allows the composition of events – is
defined by

P ::= pe(t1, . . . , tn) | P WHERE t | q | (P).q

| P BIN P | NOT(P).[P, P]

Thereby, pe is an n-ary event predicate, ti denote terms, t is a term of type
boolean, q is a nonnegative rational number, and BIN is one of the binary op-
erators SEQ, AND, PAR, OR, EQUALS, MEETS, DURING, STARTS, or FINISHES.
As a side condition, in every expression p WHERE t, all variables occurring in t

must also occur in the pattern p.

6.2. Syntax of the Language 71

• An event rule is defined as a formula of the shape

pe(t1, . . . , tn)← p

where p is an event pattern containing all variables occurring in pe(t1, . . . , tn).

�

Figure 6.2 demonstrates the various ways of constructing complex event descriptions

from simpler ones in ELE. Moreover, Figure 6.2 also informally introduces the seman-

tics of the language, which will further be defined in Section 6.3.

Figure 6.2: Language for Event Processing - Composition Operators

Let us assume that instances of three complex events, P1, P2, P3, are occurring in time

intervals as shown in Figure 6.2. Vertical dashed lines depict different time units, while

the horizontal bars represent detected complex events for the given patterns. In the

following, we give the intuitive meaning for all patterns from the figure:

• (P1).3 detects an occurrence of P1 if it happens within an interval of length 3, i.e.,

3 represents the (maximum) time window.

• P1 SEQ P3 represents a sequence of two events, i.e., an occurrence of P1 is fol-

lowed by an occurrence of P3; here P1 must end before P3 starts.

• P2 AND P3 is a pattern that is detected when instances of both P2 and P3 occur

no matter in which order.

72 6. ETALIS: A Rule-Based Language for Event Processing and Reasoning

• P1 PAR P2 occurs when instances of both P1 and P2 happen, provided that their

intervals have a non-zero overlap.

• P2 OR P3 is triggered for every instance of P2 or P3.

• P1 DURING (0 SEQ 6) happens when an instance of P1 occurs during an interval;

in this case, the interval is built using a sequence of two atomic time-point events

(one with q = 0 and another with q = 6, see the syntax above). In general, the

interval may consist of other (derived) events too.

• P3 STARTS P1 is detected when an instance of P3 starts at the same time as an

instance of P1 but ends earlier.

• P1 EQUALS P3 is triggered when the two events occur exactly at the same time

interval.

• NOT(P3).[P1, P1] represents a negated pattern. It is defined by a sequence of

events (delimiting events) in the square brackets6 where there is no occurrence of

P3 in the interval. In order to invalidate an occurrence of the pattern, an instance

of P3 must happen in the interval formed by the end time of the first delimiting

event and the start time of the second delimiting event. In this example delimiting

events are just two instances of the same event, i.e., P1. Different treatments of

negation are also possible, however we adopt one from [AdCh06].

• P3 FINISHES P2 is detected when an instance of P3 ends at the same time as an

instance of P2 but starts later.

• P2 MEETS P3 happens when the interval of an occurrence of P2 ends exactly

when the interval of an occurrence of P3 starts.

It is worth noting that the defined pattern language captures the set of all possible thir-

teen relations on two temporal intervals as defined in Allen’s interval algebra [Alle83].

The set can also be used for rich temporal reasoning.

In this example, event patterns are considered under the unrestricted policy. In EP,

consumption policies deal with an issue of selecting particular events occurrences when

there are more than one event instance applicable and consuming events after they have

been used in patterns. We have discussed consumption policies in Section 5.1, and will

further discuss implementation of different consumption policies in ETALIS Language

for Events in Section 7.4.

6Note that in the above example for DURING we used different parenthesis to denote an interval.

This is so only because of the specific case in that example. We could have a derived event, defined on

the same interval (instead of 0 SEQ 6), in which case we would not have used parenthesis at all. On the

other hand, for the NOT operator we always use square brackets to denote an interval.

6.3. Declarative Semantics of the Language 73

6.3 Declarative Semantics of the Language

We define the declarative formal semantics of ELE in a model-theoretic way (see Sub-

section 3.2.2). We first explain what an interpretation is. Then a model will be defined

as a special kind of interpretation – one that makes the set of ELE rules (an event pro-

gram) true.

The interpretation of constant symbols, function symbols, and predicates in an ELE

rule base is similar to one defined for a definite program (see Definition 3.2) with the

following two differences. First, a predicate symbol p is called a static predicate ps

in ELE. Second, we assume a fixed interpretation of the occurring function symbols,

i.e., for every function symbol f of arity n, we presume a predefined function f ∗ :

Conn → Con. That is, in our setting, functions are treated as built-in utilities (see

Subsection 3.2.1 for discussion on built-in predicates).

As usual, a variable assignment is a mapping μ : V ar → Con assigning a value to

every variable. We let μ∗ denote the canonical extension of μ to terms:

μ∗ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c �→ c if c ∈ C,

v �→ μ(v) if v ∈ V ar,

f(t1, . . . , tn) �→ f ∗(μ∗(t1), . . . , μ∗(tn)) for f ∈ Fn,

p(t1, . . . , tn) �→
{
true ifRs |= p(μ∗(t1), . . . , μ∗(tn)),
false otherwise.

Thereby, Rs |= p(μ∗(t1), . . . , μ∗(tn)) is defined by the standard least Herbrand model

semantics.

In addition toR, we fix an event stream, which is a mapping ε : Grounde → 2Q
+
from

event ground predicates into sets of nonnegative rational numbers. It indicates what

elementary events occur at which time instants.

Definition 6.2 An interpretation I : Grounde → 2Q
+×Q+

is defined as a mapping from
the event ground atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for
every 〈q1, q2〉 ∈ I(g) for all g ∈ Grounde. �

In the following, we define a model for a rule set R as an interpretation which makes

every rule inR true.

Definition 6.3 Given an event stream ε, an interpretation I is called a model for a rule
setR – written as I |=ε R – if the following conditions are satisfied:

1. 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Grounde with q ∈ ε(g)

2. for every rule atom← pattern and every variable assignment μ we have
Iμ(atom) ⊆ Iμ(pattern) where Iμ is inductively defined as displayed in Fig-
ure 6.3. �

74 6. ETALIS: A Rule-Based Language for Event Processing and Reasoning

pattern Iμ(pattern)
pe(t1, . . . , tn) I(pe(μ∗(t1), . . . , μ∗(tn)))
P WHERE t Iμ(P) if μ∗(t) = true

∅ otherwise.
q {〈q, q〉} for all q∈Q+

(P).q Iμ(P) ∩ {〈q1, q2〉 | q2 − q1 ≤ q}
P1 SEQ P2 {〈q1, q4〉 | 〈q1, q2〉∈Iμ(P1) and 〈q3, q4〉∈Iμ(P2) and q2<q3}
P1 AND P2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉∈Iμ(P1) and 〈q3, q4〉∈Iμ(P2)}
P1 PAR P2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉∈Iμ(P1)

and 〈q3, q4〉∈Iμ(P2) and max(q1, q3)<min(q2, q4)}
P1 OR P2 Iμ(P1) ∪ Iμ(P2)

P1 EQUALS P2 Iμ(P1) ∩ Iμ(P2)

P1 MEETS P2 {〈q1, q3〉 | 〈q1, q2〉∈Iμ(P1) and 〈q2, q3〉∈Iμ(P2)}
P1 DURING P2 {〈q3, q4〉 | 〈q1, q2〉∈Iμ(P1) and 〈q3, q4〉∈Iμ(P2) and q3<q1<q2<q4}
P1 STARTS P2 {〈q1, q3〉 | 〈q1, q2〉∈Iμ(P1) and 〈q1, q3〉∈Iμ(P2) and q2<q3}
P1 FINISHES P2 {〈q1, q3〉 | 〈q2, q3〉∈Iμ(P1) and 〈q1, q3〉∈Iμ(P2) and q1<q2}
NOT(P1).[P2, P3] Iμ(P2 SEQ P3) \ Iμ(P2 SEQ P1 SEQ P3)

Figure 6.3: Definition of extensional interpretation of event patterns. We use P (x) for patterns,
q(x) for rational numbers, t(x) for terms and PR for event predicates.

For an interpretation I and some q ∈ Q+, we let I|q denote the interpretation defined

by I|q(g) = I(g) ∩ {〈q1, q2〉 | q2 − q1 ≤ q}. Given interpretations I and J , we say
that I is preferred to J if I|q ⊂ J |q for some q ∈ Q+. A model I is called minimal
if there is no other model preferred to I. Obviously, for every event stream ε and rule

base R there is a unique minimal model Iε,R. Essentially, this model can be obtained

by starting from ε and applying the rules in ascending order with respect to the duration

of the event generated by the rule.

Theorem 1 For every event stream ε and rule baseR there is a unique minimal model
Iε,R.

Proof 1 For every rational number q with q ∈ Qε =
⋃

g∈Grounde ε(g), we define
an interpretation Iq by bottom-up saturation of εq where εq(g) = ε(g) ∩ {〈q1, q2〉 |
q2 ≤ q} under the rules of R where the NOT subexpressions are evaluated against⋃

q′∈Qε,q′<q Iq′ . The minimal model can then be defined by Iε,R :=
⋃

q∈Qε
Iq. Minimal-

ity is a straightforward consequence of the fact that derived intervals always contain
the intervals associated to the premise atoms due to the definition of the semantics of
patterns (cf. Figure 6.3).

Finally, given an atom a and two rational numbers q1, q2, we say that the event a[q1,q2]

is a consequence of the event stream ε and the rule base R (written ε,R |= a[q1,q2]), if

〈q1, q2〉 ∈ Iε,Rμ (a) for some variable assignment μ.

It is obvious that the behaviour of the event stream ε beyond the time point q2 is irrele-

vant for determining whether ε,R |= a[q1,q2]. More formally, for any two event streams

6.4. Examples 75

ε1 and ε2 with ε1(g) ∩ {〈q, q′〉 | q′ ≤ q2} = ε2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that

ε1,R |= a[q1,q2] exactly if ε2,R |= a[q1,q2]. This justifies to take the perspective of ε

being only partially known (and continuously unveiled along a time line) while the task

is to detect event-consequences as soon as possible.

6.3.1 Complexity Properties

The theoretical properties of the presented formalism heavily depend on the conditions

put on the formalism’s signature. On the negative side, without further restrictions, the

formalism turns out to be ExpTime-complete as a straightforward consequence from

according results in [DEGV01].

On the other side, the formalism turns not only decidable but even tractable if both C

and the arity of functions and predicates is bounded:

Theorem 2 Given natural numbers k,m, the problem of detecting complex events in
an event stream ε with an ETALIS rule baseR which satisfies |C| ≤ k and Fn = Ps

n =

Pe
n = ∅ for all n ≥ m is PTIME-complete w.r.t. |R|+ |ε|.

Proof 2 PTIME-hardness directly follows from the fact that the formalism subsumes
function-free Horn logic which is known to be hard for PTIME, see e.g. [DEGV01].

For containment in PTIME, recall that in our formalism, function symbols have a fixed
interpretation. Hence, given an ETALIS rule base R with finite C, we can transform
it into an equivalent function-free rule base R′: we eliminate every n-ary function
symbol f by introducing an auxiliary n + 1-ary predicate pf and “materializing” the
function by adding ground atoms pf(c1, . . . , cn,f

∗(c1, . . . , cn)). This can be done in
polynomial time, given the above mentioned arity bound. Naturally, also the size ofR′

is polynomial compared to the size ofR.

Next, observe that under the above circumstances, the least Herbrand model of Rs′

(which is then arity-bounded and function-free) can be computed in polynomial time
(as there are only polynomially many ground atoms). Finally, note that the number of
time points occurring in an event stream ε is linearly bounded by |ε|, whence there are
only polynomially many relevant “interval-endowed ground predicates” a[q1,q2] possi-
bly entailed by ε andRe′. Finally these entailments can be checked in polynomial time
in a forward-chaining manner against the respective (polynomial) grounding of Re′.
This concludes the proof.

6.4 Examples

It is worthwhile to briefly consider the modelling capabilities of the pattern language,

introduced in Section 6.2 and Section 6.3 . To do so, let us show few examples related

76 6. ETALIS: A Rule-Based Language for Event Processing and Reasoning

to real time observations and measurements of environmental phenomena (e.g., weather

observations of temperature, relative humidity, wind speed and direction, precipitation

and so forth).

For instance, one might be interested in defining an event that detects increase in wind

speed, defined as two successive reports related to the same location. The following

pattern specifies the speed increase of at least 10%:

windSpeedIncrease(Loc,WSpd2)←
wind(Loc,WSpd1) SEQ wind(Loc,WSpd2) WHERE WSpd2 > WSpd1 · 1.1.

Let us now define an event denoting duration of a fire at certain location:

activeFire(Loc)←
NOT(fireLocalized(Loc))[fireReported(Loc),fireLocalized(Loc)].

We can also combine windSpeedIncrease event (shown above) to form a new

complex event, fireAlarm:

fireAlarm(Loc)←
NOT(fireLocalized(Loc,WSpd)).

[fireReported(Loc),windSpeedIncrease(Loc,WSpd))].

Similarly, we might be interested in detecting the heat index, i.e., an index that com-

bines air temperature and relative humidity in an attempt to determine the human-

perceived equivalent temperature (how hot it feels):

heatIndex(Loc, Index(Tmp,Hum))←(
temperature(Loc, Tmp) AND humidity(Loc,Hum)

)
.30min

For the definition of the function Index, seeWikipedia7. Note that we have also defined

a time frame of 30 minutes in which temperature and humidity readings are expected

from respective sensors. This event rule also shows, how event information (about

an index or other data) can be “passed” on to the defined complex events by using

variables.

Let us further mention few examples from a financial domain. For example, one might

be interested in defining an event matching stock market working days:

workingDay()←
NOT(marketCloses())[marketOpens(),marketCloses()].

Moreover, we might be interested in detecting the event of two bankruptcies happening

on the same market working day:

dieTogether(X, Y)←(
bankrupt(X) SEQ bankrupt(Y)

)
DURING workingDay().

7The heat index: http://en.wikipedia.org/wiki/Heat_index

6.4. Examples 77

Note how variables may be employed to conditionally group events into complex ones

if they refer to the same entity:

indirectlyAcquires(X, Y)← buys(Z, Y) AND buys(X,Z)

Even more elaborate constraints can be put on the applicability of a pattern by endowing

it with a boolean type term as filter8. Thus, we can detect a stock prize increase of at

least 50% in a time frame of 7 days.

remarkableIncrease(X)←(
price(X, Y1) SEQ price(X, Y2)

)
.7 WHERE Y2 > Y1 · 1.5

We will gradually introduce more complex event rules in the remaining parts of this

work.

6.4.1 An Example Application

It is worthwhile to demonstrate an example EP application with background knowl-

edge processing. We consider a sensor-based traffic management system. The system

monitors continuously generated traffic events, and diagnoses areas with slow traffic

(bottleneck areas).

For example, a bottleneck area is detected when two events, denoting slow traffic in the

same area, subsequently occur within 30 minutes. Rule (6.1) detects such a situation.

bottleneckArea(Area)←(
trafficEvent(Rd, S1, N1,W1) SEQ

trafficEvent(Rd, S2, N2,W2)
)
.30min

WHERE {
slowTraffic(Rd, S1),

slowTraffic(Rd, S2),

areaCheck(Area,N1,W1),

areaCheck(Area,N2,W2)}.

(6.1)

A trafficEvent carries information about a public road (Rd) for which the event is

relevant, current traffic speed (Si), and geographic location coordinates (Ni,Wi) of its

source sensor. Apart from the temporal condition – denoted with SEQ operator and the

30-minute time window – traffic events need to satisfy other conditions too. First, they

need to be considered for the same road (i.e., the two traffic events are joined on the

same attribute, Rd). Second, they need to denote slow traffic and belong to the same

area (see WHERE clause in rule (6.1)). We develop a simple KB – written as Prolog-

style rules9 (6.3)-(6.4) – to enable evaluation of these conditions. Further on, let us

8Note that also comparison operators like =,< and > can be seen as boolean-typed binary functions

and, hence, fit well into the framework.
9Note that we use← for defining ELE pattern rules, and : − for defining static (Prolog) rules.

78 6. ETALIS: A Rule-Based Language for Event Processing and Reasoning

define speed thresholds for particular roads, e.g., traffic under 40 kph is considered as

slow on the road rd1 (see facts (6.2)).

threshold(rd1, 40).

threshold(rd2, 30).

threshold(rd3, 50).

....

(6.2)

Rule (6.3) gets information about speed from two traffic events (S1, S2), and evaluates

to true if the speed is below the threshold for a road Rd.

slowTraffic(Rd, S) : −threshold(Rd,X), S < X. (6.3)

For simplicity reasons we define traffic areas as rectangles specified as four point coor-

dinates10.

area(a1, 4042, 4045, 7358, 7361).

area(a2, 4045, 4048, 7361, 7363).

area(a3, 4048, 4051, 7363, 7365).

....

(6.4)

For given coordinates of an event sensor, rule (6.5) retrieves a traffic area. Additionally,

the second event needs to come from the same area. To enforce this condition, traffic

events are joined by the same Area attribute, see rule 6.1.

areaCheck(Area,N,W) : −
area(Area,X1, X2, Y1, Y2),

X1 < N,N < X2, Y1 < W,W < Y2!.

(6.5)

Now, when a trafficEvent occurs – followed by another occurrence of the same

event – ETALIS will check the time window constraint. If the constraint is satisfied,

ETALIS will check whether the traffic is slow (by evaluating rule (6.3)), and whether

both events come from the same area (rule (6.5)), in which case a bottleneckArea

event is triggered.

In this simple example, we have demonstrated how to combine EP capabilities with eval-

uation of a background knowledge, thereby providing an effective (real time) situation

assessment. Note that rules enable a flexible situation assessment even if facts about cur-

rent speed limits change dynamically (e.g., due to changes in weather conditions). The

example also demonstrates temporal and spatial processing over continuously arriving

events.

10Other shapes can be represented by rules too.

7
Operational Semantics of the Language

Having presented syntax and declarative semantics of event patterns in Chapter 6, next

we turn to the execution model of ELE. We explain how complex events can be ef-

fectively detected at run-time, following the semantics of the language. We start this

section with the implementation of sequence. This operator as well as conjunction, dis-

junction, negation and parallel operator have been introduced in [AFSS09, AFRS+10,

AFRS+11b, ARFS12a]. We will continue this chapter by presenting iterative rules, ag-

gregation patterns and sliding windows introduced in [ARFS11a]. Finally at the end,

we will turn to some practical considerations such as consumption of events.

7.1 Overview

We propose a novel EP approach in which complex events are deduced or derived

from simpler events. Complex events are defined as deductive rules, and events are

represented as facts. Every time an atomic event (relevant with respect to the set of

monitored complex events) occurs, the system updates its knowledgebase, i.e., it adds

a respective fact to the internal state of complex events. Essentially, this internal state

encodes what atomic events have already happened and what are still missing for the

completion of a certain complex event. Complex events are detected as soon as the last

event required for their detection has occurred. Descriptions telling which occurrence

of an event furthers the detection of complex events – including the relationships be-

tween complex events, events they consist of, or additional domain knowledge – are

80 7. Operational Semantics of the Language

given by deductive rules and facts. Consequently, detection of complex events then

amounts to an inferencing problem.

Our approach is established on goal-directed, event-driven rules, and decomposition

of complex event patterns into two-input intermediate events (i.e., goals). Goals are

automatically asserted by rules as relevant events occur. They can persist over a period

of time “waiting” to support detection of a more complex goal. This process of asserting

more and more complex goals shows the progress towards detection of a complex event.

In the remaining part of this chapter we give more details about a goal-directed, event-
driven mechanism with respect to event pattern operators of ELE. In our approach goals

are crucial for computation of complex events. They show the current state of progress

toward matching an event pattern. Moreover they allow for detection of the state of

any complex event, at any time. Therefore goals can enable reasoning over events

(e.g., correlating complex events to each other, establishing more complex constraints

between them etc.). They can persist over a period of time. It is worth mentioning

that we also use rules to delete goals. Once a goal is “consumed”, it is removed from

the database1. In this way goals are kept persisted as long as (but not longer) they are

needed.

7.2 Execution Model for ETALIS

7.2.1 Sequence

Let us consider a sequence of events represented by rule (7.1), i.e., an event e is detected

when an event a2 is followed by an occurrence of b, and finally by c. We can always

represent the above pattern as e← ((a SEQ b) SEQ c). In general, rules (7.2) represent

two equivalent rules3.

e← a SEQ b SEQ c. (7.1)

e← p BIN r BIN s... BIN t.

e← (((p BIN r) BIN s)... BIN t).
(7.2)

We refer to this kind of “events coupling” as binarization of events. Effectively, in bi-

narization we introduce two-input intermediate events (ie). For example, now we can

rewrite rule (7.1) as ie← a SEQ b, and the e← ie SEQ c. Every monitored event –

including atomic, complex and intermediate events – will be assigned with one or more

1Removal of “consumed” goals can be omitted if events are required in a log for further processing

or analysing.
2More precisely, by “an event a” is meant an instance of the event a.
3If no parentheses are given, we assume all operators to be left-associative. While in some cases,

like SEQ sequences, this is irrelevant, other operators such as PAR are not associative, whence the

precedence matters.

7.2. Execution Model for ETALIS 81

logic rules, fired whenever that event occurs. Using the binarization, it is more conve-

nient to construct event-driven rules for three reasons. First, it is easier to implement

an event operator when events are considered on a “two by two” basis. Second, the

binarization increases the possibility for sharing among events and intermediate events,

when the granularity of intermediate patterns is reduced. Third, the binarization eases

the management of rules. As we will see later in this section, each new use of an event

(in a pattern) amounts to appending one or more rules to an existing rule set. However

it is important that for the management of rules, we do not need to modify existing rules
when adding new ones4.

Here we presented a left-associative binarization (events and goals are coupled from left

to right). The left-associative binarization is a good choice when the rightmost event(s)

in a pattern rule have a higher occurrence rate than the others (e.g., event c occurs

more frequently than event b, and further event a in rule (7.1)), since in that situation

event triple(τ3, T5, T6) is joined later. It is also possible to do such a coupling from

right to left. The right-associative coupling is beneficial when the leftmost event(s)

have a higher rate of occurrence(s). Other combinations are possible, too. See for

example bushy plan and inner plan in [MeMa09]. These, and similar plans and cost

optimizations as proposed in [MeMa09] are applicable in our framework. They are,

however, out of scope of this work and will be addressed in future.

In the following, we give more details about assigning rules to each monitored event.

We also provide an algorithm (using a Prolog-like syntax) for detecting a sequence of

events. Note that events in rule (7.1) and rule (7.2) are represented as propositions (e.g.,

a, b, c). In general, an event a has a timestamp [T1, T2] where T1, T2 are represented

as nonnegative rational numbers q ∈ Q+. An event also carries other data parameters

X1, X2, ..., Xn, hence it is represented by: a[T1,T2](X1, X2, ..., Xn) (see Section 6.2 for

details). However, for the sake of readability we will use a shorter notation: a(T1, T2).

Algorithm 1 accepts as input a rule referring to a binary sequence ie← a SEQ b, and

produces event-driven backward chaining (EDBC) rules. These are executable rules in

ETALIS. In the remaining part of this section we will explain EDBC rules in details

(for each operator in ELE). Let us start with EDBC rules for the sequence pattern.

The binarization step must precede the rule transformation presented by Algorithm 1.

Rules, produced by this algorithm, belong to one of two different classes of rules. We

refer to the first class as goal inserting rules. The second class corresponds to checking
rules. For example, rule (7.3) belongs to the first class as it inserts goal(b(_, _),

a(T1, T2), ie(_, _)). The rule will fire when an event a occurs, and the meaning of the

goal it inserts is as follows: “an event a has occurred at [T1, T2], and we are waiting for

a b event to happen in order to detect an ie event”. The goal does not carry information

about times for events b and ie, as we do not know when they will occur. In general,

the second event in a goal always denotes the event that has just occurred. The role of

the first event is to specify what we are waiting for to detect an event that is on the third
position.

4This holds even if patterns with negated events are added.

82 7. Operational Semantics of the Language

Algorithm 1 Sequence.

Input: event binary goal ie← a SEQ b.
Output: event-driven backward chaining rules for SEQ operator.

Each event binary goal ie← a SEQ b is converted into: {
a(T1, T2) : − for_each(a, 1, [T1, T2]).

a(1, T1, T2) : − assert(goal(b(_, _),a(T1, T2),ie(_, _))).
b(T3, T4) : − for_each(b, 1, [T3, T4]).

b(1, T3, T4) : − goal(b(T3, T4),a(T1, T2),ie), T2 < T3,
retract(goal(b(T3, T4),a(T1, T2),ie(_, _))),ie(T1, T4).

}

Rule (7.4) belongs to the second class, referred to as a checking rule. It checks whether
certain prerequisite goals already exist in the database, in which case it triggers the

more complex event. For example, rule (7.4) will fire whenever a b event occurs. The

rule checks whether goal(b(_, _),a(T1, T2),ie(_, _)) already exists (i.e., a has pre-

viously happened), in which case the rule triggers ie by calling an ie(T1, T4) event.

The time occurrence of the ie event (i.e., T1, T4) is defined based on the occurrence

of constituting events (i.e., a(T1, T2), and b(T3, T4), see Section 6.3 for details about

semantics of SEQ operator). Calling ie(T1, T4), this event is effectively propagated

either upward (if it is an intermediate event) or triggered as a finished complex event.

We see that our backward chaining rules compute goals in a forward chaining manner

(as specified by a requirement in Section 5.4). The goals are crucial for computation

of complex events. They show the current state of progress toward matching an event

pattern. Moreover, they allow for determining the “completion state” of any complex

event, at any time. For instance, we can query the current state and get information

how much of a certain pattern is currently fulfilled (e.g., what is the current status of

a certain pattern, or notify me if the pattern is 90% completed). Further, goals can en-

able reasoning over events (e.g., answering which event occurred before some, another

event, although we do not know a priori what are explicit relationships between these

two; correlating complex events to each other; establishing more complex constraints

between them and so forth, see Section 8.4).

Goals can persist over a period of time. It is worth noting that checking rules can also

delete goals. Once a goal is “consumed”, it is removed from the database5. In this way,

goals are kept persistent as long as (but not longer) than needed. In Section 7.4, we will

return to different policies for removing goals from the database.

a(1, T1, T2) : − assert(goal(b(_, _), a(T1, T2), ie(_, _))). (7.3)

b(1, T3, T4) : − goal(b(T3, T4),a(T1, T2),ie), T2 < T3,

retract(goal(b(T3, T4),a(T1, T2),ie(_, _))),

ie(T1, T4).

(7.4)

5Removal of “consumed” goals is typically needed for space reasons but might be omitted if events

are required in a log for further processing or analyzing.

7.2. Execution Model for ETALIS 83

for_each(Pred,N, L) : −
((FullPred = ..[Pred,N, L]),event_trigger(FullPred),

(N1 isN + 1),for_each(Pred,N1, L)) ∨ true.
(7.5)

Finally, in Algorithm 1 there exist more rules than the two mentioned types (i.e., rules

inserting goals and checking rules). We see that for each different event type (i.e., a and

b in our case) we have one rule with a for_each predicate. It is defined by rule (7.5).

Effectively, it implements a loop, which for any occurrence of an event goes through

each rule specified for that event (predicate) and fires it. For example, when a occurs,

the first rule in the set of rules from Algorithm 1 will fire. This first rule will then

loop, invoking all other rules specified for a (those having a in the rule head). In our

case, there is only one such a rule, namely rule (7.3). However, in general, there may

be as many of these rules as usages of a particular event in an event program. Let us

observe a situation in which we want to extend our event pattern set with an additional

pattern that contains the event a (i.e., additional usage of a). In this case, the rule set

representing a set of event patterns needs to be updated with new rules. This can be

done even at runtime. Let us assume the additional pattern to be monitored is iej ← k

SEQ a. Then the only change we need to make is to add one rule to insert a goal and

one checking rule (in the existing rule set). The change is realised as an update to rules

produced by Algorithm 1 by adding the following two rules below6.

a(2, T1, T2) : − assert(goal(b(_, _),a(T1, T2),ie(_, _))).

a(3, T1, T2) : − goal(a(_, _),k(T3, T4),iej(_, _])), T4 < T1,

retract(goal(a(_, _),k(T3, T4),iej(_, _))),iej(T3, T2).

Event rules with WHERE clause are handled in a similar manner as rules without it.

Consider rule (7.6) where q is a static predicate. After the binarization, the rule will be

rewritten as ie← a SEQ b, and e← ie SEQ q.

e← a SEQ b WHERE q (7.6)

Occurrence of sequence of events a and b will trigger an ie event. The ie event in

turn will trigger e← ie SEQ q. If the static predicate, q, evaluates to true, then the

rule will call the e event. Calling e, this event is effectively propagated either upward

(if it is an intermediate event) or triggered as a complex event.

Note that the static predicate, q, is evaluated after detection of a sequence of events a

and b. Sometimes it is possible to evaluate a static predicate before the event part is

detected (since it represents the static or slowly evolving knowledge). If it evaluates to

false, we do not need to pursue further detection of the pattern. This optimisation is,

however, the subject of our future work.

So far, we have described in detail a mechanism for EP with EDBC rules. We have

also described the transformation of event pattern rules into rules for real time events

detection using the sequence operator. In general, for a given set of rules (defining

6Note that an id of rules is incremented for each next rule being added (i.e., 2,3...)

84 7. Operational Semantics of the Language

complex patterns) there will be as many transformed rules as there are usages of distinct

atomic events. Some rules however may be shared among different patterns. As said,

the binarization breaks up patterns into binary sub-patterns (intermediate events). If

two or more patterns share the same sub-patterns, they will also share the same set

of EDBC rules. That is, during the transformation, only one set of EDBC rules will

be produced for a distinct event binary goal (no matter how many times the goal is

used in the whole event program). In large programs (e.g., where event patterns are

built incrementally, i.e., one pattern upon another one) such a sharing may improve the

overall system performance as the execution of redundant rules is avoided.

The complete transformation in Algorithm 1 is proportional to the number and length

of user defined event pattern rules, hence such a transformation is linear, and moreover

is performed at design time.

Conceptually, our backward chaining rules for the sequence operator look very similar

to rules for other operators. In the remaining part of this section we show the algorithms

for other event operators, and briefly describe them.

7.2.2 Conjunction

Conjunction is another typical operator in EP. An event pattern based on conjunction

occurs when all events which comprise that conjunction occur. Unlike the sequence op-

erator, here the constitutive events can happen at times with no particular order between

them. For example, ie ← a AND b defines an ie event as conjunction of events a

and b.

Algorithm 2 Conjunction.

Input: event binary goal ie← a AND b.
Output: event-driven backward chaining rules for AND operator.

Each event binary goal ie← a AND b is converted into: {
a(T1, T2) : − for_each(a, 1, [T1, T2]).

a(1, T3, T4) : − goal(a(_, _),b(T1, T2),ie(_, _)),
retract(goal(a(_, _),b(T1, T2),ie(_, _))),
T5 = min{T1, T3}, T6 = max{T2, T4},ie(T5, T6).

a(2, T3, T4) : − ¬(goal(a(_, _),b(T1, T2),ie(_, _))),
assert(goal(b(_, _),a(T3, T4),ie(_, _))).

b(T1, T2) : − for_each(b, 1, [T1, T2]).
b(1, T3, T4) : − goal(b(_, _),a(T1, T2),ie(_, _)),

retract(goal(b(_, _),a(T1, T2),ie(_, _))),
T5 = min{T1, T3}, T6 = max{T2, T4},ie(T5, T6).

b(2, T3, T4) : − ¬(goal(b(_, _),a(T1, T2),ie(_, _))),
assert(goal(a(_, _),b(T3, T4),ie(_, _))).

}

Algorithm 2 shows the output of a transformation of conjunction event patterns into

EDBC rules (for conjunction). The procedure for dividing complex event rules into

7.2. Execution Model for ETALIS 85

binary event goals is the same as in Algorithm 1. However, rules for inserting and

checking goals are different. Both classes of rules are specific to conjunction. We have

a pair of these rules created for both, event a as well as for event b. Whenever a

occurs (denoted as some interval (T1, T2)) the algorithm checks whether an instance

of b has already happened (see rule (7.7) from Algorithm 2). An instance of b has al-

ready happened if the current database state contains goal(a(_, _),b(T1, T2),ie(_, _)).

In this case the event ie(T5, T6) is triggered (i.e., a call for ie(T5, T6) is issued).

Otherwise, a goal which states that an instance of a has occurred, is inserted (i.e.,

assert(goal(b(_, _),a(T1, T2),ie(_, _))) is executed by rule (7.8)). Now if an in-

stance of b happens later (at some (T3, T4)), rule (7.9) will succeed (if a has previously

happened). Otherwise rule (7.10) will insert goal(a(_, _),b(T1, T2),ie(_, _)).

a(1, T3, T4) : − goal(a(_, _),b(T1, T2),ie(_, _)),

retract(goal(a(_, _),b(T1, T2),ie(_, _))),

T5 = min{T1, T3}, T6 = max{T2, T4},ie(T5, T6).

(7.7)

a(2, T3, T4) : − ¬(goal(a(_, _),b(T1, T2),ie(_, _))),

assert(goal(b(_, _),a(T3, T4),ie(_, _))).
(7.8)

b(1, T3, T4) : − goal(b(_, _),a(T1, T2),ie(_, _)),

retract(goal(b(_, _),a(T1, T2),ie(_, _))),

T5 = min{T1, T3}, T6 = max{T2, T4},ie(T5, T6).

(7.9)

b(2, T3, T4) : − ¬(goal(b(_, _),a(T1, T2),ie(_, _))),

assert(goal(a(_, _),b(T3, T4),ie(_, _))).
(7.10)

In Section 6.3 we have presented a declarative semantics of ELE. We provide an im-

plementation of the language in Prolog, and since Prolog is not purely declarative, we

need to take care when using non-declarative features of Prolog7. Hence in the follow-

ing we discuss whether the operational semantics - as presented so far in this section –

corresponds to the declarative semantics of the language.

c← a op1 b.

d← b op2 c.
(7.11)

Consider an example program defined by rules (7.11) and its corresponding graphical

representation shown in Figure 7.1. Note that event b is used twice in rules (7.11),

hence we have two edges in Figure 7.1. For each edge of b we will have one EDBC

rule (e.g., if opi is SEQ where i can be either 1 or 2) or two EDBC rules (e.g., if opi
is AND), see Algorithm 1 and Algorithm 2, respectively. To ensure the declarative

property of the language, the order in which rules of these two edges are executed

needs to be irrelevant. That is, if ETALIS system evaluates rule(s) from the first edge

7This remark applies, in general, when a declarative formalism is to be implemented with other non-

declarative languages (e.g., procedural languages such as Java, C, C++, etc.)

86 7. Operational Semantics of the Language

 c

a b

 d OP1
OP2

Figure 7.1: Example program

followed by evaluation of rule(s) from the second edge, we need to obtain the same

results as if the order was the opposite. If this holds for every binary pair of events

connected by any event operator in a program, then we can be sure that the operational

semantics preserve correctness of the execution, regardless of the order in which rules

are selected for the execution.

Let us assume that both op1 and op2 in rules (7.11) is replaced by SEQ operator, and

that event a happened followed by event b. In this situation we expect to derive event

c only. Event d will not be triggered as event c did not strictly happened after event

b. That is, T2 of event b is not strictly smaller than T1 of event c (essentially they are

equal), see Algorithm 1. Consequentially, event d will not be detected regardless of the

order in which rules for two b edges are evaluated.

Let us assume that op2 in rules (7.11) is replaced by AND operator, and again, event

a happened followed by event b. In this situation we expect to derive both, event c

and event d. When event b occurs, the system can first evaluate rule for the SEQ edge

(op1), and then rules for the AND edge (op2), or vice versa. For both cases we expect

event d to be triggered.

Suppose the SEQ edge of event b is evaluated first. The systemwill detect event c. This

event will be used to start detection of the conjunction (defined by the second rule in

rules (7.11)). Effectively, event b will trigger rule (7.9) and rule (7.10) in Algorithm 28.

Rule (7.9) will fail, and rule (7.10) will succeed by inserting goal (b (_, _), c (T3, T4),

d (_, _)). Next, when rules of the AND edge of event b are evaluated, rule (7.7) and

rule (7.8) will fire9. Finally, rule (7.7) will succeed by triggering event d. We see

that successful evaluation of rule (7.10), followed by successful evaluation of rule (7.7),

leads to detection of event d.

Now suppose that the AND edge of event b is evaluated first. In this situation, rule

(7.8) will be successfully evaluated followed by an evaluation of rule (7.9). As a result,

the detection will take place in the reverse order, but it will be still possible to detect

event d.

While Algorithm 1 enables detection of events in one direction, Algorithm 2 enables

the detection in both directions. Therefore we use a modification of Algorithm 2 to

handle other operators too (e.g., PAR , MEETS , FINISHES etc.), i.e., whenever binary

events may come in both orders.

8Note that in the rule heads we now have event c.
9Note that in the rule heads we now have event b.

7.2. Execution Model for ETALIS 87

7.2.3 Concurrency

A concurrent or parallel composition of two events (ie← a PAR b) is detected when

events a and b both occur, and their intervals overlap (i.e., we also say they happen

synchronously).

Algorithm 3 shows what is an output of automated transformation of a concurrent event
pattern into rules which serve a data-driven backward chaining event computation. The

procedure for dividing complex event rules into binary event goals is the same (as al-

ready described), and takes place prior to the transformation. Rules for inserting and

checking goals are similar to those in Algorithm 2. The only change in Algorithm 2 is

a sufficient condition, ensuring the interval overlap (i.e., T3 < T2).

Algorithm 3 Concurrency.

Input: event binary goal ie← a PAR b.
Output: event-driven backward chaining rules for PAR operator.

Each event binary goal ie← a PAR b is converted into: {
a(T1, T2) : − for_each(a, 1, [T1, T2]).

a(1, T3, T4) : − goal(a(_, _),b(T1, T2),ie(_, _)), T3 < T2,
retract(goal(a(_, _),b(T1, T2),ie(_, _))),
T5 = min{T1, T3}, T6 = max{T2, T4},ie(T5, T6).

a(2, T3, T4) : − ¬(goal(a(_, _),b(T1, T2),ie(_, _))), T3 < T2,
assert(goal(b(_, _),a(T3, T4),ie(_, _))).

b(T1, T2) : − for_each(b, 1, [T1, T2]).
b(1, T3, T4) : − goal(b(_, _),a(T1, T2),ie(_, _)), T3 < T2,

retract(goal(b(_, _),a(T1, T2),ie(_, _))),
T5 = min{T1, T3}, T6 = max{T2, T4},ie(T5, T6).

b(2, T3, T4) : − ¬(goal(b(_, _),a(T1, T2),ie(_, _))), T3 < T2,
assert(goal(a(_, _),b(T3, T4),ie(_, _))).

}

7.2.4 Disjunction

An algorithm for detecting disjunction (OR) of events is trivial. The disjunction oper-

ator divides rule into separate disjuncts, where each disjunct triggers the parent (com-

plex) event. That is, a disjunction after binarization looks as rule (7.12), and is con-

verted to separate disjuncts (7.13).

e← a OR b. (7.12)

e← a.

e← b.
(7.13)

88 7. Operational Semantics of the Language

7.2.5 Negation

Negation in EP is typically understood as absence of an event that is negated. In order

to create a time interval in which we are interested to detect absence of an event, we

define a negated event in the scope of other complex events. Algorithm 4 describes how

to handle negation in the scope of a sequence. It is also possible to detect negation in

an arbitrarily defined time interval.

Algorithm 4 Negation.

Input: event pattern ie← NOT(c).[a,b].
Output: event-driven backward chaining rules for negation.
Each event binary goal ie← NOT(c).[a,b] is converted into: {

a(T1, T2) : − for_each(a, 1, [T1, T2]).
a(1, T1, T2) : − assert(goal(b(_, _),a(T1, T2),ie(_, _))).
b(T1, T2) : − for_each(b, 1, [T1, T2]).

b(1, T5, T6) : − goal(b(_, _),a(T1, T2),ie(_, _)),
¬(goal(_,c(T3, T4), _)), T2 < T5, T2 < T3, T4 < T5,
retract(goal(b(_, _),a(T1, T2),ie(_, _))),ie(T1, T6))).

c(T1, T2) : − for_each(c, 1, [T1, T2]).
c(1, T1, T2) : − assert(goal(_,c(T1, T2), _)).}
}

Rules for detection of negation are similar to rules from Algorithm 1. We need to

detect a sequence (i.e., a SEQ b), and additionally to check whether an occurrence of

c happened in-between the event a and b. That is why a rule b(1, T5, T6) needs to

check whether ¬(goal(_,c(T3, T4), _)) (with certain time condition) is true. If yes,

this means that event c has not happened during a detected sequence (i.e., a(T1, T2)

SEQ b(T5, T6)), and ie(T1, T6) will be triggered. It is worth noting that a non-

occurrence of c is monitored from the time when event a has been detected until the

beginning of an interval which event b is detected on.

7.2.6 Interval-Based Operations

In the following part of this section we provide brief descriptions for the remaining

relations between two intervals. Each relation is easily checkable with one rule.

7.2.6.1 Duration

An event happens during (i.e., DURING) another event if the interval of the first is

contained in the interval of the second. Rule (7.14) takes two intervals as parameters10.

First, it checks whether all parameters are actually defined as intervals (see rule (7.15)).

10Symbol ’@’ is used in Prolog built-in predicates (>,<,≥ etc.) to compare terms alphabetically or

numerically. When this symbol is omitted, terms are compared arithmetically.

7.2. Execution Model for ETALIS 89

Then it compares whether the start of the second interval (TI2_S) is less than the start

of the first interval (TI1_S). Additionally it checks whether the end of the first interval

(TI1_E) is less than the end of the second interval (TI2_E).

duration(TI1, T I2) : − TI1 = [TI1_S, TI1_E],

validTimeInterval(TI1),

T I2 = [TI2_S, TI2_E],

validTimeInterval(TI2),

T I2_S@ < TI1_S, TI1_E@ < TI2_E.

(7.14)

validTimeInterval(TI) : − TI = [TI_S, TI_E], T I_S@ < TI_E. (7.15)

7.2.6.2 Start

We say that an event starts (i.e., STARTS) another if an instance of the first event starts

at the same time as an instance of the second event, but ends earlier. Therefore rule

(7.16) checks whether the start of both intervals are equal and whether the end of the

first event is smaller than the end of the second one.

starts(TI1, T I2) : − TI1 = [TI1_S, TI1_E],

validTimeInterval(TI1),

T I2 = [TI2_S, TI2_E],

validTimeInterval(TI2),

T I1_S = TI2_S, TI1_E@ < TI2_E.

(7.16)

7.2.6.3 Equal

Two events are equal (i.e., EQUALS) if they happen right at the same time. Rule (7.17)

implements this relation.

equals(TI1, T I2) : − TI1 = [TI1_S, TI1_E],

validTimeInterval(TI1),

T I2 = [TI2_S, TI2_E],

validTimeInterval(TI2),

T I1_S = TI2_S, TI1_E = TI2_E.

(7.17)

7.2.6.4 Finish

One event finishes (i.e., FINISHES) another one if an occurrence of the first ends at the

same time as an occurrence of the second event, but starts later. Rule (7.18) check this

condition.

90 7. Operational Semantics of the Language

finishes(TI1, T I2) : − TI1 = [TI1_S, TI1_E],

validTimeInterval(TI1),

T I2 = [TI2_S, TI2_E],

validTimeInterval(TI2),

T I2_S@ < TI1_S, TI1_E = TI2_E.

(7.18)

7.2.6.5 Meet

Two events meet (i.e., MEETS) each other when the interval of the first ends exactly

when the interval of the second event starts. Hence, the condition TI1_E = TI2_S in

rule (7.19) is sufficient to detect this relation.

meets(TI1, T I2) : − TI1 = [TI1_S, TI1_E],

validTimeInterval(TI1),

T I2 = [TI2_S, TI2_E],

validTimeInterval(TI2),

T I1_E = TI2_S.

(7.19)

7.3 Iterative and Aggregative Patterns

In this section, we show how unbound iterations of events – possibly in combination

with aggregate functions – can be expressed within our defined formalism. We have

introduced iterative and aggregative patterns against event streams in [ARFS11a].

7.3.1 From Event Rules to Event Iterative Rules

Many of formalisms, concerned with EP, feature operators indicating that an event

may be iterated arbitrarily often. Mostly, the notation of these operators is borrowed

from regular expressions in automata theory: the Kleene star (·∗) matches zero or more

occurrences whereas the Kleene plus (·+) indicates one or more occurrences.

For example, the pattern expression a SEQ b+ SEQ c would match any of the event se-

quences abc, abbc, abbbc etc. It is easy to see that – given our semantics – this pattern

expression is equivalent to the pattern a SEQ b SEQ c (as essentially, it allows for “skip-

ping” occurring events)11. Likewise, all patterns in which this kind of Kleene iteration

occurs can be transformed into non-iterative ones.

However, frequently iterative patterns are used in combination with aggregate functions,
i.e., a value is accumulated over a sequence of events. Mostly, EP formalisms define

11Note that due to the chosen semantics, this encoding would also match sequences like acbbc or

abbacbc. However, if wanted, these can be excluded by using the slightly more complex pattern

(a SEQ b SEQ c) EQUALS NOT(a OR c).[a, c].

7.3. Iterative and Aggregative Patterns 91

new language primitives to accommodate this feature. Within ELE, this situation can

be handled via recursive event rules.

As an example, assume tempIncrease event should be triggered whenever the tem-

perature rises over a previous maximum, and further tempAlarm event is triggered if

the maximum gets over 100 degrees Fahrenheit. For this, we have to iterate whenever

there is a new maximum temperature indicated by the atomic temp events. This can

be realized by the below set of rules.

tempIncrease(T)← temp(T).

tempIncrease(T2)← tempIncrease(T1) SEQ temp(T2)

WHERE T2 > T1.

tempAlarm(T)← tempIncrease(T) WHERE T > 100.

(7.20)

In the same vein, every aggregative pattern can be expressed by sets of recursive rules,

where we introduce auxiliary events that carry the intermediate results of the aggrega-

tion as arguments.

As a further remark, note that for a given natural number n, the n-fold sequential execu-

tion of an event a (a pattern usually written as an) can be recognized by iteration(a,n)

defined as follows:

iteration(a, 1)← a.

iteration(a, k + 1)← a SEQ iteration(a, k).

This allows us to express patterns where events are repeated many times in a compact

way.

A common scenario in EP is to detect patterns on moving length-based windows. Such
a pattern is detected when certain events are repeated as many times as the window

length is. A sliding window moves on each new event to detect a new complex event

(defined by the length of a window). The following rules implement such a pattern in

ETALIS for the length equal to n (n is typically predefined):

iteration(a, 1)← a.

iteration(a, k + 1)← NOT(a).[a,iteration(a, k)].

e← iteration(a, n).

For instance, for n=5, the event e will be triggered every time when the system encoun-

ters five occurrences of the a event.

7.3.1.1 An Example Application with Iterative Rules

The following example demonstrates the usage of ELE by defining a common financial

pattern called the “tick-shape” pattern [DGLO+09]. Let’s consider a simple day trader

92 7. Operational Semantics of the Language

pattern that looks for a peak followed by a continuous fall in price of stocks, followed by

a rise in price. We are interested in a raise only if (and as soon as) it grows higher than

the beginning price. The “tick-shape” pattern is monitored for each company symbol

over online stock events:

down(I, P1, P2)← NOT(stock(I, P)).[stock(I, P1),stock(I, P2)]

WHERE P1 < P2.

down(I, P1, P3)← NOT(stock(I, P)).[down(I, P1, P2),stock(I, P3)]

WHERE P2 > P3.

up(I, P1)← stock(I, P1).

up(I, P2)← NOT(stock(I, P)).[up(I, P1),stock(I, P2)]

WHERE P1 < P2.

tickShape(I)← down(I, P1, P2) MEETS

NOT(stock(I, P)).[up(I, P3),stock(I, P4)]

WHERE P3 < P1 ∧ P4 > P1.
(7.21)

In this example, we first start detecting a short increase (in order to detect the peak)

and subsequent fall in price using down(I, P1, P2) iterative rules. Thereby, I takes

the identifier of the monitored company, P1 the price at the peak directly preceding

the decrease and P2 the price at the end of the interval. The usage of the NOT pattern

ensures that no stock events in between are left out and hence, the decrease in price

is monotone. Similarly we can detect a rise in price, defined by up(I, P1) (where P1

assumes the price at the end of the interval). Finally, tickShape(I) will be triggered

when a down event meets an up event which ends at a prize value below the preceding

peak, and the next incoming stock event for I reports a prize above that peak value.

7.3.2 Implementation of Aggregative Patterns

In ETALIS Language for Events, aggregate functions are handled by utilizing iterative
rules. The language offers a common set of aggregates: sum(Var) (sums the values of

Var for all selected events), count (counts the number of solutions for all selected events

from an unbound stream), avg (computes average, and is implemented as combination

of sum and count), max(Var) (computes the maximum value of Var for all selected

events from an unbound stream), and min(Var) (computes the minimum value of Var

for all selected events)12.

The aggregate functions are computed incrementally, adhering to an event at a time

processing (see Section 5.6). The aggregate functions are computed incrementally, by

starting with an initial value for the increment, and iterating the aggregate function

over events. However, window size and the sliding window require us to use efficient

12Custom aggregate functions (using different built-in operators) can also be implemented with no

further restrictions.

7.3. Iterative and Aggregative Patterns 93

data structures and algorithms in logic programming (e.g., in Prolog) to obtain fast

implementations.

For any aggregate function we implement the following two rules.

iteration(StartCntr = 0, StartV al)← start_event(StartV al).

iteration(OldCntr + 1, NewV al)←
iteration(OldCntr, OldV al) SEQ a(AggArg)

WHERE {assert(AggArg),
window(WndwSize,OldCntr, OldV al, AggArg,NewV al)}.

(7.22)

The first rule starts the iteration process (when start_event) occurs with its initial

value (StartV al) and possible condition on that value (see the first rule). The second

rule defines the iteration itself, i.e., whenever an event participating in the iteration

occurs (event a), it will trigger the rule and generate a new iteration event.

In each iteration it is possible to calculate certain operations (an aggregate function).

To achieve this, the iterative rule contains the static part (the WHERE clause) for two

reasons: to save data from the seen events as history relevant with respect to the ag-

gregation function (see assert(AggArg)), and to compute the sliding window incre-

mentally (i.e., to delete events that expired from the sliding window and calculate the

aggregate function on the rest, see the window expression).

The functionality of assert predicate is simply to add data on which aggregation is

applied (i.e., an aggregation argumentAggArg) to database. Sliding window function-

ality is also simple, and it is realised by rule (7.23).

window(WndwSize,OldCntr, OldV al, AggArg,NewV al) : −
OldCntr + 1 >= WindowSize− >

retract(LastItem),

spec_aggregate(OldV alue, AggArg,NewV alue);

spec_aggregate(OldV alue, AggArg,NewV alue).

(7.23)

In Prolog an “if-then-else” statement, e.g., if condition then do_it1 else do_it2,

is expressed as the following statement: condition− > do_it1 ; do_it2. We use the

“if-then-else” statement in rule (7.23) to check whether the current counter value (i.e.,

the incremented old counter, OldCntr + 1) exceeds the window size in which case we

retract the last item from the window and compute a specific aggregate function

(by spec_aggregate). Recall that the new data element (AggArg) was previously

added by the iteration rule (assert(AggArg)). If the counter does not exceed the

window’s value, we simply compute a specific aggregate function (see the last line in

rule (7.23)).

Based on these iterative pattern and sliding window rules we can implement other var-

ious aggregation functions. The iterative rules (7.24) implement the sum aggregate

function on certain values from selected events.

94 7. Operational Semantics of the Language

As we already explained, the iteration begins when start_event occurs and sets

the StartV al. The iteration is further continued whenever event a occurs. Note

that events start_event and a can be of the same type. We can additionally

have a WHERE clause to set filter conditions for both StartV al and AggArg. We

omit filters here to keep the pattern rules simple, however it is clear that neither every

start_event must start the iteration nor that every a must be accepted in an ongo-

ing iteration. The assert predicate adds new data (AggArg) to the current sum, and

the window rule deducts the expired (last) value from the window in order to produce

NewSum.

Note that the same rules can be used to compute the moving average (avg) (hence we

omit to repeat them here). As we have the current sum and the counter value, we can

simply add AvgV al = NewSum/(OldCntr + 1) in the WHERE clause of the second

rule.

sum(StartCntr = 0, StartV al)← start_event(StartV al).

sum(OldCntr + 1, NewSum)←
sum(OldCntr + 1, OldSum) SEQ a(AggArg)

WHERE {assert(AggArg),
window(WndwSize,OldCntr,

OldSum+ AggArg,AggArg,NewSum)}.

window(WndwSize, OldCntr, CurrSum,NewSum) : −
OldCntr + 1 >= WindowSize− >

retract(LastItem),

NewSum = CurrSum− LastItem;

NewSum = CurrSum− LastItem.

(7.24)

In general, the iterative rules give us possibility to realize essentially any aggregate

functions on event streams, no matter whether events are atomic or complex (note that

there is no assumption whether event a is atomic or complex). We can also have multi-
ple aggregations, computed on a single iterative pattern (when they are supposed to be

calculated on the same event stream). For instance, the same iterative rules can be used

to compute the average and the standard deviation. This feature can potentially save

computation resources and increase the overall performance. Finally, it is worth noting

that we are not constrained to compute the Kleene plus closure only on sequences of

events (as it is common in other approaches [ADGI08, MeMa09]). With no restriction,

instead of SEQ we can also put other event operators such as AND or PAR .

The following iterative pattern computes the maximum over a sliding window of events.

7.3. Iterative and Aggregative Patterns 95

max(StartCntr = 0, StartV al)← start_event(StartV al).

max(OldCntr + 1, NewMax)←
max(OldCntr + 1, OldMax) SEQ a(AggArg)

WHERE {assert(AggArg),
window(WndwSize,OldCntr,NewMax)}.

window(WndwSize,OldCntr,NewMax) : −
OldCntr + 1 >= WindowSize− >

retract(LastItem), get(NewMax);

get(NewMax).

(7.25)

The rules are very similar to rules for other aggregation functions (e.g., see rules (7.25)).

However there is one difference in implementation of the window rule. The history of

events necessary for computing aggregations on sliding windows can be kept in the

memory using different data structures. Essentially we need a queue where the latest

event (or its aggregation value) is inserted into the queue and the oldest event from the

window is removed. For example, we implemented efficiently the sum and the average

aggregates using two data structures: stacks and difference lists. Stacks can be easily

implemented in Prolog using assert and retract commands, and difference list are

convenient as the cost for deleting the oldest element that expired from the window is

O(1).

Queues with difference lists are however not good enough for computing aggregations

such as the maximum and the minimum. For these functions, searching the maximum

(or the minimum) in a sliding window, when the current maximum (minimum) is

deleted, requires a price of O(Window) (to find the new maximum or the minimum).

Still to provide an efficient implementation we use balanced binary search trees. We

know what is the event that will be deleted from the history queue. We keep a red-black

(RB) balanced tree to be indexed on the aggregate argument, so that we can do cleanup

of overdue events efficiently. In each node, we keep a counter to know how many times

an event with the aforementioned key came. At each time the maximum (minimum) is

the rightmost (leftmost) leaf. Additionally we can also keep the timestamp of events.

This allows us also to prune events (data) based on the time with respect to the sliding

window. With the balanced tree this search is reduced to O(logN). For instance, for a

window of 1000 events, the price of 1000 operations is reduced to at most 10 at each

step (210 = 1024).

Pruning events based on their timestamps is the basis for time-based sliding windows.

So far we have discussed count-based sliding windows (i.e., the pruning is based on the

number of events in the window). For event patterns with time-based sliding windows,

we do not need the window rule (e.g., rule (7.23)). Instead, we use only iterative pat-

terns with a garbage collector (set to prune events out of the specified sliding window).

Events are stored internally in order as they come (we index them on the timestamp in-

formation [T2, T1]). This eases the process of pruning expired events using our memory

management techniques, presented in Section 10.3.

96 7. Operational Semantics of the Language

The count aggregation is typically used on time-based sliding windows, see pattern

(7.26). Whenever a relevant event occurs (e.g., event a), its timestamp will be asserted

by the getCount predicate and the current counter number will be returned. Addition-

ally we set a garbage collector to incrementally remove outdated timestamps, so that

getCount always returns the correct result. In the same vein, we have realized other

aggregate functions with the time-based sliding windows (i.e., sum, avg, max, min).

iteration(StartCntr = 0, StartV al)← start_event(StartV al).

iteration(NewCntr)←
iteration(OldCntr) SEQ a(AggArg)

WHERE {NewCntr = getCount([T2, T1]),window(3min)}.
(7.26)

7.4 Consumption Policies

When detecting a complex event, there may be several event occurrences (of the same

type), that could be used to form that complex event. Consumption policies (or event

contexts) deal with the issue of selecting particular occurrence(s), which will be used in

the detection of a complex event. For example, consider again rule (7.1) from Subsec-

tion 7.2.1 – which we rewrite for convenience as rule (7.27) below – and a sequence of

atomic events that happened in the following order: a(1), a(2), a(3), b(4), b(5), c(6)

where an event attribute denotes a time point when an event instance has occurred.

e← a SEQ b SEQ c. (7.27)

We expect that, when an event of type b occurs, an intermediate event ie must be

triggered. However, the question is, which occurrence of a will be selected to build

that event, a(1), a(2) or a(3) (the same question applies for event b)?

According to the semantics of ELE, presented in Section 6.3, all instances of a’s will be

selected. Such a policy is known as unrestricted policy [ChMi94, YoBa05]. Note that

if we define a policy which selects only a(1), or only a(3), the policy could damage

the declarative property of the language. This might happen as different policies may

cause different orders in which event rules are evaluated (see discussion on consump-

tion policies in Section 5.1). On the other hand, consumption policies are useful and

well adopted in EP. Therefore, we present how common consumption policies can be

implemented in ELE. However note that this section should be treated as an extension

of the language – related to practical considerations of ELE – rather than an integral

part of the language itself.

In the remaining part of this section we illustrate three widely used consumption poli-

cies: recent, chronological, and unrestricted policy [ChMi94, YoBa05], and show how

they can be easily implemented by rules in our framework. Other, custom-based, po-

lices could be realised in a similar manner. For instance, in [ADGI08] there have been

7.4. Consumption Policies 97

defined: strict contiguity, partition contiguity, skip till next match, and skip till any
match. These policies are defined in order to extract valid events from unbound stream

of events according to certain contiguity requirements. Further discussion related to

these policies is out of scope of this work. However, it is worth noting that, due to

the fact that our formalism is based on event at a time processing (see Section 5.6), an

implementation of these, and various other policies in our formalism is possible too.

7.4.1 Consumption Policies Defined on Time Points

In the above example, we assumed that the stream of events a(1), a(2), a(3), b(4), b(5),

c(6) contains only atomic events.

Recent Policy. With this policy, the most recent event of its type is considered to con-

struct complex events. In our example, when a(2) occurs it will replace a(1). Similarly,

when a(3) occurs it will replace a(2). This means that when b(4) occurs, it will be

matched with a(3) to compose ie(3,4). It is said that the matched events are consumed
as these particular event instances will not be available for the considered rule after

the matching. To trigger another ie event (by the same rule) we need another pair of

“fresh” instances of a and b.

The recent policy could be modified still to keep replaced events (instead of deleting

them). For example, after detection of the ie(3,4) event, the a(2) event would be still

available to rule (7.27). This means when b(5) occurs, the pair, a(2) and b(5), will

be selected to form ie(2,5). The ie(2,5) event replaces the less recent occurrence,

ie(3,4)13. Finally, when event c(6) occurs, event e(2,6) will be triggered.

The recent policy can be easily implemented in our framework. Let us consider Al-

gorithm 1, particularly the rule which inserts a goal (in our example, this will be

goal(b,a,ie)). Whenever an instance of a occurs, there will be a new goal inserted

with a corresponding timestamp. For instance, for a(1), the goal(b(_),a(1),ie(_,_))

is added; for a(2), the goal(b(_),a(2),ie(_,_)) will be asserted, and so forth). If we

insert these goals into the database using the last in first out (LIFO) structure, we ob-

tain the recent policy. In our prototype implementation, this is done with a rule of the

following form:

assert(goal(X)) : −asserta(goal(X)). (7.28)

asserta is a standard Prolog built-in that adds a term to the beginning of the database.

Whenever a goal is inserted to the database, it is put on the top of a relation. Hence

whenever we read a goal, the one inserted last will be returned.

Chronological Policy. This policy “consumes” events in chronological order. In our

example, this means that when b(4) occurs it will match to a(1) (although a(2) and a(3)

13The less recent occurrence of two intervals is judged based on the intervals’ end (T2). In the follow-

ing section this issue is discussed in more details.

98 7. Operational Semantics of the Language

happened in the meantime). Looking chronologically, a(1) happened first and hence is

one to be selected. After a(1) any other instance of a is ignored till the next b happens.

Similarly – as for the recent policy – we may want to keep other instance of a. For

example, in our case a(1) and b(4) will form ie(1,4), and further a(2) followed by

b(5) will trigger ie(2,5). When c(6) happens, it will trigger e(1,6).

It is straightforward to implement the chronological policy too. Now, the goals in

Algorithm 1 are inserted in the first in first out (FIFO) mode. Equivalently, we use the

following rule to realize the chronological policy:

assert(goal(X)) : −assertz(goal(X)). (7.29)

assertz is a standard Prolog built-in that adds a term to the end of the database.

Whenever a goal is inserted to the database, it is put at the end of a relation. Conse-

quently, whenever we read a goal, the first inserted goal will be returned first.

Unrestricted Policy. In this policy, all occurrences are valid. Consequently, no event

is consumed (and no event is deleted unless it expires e.g., from a time window), which

makes this policy not suitable in many practical cases. Going back to our example,

this implies that we detect the following instances of ie: ie(1,4), ie(2,4), ie(3,4),

ie(1,5), ie(2,5), ie(3,5). The event e will be triggered just as many times, that is:

e(1,6), e(2,6), e(3,6)...

We obtain the unrestricted policy simply by not using the construct for deleting goals

(i.e., retract) from the database. If we replace the rule for b(1) in Algorithm 1 with

rule (7.30), even consumed goals will not be deleted from the database14. Hence they

will be available for future compositions.

b(1, T3, T4) : −goal(b(T3, T4),a(T1, T2),ie), T2 < T3,ie(T1, T4). (7.30)

Consumption policies are an important part of an EP framework. We notice that dif-

ferent policies change the semantics of event operators. For example, with the same

operator we have detected different complex events (the recent policy detects e(2,6),

while the chronological policy detects e(1,6)).

7.4.2 Consumption Policies Defined on Time Intervals

So far we have discussed consumption policies assuming that atomic events (in an

input stream) are considered. As atomic events happen in time points, it is possible

to establish a total order of their occurrences. Consequently it is easy, for example,

to answer which event instance (out of two) happened more recently. When we deal

14Note that they can still be deleted if a time window is defined, and it expires

7.4. Consumption Policies 99

with complex events (T1
= T2), a total order is not always possible. This subsection

provides possible options in defining consumption policies in such a case.

Recent Policy. Let us consider the following sequence of input events: a(1,30),
a(15,30), b(35,50). In our example rule (7.27) (from Section 7.4), the question now

is which instance of event a is more recent, a(1,30) or a(15,30)? In our opinion, this

question depends on a particular application domain. There are three possible options.

First, an event detected on a longer event duration is selected to be the recent one

(i.e., a(1,30)). This option is suitable when aggregation functions (for example, sum,

average and so forth) are applied along time windows. Hence, events detected on longer

durations possibly reflect more accurate results. The second option is to choose an event

with a shorter duration (i.e., a(15,30)). This preference is suitable when indeed more

recent events are desired. For example, we are interested in data (carried by events) that

are as up to date as possible. Finally, the third possibility is to pick up an event instance

based on data value selection i.e., non-temporal properties. For instance, events ending

at the same time, a(1, 30, X, V ol = 1000) and a(15, 30, X, V ol = 10000), are selected

based on an attribute value (e.g., greater volume V ol).

We implement these three cases with rules (7.31)-(7.33). When an a occurs, there

is a policy check performed. In rule (7.31), for two events with the same ending (i.e.,

a(T1, T3) and a(T2, T3)) we make sure that one with a longer path (T1 < T2) is selected.

In rule (7.32), we replace goals if the time condition is opposite (T1 > T2). Finally, in

data value (or attribute value) selection, we distinguish based on a chosen attribute (e.g.,

V ol1 > V ol2).

event_trigger(a(T1, T3, V ol1)) : −
goal(_,a(T2, T3, _, _), _), T1 < T2,

retract(goal(_,a(T2, T3, _, _), _)),

assert(goal(_,a(T1, T3, V ol1), _)).

(7.31)

event_trigger(a(T1, T3, V ol1)) : −
goal(_,a(T2, T3, _, _), _), T1 > T2,

retract(goal(_,a(T2, T3, _, _), _)),

assert(goal(_,a(T1, T3, V ol1), _)).

(7.32)

event_trigger(a(T1, T3, V ol1)) : −
goal(_,a(T2, T3, V ol2, _), _), V ol1 > V ol2,

retract(goal(_,a(T2, T3, V ol2), _)),

assert(goal(_,a(T1, T3, V ol1), _)).

(7.33)

Policy rules (7.31)-(7.33) are fired before inserting a new goal. It is worth noting that

such an update of a goal is performed incrementally. We pay an additional price for

forcing a particular consumption policy. However, the policy rules (7.31)-(7.33) are

rather simple rules. In return, they ensure that no more than one goal with the same

timestamp (with respect to a certain policy) is kept in memory during the processing.

Therefore the policy rules enable a better memory management in our framework.

100 7. Operational Semantics of the Language

Chronological Policy. The main principle in the implementation of this policy is the

same as in the recent policy. The only difference is that now we consider the same

start and the different ending in multiple event occurrences (a(T1, T2),a(T1, T3)). To

implement this policy, rule (7.31) will now contain the time condition from rule (7.32),

and vice versa. Rule (7.33) remains unchanged, as well as unrestricted policy (which

is the same as for the case with atomic events, see Subsection 7.4.1).

8
The Event Processing Network in ETALIS

Event-driven systems are conceptually based on the notion of an Event Processing Net-

work (EPN). EPN consist of event producers, consumers, Event Processing Agents

(EPAs), and channels. There exist several types of EPAs where each type fulfils a cer-

tain functionality of EP. Purpose of an EPN is to orchestrate EPAs in order to achieve

a high-level functionality required by an event-driven system. We have introduced the

concept of an EPN in Section 2.3. For more details about this topic, the interested

reader is referred to [EtNi10, ChSc10].

As presented in Figure 2.1 (in Chapter 2), a typical EPN is not monolithic. Instead it

is composed of a number of EPAs. We assume that an instance of a running ETALIS

implements an agent. EPAs do the actual processing of events in the network, hence

in the remaining part of this section we focus on specification of different EPAs in

ELE. We show how to implement common EPAs in ELE, including filtering, pattern

detection, projection, translation, enrichment, splitting, aggregation, and composition.

Moreover we present EPAs that – apart from events – deal with knowledge processing

tasks too.

In this section we do not provide additional constructs of the language. Instead, we

show how common EPAs operations can be implemented with the existing expressive

power of the language.

102 8. The Event Processing Network in ETALIS

8.1 Filtering

We start describing different agents in an EPN by a filtering EPA. A filtering EPA is

used to extract relevant events with respect to an EP application, and hence to increase

the overall performance of an EPN.

A filter operation is specified by a filter expression. ETALIS supports two types of

filters: an event type filter and an event content filter.

8.1.1 Event Type Filter

This type of a filter filters out events based on event types. We may have a filter ex-

pression that filters out event instances of certain event types. In ETALIS, this type of

a filter is implemented by default, since it is built-in in its underlying execution model

(see Chapter 7). Namely, user defined pattern rules are transformed into EDBC rules.

To trigger an EDBC rule, an event must unify with the rule head. Events that unify with

no rule head are ignored. Hence, ETALIS does event type filtering automatically (i.e.,

only event types – that are used in specification of an event program (or an agent) – are

processed, thereby ignoring events of other event types.

8.1.2 Event Content Filter

In general, a filter expression of a content filter can be a function computed from terms

of an event instance. In ETALIS, a content filter expression is typically specified in the

WHERE clause (see Section 6.2). For example, rule (8.1) filters out sensor events with

values for X greater than 10, or values for Y less than or equal to 20. It is said that

an event passes a filter if an expression in the WHERE clause evaluates to true. Since
ETALIS has been implemented in Prolog, it supports all comparison Prolog operations

in a filter expression (e.g., greater than, less than, equal, not equal, greater than or equal

to and so forth), arithmetic operations (addition, subtraction, multiplication, division

and modulo), and logic connectives (conjunction, disjunction and negation)1.

Apart from the WHERE clause, the content filtering may additionally be achieved in

the following way. Rule (8.1) filters out a sensor reading about ’wind’. There may

exist other types of sensor reading too, e.g., ’temperature’, ’air pressure’ and so forth.

Since in LP a goal variable may be a priori bound to a certain value, this feature enables

ETALIS to filter the content of events with no additional implementation effort.

windReading(X, Y)← sensor(′wind′, X, Y)

WHERE {X > 10, Y ≤ 20}. (8.1)

1Essentially ETALIS implementation accepts any valid Prolog expression in the WHERE clause, in-

cluding features that are beyond ELE.

8.2. Pattern Detection 103

It is worth mentioning that ETALIS supports dynamic filtering, i.e., filtering with a

changing filter expression. In general, rules in ETALIS may dynamically be changed

(added and removed). This feature enables us to change a filtering expression too.

Suppose a merchant service accept payments for goods with floating prices. Depend-

ing on supply and demand in the market, the merchant service may lower or increase

thresholds for bid prices. Dynamic filtering enables to automatically change a filter

expression based on an external decision component.

Finally, note that in this presentation of the filtering EPA we did not specify whether an

EPA operats on atomic or complex events. In ETALIS, there is no conceptual difference

in applying an EPA operation to either of them. This observation applies to filtering, as

well as to remaining EPAs presented in this section.

8.2 Pattern Detection

In ETALIS, pattern detection (or pattern matching) relates to the process of matching

events – represented as ground atoms – according to predefined patterns. Patterns are

expressed as bodies of ELE rules. As soon as a rule body gets satisfied by occurring

events, a complex event – specified by the rule head – is inferred. We have already pre-

sented the pattern detection capabilities of ELE in Chapter 6. Essentially, the language

supports patterns built by using sequence, conjunction, disjunction, negation, concur-

rency, Allen’s interval-based relations [Alle83], time window-based patterns and iter-

ative and aggregative patterns (see Section 7.3). Also in the remaining parts of this

work, we will demonstrate a number of pattern matching examples, most notably in

Chapter 12 and Chapter 13. Therefore in this subsection we skip further discussion on

this topic.

8.3 Transformation

In Section 2.3 we have seen what kind of transformations may be applied to events.

In this section we will show how each of these transformations may be realised in

ETALIS.

8.3.1 Projection

The project EPA projects out certain terms carried by an input event, similarly as a

relation in relational algebra is projected on certain attributes.

The following rule demonstrates how certain terms (event data) are projected out. We

consider stock events as provided by Google Finance service2. Suppose a project

2http://www.google.com/finance

104 8. The Event Processing Network in ETALIS

agent, containing rule (8.2), receives stock events and produces currentPrice events.

A stock event includes information about a company ID, a stock exchange name, cur-

rency in which prices are given, the current price, the price change, and the percentage

of the price change, respectively. The projected event, in turn, contains only informa-

tion on the company ID, and the price.

stock(CompanyID, Price)←
stock(CompanyID,Exchange, Currency, Price, Change, PercChg).

(8.2)

In practise, we usually write a single rule to combine two or more operations. For in-

stance, projection rule (8.2) could be accompanied with a filter expression, or we could

detect a pattern combining two or more events, and then to project out certain terms

in the derived event. This observation holds for other EPAs too. Our intention in this

chapter is, however, to focus on implementation of each EPA operation. Throughout

this work we will see many event pattern rules that combine more than one operation.

8.3.2 Translation

The translate EPA translates an input event into an output event according to a transla-

tion function. Suppose that stock events have prices in US Dollars (USD), and a stock

trading application deals with prices in Euros (EUR). Given the currency ratio between

EUR and USD, rule (8.3) translates prices carried by events. Additionally, it assigns

Currency type with a new constant ’EUR’ (instead of ’USD’).

stock(CompanyID,Exchange,′ EUR′, P rice2, Change, PercChg)←
stock(CompanyID,Exchange,′ USD′, P rice1, Change, PercChg)

WHERE Price2 is (Price1 ∗ 1.45).
(8.3)

Various other arithmetic and string operations may be employed as translation functions,

too.

8.3.3 Enrichment

The enrich EPA can copy, modify, or insert new terms into the input event. New terms

are usually taken from a global state element.

In various EP applications it is common that few agents access global state data, rep-

resented as static or slowly changing data or knowledge. In ETALIS, global state data

can be captured either in a database or in an ontology. This data may be used to enrich
an event with additional information. For instance – whenever a sensor event occurs

– a temperature event is triggered. The temperature event consists of the initial

8.3. Transformation 105

event data – a sensor Id, and the current reading value X – enriched by additional in-

formation. The additional information is taken from a database relation sensor_info,

and can be pulled by a sensor store Id. The sensor_info relation contains informa-

tion about sensors, including the sensor location (Loc), measurement unit for each sen-

sor (MUnit, e.g., either expressed in Fahrenheit or Celsius), and the sensor precision

(MPrec, e.g., error rate below 5% or below 1%).

temperature(Id,X, Loc,MUnit,MPrec)← sensor(Id,′ temp′, X)

WHERE sensor_info(Id, Loc,MUnit,MPrec).
(8.4)

In the rule pattern above, the relation store_info contains explicit data. With no restric-

tion, it could also contain a changing (updatable) data; or implicit knowledge derived by
rules, possibly spanning over multiple relations or involving recursions, and so forth.

8.3.4 Splitting

The split EPA performs the same operation as the translation EPA, except that it can

emit more than one output event. Each output event may have its own translation func-

tion associated with it. The following rules implement a split EPA with a translation

function similar to example rule (8.3). When the agent receives a stock event, there

will be three copies of the output event created, each produced by applying a certain

translation function (e.g., the currency conversion).

stock(Id,′ EUR′, P rice)← stock(Id,′ USD′, P rice)

WHERE Price2 is (Price1 ∗ 0.73039).
stock(Id,′ CNY ′, P rice)← stock(Id,′ USD′, P rice)

WHERE Price2 is (Price1 ∗ 6.38296).
stock(Id,′ CHF ′, P rice)← stock(Id,′ USD′, P rice)

WHERE Price2 is (Price1 ∗ 0.89208).

(8.5)

The split EPA is also used in situations where a certain event needs to be multiplied

and distributed to interested parties. For example, consider an automated stock broker-

age system that sells stocks to its clients. Data about clients are stored in a client

relation (8.7). In particular, the client relation contains a client id (Cid), a stock

id (Id : chanet.tex537552011 − 12 − 2921 : 26 : 39Zanicic) which the client

is interested to buy, and the amount of wanted stocks (Amt). Different brokerage

agents process stocks for different clients. Hence when a stock is reported to the

system, the event is multiplied as many times as there are clients interested in that

stock. That is, the stock Id : chanet.tex537552011 − 12 − 2921 : 26 : 39Zanicic

is matched with Id : chanet.tex537552011 − 12 − 2921 : 26 : 39Zanicic of the

client relation. For instance, for an occurrence of a stock(goog, 515) event, two

copies of the stock event would be created, namely stock(kavx, goog, 515, 3815) and

stock(kcqt, goog, 515, 1815).

106 8. The Event Processing Network in ETALIS

To iterate over a static relation and avoid writing multiple rules (as in example rules

(8.5)), we have implemented an EVENT_MULTIPLY predicate that serves as a macro

for the multiply operation3, see rule (8.6).

stock(Cid, Id, Price, Amt)← stock(Id, Price)

EVENT_MULTIPLY client(Cid, Id, Amt).
(8.6)

client(kavx, goog, 3815)

client(kblu,msft, 2995)

client(kcqt, goog, 1815)

(8.7)

8.3.5 Aggregation

The aggregate EPA takes multiple events as input and produces a single derived event

by applying an aggregation function over input events. Aggregation is a stateful opera-

tion since output of this operation can contain information derived form more than one

input event. That is, the results of applying an aggregation to an event needs to be saved

for events that are yet to come. Hence to implement an aggregation EPA we utilise it-
erative rules. In each iteration an aggregation function is applied to an event that has

just received, and a derived event – which keeps the current state of the aggregation

function – is triggered.

We have already discussed iterative rules and aggregations in Section 7.3. In partic-

ular, we have shown how a common set of aggregates, such as sum, count, average,

maximum, and minimum are computed. Other domain-dependant aggregate functions,

using different built-in operators, can also be implemented with no restrictions. In Sec-

tion 13.2 we will show few such examples. Hence, similarly as for the pattern detection

EPA, we will skip further discussion about the aggregate EPA here.

8.3.6 Composition

A compose agent joins events4 form one stream against events from the other one, sim-

ilarly as two relations are joined in databases. Joining events need to meet a match
condition (e.g., the same value of the join attribute).

Let us borrow an example from [EtNi10] to demonstrate use of composition of events.

Suppose that a highway authority wishes to measure the speed of vehicles travelling

over a particular section of highway. It installs a camera at either end, one to produce

an arrival event whenever a vehicle enters the section, and the other to produce a

departure event when a vehicle leaves, and then has to match the arrival event for a

particular vehicle with the departure event for the same vehicle so that it can see how

long the vehicle has spent in the section of the road.

3Implementation details can be found at http://code.google.com/p/etalis/
4more precisely, by events we mean event instances.

8.4. Knowledge-Based Event Processing Agents 107

The following rule represents a join event obtained as a match of an arrival event

with a departure event for the same vehicle Id : chanet.tex537552011− 12− 2921 :

26 : 39Zanicic. We notice that composition of events in ELE can be obtained as a

simple sequence of events, since in LP join is achieved through the unification of terms

on common variables. Further on, recall that each event in ELE is defined on an interval

[T1, T2]. By the definition of the SEQ operator, the join event will be defined on an

interval giving exactly the duration that a vehicle has spent travelling over a particular

section of highway.

In other examples, the order of joining events may be irrelevant, in which case SEQ can

be replaced by AND .

join(Id)← arrival(Id) SEQ departure(Id). (8.8)

Note that, in general case, arrival and departure events come from two different

streams. The current implementation of ETALIS – presented in Chapter 12 – is how-

ever limited to a single thread. To support multi-threading we use Java threads that

may concurrently feed an ETALIS agent with events from multiple event providers.

Currently, it is programmer’s responsibility to implement how events from multiple

providers are multiplexed into a stream. This limitation of ETALIS is a topic of our

future work.

A compose agent may also join an event stream with a static relation (or a database

relation) as shown in rule 8.9.

c(Id)← departure(Id) WHERE arrival(Id). (8.9)

Suppose there exist more arrival events to be matched with one departure event.

In this case, a static relation containing arrival events would serve as a buffer. The

size of the buffer may be defined as a (count or time) window. For example, while new

arrival events could be asserted on the fly as aggregation values were asserted in rule

7.22, a rule similar to rule 7.23 (without spec_aggregate) could be used to maintain

the buffer size.

8.4 Knowledge-Based Event Processing Agents

So far, we have described how common agents in EP can be implemented in our frame-

work. In this section, we explore an additional feature, namely the knowledge pro-

cessing and reasoning capability. This feature is enabled by the logic nature of our

approach.

108 8. The Event Processing Network in ETALIS

8.4.1 Event Processing with Transitive Closure Rules

To give the reader a feeling how deductive rules can be used in combination with the rest

of the ETALIS framework, we present an illustrative example with transitive closure.

Let us observe a common situation in aviation, related to detection of clear air tur-
bulence (cat) on jet streams. Jet streams are important for aviation, as flight time

can be dramatically affected by either flying with the flow or against the flow of a

jet stream. Clear air turbulence, a potential hazard to the safety of aircraft passen-

gers, is often found in a jet stream’s vicinity. In the following example, we define

a JetStreamWarning event as a dangerous situation whenever a clear air turbulence

(denoted as a cat event) is followed by an airplane position event.

jetStreamWarning(Loc1, Loc2)←(
cat(Loc1) AND airplane(Loc2)

)
.5hours

WHERE jetLink(Loc2, Loc1).

(8.10)

jetLink(X, Y) : − linked(X, Y).

jetLink(X,Z) : − linked(X, Y), jetLink(Y, Z).
(8.11)

linked(1, 2).

linked(2, 3).

linked(3, 4).

....

(8.12)

To make sure that the cat affects the observed jet stream, we deploy transitive closure

rules (8.11). The rules span over a set of facts (8.12), defining the jet stream as a set of

connected points. Since both, the cat and the airplane events change their positions,

the rules check whether they belong to the same jet stream. Note that the check is useful

for an airplane only if position of a detected cat is in the front of the current position

of the airplane.

Transitive closure rules (8.11) are deductive rules5, and together with the linked rela-

tion (8.12), they enable us to perform on the fly reasoning (i.e., to examine whether a

new clear air turbulence is dangerous with respect to an observed jet stream or not).

According to the US National Business Aviation Association6 (NBAA) air routes are

dynamic. This means that they can be modified as needed in order to take advantage of

favorable winds that change on a daily basis. Hence a solution based only on querying

of jet stream static points would not be optimal. Concluding this example, we note that

since facts (8.12) are dynamic, an occurrence of a new cat is not known in advance,

and the airplane position is changing too. Hence our approach to combine EP with

deductive reasoning is an appropriate approach for on the fly jet stream monitoring.

5The example could be extended to deal with cat areas (instead of cat points). Also, by introducing

an id to a jet stream, we could monitor more than one jet stream at the same time.
6NBAA: http://www.nbaa.org/ops/airspace/issues/wind-routes/

8.4. Knowledge-Based Event Processing Agents 109

8.4.2 Rule-Based Event Classification

As a next example we demonstrate the use of background rules for events classification
– viewed as a sort of rule-based filtering operation (see Subsection 8.1.1).

Let us consider again the heat index – similar to the heat index rule from Section 6.4 –

that is an index which combines air temperature and relative humidity in an attempt to

determine the human perceived equivalent temperature (how hot it feels).

In particular, we are interested to automatically generate shade values of the heat index.
For instance, whenever there is a new sensor reading event (heatIndex), we want the

system to generate a human readable note (e.g., caution, danger etc.). Additionally, the

system needs to generate an area for which the note applies to. Rule (8.13) defines such

a pattern.

heatIndexEffect(Note, Area)←
heatIndex(Loc, Index)

WHERE {shadeValuesRule(Index,Note), areaRule(Loc, Area)}.
(8.13)

Example rules (8.14) – written in Prolog syntax – serve to filter out the heat Index

values smaller than 80, and classify the remaining ones into four categories: ’Caution’
(between 80 and 90); ’ExtremeCaution’ (between 90 and 105); ’Danger’ (between 105
and 130); and ’ExtremeDanger’ for values greater than or equal to 130.

Note that in [EtNi10] this functionality is known as filtering with context partitions, as
the heat Index event carry index values which belong to a fixed number of context

partitions (shaded values).

shadeValuesRule(Index,′ Caution′) : −
80 =< Index, Index < 90, !.

shadeValuesRule(Index,′ ExtremeCaution′) : −
90 =< Index, Index < 105, !.

shadeValuesRule(Index,′ Danger′) : −
105 =< Index, Index < 130, !.

shadeValuesRule(Index,′ ExtremeDanger′) : −
130 =< Index, !.

(8.14)

Further on, background knowledge specified by rules (8.15) can be used to focus on

certain monitoring areas, and to classify GPS coordinates (X, Y) according to areas

they belong to (e.g., ′Area′1,..,
′Area′n). Hence rules (8.15) may also be seen as a mech-

anism to filter out incoming events based on city areas they come from. In [EtNi10],

this features is also known as filtering with a spatial context.

110 8. The Event Processing Network in ETALIS

Table 8.1: Namespace abbreviations.

Prefix URI Description

wt http://knoesis.wright.edu/ssw/page/ont/weather.owl# Weather ontology

xsd http://www.w3.org/2001/XMLSchema# XML Schema

Vocabulary

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF Vocabulary

rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema

Vocabulary

areaRule(loc(′N ′, X,′ W ′, Y),′ Area′1) : −
4042 < X,X < 4049, 7358 < Y, Y < 7370, !.

....

areaRule(loc(′N ′, X,′ W ′, Y),′ Area′n) : −
4034 < X,X < 4040, 7368 < Y, Y < 7399, !.

(8.15)

8.4.3 Event Processing with Reasoning About Subclass Relationships

In the following we show yet another use of deductive reasoning in conjunction with

EP. Background knowledge is represent as an ontology, where terms carried by events

are defined as concepts (classes) in an ontology.

Assume we need to detect a complex event, enhancedFire, which arises when in

the area of an active fire there is an additional weatherObservation. Some weather

observations have significant influence on actions taken with respect to an ongoing

wildfire. For example, strong wind may be particularly dangerous for an active fire

area. The following pattern specifies such a situation.

enhancedFire(Loc)←(
activeFire(Loc) AND

weatherObservation(Loc,Observ)
)
.3hours

WHERE
(
rdfs : subClassOf(Observ,′ wt : WindObservation′).

(8.16)

Let us now define background knowledge about weather observations. We use the

Resource Description Framework (RDF) [KlCa04] as a common format for expressing

graph-structured data. RDF Schema (RDFS) [BrGM04] adds additional expressivity

in order to support the design of simple vocabularies, also encoded in RDF. Table 8.1

provides a list of namespace definitions used in the remaining part of this subsection.

We can define windObservation as a subclass of weatherObservation7, and further

to define diablo and sundowner as two kinds of windObservation.

7According to Weather Ontology from [PSHS10], weatherObservation is a subclass of

Observation, and there exist various types of weatherObservation such as pressureObservation,
TemperatureObservation, radiationObservation, and windObservation.

8.4. Knowledge-Based Event Processing Agents 111

wt:windObservation rdfs:subClassOf wt:weatherObservation .

wt:diablo rdfs:subClassOf wt:windObservation .

wt:sundowner rdfs:subClassOf wt:windObservation .

We assume that there exist various types of weather observations defined in the back-

ground knowledgebase. For example, observ_1 is a specific type of wt:diablo, and

in general there exist more than one instance for each type.

observ_1

rdf:type wt:diablo ;

wt:speed "60"^^xsd:int ;

wt:temperature "30"^^xsd:int ;

wt:region "California"^^xsd:string .

observ_2

rdf:type wt:sundowner ;

wt:speed "40"^^xsd:int ;

wt:temperature "100"^^xsd:int ;

wt:region "California"^^xsd:string .

Finally, let us use a subclass relation rule (deductive rule), stating that a is an instance

of Y if X is subclass of Y and a is an instance of X (see rule (8.17)).

rdf : type(a, Y) : − rdfs : subClassOf(X, Y), rdf : type(a, X). (8.17)

Now, if events activeFire and weatherObservation both occur within 3 hours,

the system needs to check the type of weatherObservation. enhancedFire pat-

tern will be matched if weatherObservation is of type wind. Let us assume that

weatherObservation carries observ_1. Retrieving the RDF description for

observ_1, the system has information that observ_1 is of type wt:diablo. Then

by using rule (8.17), the system will deduce that wt:diablo is a windObservation

and it will finally trigger the enhancedFire complex event.

Moreover, the complex event will be also detected if weatherObservation was de-

tected having observ_2 as a type (since observ_2 is of type wt:sundowner, and

the latest is a windObservation).

In this example we have arguably demonstrated the power of our formalism which

combines EP and deductive reasoning. In order to detect complex situations, events

need to satisfy temporal constellations (e.g., both events need to happen within three

hours), as well as semantic relations (e.g., data carried by events need to satisfy, for

example, class/subclass or other domain specific relations).

112 8. The Event Processing Network in ETALIS

Part III

ETALIS Extensions

9
Retraction in Event Processing

In this chapter we address the problem of retraction in Event Processing (EP) as pre-

sented in [ARFS11b]. Events are often assumed to be immutable and therefore always

correct. Retraction in EP deals with the circumstance that certain events may be re-

voked. This necessitates to reconsider complex events which might have been com-

puted based on the original, flawy history as soon as part of that history is corrected.

9.1 Problem Statement for Event Retraction

EP systems such as [ADGI08, ArBW06, KrSe09, CCDF+03] detect complex events

based on reported atomic events. Once a complex event has been detected, typically

there is no chance to revise this event later. Events are assumed to be immutable and

therefore always correct. In practice, there is a number of reasons requiring retractions
of derived events. For example, an event was reported by mistake, but did not happen

in reality (and the mistake was realized later), or an event happened, but it was not

reported (due to failure of either a sensor, or failure of an event transmission system).

Also very often streaming data sources contend with noise (e.g., financial data feeds,

Web streaming data, updates etc.) resulting in erroneous inputs and therefore, erroneous

EP results. As recognised in [RMCZ06] few event stream sources issue revision tuples
(retraction events) that amend previously issued events. An EP system should therefore

be capable to take these retractions into account and produce correct revision outputs.

As mentioned in Section 4.3, there exist approaches that deal with retraction in EP

[BGAH07, RMCZ06, MaCh08]). These approaches are based on buffering and synchro-

116 9. Retraction in Event Processing

nization points (punctuations). That is, if retraction is needed (e.g., due to corrections

of event timestamps, out of order events etc.), an input stream is buffered in between

synchronization points so that certain events get reordered. Buffering essentially blocks
the stream, and as such in our opinion, it is not an optimal technique for EP.

We propose an approach which is not based on buffering and reordering. It can be

highly undesirable to block the processing until all the early events have provably ar-

rived or until they are reordered. Instead, our approach is based on keeping partial

results (we refer to them as goals). Retraction by its nature requires certain data to

be saved for possible corrections. However in our approach, the increase of available

memory automatically enables delivery of more accurate results (with respect to retrac-
tions). More memory means that more partial results can be kept longer, and hence

their retractions are possible for a longer time.

On the other hand, by increasing available memory in existing approaches [BGAH07,

RMCZ06, MaCh08]) the same effect does not happen in the same way. Correction of

results, in presence of retractions, are handled in a batch mode (using synchronization

points). That is, synchronization points are triggered from time to time, and results are

possible corrected in between two synchronization points. A correction that is older

than a previous synchronization point is not possible. Hence accuracy of the results, in

the first place, depends on synchronization points and their frequency (not on memory).

Additionally, retractions based on synchronization points make the overall processing

more complex, since these points must involve additional semantics about the nature

of event streams (e.g., synchronization points confirm that a certain value or timestamp

of an event will no longer appear in the future streams [DMRH04], which is hard to be

determined in general case).

9.1.1 A Motivating Example: Processing Events with Transactions

In many applications, transactions can be understood as actions that interfere with

events. Figure 9.1 depicts the typical interplay of events and transactions. First, trans-

actions can be seen as sources of events, generated during the execution of transactions.
These events (denoted as Tr. Events) are subject to further processing. They are used

in transaction monitoring and auditing systems, or in provisioning of statistical and

accounting reports, key performance indicators (KPI) and so forth. They can also be

combined with events from multiple external event sources (denoted as In Events) to
form more complex events. Complex events represent meaningful situations relevant

for a particular business, and hence help in making decisions under time constraints.

These events (denoted as Out Events 1) may also be used outside an EP system. Finally,

(complex) events may also flow from the EP system back to the Transaction Processor
(e.g., to trigger or synchronize other transactions, see Figure 9.1). We refer to these

events as Out Events 2.

The notion of transactions started from the world of databases, and was later adopted

also in logic programming (LP) [ApBW88], concurrent programming [DoFl06] and so

9.1. Problem Statement for Event Retraction 117

Figure 9.1: Conceptual interaction of events and transactions

on. All-or-nothing transactions provide guarantees that each work-unit (i.e., a part of

a transaction) must either be completed in its entirety or has no effect whatsoever. If a

transaction fails, the state before the transaction started needs to be restored.

9.1.1.1 Event Retraction with External Complex Events

As already said, events may be triggered in the scope of a transaction in order to provide

real time monitoring of the progress of certain parts of a long running transaction, or to

be logged and later used by an auditing system. However if a transaction fails, all events

occurring in the scope of that transaction need to be revised. The Transaction Processor

may initiate the retraction of all atomic events triggered in the course of this failed

transaction. However these events, in meantime, could have been used in the detection

of other complex events. Moreover they might have already left the EP system (see Out
Events 1 in Figure 9.1). In order to have a means to revise certain decisions (made upon

complex events), the system needs to trigger a revised event for each retracted complex

event. In Figure 9.1, we refer to such an event processor as EP with Event Retraction
Capability.

9.1.1.2 Event Retraction and Compensations

Transaction executions must be isolated from each other. When accessing data, a trans-

action with a commit/rollback mechanism blocks other transactions that access the

same data (during the entire execution). When transactions are long-lived, it is un-

reasonable to prevent access to uncommitted data by forcing other transactions to wait

until the updating transaction commits, since the delay caused by this is unacceptable.

Transaction systems that allow concurrent data access (for efficiency reasons, in par-

ticular in long-lived transactions (LLT)) exploit compensating transactions [GMSa87].

Compensating transactions are intended to handle situations where it is required to undo

either committed or uncommitted transactions that affect other transactions, without re-

sorting to cascading aborts. The compensating transaction of a transaction T undoes,

from a semantic point of view, any of the actions performed by T .

If a failed transaction was triggered by a complex event, then a corresponding compen-

sation transaction may also be triggered by an event. If an EP system has a capability

to handle retraction, the compensation can be triggered by the revised version of the

event that triggered the failed transaction. Such an automated event-driven mechanism

118 9. Retraction in Event Processing

for triggering transactions and their compensations is essential, first for enabling real

time transaction processing (especially for LLT), second it ensures correctness of the

interplay of complex events and transactions from the semantic point of view.

9.1.1.3 Summary of the Problem

With this conceptual settings in place, we define event retraction as follows: Event

retraction is seen as a problem where events – used in detection of other complex events

– are retracted, hence the goal is to find consequences of retracted events. That is, event
retraction deals with discovering what other complex events need also to be retracted

(due to retraction of more simple events).

While we consider the event retraction problem in a transaction processing environment,

the problem is relevant wherever event retraction of events is carried out. It typically oc-

curs when EP is intervened with transaction processing. However neither the problem

statement nor the solution presented in this work are limited only to event retraction

with transactions.

9.2 ETALIS Formalism for Event Retraction

We define the declarative formal semantics of the ETALIS Language for Events (ELE)

– where occurring events may be revoked – in a model-theoretic way. It is an extension

to the ETALIS formalism defined in Chapter 6.

Recall the definition of a variable assignment μ, its extension μ∗, and the set of rulesR
from Section 6.3. In addition to them, we define an event stream S = (E, ev, occ, rev).

Thereby, E is a set of events, ev : E → Ground a function assigning a ground

atom (specifying the event type and possibly additional information) to every event

and occ, rev : E � Q+ partial functions assigning to events time points at which they

occur or are revoked, respectively. As a side condition, we presume that for all e ∈ E

with rev(e) defined, occ(e) is defined as well and occ(e) < rev(e), i.e., an event can

only be revoked after it has occurred1. Moreover, we require the event stream to be free

of accumulation points, i.e., for every q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ =
occ(e) for some e ∈ E} is finite.
Given an event stream S = (E, ev, occ, rev) and a time “viewpoint” v ∈ Q+, we now

define the auxiliary function εv : Ground → 2Q
+
from ground atoms into sets of

nonnegative rational numbers by

εv(at) := occ
(
ev−1(at) ∩ (

occ−1([0, v]) \ rev−1([0, v])
))

It thereby indicates at what time instants what event types occur according to all the

(occurrence and revocation) information obtained up to the time viewpoint v.

1Note also that we focus on retraction of events. Retraction (revision) of background knowledge is

out of scope.

9.2. ETALIS Formalism for Event Retraction 119

Now, we define an interpretation I : Ground → 2Q
+×Q+

as a mapping from the

ground atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every

〈q1, q2〉 ∈ I(g) for all g ∈ Ground.

Given an event stream S and a viewpoint v ∈ Q+, we call an interpretation I model for
a rule setR – written as I |=v

S R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every g ∈ Ground and q ∈ εv(g).

C2 for every rule atom← pattern and every variable assignment μ we have

Iμ(atom) ⊆ Iμ(pattern) where Iμ is inductively defined as displayed in Fig-

ure 6.3 in Section 6.3.

Given an interpretation I and some q ∈ Q+, we let I|q denote the interpretation defined
via I|q(g) = I(g) ∩ {〈q1, q2〉 | q2 − q1 ≤ q}.
Given two interpretations I and J , we say that I is preferred to J if there exists a

q ∈ Q+ with I|q ⊂ J |q.
A model I is called minimal if there is no other model preferred to I. It is easy to show
that for every event stream S , viewpoint v ∈ Q+, and rule base R there is a unique

minimal model IS,v,R.
Finally, given an atom a and two rational numbers q1, q2, we say that the event a[q1,q2]

is a consequence of the event stream ε and the rule base R at the viewpoint v (written

S, v,R |= a[q1,q2]), if 〈q1, q2〉 ∈ IS,v,Rμ (a) for some variable assignment μ.

Clearly, the problem of deciding S, v,R |= a[q1,q2] is time polynomial with respect to

the combined size of R and S , given bounded arity of the used predicates and polyno-

mial computation time for the built-in functions. This result is a straightforward con-

sequence from the fact that there are only polynomially many a[q1,q2] to be considered

and their validity can be computed in a bottom-up way with increasing interval length.

The computational overhead introduced by event revision is not measurable in terms of

worst-case complexity which is PTime with and without the revision component.

In the sequel, we will see how this declarative, time-dependent semantics is realized

incrementally, as v proceeds, i.e., the “computed semantics” at some time viewpoint v

is revised to obtain the semantics at some latter stage, instead of computing everything

from scratch. However before we turn to that task, let us illustrate one concrete example

with event retraction and ETALIS rules.

9.2.1 Event Retraction Example

An automated stock brokerage system sells stocks to its clients. The system emits

an event described by availableStock to a client every time when the respec-

tive stocks become available. The event contains information about the company’s

stock ID, the current price Pri, and the available amount of stocks Amt. A client

120 9. Retraction in Event Processing

(identified by CID) may now signal the request to buy the offered stocks by send-

ing an event trChecked back to the system, stating the wanted amount Amt1 of

stocks. Event availableStock followed by event trChecked will trigger a com-

plex event buyStocks according to the following rule:

buyStocks(CID, ID, Pri, Amt1)← availableStock(ID, Pri, Amt) SEQ

trChecked(CID, ID, Pri, Amt1) WHERE Amt1 ≤ Amt.

Upon detection, event buyStocks will trigger two transactions: the first transaction

transfers money from the client’s account to the broker’s account, the second transac-

tion maintains the balance of available stocks (by subtracting Amt1 from Amt). The

maintenance is necessary as available stocks are also offered to other interested clients.

Since the stock trading is carried out in real time, it is important that execution in the

stock brokerage system is automated and that the transaction of one client does not

block executions of other clients (as long as Amt > 0). Now, suppose that event

balanceChange is triggered whenever the balance of available stocks changes from

Amt2 to Amt3 by customer identified as CID (i.e., whenever the second transaction

completes). For example, these events may be used for transaction execution monitor-

ing, statistical analysis etc. Let us furthermore assume that the following pattern is used

to detect stock trades of suspiciously large volume, which may hint at a potential fraud.

bigTrade(CID, ID,Amt1)← buyStocks(CID, ID, Pri, Amt1) SEQ

balanceChange(CID,Amt2, Amt3) WHERE (Amt2 − Amt3) > 10000.

Many transactions concurrently change the balance, and after each change, event

balanceChange is triggered. Now let us suppose that an event bigTrade has

been detected, and a fraud investigation was initiated. Just a second afterwards, the

money transfer transaction fails (due to insufficient account balance of a customer). In

this situation, the amount of available stocks will be restored by executing a compen-

sation transaction. Moreover, the corresponding balanceChange event needs to be

retracted. Finally, the bigTrade complex event needs to be revoked too, leading to

the cancelation of the fraud investigation.

The automated stock brokerage system operates with flexible policies, allowing cus-

tomers to cancel their transaction within certain time (and making stocks available to

other customers). The system also operates with many customers concurrently. If after

detection of event bigTrade, a customer cancels her transaction (by retracting event

trChecked) the atomic event buyStocks will be revoked too, which in turn will

necessitate the retraction of event bigTrade.

This small example arguably demonstrates usefulness of the introduced formalism in

practise.

9.3. Operational Semantics for Retractable Event Processing 121

9.3 Operational Semantics for Retractable Event Processing

In the following, we give more details about an operational semantics for retractable

EP. It is a continuation of the operational semantics for ELE as presented in Chapter 7.

9.3.1 Sequence

Algorithm 5 accepts as input a rule referring to a binary sequence ie1← a SEQ b, and

produces executable rules for the sequence pattern. A detected sequence can also be

retracted if either the a event or the b event is retracted. Retraction events of a and

b are denoted as rev_a and rev_b, respectively. If a retraction occurs, it is further

propagated amongst other patterns (built upon the ie1 event).

Algorithm 5 Sequence with retraction.

Input: event binary goal ie1← a SEQ b.
Output: event-driven backward chaining rules for SEQ operator including retraction.

Each event binary goal ie1← a SEQ b is converted into: {
a(ID, [T1, T2]) : − for_each(a, 1, ID, [T1, T2]).

a(1, ID, [T1, T2]) : − assert(goal(b(_, [_, _]),a(ID, [T1, T2]),
ie1(_, [_, _]))).

rev_a(ID, [T3, T4]) : − for_each(rev_a, 1, ID, [T3, T4]).
rev_a(1, ID, [T3, T4]) : − goal(b(_, [_, _]),a(ID, [T1, T2]),

ie1(_, [_, _])),retract(goal(b(_, [_, _]),
a(ID, [T1, T2]))).

rev_a(2, ID, [T3, T4]) : − (ie1(ID, [T1, T2]),
retract(ie1(ID, [T1, T2])),rev_ie1(ID, [T1, T2]));
true.

b(ID, [T3, T4]) : − for_each(b, 1, ID, [T3, T4]).
b(1, ID, [T3, T4]) : − goal(b(_, [_, _]),a(ID, [T1, T2]),

ie1(_, [_, _])), T2 < T3,ie1(ID, [T1, T4]).
rev_b(ID, [T5, T6]) : − for_each(rev_b, 1, ID, [T5, T6]).

rev_b(1, ID, [T5, T6]) : − (ie1(ID, [T1, T4]),
retract(ie1(ID, [T1, T4])),rev_ie1(ID, [T1, T4]));
true.

ie1(ID, [T1, T4]) : − for_each(ie1, 1, ID, [T1, T4]).
ie1(1, ID, [T1, T4]) : − assert(ie1(ID, [T1, T4])).

}

The binarization step must precede the rule transformation. We first consider rules

that handle sequence without event retraction. We will recall some explanations re-

lated to EDBC rules from Section 7.2 to keep this section more comprehensive and

easier to follow. These rules in Algorithm 5 do not have prefix rev_ev_name (e.g.,

rev_a(1, ID, [T3, T4])), and belong to one of two different classes of rules. We refer

to the first class as to goal inserting rules. The second class corresponds to checking
rules. For example, the second rule in Algorithm 5 (i.e., with a(1, ID, [T1, T2]) in

122 9. Retraction in Event Processing

the rule head) belongs to the first class of rules, as it inserts goal(b(_, _) , a(T1, T2),

ie1(_, _)):

a(1, ID, [T1, T2]) : −assert(goal(b(_, [_, _]),a(ID, [T1, T2]),ie1(_, [_, _]))).

This rule will fire when an event of type a occurs, and the meaning of the inserted goal

is as follows: “an event a has occurred at [T1, T2],
2 and we are waiting for event b to

happen in order to detect event ie1.” Obviously, the goal does not carry information

about times for b and ie1, as we don’t know when they will occur. In general, the

second event in a goal always denotes the event that has just occurred. The role of the

first argument is to specify what we are waiting for, to detect an event that is on the

third position.

The rule with b(1, ID, [T3, T4]) in the rule head (see Algorithm 5) belongs to the second

class (i.e., checking rule):

b(1, ID, [T3, T4]) : −ie1(_, [_, _])), T2 < T3,ie1(ID, [T1, T4]).

This rule checks whether certain prerequisite goals already have been asserted, in which

case it triggers the more complex event. In this example, the rule will fire when-

ever event b occurs. The rule checks whether goal(b(_, [_, _]), a (ID, [T1, T2]), ie1

(_, [_, _])) already exists (i.e., a has previously happened), in which case the rule trig-

gers ie1, by calling ie1(ID, [T1, T4]). After detection of event ie1, goal(b(_, [_, _]),

a (ID, [T1, T2]), ie1 (_, [_, _])) could be removed from the database to free up memory

(as it is “consumed”). However this is not the case, as the goal still may be useful if the

retraction of event a takes place (see below the case when event rev_a happens).

The time occurrence of ie1 (i.e., [T1, T4]) is defined based on the occurrence of con-

stituting events (i.e., a(ID, [T1, T2]), and b(ID, [T3, T4]), see Section 6.3). By calling

ie1 (ID, [T1, T4]), this event will be inserted as a fact (see Algorithm 5). If later the

retraction process takes place, this fact will serve as a proof that event ie1 occurred and

hence may be retracted. If event ie1 is further used in composition of other complex

events, there will exist another rule with ie1 in the rule head (apart from the current

rules). The purpose of those rules would be to propagate the occurrence of event ie1

upward (since it is an intermediate event).

Let us now explain how Algorithm 5 handles event retraction in a sequence of two

events. If once detected, event ie1 may be retracted by an occurrence of either event

rev_a or rev_b. That is why there are two sets of retraction rules: rev_a and

rev_b, see Algorithm 5. Additionally, events rev_a and rev_b may retract other

detected events, if they were used in their detections and their IDs match. The identi-

fication (ID) is used to make a distinction between possible retractions of instances of

the same event types.

If an event rev_a happens, rules rev_a(1, ID, [T3, T4]) and rev_a(2, ID, [T3, T4])

aim to nullify a prior occurrence of an event a. In particular, if an event a has hap-

pened, a goal goal(b(_, [_, _]),a(ID, [T1, T2]),ie1(_, [_, _])) will be inserted into the

2Apart from the timestamp, an event may carry other data parameters. They are omitted here for the

sake of readability.

9.3. Operational Semantics for Retractable Event Processing 123

database. Therefore the subsequent occurrence of rev_a needs to delete that goal. The

following rule does that.

rev_a(1, ID, [T3, T4]) : − goal(b(_, [_, _]),a(ID, [T1, T2]),ie1(_, [_, _])),

retract(goal(b(_, [_, _]),a(ID, [T1, T2]))).

If the following sequence of events occurs: a,rev_a,b, then event ie1 will not be

detected (as rev_a would nullify the occurrence of a). If event rev_a happens after

event b, event ie1 will need to be retracted (as it has already been detected). The

following rule is used in the latter scenario.

rev_a(2, ID, [T3, T4]) : − ie_1(ID, [T1, T2]),retract(ie_1(ID, [T1, T2])),

(rev_ie1(ID, [T1, T2]);true).

If an event rev_b happens, the revision is possible only after an occurrence of an event

b. In this situation we have only one possibility, i.e., to retract a derived event ie_1

and nullify its occurrence (by issuing an event rev_ie1). The following rules fulfils

that functionality.

rev_b(1, ID, [T5, T6]) : − (ie1(ID, [T1, T4]),

retract(ie1(ID, [T1, T4])),rev_ie1(ID, [T1, T4]));

true.

In the previously described algorithm, we need to save event rev_ie1 in order to

enable possible revisions (see the last rule in Algorithm 5). It means that revision is

enabled under the assumption that certain intermediate (or derived) events are kept in

memory. Depending on the memory size and the input event throughput, this data is

sooner or later scheduled for garbage collection.

Second, we assumed that all events in a binarized pattern have the same ID (i.e.,

ie1(ID) ← a(ID) BIN b(ID)). It is worth noting that some intermediate or com-

plex events may be composed of events with different IDs. In such cases, an additional

ID may be added, e.g., ie1(ID1, ID2). ID1 will then denote an ID of the left-hand-

side event (a(ID1)), and ID2 will denote an ID of the right-hand-side event (b(ID2)).

Checking these IDs, when certain events are retracted, allows us still to use the pre-

sented algorithm for event retraction with no further restrictions.

Rules produced by the transformation in Algorithm 5 are executable rules (Prolog rules).

With no restriction these rules may be accompanied by other Prolog rules, used for

example to express background or domain knowledge (see examples from Section 8.4).

9.3.2 Conjunction

Let us consider conjunction operator (AND) with possible events retractions. Algo-

rithm 6 transforms a user defined pattern rule into executable rules for conjunction. If

necessary, the transformation also handles retraction. The retraction occurs if either of

the two events, in a conjunction, is retracted.

124 9. Retraction in Event Processing

Let us again assume that retraction of event a is represented by triggering another event

rev_a, and retraction of event b with event rev_b.

Algorithm 6 Conjunction with retraction.

Input: event binary goal ie1← a AND b.
Output: event-driven backward chaining rules for AND operator including retraction.

Each event binary goal ie1← a AND b is converted into: {
a(ID, [T1, T2]) : − for_each(a, 1, [T1, T2]).

a(1, ID, [T3, T4]) : − goal(a(_, [_, _]),b(ID, [T1, T2]),
ie1(_, [_, _])),
T5 = min{T1, T3}, T6 = max{T2, T4},ie1(ID, [T5, T6]).

a(2, ID, [T1, T2]) : − ¬(goal(a(_, [_, _]),b(_, [T1, T2]),
ie1(_, [_, _]))),
assert(goal(b(_, [_, _]),a(ID, [T1, T2]),
ie1(_, [_, _]))).

rev_a(ID, [T3, T4]) : − for_each(rev_a, 1, ID, [T3, T4]).
rev_a(1, ID, [T3, T4]) : − goal(b(_, [_, _]),a(ID, [T1, T2]),

ie1(_, [_, _])),
retract(goal(b(_, [_, _]),a(ID, [T1, T2]),
ie1(_, [_, _]))).

rev_a(1, ID, [T3, T4]) : − (ie1(ID, [T1, T2]),
retract(ie1(ID, [T1, T2])), rev_ie1(ID, [T1, T2]));
true.

b(ID, [T3, T4]) : − for_each(b, 1, [T3, T4]).
b(1, ID, [T3, T4]) : − goal(b(_, [_, _]),a(ID, [T1, T2]),

ie1(_, [_, _])),
T5 = min{T1, T3}, T6 = max{T2, T4},ie1(ID, [T5, T6]).

b(2, ID, [T1, T2]) : − ¬(goal(b(_, [_, _]),a(_, [T1, T2]),
ie1(_, [_, _]))),
assert(goal(a(_, [_, _]),b(ID, [T1, T2]),
ie1(_, [_, _]))).

rev_b(ID, [T1, T2]) : − for_each(rev_b, 1, ID, [T1, T2]).
rev_b(1, ID, [T1, T2]) : − goal(a(_, [_, _]),b(ID, [T3, T4]),

ie1(_, [_, _])),
retract(goal(a(_, [_, _]),b(ID, [T3, T4]),
ie1(_, [_, _]))).

rev_b(2, ID, [T1, T2]) : − (ie1(ID, [T3, T4]),retract(ie1(ID, [T3, T4])),
rev_ie1(ID, [T3, T4]));true.

ie1(ID, [T1, T4]) : − for_each(ie1, 1, ID, [T1, T4]).
ie1(1, ID, [T1, T4]) : − assert(ie1(ID, [T1, T4])).

}

If event a happened, rules with a in the rule head will either trigger ie1, or will insert

a goal waiting for b (see Algorithm 6). We have the first case if event b previously hap-

pened (i.e., goal(a(_, [_, _]),b(ID, [T1, T2]),ie1(_, [_, _])) exists). The second possi-

bility is just to insert goal(b(_, [_, _]),a(ID, [T1, T2]),ie1(_, [_, _])).

9.3. Operational Semantics for Retractable Event Processing 125

On the other hand, rules with rev_a in the rule head nullify the occurrence of either

event a or event ie1 (if any of them happened). The consequence of a prior occur-

rence of event a may be nullified by deleting goal(b(_, [_, _]),a (ID, [T1, T2]), ie1

(_, [_, _])):

rev_a(1, ID, [T3, T4]) : −
goal(b(_, [_, _]),a(ID, [T1, T2]),ie1(_, [_, _])),

retract(goal(b(_, [_, _]),a(ID, [T1, T2]))).

If both events, a and b, happened prior to event rev_a; the following rule will retract

event ie1.

rev_a(1, ID, [T3, T4]) : −ie1(ID, [T1, T2]),

retract(ie1(ID, [T1, T2])), (rev_ie1(ID, [T1, T2]);true).

Analogue to this reasoning, Algorithm 6 handles event rev_b. There exist two nullifi-

cations that event rev_b needs to perform (if it happens). First, if event b has already

occurred, it needs to delete a goal that proves that occurrence. The following rule

checks whether goal(a(_, [_, _]), b(ID, [T3, T4]), ie1(_, [_, _])) exists in memory; and if

yes, it will delete the goal.

rev_b(1, ID, [T1, T2]) : −
goal(a(_, [_, _]),b(ID, [T3, T4]),ie1(_, [_, _])),

retract(goal(a(_, [_, _]),b(ID, [T3, T4]),ie1(_, [_, _]))).

The second task of rev_b is to check whether event ie1 has been detected. If yes, its

occurrence needs to be retracted and event rev_ie1 is triggered. This event is propa-

gated further in case event ie1 was used in detection of other (more) complex events.

The propagated event will continue to nullify consequences of the previously detected

event ie1. If event ie1 was not detected by the time of event rev_b, the second rule

succeeds by doing nothing (i.e., it is true), see the following rule for rev_b.

rev_b(2, ID, [T1, T2]) : −
ie1(ID, [T3, T4]),retract(ie1(ID, [T3, T4])),

(rev_ie1(ID, [T3, T4]);true).

Algorithm 5 and Algorithm 6 represent modified versions of Algorithm 1 and Algo-

rithm 2, respectively, where modifications are use to address possible events retractions.

In analogy to them, other ELE operators – defined in Section 6.3 and Chapter 7 – can

be constructed in similar fashion and are hence omitted here.

9.3.3 Time-Life Window for Event Retractions

Retractions of events need to be limited to certain time intervals. This requirement

is needed since retraction requires an event history to be kept, and due to the limited

memory resources, that cannot last forever.

For various application domains, the time interval in which retractions are possible need

to be defined in accordance to that domain. For instance, in the domain of transaction

126 9. Retraction in Event Processing

executions we may define that event retraction is possible within a time interval in

which a transaction has started and has either been committed or aborted, i.e., we use

the transaction life time as a time frame in which event retraction is possible. The

argumentation for this assumption lies in the fact that all events triggered in the scope

of a transaction are considered valid (otherwise the transaction would have failed). On

the other hand, if a transaction fails, generated events are false and hence need to be

retracted.

Regardless of the definition of a time-life window for a particular domain, we need a

memory management technique to remove an unnecessary event history from memory.

We have developed few strategies for this purpose, and they will be presented in the

following chapter.

10
Processing Out-of-Order Events

EP deals the task of processing streams of events with the goal of detecting event pat-

terns of interest. Many today’s EP systems [ADGI08, Alve09, CKAK94, WuDR06,

CCDF+03] typically assume the total order of streaming events. In practice, real time

processing often faces delays caused by network latencies, sensor and machine failures

and so forth. These reasons – in turn – may cause some events to be delayed. Delayed

events are known as out-of-order events since they get reported to an EP system later

than their timestamps suggest. By handling out-of-order events an EP system needs

to keep certain events longer than they are normally needed (in order to handle late
events). Therefore, an effective removal of overdue events is needed. In this chapter we

discuss out-of-order EP, as well as an implementation of a general low-level garbage

collector [FoAR11].

10.1 Overview of Out-of-Order Event Processing

In most cases EP systems typically assume that events are totally ordered, i.e., the order
in which events are received by the system is the same as their timestamp order. This as-

sumption is called total order assumption [LLDR+07]. In reality events may arrive out-
of-order due to network latencies, different sources and even machine failures. Many

EP and experimental systems [ADGI08, Alve09, CKAK94, WuDR06, CCDF+03] can-

not handle out-of-order events properly. They process events at the time when they

come. Hence, a late event will have a larger timestamp than the events which have

already arrived earlier. As a consequence, systems not considering out-of-order arrival

128 10. Processing Out-of-Order Events

will disregard the timestamp and may either detect incorrect complex events or fail to

detect some valid patterns that occurred [LLDR+07]. To solve this problem, other sys-

tems [LLDR+07, BGAH07, BFSF08] propose to use buffers to keep the event history

for a certain time window. If out-of-order events occur, they will be reordered in the

buffer so that the event stream afterwards can be treated (and processed) as an in-order

stream. While this approach works in general, it causes a certain delay in EP. However,
the main requirement of EP systems is to process data (events) under time constraints.

This implies that keeping the whole or parts of the unnecessary history of events is un-

desired or even unacceptable. Such approaches are rather close to database processing.

In the remaining part of this chapter we present a solution for out-of-order EP which

does not additionally delay detection of complex events. A complex event is split up

into a set of binary goals, i.e., each goal represents a subpattern of two events. Goals

are chained so that in order to fulfil a goal, previous goals in the chain need to be

already fulfilled. A complex event is detected when the top goal is achieved. Hence our

approach is compliant with the other parts of the ETALIS framework presented in this

work. That is, it is based on deductive rules which are extended to handle both, in-order
and out-of-order events [FoAR11].

In in-order EP, chained goals are getting incrementally fulfilled as relevant events occur.
To handle out-of-order events, we add (additional) out-of-order goals. These goals

enable detection of subpatterns in reverse direction. For instance, if an ordinary goal

enables detection of a subpattern “an event a followed by an event b”, a corresponding

out-of-order goal will enable detection of “an event b followed by an event a” if the

timestamp of the event a suggests that it happened before the event b. Similarly, as a

complex event can be represented by a set of ordinary (two event) goals, it can be also

represented as a set of out-of-order goals.

10.1.1 Motivating Example

We present the following use-case scenario to motivate and exemplify the rationale for

out-of-order EP.

A large hedge fund consists of multiple independent but closely cooperating agents and

branches. Its main fund is trading stock instruments and is international in scope. Its

investment strategy employs EP and automated mathematical models to analyse and

execute trades purely electronically. The hedge fund uses EP-based models to predict

price changes in stocks. These models are based on analysing event streams as they are

gathered, then looking for movements to make predictions. One such program might

monitor stocks of two companies (e.g., Google Inc. andMicrosoft Corporation, denoted

with symbols “G” and “M”, respectively). Suppose an event rule detects complex event

ce1 when there is increase in Google stock price for more than 20%, see rule (10.1).

Likewise, complex event ce2 detects the increase in Microsoft stocks of the same per-

centage, see rule (10.2). Event ce3 is represented by rule (10.3) and triggered when

both, ce1 and ce2 occur.

10.1. Overview of Out-of-Order Event Processing 129

To allow more expressive event patterns – which go beyond of the state of the art

[ADGI08, LLDR+07, BGAH07, BFSF08] – we integrate temporal knowledge (events)
with static or updatable knowledge (e.g., background knowledge related to liquidity of
the company). The latter knowledge may be represented as a set of facts and rules, and
can be reasoned about when certain events occur. For example, rule (10.4) checks a

special condition proving that companyC is transactional and not banned from trading.

Such a company can be determined by additional rules (defining what is a transactional

company that is not banned for trading) which we omit to keep the example simple and

focused. We see that these rules are domain specific knowledge as they, for example,

specify stock trade policies specific for certain hedge fonds. We also see that we do

not talk only about detection of complex events (e.g., an event a is followed by event

b in last 10 seconds), but rather about detection of real time situations, e.g., stocks of
company A increased by 15% in the period when stocks of its competitor decreased

for 20% and/or are banned from trading. What is a competitor to certain company, and

when is a company banned from trading is specified as domain knowledge. Further, it is

worth noting that the liquidity of the company may change in time. Therefore, to detect

this situation, rule (10.4) (as well as other policy rules) need to be evaluated every time

when complex events ce1, ce2 and ce3 occur. Hence to detect real time situations of

interest we combine EP with an on-line evaluation of background knowledge. Detec-

tion of a real time situation can be useful for triggering external actions, e.g., whenever

complex event ce3 is detected buy “G” stocks, see rule (10.6).

ce1 ←(
stock(Agent1,′ G′, P r1, V ol1) SEQ

stock(Agent2,′ G′, P r2, V ol2)
)

WHERE (Pr1 < 1.20 ∗ Pr2, verify_company_cat(“G′′)).

(10.1)

ce2 ←(
stock(Agent1,′ M ′, P r1, V ol1) SEQ

stock(Agent2,′ M ′, P r2, V ol2)
)

WHERE (Pr1 < 1.20 ∗ Pr2, verify_company_cat(“G′′)).

(10.2)

ce3 ← ce1 AND ce2. (10.3)

verify_company_cat(C) : −
category(C, transactional), not prohibited(C).

(10.4)

ce3 : −
trigger_external_action(buy_stock(“G′′, 100)).

(10.5)

ce3 : −trigger_external_action(buy_stock(“G′′, 100)). (10.6)

One significant problem of the model is that stock events (multiplexed from all their

traders, agents, sources and observers) may arrive in an out-of-order fashion. This

happens due to different latencies in the network connections for the different sources,

or due to different system clocks under which events have been generated. As a con-

130 10. Processing Out-of-Order Events

Figure 10.1: Received vs. real order of events

sequence, out-of-order events may cause an EP system to detect unintended complex

events or to miss to detect certain complex events, which in turn may produce unin-

tended predictions of stock changes.

Consider an example event stream from Figure 10.1. The figure shows four events in the

order they have arrived. The time scale shows that the first event occurred at a time point

t1=2, the second one at t2=4 and so on. We see that stock(agent1,′′ G′′, 100, 10) has
arrived after stock(agent2,′′ G′′, 125, 10), however the arrow over the event, indicates

its correct position on the time scale. Therefore, this event is said to have arrived out-

of-order. The dot in the figure shows the correct position of the event (i.e., if it was

an “in-order” event). Similarly stock(agent2,′′ M ′′, 125, 10) is also an out-of-order

event, and should have been reported before stock(agent1,′′ M ′′, 100, 10).

When the given event stream is used for detection of complex event patterns, defined

by rules (10.1)-(10.3), issues described in the following two subsections arise.

10.1.1.1 Missed Complex Events due to Out-of-Order Events

We see that a sequence stock (agent1,′′ G′′, 100, 10), stock (agent2,′′ G′′, 125, 10)
should be detected as a valid pattern. However, with the execution model presented in

Subsection 7.2.1 this will not be possible. The problem is that when stock (agent2,
′′G′′, 125, 10) arrives, the system checks whether some stock (agent1,′′ G′′, 100, 10)
has previously happened. Since there was no goal inserted by any occurrence of stock

(agent1,′′ G′′, 100, 10) (at the time of the check), stock (agent2,′′ G′′, 125, 10) will
simply be discarded. At the moment when the event stock (agent1,′′ G′′, 100, 10) is
received, the event stock (agent2,′′ G′′, 125, 10) is gone. Thus the sequence stock
(agent1,′′ G′′, 100, 10) SEQ stock (agent2,′′ G′′, 125, 10) is missed.

10.1.1.2 False Positive Complex Events due to Out-of-Order Events

Evaluating rule (10.2) for the given stream of events, the pattern stock(agent1,′′ M ′′,
100, 10) SEQ stock (agent2,′′ M ′′, 125, 10) for ce2 is detected. However these

pattern represents an incorrect sequence. It should not have been detected if the out-

of-order event had been processed correctly.

10.1.1.3 Summary of the Problem with Out-of-Order Events

The problem of out-of-order EP has two obvious solutions: one is to implement a

multiplexer with a delay period (i.e., delay propagation of events for a few seconds,

10.2. Out-of-Order Event Processing 131

while events are received and ordered in the proper order of their creation date); the

other one is to change the event composition algorithm so to accept out-of-order events

in the same way as in-order events. The first solutions has the main disadvantage that it

has to delay processing (while an important requirement for EP systems is efficiency in

response time) and it needs to store events (which breaks another important requirement

of EP, i.e., to process events as they come and to store as little of the history data as

possible). EP deals with huge amounts of events (e.g., tens of thousands per second

and more), so a delaying mechanism is not optimal. While related work [LLDR+07,

BGAH07, BFSF08] so far has relayed on that line of research, in this work we propose

a solution founded on the second approach.

The problem of processing of out-of-order events is strongly connected to another im-

portant issue. Namely by handling out-of-order events an EP processor needs to keep

certain events longer than they are usually needed (in order to handle late events). There-

fore, an effective garbage collection of overdue events (from the temporary history of

events) is needed. This work also provides the design and implementation of a general

low-level garbage collector for events, integrated with an out-of-order event processor.

10.2 Out-of-Order Event Processing

In this section we present a solution for handling out-of-order events. To explain how

our approach handles late events let us consider again a sequence of two events: ie← a

SEQ b (i.e., we assume that the binarization procedure has been applied, see Chapter 7).

The solution modifies the initial algorithm for sequence (see Algorithm 1) by adding

two additional rules. A rule that generates a goal (i.e., a(1, T1, T2)) is accompanied by

a checking rule (i.e., a(2, T1, T2)), and vice versa, the checking rule b(1, T3, T4) is now

added (a rule that generates a goal, b(2, T3, T4)). Therefore we process the sequence in

both directions: an in-order direction (as in Algorithm 1); and an out-of-order direction

(with newly added rules in Algorithm 7).

Algorithm 7 Sequence with out-of-order events.

Input: event binary goal ie← a SEQ b.
Output: event-driven backward chaining rules for SEQ operator including out-of-order

events.

Each event binary goal ie← a SEQ b is converted into: {
a(T1, T2) : − for_each(a, 1, [T1, T2]).

a(1, T1, T2) : − assert(goal(b(_, _),a(T1, T2),ie(_, _))).
a(2, T1, T2) : − goal_out(a(_, _),b(T3, T4),ie(_, _)), T2 < T3,

retract(goal_out(a(_, _),b(T3, T4),ie(_, _))),ie(T1, T4).
b(T3, T4) : − for_each(b, 1, [T3, T4]).

b(1, T3, T4) : − goal(b(T3, T4),a(T1, T2),ie), T2 < T3,
retract(goal(b(T3, T4),a(T1, T2),ie(_, _))),ie(T1, T4).

b(2, T3, T4) : − assert(goal_out(a(_, _),b(T3, T4),ie(_, _))).
}

132 10. Processing Out-of-Order Events

Rules a(1, T1, T2) and a(2, T1, T2) will be evaluated when an event a(T1, T2) occurs

(i.e., at [T1, T2]). Rule a(1, T1, T2) will insert a goal goal(b(_, _),a(T1, T2),ie(_, _))

into the database. Additionally rule a(2, T1, T2) will check whether the event a is an

out-of-order event, in which case the system will also trigger an event ie. The event a

is an out-of-order event if a goal goal_out(a(_, _),b(T3, T4),ie(_, _)) exists in the

database, and T2 < T3. The latter condition says that although the event a(T1, T2) just

happened (at some [T1, T2]), there is an event b(T3, T4) that has already happened such

that its timestamp is bigger that the a’s timestamp1. This suggests that event a is an

out-of-order event, and an event ie(T1, T4) should be indeed triggered.

Rules – that will fire when an event b(T3, T4) occurs at some [T3, T4] – work similarly as

those for a(T1, T2). Rule b(1, T3, T4)will check whether an event a(T1, T2) has already

happened (i.e., goal(b(_, _),a(T1, T2),ie(_, _)) exists in the database), and if yes, it

will trigger an event ie(T1, T4). That is an in-order case of processing events a and b.

Additionally rule b(2, T3, T4)will insert a goal goal_out(a(_, _),b(T3, T4),ie(_, _)),

which will be used by a(2, T1, T2) if an out-of-order event a occurs.

Effectively, the price paid for handling out-of-order events is mainly reflected through-

out insertion of out-of-order goals (e.g., goal_out(a(_, _),b(T3, T4),ie(_, _)) and

the fact that they need to be cleared up after certain time (to free up the memory). There-

fore, in the next section we discuss a solution for the garbage collection of outdated out-

of-order goals. But first, let us consider again the issue with out-of-order processing

from Subsubsection 10.1.1.1. When the stock (agent2,′′ G′′, 125, 10) event arrives
with the [T3, T4] timestamp, a goal goal_out (a(_,_), stock(T3, T4, agent2,

′′ G′′,
125, 10), ie (_,_)) will be asserted by the rule denoted as b (2, T3, T4) in Algorithm

7. Now, when the stock (agent2,′′ G′′, 100, 10) event arrives with the [T1, T2] times-

tamp, the complex event ce1 will be triggered by the checking rule (which is denoted

as a (2, T1, T2) in Algorithm 7). This rule will fire the ce1 event since the check for

goal_out (a(_,_), stock (T3, T4, agent2,
′′ G′′, 125, 10), ie(_,_)) evaluates to true,

and T2 < T3 is satisfied (as depicted by the left backward arrow in Figure 10.1). Re-

gardless from the fact that the stock (agent2,′′ G′′, 125, 10) event arrived at t = 4, i.e.,

later than the stock (agent1,′′ G′′, 100, 10) event (which arrived at t = 2), Algorithm

7 still detects the ce1 event with a correct timestamp.

Finally, let us go back to the issue with out-of-order processing from

Subsubsection 10.1.1.2. When the stock (agent1,′′ M ′′, 100, 10) event arrives with
the [T1, T2] timestamp, followed by the stock (agent2,′′ M ′′, 125, 10) event with the

[T3, T4] timestamp, the complex event ce2 will not be triggered by the checking rule

(denoted as b(1, T3, T4) in Algorithm 7). The rule does not fire the ce2 event since

T2 < T3 is not satisfied (as depicted by the right backward arrow in Figure 10.1).

Regardless from the fact that the stock (agent1,′′ M ′′, 100, 10) event arrived before

the stock (agent1,′′ G′′, 100, 10) event – hence satisfying the sequence condition –

and the price condition in the WHERE clause was satisfied too, Algorithm 7 will not

wrongly detect the ce2 event.

1We assume that events cannot happen before their timestamp suggests.

10.3. Memory Management 133

We stop here with the further presentation of algorithms for out-of-order processing.

Analogue to Algorithm 7, other ELE operators as defined in Section 6.3 and processed

by Algorithm 2 and Algorithm 4 can be easily constructed to handle out-of-order events

in similar fashion. We have, however, implemented all operators and evaluated them in

Chapter 13.

It is worth noting that event retraction (Chapter 9) can be combined with out-of-order

EP. Presence of negation can cause situations in which a complex event is detected, and

then needs to be revised due to an out-of-order event. For example, a complex event is

detected if occurrence of an event a is followed by an event b with no c in between. If

an EP system detects that complex event and encounters a lately arrived c afterwards –

which was proved to happen in between a and b – it needs to threat c as an out-of-order

event, and hence to retract the detected complex event.

10.3 Memory Management

To deal with out-of-order events safely, no data can ever be purged from memory

[LLDR+07] since EP assumes processing of infinite streams of data. However, this

requirement is an exaggeration and is impracticable due to overuse of memory. In prac-

tise, network latencies can be approximated, and data at some point must be deleted

from memory. In Algorithm 7, occurrences of each event are recorded by inserting a

goal in memory. Some of these goals are removed at the time they are “consumed”

(when building more complex events), while the others can be pruned using a time

window2.

It is common in EP to define event patterns based on time windows. Therefore, we have

developed time-based garbage collection strategies. The time-based garbage collection

is the natural approach for EP to release the memory necessary for the execution of

events.

We have implemented the time guarantees for out-of-order, as well as for in-order event

detection. The following strategies have been developed: pushed constraints; general

garbage collection; and event-pattern garbage collection.

The common way to deal with garbage collection of overdue events is to define a time

window for the event pattern, and check this constraint during the composition of the

complex event. For instance, an event binary goal:

ruleId([ooo_window(10)])rule : ei ← a SEQ b SEQ c.

2When specified time elapses, goals from unfulfilled patterns can be deleted.

134 10. Processing Out-of-Order Events

specifies that the length of a time window for out-of-order events is 10 seconds (i.e.,

ooo_window(10)). This means, the system guarantees that out-of-order events will be

processed correctly if their delay is smaller than the specified window is3.

10.3.1 Pushed Constraints

Our first implementation of a garbage collector modifies the binarization – by pushing

the constraints for time guarantees into binary events – and modifies Algorithm 7 by

checking the constraints before triggering composed events (see Algorithm 8). Pushing

the constraints during binarization ensures that time guarantees are checked at each

step, so unnecessary intermediary sub-complex events are not generated if the time

guarantees are not satisfied.

Algorithm 8 Sequence with constraint checks.

Input: event binary goal RuleLabelConditions ie← a SEQ b.
Output: event-driven backward chaining rules for SEQ operator including out-of-order

events and constraint checks.

Each event binary goal ie← a SEQ b is converted into: {
a(T1, T2) : − for_each(a, 1, [T1, T2]).

a(1, T1, T2) : − assert(goal(b(_, _),a(T1, T2),ie(_, _))).
a(2, T1, T2) : − goal_out(a(_, _),b(T3, T4),ie(_, _)), T2 < T3,

check_constraints(RuleLabelConditions)
retract(goal_out(a(_, _),b(T3, T4),ie(_, _))),ie(T1, T4).

b(T3, T4) : − for_each(b, 1, [T3, T4]).
b(1, T3, T4) : − goal(b(T3, T4),a(T1, T2),ie), T2 < T3,

check_constraints(RuleLabelConditions)
retract(goal(b(T3, T4),a(T1, T2),ie(_, _))),ie(T1, T4).

b(2, T3, T4) : − assert(goal_out(a(_, _),b(T3, T4),ie(_, _))).
}

One advantage of this approach is that any constraints can be verified, not only for out-

of-order event detection. Such constraints are common in EP, e.g., the event detection

started after or before a certain time. Moreover, this approach is declarative, i.e., new

constraints can be defined for any rule and the handling of the constraints is defined

by writing a user defined check_constraint rule for that constraint type. However, the

approach also has important disadvantages. First, ETALIS enables sharing of common

formulas during binarization (i.e., shared intermediate complex events are computed

only once and shared in multiple event formulas). Pushing the constraints and labels

for each rule makes sharing not possible anymore. However, a bigger disadvantage is

the fact that the time guarantee is checked for each detected event. An efficient solution

would clear events when they are overdue, i.e., not every time an event is detected. For

instance, if the system detects 100,000 events in two seconds and the time window is

3The labelling of rules and lists of properties for rules is a common practice in defeasible logic

programming where rules can override, oppose, cancel or mutex other rules. We found convenient to use

the same labelling notation for out-of-order events too.

10.3. Memory Management 135

set to 2 seconds, then the system is expected to clean the overdue events only once

(after two seconds), i.e., without performing 100,000 checks.

10.3.2 General and Pattern-Based Garbage Collection

We prune expired goals periodically using alarm predicates (triggers generated period-

ically by the system). The general approach for garbage collection (GC) is utilized

to reduce an event path on which out-of-order events are processed. Essentially it en-

ables an out-of-order event to be late for a fixed window of time with respect to the

system clock, denoted by SystemClock. The GC window W specifies the maximum

time range between the first and last event for any pattern detection (i.e., infinitely

long complex patterns are of no interest). Every event ei(T1, T2) should be kept in

memory at least the time defined by W , and all events are allowed to be purged if

SystemClock > [T1 + W]. GC is applied for all intermediate goals, not only for

out-of-order EP.

We use the following rule to sketch the pruning of unnecessary goals. This sort of

garbage collector is triggered by the system generated events (defined by the system

time SystemClock and the GC windowW).

garbageCollector(SystemClock)←
findAll(goal(_, X([T1, T2],W), _) SEQ SystemClock > [T1 +W],

goal(_, X([T1, T2]), _, L)),

for_each(member(goal(_, X([T1, T2]), _, L)))(

del(goal(_, X([T1, T2]), _)))

and alarm(garbageCollector(SystemClock +W),W).

The general garbage collection works well when there is a single garbage collection

window W for the whole system (e.g., the network delay is the same for all sources).

The window essentially specifies what is a guaranteed “minimum” time, ensured by the

system, that out-of-order events will be processed correctly: if the GC via alarms is

set to W time window, the presented procedure correctly handles out-of-order events

within that window.

Let us consider now a case when different elements in the system have different delays
and time guarantees, i.e., there exist different garbage collection times for different

patterns. In this case, the garbage collection alarms are defined at the level of each rule.
The procedure starts GC alarms for each rule separately, looking for intermediate goals

for those rules checking the condition SystemClock > [T1 +Window(ei)].

Similarly to the pushed constraints case, rules are defined with properties, and the bi-

narization pushes the rule properties to sub-components. However, alarm events for

garbage collection are scheduled to happen in Window(ei) time. The scheduling of

alarms is done right after the compilation of pattern rules in an event program. The ap-

proach is conservative: if one writes patterns without a garbage collection window, no

136 10. Processing Out-of-Order Events

alarm is generated. However, we also permit dynamic properties by inserting/deleting

properties on the fly ins/del(property(RuleId, PropertyName, PropertyV alue)).

In this case, the GC is started automatically during the execution (depending on the situ-
ation). This means that if the system currently has more available memory it can extend

the window timeW (which guarantees correct out-of-order EP); and opposite, if the sys-

tem is currently short with memory (due to other tasks), it can temporarily shorten the

window. In this respect, our approach offers possibility for both, the time-based as well

as the memory-based GC and out-of-order processing.

11
EP-SPARQL: Extending ETALIS for the

Semantic Web

Streams of events appear increasingly today in various Web applications such as blogs,

feeds, social networks, sensor data streams, geospatial information, on-line financial

data and so forth. Event Processing (EP) is concerned with timely detection of com-

pound events within streams of simple events. State of the art EP provides on the fly

analysis of event streams, but cannot combine streams with background knowledge and
cannot perform reasoning tasks. On the other hand, semantic tools can effectively han-

dle background knowledge and perform reasoning thereon, but cannot deal with rapidly

changing data provided by event streams.

To bridge the gap, we propose Event Processing SPARQL (EP-SPARQL) [AFRS11a]

as a new language for complex events and Stream Reasoning. We provide syntax and

formal semantics of the language and devise an effective execution model for the pro-

posed formalism. The execution model is grounded on the operational semantics of the

ETALIS Language for Events (ELE). Therefore EP-SPARQL can be seen as an exten-

sion of ELE, in particular tailored for event-driven and Semantic Web applications.

11.1 Introduction

In the recent decade, information representation on the Web has undergone a shift from

static or quasi-static to dynamic. The average size of singular information items has

become smaller (compare, e.g. blogs with tweets) and their mutual temporal relatedness

138 11. EP-SPARQL: Extending ETALIS for the Semantic Web

gained in importance. In many domains the view on information has changed from a

bag-of-knowledge to a stream-like, event-based perspective.

Current EP systems provide on the fly analysis of data streams enabling real time de-

cisions and actions, but fall short of combining streams with higher-level knowledge

representation and reasoning necessary for handling background knowledge describing

the context or domain in which streaming data are interpreted. After all, both semantic
as well as temporal relationships are needed for an appropriate description of complex

events. The work on ELE – presented in Chapter 6 – was motivated to address this issue.

Standard Semantic Web technologies allow for handling background knowledge in the

form of ontologies representing time-invariant or slowly evolving knowledge. Since

we see more and more knowledge publicly available through Semantic Web initiatives

(e.g., Linked Data), we were motivated to extend ELE – as a general language for EP –

towards a more Semantic Web oriented language for EP.

World Wide Web Consortium1 (W3C) – the main international standards organization

for the Web, including the Semantic Web – has standardised the Resource Description

Framework (RDF) [KlCa04, HiKR09] as a general method for modelling of factual

data and the exchange of this data on the Web. The RDF data model is based upon the

idea of making statements about information in the Web. Statements are represented in

the form of subject-predicate-object expressions known as triples.

Information – represented as RDF triples – can further be structured by using RDF

Schema (RDFS) vocabularies. RDFS [BrGM04] is a knowledge representation lan-

guage which provides basic elements for the description of ontologies. The vocabulary

of RDF consists of classes, properties and few utility constructs, allowing conceptual

modelling similar to entity-relationship or class diagrams.

SPARQL Protocol and RDF Query Language (SPARQL) is a language for querying

RDF data [PrSe08, HiKR09]. SPARQL is also a W3C standard. The language allows

for a query to consist of triple patterns, conjunctions, disjunctions, optional patterns

and various extensions2. To some extent, SPARQL queries are syntactically similar to

SQL queries (i.e., SELECET - FROM - WHERE clauses). For a thorough introduction

to RDF, RDFS, SPARQL see, e.g. [HiKR09].

The goal of this work is to provide a framework for EP in the realm of the SemanticWeb.

We will use RDF and RDFS to describe static or slowly evolving knowledgebase (KB),

and provide a SPARQL-like language which operates on streaming triples. As such,

the language can be used for Event Processing and Stream Reasoning exceeding the

state of the art in both EP and the Semantic Web. We believe that such a framework is

needed in order to address dynamic aspects in streaming knowledge, and move towards

the real time Semantic Web. Our contribution in this chapter involves:

• EP-SPARQL: A language for Event Processing and Stream Reasoning. We

provide the syntax and a formal semantics of a new language called Event Pro-

1World Wide Web Consortium: http://www.w3.org/
2http://www.w3.org/wiki/SPARQL/Extensions

11.2. The Semantic Web with Event Processing 139

cessing SPARQL (EP-SPARQL). The language extends the SPARQL language

with EP and Stream Reasoning capabilities;

• A logic-based account for Event Processing and Stream Reasoning. We pro-

vide the basic mechanism for EP and Stream Reasoning, grounded in LP. EP-

SPARQL is a high-level language based on this mechanism. Our approach is

based on event-driven backward chaining rules that realize an effective event-

driven inferencing. It features both effective EP, and inference capabilities over

temporal and static knowledge. We are aware of no approach that implements

both features in one clean, logic framework;

• Implementation and evaluation. We provide an open-source prototype imple-

mentation of the proposed approach. The prototype is implemented in Prolog

(but could be realized in other LP or declarative rule languages, too). We have

conducted a set of tests to show the usefulness and effectiveness of our approach

with respect to expressivity and run-time performance. However the implementa-

tion and tests will be presented later, in Chapter 12.

11.2 The Semantic Web with Event Processing

We argue – and the review of current approaches in the literature clearly witnesses this

(see Chapter 4) – that EP and Stream Reasoning in the Semantic Web as two research

disciplines may contribute to and complement each other, and hence open new possibil-

ities in direction of the real time Semantic Web. These areas served as design principles

we followed when proposing EP-SPARQL.

We see the following dimensions where current research on Stream Reasoning can

greatly benefit from EP:

Support for Rapidly Changing Information on the Web. While existing semantic

technologies and reasoning engines are constantly being improved in dealing with time
invariant domain knowledge, they lack in support for processing real time streaming

data (events). Real time Web data is valuable only if it is captured, processed, and

delivered instantly. EP is a set of techniques and tools that help us understand and

control real time and event-driven systems [Luck02]. As such, it is a technology that

can help in processing real time data on the Web too.

Information Push versus Pull. According to Wikipedia, the Real Time Web is a set

of technologies and practices which enable users to receive information as soon as it is

published by its authors, rather than requiring periodic updates. Hence, there is no need

to pull information, it will be delivered to users nearly at the moment it is published. For

instance, no more waiting for web services to communicate from one polling instance

to another. We notice a paradigm shift from information pull to information push; or
from request-response based web services to event-driven web services with possibly

unforeseen consequences.

140 11. EP-SPARQL: Extending ETALIS for the Semantic Web

On the other hand, Semantic Web technologies clearly surpass current EP approaches

in the following aspects:

Structured Events. Various sensors, GPS-enabled devices and the Internet of Things

are all sources of events that can easily be structured. Today, event stream systems

do not use ontologies to specify common-agreed vocabularies for events and event-

driven applications. An important contribution of the Semantic Web to EP is to provide

structured events. This will enable not only knowledge-based EP with Stream Rea-

soning capabilities, but also easier communication between event-driven applications

and services, as well as simpler integration of heterogeneous data streams and their

interpretation on the Web.

Stream Reasoning in Knowledge-Based EP. As mentioned above, current EP sys-

tems [ADGI08, BGAH07, CCDF+03] do real time pattern matching over unbound

event streams. But they cannot combine data streams with evolving knowledge, and
they cannot perform reasoning tasks over streaming data. Semantic technologies can

enhance today’s EP by providing and evaluating domain knowledge (e.g., in order to

enrich recorded events, to detect more complex situations of interest, to propose certain
intelligent recommendations on the fly and so forth).

Consequently, the problem addressed in this work combines tasks of EP and Stream

Reasoning. That is, we propose an approach to detect complex events (specified in an

appropriate formal language) within a stream of RDF triples (atomic events). Detection

of complex events may additionally require reasoning over background knowledge (ex-

pressed as an RDF graph or an RDFS ontology). We assume that the timeliness of

this detection is crucial and algorithmically optimize our method towards a continuous
evaluation of patterns and a fast response behaviour.

11.3 Syntax of EP-SPARQL

In this section, we introduce the syntax of EP-SPARQL, our extension of the SPARQL

querying language in order to enable stream-based querying that takes into account

temporal situatedness of triple assertions. Thereby, we ensure syntactical and seman-

tic downward-compatibility to plain SPARQL [PrSe08, HiKR09] in the sense detailed

below.

Syntactically, we define EP-SPARQL to be SPARQL extended by the binary operators

SEQ, EQUALS, OPTIONALSEQ, and EQUALSOPTIONAL used to combine graph patterns

in the same way as UNION and OPTIONAL in pure SPARQL. Intuitively, all those opera-

tors act like a (left, right or full) join, but they do so in a selective way depending on how

the constituents are temporally interrelated, as indicated by their naming: P1 SEQ P2

joins P1 and P2 only if P2 occurs
3 strictly after P1, whereas P1 EQUALS P2 performs

the join if P1 and P2 are exactly simultaneous. OPTIONALSEQ and EQUALSOPTIONAL

are temporal-sensitive variants of OPTIONAL.

3in a sense to be defined more precisely in the formal semantics

11.3. Syntax of EP-SPARQL 141

Moreover, we add the function getDURATION() to be used inside filter expressions.

This function yields a literal of type xsd:duration giving the length of the time

interval associated to the graph pattern the FILTER condition is placed in. Likewise, we

add functions getSTARTTIME() and getENDTIME() to retrieve the time stamps

(of type xsd:dateTime) of the start and end of the currently described interval.

We provide a few examples to give some intuition on the newly introduced operators.

The following EP-SPARQL query is supposed to search for companies whose stock

price has decreased by over 30% and then risen by more than 5% (in comparison to its

initial value) within a time frame of 30 days.

SELECT ?company WHERE

{ ?company hasStockPrice ?price1 }

SEQ { ?company hasStockPrice ?price2 } (11.1)

SEQ { ?company hasStockPrice ?price3 }

FILTER (?price2 < ?price1*0.7 && ?price3 > ?price2*1.05

&& getDURATION() < "P30D"^^xsd:duration)

The next EP-SPARQL query will identify companies with a more than 50% stock price

drop and – in case some rating agency previously downrated this company, this rating

agency will be indicated as well.

SELECT ?company ?ratingagency WHERE

{ ?company downratedby ?ratingagency}

OPTIONALSEQ (11.2)

{ { ?company hasStockPrice ?price1 }

SEQ { ?company hasStockPrice ?price2 }}

FILTER (?price2 < ?price1 * 0.5)

It is worth mentioning that – just like for pure SPARQL – negation (i.e., requiring

the absence of some triple pattern instead of its presence) is not an explicit part of the

formalism, but can be expressed via OPTIONAL and FILTER. For instance, the following

query asks for companies having a larger than 50% stock price increase in less than 15

days without having acquired another company during that period.

SELECT ?company WHERE

{ ?company hasStockprice ?price1 }

SEQ { { ?company hasAcquired ?othercompany } (11.3)

OPTIONALSEQ

{ ?company hasStockPrice ?price2 } }

FILTER (?price2 > ?price1 * 1.5 && !BOUND(?othercompany)

&& getDURATION() < "P15D"^^xsd:duration)

142 11. EP-SPARQL: Extending ETALIS for the Semantic Web

Moreover, we allow for recursion by employing CONSTRUCT queries, conceiving them

as a kind of production rule. Thereby, the result graph of such a query is assumed to

be added to the RDF stream. For instance, the following statement gathers “temporally

distributed” rating information to create a triple indicating an event of being downrated,

which in turn can be used in other CONSTRUCT or SELECT queries.

CONSTRUCT ?company downratedby ?ratingagency

WHERE { ?rating1 rater ?ratingagency ;

rated ?company ; score ?score1 } (11.4)

SEQ { ?rating2 rater ?ratingagency ;

rated ?company ; score ?score2 }

FILTER (?score2 < ?score1)

Finally, the forthcoming extended SPARQL standard4 featuring subqueries and expres-
sions allows for as complex mechanisms as aggregation over sliding windows. As an

example we present a query monitoring the average stock price of a company ACME

Inc. over the last 10 days. First, we use a construct rule that aggregates counts and

sums of stock prices within the given time frame and feeds this information back into

the stream. Thereby, the EQUALSOPTIONAL and filter part make sure that no price

signal is left out.

CONSTRUCT _:aaa :hasCount ?count . _:aaa :hasSum ?sum .

{ SELECT ?count AS ?prevcount + 1

?sum AS ?prevsum + ?price

WHERE {{ ?point :hasCount ?prevcount .

?point :hasSum ?prevsum . }

SEQ { :ACME :hasStockPrice ?price . }}

EQUALSOPTIONAL (11.5)

{{ ?point :hasCount ?prevcount .

?point :hasSum ?prevsum . }

SEQ { :ACME :hasStockPrice ?inbetween . }

SEQ { :ACME :hasStockPrice ?price . }}

FILTER (!BOUND(?inbetween) &&

getDURATION() < "P10D"^^xsd:duration)}

Next, we calculate and output the average value as soon as the duration of our time

window is exceeded.

SELECT ?sum / ?count AS ?average

WHERE {{ :ACME :hasStockPrice ?price . }

SEQ { ?point :hasCount ?prevcount .

?point :hasSum ?prevsum . }}

4http://www.w3.org/TR/2009/WD-sparql-features-20090702/

11.4. Semantics of EP-SPARQL 143

EQUALSOPTIONAL

{{ :ACME :hasStockPrice ?price . } (11.6)

SEQ { :ACME :hasStockPrice ?inbetween . }

SEQ { ?point :hasCount ?prevcount .

?point :hasSum ?prevsum . }}

FILTER (!BOUND(?inbetween) &&

getDURATION() > "P10D"^^xsd:duration)

It may take some consideration and checking back with the formal semantics to ver-

ify that this realizes the intended behaviour. In practice, additional constructs may be

introduced as syntactic sugar to facilitate specification of patterns that are often used.

11.4 Semantics of EP-SPARQL

We define the formal semantics for EP-SPARQL along the same lines as it is done

for pure SPARQL [PrSe08], that is, in a relational way. Thereby, the query is first

translated into an algebraic expression. Recall that this conversion transforms simple

graph patterns5 (lists of triples) P into expressions of the form BGP(P). Moreover,

juxtapositions of graph triples are translated into the function Join, UNION into Union,

OPTIONAL into LeftJoin. We reuse but extend this translation to map the new operators

as follows: SEQ �→ SeqJoin, EQUALS �→ EqJoin , OPTIONALSEQ �→ SeqRightJoin ,

and EQUALSOPTIONAL �→ EqLeftJoin. Each of these functions is meant to return the

result of the subquery it describes, which is a formal representation of the corresponding

result table – as opposed to plain SPARQL, each row of these intermediary result tables

is additionally associated with a time interval.

To make this more formal, note that we pose our query against an RDF stream which

we define as a set S consisting of triple occurrences being pairs 〈〈s, p, o〉, t, t′〉 where
〈s, p, o〉 is an RDF triple and t, t′ are time stamps denoting the boundaries of the time

interval of the occurrence. Now, we say that the tuple 〈μ, tα, tω〉 is a solution for an ex-

pression of the form “BGP(list of triples)” exactly if the following conditions
are satisfied:

1. μ is a partial function the domain of which consists exactly of the variables that

occur in the given list of triples.

2. for the triple set {〈s1, p1, o1〉, . . . , 〈sn, pn, on〉} obtained from substituting the

variables in the triple list via μ, there exist time stamps t1, t
′
1, . . . , tn, t

′
n such

that

• {〈〈s1, p1, o1〉, t1, t′1〉, . . . 〈〈sn, pn, on〉, tn, t′n〉} ⊆ S,

• tα = min(t1, . . . , tn), and

5For the sake of brevity, we assume that the graph patterns do not contain blank nodes, as they can

be replaced by (non-distinguished) variables without changing the semantics.

144 11. EP-SPARQL: Extending ETALIS for the Semantic Web

• tω = max(t′1, . . . , t
′
n).

Now define results for the other operators. A pair of solutions 〈μ, tα, tω〉 and 〈μ′, t′α, t
′
ω〉

is said to be compatible if every variable that is mapped by both μ and μ′ is also

mapped to the same RDF term by both solutions. If this is the case, their combination

〈μ, tα, tω〉 �� 〈μ′, t′α, t
′
ω〉 can be defined as the tuple 〈μ′′, t′′α, t

′′
ω〉 with t′′α = min(tα, t

′
α),

t′′ω = max(tω, t
′
ω), and

μ′′(x) =

⎧⎨
⎩

μ(x) if x occurs in the domain of μ

μ′(x) if x occurs in the domain of μ′

undefined in all other cases

Based on this, we define how to evaluate the introduced functions on sets Ψ,Ψ′ of
solutions. Thereby, we use σtαtω to denote the operator substituting getDURATION()

by tω−tα, getSTARTTIME() by tα, and getENDTIME() by tω in filter expressions.

• Filter(F,Ψ) contains those 〈μ, tα, tω〉 ∈ Ψ for which the expression μ(σtαtω(F))

evaluates to true.

• Join(Ψ,Ψ′) contains 〈μ, tα, tω〉 �� 〈μ′, t′α, t
′
ω〉 for all compatible 〈μ, tα, tω〉 ∈ Ψ

and 〈μ′, t′α, t
′
ω〉 ∈ Ψ′

• Union(Ψ,Ψ′) = Ψ ∪Ψ′

• LeftJoin(Ψ,Ψ′, F) contains

– every 〈μ, tα, tω〉 �� 〈μ′, t′α, t
′
ω〉 for every compatible 〈μ, tα, tω〉 ∈ Ψ and

〈μ′, t′α, t
′
ω〉 ∈ Ψ′ with (μ �� μ′)(σtαtω(F)) = true and t′ω < tω.

– every 〈μ, tα, tω〉 ∈ Ψ for which there is no compatible 〈μ′, t′α, t
′
ω〉 ∈ Ψ′ with

(μ �� μ′)(σtαtω(F)) = true and t′ω < tω.

• SeqJoin(Ψ,Ψ′) contains 〈μ, tα, tω〉 �� 〈μ′, t′α, t
′
ω〉 for all compatible 〈μ, tα, tω〉 ∈

Ψ and 〈μ′, t′α, t
′
ω〉 ∈ Ψ′ additionally satisfying tω < t′α

• SeqRightJoin(Ψ′,Ψ, F) contains

– all solutions from Filter(F, SeqJoin(Ψ′,Ψ)) as well as

– all 〈μ, tα, tω〉 ∈ Ψ for which there is no compatible 〈μ′, t′α, t
′
ω〉 ∈ Ψ′ with

both (μ �� μ′)(σtαtω(F)) = true and tα > t′ω.

• EqJoin(Ψ,Ψ′) contains 〈μ, tα, tω〉 �� 〈μ′, t′α, t
′
ω〉 for all compatible 〈μ, tα, tω〉 ∈

Ψ and 〈μ′, t′α, t
′
ω〉 ∈ Ψ′ additionally satisfying tα = t′α and tω = t′ω

• EqLeftJoin(Ψ,Ψ′, F) contains

– all solutions from Filter(F,EqJoin(Ψ,Ψ′)) as well as

– all 〈μ, tα, tω〉 ∈ Ψ for which there is no compatible 〈μ′, t′α, t
′
ω〉 ∈ Ψ′ with

all (μ �� μ′)(σtαtω(F)) = true and tα = t′α and tω = t′ω.

We would like to add the following remarks to justify some aspects of our definition of

the EP-SPARQL semantics. First, we endorse the principle of timewise monotonicity:

11.5. An Example of EP-SPARQL Application 145

the querying formalism is intended to work on triple streams (i.e., triples continuously

enter the system in the order of their associated time stamps) and query results are

supposed to be output as soon as they are detected. This leads to the straightforward re-

quirement that it should not be possible that query results once obtained get invalidated

by later triple inputs. More formally, we have to guarantee that for any EP-SPARQL

query and any RDF stream S all solutions for the stream {〈μ, tα, tω〉 | tω < t1} are also
solutions for the stream {〈μ, tα, tω〉 | tω < t2} given that t1 ≤ t2. Note that a hypotheti-

cal constructor SEQOPTIONAL (specifying a mandatory pattern followed by an optional

one) defined as the inverse version of OPTIONALSEQ would violate this principle since

the solution 〈{x �→ a}, 0, 0〉 would be a solution to the query

SELECT ?x ?y WHERE ?x ?x ?x. SEQOPTIONAL ?y ?y ?y. (11.7)

when posed against the stream {〈〈a, a, a〉, 0, 0〉} but not when posed against the aug-

mented stream {〈〈a, a, a〉, 0, 0〉, 〈〈b, b, b〉, 1, 1〉}. As second principle, we obtain down-
ward compatibility in the following sense: as a consequence of the syntax definition,

every (pure) SPARQL query q is also an EP-SPARQL query. Now, given an RDF

graph {〈s1, p1, o1〉, . . . , 〈sn, pn, on〉}, we obtain μ as a result of the SPARQL query q

if and only if we obtain 〈μ, t, t〉 as a solution to the EP-SPAQL query against the RDF

stream {〈〈s1, p1, o1〉, t, t〉, . . . 〈〈sn, pn, on〉, t, t〉} for any fixed time stamp t.

To finish the semantics definition, we have to consider the CONSTRUCT rules. Given

such a statement q with the graph pattern Pq following the CONSTRUCT command

and the set ΨS
q of solutions to the WHERE part with respect to some given stream

S, let ΨS
q (Pq) denote the set of tuples 〈〈s, p, o〉, t, t′〉 for which there is a solution

〈μ, t, t′〉 ∈ ΨS
q such that (1) μ has as domain at least all variables occurring in Pq,

and (2) 〈s, p, o〉 ∈ μ(Pq). Now, given an RDF stream S and a set Q of CONSTRUCT

statements, we define the Q-closure of S (closQ(S)) as the smallest set for which both

S ⊆ closQ(S) as well as Ψ
closQ(S)
q (Pq) ⊆ closQ(S) for every q ∈ Q. We can see the

Q-closure of S as the stream S enriched by the triple occurrences following from (pos-

sibly iterated) application of the CONSTRUCT rules. Consequently, in the presence of

such rules, SELECT-queries get evaluated not against the pure input stream but against

its Q-closure. Moreover, in the case of SELECT queries, after calculating the solution

set, it is further processed (with respect to variable projection and output formatting)

like for normal SPARQL.

11.5 An Example of EP-SPARQL Application

To demonstrate how EP-SPARQL can be used in practise, we provide an example ap-

plication concerning a sensor-based traffic management system6. The system monitors

continuously generated traffic events, and diagnoses areas with slow traffic.

6The application is similar to the application from Subsection 6.4.1. This time we have implemented

background knowledge as an RDF knowledgebase.

146 11. EP-SPARQL: Extending ETALIS for the Semantic Web

The following EP-SPARQL query searches for roads for which two slow traffic events

have been reported within the the last hour. Results from this query could be, for

example, used to automatically modify a speed limit on a certain road (or its particular

section).

PREFIX tr: <http://traffic.example.org/data#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?road ?speed WHERE

{ ?road tr: slowTrafficDue ?observ }

SEQ { ?road tr: slowTrafficDue ?observ }

AND { ?observ rdfs: subClassOf tr:SlowTraffCause }

AND { ?observ tr: speed ?speed }

FILTER (getDURATION() < "P1H"^^xsd:duration)

Traffic can be slowed down due to various reasons. We provide below a simple RDFS

KB to define few of them. The background knowledge will be evaluated when sensor

observations (events) get reported. Only events, reporting about SlowTraffCause

will be selected.

Since (direct or indirect) subclasses of SlowTraffCausemay also be relevant, ETALIS

utilize a reasoning procedure to find out subclass relationships.

tr:Accident rdfs:subClassOf tr:SlowTraffCause.

tr:GhostDriver rdfs:subClassOf tr:SlowTraffCause.

tr:BadWeather rdfs:subClassOf tr:SlowTraffCause.

tr:Rain rdfs:subClassOf tr:BadWeather.

tr:Snow rdfs:subClassOf tr:BadWeather.

We assume that there exist various types of traffic observations. For example, Observ_1

is a specific type of tr:Accident, and in general, there may exist more than one in-

stance of each type (e.g., a traffic accident is classified as a head-on collision, side

collision, rollover etc.). Additionally, for each type of an observation there may exist a

suggested speed limit, and other relevant details (omitted here for simplicity reasons).

Observ_1

rdf:type tr:Accident ;

tr:speed "70"^^xsd:int .

Observ_2

rdf:type tr:GhostDriver ;

tr:speed "50"^^xsd:int .

11.6. Operational Semantics of EP-SPARQL 147

Observ_3

rdf:type tr:Snow ;

tr:speed "40"^^xsd:int .

Finally, to enable detection of indirect observations (e.g., of SlowTraffCause class),

the subclass relation rule (11.8) is utilized.

rdf:type(A, Y) : −rdfs:subClassOf(X, Y),rdf:type(A, X). (11.8)

Note that, by using deductive rules (e.g., rule (11.8)), ETALIS can be used to infer
implicit knowledge (not only explicitly stated knowledge). This powerful feature is be-

yond the state of the art EP systems [ADGI08, BGAH07, ArBW06, KrSe09, CCDF+03],

and is required in intelligent processing over streaming data.

11.6 Operational Semantics of EP-SPARQL

This section describes how complex events, as defined in Section 11.4 are computed

at run-time. We describe an execution mechanism that is based on event-driven back-

ward chaining (EDBC) rules, introduced in [AFRS11a, AFSS09, AFRS+10] and pre-

sented in Chapter 7. EP-SPARQL queries are compiled into EDBC rules, which enable

timely, event-driven, and incremental detection of complex events (i.e., answers to EP-

SPARQL queries). EDBC rules are logic rules, and hence can be mixed with other

background knowledge (domain knowledge that is used for Stream Reasoning). There-

fore, we provide a unified execution mechanism for EP and Stream Reasoning which

was realised for ELE (in Chapter 7) and now extended for EP-SPARQL.

For our encoding, we use a simple correspondence between RDF triples of the form

〈s, p, o〉 and Prolog predicates of the form triple(s′, p′, o′) so that s′, p′, and o′ corre-
spond to the RDF symbols s, p, and o, respectively. This means that whenever a triple

〈s, p, o〉 is satisfied, the corresponding predicate triple(s′, p′, o′) is satisfied too, and
vice versa. Consequently, a time-stamped RDF triple 〈〈s, p, o〉, tα, tω〉 corresponds to a
predicate triple(s′, p′, o′, T ′

α, T
′
ω)where T

′
α and T

′
ω denote time stamps. Time stamps

are assigned to triples either by a triple source (e.g., a sensor or an application that gen-

erates triple updates) or by an EP-SPARQL engine (e.g., our prototype implementation

presented in Chapter 12). They facilitate time-related processing, and do not necessar-

ily need to be kept once the stream has been processed (e.g., the pure RDF part could

be persisted in a RDF triple store without time stamps).

11.6.1 Sequence

Let us consider a sequence (SeqJoin operator) of three timestamped triples (events),

represented by Example (11.1) (in Section 11.3) when the FILTER expression is omitted.

148 11. EP-SPARQL: Extending ETALIS for the Semantic Web

This EP-SPARQL query can be represented by rule (11.9), where the SEQ operator has

the identical meaning, i.e., triple(τ, T1, T6) is detected
7 when triple(τ1, T1, T2)

occurs in a data stream, followed by triple(τ2, T3, T4), and triple(τ3, T5, T6). We

can always represent this pattern with rule (11.10).

triple(τ, T1, T6)← triple(τ1, T1, T2) SEQ

triple(τ2, T3, T4) SEQ triple(τ3, T5, T6).
(11.9)

triple(τ, T1, T6)← (triple(τ1, T1, T2) SEQ

triple(τ2, T3, T4)) SEQ triple(τ3, T5, T6).
(11.10)

triple(τ ′, T1, T4)← triple(τ1, T1, T2) SEQ triple(τ2, T3, T4).

triple(τ, T1, T6)← triple(τ ′, T1, T4) SEQ triple(τ3, T5, T6).
(11.11)

We recall this rewriting is referred to as binarization of patterns (see Chapter 7). Ef-

fectively, in binarization we introduce triples that are binary intermediate goals. For

example, now we can rewrite rule (11.9) as rule (11.10), and further as rules (11.11).

Every monitored pattern (capturing either a triple or a derived triple) will be associated

with one or more logic rules. Rules are fired as soon as certain triples occur, hence they
are driven by streaming triples (events). Here we presented a left-associative binariza-

tion (events and goals are coupled from left to right). As pointed out in Subsection 7.2.1,

the left-associative binarization is a good choice when the rightmost event(s) in a pat-

tern rule have a higher occurrence rate than the others (e.g., event triple(τ3, T5, T6)

occurs more frequently than event triple(τ1, T1, T2)), since in that situation event

triple(τ3, T5, T6) is joined later. Our prototype, described in Chapter 12, currently

implements the left-associative binarization, and other types of binarization such as the

right-associative coupling, bushy plan and inner plan from [MeMa09] are subject of

future work.

In the following, we give more details about rule assignment for each monitored triple,

and sketch the execution model for a sequence of triples.

triple(τ, T1, T4)← triple(τ1, T1, T2) SEQ triple(τ2, T3, T4). (11.12)

Rule (11.12) represents a binary sequence goal, and rules (11.13) and (11.14) represent

the pair of EDBC into which (11.12) is translated. The binarization step must therefore

precede the rule transformation.

triple(τ1, T1, T2)←
assert(

goal(triple(τ2, _, _),triple(τ1, T1, T2),triple(τ, _, _))).

(11.13)

7For brevity, we use τ with possible super- and subscripts to denote triplets s, p, o.

11.6. Operational Semantics of EP-SPARQL 149

triple(τ2, T3, T4)←
goal(triple(τ2, _, _),triple(τ1, T1, T2),triple(τ, _, _)),

T2 < T3,

retract(

goal(triple(τ2, _, _),triple(τ1, T1, T2),triple(τ, _, _))),

triple(τ, T1, T4).

(11.14)

In general, the EDBC rules created by our translation can be grouped in two different

classes of rules. We refer to the first class as goal-insertion rules. The second class

corresponds to checking rules. For example, rule (11.13) belongs to the first class as it

asserts a goal. This rule will fire when triple(τ1, T1, T2) occurs, and the meaning of

the goal it inserts is as follows: “an event triple(τ1, T1, T2) has occurred at [T1, T2],

and we are waiting for triple(τ2, _, _) to happen in order to detect triple(τ, _, _)”.

Obviously, the goal does not carry information about times for triple(τ2, _, _) and

triple(τ, _, _), as we do not know when they will occur. In general, the second event

in a goal always denotes the event (triple) that has just occurred. The role of the first
event is to specify what we are waiting for to detect an event that is on the third position

(i.e., a derived triple).

Rule (11.14) belongs to the second class, being a checking rule. It checks whether cer-
tain prerequisite goals already exist in the knowledgebase, in which case it triggers a

more complex event. For example, that rule will fire whenever triple (τ2, T3, T4)

(the triple from the rule head) occurs. It checks whether goal(triple(τ2, _, _),

triple(τ1, T1, T2), triple(τ, _, _)) already exists (meaning that triple(τ1, T1, T2)

has previously happened), in which case it triggers triple(τ, T1, T4) by calling that

triple. The triple occurrence time span (i.e. [T1, T4]) is defined based on the occur-

rence of constituting events (i.e. triple (τ1, T1, T2), and triple (τ2, T3, T4), see

Section 11.4). Calling triple(τ, T1, T4), this event is effectively either propagated

further (if it is an intermediate event) or triggered as a finished complex event.

We see that our backward chaining rules compute goals in a forward chaining manner.

The goals are crucial for computing complex events incrementally. Goals can persist

over a period of time. It is worth noting that checking rules can also delete goals (see

retract predicate in rule 11.14). Once a goal is “consumed”, it is removed from the

knowledgebase8. In this respect, goals are kept persistent as long as (but not longer

than) they are needed.

So far, we have explained how the SEQ operator is implemented with EDBC rules.

OPTIONALSEQ is implemented similarly. The operator allows information to be added

to the answer where certain triples are available, but do not reject the answer when some

part of the query pattern does not match. Hence the functionality of OPTIONALSEQ

operator is the same as for SEQ operator, and OPTIONALSEQ sub-patterns are translated

into event-driven rules and computed in the same way as the mandatory part. However,

at the end, the pattern is detected when all mandatory conditions are satisfied (regardless

8Removing “consumed” goals is often needed for space reasons but might be omitted if events are

required in a log for further processing or analysing.

150 11. EP-SPARQL: Extending ETALIS for the Semantic Web

whether an optional sub-pattern has been satisfied by that moment or not). The same

applies for the EQUALS and EQUALSOPTIONAL operators.

11.6.2 Filter Expression

A FILTER expression in an EP-SPARQL query can be represented as a rule, too.9 The

head of that rule may be part of a goal. When the goal gets evaluated, the correspond-

ing rule will be evaluated, too. For example, let us consider again rule (11.1) from

Section 11.3 and its FILTER expression. We said that triple(τ, T1, T6) can be repre-

sented as:

triple(τ, T1, T6)← triple(τ ′, T1, T4) SEQ triple(τ3, T5, T6)

where triple(τ ′, T1, T4) is an intermediate triple, specified as:

triple(τ ′, T1, T4)← triple(τ1, T1, T2) SEQ triple(τ2, T3, T4).

When the FILTER expression is considered, throughout the binarization process,

triple(τ, T1, T6) is transformed into next two rules:

triple(τ, T1, T6)← triple(τ ′′, T1, T6) SEQ

condition(Price1, P rice2, P rice3)

triple(τ ′′, T1, T6)← triple(τ ′, T1, T4) SEQ triple(τ3, T5, T6)

where condition is defined as the following Prolog rule10:

condition(Price1, P rice2, P rice3) : −
P1 is (Price1 ∗ 0.7), P1>Price2, P2 is (Price1 ∗ 0.5), P rice3>P2.

11.6.3 Background Knowledge

To enable detection of more complex events, our approach combines streams with back-

ground knowledge. This knowledge describes the context (domain) in which complex

events are detected. As such, it enables detection of real time situations that are identi-

fied based on explicit data (e.g., events) as well as on implicit knowledge (derived from

the background knowledge).

The background knowledge may be specified either as a Prolog knowledgebase or as

an RDFS ontology11. This enables our operational semantics to have all relevant parts

expressible in a unified (logic rule) formalism, and ultimately to reason over a unified

space. For example, while detecting a sequence of two events, we may check whether

their joined attribute is an instance of a certain class (or any of its subclasses) defined in

9Here we focus on filters without time constraints. Time constrained filters will be explained later in

this section.
10Note that Price1, P rice2, P rice3 are contained in τ1, τ2, τ3.
11In the latter case, we utilize an existing library www.swi-prolog.org/pldoc/package/semweb.html to

transform an RDFS ontology into Prolog rules and facts.

11.7. Memory Management and Time Windows in EP-SPARQL 151

an ontology (e.g., see a Stream Reasoning test in Subsubsection 13.1.7.1). To prove this

on the fly, an inference procedure needs to be executed. In this respect, our execution

model detects time relations among streaming triples (events), and performs reasoning

tasks when necessary. Since all components of an EP-SPARQL query – including back-

ground knowledge – are represented as (Prolog) rules, we will use a Prolog inference

engine (in Chapter 12) to serve as an EP-SPARQL engine.

11.6.4 Equals

Two events are equal if they happen right at the same time (see the definition of EqJoin

Section 11.4). Hence, in order to implement the EQUALS operator we again use the

rules of the type (11.13)-(11.14). Additionally, we use the rule (11.15) to check whether

the occurrence intervals of two events are equal, i.e., the rule compares whether the start
of the first interval (TI1_S) is equal to the start of the second interval (TI2_S). The

same check is done for the end of the two intervals.

equals(TI1, T I2)←
TI1 = [TI1_S, TI1_E], validT imeInterval(TI1),

T I2 = [TI2_S, TI2_E], validT imeInterval(TI2),

T I1_S = TI2_S, TI1_E = TI2_E.

(11.15)

validT imeInterval(TI)← TI = [TI_S, TI_E], T I_S@ < TI_E. (11.16)

Rule (11.16) is an auxiliary rule which makes sure that parameters of rule (11.15) are

valid time intervals.

Other operators, such as juxtapositions of graph triples and UNION, are translated into

EDBC rules analogously. Hence we omit further discussion here, and refer the inter-

ested reader to the conjunction (AND) and disjunction (OR) operations, described in

Subsection 7.2.1 and Subsection 7.2.4.

11.7 Memory Management and Time Windows in EP-SPARQL

To prune outdated events, we use the three memory management techniques described

in Subsection 10.3.1 and Subsection 10.3.2.

The first technique (see Subsection 10.3.1) modifies the binarization step by pushing

time window constraints (set by FILTER expressions with time constraints12, e.g., 30

days in EP-SPARQL query (11.1) from Section 11.3). The technique ensures that time

window constraints are checked during the incremental event detection. Therefore, un-

necessary intermediary sub-complex events will not be generated if time constraints are

violated (i.e., time expired).

12Users are encouraged to specify time constraints in queries, as it enables the system to regularly free

up its memory.

152 11. EP-SPARQL: Extending ETALIS for the Semantic Web

The second solution (see Subsection 10.3.2) prunes expired events by using system

generated events (SGE). Similar to the first technique, rules are defined with time win-

dow constraints, and the binarization pushes the constraints to sub-components. This

technique, however, does not check its constraints at each step in the event detection

incrementally. Instead, events are pruned periodically as SGE are triggered. The third

solution (see Subsection 10.3.2) is a variation of the second one. While the second tech-

nique makes an assumption that the network delay is the same for all sources, the third

technique constructs a garbage collection window for each pattern window individually.

For time sliding windows, we also need to prune expired events. This has been realized
by using one of the three mentioned memory management techniques. Outdated events

are pruned so that an aggregation function can be recomputed on the set of valid events.

An output-aggregation event is triggered whenever a new valid event occurs.

Part IV

Practical Considerations

12
Implementation

As a proof of concept, we have provided a prototype implementation of the ETALIS

Language for Events (ELE) presented in Chapter 6, as well as an implementation of all

of its extensions, introduced in Chapter 9, Chapter 10 and Chapter 11. The system is

called the Event-driven Transaction Logic Inference System (ETALIS)1, and is based

on the operational semantics of the language described in Chapter 7, i.e., it is estab-

lished on goal-directed event-driven backward chaining (EDBC) rules and decomposi-

tion of complex event patterns into intermediate events (goals). ETALIS automatically

compiles user-defined complex event patterns into EDBC rules. A user may addition-

ally specify deductive rules as background knowledge (see Section 8.4). These rules

can be directly written in Prolog, or alternatively, background knowledge can be struc-

tured in form of RDF Schema (RDFS) ontologies.

In this chapter we describe the prototype implementation of ETALIS by providing an

architecture of the system and characterising its main components [ARFS12b].

12.1 ETALIS Architecture

In the following we give more details about internal processing in ETALIS, i.e., how

events specified in ELE can be detected at run time.

ETALIS is a rule-based deductive system that acts as an event-driven engine. Fig-

ure 12.1 – as introduced in [ARFS12b] – shows basic operational steps that are un-

dertaken in ETALIS. Rectangles in the diagram are used to depict certain processes in

1ETALIS: http://code.google.com/p/etalis/

156 12. Implementation

ETALIS rules in
internal format for

complex event
processing

CEP Binarizer
binarizer.P

ETALIS binary
rules

ETALIS
Compiler

compiler.P, flags.P

Prolog System
(SWI, YAP, Sicstus, XSB,… Prolog)

ETALIS tokenizer grammar and
Parser

parser.P, etalis.P

ETALIS CEP rules

Event streams

Complex events

Prolog code

Prolog interpreter rules
{(storage.P),

CPE consumption policies (executer.P),
garbage collection (garbage_collection.P),

Java interface (java_interface.P),
logging (logging.P),

network interface (network_tcp_interface.P),
Alan’s interval algebra, string library,

sets, lists, counters (utils.P),...}

External System
(action triggers)

Background
knowledge

Figure 12.1: System Diagram: ETALIS

ETALIS, while ovals represent either (external/internal) inputs to these processes, or

(external/internal) outputs from them.

The system diagram starts by user-written ETALIS CEP rules provided as input. These
rules specify complex event patterns according to ELE (Chapter 6). ETALIS validates

these rules with respect to the language grammar, and parses them2. As a result, the

system produces rules in an internal format, ready for the process of binarization (see

Figure 12.1).

Recall that the binarization eases internal processes in ETALIS for three reasons. First,

it is easier to implement an event operator when events are considered on a “two by

two” basis. Second, binarization increases the possibility for sharing among (com-

plex) events and intermediate events (when the granularity of intermediate patterns is

reduced). Third, the binarization facilitates the management of rules. Each new use of

2“parser.P” and “etalis.P” are source files that implement the corresponding functionality (see Fig-

ure 12.1) in our open source implementation http://code.google.com/p/etalis/.

12.1. ETALIS Architecture 157

an event (in a pattern) amounts to appending one or more rules to an existing rule set.

What is important is that we never need to modify the existing rule set3.

The ETALIS Compiler compiles binary rules into EDBC rules, i.e., executable rules

(written in Prolog). EDBC rules are a basic mechanism in ETALIS that “converts” the

request-response computation into an event-driven processing. It is a mechanism which

enables an inference system to derive a complex event at the moment it really occurs

(not at the moment when a request is posed). The notable property of these rules is

that they are event-driven, i.e., a rule will be evaluated when an event, that matches the

rule’s head, occurs (see Chapter 7).

ETALIS compiler features a number of flags which can be set to tune the compiler4.

Two important ones are the revision and out-of-order flag. The former flag enables

the compiler to deal with retractions in Event Processing (EP) (see Chapter 9), and the

latter one enables out-of-order EP (Chapter 10).

Complex event patterns may be accompanied with background knowledge to describe

the domain of interest (as discussed in Section 8.4). Domain knowledge is also ex-

pected to be expressed either in Prolog (as shown in Example Application in Subsec-

tion 6.4.1), or in a form of an RDFS ontology (as presented in Example Application in

Section 11.5).

Compiled rules, together with the domain knowledge, are executed by a standard Prolog

system (e.g., SWI, YAP, XSB etc.). EDBC rules are triggered by events from Event
streams (see Figure 12.1). As a result EDBC rules continuously derive complex events

as soon as they happen.

Let us briefly explain the oval on the right hand side of Figure 12.1. Apart from pattern

rules, detection of complex events also depends on consumption policies. Other impor-

tant matters in ETALIS are garbage collection, and additional algebra for reasoning
about time intervals, see Figure 12.1.

In EP, consumption policies (or event contexts [CKAK94]) deal with an issue of select-
ing particular events occurrences when there are more than one event instance applica-

ble and consuming events after they have been used in patterns. We have implemented

three widely used consumption policies: recent, chronological, and unrestricted policy

(see Section 7.4).

ETALIS also features three memory management techniques to prune outdated events.

The first technique modifies the binarization step by pushing time constraints5. The

technique ensures that time constraints are checked during the incremental process of

events detection. This enables ETALIS to refrain from detecting intermediary (sub-

complex) events when time constraints are violated (i.e., time windows have expired).

Our second solution for garbage collection is to prune expired events by using periodic

events, generated by the system. This technique does not check the constraints at each

3This property holds, even when patterns with negations are added.
4Flags are stored in flags.P file (see Figure 12.1).
5users are encouraged to write patterns with certain time window constraints

158 12. Implementation

step during the incremental event detection. Instead, events are pruned periodically

as system events are triggered. The third technique is a variation of the second one,

but it enables a pruning window to be established for each pattern individually (see

Section 10.3).

As an algebra for reasoning about time intervals we have implemented Allen’s temporal

relationships [Alle83]. Using this algebra, the system can also reason about intervals of

detected complex events (e.g., to discover whether one complex event occurred during

another complex event, or whether one complex event starts/finishes another event).

For more details see Chapter 6.

Finally, it is worth noting that detected complex events are fed back into the system,

either to produce more complex events, or to trigger external actions in a timely fash-

ion. Typically, this situation happens when iterative event patterns are processed (see

Section 7.3). Recursion in the system diagram is denoted by the backward (dashed)

edge, see Figure 12.1.

12.2 EP-SPARQL Implementation

Event Processing SPARQL (EP-SPARQL) is implemented as an extension to ELE (see

Section 12.1). A system diagram of the EP-SPARQL extension has been introduced in

[ARFS12b], and is shown in Figure 12.2.

EP-SPARQL parser
ep_sparql_parser.P

EP-SPARQL
Prolog internal

term format

EP-SPARQL to
ETALIS compiler

ep_sparql.P

rules in internal format

ETALIS ELE
System

RDF event
streams

EP-SPARQL
query results

(complex events)

ETALIS
(see details in

ETALIS System
Diagram)

EP-SPARQL

RDF XML parser
rdf_xml_parser.P

Background
knowledge

Figure 12.2: System Diagram: EP-SPARQL

A user writes EP-SPARQL queries and deploys them into the engine. These queries

act similarly as continuous queries in Data Stream Management Systems (DSMS), i.e.,

once registered, queries are continuously evaluated with respect to streaming data. In

12.3. Interacting with ETALIS 159

our implementation, the engine incrementally matches incoming data (events), thereby

producing complex events as soon as they occur (see Section 12.1).

Since event streams and a background knowledge are both represented in RDF, we use

an RDF/XML parser to convert inputs into an internal ETALIS format (see Figure 12.2).

For event streams, the conversion is applied on the fly. It is a straight forward mapping

that typically does not cause a significant overhead at run time. As background knowl-

edge (e.g., an RDFS ontology) is static knowledge, it is converted into a Prolog program

at design time. Similarly, we have also implemented a parser for the EP-SPARQL syn-

tax and a compiler which produces EDBC rules out of EP-SPARQL expressions. All

three inputs (EP-SPARQL queries, event streams and a domain ontology) are then fed

into ETALIS, where the processing (as described in Section 12.1) takes place.

12.3 Interacting with ETALIS

An EP system is typically used as a part of an event processing network (EPN). In Sec-

tion 2.3 we talked about the three main building blocks of an EPN: event producers,

event consumers, and event processing (see Figure 2.1). Figure 12.3 is similar in re-

spect that it shows event producers (the left hand part of the figure), event consumers

(the right hand part) and ETALIS itself (the middle part), as an an intermediate event

processing in between. To enable an easy connection to event producers and consumers,

ETALIS features two programming interfaces written in Prolog and Java.

The Prolog interface is the standard one (since ETALIS is written in Prolog). A user

may acces ETALIS either through an application programming interface (API), or

through the command line interface. The command line interface is suitable for devel-

opment, testing, and deployment of an event-driven application.

Figure 12.3: ETALIS interfaced with event producers and event consumers

Since EP tools belong to middleware systems (where they serve as a part of other com-

plex systems), ETALIS is designed to be interfaced from other programming languages

160 12. Implementation

(e.g., Java, C and C#). This also enables ETALIS to be combined with existing pro-

grams and libraries. We have built one foreign language interface for Java6. The in-

terface enables event producers to pass events to ETALIS, as well as event consumers

to get events from the system. It also provides a convenient way for ETALIS to com-

municate with third part software components via the network, i.e., through Hypertext

Transfer Protocol (HTTP), Transmission Control Protocol (TCP), JavaMessage Service

(JMS) and other means for network communication enabled by Java (see Figure 12.3).

Finally we provide two interfaces for persisting events in a database, i.e., Java Database

Connectivity (JDBC), and Open Database Connectivity (ODBC) (see Figure 12.3).

As a future work we plan to build a graphic user interface, thereby providing another

convenient way to interact with ETALIS.

More information about deployment and interactions with ETALIS can be found on

ETALIS web site7.

6jtalis: http://code.google.com/p/etalis/source/browse/#svn%2Fjtalis
7ETALIS: http://code.google.com/p/etalis/

13
Evaluation

In this chapter we present experimental results obtained with ETALIS. We perform eval-

uation tests for various aspects introduced in this work. Basic event patterns of ELE –

introduced in Chapter 6 – are tested in Subsection 13.1.2. Tests where EP is intervened

by background knowledge processing are presented in Subsection 13.1.3. From there

on, we continue by presenting evaluations of extensions of ETALIS. Subsection 13.1.4

presents evaluation results for retractable EP, Subsection 13.1.5 shows tests related to

out-of-order EP, and Subsection 13.1.6 provides evaluation of iterative and aggregative

patterns. We conclude the performance evaluation of ETALIS by providing a set of

EP-SPARQL tests in Subsection 13.1.7. Where possible, we compare the performance

of ETALIS with Esper1 – a well known open source EP system.

Finally, to show usefulness of ETALIS in practise, we present an implementation of a

concrete use case study in Section 13.2.

13.1 Performance Evaluation

Performance evaluation tests discussed in this chapter show throughput or latency cal-

culated for various aspects introduced in this work. As presented in [EtRS11], there

exist different definitions for these two metrics. For instance, throughput can be mea-

sured in following ways: input throughput (measures the number of input events that

the system can “digest” within a given time interval), processing throughput (measures

1Esper: http://esper.codehaus.org

162 13. Evaluation

the total processing times divided by the number of event processed within a given time

interval), and output throughput (measures the number of events that were emitted to

event consumers within a given time interval). In our tests we have adopted the input

throughput, where the percentage of event instances that are processed in patterns is

high.

Regarding the latency, we measure the latency of each event. For events that don’t

create derived events directly, we measure the time until the system finishes processing

them [EtRS11].

The test cases presented here were carried out on a workstation with Intel Core Quad

CPU Q9400 2,66GHz, 8GB of RAM running Windows Vista x642. Since our proto-

type automatically compiles the user-defined complex event descriptions into Prolog

rules, we used SWI Prolog version 5.6.643 and YAP Prolog version 5.1.34. All tested

engines ran in a single dedicated CPU core. The whole output generated from all tests

is validated, so we have made sure that all tested systems produce the same, correct,

results.

13.1.1 Data Sets

To run tests, we have implemented an event stream generator, which creates time series

data with probabilistic values. We have also used a number of real data sets. In particu-

lar, event streams with stock data available from Google Finance5 and Yahoo Finance6

have been used, as well as live sensor readings from the National Data Buoy Center

(NDBC)7.

To test stream reasoning (SR) characteristics of ETALIS we use various domain ontolo-

gies. For instance, to compute subclass relations on the fly we use the Ethan Plants

ontology8, or to explore routes in Milan we use the Milan ontology9. Among other

information sources, GeoNames ontologies10 were utilised to identify important geo-

graphic locations (e.g., schools, hospitals, motorways, airports, tunnels, railroads etc.)

affected by weather observations detected in our use case.

2Due to unavailability of the workstation, some tests were carried out on a workstation with Pentium

dual-core processor 2GHz CPU and 3GB memory running on Ubuntu Linux.
3SWI Prolog http://www.swi-prolog.org/.
4YAP Prolog: http://www.dcc.fc.up.pt/~vsc/Yap/. Our prototype ran by YAP was using Windows

x32, as we could not find YAP version x64 available. Other two systems (Esper and SWI) were running

on Windows x64
5Google Finance: http://www.google.com/finance
6Yahoo Finance: http://finance.yahoo.com/
7NDBC: http://www.ndbc.noaa.gov/
8http://spire.umbc.edu/ontologies/EthanPlants.owl#Tracheobionta
9The Milan ontology was developed in the scope of LarCK project http://www.larkc.eu/, and was gen-

erously provided to us by AMAT Milano and CEFRIEL team: http://www.larkc.eu/resources/published-

data-sources/
10GeoNames Ontolgy: http://www.geonames.org/ontology

13.1. Performance Evaluation 163

13.1.2 Run-Time Tests for Common Event Patterns

We start the evaluation of ETALIS by presenting experiments related to the sequence

operator (SEQ) formally defined in Chapter 6. In particular, Figure 13.1 (a) shows

the throughput measurements for a pattern that exhibits a sequence of three events and

the join operation on their Id attribute, see rule (13.1). The Y-axis shows the event

throughput achieved by the three different EP systems: Esper 3.3.0, and our prototype

(P) running on SWI and YAP Prolog, denoted as P-SWI and P-YAP respectively. The X-

axis shows different sizes of input event streams, used for detection of complex events

as defined by rule (13.1). In this test, our system outperforms Esper 3.3.0. The through-

put achieved by the YAP engine is more than twice as big as the one produced by Esper.

Also comparing YAP and SWI, our implementation is significantly faster on YAP. This

happens because YAP implements several optimizations to improve indexing.

In Figure 13.1 (b) we have evaluated patterns which – apart from the join operation

– also contain a selection parameter K (see rule (13.2)). K varies the selectivity of

the Y attribute, ranging from 10% till 100%. When 10%-50% of the input events are

selected, Esper shows significant advantage over our system. Hence in the future we

need to review our implementation so to select events as early as possible. When all

events are taken into account (100% selectivity), our system running on YAP is slightly

better than Esper. We did this test on a stream of 25000 artificially generated events.

0
50

100
150
200
250
300
350
400
450
500

10% 50% 100%

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Predicate selectivity

Esper 3.3.0 P-SWI P-YAP

0

5

10

15

20

25

30

35

25 50 75 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Event stream size x 1000

Esper 3.3.0 P-SWI P-YAP

Figure 13.1: Experiments for sequence operator - (a) Throughput (b) Throughput vs. Predicate

Selectivity

e← a SEQ b SEQ c. (13.1)

c(Id,X, Y)← a(Id,X) SEQ b(Id, Y) WHERE (Y < K). (13.2)

In Figure 13.2 (a) we extended the tests (for 100% selectivity) to check out whether the

system throughput will remain constant for bigger streams (for example, 50K-100K).

Figure 13.2 (b) presents experimental results for negation (NOT). The figure shows

results obtained by evaluating a negated pattern from rule (13.3). The pattern is detected

when an instance of a is followed by an occurrence of b with no c in between the two

events. We have generated input event streams with different percentage of occurrences

of events of type c (that is, 10%-100%). We see that our prototype (either run by SWI

164 13. Evaluation

0

5

10

15

20

25

30

25 50 75 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Event stream size x 1000

Esper 3.3.0 P-SWI P-YAP

0
5

10
15
20
25
30
35
40
45

10 50 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Selectivity of negated events

Esper 3.3.0 P-SWI P-Yap

Figure 13.2: (a) Sequence - Throughput vs. Workload Change (b) Negation - Throughput vs.

Selectivity

or YAP) dominates over Esper. We also notice that the throughput increases as the

percentage of c occurrences increases. This is happening as the number of detected

complex events decreases by increasing the frequency of occurrences of c. The test is

computed on a stream of 25K.

d(Id,X, Y)← NOT(c(Id, Z)).[a(Id,X),b(Id, Y)]. (13.3)

0
5

10
15
20
25
30
35
40
45
50

25 50 75 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Event stream size x 1000

Esper 3.3.0 P-SWI P-Yap

0

5

10

15

20

25

30

35

40

25 50 75 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Event stream size x 1000

Esper 3.3.0 Etalis - SWI Etalis - Yap

Figure 13.3: (a) Negation - Throughput vs. Workload Change (b) Conjunction - Throughput

.

Figure 13.3 (a) shows that the throughput does not go down even though we increased

the stream size (for example, 50K-100K).

We have tested the conjunction operator (AND) too. The pattern is specified by rule

(13.4), and results are presented in Figure 13.3 (b). Esper was faster in this test. Our

algorithm for handling conjunction contains twice as many rules as the algorithm for

sequence (that is, two events in a conjunct may occur in any order). As a future work,

we will try to simplify the conjunction algorithm.

d(Id,X, Y)← a(Id,X) AND b(Id, Y) AND c(Id, Z). (13.4)

Figure 13.4 (a) shows results for disjunction (OR), and evaluation of rule (13.5). In

this test our system running on YAP was the most effective. The throughput for this

13.1. Performance Evaluation 165

test is similar to results for sequence (Figure 13.1 (a)); this means that the presence of

a disjunct does not affect the performance of the sequence.

We have also tested computation of the transitive closure (see rule (13.6)). The through-

put change for different sizes of event streams are presented in Figure 13.4 (b). Eval-

uation results were obtained under chronological consumption policy. Our system on

YAP was the fastest, however the difference between evaluations running on YAP and

SWI was huge (as discussed earlier, due to better optimizations for indexing in YAP).

Finally, Figure 13.5 compares the tested systems with respect to event plan sharing.

We have run an event program containing the same pattern (similar to rule (13.1)) mul-

tiplying the pattern one, eight, and sixteen times. The focus was on examining how

well the systems can exhibit computation sharing among patterns. In our prototype, we

have implemented plan sharing by decoupling events in a complex event pattern. A

pattern is represented as a set of binary events, and each couple can be shared among

multiply complex event patterns. Despite this feature, our system run by YAP was not

resistant to increase of pattern rules. However our prototype executed on SWI was still

faster than Esper, see Figure 13.5.

d(Id,X, Y)← a(Id,X) SEQ (b(Id, Y) OR c(Id, Y)). (13.5)

0

5

10

15

20

25

30

25 50 75 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Event stream size x 1000

Esper 3.3.0 Etalis - SWI Etalis - Yap

0
1
2
3
4
5
6
7
8
9

10

2,5 5 7,5 10

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Event stream size x 1000

Esper 3.3.0 P-SWI P-Yap

Figure 13.4: (a) Experiments for Disjunction Operator - Throughput (b) Evaluation of Transi-

tive Closure - Workload Change

.

tc(X, Y)← a(X, Y).

tc(X, Y)← tc(X,Z) SEQ a(Z, Y).
(13.6)

It is worth mentioning that the cost of compilation of an ELE event program into Prolog

rules is minor. Typically a program is compiled in few micro seconds. Hence the

compilation phase does not cause a significant overhead. This observation holds for

other tests in this chapter, as well as for use of ELE and ETALIS in genaral.

In this subsection, we have provided measurement results for few common event oper-

ators. Even though there is a lot of room for improvements, preliminary results show

that logic-based event processing has the capability to achieve significant performance.

166 13. Evaluation

0

5

10

15

20

25

30

1 8 16

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Number of queries

Esper 3.3.0 P-SWI P-Yap

Figure 13.5: Experiment for Testing Computation Sharing for Sequence Operator

Taking inference capability into account, logic-based EP goes beyond the state of the art

in providing a powerful combination of deductive capabilities and temporal features11,
while at the same time exhibiting competitive run-time characteristics. We will present

inference capability of ETALIS in the following subsection, as well as in other parts of

this chapter.

13.1.3 Performance Evaluation for Knowledge-Based Event Processing

As a concrete example, we show the evaluation of the trendIncrease complex pat-

tern from Subsection 9.2.1. We varied the pool of companies in the transitive closure,

ranging from 100 to 100,000 linked companies. Figure 13.6 shows the throughput in

thousands of events/second, obtained after detection of stockIcr events. To prove the

supply-chain connectivity between two companies, the system needs to evaluate tran-

sitive closure rules, i.e., it needs to perform SR (see inSupChain rules from Subsec-

tion 9.2.1). It can be seen that the computation of the recursive relation inSupChain

has a relatively small effect, ∼10% (the throughput dropped from 24148 to 21739

Events/Sec), on the overall complex processing execution time (even when the system

needs to traverse 100,000 links in between two stockIcr events). Our system detects

more 20000 complex events per second, where for each complex event, the system

additionally needed to process background knowledge consisting of 100000 facts.

In the remaining parts of this chapter we will show few additional tests related to

knowledge-based Event Processing.

13.1.4 Performance Evaluation for Event Processing with Retractions

Figure 13.7 (a) shows experimental results we obtained for an event pattern represented

by rule (13.7). In particular, Figure 13.7 (a) shows the throughput comparison with and

without handling event revision. We did the measurement for a pattern that exhibits

11We have skipped comparative tests requiring interval-based operators (for example, PAR ,

DURING and so forth), as Esper language semantics is based on time points and does not support these

operators.

13.1. Performance Evaluation 167

0

10

20

30

100 1000 10000 100000

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Recursion depth

Throughput Change

Figure 13.6: EP combined with Stream Reasoning

different event operators (i.e., BIN instantiated by SEQ , AND , OR) of two events

and the join operation on their ID attribute. The Y-axis shows the event throughput

achieved by our prototype when events are retractable and are not retractable (denoted

by Revision Flag on/off, respectively). The X-axis shows different event operators in

rule (13.7). The performance loss when revision is handled is moderate, and it happens

mainly due to the fact that more events (goals) are kept in memory; hence more data

needs to be indexed and processed.

0

5

10

15

20

25

30

SEQ AND PAR OR

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Operator

Revision Flag off Revision Flag on

0

5

10

15

20

25

30

5% 10% 20%

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Percentage of revised events

Revision Flag off Revision Flag on

Figure 13.7: (a) Throughput comparison (b) Negation and revision

.

e(ID)← a(ID) BIN b(ID). (13.7)

We also present an in-comparison throughput for negation. The tested pattern with

negation is depicted by rule (13.8). The pattern detects an event a followed by an

event b, with no occurrence of an event c in between (provided that all event instances

must have the same ID). Figure 13.7 (b) shows evaluation results for this pattern. We

compare two throughputs, one obtained by processing streams without retracted events;

and another with retracted events. The percentage of negated events (i.e., those of type

c) in both streams varies from 5% to 20%. Additionally, streams with retracted events

contain negated events with the same percentage (i.e., from 5% to 20%). The achieved

results are similar to those from other operators.

168 13. Evaluation

e(ID)← NOT(c(ID)).[a(ID) SEQ b(ID)]. (13.8)

0

10

20

30

0% 5% 10% 20%

Th
ro

ug
hp

ut
 (1

00
0

x
E

ve
nt

s/
S

ec
)

Percentage of revised event a

Throughput change

0

10

20

30

0% 5% 10% 20%

Th
ro

ug
hp

ut
 (1

00
0

x
E

ve
nt

s/
S

ec
)

Percentage of revised event a

Throughput change

Figure 13.8: (a) Sequence - 1st event retracted (b) 2nd event retracted

Further, we tested how retraction of certain events and percentage of retracted events

influence the overall performance. Figure 13.8 (a) and Figure 13.8 (b) show how re-

traction of each of the two constituting events in the sequence (rule (13.7)) influences

the performance12. In Figure 13.8 (a), only event a is retractable while in Figure 13.8

(b), event b is retracted. We again compare the throughput with and without revision

(retraction), although this time by varying the percentage of retracted events (from 0%,

i.e., no revision till 20%).

To test the parallel operator, events in the pattern must have intervals with a non-zero

overlap (i.e., synchronous events). One such pattern is presented with rule (13.9). Eval-

uation results for this pattern are shown in Figure 13.9 (a).

e(ID)← (a(ID) SEQ b(ID)) PAR c(ID). (13.9)

For sake of completeness, we made equivalent tests for conjunction and disjunction

(based on rule (13.7)). Results are presented in Figure 13.9 (b) and Figure 13.10 (a), re-

spectively. Overall we see that the throughput for all operators does not decline rapidly

even for some rather big percentages of retracted events (e.g., 20%).

We have also tested the latency caused by retraction of a hierarchy of complex events

(i.e., not only complex events detected directly from an input stream). Complex events

in this test are chained events, as represented by rule (13.10). That is, when event

e1 occurs, it will trigger other n events in a chain. Also if event e1 is retracted, all

n chained events will be retracted. We have created event chains of different sizes,

ranging from 1000 events to 50000 events. Once the chains are created, we retract

the first event in the chain and measure the time required to retract all other triggered

12Recall that each pattern – written in the proposed formalism – is broken into binarized patterns (see

Section 13.1), the components of which are treated differently upon execution (goal assertion vs. goal

retraction). Hence we could speculate whether there could exist a systematic difference depending on

what component of a binary pattern is retracted.

13.1. Performance Evaluation 169

0

10

20

30

0% 5% 10% 20%

Th
ro

ug
hp

ut
 (1

00
0

x
E

ve
nt

s/
S

ec
)

Percentage of revised event a

Throughput Change

0

10

20

30

0% 5% 10% 20%

Th
ro

ug
hp

ut
 (1

00
0

x
E

ve
nt

s/
S

ec
)

Percentage of revised event a

Throughput Change

Figure 13.9: (a) Parallel - 1st event retracted (b) Conjunction - 1st event retracted

events. Figure 13.10 (b) shows the experiment results. Retraction of 1000 event is

done in 31 ms; and until 10000 events, the delay seems fairly negligible (less than a

second). However to retract 20000 and more (e.g., 50000 events), the time increases

exponentially (i.e., approx. 3 s and 16 s). Note that this test is rather hard as we

assumed that all 50000 events have the same ID, so no goal could have been removed

while computing and retracting all of them. Obviously, this fact has its consequences

on the performance.

e2(ID)← e1(ID).

e3(ID)← e2(ID).

...

en+1(ID)← en(ID).

(13.10)

0

10

20

30

40

50

60

0.031 0.078 0.297 0.905 2.902 16.303

Ti
m

e
(S

ec
)

Number of retracted events

Latency

0

2

4

6

8

10

12

14

0% 5% 10% 20%

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Percentage of revised event a

Throughput Change

Figure 13.10: (a) Disjunction - 1st event retracted (b) Event latency
.

We have implemented time-based windows for all operators with revision. In general,

windows in EP are used to discard outdated events and hence to free up the system

memory. A revision time-based window specifies a period of time in which retraction

of an event, as well as, retraction of its consequences (on other complex events) is still

possible. We have tested how the length of the revision time-based windows influence
the performance of our implementation. The length X from rule (13.11) was varied

between 0.1 s and∞ (i.e., revision possible anywhere in the stream). It is obvious that

170 13. Evaluation

for X = ∞ and an infinite input stream, the system will get out of memory at some

point. Therefore we constrained the input stream to 50000 events. The percentage of

revision tuples was kept constant (1%). Figure 13.11 (a) shows results of this test. We

see that the time required to process the input stream goes up (linearly) as the revision

window increases. This happens simply as for larger windows more revisions need to

be computed.

rule1([property(window,X)]) : e(ID)← a(ID) SEQ b(ID). (13.11)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0,1 1 5 10 ∞

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Window Time (Sec)

Execution Time

0
2
4
6
8

10
12
14
16
18

0% 0,50% 1% 2% 5% 10%
Th

ro
ug

hp
ut

 (1
00

0
x

Ev
en

ts
/S

ec
)

Price Increase

with revision without revision

Figure 13.11: (a) Revision time-based windows (b) Stock price change on a real data set

All presented tests so far were carried out with probabilistic synthetic data streams. We

could not find available real data sets with revision tuples (as they are usually kept

proprietarily). Still to present a more realistic scenario, we took a stream of IBM stocks

from 1962. year up to now, provided by Yahoo Finance13. We inserted 5% of revision

tuples to this stream artificially. The format of events provided by Yahoo Finance is

stock(ID,Date, Opn, High, Low,Cls, V ol, Adj) where ID is a company ID; Date
is a current date; Opn,High, Low,Cls denote the opening, the highest, the lowest, and

closing price, respectively; Adj is the closing price adjusted for dividends and splits.

The event pattern is represented by rule (13.12). We monitored the price increase of

two successive stock updates with respect to Adj data. Additionally a filter for the

price increase was specified byX , whereX varied between 0% and 10%. Figure 13.11

(b) compares results obtained for the original stream and the one modified with revision

tuples.

stockIncr(ID,Adj1, Adj2)←
stock(ID,Date1, Opn1, High1, Low1, Cls1, V ol1, Adj1)

SEQ

stock(ID,Date2, Opn2, High2, Low2, Cls2, V ol2, Adj2)

WHERE (Adj1 ∗X < Adj2).

(13.12)

First, we see that the throughput without revision is lower than the one obtained from a

similar test (see Figure 13.7 (a)). Our closer investigation has shown that this difference

13Yahoo Finance: http://finance.yahoo.com/

13.1. Performance Evaluation 171

was not caused by the use of real data set. Instead it has to do with more efficient

indexing in the former test (Figure 13.7 (a)). Note that in the real stream, all events

are of the same type (i.e., stock) whereas in the synthetic data set we have two types

(i.e., a and b). Our engine is more effective when events are discriminated upon their

types (rather than on data attributes, e.g., an ID). Second, we can observe that the

throughput without revision slightly increases as the filter condition gets tighter. This

result is understandable, since in this case, less complex events, are computed and the

throughput (based on the input stream) raises up.

Finally, we notice that the difference between the throughput with revision and without

it at the beginning is significant, and then it gets smaller as the filter condition gets

tighter. This happens again as a consequence of the number of computed complex

events and their revisions. For 0%, the current price needs to be higher than the price of

the previous stock update, no matter for howmuch this is (X = 1). Since more complex

events and their revisions need to be processed, the difference is significant. For 10%,

the current price needs to be for more that 10% higher than the price of the previous

stock update (X = 1.1). In this case less revisions are computed, and consequentially

the difference is smaller.

13.1.5 Performance Evaluation of Out-of-Order Event Processing

We have implemented techniques for dealing with out-of-order events in ETALIS (see

Chapter 10). To test out-of-order event processing in our system, we have developed

an automatic event stream generator. We have created different sets of event streams

where probability of occurrences of out-of-order events varies between p=0 and p=0,33,

i.e., between 0% and 33% of events are out-of-order. We also discuss a test, conducted

with real data set.

In the remaining part of this section we report results obtained from the experiments.

Unfortunately, since related approaches for dealing with out-of-order events [LLDR+07,

BGAH07, BFSF08] are not open source systems we could not compare performance

of ETALIS with them.

0.0

10.0

20.0

30.0

40.0

50.0

0% 10% 20% 33%

Percentage�of�out�of�order

Th
ro

ug
hp

ut
�(1

00
0�

x�
Ev

en
ts

/S
ec

)

Out�of�order In�order

80.0
82.0
84.0
86.0
88.0
90.0
92.0
94.0

0% 10% 20% 33%

Percentage�of�out�of�order

M
em

or
y�

co
ns

um
pt

io
n�

in
�M

B

Out�of�order In�order

Figure 13.12: (a) Throughput comparison (b) Memory consumption

172 13. Evaluation

As a test program in this experiment, we consider rules (10.1)-(10.2). The test program

is executed in two modes: first with the in-order events, and second with streams that

contain out-of-order events.

Figure 13.12 (a) shows experimental results we obtained for the sequence operator (i.e.,
rules (10.1)-(10.2)). In particular, Figure 13.12 (a) shows the throughput comparison

with in-order and out-of-order event streams achieved by ETALIS (the Y-axis). The X-

axis shows different percentages of out-of-order events, ranging between 0% (in-order

events) until 33% (in average, every third event in the stream is an out-of-order event).

We see that the performance loss when out-of-order events are handled is moderate

even for high percentage of out-of-order events. It happens mainly due to the fact

that more events (goals) are kept in memory; hence more data needs to be indexed

and processed. This is evident in Figure 13.12 (b) which shows considerable bigger

memory consumption with out-of-order events. However ETALIS was capable to keep

memory consumption constant, even for frequent out-of order events.

For example, an approach presented in [LLDR+07] completes a similar test with a

60,000 stream in 200 seconds, a 80,000 stream in 400 seconds, i.e., approximatively

between 200 and 300 events/second (see Figure 9 in [LLDR+07]). It is also evident

that the presented throughput depends exponentially on the number of events. The

results were obtained on two Pentium 4 3,0 GHz machines, each with 512M RAM. Our

tests on ETALIS were performed on an 100000 event streams, and we have achieved

a linearly-dependent throughput ranging between 30000 and 40000 events per second

(for different percentages of out-of-order events). Moreover our approach to processing

out-of-order events does not introduces delay through buffering and reordering as it

occurs in related work in [LLDR+07, BGAH07, BFSF08].

13.1.5.1 Knowledge-Based Event Processing with Out-of-Order events

We continue tests related to EP and background knowledge processing. Additionally,

we assume that events may come out-of-order . To demonstrate this scenario, let us

consider the following example. Suppose we want to detect the stock price increase in

a supply chain system of companies. The following pattern monitors two stock price
increases in two companies (occurred within certain time window), and checks whether

the companies are parts of the supply chain system.

trendIncrease()←(
stockIcr(CompanyA) SEQ stockIcr(CompanyB)

)
.10

WHERE inSupChain(CompanyA,CompanyB).

The supply chain system is represented as a set of explicit links between companies,

e.g., with linked(CompanyA,CompanyB) we represent two interconnected busi-

nesses involved in the ultimate provision of a product. We assume that such explicit

relationships are continuously being updated via according information events (e.g., a
data mining tool processes different information sources and generates these events).

13.1. Performance Evaluation 173

The following transitive closure pattern can then be used to span over semantic relation-

ships between companies scenario where direct supply relationships are represented

explicitly, and hence discover implicit relationships.

inSupChain(X, Y)← linked(X, Y).

inSupChain(X,Z)← linked(X, Y) AND inSupChain(Y, Z).

We tested this application scenario with presence of out-of-order events, and results are
shown in Figure 13.13 and Figure 13.14. In particular, Figure 13.13 shows throughput

obtained for trendIncrease complex events. To detect a trendIncrease event,

ETALIS needs to detect stock price increases of two companies and check the supply-
chain connectivity (inSupChain relations) among them. To prove inSupChain

relations the system needs to traverse up to 1000 links between companies’ relations in

real time (on the fly) when respective events occur. Percentage of out-of-order events

was 20%. For this, rather hard test, we see that throughput declines as ETALIS needs to

evaluate more background knowledge (and out-of-order events occur), though memory

consumption is kept constant.

0

10

20

30

100 500 1000

Recursion depth

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

) Throughput change

Figure 13.13: Throughput change as the

size of companies’ relations

varies from 100 to 1000

0

40

80

120

100 500 1000

Recursion depth

M
em

or
y

co
ns

um
p�

on
 in

 M
B

Memory change

Figure 13.14: Memory consumption in

the knowledge-based EP

test

13.1.5.2 Test with Real Dataset and Out-of-Order Events

So far, the presented tests with out-of-order events were carried out with probabilistic

synthetic data streams.

Similarly as for retracted events, we could not find real out-of-order data sets available

(as they are usually kept proprietarily). Still to present a more realistic scenario, we

have reconstructed the test with a history stream of IBM stocks (see Subsection 13.1.4).

We have modified timestamps of 10% of events so to appear as out-of-order. Re-

call that format of events, provided by Yahoo Finance, is stock(ID,Date, Opn,

High, Low,Cls, V ol, Adj) where ID is a company ID; Date is a current date; Opn,

High, Low, Cls denote the opening, the highest, the lowest, and closing price, respec-

tively; Adj is the closing price adjusted for dividends and splits. The event pattern is

174 13. Evaluation

represented by rule (13.12) from Subsection 13.1.4. We monitored the price increase

of two successive stock updates with respect to Adj data. Additionally, a filter for the

price increase was specified byX , whereX varied between 0% and 10%. Figure 13.15

(a) compares results obtained for the original stream (in-order) and the one modified

with out-of-order timestamps. The second graph in Figure 13.15 (b) shows the memory

consumption for these two cases.

0
5

10
15
20
25
30
35

0% 0.50% 1% 2% 5% 10%
Price�increase

Th
ro

ug
hp

ut
�(e

ve
nt

s/
se

c)

In�order� Out�of�order

0
10
20
30
40
50
60
70

0% 0.50% 1% 2% 5% 10%

Price�increase
M

em
or

y�
co

ns
um

pt
io

n�
in

�M
B

In�order Out�of�order

Figure 13.15: Stock price change on a real data set: (a) throughput (b) memory consumption

We see that the throughput with in-order and out-of-order events is different due to

the price we pay for computation of delayed events. We can also observe that the

throughput with and without out-of-order events slightly increases as the filter condition

gets tighter. This result is understandable since in this case less complex events are

computed and the throughput (based on the input stream) raises up.

13.1.6 Performance Evaluation for Iterative Patterns

We have conducted few performance tests related to iterative and aggregative patterns

[ARFS11a]. For an introduction to iterative and aggregative rules, the interested reader

is referred to Section 7.3 and [ARFS11a].

13.1.6.1 Test 1: Sum with Sequance

We have evaluated the sum aggregation function, defined by iterative pattern (13.13).

The moving sum is computed over the stream of complex events. Complex events are

defined as a sequence of two events, joined on their ID (see pattern rule (13.14)). The

sum is aggregated on the attribute X of complex events a(ID,X, Y). Figure 13.16

shows the performance results. In particular, the figure shows how the throughput de-

pends on different sizes of the sliding window. Our system ETALIS was run in two

modes: using the window implementation based on the stack and the difference lists,

denoted as P-Stack and P-Dlists, respectively. In both modes our implementation has

outperformed Esper 3.3.0., see Figure 13.16.

13.1. Performance Evaluation 175

sum(StartCntr = 0, StartV al)← start_event(StartV al).

sum(OldCntr + 1, NewSum)←
sum(OldCntr + 1, OldSum) SEQ a(AggArg)

WHERE {assert(AggArg),
window(WndwSize,OldCntr,

OldSum+ AggArg,AggArg,NewSum)}.

window(WndwSize, OldCntr, CurrSum,NewSum) : −
OldCntr + 1 >= WindowSize− >

retract(LastItem),

NewSum = CurrSum− LastItem;

NewSum = CurrSum− LastItem.

(13.13)

a(ID,X, Y)← b(ID,X) AND c(ID, Y). (13.14)

0

5

10

15

20

25

30

100 500 1000 50000

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Window size

Esper 3.3.0 P-Stack P-Dlists

Figure 13.16: SUM-SEQ: throughput vs. window size

13.1.6.2 Test 2: Average with Sequence

In the next test we computed the moving average (avg) over the stream of complex

events. Complex events were defined by rule (13.14) where operator AND was re-

placed with the sequence operator (SEQ). Again, ETALIS was run with windows

implemented with the stack and different lists. Results are presented in Figure 13.17,

showing the dominance of our system.

13.1.6.3 Test 3: Maximum with Disjunction

When calculating aggregates, that require search over sliding windows (e.g., min, max,

etc.), it is convenient to use balanced binary search trees. For this purpose ETALIS uti-

lizes the red-black trees14. The following test shows computation of the maximum over

the stream of complex events using the iterative pattern (13.15). Complex events are de-

fined as a sequence that involves disjunction of events (see rule (13.16)). We searched

14Red-black tree: http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

176 13. Evaluation

0

5

10

15

20

25

30

100 1000 50000

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

window size

Esper 3.1.0 P-Stack P-RB trees

Figure 13.17: AVG-SEQ: throughput vs. window size

for the maximum on the attribute Y of complex events a(ID,X, Y). Figure 13.18

shows again the dominance of ETALIS over Esper. However, while Esper throughput

is rather constant, the performance of our implementation has been dropping for larger

windows (and then was kept constant). Hence we will continue experimenting with

other data structures to achieve a more stable throughput.

Results for the minimum aggregation function has shown to be similar as for the maxi-

mum, hence we omit the presentation of this test here.

max(StartCntr = 0, StartV al)← start_event(StartV al).

max(OldCntr + 1, NewMax)←
max(OldCntr + 1, OldMax) SEQ a(AggArg)

WHERE {assert(AggArg),
window(WndwSize,OldCntr,NewMax)}.

window(WndwSize,OldCntr,NewMax) : −
OldCntr + 1 >= WindowSize− >

retract(LastItem), get(NewMax);

get(NewMax).

(13.15)

a(ID,X, Y)← b(ID,X) SEQ (c(ID, Y) OR d(ID, Y)). (13.16)

Figure 13.18: MAX-OR: throughput vs. window size

13.1. Performance Evaluation 177

13.1.6.4 Test 4: Count with Negation

Finally, we present test results for the count pattern (13.17) over complex events with

negation, see rule (13.18). We computed the count aggregation for different event

streams. Probability of occurrence of the negated events was changed so to obtain

selectivity of 10%, 50%, and 100% (i.e., 10%, 50%, and 100% of complex events con-

tributed in iterative patterns). Results are shown in Figure 13.19 where we see that

ETALIS is around three times faster than Esper 3.3.0.

iteration(StartCntr = 0, StartV al)← start_event(StartV al).

iteration(NewCntr)←
iteration(OldCntr) SEQ a(AggArg)

WHERE {NewCntr = getCount([T2, T1]),window(3min)}.
(13.17)

a(ID,X, Y)← NOT(d(ID,Z)).[b(ID,X),c(ID, Y)] (13.18)

0
5

10
15
20
25
30
35
40
45

10 50 100

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Selectivity of negated events

Esper 3.3.0 P - Stack

Figure 13.19: COUNT-NOT: throughput vs. window size

In the remaining part of this section we present two application scenarios that involve –

apart from EP capabilities – on line knowledge processing and stream reasoning. Since
these features are beyond of Esper capabilities we show the evaluation for ETALIS

only.

13.1.6.5 Application 1: Supply Chain

EP can be combined with evaluation of background knowledge to detect real time sit-

uations of interest. To demonstrate this functionality, let us consider the following

example. Suppose we monitor a shipment delivery process in a supply chain system.

The following rules represent a complex pattern (delivery event), triggered by ev-

ery shipment event. This iterative pattern may be used to aggregate certain values

carried by shipment events; or for example, one can conclude whether the shipment

has been delivered within the expected time by observing timestamps of the first and

last delivery event.

178 13. Evaluation

delivery(Start, Start)← shipment(Start).

delivery(From, To)← delivery(From, PrevTo)

SEQ shipment(To)

WHERE inSupChain(From, To).

(13.19)

0

10

20

30

40

50

100 500 1000 5000

Recursion depth

Th
ro

ug
hp

ut
 (1

00
0

x
Ev

en
ts

/S
ec

)

Complex pa�ern 1
Complex pa�ern 2

50

70

90

110

100 500 1000 5000

Recursion depth

M
em

or
y

co
ns

um
p�

on
 in

 M
B

Memory change

Figure 13.20: (a) Throughput comparison (b) Memory consumption

In our example application there is an additional constraint, i.e., every shipment on its

way passes a number of sites where the delivery path is strictly defined. For exam-

ple, a shipment is sent from site number 3, it needs to pass the site number 4, and to

reach its final destination, the site number 5. Every shipment contains the next address

(To) it needs to reach on its way (see shipment(To)). To be accepted as a valid

delivery, this address is challenged with respect to the predefined path. Valid paths are

represented as sets of explicit links between sites, e.g., with linked(site3, site4) we

represent two connected sites. If for that shipment there exists also another connection

linked(site4, site5), the system can infer that the path site3, site4, site5 is a valid

path (performing the reasoning over the following transitive closure and available back-

ground knowledge):

inSupChain(X, Y) : − linked(X, Y).

inSupChain(X,Z) : − linked(X, Y) AND inSupChain(Y, Z).

The knowledge about connected (valid) paths represents our background knowledge.

This knowledge is continuously updated as some links may be temporary unavailable;

and other new links may be added in the system. Therefore the transitive closure

inSupChain is evaluated on the fly whenever a new shipment event occurs.

We have evaluated the iterative delivery pattern for different sizes of supply chain

paths (between 100 and 5000 links), see Figure 13.20 (a). We have achieved a high

throughput despite the fact that for each detected complex event, ETALIS additionally

needed to evaluate the background knowledge. In “Complex pattern 1” we enforce

that for each new shipment event, the valid path must be proved from its beginning

(see inSupChain(From, To) in rule (13.19)). For longer paths (e.g., 5000 links)

13.1. Performance Evaluation 179

this is a significant overhead, and we see that the throughput declines. If we however

relax the check so that for every new event the path must be checked with respect

only to the last delivery event, i.e., we replace inSupChain(From, To) with

inSupChain(PrevTo, To) in rule (13.19)) we obtain the throughput which is almost

constant (see “Complex pattern 2” in Figure 13.20 (a)).

Figure 13.21 (b) shows the total memory consumption for the presented test. There is

no difference in memory consumption for complex patterns 1 and 2, hence we present

only one curve.

13.1.6.6 Application 2: Stock Trade

There is an increasing need to process events from Web 2.0 sources (e.g., microblogs,

social networks etc.) in near real time. For example, tweets15 can be converted into

events and used for detection of some more complex situations. These situations rep-

resent topics of interest which need to be detected nearly in real time (e.g., developing

news stories such as buyout speculations).

We combined events from Twitter with stock events from Google Finance16 to detect

interesting situations. In particular, at the beginning of August 2010 we detected a

hot discussion on Twitter about a company 3PAR, and a buyout race for that company

between Hewlett-Packard and Dell Inc. This news event triggered ETALIS to monitor

real 3PAR stocks from Google Finance17. We have created two patterns, one to monitor

the average price (using a modified version of the pattern (13.13)) and the other one to

compute the maximum price (using the pattern (13.15)) on a 10-day sliding window.

0

5

10

15

20

25

30

35

01/0
1/10

01/0
2/10

01/0
3/10

01/0
4/10

01/0
5/10

01/0
6/10

01/0
7/10

01/0
8/10

01/0
9/10

3P
AR

 st
oc

k
pr

ic
e

in
 U

S
$

Avg Max

Figure 13.21: Average and maximum stock prices

15from Twitter: http://twitter.com/
16Google Finance: http://google.com/finance
17We have manually triggered ETALIS to start monitoring stocks of 3PAR. Proper detection of an

interesting situation should involve natural language processing and machine learning techniques, which

are out of scope of this work.

180 13. Evaluation

Figure 13.21 shows results from these two patterns. When the news event occurred

on Twitter (at the beginning of August 2010) there was no big difference between the

average and maximum values. Later, when it was certain that the buyout will happen

(around August 13th) 3PAR stocks rapidly increased.

In the test, our intention was to realize the machine processable detection of a period

of time in which trade of 3PAR shares could have been considered as indeed beneficial

(between the news event and August 13th). This is a viable approach to monitor stock

fluctuations, and to cope with the amount of information sources currently available on

line.

Moreover we extended this application to include also certain domain knowledge. Typ-

ically, companies related to 3PAR benefit as merger and acquisition rumours abound.

Therefore we created small domain knowledge containing companies related to 3PAR18.

When ETALIS started to monitor 3PAR stocks, it automatically applied the same event

patterns on related companies too. The monitoring showed that few other related com-

panies (e.g., Micron Technology, NetApp Inc., Dot Hill Systems Corp., Xyratex Ltd.,

ADPT Corporation, Compellent Technologies, Inc.) benefited from the bidding war

between Dell Inc and Hewlett-Packard. In particular, ETALIS registered that shares of

these companies, during the monitored period, increased between 10% and 50%.

In this subsection we arguably demonstrated the performance and versatility of the

introduced approach for iterative and aggregative patterns, combined in a declarative

framework for on line knowledge processing. First, we showed that such an approach

is efficient on a set of common aggregation functions. Second, it enables new powerful

applications that are beyond the state of the art. Third, we showed that with our ap-

proach it is possible to realise not only a set of event patterns, but rather event-driven
applications which include expressive event patterns, as well as domain knowledge,

and enable inference procedures under time constraints.

13.1.7 Experimental Results for EP-SPARQL

To evaluate EP-SPARQL, introduced in Chapter 11 and [AFRS11a], we have created

few performance tests. This section includes a test which demonstrates SR features of

ETALIS (Subsubsection 13.1.7.1), as well as two example applications that use both

EP and SR capabilities of ETALIS (Subsubsection 13.1.7.2).

13.1.7.1 Test 1: Stream Reasoning

To provide a performance evaluation for the SR functionality, we have reconstructed

an experiment from [WJFY08]. The goal of the test is to listen to streaming triples,

and to infer whether the subject of a triple is an instance of the class of concern (or

any of its subclasses). Suppose we process streaming triples about plants as part of

18Google Finance offers this knowledge for every company listed in the stock market, see for example

3PAR related companies: http://google.com/finance/related?q=NYSE:PAR

13.1. Performance Evaluation 181

a scientific experiment. Our system needs to check whether each triple in the stream

carries an instance of a certain plant. The class of concern is defined in an ontology19.

The ontology has 40,080 subclasses with a maximum class-hierarchy depth of eight.

This test has been reconstructed from [WJFY08] to check performance of ETALIS.

Hence, similarly as in [WJFY08], we measured delay caused by the automated reason-

ing process needed to determine whether an entry in a streaming triple is an instance of

the class of concern. The work in [WJFY08] provides three implementations: the first

based on Jena20, the second based on pre-computed inference results stored in a hash

table, and the third based on a streaming database engine TelegraphCQ [CCDF+03]

(none of which was available for download and testing). According to [WJFY08], the

fastest implementation is the third one (which also pre-computes all inferences and

stores them in a PostgreSQL database).

���������	
��
��
�����
��	��������

�

���

����

����

����

���� ����� ����� �����

������������	
��

�
��

�
�	

��
��

��
��

�	�
��

���	
��
��

Figure 13.22: Delay caused by stream reasoning

Figure 13.22 shows results of the same test with ETALIS. Our system is more than 20

times faster. On one hand, we did the test on a machine that is faster than the one from

[WJFY08]. On the other hand, ETALIS was doing SR on the fly (with no persisted

inferences), and still performed significantly faster.

In the future, we also plan to provide persistence of inferences (as in [WJFY08]) in

order to speed up query processing. FILTER sub-patterns which demand access and rea-

soning over static knowledge (ontologies) can be pre-computed. These results can then

be reused every time a query needs to be executed. This approach may be beneficial

when large ontologies are used, and events are streamed with a high frequency (e.g.,

hundred thousands events per second).

13.1.7.2 Test 2: Example Applications

We developed an application using both event streams and static RDF knowledgebases.

The application implements the Goods Delivery System in the city of Milan. The sys-

tem comprises of a set of delivery agents that need to deliver the manufactured products

19http://spire.umbc.edu/ontologies/EthanPlants.owl#Tracheobionta
20Jena: http://jena.sourceforge.net/

182 13. Evaluation

to the consumers. Each of them has a list of locations that it needs to deliver goods to.

While an agent is visiting a particular location, the system “knows” her next location

and “listens” to traffic-update events on that route(s). If the agent requests the next

route at the moment when the route is currently inaccessible (e.g., due to traffic jam),

the system will find another route (calculating a transitive closure on the fly over the

background ontology). We use a Milan ontology21 to explore routes in Milan. The

application has been implemented on top of EP-SPARQL and ETALIS. Due to space

limitations we cannot show patterns from the whole application here. Instead, we show

in Figure 13.23 results obtained for 1 and 10 delivery agents (visitors) when each visit-

ing 20 locations (the time spent at a location is irrelevant for the test, hence it is ignored).

We simulated situations where more than 50% of the connections between the visiting

locations were inaccessible, so that the system needed to recalculate the traffic routes

frequently (as response to traffic-update events).

0

200

400

600

800

1000

1200

1400

5 10 15 20

Co
ns

um
ed

 ti
m

e
in

 m
s

Number of locations

1 Visitor 10 Visitors

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20

Co
ns

um
ed

 M
em

or
y

in
 k

B

Number of locations

1 Visitor 10 Visitors

Figure 13.23: Goods Delivery System: (a) Delay caused by processing (b) Memory consump-

tion

The goal of the test was to show the usefulness of our formalism in a real-use scenario,

as well as to show that the application scales well with the increase of number of agents

(throughput for one agent is about 10 times higher than the throughput for 10 agents

(visitors), indicating a linear relationship in the investigated range, see Figure 13.23

(a)). Similarly, Figure 13.23 (b) shows memory consumption for the same test (likewise

indicating a linear space dependency with respect to the number of agents).

Next, we have developed a real time service for detection of tsunamis. A tsunamis

gauge is designed to detect and report tsunamis based on buoy sensor data. Data is pro-

vided by the National Data Buoy Center (NDBC)22. We have implemented a tsunami

detection algorithm23 which works by predicting the amplitudes of the pressure fluctu-

ations within the tsunami frequency band, and then it tests these amplitudes against a

threshold value. The prediction is calculated by the following formula:

Hp(t
′) =

3∑
i=0

w(i)H∗(t− i ·Δt)

21Milan ontology was developed in the scope of LarCK project http://www.larkc.eu/, and was gener-

ously provided to us by AMAT Milano and CEFRIEL team: http://www.larkc.eu/resources/published-

data-sources/
22NDBC : http://www.ndbc.noaa.gov/
23http://www.ndbc.noaa.gov/dart/algorithm.shtml

13.1. Performance Evaluation 183

where w(i) are coefficients that come from Newton’s formula for forward extrapolation.

The NDBC uses the following values for these coefficients:

w(0) = 1.16818457031250

w(1) = −0.28197558593750
w(2) = 0.14689746093750

w(3) = −0.03310644531250

Buoy sensor data is updated every 15 seconds, providing the sea level pressure, air tem-

perature, wind speed, wave hight etc. The asterisk H∗ denotes average pressure. Four
values are continuously produced over a 3 hour sliding window (i = 0, .., 3 where a

new value is outputted every hour, i.e., Δt = 1 hour), and t′ is the prediction time

which is set to 5,25 minutes. A tsunami is detected if the difference between the ob-

served pressure (current sensor value) and the prediction Hp exceeds a threshold (30

mm for the North Pacific as prescribed by the NDBC). The difference magnitude was

continuously calculated over historic NDBC data fromMay 2005 until September 2010.

In this period, 44310 sensor readings were reported to ETALIS. The system detected

pressure differences higher than 30 mm only 3 times (all 3 times during 3 hours, on

23.03.2010). Results are shown as a histogram in Figure 13.24. The chosen sensor

station24 is located in the Bering Sea, close to Alaska (55◦0’40”N171◦58’50”W).

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Pressure difference

Threshold

Time

Pr
es

su
re

Figure 13.24: Tsunami detection histogram

24http://www.ndbc.noaa.gov/station_page.php?station=46073

184 13. Evaluation

Further on, we have utilized GeoNames25 as a worldwide geographical knowledgebase.

If a sensor detects a tsunami, GeoNames can provide all geographical places within a

certain radius from the sensor location. These places can then automatically be warned

of a detected tsunami. We have set up an on line demo for this application26 to con-

tinuously monitor live data provided by NDBC and detect tsunami warnings in real

time.

13.2 Use Case: On The Live Measurements of Environmental Phe-
nomena

To demonstrate the usefulness of our framework in practice, we have developed a use

case using real sensor data. The use case is connected to a sensor network called

MesoWest27, which provides measurements of environmental phenomena (e.g., weather

observations such as wind, temperature, humidity, precipitation, visibility and so forth).

The goal of our use case application is to demonstrate how simple sensor readings can

be analysed on the fly, and hence used to detect more complex weather observations

(e.g., blizzards, hurricanes etc.). Further on, we demonstrate how sensor data can be

integrated over time and geographical space. For instance, observations of a blizzard,
detected by few nearby sensors within a certain time frame, identify an affected bliz-

zard area. A blizzard warning may be issued as soon as the application detects such a

situation. Moreover, the application utilizes GeoNames semantic information28 to iden-

tify all important geographic locations (e.g., schools, hospitals, motorways, airports,

tunnels, railroads etc.) affected by that weather observation, so that further (security)

actions can be taken in case of an emergency.

MesoWest is a cooperative project between researchers at the University of Utah, fore-

casters at the Salt Lake City National Weather Service Office, the NWS Western Re-

gion Headquarters, and many other participating agencies, universities, and commer-

cial firms. The network includes around 20,000 weather stations in the United States.

For this experiment we have selected 15 sensors from California (we have chosen Cal-

ifornia since density of available sensors in that US state is high). Locations of the

selected sensors are indicated by red markers in Figure 13.25 (enumerated with hex-

adecimal numbers: 1,2,3,...,F). Experiments are conducted on sensor data starting from

2007-12-31 until 2010-20-11. In our running example, the goal was to detect a blizzard

from MesoWest streaming data. According to National Oceanic and Atmospheric Ad-

ministration29 (NOAA), a blizzard occurs when the following conditions prevail over a

period of 3 hours or longer: high wind speed (35 miles an hour or greater); consider-

able falling snow; and low visibility (less than 1/4 mile). The following event pattern

(13.20) is used to detect a blizzard settling situation:

25GeoNames: http://www.geonames.org/
26See http://etalis.fzi.de
27MesoWest: http://mesowest.utah.edu/
28GeoNames Ontolgy: http://www.geonames.org/ontology
29NOAA: http://www.noaa.gov/

13.2. Use Case: On The Live Measurements of Environmental Phenomena 185

Figure 13.25: Sensor Location Map

blizzardSettling(T1, T1, ID, 1)←
sensor(T1, ID, Temp,Wind,WtherCond, V isib)

WHERE (Wind > 35,WtherCond ==′ snow′, V isib < 0.25).

blizzardSettling(T1, T3, ID,C + 1)←
blizzardSettling(T1, T2, ID,C) SEQ

sensor(T3, ID, Temp,Wind,WtherCond, V isib)

WHERE (Wind > 35,WtherCond ==′ snow′, V isib < 0.25).

(13.20)

The first rule operates on sensor reading events that carry a timestamp T 30, as well

as, a number of other parameters: a weather station ID, the current temperature Temp,

wind speed Wind, weather condition WtherCond, and visibility measure V isib. The

rule detects a sensor reading which satisfies the blizzard condition, and triggers a

blizzardSettling event. This event will start the second, iterative rule in (13.20).

Every new sensor reading (matching the same ID, and passing the filter condition) will

trigger a new blizzardSettling event and increase a counter C. The counter is

used to implement the situation in which the blizzard conditions prevail over a period
of time. This means that, in order to detect a blizzard, not every sensor reading

needs to satisfy the conditions. Instead, it is enough to detect sufficiently many of

satisfying readings. Since in average MesoWest sensor updates its readings every 30

30Since sensor is an atomic event, it is defined on the time point (not an interval [T1, T2])

186 13. Evaluation

Table 13.1: Complex Events from Live Sensor Data.

Sensor ID No. of Events Pattern (13.20) Pattern (13.21)

KAVX 38156 2995 161

KBLU 1998 2327 157

KCQT 1164 0 0

KFUL 29341 28 0

KHHR 30118 31 0

KMER 28999 281 16

KMHS 1364 0 0

KMMH 36783 161 2

KRNM 1307 148 8

KSDB 1464 1167 89

KSFO 1277 241 12

KSNS 31958 794 32

KUKI 1267 52 2

KWVI 34132 420 28

minutes, 4 events would be sufficient to satisfy this condition (as 6 events in total hap-

pen within 3 hours). Note that with each next iteration blizzardSettling event

will have a longer time interval (T1, T3) which the event is defined on. Finally, if the

interval gets at least three hours long (with at least 4 iterations passed), rule (13.21)

will detect a blizzardWarning event. To ensure the upper interval limit in settling

a blizzardWarning, we can set a garbage collection (e.g., between 3 and 6 hours,

see Section 10.3).

blizzardWarning(T1, T2, ID)←
blizzardSettling(T1, T2, ID,C)

WHERE (C ≥ 4, T2 − T1 ≥ 3hours).

(13.21)

Table 13.1 presents evaluation results that we have obtained from MesWest sensor data.

The first two columns show the sensor ID and the number of events produced by the

corresponding sensor (in the period from 2007-12-31 until 2010-20-11). The third and

fourth columns show the number of complex events, produced by evaluating pattern

(13.21) and pattern (13.23), respectively. To increase the number of complex detections

we have weakened the blizzard definition. In particular, we have removed the require-

ment for the considerable falling snow, and have decreased the wind speed condition to

15 mph or greater (instead of 35 mph).

A blizzardWarning event is detected from data provided by a single sensor. Very

often to monitor development of a blizzard (or other phenomena) in an area, it is neces-

sary to integrate different observations from multiple sensors in that area. To analyze

the observations over a certain geographical space, the system will require awareness of

sensor locations in that space. Real time integration of sensor observations from differ-

ent geographic locations is not the only challenge. The heterogeneity of data provided

by various sensors pose a big challenge too. For example, not all sensors provide the

same measurements (e.g., some weather stations measure the wind speed, and other do

13.2. Use Case: On The Live Measurements of Environmental Phenomena 187

not); measurements from various sensors are not provided in the same format, metric

unit, or precision.

To overcome these and similar challenges, we utilize a domain specific ontology as

a single view over the whole sensors network. Such an ontology for the MesoWest

sensor network is available from [PSHS10]. This sensor ontology, for example, de-

fines concepts such as Observation (specified as an act of observing a property or

phenomenon, with the goal of producing an estimate of the value of the property), and

Feature (defined as an abstraction of real world phenomenon). Further on, it defines

major properties of an observation such as a feature of interest (featureOfInterest),

observed property (observedProperty), sampling time (samplingT ime) and so forth.

The work in [PSHS10] also provides an RDF dataset containing expressive descrip-

tions of about 20000 weather stations across the United States. On average, there are

five sensors per weather station measuring phenomena such as temperature, visibility,

precipitation, pressure, wind speed, humidity, see Section A.1 (Appendix) for descrip-

tion of one such a weather station. The description also contains the sensor location

(altitude, latitude, and longitude). In our application we utilize this information in or-

der to eventually detect a blizzard area (once a station detects a blizzard).

The first rule in the complex event pattern (13.22) is triggered whenever a blizzard

Warning event occurs. To evaluate the WHERE clause of the rule, ETALIS will access

the background knowledge (i.e., the weather station RDF descriptions) and retrieve

the sensor location. The first rule will also start an iteration, which is then continued

by the second rule. This rule will fire an areaSettling event every time there

is a new blizzardWarning in an area close to the initial blizzardWarning.

The distance is calculated by the getDistance predicated, and its implementation is

provided as a background rule see Section A.2 (Appendix). In our example pattern we

want to make sure that the distance is less than 300 km (or 186 miles).

areaSettling(ID, ID, Lat, Lng)←
blizzardWarning(T1, T2, ID)

WHERE getLatLong(ID, Lat, Lng).

areaSettling(ID1, ID2, Lat1, Lng1)←
areaSettling(ID1, Lat1, Lng1) SEQ

blizzardWarning(T1, T2, ID2)

WHERE
(
getLatLong(ID2, Lat2, Lng2)

getDistance(Lat1, Lng1, Lat2, Lng2, Dist),

0 < Dist < 300
)
.

(13.22)

Finally, a blizzardArea event is detected when an areaSettling event occurs

within the next 9 hours.

blizzardArea(T1, T2, ID)←(
areaSettling(ID1, ID2, Lat1, Lng1)

)
.9hours.

(13.23)

188 13. Evaluation

Table 13.2: Computation for pattern (13.23) from live sensor data.

Area Start [date/time] End [date/time] Iterations

KSDB, KRNM 2008-01-14 02:00 2008-01-15 12:30 1

KAUN, KBLU 2008-02-01 10:35 2008-02-01 13:30 1

KBLU, KWVI 2008-02-23 09:53 2008-02-24 03:00 5

KWVI, KBLU 2008-02-24 07:47 2008-02-24 13:07 1

KBLU, KWVI 2008-02-24 07:54 2008-02-25 02:22 5

KSDB, KAVX 2010-01-03 02:52 2010-01-03 07:02 7

KAVX, KSDB 2010-01-03 09:52 2010-01-04 07:02 1

KSDB, KAVX 2010-01-05 03:22 2010-01-05 09:02 3

KAVX, KSDB 2010-01-05 11:42 2010-01-06 08:02 1

KBLU, KSFO 2010-02-02 04:21 2010-02-02 12:58 1

KWVI, KSFO 2010-11-07 08:06 2010-11-07 08:22 1

Table 13.2 shows results for the complex event pattern (13.23). ETALIS has detected

different areas (with weather conditions as defined above) eleven times. The table

presents which weather stations contributed to a particular area; a starting and ending

date/time of an observation; and how many iterations were involved in creating that

observation.

Figure 13.26 shows marked wind areas as calculated from patterns (13.20)-(13.23).

Weather stations that have detected one or more blizzards (during the observed period)

are marked yellow, and those that have not are small and blue. Finally, the wind areas

are marked red.

Figure 13.26: Sensor location map with marked wind areas

13.2. Use Case: On The Live Measurements of Environmental Phenomena 189

Table 13.3: GeoNames locations nearby KSFO weather station (SFO Airport).

GeoName ID Location name Latitude Longitude

5394116 Seaplane Harbor 37.63216 -122.38164

7229706 San Mateo School 37.61196 -122.42842

7256223 Exit 5B 37.62861 -122.43167

7256211 Exit 41 37.59639 -122.41917

7256225 Exit 6A 37.63361 -122.40528

7256243 Exit 421 37.6025 -122.38028

7256245 Exit 423A 37.63111 -122.40278

...

In addition to location attributes (latitude, longitude, and elevation), the RDF dataset

contains also links to locations in GeoNames31 near a weather station, see Section A.1

in Appendix. The distance from a GeoNames location to a weather station is also pro-

vided. As said, GeoNames provides all important geographic locations (e.g., schools,

hospitals, motorways, airports etc.) within a certain radius from the sensor location, so

that our application can issue an early warnings. Table 13.3, for example, shows GeoN-

ames locations32 triggered by the blizzard event for the KSFO weather station (i.e., the

San Francisco International Airport).

Performance results for patterns (13.20)-(13.23) are presented in Figure 13.27. The

throughput is obtained so that time between sensor readings is ignored. Different sen-

sors produce data with different frequency. The goal of our performance test was to

take into account ETALIS processing time, and to show the throughput accordingly.

When only event processing time is considered (network latencies are ignored), the

throughput for patterns (13.20)-(13.23) are 24696, 37437, and 3900 events per second,

respectively (see Figure 13.27 (a)).

We also see that the throughput for patterns (13.20) and (13.21) is significantly higher

than for pattern (13.23). This pattern is however the most complex one, as for every

blizzardWarning event the system needs to on the fly find the location from the

RDF dataset; to compute the distance; and further to find out whether two sensors

are close to each other. Taking into account that in average MesoWest sensors update

information every half an hour, the throughput of 3900 events per second (or 7020000

events per 30 minutes) arguably demonstrates the use of our framework for real time

event recognition and reasoning, as this means that the same number of sensors can be

handled by a single instance of our running system. Note that the complexity of the

overall processing is high, i.e., additional knowledgebases are accessed and evaluated

in the real time during the detection of complex events, hence the achieved throughput

is indeed promising.

Figure 13.27 (b) shows the memory consumption for patterns (13.20)-(13.23). We

have calculated the overall memory consumption (i.e., not only memory picks). Pattern

31GeoNames: http://www.geonames.org/
32For space reasons we have listed only 7 locations. The complete list for this weather station contains

51 items.

190 13. Evaluation

24696

3900

37437

0

5000

10000

15000

20000

25000

30000

35000

40000

Pattern 1 Pattern 2 Pattern 3

Patterns

Th
ro

ug
hp

ut
 in

 e
ve

nt
/s

ec
 68,24

3,56

12,05

0

10

20

30

40

50

60

70

80

Pattern 1 Pattern 2 Pattern 3

Patterns

M
em

or
y

co
ns

um
e

in
 M

B

Figure 13.27: (a) Complex event throughput (b) Memory consumption

(13.23) has the lowest consumption (despite its complexity) and pattern (13.20) has the

highest one. This comes as a consequence of the number of produced complex events.

For example, from the KAVAX sensor stream, pattern (13.20) has been detected 2995

times and pattern (13.21) only 161 times, see Table 13.1. This stream has contributed

to pattern (13.23) only four times. Hence although ETALIS needed to keep certain

ontology data in memory (i.e., not only events), it still had a low memory consumption.

13.2.1 Additional Use Cases

We have implemented two additional use cases with ETALIS. The first use case was

developed in the scope of the SYNERGY project33, and it deals with the collaborative

drug design in the pharmaceutical industry. The goal of the drug design was to poten-

tially provide a new medicine against malaria. The project was carried out through the

scientific work related to predictions of toxicological properties of certain proteins and

other substances. The scientific work was distributed among different parties which

were collaborating as a virtual organisation.

The SYNERGY project aimed to develop a real time collaboration platform for vir-

tual organisations. The framework was developed as a service-oriented architecture

(SOA) where different parties can collaborate via services. Since the collaboration is

performed in real time, the SYNERGY platform was developed as an event-driven ar-

chitecture (EDA) too. ETALIS has been used as a main event processing component of

this architecture which enables real time collaborations in a virtual organisation.

In particular, a virtual organisation in SYNERGY has dealt with a drug discovery pro-

cess. Members of the virtual organisation have gathered themselves to work on dis-

covery of a new drug against malaria. Since this work involves a lot of expensive

experiments handled on different sites, early warnings in this process may save the

overall project costs. Based on event pattern rules, ETALIS was used to discover real

time situations which indicated unsuccessful experiments, and trigger early warnings.

More details about the project and ETALIS implementation can be obtained from the

mentioned web site of SYNERGY.

33SYNERGY project: http://www.synergy-ist.eu/

13.2. Use Case: On The Live Measurements of Environmental Phenomena 191

The second use case is Fast Flowers Delivery scenario developed in [EtNi10]. This use
case is about a flower stores association which operates in a large city in order to pro-

vide a flower delivery service. The service is implemented through a network of local

independent van drivers. The communication between flower stores and drivers is han-

dled via events34. The authors of [EtNi10] have offered the use case to be implemented

with existing EP systems. We have participated in this project by providing an ETALIS

implementation of Fast Flowers Delivery use case. The implementation demonstrates

capabilities of ETALIS to support various event processing agents (EPAs) from an EPN.

The implementation is publicly available35.

34The use case is accessible from: http://www.ep-ts.com/content/view/80/111/
35Our running implementation of the use case is available at: http://code.google.com/p/etalis/wiki/

Fast_Flower_Delivery_Use_Case

192 13. Evaluation

Part V

Conclusions and Outlook

14
Summary and Conclusion

The objective of this work was to establish synergies between Event Processing (EP)

and deductive reasoning in logic programming (LP), thereby shifting EP towards a

more intelligent EP and reasoning towards stream reasoning. We conclude by summing

up the results that have been accomplished toward that goal (Section 14.1). Finally,

we give an extended overview of future research topics that, in our view, represent

prospective directions of our work (Section 14.2).

14.1 Summary of the Results

To summarise and discuss the results of this work, we refer to the research questions

specified in Section 1.4.

• Knowledge representation formalism to express both, complex event pat-
terns and contextual knowledge. In this work we have investigated practical

and theoretical issues related to EP. While in existing EP approaches, complex

events consist merely of simple (temporally situated) events, we argued that in

knowledge-rich applications such complex events are not expressive enough to

assess complex situations in real time. We proposed a logic-based event process-

ing, advocating a richer formalism for EP. The formalism is capable not only to

match patterns based on temporal relations among events, but also to evaluate

contextual knowledge. We call this formalism the ETALIS Language for Events

196 14. Summary and Conclusion

(ELE). It comes with a rule-based syntax and a clear declarative formal seman-

tics. Notable property of this knowledge representation formalism is that it can

express both, events and contextual knowledge, in a unified and compact way.

• Logic inferencing to derive complex events in a timely fashion. In our view

an event is equivalent to a declaration that something has occurred or there is a

change in the current state of affairs. Formally, we represented an event with a

special kind of a logic fact. A complex event may be derived as a logic conse-
quence of this fact (and possibly other available knowledge). We have proposed a

powerful inferencing mechanism that allows finding, not only temporal relations
between events, but to reason about their non-temporal semantic relations in a

timely fashion, too.

• Synergism between EP and LP to enable detection of situations (otherwise
undetectable). One question – that arises from motivation of our work – is

whether LP-based EP can be used to detect real time situations that are other-

wise undetectable with sole EP. From what we have learnt so far, it is difficult to

justify this statement in general. Different non LP approaches in EP can be used

to detect various complex events that were presented in this work, too. However

some complex events can be more effectively represented by our approach. For

instance, by using an ontology as background knowledge we are able to write

fewer pattern rules to capture more situations. We have seen such an example in

Subsection 8.4.3 where different entities in an ontology were structured through

class/subclass relationships. Thanks to the multiple inheritance provided by an

ontology, conditions expressed as instances, properties or classes in a pattern

do not necessarily need to be explicitly stated. Instead, they can be inferred
as certain events occur. This was demonstrated in an example from Subsubsec-

tion 13.1.7.1. There, to check whether an event carries an instance of a class

of interest (or any of its 40,080 subclasses), we did not write 40,080 event pat-

terns. In fact, we wrote only one pattern and used an ontology which defines all

relationships. Moreover, since LP inferencing enables us to derive new, implicit
knowledge, an LP-based EP can be used in detecting situation that are otherwise

undetectable (with approaches that do not have a mechanism for discovery of

implicit knowledge).

It can be argued that all relationships defined in an ontology can always be pre-

computed and persisted in a database (i.e., to be made explicit). However, in

some scenarios this knowledge is dynamic (i.e., acquired on the fly), or there is al-

ready structured knowledge available. In these, and other similar cases it is more

appropriate to use already proven knowledge representation (KR) techniques to

process this knowledge. Our approach is built on some of these techniques – in

particular, it adheres to well-established concepts from LP.

• Efficient implementation of an event-driven, and LP-based computation mo-
del. The execution model of ELE is established on goal-directed event-driven

backward chaining (EDBC) rules and decomposition of complex event patterns

14.1. Summary of the Results 197

into two-input intermediate events (goals). Goals are automatically asserted by

rules as relevant events occur. They can persist over a period of time, waiting to

support detection of a more complex goal. This process of asserting more and

more complex goals shows the progress towards detection of a complex event.

Important characteristics of these goals are that they are asserted only if they are

used later on (to support a more complex goal or an event pattern), goals are

unique, and persistent as long as they are relevant. Goals are asserted by rules

which are executed in the backward chaining mode. The notable property of

these rules is that they are event-driven. Hence, although the rules are executed

backwards, overall they exhibit a forward chaining behaviour.

EDBC rules integrate logic programming with event-based programming. They

serve as an execution mechanism for an expressive formalism for EP (presented

in Chapter 6). They enable a seamless integration of EP with query processing, as

well as with processing of background (domain) knowledge. Further on, EDBC

rules provide an event-driven incremental reasoning capability. Finally, they fa-

cilitate event at a time processing in Event-driven Transaction Logic Inference

System (ETALIS) (see Chapter 5), and are general enough to accommodate vari-

ous other extensions as mentioned in the following.

• Extensibility of an LP approach for EP. ELE is a general, expressive formal-

ism for EP. Orthogonal to expressivity of a language, our goal was to address

few extensions that are usually found as specific features in EP formalisms. In

particular, we have discarded an assumption of many EP approaches that events

are immutable and therefore always correct. This has led us to the problem of

revision in EP, where an EP system is required to behave similar to a transaction

processing system. Secondly, we have addressed the problem of out-of-order
events. In this case we have ignored yet another assumption that events are to-
tally ordered, i.e., the order in which events are received by the system is the

same as their timestamp order. In such a setting an EP system needs to deal with

more historical data and late events.

In both extensions we have demonstrated that our approach can meet additional

requirements while retaining existing expressivity of the language, and with no

significant overhead in run time performance.

Finally, we developed a formalism for EP and stream reasoning (SR) called Event

Processing SPARQL (EP-SPARQL). EP-SPARQL can be considered as a new

language (rather as an extension of ELE). However since the underlying ground

concepts, as well as the execution model are the same as for ELE, we treat it as

an extension of the ELE formalism. EP-SPARQL is specially tailored for event-

driven applications in the realm of the Semantic Web.

• Trade-off between performance and expressibility in an LP approach for
EP. We have implemented ETALIS Language for Events with its extensions in

a Prolog-based prototype. The implementation is open source1. We have con-

1ETALIS source code: http://code.google.com/p/etalis/

198 14. Summary and Conclusion

ducted a number of performance tests to present run time characteristics of our

implementation. In some cases we have also compared performance of our im-

plementation with an existing open source system. It has been shown that our LP-

based approach for EP does not necessarily need to compromise performance

due to its expressivity and an execution mechanism that is rooted in logic. In

particular, this observation is true for more complex event patterns, e.g., when

iterative and aggregative patterns are processed on a stream of complex events, or
when nested hierarchies of events are built where each level contains atomic or

complex events. We have also proved that SR can be conjunctively used with EP.

We have constructed different knowledgebases, and presented performance tests

that demonstrate feasibility for on the fly knowledge processing.

14.2 Future Work

As the next steps, we will continue to investigate and exploit the advantages of our

framework over non-logic-based EP. In particular, we plan to investigate how a rule rep-

resentation of complex events (in large pattern bases) may help in verification of event

patterns (e.g., discovering patterns that can never be detected according to inconsis-

tency problems). We also plan to utilize machine learning techniques to automatically

generate both event patterns and the domain knowledge required for knowledge-based

EP (see [APPS10], and XHAIL system [Ray09]).

Dynamic event pattern management (i.e., patterns are created or discarded on the fly

when certain situations are detected) is another interesting topic where the logic ap-

proach may help to control event-driven computation.

One promising line of research, in our view, will go toward a tight integration of an

action logic with our “logic” for EP. While we have been investigating thoroughly

detection of events, it is worth to pay more attention to possible automated actions
triggered by detected events. This research filed is not particularly new. It has been

investigated in the scope of event-condition-action (ECA) rules and production rules

(PR). We have also provided work in this area [ApSA09, AnSt08a, AnSt08b]. Never-

theless we still see potential for benefiting from our logic-based view on this research

subject. In particular we believe that dynamic and adaptive actions will increasingly

appear in many domains. These actions will not only be triggered automatically, but

will need to adapt (change) automatically too. Changes will be initiated by occurring

events, and the adaptivity will be initiated and proved by a certain logic.

In the following we identify an area where this idea could be applied, and give more

insights into the idea itself.

14.2.1 Event-Driven Business Processes

An increasing dynamics in today’s business requires flexible infrastructures that can

sense a problem or opportunity and react accordingly. There is a tendency today in

14.2. Future Work 199

providing support for business processes with flexibility. It is especially true for the

business processes which are underpinning both complex work and unexpected situa-

tions, e.g., emergency (disaster) management scenarios. In such scenarios there can be

many parameters changed every second, so that any a priory coded adaptivity, or an

exception handling approach, will fail. If one tried to define adaptivity at design-time,

there would be too many situations that cannot be calculated in advance. For exam-

ple, if during fighting against fire a very strong wind starts, the correct action can be

calculated only in the moment of the execution, since there are so many parameters

that can influence the decision and which will be known in the real time, e.g., the in-

tensity of the fire, the number of available firemen, the environment characteristics etc.

It means that the system must detect these events in real time in order to respond ade-

quately upon them. Such responses are known as ad-hoc process changes, and we call

corresponding processes event-driven ad-hoc processes. On one hand, any pre-coding

of the possible changes (alternative paths in the process execution) decreases the flex-

ibility of the process, i.e. the efficiency of the running process instance. On the other

hand, approaches that would fully automate event-driven ad-hoc processes are indeed

challenging. The main requirement is to enable the process flexibility so that it is not

completely defined in advance. Instead, it is calculated in real time based on certain

constraints. Constraints may be defined either at the design or run-time.

To fulfil this requirement, our approach will be based on EP. That is, to structure the

course of affairs and describe more complex dynamic situations, we compose simple

(atomic) events into complex events. Complex events, detected in real time, may sig-

nify situations that require modification in a running process (workflow). Further on,

our approach will be declarative. In comparison to an imperative approach, declar-

ative workflows enable more flexible management with respect to ad-hoc changes
[PSSVDA07, vdAPS09]. Flexibility of declarative workflows come from the fact that

they do not pre-specify a single possible execution path. This feature may be of great

value in the presence of ad-hoc changes. Our approach will explore this value, and un-

like [PSSVDA07, vdAPS09], it will combine declarative workflows with EP. We have

published the outline of this idea in [AnSt08a]. Our goal is to propose a framework

that includes both sufficiently expressive techniques for workflow modelling, as well

as inference capabilities to reason over those specifications. The framework enables

detection of real time situations that demand workflow modifications. Modifications

are expressed as declarative constraints (logic rules), and their on line verification is

ensured.

14.2.1.1 A Unifying Framework for Event-Driven Ad-Hoc Processes

Figure 14.1 depicts, in our view, the main aspects of event-driven ad-hoc processes. In

particular, the figure shows the conceptual relationships between executing tasks, the
workflow scheduler, and the dynamic change manager. Tasks that need to be executed

are scheduled by the scheduler. The scheduler orders executing tasks according to the

model specified by a concrete workflow. The dynamic change manager (DCM) may

200 14. Summary and Conclusion

Tasks (event generators/consumers)

Scheduler Dynamic Change
Manager

Events

Figure 14.1: Conceptual architecture of event-driven ad-hoc processes.

alter the scheduling plan, i.e., the order in which tasks are scheduled for execution. This

may happen due to detection of certain events that represent unexpected situations.

In the presented conceptual architecture, tasks are seen as external event sources. The

scheduler receives a stream of events from these sources, and schedules them in real

time. The incoming event stream is denoted by the arc pointing from tasks to the

scheduler (see Figure 14.1). As events may represent the state of executing tasks (e.g.,

start, end and so forth), scheduling of an event amounts to scheduling of a task (process).

The process of scheduling must ensure that it satisfies all constraints, specified by a

workflow (possibly after reordering some events in the incoming stream). Reordering

is realised by sending events from the scheduler back to tasks (depicted by the arc

in the reverse direction). For example, such an event may carry information that a

corresponding task is either allowed (for execution), rejected, or delayed.

Task events are also gathered by the dynamic change manager, which additionally re-

ceives external events (e.g., events from various information sources or sensors etc.).

The manager correlates these events into complex events (relevant with respect to a par-

ticular business domain). Hence the manager utilises EP to detect real time situations

that require certain decisions. Decisions may deviate an ongoing workflow instance.

They are made by humans, however DCM with its EP capabilities helps in discovering

situations (that might require deviations). The deviation (adaptation) is typically driven

by the need to take into account new emerging issues (e.g., something accidentally hap-

pen) or to optimise the execution with respect to certain events (that just happened).

Finally, complex events may further be used externally for e.g., activity monitoring,

various analytics and so forth.

14.3 Conclusions

There has been a significant paradigm shift toward real time information processing

due to emerging mobile applications and services, Internet of Things, real-time Web,

and various other technology fields. Event Processing (EP) brings a new concept to this

paradigm shift in the form of event-driven architecture (EDA) and underlying principles

of event-driven computation.

14.3. Conclusions 201

In this work we have investigated a logic programming (LP) approach for EP. Our

approach was motivated by the need to enable detection of real time situations based

on processing of events and domain knowledge. In knowledge-rich applications de-

tection of real time situations demand, not merely temporally situated events, but also

evaluation of contextual knowledge, and reasoning about their non-temporal semantic
relations.

Our contribution includes a seamless integration of EP concepts with logic rules. We

have proposed an expressive declarative language called the ETALIS Language for

Events (ELE), and an execution model which detects complex events in a data-driven

fashion (based on goal-directed event-driven rules). The approach goes beyond ex-

isting event-driven systems by providing declarative semantics and an efficient logic-

programming-based execution model that enables event-driven deductive reasoning.
We have also provided an open-source implementation of our formalism, which allows

for specification of complex events and their detection at occurrence time.

The results of this work can be extended in few directions. Hitherto, approaches to

ad-hoc and dynamic process-aware information systems acted on the assumption that

decision on process changes are not strictly time sensitive. The emphasis was rather

on full support to process modifications. In many practical cases (e.g., emergency man-

agement) the time to react on certain situations is limited. Further on, decisions on

ad-hoc process modifications need to be carefully assessed taking into account many

changing parameters. To address these requirements, we will work on a framework for

event-driven ad-hoc processes and actions. The framework features both EP capabili-

ties as well as capabilities to accept on line process changes. The framework will be

based on declarative rules, and as such it will feature a greater flexibility with respect to

ad-hoc changes. We also plan to provide an integrated implementation of the proposed

formalism with the Event-driven Transaction Logic Inference System (ETALIS).

Another application area where we have started to apply EP with ETALIS is the Smart

Grid. The Smart Grid aims at making the current energy grid more efficient and eco-

friendly. We propose EP to be used as a key technology for intelligent monitoring,

control, communication and optimised consumption of energy. Since smart grids are

electricity networks that integrate behaviour and actions of all users connected to it

(generators and consumers), we need a way to publish and discover resource in the net-

works. Linked Data principles may be used for enabling decentralised publishing and

resource discovery, ultimately fostering data integration. In [WASS+10] we have inves-

tigated (and we will continue to investigate) how ETALIS can be applied efficiently in

processing events and Linked Data from the smart grids.

A similar, energy efficiency scenario can be realised with sensor networks. We are

considering the use of cheap sensors in commercial buildings to enable more effi-

cient energy consumption, and applying EP to provide real time situational aware-

ness, describe sensor locations, and other sensor parameters as background knowledge

[XSSA+11, SMXS+11].

Further questions of course may be raised, but the above are most related to the research

that we have already started.

202 14. Summary and Conclusion

In summary, this work covers research topics related to EP and stream reasoning (SR).

The work provides the foundational background, as well as the application aspects of

the topics. Finally, it also opens up a wide range of possible future research directions.

A
Appendix

A.1 Linked Sensor Data for Weather Stations

An RDF dataset that describes sensors of KFSO weather station is shown below (see

[PSHS10]). In particular, the station measures phenomena such as temperature, dew

point, humidity, visibility, wind direction, wind gust, and wind speed. The description

also contains geo-location of the station, as well as a GeoNames link with all known

nearby locations.

<rdf:RDF xmlns="http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#"
xmlns:log="http://www.w3.org/2000/10/swap/log#"
xmlns:om-owl="http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:sens-obs="http://knoesis.wright.edu/ssw/"
xmlns:weather="http://knoesis.wright.edu/ssw/ont/weather.owl#"
xmlns:wgs84="http://www.w3.org/2003/01/geo/wgs84_pos#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

<LocatedNearRel rdf:about="http://knoesis.wright.edu/ssw/LocatedNearRelKSFO">
<distance rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.9813</distance>
<hasLocation rdf:resource="http://sws.geonames.org/5391989/"/>
<uom rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#miles"/>

</LocatedNearRel>

<System rdf:about="http://knoesis.wright.edu/ssw/System_KSFO">
<ID>KSFO</ID>
<hasLocatedNearRel rdf:resource="http://knoesis.wright.edu/ssw/LocatedNearRelKSFO"/>
<hasSourceURI rdf:resource="http://mesowest.utah.edu/cgi-bin/droman/meso_base.cgi?stn=KSFO"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_AirTemperature"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_DewPoint"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_RelativeHumidity"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_Visibility"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_WindDirection"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_WindGust"/>
<parameter rdf:resource="http://knoesis.wright.edu/ssw/ont/weather.owl#_WindSpeed"/>
<processLocation rdf:resource="http://knoesis.wright.edu/ssw/point_KSFO"/>

</System>

204 A. Appendix

<wgs84:Point rdf:about="http://knoesis.wright.edu/ssw/point_KSFO">
<wgs84:alt rdf:datatype="http://www.w3.org/2001/XMLSchema#float">10</wgs84:alt>
<wgs84:lat rdf:datatype="http://www.w3.org/2001/XMLSchema#float">37.61972</wgs84:lat>
<wgs84:long rdf:datatype="http://www.w3.org/2001/XMLSchema#float">-122.36472</wgs84:long>

</wgs84:Point>
</rdf:RDF>

A.2 Distance Calculation

Distance between two points, defined by their latitude and longitude (Lat1, Long1,

Lat2, Long2, respectively) is calculated with the following formula where the Earth

Radius (ER) is equal to 6378,137.

getDistance =
(
2 · arcsin

(
([

sin
rad(Lat1)− rad(Lat2)

2

]2
+

cos [rad(Lat1)] · cos [rad(Lat2)] ·
[
sin

rad(Long1)− rad(Long2)

2

]2)1/2

))
· ER

The following rule (written in Prolog syntax) implements the above formula. The

rule was evaluated in the WHERE clause of the second rule in complex event pattern

(13.22), every time when BlizzardWarning event occurred (see experiments from

Section 13.2).

getDistance(Lat1,Long1,Lat2,Long2,Distance) :-
ER is 6378.137,
getRad(Lat1,RadLat1),
getRad(Long1,RadLong1),
getRad(Lat2,RadLat2),
getRad(Long2,RadLong2),
A is RadLat1 - RadLat2,
B is RadLong1 - RadLong2,
TempA1 is A / 2,
TempB1 is B / 2,
SinA is sin(TempA1),
SinB is sin(TempB1),
TempA2 is SinA ** 2,
TempB2 is SinB ** 2,
CosA is cos(RadLat1),
CosB is cos(RadLat2),
Temp1 is CosA * CosB,
Temp2 is Temp1 * TempB2,
Temp3 is TempA2 + Temp2,
Sqrt is sqrt(Temp3),
Asin is asin(Sqrt),
S is Asin * 2,
Distance is S * ER.

getRad(Deg,Rad) :-
Temp1 is Deg * pi,
Rad is Temp1 / 180.

Bibliography

[AbHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[ACCE+09] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and

R. C. Sears. BOOM: Data-Centric Programming in the Datacenter.

Technical Report UCB/EECS-2009-113, EECS Department, Univer-

sity of California, Berkeley, 2009.

[AdBE00] Asaf Adi, David Botzer, and Opher Etzion. Semantic Event Model

and its Implication on Situation Detection. In Hans Robert Hansen,

Martin Bichler, and Harald Mahrer, editors, Proceedings of the 8th
European Conference on Information Systems, Trends in Information
and Communication Systems for the 21st Century, ECIS ’00, pages

320–325, Vienna, Austria, 2000.

[AdCh06] Raman Adaikkalavan and Sharma Chakravarthy. SnoopIB: Interval-

based event specification and detection for active databases. Data
Knowledge Engineering, 59(1):139–165, 2006.

[AdEt04] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB
Journal, 13:177–203, May 2004.

[ADGI08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.

Efficient pattern matching over event streams. In Jason Tsong-Li

Wang, editor, Proceedings of the 28th ACM SIGMOD Conference,
SIGMOD’08, pages 147–160. New York, USA, 2008.

[AFRS+10] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Ne-

nad Stojanovic, and Rudi Studer. A Rule-Based Language for Com-

plex Event Processing and Reasoning. In Pascal Hitzler and Thomas

Lukasiewicz, editors, Proceedings of the 4th International Confer-
ence on Web Reasoning and Rule Systems, RR’10, pages 42–57,

Berlin,Heidelberg, 2010. Springer-Verlag.

206 Bibliography

[AFRS11a] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic.

EP-SPARQL: a unified language for event processing and stream rea-

soning. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar,

M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings
of the 20th International Conference on World Wide Web, WWW’11,

pages 635–644, New York, NY, USA, 2011. ACM.

[AFRS+11b] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad

Stojanovic, and Rudi Studer. ETALIS: Rule-Based Reasoning in Event

Processing. In Sven Helmer, Alexandra Poulovassilis, and Fatos Xhafa,

editors, Reasoning in Event-Based Distributed Systems, volume 347 of

Studies in Computational Intelligence, pages 99–124. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2011.

[AFSS09] Darko Anicic, Paul Fodor, Roland Stühmer, and Nenad Stojanovic.

Event-Driven Approach for Logic-Based Complex Event Processing.

In Proceedings of the 12th IEEE International Conferences on Com-
putational Science and Engineering (CSE’09), CSE’09, pages 56–63,
Washington, DC, USA, 2009. IEEE Computer Society.

[AlBB06] José Júlio Alferes, Federico Banti, and Antonio Brogi. An Event-

Condition-Action Logic Programming Language. In Michael Fisher,

Wiebe van der Hoek, Boris Konev, and Alexei Lisitsa, editors, Pro-
ceedings of the 10th European Conference on Logics in Artificial In-
telligence, JELIA’06, pages 29–42, Berlin,Heidelberg, 2006. Springer-
Verlag.

[Alle83] James F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26:832–843, 1983.

[Alve09] Alexandre Alves. Extensions to logic programming inference engines

to support CEP (a short paper). In Proceedings of the 2009 Interna-
tional Symposium on Rule Interchange and Applications, RuleML ’09,

Berlin, Heidelberg, 2009. Springer-Verlag.

[AnSt08a] Darko Anicic and Nenad Stojanovic. Future Internet Collaboration

Workflow. In John Domingue, Dieter Fensel, and Paolo Traverso, ed-

itors, First Future Internet Symposium, Lecture Notes in Computer

Science, pages 141–151, Berlin,Heidelberg, 2008. Springer-Verlag.

[AnSt08b] Darko Anicic and Nenad Stojanovic. Towards Creation of Log-

ical Framework for Event-Driven Information Systems. In José

Cordeiro and Joaquim Filipe, editors, Proceedings of the Tenth Interna-
tional Conference on Enterprise Information Systems, Volume ISAS-2,
ICEIS’08, pages 394–401, Berlin,Heidelberg, 2008. Springer-Verlag.

Bibliography 207

[AnSt09] Darko Anicic and Nenad Stojanovic. Expressive Logical Framework

for Reasoning about Complex Events and Situations. In Nenad Sto-

janovic, Andreas Abecker, Opher Etzion, and Adrian Paschke, editors,

Intelligent Event Processing, Papers from the 2009 AAAI Spring Sym-
posium, number SS-09-05 in Technical Report, pages 14–20, Menlo

Park, CA, 2009. AAAI Press.

[ApBW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declar-

ative knowledge. In Jack Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 89–148. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1988.

[APPS10] Alexander Artikis, Georgios Paliouras, François Portet, and Anasta-

sios Skarlatidis. Logic-based representation, reasoning and machine

learning for event recognition. In Jean Bacon, Peter R. Pietzuch,

Joe Sventek, and Ugur Çetintemel, editors, Proceedings of the 4th
ACM International Conference on Distributed Event-Based Systems,
DEBS’10, pages 282–293, New York, NY, USA, 2010. ACM.

[ApSA09] Dimitris Apostolou, Nenad Stojanovic, and Darko Anicic. Responsive

Knowledge Management for Public Administration: An Event-Driven

Approach. IEEE Intelligent Systems, 24:20–30, 2009.

[Apt90] Krzysztof R. Apt. Logic Programming. In Jan V. Leeuwen, editor,

Handbook of Theoretical Computer Science: Formal Models and Se-
mantics, volume B, chapter 10, pages 493–574. Elsevier, 1990.

[ApvE82] Krzysztof R. Apt and Maarten H. van Emden. Contributions to the

Theory of Logic Programming. Journal of the ACM (JACM), 29:841–
862, July 1982.

[ArBW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Contin-

uous Query Language: Semantic Foundations and Query Execution.

VLDB Journal, 15(2):121–142, 2006.

[ARDRSP+07] Michael P. Ashley-Rollman, Michael De Rosa, Siddhartha S. Srinivasa,

Padmanabhan Pillai, Seth Copen Goldstein, and Jason D. Campbell.

Declarative Programming for Modular Robots. In Workshop on Self-
Reconfigurable Robots/Systems and Applications, collocated with In-
ternational Conference on Intelligent RObots and Systems, IROS ’07,

October 2007.

[ARFS11a] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.

A declarative framework for matching iterative and aggregative pat-

terns against event streams. In Nick Bassiliades, Guido Governa-

tori, and Adrian Paschke, editors, Proceedings of the 5th interna-
tional conference on Rule-based reasoning, programming, and ap-

208 Bibliography

plications, RuleML’11, pages 138–153, Berlin, Heidelberg, 2011.

Springer-Verlag.

[ARFS11b] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.

Retractable Complex Event Processing and Stream Reasoning. In Nick

Bassiliades, Guido Governatori, and Adrian Paschke, editors, Proceed-
ings of the 5th International Symposium on Rules, RuleML’11, pages

122–137, Berlin,Heidelberg, 2011. Springer-Verlag.

[ARFS12a] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.

Real-Time Complex Event Recognition and Reasoning – A Logic Pro-

gramming Approach. The Applied Artificial Intelligence journal, 26:6–
57, 2012.

[ARFS12b] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.

Stream Reasoning and Complex Event Processing in ETALIS. Seman-
tic Web Journal - Interoperability, Usability, Applicability, pages 1–11,
2012.

[BBCG10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael

Grossniklaus. An execution environment for C-SPARQL queries. In

Ioana Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru Kitsure-

gawa, Alain Leger, Felix Naumann, Anastasia Ailamaki, and Fatma

Ozcan, editors, Proceedings of the 13th International Conference on
Extending Database Technology, EDBT’10, pages 441–452. ACM,

2010.

[BBCV+10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri,

Emanuele Della Valle, and Michael Grossniklaus. Incremental

Reasoning on Streams and Rich Background Knowledge. In Lora

Aroyo, Grigoris Antoniou, Eero Hyvönen, Annette ten Teije, Heiner

Stuckenschmidt, Liliana Cabral, and Tania Tudorache, editors, Pro-
ceedings of the 7th Extended Semantic Web Conference, ESWC’10,

pages 1–15, Berlin,Heidelberg, 2010. Springer-Verlag.

[BFSF08] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber.

Speculative out-of-order event processing with software transaction

memory. In Roberto Baldoni, editor, Proceedings of the 2nd inter-
national conference on Distributed event-based systems, DEBS ’08,

pages 265–275, New York, NY, USA, 2008. ACM.

[BGAH07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Ming-

sheng Hong. Consistent Streaming Through Time: A Vision for Event

Stream Processing. In Gerhard Weikum, Joe Hellerstein, and Mike

Stonebraker, editors, Proceedings of the 3rd Biennial Conference on
Innovative Data Systems Research, CIDR’07, pages 363–374, 2007.

Bibliography 209

[BMSU86] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ull-

man. Magic sets and other strange ways to implement logic pro-

grams (extended abstract). In Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on Principles of database systems, PODS ’86,

pages 1–15, New York, NY, USA, 1986. ACM.

[BoGJ08] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming

SPARQL - Extending SPARQL to Process Data Streams. In

Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Mano-

lis Koubarakis, editors, Proceedings of the 5th European Semantic
Web Conference, ESWC’08, pages 448–462, Berlin,Heidelberg, 2008.

Springer-Verlag.

[BrEc07a] François Bry and Michael Eckert. Rule-Based Composite Event

Queries: The Language XChangeEQ and Its Semantics. In Massimo

Marchiori, Jeff Z. Pan, and Christian de Sainte Marie, editors, Proceed-
ings of the 1st International Conference on Web Reasoning and Rule
Systems, RR’07, pages 16–30, Berlin, Heidelberg, 2007. Springer-

Verlag.

[BrEc07b] François Bry and Michael Eckert. Towards Formal Foundations of

Event Queries and Rules. In Proceedings of the 2nd International
Workshop on Event-Driven Architecture, Processing and Systems EDA-
PS, collocated with the 33rd International Conference on Very Large
Data Bases, Vienna, Austria, 2007.

[BrEc07c] François Bry and Michael Eckert. Twelve Theses on Reactive Rules

for the Web. In K. Mani Chandy, Opher Etzion, and Rainer von

Ammon, editors, Event Processing, Dagstuhl Seminar Proceedings.

Internationales Begegnungs- und Forschungszentrum fuer Informatik

(IBFI), Schloss Dagstuhl, Germany, 2007.

[BrGM04] Dan Brickley, R.V. Guha, and Brian McBride, editors. RDF Vocabu-
lary Description Language 1.0: RDF Schema. W3C Recommendation,

10 February 2004. http://www.w3.org/TR/rdf-schema/.

[CBBC+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald

Carney, Ugur Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable

Distributed Stream Processing. In Gerhard Weikum, Joseph Heller-

stein, and Michael Stonebraker, editors, Proceedings of the 1st Bi-
ennial Conference on Innovative Data Systems Research, CIDR’03.
www.crdrdb.org, 2003.

[CcCC+02] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul,

and Stan Zdonik. Monitoring streams: a new class of data manage-

ment applications. In Raghu Ramakrishnan Philip A. Bernstein, Yan-

nis E. Ioannidis and Dimitris Papadias, editors, Proceedings of the 28th

210 Bibliography

International Conference on Very Large Data Bases, VLDB ’02, pages

215–226. VLDB Endowment, 2002.

[CCDF+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.

Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy,

Samuel Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A.

Shah. TelegraphCQ: Continuous Dataflow Processing for an Uncer-

tain World. In Gerhard Weikum, Joseph Hellerstein, and Michael

Stonebraker, editors, Proceedings of the 1st Biennial Conference on
Innovative Data Systems Research, CIDR’03. www.crdrdb.org, 2003.

[CCHM08] Tyson Condie, David Chu, Joseph M. Hellerstein, and Petros Maniatis.

Evita Raced: Metacompilation for Declarative Networks. Proceedings
of the VLDB Endowment, 1:1153–1165, August 2008.

[CGSP+09] Antonio Cunei, Rachid Guerraoui, Jesper Honig Spring, Jean Pri-

vat, and Jan Vitek. High-Performance Transactional Event Process-

ing. In John Field and Vasco T. Vasconcelos, editors, Proceedings
of the 11th International Conference on Coordination Models and
Languages, COORDINATION ’09, pages 27–46, Berlin, Heidelberg,

2009. Springer-Verlag.

[Chak97] Sharma Chakravarthy. SENTINEL: An Object-Oriented DBMS With

Event-Based Rules. In Joan Peckham, editor, Proceedings of the 1997
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’97, pages 572–575. ACM Press, 1997.

[ChEA11] Mani K. Chandy, Opher Etzion, and Rainer von Ammon. Executive

Summary and Manifesto – Event Processing. In K. Mani Chandy,

Opher Etzion, and Rainer von Ammon, editors, Event Processing,
number 10201 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,

2011. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[Chen97] Yangjun Chen. Magic Sets and Stratified Databases. International
Journal of Intelligent Systems, 12(3):203–231, 1997.

[ChMi94] Sharma Chakravarthy and D. Mishra. SNOOP: An Expressive Event

Specification Language for Active Databases. Data & Knowledge En-
gineering, 14(1):1–26, 1994.

[ChSc10] K. Mani Chandy and W. Roy Schulte. Event Processing: Designing
IT Systems for Agile Companies. McGraw-Hill, Inc., New York, NY,

USA, 2010.

[ChWa96] Weidong Chen and David S. Warren. Tabled Evaluation with Delaying

for General Logic Programs. In Journal of the ACM. ACM, 1996.

Bibliography 211

[CKAK94] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim.

Composite Events for Active Databases: Semantics, Contexts and De-

tection. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, edi-

tors, Proceedings of 20th International Conference on Very Large Data
Bases, VLDB’94, pages 606–617. Morgan Kaufmann Publishers Inc.,

1994.

[Clar79] Keith L. Clark. Predicate logic as a computational formalism. In Re-
search Report DOC 79/59. Imperial College, Department of Comput-

ing, London, 1979.

[CuMa11] Gianpaolo Cugola and Alessandro Margara. Processing Flows of In-

formation: From Data Stream to Complex Event Processing. ACM
Computing Surveys, 2011.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.

Complexity and expressive power of logic programming. ACM Com-
puting Surveys, 33(3):374–425, 2001.

[DeJG07] Alan J. Demers and et al. Johannes Gehrke. Cayuga: A General Pur-

pose Event Monitoring System. In Proceedings of the 3rd Biennial
Conference on Innovative Data Systems Research (CIDR’07). Stanford
University, USA, 2007.

[DGLO+09] Nihal Dindar, Baris Güç, Patrick Lau, Asli Ozal, Merve Soner, and

Nesime Tatbul. DejaVu: Declarative pattern matching over live and

archived streams of events. In Carsten Binnig and Benoit Dageville,

editors, Proceedings of the 35th SIGMOD International Conference
on Management of Data, SIGMOD ’09, pages 1023–1026, New York,

NY, USA, 2009. ACM.

[DMRH04] Luping Ding, Nishant Mehta, Elke A. Rundensteiner, and George T.

Heineman. Joining Punctuated Streams. In Elisa Bertino, Stavros

Christodoulakis, Dimitris Plexousakis, Vassilis Christophides, Mano-

lis Koubarakis, Klemens Böhm, and Elena Ferrari, editors, 9th Interna-
tional Conference on Extending Database Technology, pages 587–604,
Berlin, Heidelberg, EDBT’04. Springer-Verlag.

[DoFl06] Kevin Donnelly and Matthew Fluet. Transactional events. In Pro-
ceedings of the eleventh ACM SIGPLAN International Conference on
Functional Programming, ICFP ’06, pages 124–135, New York, NY,

USA, 2006. ACM.

[Doyl78] Jon Doyle. Truth maintenance systems for problem solving. Technical

Report AI-TR-419, Massachusetts Institute of Technology, Cambridge,

MA, USA, 1978.

212 Bibliography

[Doyl87] Jon Doyle. A truth maintenance system, pages 259–279. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1987.

[Ecke08] Michael Eckert. Complex Event Processing with XChangeEQ: Lan-
guage Design, Formal Semantics and Incremental Evaluation for
Querying Events. Dissertation/Ph.D. thesis, Institute of Computer Sci-

ence, LMU, Munich, 2008. Institute for Informatics, University of

Munich, 2008.

[EiGS05] Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling Comp

Ling: Practical Weighted Dynamic Programming and the Dyna Lan-

guage. In Proceedings of the conference on Human Language Technol-
ogy and Empirical Methods in Natural Language Processing, HLT ’05,

pages 281–290, Stroudsburg, PA, USA, 2005. Association for Compu-

tational Linguistics.

[EtNi10] Opher Etzion and Peter Niblett. Event Processing in Action. Manning

Publications Co., Greenwich, CT, USA, 2010.

[EtRS11] Opher Etzion, Ella Rabinovich, and Inna Skarbovsky. Non functional

properties of event porcessing. In David M. Eyers, Opher Etzion, Avig-

dor Gal, Stanley B. Zdonik, and Paul Vincent, editors, Proceedings
of the 5th ACM International Conference on Distributed Event-Based
System, DEBS ’11, pages 365–366, New York, NY, USA, 2011. ACM.

[FoAR11] Paul Fodor, Darko Anicic, and Sebastian Rudolph. Results on out-

of-order event processing. In Ricardo Rocha and John Launchbury,

editors, Proceedings of the 13th International Conference on Practical
Aspects of Declarative Languages, PADL’11, pages 220–234, Berlin,
Heidelberg, 2011. Springer-Verlag.

[Forg82] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/ Many

Object Pattern Match Problem. Artificial Intelligences, 19(1):17–37,
1982.

[FSSB05] Andrew D. H. Farrell, Marek J. Sergot, Mathias Sallé, and Claudio

Bartolini. Using the event calculus for tracking the normative state of

contracts. International Journal of Cooperative Information Systems,
14(2-3):99–129, 2005.

[GaAu02] Antony Galton and Juan Carlos Augusto. Two Approaches to Event

Definition. In Abdelkader Hameurlain, Rosine Cicchetti, and Roland

Traunmüller, editors, Proceedings of the 13th International Confer-
ence on Database and Expert Systems Applications, DEXA ’02,

Berlin, Heidelberg, 2002. Springer-Verlag.

[GaDi92] Stella Gatziu and Klaus R. Dittrich. SAMOS: an Active Object-

Oriented Database System. In IEEE Bulletin of the TC on Data En-
gineering, 1992.

Bibliography 213

[GaDi94] Stella Gatziu and Klaus R. Dittrich. Detecting composite events in

active database systems using Petrinets. In Proc. Fourth International
Workshop on Active Database Systems Research Issues in Data Engi-
neering, pages 2–9, 1994.

[GADI08] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman.

On Supporting Kleene Closure over Event Streams. In Proceedings
of the 24th International Conference on Data Engineering, ICDE ’08,

pages 1391–1393. IEEE, 2008.

[GeJS92a] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification

in an active object-oriented database. SIGMOD Record, 21(2):81–90,
1992.

[GeJS92b] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. Composite

Event Specification in Active Databases: Model & Implementation. In

Li-Yan Yuan, editor, Proceedings of the 18th International Conference
on Very Large Data Bases, VLDB’92, pages 327–338, San Francisco,

CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[GHMA+05] T. Ghanem, M. Hammad, M. Mokbel, W. G. Aref, and A. Elmagarmid.

Query Processing Using Negative Tuples in Stream Query Engines.

Technical Report CSD 04-040, Pudue University, 2005.

[GMSa87] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umeshwar Dayal,

editor, Proceedings of the 1987 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’87, pages 249–259, New

York, NY, USA, 1987. ACM.

[Go0̈5] Lukasz Golab and M. Tamer Özsu. Update-Pattern-Aware Modeling

and Processing of Continuous Queries. In Fatma Özcan, editor, Pro-
ceedings of the 2005 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’05, pages 658–669, New York, NY, USA,

2005. ACM.

[Gran10] Fabio Grandi. T-SPARQL: a TSQL2-like Temporal Query Language

for RDF. In International Workshop on on Querying Graph Structured
Data, ADBIS’10, pages 21–30. CEUR (online), 2010.

[GuHV07] Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. In-

troducing Time into RDF. The IEEE Transactions on Knowledge and
Data Engineering, 19(2):207–218, 2007.

[GuMu99] Ashish Gupta and Inderpal Singh Mumick. Materialized views. chap-

ter Maintenance of materialized views: problems, techniques, and ap-

plications, pages 145–157. MIT Press, Cambridge, MA, USA, 1999.

[Hale87] Paul Haley. Data-Driven Backward Chaining. In International Joint
Conferences on Artificial Intelligence. Milan, Italy, 1987.

214 Bibliography

[HiKR09] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations
of Semantic Web Technologies. Chapman & Hall/CRC, August 2009.

[KlCa04] Graham Klyne and Jeremy J. Carroll, editors. Resource Description
Framework (RDF): Concepts and Abstract Syntax. W3C Recommen-

dation, 10 February 2004. http://www.w3.org/TR/rdf-concepts/.

[KoKy10] Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying

Metadata in the Semantic Sensor Web: The Model stRDF and the

Query Language stSPARQL. In Lora Aroyo, Grigoris Antoniou, Eero

Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral,

and Tania Tudorache, editors, Proceedings of the 7th Extended Seman-
tic Web Conference (ESWC’10), Lecture Notes in Computer Science,

pages 425–439, Berlin,Heidelberg, 2010. Springer-Verlag.

[KoSe86] R Kowalski and M Sergot. A logic-based calculus of events. New
Generation Computing, 4:67–95, January 1986.

[Kowa74] Robert A. Kowalski. Predicate Logic as a Programming Language.

Information Processing Letters, 74:569–574, 1974.

[Kowa79a] Robert A. Kowalski. Algorithm = logic + control. Communications of
the ACM, 22:424–436, July 1979.

[Kowa79b] Robert A. Kowalski. Logic for problem solving. North-Holland Pub-

lishing Co., Amsterdam, The Netherlands, The Netherlands, 1979.

[KPNR+06] Alex Kozlenkov, Rafael Penaloza, Vivek Nigam, Loic Royer, Gihan

Dawelbait, and Michael Schroeder. Prova: Rule-based Java Scripting

for Distributed Web Applications: A Case Study in Bioinformatics. In

EDBT Workshops, 2006.

[KrSe09] Jürgen Krämer and Bernhard Seeger. Semantics and implementation

of continuous sliding window queries over data streams. ACM Trans-
actions on Database Systems, 34(1):1–49, 2009.

[LaLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On Active

Deductive Databases: The Statelog Approach. In Burkhard Freitag,

Hendrik Decker, Michael Kifer, and Andrei Voronkov, editors, Trans-
actions and Change in Logic Databases, Lecture Notes in Computer

Science, pages 69–106, Berlin,Heidelberg, 1998. Springer-Verlag.

[LFWK09] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Open-

RuleBench: an analysis of the performance of rule engines. In Juan

Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang Nejdl, edi-

tors, Proceedings of the 18th International Conference on World Wide
Web, WWW ’09, pages 601–610, New York, NY, USA, 2009. ACM.

Bibliography 215

[LLDR+07] Ming Li, Mo Liu, Luping Ding, Elke A. Rundensteiner, and Murali

Mani. Event Stream Processing with Out-of-Order Data Arrival. In

Proceedings of the 27th International Conference on Distributed Com-
puting Systems Workshops, ICDCSW’07, pages 67–77, Washington,

DC, USA, 2007. IEEE Computer Society.

[LLGR+09] Mo Liu, Ming Li, Denis Golovnya, Elke A. Rundensteiner, and Ka-

jal Claypool. Sequence Pattern Query Processing over Out-of-Order

Event Streams. In Proceedings of the 25th International Conference
on Data Engineering, pages 784–795, Washington, DC, USA, 2009.

IEEE Computer Society.

[Lloy87] John Wylie Lloyd. Foundations of Logic Programming. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2nd edition, 1987.

[Luck02] David Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley,

Reading, MA, USA, 2002.

[LuSc11] David Luckham and W. Roy Schulte. Event Processing Glossary -
Version 2.0. Event Processing Technical Society, 2nd edition, July

2011.

[MaCh08] Anurag S. Maskey and Mitch Cherniack. Replay-based approaches to

revision processing in stream query engines. In Proceedings of the 2nd
International Workshop on Scalable Stream Processing System, SSPS

’08, pages 3–12, New York, NY, USA, 2008. ACM.

[McDa89] Dennis McCarthy and Umeshwar Dayal. The architecture of an active

database management system. In Proceedings of the 1989 ACM SIG-
MOD International Conference on Management of Data, SIGMOD

’89, pages 215–224, New York, NY, USA, 1989. ACM.

[MeMa09] YuanMei and SamuelMadden. ZStream: a cost-based query processor

for adaptively detecting composite events. In Proceedings of the 29th
ACM SIGMOD Conference, pages 193–206, 2009.

[MiSh99] Rob Miller and Murray Shanahan. The Event Calculus in Classical

Logic - Alternative Axiomatisations. Electronic Transactions on Arti-
ficial Intelligence, 3(A):77–105, 1999.

[MoZa95] Iakovos Motakis and Carlo Zaniolo. Composite Temporal Events in

Active Database Rules: A Logic-Oriented Approach. In Tok Wang

Ling, Alberto O. Mendelzon, and Laurent Vieille, editors, Proceedings
of the 4th International Conference on Deductive and Object-Oriented
Databases, DOOD ’95, pages 19–37, London, UK, 1995. Springer-

Verlag.

216 Bibliography

[MWAB+02] RajeevMotwani, JenniferWidom, Arvind Arasu, Brian Babcock, Shiv-

nath Babu, Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosen-

stein, and Rohit Varma. Query Processing, Resource Management,

and Approximation ina Data Stream Management System. Technical

Report 2002-41, Stanford InfoLab, 2002.

[NiMa95] Ulf Nilsson and JanMaluszynski. Logic, Programming, and PROLOG.

John Wiley & Sons, Inc., 2nd edition, 1995.

[PaDi99] Norman W. Paton and Oscar Diaz. Active database systems. In ACM
Computing Surveys. ACM, 1999.

[PaKB10] Adrian Paschke, Alexander Kozlenkov, and Harold Boley. A Homoge-

neous Reaction Rule Language for Complex Event Processing. CoRR,
abs/1008.0823, 2010.

[PeSJ11] Matthew Perry, Amit P. Sheth, and Prateek Jain. SPARQL-ST: Extend-

ing SPARQL to Support Spatiotemporal Queries. In Naveen Ashish

and Amit P. Sheth, editors, Geospatial Semantics and the Semantic
Web, volume 12 of Semantic Web And Beyond Computing for Human
Experience, pages 61–86, Berlin,Heidelberg, 2011. Springer-Verlag.

[PrSe08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language

for RDF. In http://www.w3.org/TR/rdf-sparql-query/, 2008.

[PSHS10] Harshal Patni, Satya S. Sahoo, Cory Henson, and Amit Sheth. Prove-

nance Aware Linked Sensor Data. In 2nd Workshop on Trust and
Privacy on the Social and Semantic Web, Greece. CEUR Workshop

Proceedings, 2010.

[PSSVDA07] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. Van

Der Aalst. Constraint-based workflow models: change made easy. In

Robert Meersman and Zahir Tari, editors, Proceedings of the 2007
OTM Confederated International Conference on On the move to mean-
ingful internet systems: CoopIS, DOA, ODBASE, GADA, and IS - Vol-
ume Part I, OTM’07, pages 77–94, Berlin, Heidelberg, 2007. Springer-

Verlag.

[Ray09] Oliver Ray. Nonmonotonic Abductive Inductive Learning. Journal of
Applied Logic, 7(3):329–340, 2009.

[RMCZ06] Esther Ryvkina, Anurag S. Maskey, Mitch Cherniack, and Stan

Zdonik. Revision Processing in a Stream Processing Engine: A High-

Level Design. In Proceedings of the 22nd International Conference on
Data Engineering, ICDE ’06, page 141, Washington, DC, USA, 2006.

IEEE Computer Society.

[Robi65] John Alan Robinson. A Machine-Oriented Logic Based on the Resolu-

tion Principle. Journal of the ACM (JACM), 12:23–41, January 1965.

Bibliography 217

[RoMM09] A. Rodriguez, R. E. McGrath, and J. Myers. Semantic Management

of Streaming Data. In David De Roure Kerry Taylor, Arun Ayyagari,

editor, Proceedings of the 2nd International Workshop on Semantic
Sensor Networks, collocated with the 8th International Semantic Web
Conference (ISWC ’09), SSN09. CEUR (online), 2009.

[SASM+09] Roland Stühmer, Darko Anicic, Sinan Sen, JunMa, Kay-Uwe Schmidt,

and Nenad Stojanovic. Lifting Events in RDF from Interactions with

Annotated Web Pages. In Abraham Bernstein, David R. Karger, Tom

Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Krish-

naprasad Thirunarayan, editors, Proceedings of the 8th International
Semantic Web Conference, ISWC ’09, pages 893–908, Berlin, Heidel-

berg, 2009. Springer-Verlag.

[SeSt10] Sinan Sen and Nenad Stojanovic. GRUVe: a methodology for com-

plex event pattern life cycle management. In Barbara Pernici, editor,

Proceedings of the 22nd International Conference on Advanced Infor-
mation Systems Engineering, CAiSE’10, pages 209–223, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[SMXS+11] Nenad Stojanovic, Dejan Milenovic, Yongchun Xu, Ljiljana Sto-

janovic, Darko Anicic, and Rudi Studer. An intelligent event-driven

approach for efficient energy consumption in commercial buildings:

smart office use case. In David M. Eyers, Opher Etzion, Avigdor

Gal, Stanley B. Zdonik, and Paul Vincent, editors, Proceedings of the
5th ACM international conference on Distributed event-based system,

DEBS ’11, pages 303–312, New York, NY, USA, 2011. ACM.

[StKa02] Thomas Strandenæs and Randi Karlsen. Transaction Compensation

in Web Services. In The Norwegian Computer Science Conference.
Buskerud College, Norway, 2002.

[TaBe09] Jonas Tappolet and Abraham Bernstein. Applied Temporal RDF: Effi-

cient Temporal Querying of RDF Data with SPARQL. In Proceedings
of the 6th European Semantic Web Conference, ESWC’09, pages 308–

322, Berlin, Heidelberg, 2009. Springer-Verlag.

[Ullm88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Volume I. Computer Science Press, 1988.

[Ullm89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Volume II. Computer Science Press, 1989.

[Ullm90] J. D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume I and II. W. H. Freeman & Co., New York, NY, USA, 2nd

edition, 1990.

218 Bibliography

[vdAPS09] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declara-

tive workflows: Balancing between flexibility and support. Computer
Science - R&D, 23(2):99–113, 2009.

[vEKo76] Maarten H. van Emden and Robert A. Kowalski. The Semantics of

Predicate Logic as a Programming Language. Journal of the ACM,

23:733–742, October 1976.

[Warr92] David S. Warren. Memoing for logic programs. Communications of
the ACM, 35:93–111, March 1992.

[WASS+10] Andreas Wagner, Darko Anicic, Roland Stühmer, Nenad Stojanovic,

Andreas Harth, and Rudi Studer. Linked Data and Complex Event Pro-

cessing for the Smart Energy Grid. In Manfred Hauswirth Sören Auer,

Stefan Decker, editor, Proceedings of Linked Data in the Future In-
ternet at the Future Internet Assembly, volume 700, Ghent Belgium,

2010.

[WJFY08] Onkar Walavalkar, Anupam Joshi, Tim Finin, and Yelena Yesha.

Streaming Knowledge Bases. In International Workshop on Scalable
Semantic Web Knowledge Base Systems, collocated with the 7th Inter-
national Semantic Web Conference (ISWC ’08), Karlsruhe, Germany,

2008.

[WuDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance com-

plex event processing over streams. In Surajit Chaudhuri, Vagelis Hris-

tidis, and Neoklis Polyzotis, editors, Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, SIG-

MOD ’06, pages 407–418, New York, NY, USA, 2006. ACM.

[XSSA+11] Yongchun Xu, Nenad Stojanovic, Ljiljana Stojanovic, Darko Anicic,

and Rudi Studer. An Approach for More Efficient Energy Consump-

tion Based on Real-Time Situational Awareness. In Grigoris Antoniou,

Marko Grobelnik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dim-

itris Plexousakis, Pieter De Leenheer, and Jeff Z. Pan, editors, Proceed-
ings of the 8th Extended Semantic Web Conference - Volume Part II,
ESWC’11, pages 270–284, Berlin, Heidelberg, 2011. Springer-Verlag.

[YoBa05] Eiko Yoneki and Jean Bacon. Unified Semantics for Event Cor-

relation over Time and Space in Hybrid Network Environments.

In Robert Meersman, Zahir Tari, Mohand-Said Hacid, John My-

lopoulos, Barbara Pernici, Özalp Babaoglu, Hans-Arno Jacobsen,

Joseph P. Loyall, Michael Kifer, and Stefano Spaccapietra, editors,

OTM Conferences, Lecture Notes in Computer Science, pages 366–

384, Berlin,Heidelberg, 2005. Springer-Verlag.

Bibliography 219

[ZhDI10] Haopeng Zhang, Yanlei Diao, and Neil Immerman. Recognizing pat-

terns in streams with imprecise timestamps. Proceedings of the VLDB
Endowment, 3:244–255, September 2010.

220 Bibliography

Index 221

Index

active databases, 39

agent

aggregate, 22

compose, 22

enrich, 22

filter, 22

pattern detectio, 22

project, 22

split, 22

transformation, 22

translate, 22

aggregation, 20, 104

Allen’s interval algebra, 11

Amit, 42

artificial intelligence, 7

atom, see atomic formula

atomic event, 5, 59

atomic formulas, 26

background knowledge, 5, 7

backward chaining, 80

backward-chaining evaluation, see
top-down evaluation

binary event goals, 83

body (of the rule), 26

bottom-up evaluation, 34

built-in predicates, 26

business processes, 196

ad-hoc, 196

event-driven, 196

C-SPARQL, 53

CEDR, 42

checking rules, 79

chronological policy, 95, 98

classification, 106

clause, 26

complex event, 59, see derived event

Complex Event Processing, 17

composition of events, 20, 104

concurrent event patterns, 85

consumption policies, 57, 94

intervals, 96

time points, 95

consumption policy, 58, 70

context, 5, 7

Continuous Computation Language, 42

Coral8, 42

declarative

language, 65

programming, 57

declarative programming, 25

declarative semantics, 30

deductive reasoning, 7, 11

deductive rule, 7, 11

deductive rules, 105

definite clause, 26

definite goal, 26

definite program, 26

definite programs, 25, 30

derived event, 3, 5, 12

domain knowledge, 11

dynamic filtering, 100

ELE, 11

enrichment, 20, 102

EP-SPARQL, 11, 14, 135

operational semantics, 145

semantics, 141

syntax, 138

Esper, 42

ETALIS, 14, 153

architecture, 153

222 Index

ETALIS Language for Events, 11, 14,

52, 65, 70

implementation, 153

syntax, 67

evaluation, 159

basic patterns, 161

EP-SPARQL, 178

iterative patterns, 172

knowledge-based Event

Processing, 164

out-of-order Event Processing, 169

retraction in Event Processing, 164

use case, 182

event, 3, 17

channel, 23

consumer, 21

producer, 21

event at a time, 62

event binarization, 78

event classification, 5

event clustering, 5

event conjunction, 83

event disjunction, 85

event enrichment, 5

event filtering, 5

event pattern, 3

Event Processing, 17

event processing, 3, 11, 14, 20

agent, 22

architecture, 20

language, 23

event processing architecture, 20

Event Processing Language, 42

event processing language, 3

event producer, 21

event revision, 3, 11, 14

event rules, 67

event-driven, 7, 11, 19

event-driven backward chaining rules,

78

event-driven computation model, 7

fact, 11, 26

filtering, 20, 100

event content, 100

event type, 100

fixpoint theory, 34

forward chaining, 80

forward-chaining evaluation, see
bottom-up evaluation

function symbols, 26

garbage collection of events, 131

general garbage collection, 133

pattern-based garbage collection,

133

pushed constraints, 132

goal inserting rules, 79

ground atom, 26

head (of the rule), 26

Herbrand Base, 30

Herbrand Model, 30

Herbrand Universe, 30

HiPAC, 39

Horn clause, 26, see definite clause

Horn program, see definite program

Horn rule, 26

implicit knowledge, 5, 7

incremental reasoning, 61

inductive reasoning, 7

inferencing, 7

information pull, 19

information push, 19

intelligent event processing, 7

interpretation

definite programs, 30

ETALIS Language for Events

programs, 71

interval-based temporal semantics, 59

knowledge representation, 11, 25

knowledge-based EP, 5

knowledge-rich EP, 5

late event, 14, see out-of-order event

late events, see out-of-order events

literal, 26

logic programming, 7, 11, 25

logic rule, 7

Index 223

logic-based EP, 49

memory management, 131

model, see model-theory

ETALIS Language for Events

programs, 71

model-theory, 30

multiplying, see splitting

naive evaluation, 34

Ode, 39

operational semantics, 33, 77

out-of-order event, 3, 11

out-of-order event processing, 11, 14,

125

out-of-order events, 48

pattern detection, 20, 101

pattern matching, see pattern detection

point-based temporal semantics, 59

program

definite, 26

projection of events, 20, 101

Prova, 49

RDF, 52

RDF Schema, 7

reasoning, 7, 105

reasoning over events, 7

recent policy, 95, 97

request-response, 19

request-response interaction, 11

request-response interaction model, 7

retraction in EP, 46, 113

revised event, 14, see event revision

revision in EP, see retraction in EP

revoked event, see event revision

rule

Horn, 27, 68

SASE, 42

semantic condition, 3

Semantic Web, 11

semantics, 26

semi-naive evaluation, 34

set at a time, 62

signature

Horn logic, 27, 68

SLD Resolution, 35

SPARQL, 52

splitting, 20, 103

static knowledge, 7

static rules, 67

stream reasoning, 7, 14

StreamBase, 42

Streaming SPARQL, 53

StreamInsight, 42

StreamSQL, 42

subclass relationships, 108

syntax, 26

TelegraphCQ, 42

temporal condition, 3

terms, 26

The Fast Flower Delivery, 11

The Real Time Web, 19

top-down evaluation, 35

total order assumption, 11

transaction processing, 46

transactions, 114

transformation of events, 20, 101

transitive closure, 105

translation of events, 20, 102

truth maintenance system, 46

unrestricted policy, 70, 96

variable assignment, 30

XChangeEQ, 49

ZStream, 42

By Darko Anicic
Event Processing and Stream Reasoning with ETALIS

Event Processing (EP) is concerned with detection of situations under time cons-
traints that are of a particular business interest. We face today a paradigm shift
toward the real time information processing, and EP has therefore spawned signifi-
cant attention in science and technology. Due to omnipresence of events, EP is beco-
ming a central aspect of new distributed systems such as cloud computing and
smart grid systems, mobile and sensor-based systems, as well as of a number of
application areas including financial services, business intelligence, social and colla-
borative networking, click stream analysis and others.

In many applications to process events only is not sufficient. Detection of complex
situations under time constraints very often involves evaluation of background
knowledge too. This knowledge captures the domain of interest (context). Its purpo-
se is to be evaluated during detection of events in order to on the fly enrich events
with relevant background information; to detect more complex situations; to reason
about events and propose certain intelligent recommendations; or to accomplish
event classification, clustering, filtering and so forth. This book presents the ETALIS
Language for Events (ELE), which is a declarative rule-based language for EP. ELE
goes beyond today’s EP by enabling processing of both, events and background
knowledge. This capability is also known as Stream Reasoning (SR). We present ELE
and show how its stream reasoning capabilities together with its EP capabilities have
the potential to provide powerful real time intelligence. We provide an open source
implementation of the language, and present a few implemented scenarios to
demonstrate usefulness of our approach.

