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Silicon nitride is used for challening applications like cutting inserts or forming 
rolls, which require high strength and fracture toughness. The elongated grains 
support the crack path deviation and, therefore, the fracture toughness. This 
complex material behavior has been modeled with 3D unit cells for finite ele-
ment simulations, which include the thermoelastic properties and the fracture 
behavior. The key result is that the reinforcement by elastic bridging grains has 
been observed in detail, which supports recent research. Furthermore, effective 
load paths have been used for the examination of different aspects of the model.
Finally, an effective fracture model has been implemented, which allows for a 
comparison of the findings on the microscale with experimental results. So, ba-
sed on the micromechanical results, R-curve experiments have been reproduced.
This thesis improves the understanding for the fracture behavior of silicon nitride 
and clears the way for new applications.
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Logic merely sanctions the conquests of intuition.

Jaques Hadamard





Zusammenfassung

Siliciumnitrid wird in der Industrie zum Beispiel für Wende-
schneidplatten oder Formwalzen verwendet. Sehr wichtig für
diese herausfordernden Anwendungen ist die besondere Kombi-
nation von hoher Festigkeit und Bruchzähigkeit. Die Mikrostruk-
tur aus nadelartigen β-Si3N4-Körnern in einer Matrix aus oxidnitri-
dischem Glas sorgt durch die gestreckten und – im Vergleich zu
den Korngrenzen – festen Körnern für Rissumlenkung und damit
für Zähigkeit.

Für ein besseres Verständnis dieses komplexen Materialverhaltens
auf der Mikroskala wurde ein Gefügemodell sowie Materialmo-
delle für die thermoelastischen Eigenschaften und das Bruchver-
halten implementiert, welche die Erzeugung von dreidimensio-
nalen Einheitszellen für Finite-Element-Simulation erlauben. Diese
wurden für mikromechanische Simulationen eingesetzt. Dadurch
konnte einer der wichtigsten Verstärkungsmechanismen in Sili-
ciumnitrid – die Ausbildung von elastischen Brückenkörnern –
nachgewiesen sowie ihr Versagen beobachtet werden. Die Berech-
nung von effektiven Belastungskurven ermöglichte es, Aussagen
über den Einfluss der Spannungsmehrachsigkeit und der Gefüge-
morphologie auf das Bruchverhalten von Siliciumnitrid zu treffen.

Diese mikromechansischen Berechnungen sind aber für eine
praktische Anwendung in Bauteilberechnungn wesentlich zu
aufwändig. Also wurde ein effektives Bruchmodell entwick-
elt, das einen Vergleich der Ergebnisse auf der Mikroebene mit
experimentellen Befunden auf der Makroebene ermöglicht. So
konnten R-Kurven-Experimente durch Simulationen auf Basis der
mikromechanischen Ergebnisse nachvollzogen werden.

Diese Arbeit ermöglicht ein besseres Verständnis des Bruchverhal-
tens von Siliciumnitrid und ebnet damit den Weg für neue Anwen-
dungen.





Summary

Silicon nitride is used for cutting inserts or forming rolls. Cru-
cial for these challenging applications is the specific combination
of high strength and fracture toughness. The microstructure con-
sists of column-like β-Si3N4 grains in a matrix of oxynitride glass.
The elongated and – compared with the grain interfaces – strong
grains support the crack path deviation and, therefore, the fracture
toughness.

A better understanding of this complex material behavior on
the microscale can be achieved by the implementation of three-
dimensional unit cells for finite element simulations, which include
a structural model, the thermoelastic properties as well as the frac-
ture behavior. They have been used for micromechanical calcula-
tions. One key result is that one of the most important reinforce-
ment mechanisms – the evolution of elastic bridging grains – could
be substantiated and observed during their failure. The determi-
nation of effective load paths allowed for the characterization with
respect to the influences of the stress triaxiality and structural mor-
phology on the fracture behavior of silicon nitride.

These micromechanical simulations are far too costly for a prac-
tical application in structural design. Hence, an effective fracture
model has been implemented, which allows for a comparison of
the findings on the microscale with experimental results. So, based
on the micromechanical results, R-curve experiments have been re-
produced.

This thesis improves the understanding for the fracture behavior of
silicon nitride and clears the way for new applications.
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Chapter 1

Introduction

1.1 Motivation

In the last decades, the development of high performance materials
for functional as well as for structural applications has played a ma-
jor role in science. Examples of such materials for structural appli-
cations are high strength steels or super alloys, which have to be cut
or formed, see Figure 1.1 a). It is clear that an efficient treatment of
these stiff and strong materials requires tools (Figure 1.1 b), which
are stiffer and stronger than the workpieces at high temperatures.
Additionally, they require a long lifetime, since the production has
to be as cheap as possible due to the increasing cost pressure. So,
the toughness and the wear resistance as well as the thermal shock
resistance play the key roles in the selection of tool materials.

The sound combination of these material properties is a challeng-
ing task for material science. Ceramics turned out to provide this
property profile in many cases. Due to their atomic structure with
mainly covalent binding they are strong and stiff, but also brittle.
This can lead to abrupt failure and thus to production interruption



Motivation

Figure 1.1: Silicon nitride and its application in demanding indus-
trial processes: a) Production of high-strength steel wires, b) ce-
ramic roller tool for a process shown in a), and c) silicon nitride mi-
crostructure with a crack that is deviating around the grains (Satet,
2002).

or even worse consequences. So, the toughness has to be described
as exact as possible to allow secure application under complex con-
ditions. From the view of a material scientist, especially the mi-
crostructure together with the intergranular properties play a very
important role for the overall strength and toughness of engineer-
ing ceramics. Figure 1.1 c) shows the microstructure of silicon ni-
tride, which provides the features that lead to tough and strong
materials. It can be seen that the crack in this material cannot propa-
gate on a straight line due to the strong grains, which are debonding
or cracking and thus dissipating energy. This leads to high critical
energy release rates and, therefore, to a high fracture toughness.

This microstructure is the main reason for the prominent feature
combination of silicon nitride, which makes it the first choice when
an optimal combination of high strength, wear resistance, and,
most important fracture toughness, is needed. The relatively low
elastic stiffness and its low thermal expansion coefficient together
with the high strength and thermal conductivity lead to an excel-
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lent thermal shock resistance. Altogether, this is a unique property
constellation, which makes silicon nitride irreplaceable as a tool
material for industrial high performance applications such as the
turning of cast iron with discontinuous cut or the hot wire rolling
of high strength steel wires, see, Figure 1.1 a) and b). Here, the
tools have to resist extreme thermal and mechanical challenges due
to the dynamic loading at extreme magnitudes.

Considering these facts it appears highly desirable to be capable
of predicting the properties of silicon nitride. In this sense, a huge
amount of scientific work has been done. It was found that the com-
plex microstructure with large grains of high aspect ratio together
with an appropriate grain boundary toughness plays a crucial role
in order to achieve an ideal combination of strength and toughness.

Compared to the great majority of experimental material assess-
ment, which is mainly paired with linear elastic fracture mechanics
approaches, the penetration of the topic by finite element simula-
tions is relatively small. This is due to the challenges that are linked
to a sound modeling of the material, which has to incorporate the
geometry as well as the material behavior on the microscale into
one model. Every single contribution is linked to considerable the-
oretical issues, which have not yet been undertaken in this volumi-
nous combination to the best knowledge of the author.

1.2 State of the Art

The high level of knowledge concerning the production and the
experimental assessment of silicon nitride becomes obvious when
looking at the huge variety of publications. The most relevant con-
siderations for this work will be addressed briefly in this section. A
more detailed inspection will follow at the beginning of the chap-
ters.
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State of the Art

One of the most important characteristics of silicon nitride have
been observed by Lange (1973). His observation of the fracture
surface of double cantilever samples showed that the high fracture
toughness can be related to the large grains with high aspect ratios.
From that time onwards, a considerable amount of work has been
undertaken to make the high potential of the structural reinforce-
ment useful. To name only a few, the work of Ohji et al. (1995) and
Becher et al. (1998) have to be mentioned. They found that special
distributions of grain shape and size are preferable for toughening.

Especially important for this work is the notion of elastic bridg-
ing grains, which reinforce the material in the early stages of the
fracture process. Those large grains are linking the flanks of cracks
without debonding and, therefore, they toughen the material sig-
nificantly. This effect is the main source for the high fracture tough-
ness and the extremely steep rising R-curve, which is observed in
fracture experiments on silicon nitride as outlined in, e.g., Fünf-
schilling et al. (2011). Here, as well, thermal residual stresses come
into play, which arise during the cool-down after the sinter process.
They support the bonding of the grains and, thus, the toughness of
silicon nitride, as found by Peterson and Tien (1995).

In order to understand and to exploit this effect, considerable ef-
forts have been undertaken. Here, both the sintering conditions as
well as the chemistry of the intergranular phase have been tuned
in order to obtain an optimum either for toughness, strength, or a
good compromise of both (Sun et al., 1998; Peillon and Thevenot,
2002; Kruzic et al., 2008).

It is highly desirable to determine how the effective properties on
the length scale of structural applications arise from the constella-
tion on the microlevel. Considering the complexity of morphology,
elasticity, and fracture behavior, it is reasonable to use a unit cell
with the morphology, material and interface properties.

4
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Fundamental works on this field are Suquet (1985) and Maugin
(1992), where the basic concepts are explained and applied and
which have been developed further with respect to fracture me-
chanics by Verhoosel et al. (2010).

1.3 Concept and Overview

The main body of this work is divided into three parts, in which the
different features of the proposed model for silicon nitride are ad-
dressed: Microstructure, thermoelastic properties, and finally – the
main topic of the work – fracture of silicon nitride on the microscale
and determination of the effective properties. The structure is
outlined in Figure 1.2: On one side, a microstructure generation
is necessary due to the currently invincible challenges, which are
linked to experimental access to the three-dimensional microstruc-
tures. The synthetic geometry data is used for the generation of
finite-element meshes. On the other hand, the numerous material
features for the thermoelasticity and the trans- and intergranular
fracture have to be incorporated. All results have been combined
to complex finite element models. Those simulations are subse-
quently used for the determination of the effective properties.

Consequently, the second chapter is on the algorithmic creation of
the microstructure, which tries to represent the most important ge-
ometrical properties of silicon nitride. This structural model will be
used throughout the work in order to provide geometries for the
finite element models.

The third chapter introduces all thermoelastic properties on the mi-
croscale and incorporates them into a conclusive framework for fi-
nite element simulations. The model consists of detailed and ex-
perimentally motivated constitutive assumptions on the microscale
concerning the elastic stiffness and the thermal expansion behavior.
This information is used to determine the effective thermoelastic
behavior and allows to account for the thermal residual stresses.

5



Concept and Overview

Figure 1.2: Conceptual diagram for the chosen homogenization ap-
proach. The geometry generation and the material and interface
properties are merged into complex microstructural finite-element
simulations, which allow for the determination of the effective
properties.

The fourth chapter incorporates the results from the precedent
chapters into one micromechanical finite element framework com-
bining all information: the synthetic microstructures, thermoelastic
properties, and detailed assumptions about the fracture behavior
on the microscale, in particular, the fracture of the phases and the
interface behavior between the grains. With these assumptions a
procedure for the determination of the effective properties is pro-
posed. For the effective fracture behavior a simplified model is
suggested that can be applied to macroscopic simulations. This is
examplified on an important experiment: The four-point bend test
on edge notched beams. In order to prove the concept, the eval-
uation of the macroscopic fracture simulations will be carried out
with approved fracture mechanics concepts.

6
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The final chapter discusses the main findings of the work and pro-
vides several options for a further development and applications of
the model.

1.4 Notation and Nomenclature

A direct tensor notation is preferred throughout the text. Vec-
tors and second-order tensors are denoted by lowercase and up-
percase bold letters, e.g., a and A, respectively. A linear map-
ping of second-order tensors by a fourth-order tensor C is written
as A = C[B]. The scalar product and the dyadic product between
vectors and tensors are denoted by a ⋅ b and a⊗ b, respectively. The
brackets ⟨⋅⟩, e.g., ⟨σ⟩, indicate ensemble averaging, which can be
identified with volume averages in the infinite volume limit for er-
godic media. The effective quantities are denoted by a bar, e.g., C̄.
The tensor I is the identity on vectors. The identity on symmet-
ric second-order tensors is represented I

S. All tensorial quantities
are embedded in the three-dimensional Euclidean space R

3.

The following list of variables compiles all relevant quantities used
in this thesis.

It is organized in scalar and tensorial variables and sets. At the end
a list of frequently used sub- and superscripts is included.

If a symbol has multiple meanings it is used in mutually exclu-
sive contexts, so that confusion should be avoided. The mentioned
quantities are always presented in their basic form and can be con-
cretized by scripts or other symbolic extensions.

7



Notation and Nomenclature

Scalar Variables

a Crack length
A (Crack) area
A Aspect ratio
B Grain thickness
c Volume fraction, scatter constant, speed of sound
C Elastic continuum stiffness constant
d Euclidean distance
D Dissipation
E Young’s modulus
f Coefficient of friction, auxialliary constant
F Force
G Shear modulus
G Energy release rate
H Degradation constant
k Constant
K Bulk modulus, interface stiffness component,

stress intensity factor
L Grain length
ℓ Norm symbol, crack length
L Lagrangian function
p Norm exponent, hydrostatic pressure
℘ Accumulated degradational separation or strain
P Stress power
q Degradation traction or stress
r Coefficient, random number
s Coefficient, initial interface strength
S Compliance
S Degradation energy
t Coefficient, pseudo-time, traction vector component
T Temperature
T Triaxiality
u Displacement vector component

8
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V Volume
v Velocity
w Edge length of the unit cell
y Lattice distance
Y Geometry function
α Thermal expansion coefficient, normalized crack length
γ̇ Lagrangian multiplier
ε Infinitesimal strain
ϑ Polar angle
λ Lamé constant
µ Lode parameter
ν Poisson’s ratio
ρ Density
σ Stress tensor component or stress-like variable
τ Norm of tangential traction
ϕ Azimuthal angle
φ Fracture criterion
ψ Helmholtz free energy
ω Rotation angle

Sets

D Grain dimensions
E Prism edges
F Prism faces
G Grain (β-Si3N4)
I Interface (grain boundary)
L Contact indicator
M Matrix (glassy phase)
P Projections
V Prism vertices

9
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Vectors and Tensors

A Coefficient matrix
B Second order basis tenor
C Elastic continuum stiffness tensor
d Unit normal vector on unit sphere, separation vector
e Cartesian unit vector
H Displacement gradient
J Jacobian
k Slope tensor
K Elastic interface stiffness tensor
m Prism edge vectors
n Normal vector
p Point, principal vector
P Principal projector
P Fourth-order projector
Q Orientation tensor
s Shift vector for grain origin translation
S Elastic interface compliance tensor
S Elastic continuum compliance tensor
t Traction vector
u Displacement vector
v Vertice vector, triangle edge vector, polynomial vector
w Displacement fluctuation vector
x Location
α Thermal expansion tensor
γ̇ Lagrangian multiplier vector
ε Infinitesimal strain tensor
δ Separation vector in tangential space
Ξ Coupling tensor
σ Cauchy stress tensor
τ Traction vector in tangential space
φ Vectorized fracture criterion

10
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Sub- and Superscripts

0 Initial
acc Accumulated
c Crack or critical
d Damage
eq Equivalent
ga Growing around
int Intersection
m Mean intersection point
n Normal direction
o Overlap
p Periodic copy
pr Principal
pen Penalty
R Resistance
t Tangential direction
th Thermal
µ Micro

11





Chapter 2

Microstructure Generation☆

2.1 Introduction

Silicon nitride is a structural reinforced ceramic, which is used for
high performance applications due to its good compromise of stiff-
ness, strength, and toughness. This interesting property profile is
related to different aspects of the material on the microlevel. Its
strength and fracture toughness strongly depend on two features:
The grain size-grain shape distribution and the properties of the
grain boundary films are equally relevant for the effective mechan-
ical material properties.

The observation of the structure-property relationship is a long-
term field of research. Lange (1973) was one of the first to the
knowledge of the author who investigated a relation between
fracture energy and the microstructure of hot-pressed silicon ni-
tride. He reported results from double cantilever specimens, which
clearly indicate a correlation between the measured fracture energy

☆This chapter is based on the paper “An Algorithm for the Generation of
Silicon Nitride Structures” (Wippler and Böhlke, 2011).



Introduction

and the detected elongated grains in β-rich silicon nitride composi-
tions. It has been observed that the samples, which dissipated the
most fracture energy had a significantly increased specific surface
with deep holes from pulled-out grains of high aspect ratio.

Ohji et al. (1995) and Becher et al. (1998) found that especially a
bimodal distribution of grain sizes with an anisotropic distribution
of the grain axes is increasing the fracture toughness, whereas large
and elongated grains can act as bridges between the crack surfaces,
so that cracks have to propagate under circumvention of the grains.

Different ways of achieving such microstructures have been exam-
ined. An example is given in Peillon and Thevenot (2002), where it
was found that longer sintering times lead to improvement of the
fracture toughness compared to seeding with big β-grains, because
the seeding can have unfavorable effects on the densification of the
material. With increased seeding times and, thereby, longer periods
of natural grain growth, fracture toughness could be improved by
up to 30% with respect to the reference material.

In Sun et al. (1998) the influence of yttria and alumina additives
have been examined with the result that a high Y:Al ratio is increas-
ing the fracture resistance due to large an elongated grains with a
relatively low debonding stress, which supports crack path devia-
tion.

Different approaches to the simulation of silicon nitride microstruc-
ture evolution have been documented. An important contribu-
tion is the implementation of the anisotropic Ostwald ripening for
faceted crystals by Kitayama et al. (1998a), the α- to β-transition
(Kitayama et al., 1998b) and the shape evolution of a single grain
in Kitayama et al. (2000). Here, not the microstructure itself was
created, such that the most important results in the light of this
work are the distributions of grain lengths, widths, and aspect ra-
tios. They are in good agreement with experimental observations
and with the presented results of the synthetic structure generation.

14



Microstructure Generation

The effective mechanical properties of a polycrystalline material
can be calculated from information on the microlevel. A classical
approach is to use a unit cell that is assumed to represent the geo-
metrical and material information of the considered bulk material.
Given the statistical “representativity”, the unit cell is often called
a representative volume element (RVE). The best way for creating
such a unit cell is the direct usage of experimental data. Borbély
et al. (2006) have used microtomographic observations on particle-
reinforced metal-matrix composites (aluminum as matrix with 20%
alumina particles as reinforcement) for the construction of finite el-
ement meshes.

In case of silicon nitride, this approach is not feasible due to the ex-
tremely challenging preparation techniques. Therefore, it is techni-
cally not possible to use a sequence of scanning electron microscope
(SEM) images for the in-depth information on the silicon nitride
geometry. The required slice thickness lies in the sub-micrometer
domain due to the given grain sizes and cannot be delivered by re-
cent preparation techniques. The application of image-giving tech-
niques like magnetic resonance tomography (MRT) or micro com-
puter tomography (µ-CT) is impossible due to the low phase con-
trast and the very small intrinsic dimensions, which are beneath the
accessible resolution. First investigations of image stack acquisition
by a combination of electron backscatter diffraction (EBSD) for the
image acquisition and focused ion beam sections (FIB) for the in-
depth segmentation have been undertaken. However, they are yet
too expensive for an efficient geometry reconstruction.

Thus, a different way had to be chosen, which was inspired by
the sequential adsorbtion technique. It allows for an algorithmic
creation of a structure, which is similar to experimental observa-
tions. Louis and Gokhale (1996) created a synthetic microstruc-
ture of a polymer matrix composite with spherical inclusions of
constant size. The geometry was used to obtain a self-consistent
model for the electrical conductivity. Tschopp et al. (2008) used
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two-dimensional distributions of ellipses with different aspect ra-
tios, which have been assembled into representative area elements
for an examination of image analysis methods.

The presented algorithm for silicon nitride-like structure combines
the sequential adsorbtion technique, see, e.g., Cooper (1988), with
particle growth and subsequent steric hindrance and is based on
experimental observations on the grain growth processes. It has to
be emphasized that the algorithm does not consider any chemical
or thermodynamical relations.

2.2 Observation and Implementation

2.2.1 Overview

The main idea of the structural model is that the silicon nitride-
like structure is arising from statistical seeded locations and ori-
entations of hexagonal prisms, which will be called “grains” in the
context of this work. The grains are seeded in an adjustable number
of steps and are thought to be growing isotropically until steric hin-
drance. The cases of pinning require specific considerations, which
will be given later on.

After calculating the “exact” structure, the determination of the
voxel structure, which is used for the finite element discretization,
allows for certain smaller refinements like the angularity of the
grains and the matrix volume fraction of the structure.

2.2.2 Geometric Quantities

On one hand, grains, i.e., hexagonal prisms, can be regarded as sets
of vertices, edges and planes. An equivalent representation is pro-
vided by the norm concept, such that grain-like contours can be de-
scribed by the norm ℓmax

⩽ 1, which will be introduced in Eq. (2.8).
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Both concepts use the grain origin x0, the unit normal vectors of the
hexagonal prism and its dimensions B and L for the breadth and
length, respectively (Figure 2.1). The orthogonal orientation tensor
Q is given by the angle-axis representation

Q =Q(d, ω) = d⊗ d + (I − d⊗ d) cos(ω) − ǫ[d] sin(ω) (2.1)

with the rotation angle ω. The rotation axis d represents the normal
vector on the unit sphere with

d = d(ϑ,ϕ) = sin(ϑ) cos(ϕ)e1 + sin(ϑ) sin(ϕ)e2 + cos(ϑ)e3, (2.2)

where I is the identity tensor and ǫ = ei ⋅(ej×ek)ei⊗ej⊗ek is
the Levi-Civita permutation tensor. The set of normal vectors
on the faces in the initial configuration is given by n0

1 = e1,
n0
2 =

1/2 (e1 +√3e2), n0
3 =

1/2 (−e1 +√3e2), and n0
4 = e3. The first

three vectors represent the three different orientations of the pos-
itive prism planes. The fourth vector describes the direction of the
upper basal plane. Changing the signs of the vectors provides the
opposing planes. The set D = 1/2 {√3B,√3B,√3B,L} assembles
the distances of the prism planes to the grain origin x0 with the
dimensionless breath B and length L.

The twelve vertices of the grains are given by the set

V = {v ∣ v = x0 +Bmi ±
1

2
H n4, i = 1 . . .6} , (2.3)

with the edge vectors mi = 1/2 (nVimod6+1 +nVi ), i = 1 . . .6, the nor-
mal vectors on the prism planes in positive and negative di-
rections nV = {Qn0

i ,−Qn0
i } and i = 1 . . .3 and the axial vector

n4 =Qn0
4.

The set of 18 edges consists of three subsets. The set of six prism
edges Ep and two sets of each six basal edges Eb

1 and Eb
2 with

Ep
= {x ∣ x = vi + s(vi+6 − vi)}

Eb
1 = {x ∣ x = vi + s(vimod6+1 − vi)}
Eb
2 = {x ∣ x = vi+6 + s(vimod6+7 − vi+6)} , (2.4)
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Figure 2.1: Grain lattice model in a general configuration: hexago-
nal prism with coordinate system, origin, prism normals, edge vec-
tors and dimensions; vertice numbers correspond to the edge set E
and vertice set V .

where s = [0,1] and i = 1 . . .6. Therefore, the general set of edges
can be combined into E = Ep ∪ Eb

1 ∪ E
b
2 .

The eight faces F consist of six prism faces and two basal faces with
the normal form

F = {x ∣ x ⋅nFi −nFi ⋅ (x0 +Din
F
i ) = 0, i = 1 . . .8}. (2.5)

The rotated outward normal vectors on the prism faces are
nFi = {Qn0

i ,−Qn0
i }with i = 1 . . .4.

The ℓp-norm is a generalization of the Euclidean norm (p = 2) with
respect to both the exponent p and the used base vectors. The for-
mal representation of the grains is given by the ℓp-norm on the pro-
jections P of the difference of a certain point x in space to the origin
of the grain x0 on the oriented normal planes with normal vector
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Figure 2.2: Contour of the anisotropic norm ℓp(x) = 1 with increas-
ing exponents p = {2,5,10,20} and aspect ratios: The angularity
of the grain models increases with increasing values for the expo-
nent p. Natural shapes are obtained by high values, e.g., p = 10 . . .20
and L/B = 3 . . .10. The left contour is an ellipse, i.e., a Euclidean
norm for p = L/B = 2.

ni and the length scale Di

Pi(x) = 1

Di

Qn0
i ⋅ (x −x0), i = 1 . . .4. (2.6)

Hence, the norm can be written as

ℓp(x) = p

¿ÁÁÀ 4

∑
i=1

∣Pi(x)∣p. (2.7)

As limiting case p→∞, the ℓp-norm is transformed into the maxi-
mum norm

ℓmax(x) =max{∣Pi(x)∣, i = 1 . . .4}. (2.8)

The anisotropy can be obtained by the choice of the normal vec-
tors n and the dimensions D. Figure 2.2 shows several cases. The
transition from the Euclidean norm into an angular form with high
aspect ratios can be observed.
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2.2.3 Randomization

For a statistical structure generation a homogeneous statistical dis-
tribution of locations, orientations, and growth parameters are the
precondition, which can deliver an isotropic orientation distribu-
tion, if enough grains are in the statistical ensemble. The origin of a
grain x0 depends on three random numbers r1...3 between 0 and 1.
The vectors are scaled by the edge length w of the cube of con-
sideration, such that the grain origin is x0 = w(r1 e1 + r2 e2 + r3 e3).
Here, it is useful to avoid points too close to each other to al-
low for a noteworthy growth. The penalty distance of a set of
points is determined by the notion of an assumed mean den-
sity ⟨V G⟩ = w3/nG , with the intended number of grains in the unit
cell nG . Thus, the mean distance is ⟨dG⟩ = 3

√⟨V G⟩, and the penalty
distance is dpen = kpen⟨dG⟩, with the penalty factor 0 < kpen < 1.
A new grain origin x2

0, which is seeded next to an already existing
grain origin x1

0 is not used if ∥x1
0 −x2

0∥ < dpen.

Feasible values for the penalty factor kpen are between 1/4 and 1/2.
Figure 2.3 shows four examples in two dimensions. The impact of
the penalty factor is significant. With increasing penalty factor, the
mean distance between the objects increases due to the enforced
distance around them. For the sequential adsorption undesirable
grain clusters are avoided. These clusters would end in an early-
stage growth hindrance, which results in structures with low aspect
ratios and, therefore, unrealistic stereographic properties.

In case of reseeding, all new grain origins have to be checked for not
being within the space of already existing grains. Here, the penalty
distance ∆Dpen is used in the projection

Ppen
i =

n1
i ⋅ (x2

0 −x1
0)

D1
i +∆Dpen

⇒ ℓ
pen
12 =max{∣Ppen

i ∣}, i = 1 . . .4. (2.9)

Reasonable values for ∆Dpen are in the range of 1. . .5% of the edge
length w. The growth for the prismatic (breadth B) and basal direc-
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kpen = 0 kpen = 1/4

kpen = 1/2 kpen = 9/10

Figure 2.3: Influence of the penalty distance on the sequential ad-
sorpted ensembles demonstrated on random seeded points in two
dimensions with penalty factor kpen = {0, 1/4, 1/2, 9/10}. The magni-
tude of the penalty is indicated by the circles around the points.
The higher the penalty factor, the larger the mean distance between
neighboring objects.

tion (length L) relations are given by

kB = (1 + cB(1 − 2r4))k0B, ∆B = kB ∆t, B = kB t, (2.10)

kL = (1 + cL(1 − 2r5))k0L, ∆L = kL∆t, L = kL t, (2.11)

such that the growth velocities are scattering around kB/L(1±cB/L).
The homogeneous distribution of the random numbers on the
unit sphere requires remapping of the givens r6...8 due to the cur-
vature of the sphere. According to Shoemake (1992), the rela-
tions ϑ = arccos(1 − 2r6), ϕ = 2π r7 and ω = sin(ω) − π r8 are used to
achieve a homogeneous orientation distribution on the unit sphere
SO(3). The rotation angle ω has to be calculated numerically.

21



Observation and Implementation

Hence, the whole system is determined by 8nG random num-
bers. These pseudo-random numbers are provided by the gener-
ator “sunif” (Ahrens and Kohrt, 1983).

2.2.4 Steric Hindrance

Experimental Observations

The development of the silicon nitride structure is strongly influ-
enced by the steric impingement of the grains. Krämer et al. (1993)
have made three important observations on pinning (Figure 2.4):

Observation 1: “The growth of a basal plane of a β-grain is
stopped, when it hits a prism plane of another one as shown
by arrow 1.”

Observation 2: “If the thickness of a β-grain is comparatively
large, its basal plane grows around a prism plane of a neigh-
boring grain (arrow 2) through the ‘free space’ of liquid pock-
ets and can include smaller grains.”

Observation 3: “Edges and corners of prism planes are frequently
rounded in case of edge-on-plane contact with other grains
(arrow 3).”

Implementation of Krämer’s First Observation:

Growth and Pinning

The implementation of a conclusive growth-after-pinning behavior
is one of the main achievements of this work. For the numerical im-
plementation of the first observation an intersection of the 18 edges
Es of a smaller grain (s) with the eight faces of the bigger grain (b),
Fb is considered. Here, the intersection points pint are determined
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Figure 2.4: Three observations on grain pinning of Krämer et al.
Krämer et al. (1993). Arrow 1 shows the case, when “a basal plane
of a β-grain [. . . ] hits a prism plane of another one [. . . ]”; arrow 2
displays that when “the thickness of a β-grain is comparatively
large its basal plane grows around a prism plane of a neighbor-
ing grain through the ‘free space’ of liquid pockets and can include
smaller grains”; arrow 3 visualizes the rounding of grain bound-
aries “in case of edge-on-plane contact with other grains”.

by Es ∩Fb. The line segment for a certain edge is given by Eq. (2.4),
such that xs(s) ⋅nb = db is a projection of a point on an edge onto a
face with the normal nb and the distance of the face to the origin of
the coordinate system db = (x0,b +Dbnb) ⋅nb. The line segment pa-
rameter s is determined by s = (db − v1

s ⋅nb)/((v2
s − v1

s) ⋅nb). When
xV

1

i is a candidate for a valid intersection point pint, the param-
eter s is in its co-domain [0,1]. If this (necessary) condition is
fulfilled, a second check is needed: The validity of xV

1

i can be
seen if ℓmax

b (xs(s)) ⩽ 1. If the sufficient condition is met as well,
pint ∶= xs(s). In general, there will be at least three intersection
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points for a finite penetration of two grains. For the sake of sim-
plicity, the mean value of these intersection points pm is used to
determine pinning case and post-pinning growth. After the de-
termination of the mean intersection point pm, the interaction case
between the grains is determined from the projections

P∗i (pm) = ni ⋅ (pm −x0)
Di −∆D

, i = 1 . . .4. (2.12)

The difference ∆D has to be chosen because the mean-intersection
points in general lie inside the grains due to the finite growth ve-
locities in discrete pseudo-time increments. The mean length incre-
ment kL(1 + cL)∆t is a feasible choice. For the determination of the
pinning-cases, P∗i (pm) = ±1, i = 1 . . .4 is evaluated. The contact
with more than one grain and the related post-pinning growth can
be described by averaging over the mean intersection points from
all contacts, if both or none of the basal planes are involved in con-
tact. For the remaining cases, a point in the region of the basal edges
has to be used.

For the sake of brevity, the relevant information from the projec-
tions P∗ is condensed into a boolean list L of length 8. The de-
fault value is Li = false, i = 1 . . .8 and means no contact. In case
of contact, L is set true. The indices 1. . .3 and 5. . .7 designate the
opposing prism faces. The indices 4 and 8 are for the upper and
lower basal face.

Li = true if P∗i = 1,

Li+4 = true if P∗i = −1
and i = 1 . . .4. (2.13)

The following case consideration is used to describe the post-
contact growth in the structure generator. It is a simple implemen-
tation of the first observation of Krämer et al. (1993). For cases not
directly included reasonable approaches have been chosen, which
avoid uncontrolled grain interpenetration and allow for high vol-
ume fractions and aspect ratios.
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Case 1: No prism planes are in contact (∧3
i=1(¬Li ∧ ¬Li+4)):

1.1: No contact (¬L4 ∧ ¬L8): Default case, free growth in all
directions.

1.2: One of the basal planes in contact ((L4∨L8)∧¬(L4∧L8)):
Free growth is allowed in all prism directions and axial
growth is only possible in the opposite contact direction.
The grain origin is shifted by ∆x = ∓1/2∆Ln4.

1.3: Both basal planes in contact (L4 ∧ L8). Grains can grow
in all prism directions, however, no axial growth is al-
lowed, which implies no shift of the grain origin.

Case 2: No opposing prism planes are in contact(∨3
i=1[(¬Li ∧ Li+4) ∨ (Li ∧ ¬Li+4)]):

2.1: No basal faces in contact (¬L4 ∧ ¬L8): Grains can
grow further in both dimensions with half the veloc-
ity for the radial direction. The origin of the grain
is shifted by ∆x0 = 1/2∆B s with the normalized shift
vector s, which is determined by a projection of the
difference vector on the mid plane in axial direc-
tion s = (I −n4 ⊗n4)(x0 − pm)/∥x0 − pm∥.

2.2: One basal face in contact ((L4 ∨ L8) ∧ ¬(L4 ∧
L8)): Further growth is possible for both dimen-
sions with half the velocity. The origin of the grain
is shifted by ∆x0 = 1/2√∆H2 + 3∆B2 s with the di-
rection from the basal edge to the origin of the
grain s = (x0 − pm)/∥x0 − pm∥.

2.3: Both basal faces in contact (L4 ∧ L8): The grain can only
become thicker and the origin of the grain is shifted as
described for case 2.1.
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Case 3: Opposing prism planes in contact (∨3
i=1(Li ∧ Li+4)):

3.1: No basal faces in contact (¬L4 ∧ ¬L8): Grain grows fur-
ther only in axial direction with no shift of the grain ori-
gin.

3.2: One basal face in contact ((L4 ∨ L8) ∧ ¬(L4 ∧ L8)): Fur-
ther axial growth is allowed only in opposite axial direc-
tion with half the velocity with origin shift as described
for case 1.2.

3.3: Both basal faces in contact (L4 ∧ L8): Complete stop of
growth.

Implementation of Krämer’s Second Observation:

Growing Around

The second observation of Krämer et al. (1993) is implemented
by the consideration of the axis distance and the thickness of two
grains 1 and 2. The distance between two non-parallel lines is given
by

d12 =min{∥s1n1
4 − s2n

2
4 − r12∥} (2.14)

with n1
4 =Q

1n0
4, n2

4 =Q
2n0

4 and r12 = x
2
0 −x1

0. The per-
pendicularity conditions (s1n1

4 − s2n
2
4 − r12) ⋅n1

4 = 0 and(s1n1
4 − s2n

2
4 − r12) ⋅n2

4 = 0, with r12 = x
2
0 −x1

0 yield the linear
system

[ s1
s2
] = 1

1 − (n1
4 ⋅n

2
4)2 [

1 −n1
4 ⋅n

2
4

n1
4 ⋅n

2
4 −1

] [ r12 ⋅n1
4

r12 ⋅n2
4

] . (2.15)

It is obvious that this approach is not feasible for the special case of
parallel axes. So, the projection of the vector r12 on the perpendic-
ular vectors is used. Then the distance is

d12 = ∥(I −n1
4 ⊗n1

4)r12∥ =√r12 ⋅r12 − (r12 ⋅n1
4)2. (2.16)
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Hence, the condition for “growing around” is d12 > kga(B1 +B2)
with 0 < kga < 1 as the allowed ratio of interpenetration. If this con-
dition is fulfilled there will be no further examination in the recent
time step.

Implementation of Krämer’s Third Observation:

Grain Overlapping and Rounding of Grain Interfaces

The third observation of Krämer et al. (1993) is implemented in the
context of the voxel discretization, which is used as an input for the
finite element mesh generation. Here, a certain overlap of grains is
reached by an offset value ∆Do to the exact dimension D similarly
to the offset, which allows for the usage of the projection informa-
tion. The ℓp-norm for the pixel generation then takes the form

ℓpo(x) = p

¿ÁÁÀ 4

∑
i=1

∣ni ⋅ (x −x0)
Di +∆Do

∣p. (2.17)

The constant ∆Do is used for the scaling of length and breadth of
the grains. So, the ratio of length to breadth is not preserved. The
shape of the overlap regions is obtained by the consideration of ℓpo
for two grains 1 and 2: ℓpo,1(x) ⩽ 1 ∧ ℓpo,2(x) ⩽ 1, which means that a
certain point x belongs to both grains. An additional criterion has
to be used to decide to which grain the point x belongs. A natural
choice is the usage of the smaller norm as an indicator for the affilia-
tion, where x is assumed to belong to the grain with the smaller ℓpo.
The exponent p is used to define the angularity of the grains and
with it the roundness of the overlapping region. Figure 2.5 shows
three cases for overlapping. The effect of overlapping and rounding
of the boundary significantly depends on the exponent p.
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Figure 2.5: Demonstration of the implementation of observation 3
of Krämer et al. (1993): overlapping of grains for a fixed over-
lapping distance ∆Do

= 1/2B and increasing norm exponents
p = {5,10,∞} (from left to right). The angularity of the overlap-
ping zone increases with the norm exponent. Naturally rounded
overlapping and grain shapes can be obtained by a norm exponent
of p = 10.

2.2.5 Periodization

The periodicity of the created structures is desirable for two rea-
sons. First, for the consideration of a mechanical problem, the
boundary conditions play a crucial role. It is well-known that
periodic displacement boundary conditions together with peri-
odic structures are a prerequisite for the determination of a real-
istic effective material behavior, see, e.g., Suquet (1982). Second,
the consideration of geometric properties of a periodic structure
is much more straight forward than for non-periodic ensembles
where boundary effects like intersected grains are inevitable.

The periodization of the generated microstructure is obtained by
the consideration of 26 periodization boxes, in which periodically
shifted copies of the seeded grains are interacting. The origin x0 is
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shifted by a periodization vector

∆x
p
ijk
= w(ie1+j e2+k e3), xp

ijk
= x0+∆x

p
ijk
, ijk = −1,0,1. (2.18)

For every periodic copy of a grain, the considerations in Section
2.2.4 have to be carried out. Additionally, the mean intersection
points have to be kept up to date. This means that for every in-
teraction case of two grain copies the recent intersection points
p
m, rec
ijk,n

, n = 1,2 have to be updated. All other intersection points
pm
ijk,n have to be updated as well, which is done by

pm
ijk,n = p

m, rec
ijk,n

−∆x
p, rec
ijk,n

+∆x
p
ijk
, n = 1,2, (2.19)

where ∆x
p, rec
ijk,n

is the offset of the recent grain copy.

2.3 Results

2.3.1 Pseudo-Time Evolution of the Microstructure

The pseudo-time evolution of statistical geometric quantities will
be discussed in this section. The best known property of mi-
crostructures is the volume fraction of particles. As pointed out
by, e.g., Becher et al. (1998), the distribution of grain size and aspect
ratio plays a crucial role for the fracture toughness.

Thus, Figure 2.6 assembles the pseudo-time evolution of the vol-
ume fraction, the mean aspect ratio and its standard deviation. The
volume of one grain is determined by V = 3/2√3B2H . The accu-
mulated grain volume is V Gacc = ∑nG

i=1 Vi. The grain volume fraction
is the ratio of the accumulated grain volume to the volume of the
region of interest cGacc = V

G
acc/w3. The volume fraction of a single

grain normalized on the accumulated grain volume is c = V /V Gacc.
The aspect ratio A of a grain is the ratio of its length to its breadth.
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For hexagonal prisms A =H/√3B, if the width across flats is re-
garded as the small diameter. For the determination of the mean
value of A, the grain volume V Gacc is used as the basis volume, such
that ⟨A⟩ = ∑nG

i=1 ciAi, where the grain volume fractions ci, i = 1 . . . nG

act as weights of the sum. The standard deviation is calculated by

σ(A) =
¿ÁÁÀnG

∑
i=1

ci(Ai − ⟨A⟩)2. (2.20)

The following figures show the evolution of a periodic ensemble
of grains in a cell of width w = 16 without any overlaps after the
second case. It is, therefore, an exact geometric ensemble consist-
ing of non penetrating hexagons. The generation was carried out
in 105 seed steps of each 10 grains. So, a total of 27×105×10=28,350
entities have to be considered in the final seed step. The growth
velocity parameters in Eqs. (2.10) and (2.11) are kL = 10kB = 10,
the penalty factors after Section 2.2.3 and Eq. (2.9) are kpen = 1/10
and ∆Dpen

= 1/10.
Figure 2.6 shows the pseudo-time evolution of the accumulated
grain volume fraction cGacc. The steep accession in the beginning
is due to the free growth of the grains, mainly without steric hin-
drance. At a grain volume fraction of around 25% the grain interac-
tion gains increasing influence, which causes a certain saturation of
the grain volume fraction. The final value of cGacc lies at 50%, which
can be considered to be a high value for a complicated randomized
structure without overlapping (Cooper, 1988). The trend at the end
of the process goes already towards increasing volume fraction.

In Figure 2.7 the mean aspect ratio ⟨A⟩ with its scatter band ±σ(A)
is depicted. Here, it can be seen that a structure with aspect ratios of
approximately 6 and a relatively wide variance of approximately 2
is generated using the mentioned generator setup. The mean aspect
ratio of the structures reaches a local peak at the pseudo-time, when
the grains come into interaction, i.e., the pseudo-time, when the
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Figure 2.6: Pseudo-time evolution of the accumulated volume frac-
tion cGacc of a periodic 105×10 grain ensemble; after a steep increase
in the beginning of the adsorption-and-growth process, saturation
takes place, due to the steric hindrance.

saturation of the volume fraction begins. Beyond this point in time,
the aspect ratio is monotonically decreasing, because the hindrance
in axial direction is more likely than in radial direction.

It is important to gain insight into the influence of the parameters
for the control of the growth process. Therefore, parameter varia-
tions on the base of the already mentioned set of input values have
been carried out. The following diagrams show the mean aspect ra-
tio ⟨A⟩ over the grain volume fraction cGacc, due to their significance
for the silicon nitride microstructure.

One important factor is the growth velocity parameter kL. It has
been varied, since it has a noteworthy impact on the aspect ratio
of the obtained structures. In the beginning of the process, a broad
distribution can be observed. The seeding penalty factor kpen = 1/2
is chosen to enforce more space for the structure generation pro-
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Figure 2.7: Pseudo-time evolution of the mean aspect ratio ⟨A⟩ (—)
with scatter band ⟨A⟩ ± σ(A) (−−) for a periodic 105×10 grain en-
semble; after a peak at the beginning of the structure generation
process, the mean value decreases slowly, the scattering remains at
a constant level.

cess with higher growth anisotropies (Section 2.2.3). After a peak
of the aspect ratio, which is shifted to lower volume fractions for
greater axial growth velocities, all curves appear converging at a
mean aspect ratio of approximately 6, and a volume fraction of ap-
proximately 60%. So, merely a temporary impact on the mean value
of the aspect ratio is observed by this factor. The relevance for the
distribution A/L will be shown in Section 2.3.2.

2.3.2 Distribution of the Geometric Quantities

The statistical distribution of geometric quantities is important for
a comparison of artificial microstructures with experimental data.
Additionally, it is relevant to gain further insight into the behavior
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Figure 2.8: Mean aspect ratio ⟨A⟩ over grain volume fraction cGacc
of a periodic 105×10 grain ensemble for a variation of the ratio of
the growth constants kL/kB = 10 . . .24 and kB = 1 = const., kga = 9/10,
cB/L = 1/5, kpen = 1/2, ∆Dpen

= 1/10; The impact of the axial grain
growth velocity on the mean aspect ratio is significant only in the
beginning of the structure generation process.

of the structural model. So, the example of Section 2.3.1, Figure 2.8
is readopted. Figure 2.9 depicts probability densities of the aspect
ratio and the grain length for different grain growth anisotropies.
The probability density is the grain volume fraction normalized on
the total grain volume. In order to adjust the grain volume fraction
to from 60% to the natural fraction of 88%, an overlapping factor
of ∆Do

= 0.262 has been chosen, see Eq. (2.17) and Figure 2.5. Nat-
ural slightly rounded grain edges have been obtained by a norm
exponent p = 20.

The influence of the growth velocity anisotropy can, now, be seen
in detail. Although similar mean aspect ratios (and grain lengths)
are observed in the pseudo-time evolution in Figure 2.8, the dis-
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tribution is obviously different. A trend for higher aspect ratios
and longer grains with leaner scattering is observed for increasing
growth anisotropy.

The experimental reference data has been acquired from SEM mi-
crographs of the commercial silicon nitride grade SL 200 BG by an
elaborated digital image processing technique (Fünfschilling et al.,
2011). The main problem in measuring structural data of complex
microstructures is the fact that an elongated grain can be intersected
in many different ways, see, e.g., Ohser and Mücklich (2000). A ra-
tional estimation of the grain length and aspect ratio is, therefore, in
general a contingency. Figure 2.10 shows the problem: The grain is
intersected by three different planes. The brown plane (●) contains
the grain axis. Hence, the grain’s length and aspect ratio is repre-
sented realistically. Differently the green plane (●): The whole cross
section is intersected, but in a skew angle, such that the grain ap-
pears much smaller and with significantly decreased aspect ratio,
than it has in reality. The limiting case would be a section plane,
which is perpendicular to the grain axis. Here, any information on
grain length and aspect ratio would be lost. A further undesirable
but also inevitable case is represented by the blue plane (●), which is
intersecting only a small part of the whole cross section. The result
is an irregular polygon, which does not even allow for a serious
prediction of the grain thickness.

A well established procedure is the transformation of measurable
two-dimensional distributions of size and shape into distributions
of spatial size and shape. Mücklich et al. (1994) applied this tech-
nique first to the demanding case of silicon nitride. The idea is that
a planar section through a spatial distribution of (non-overlapping)
hexagonal prisms will result in a distribution of convex intersec-
tion polygons. So, a stereological function in form of a linear map
can be formulated as link between planar and spatial distribution
of size and shape quantities. The kernel of this function for com-
plicated shapes like hexagonal prisms can only be calculated in a
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Figure 2.9: Cumulative frequency of aspect ratios of a periodic 105×10 grain ensembles for
the parameter setup kL/kB = 10 . . .24, kga = 9/10, cB/L = 1/5, kpen = 1/2, ∆Dpen

= 1/10, ∆Do
= 0.262

and p = 20

35



Results

Figure 2.10: Grain with different section planes: An axis parallel
section (●) delivers the real representation of the grain shape. A
section through the grain axis (●) results an underestimation of the
real aspect ratio. The edge section (●) figure contains completely
unrealistic information about the grain shape.

discretized way due to the huge amount of intersection possibil-
ities (Figure 2.10). In this line, simulations with randomly inter-
sected hexagonal prisms have been carried out in order to acquire
the coefficients of the kernel function. The relative frequencies of
the spatial quantities then can be calculated by the EM algorithm,
see Vardi et al. (1985), which was introduced into stereology by Sil-
verman et al. (1990).

Fünfschilling et al. (2011) measured the microstructural properties
of the commercial silicon nitride grade SL 200 BG with the image
processing software ImageC (Aquinto, Berlin, Germany) and the
stereology extension based on the work of Mücklich et al. (1994).
For the measurement, an ensemble of approximately 3,000 grains
has been examined.
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Figure 2.11: SEM-image of the AlY-doped commercial silicon ni-
tride grade SL 200 BG Fünfschilling et al. (2011) and an exem-
plary section image of the generated periodic three-dimensional
microstructure with 105×10 grains and the parameters kL/kB = 22,
kga = 9/10, cB/L = 1/5, kpen = 1/2, ∆Dpen

= 1/10, ∆Do
= 0.262 and p = 20.

The generated microstructure is determined by the grain growth
velocity parameter combination kL/kB = 22. The other parameters
are as described in Section 2.3.1 and in Figures 2.8 and 2.9.

Figure 2.11 juxtaposes a SEM micrograph of SL 200 BG and a two-
dimensional section through the artificial three-dimensional struc-
ture with the mentioned parameters. In both cases, large and elon-
gated as well as smaller and more roundish grains can be seen. A
certain similarity between the two structures cannot be neglected.
Therefore, a view to the most important geometrical properties of
grain length and aspect ratio delivers further insight.
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Figure 2.12: Cumulative frequency of aspect ratios in SL 200 BG
Fünfschilling et al. (2011) and in a periodic 105×10 grain en-
semble for kL/kB = 22, kga = 9/10, cB/L = 1/5, kpen = 1/2, ∆Dpen

= 1/10,
∆Do

= 0.262 and p = 20. The distributions of the experimental data
and the generated structure are mainly in the same region, however
the bimodality of the data is not captured by the simulation.

Figure 2.12 shows two diagrams with the probability density as
function of aspect ratio and grain length. For SL 200 BG, the proba-
bility density is calculated after Mücklich et al. (1994), as described
before. The diagram for the generated structure uses the grain vol-
ume fraction of the single grains in the three-dimensional structure
as probability density. The two diagrams show certain differences:
The SL 200 BG plot has several peaks. Two main peaks are clearly
recognizable. The first one is at small grain lengths beneath 1 µm
and has local peaks at aspect ratios between 2 and 4. These peaks
represent grain shape/grain length combinations with minor rele-
vance for the fracture toughness of the material, because the grains
are too small to bear the high local loads around crack tips (Ohji
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et al., 1995; Becher et al., 1998). The other peak is at high grain
lengths of 4 µm and high aspect ratios of approximately 10. This
peak has a close relationship for the high fracture toughness of this
material, because it means that the material contains a significant
amount of strong and elongated grains, which can act as bridging
grains and, therefore, avoid quick crack propagation (Fünfschilling
et al., 2011). Interesting is the observation that a region between
those peaks exists, in which hardly any grain can be found.

The diagram for the generated microstructure covers a similar do-
main, although it shows differences as well. The distribution does
not show strongly pronounced peaks and its global maximum is
not at the same position as in the stereological observation. Never-
theless, the main trend is towards long and elongated grains, which
appear at similar grain lengths and aspect ratios. Reasons for the
differences between the two diagrams can be attributed to a simpli-
fication of the structure evolution in the presented algorithm and
to the differences with respect to the acquisition of the underlying
data.

The comparison of the results from the thermodynamical simula-
tions of Kitayama et al. (1998a) with the data, which was gained
from the structure generation process shows good agreement, as
well. Although, it has to be mentioned that the distributions of
grain length over grain width and aspect ratio over grain width
from the presented algorithm are broader with the chosen parame-
ter combinations.

2.4 Summary and Conclusions

A simplified algorithm for the generation of periodic three-
dimensional silicon nitride-like structures has been introduced. Its
primal result is the creation of microstructural models for microme-
chanical finite element simulations. The microstructure generator
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is based on a sequential adsorption procedure, which is enriched
with growth of particles, steric hindrance and overlapping, moti-
vated by experimental observations of Krämer et al. (1994). These
observations have been implemented in algorithmic detail to pre-
serve high aspect ratios and grain volume fractions in the artificial
microstructures.

In order to give an insight into the behavior of the model, the
pseudo-time evolution of mean aspect ratio and grain volume frac-
tion have been discussed for different parameter sets of a periodic
ensemble of 1050 grains, which have been adsorped in 105 steps.
It was shown that the mean aspect ratio in generated microstruc-
tures decreases after a temporary peak at approximately 20% grain
volume fraction due to steric hindrance.

The impact of the axial growth rate on the pseudo-time evolu-
tion and the distribution of the geometric quantities aspect ratio
and grain length has been examined. The pseudo-time evolution
showed a certain convergence of aspect ratios at values of approxi-
mately 6 and volume fractions ratios of approximately 60%, which
could be obtained without overlapping. Realistic grain volume
fractions have been adjusted by variation of the grain overlapping.
The adjusted ensembles have been considered with respect to the
probability density of the aspect ratio and grain length. A clear re-
distribution of the densities to longer grains and with higher aspect
ratios was caused by increased grain growth anisotropy.

The significance of the model has been shown by a comparison of
the grain length and the aspect ratio distribution with literature
values (Fünfschilling et al., 2011), showing reasonable correspon-
dence. Hereby, a general accordance of the stereological SEM image
evaluation with the data provided by the structure generator was
observed. However, differences have been observed as well, con-
cerning the bimodality of the probability density of grain length
and aspect ratio. On the one hand, these can be attributed to the
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assumptions, which have been made for the implementation of the
structural model. On the other hand, the procedures of the acquisi-
tion of the distributions for the SEM images and for the data from
the structure generator is different, which should induce, as well,
differences in the obtained distributions.

Aside from these issues, the structure generator reproduced the
main features of a real silicon nitride microstructure, which has
been shown by a comparison of a SEM micrograph of SL 200 BG
and a synthetic microstructure.

Based on the aforementioned results, it can be concluded that the
algorithmic structural model can, in general, be applied for gener-
ating realistic silicon nitride microstructures. Considering all dis-
cussed features, we conclude that the model appears as a reason-
able approximation for the complex reality of the silicon nitride
structure. Thus, it can be used for the numerical considerations
of complicated material behaviors like thermoelasticity and trans-
as well as intergranular fracture, which will be presented in the fol-
lowing chapters.

The general technique of sequential adsorption with growth and
steric hindrance of particles is applicable to many different types of
materials.
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Chapter 3

Thermoelastic Properties⋆

3.1 Introduction

Silicon nitride is a structural reinforced ceramic, which is used for
high performance applications due to its fair compromise of stiff-
ness, strength, and toughness. An important feature is the excellent
thermal shock resistance due to the low thermal expansion coeffi-
cient and a high thermal conductivity.

This interesting property profile is related to different aspects of
the material on the microlevel. The elastic stiffness and the ther-
mal expansion are dominated by the rod-like β-crystals, which are
occupying the largest part of the material volume. Due to the het-
erogeneity of the microstructure (Chapter 2) and the phase con-
trasts between the grains and the glassy matrix thermal residual
stresses on the microlevel are caused, when the material is exposed
to changing temperatures. This chapter aims towards a description
of these effects on the microlevel and an evaluation of the results in

⋆This chapter is based on the paper “Homogenization of the Thermoelastic
Properties of Silicon Nitride” (Wippler et al., 2011).
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the calculation of the effective thermoelastic properties. The results
are applied in the fracture simulations in Chapter 4.

The rod-like single crystals have transverse-isotropic thermoe-
lastic material properties. Henderson and Taylor (1975) pre-
sented temperature-dependent data for the thermal expansion be-
tween room temperature and 1020°C by X-ray diffraction meth-
ods. Vogelgesang et al. (2000) have determined the five transverse-
isotropic elastic constants of β-Si3N4 grains by Brillouin scattering
at room temperature.

Peterson and Tien (1995) determined the effects of residual stresses
by experiments and Eshelby’s inclusion method. Their finding is
that residual stresses in the grain boundary phase due to thermal
expansion increase the number of bridging grains and thereby, the
fracture toughness. A visible result of this effect are the complex
fracture patterns in the strongly heterogeneous microstructures.

In particular, the determination of thermal residual stresses in sili-
con nitride due to cooling down from the glass transition temper-
ature after sintering on the microscale and the calculation of effec-
tive thermoelastic properties based on experimental values on the
microscale for thermal expansion coefficients and elastic stiffnesses
will be addressed in the chapter.

An important problem is that all elastic properties are temperature
dependent. Additionally, not all properties on the microlevel are
known. Due to the potential complexity of a meaningful analytical
or semi-analytical approach, a numerical approach has been cho-
sen. The decrease of stiffness with temperature in the grains could
not be obtained from literature. So, it was chosen to be determined
by an inverse consideration: If the effective and all microscopic pa-
rameters, except the temperature dependence of the grain stiffness
are known, it can be obtained by an adjustment of the numerically
predicted effective material behavior to the effective experimental
data.
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The uniqueness of this inverse procedure is preserved, because the
temperature dependence of the microscopic grain stiffness is as-
sumed to be determined by an isotropic scaling with a single con-
stant. This choice is made according to the experimental observa-
tions on the effective Young’s modulus of silicon nitride by Lube
and Dusza (2007).

The chapter presents new experimental results on the thermal ex-
pansion behavior of different silicon nitride compositions. The
modeling of the thermoelastic behavior of β-Si3N4 and of the glassy
phase is described in detail. A novel approach for the implemen-
tation of periodic boundary conditions is presented and the deter-
mination of the effective material parameters is explained. The nu-
merical results for the effective temperature dependent elastic stiff-
ness tensor, the thermal strains and thermal expansion coefficient
are comprised, and, in order to estimate the quality of the calcula-
tions, information on the isotropy of the effective tensors of stiffness
and thermal expansion will be provided. The local loading within
the discretized microstructures has been evaluated by an examina-
tion of the maximum principal stress, the hydrostatic pressure, the
strain energy density and different measures of stress triaxiality.
A considerable agreement with the Eshelby based approach pur-
sued by Peterson and Tien (1995) was found for the residual
stresses.

3.2 Measurement of the Thermal Expansion

Materials for the determination of the thermal expansion coef-
ficients were produced by a two step sinter/hot isostatic press-
ing (HIP) process.† The sample denoted as MgLu had 8.5 wt%
Lu2O3 and 1.93 wt% MgO as sintering aids. The composition MgY
has 5 wt% Y2O3 and 2 wt% MgO. SL 200 BG is a commercial sili-

†The experiments have been carried out at the Institute for Ceramics in Me-
chanical Engineering of the KIT by Stefan Fünfschilling.
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con nitride grade with Y2O3 and Al2O3 as sintering aids (CeramTec,
Plochingen, Germany, (Lube and Dusza, 2007)). The thermal ex-
pansion of the three silicon nitride ceramics has been measured in
a differential dilatometer (Baehr Model 402, Baehr Thermoanalyse
GmbH, Hüllhorst, Germany) equipped with an alumina tube and
push rods. The sample geometry was 3×4×10 mm3. The end faces
were ground plane-parallel. The temperature cycle applied to the
sample included heating from room temperature (20°C) at a rate
of 2 K/min to 1000°C and subsequently cooling back to the room
temperature at the same rate. The heating as well as the cooling
part was used to calculate the thermal expansion coefficient. Tem-
perature was monitored by a type S (Pt10%Rh-Pt) thermocouple.
Based on a reference measurement of a sapphire standard, a correc-
tion function of the measurement data was calculated and applied
to the measurement data according to the Baehr standard software
procedure. The experimental results are shown together with the
results from the numerical homogenization in Figure 3.8.

3.3 Material Model

3.3.1 Thermoelastic Model for β-Si3N4

Stiffness Tensor. The constituents of silicon nitride, i.e., the rod-
like β-Si3N4 grains and the glassy phase formed by the sintering
additives are expected to show a clear temperature dependence of
both the elastic stiffness and the thermal expansion coefficients. The
thermal expansion of the rod-like grains is provided by Henderson
and Taylor (1975). Hampshire et al. (1994) examined the temper-
ature dependencies of the elastic stiffness and the thermal expan-
sion of oxynitride glasses, which are assumed as a model material
for the glassy phase in silicon nitride. The thermoelastic form of
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Hooke’s law,

σ(ε, T ) = C(T )[ε − εth(T )], (3.1)

is adopted in a geometrically linear setting for both phases. The
Cauchy stress tensor and the infinitesimal strain tensor are repre-
sented by σ and ε, respectively. Both, the stiffness tensor C(T ) and
thermal strain tensor εth(T ) are assumed to be temperature depen-
dent.

Due to the lack of experimental data, the stiffness tensor C
G(T )

of the rod-like grains (G) is assumed to decrease linearly with ris-
ing temperature. It is assumed to be proportional to the stiffness
C
G(T0) at the room temperature T0. As a result of this simplify-

ing assumptions, the temperature dependent stiffness tensor of the
grains can be written as

C
G(T ) = (1 + kG∆T )CG(T0) (3.2)

with the temperature difference ∆T = T − T0. The single constant
kG < 0 in Eq. (3.2) is used to adjust the thermoelastic model to exper-
imental data of the macroscopic thermoelastic behavior. The rod-
like grains show a transverse-isotropic material symmetry. Hence,
the elastic stiffness tensor has the following form

C
G(T ) = CGαβ(T )Bα ⊗Bβ , (3.3)

where the symmetric orthonormal basis tensors of second-order
Bα have been defined by Federov (1968): The normal directions
are represented by B1 = e1 ⊗ e1, B2 = e2 ⊗ e2 and B3 = e3 ⊗ e3.
The shear directions are given by B4 =

√
2 sym(e1 ⊗ e2),

B5 =
√
2 sym(e2 ⊗ e3) and B6 =

√
2 sym(e3 ⊗ e1). The symmetry

is preserved by the operator sym(A) = 1/2 (A +A⊺). The axial
direction and with it the basal planes are defined by e3. For the
orientation of the basis tensors and with them of the stiffness and
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Figure 3.1: Hexagonal prism as grain model together with the
spherical projection of the grain stiffness tensor CG and prism nor-
mal vectors ni, i = 1 . . .4

thermal expansion tensors, an active transformation with the grain
orientations from the structure generator is carried out.

Vogelgesang et al. (2000) determined the following values for the
components of the elastic stiffness tensor by Brillouin scattering
at room temperature: CG11 = 433GPa, CG33 = 574GPa, CG12 = 195GPa,
CG13 = 127GPa, CG66 = 108GPa, CG44 = 119GPa. The relationship
CG12 = C

G
11 − 2CG44 holds, because only five of the six components are

independent in the hyperelastic case. All other stiffness compo-
nents are zero in this configuration.

Figure 3.1 shows the direction dependent Young’s modulus of the
stiffness tensor at room temperature together with a lattice model of
a β-Si3N4 grain. It is obvious that the grains exhibit a significant
degree of anisotropy.

Thermal Strain. The tensorial representation of the thermal expan-
sion coefficients with transverse-isotropic symmetry is given by

αG(T ) = αGa (T )(I −Bc) + αGc (T )Bc, (3.4)
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where Bc =∶B3 defines the axial direction c of the grains and a de-
notes the basal directions. Henderson and Taylor (1975) determined
the thermal expansion of the β-grains by X-ray diffraction methods
between 20 and 1020°C. The following quadratic ansatz was used
to adjust the experimental results

y(T ) = y0(1 + k1T + k2T 2), (3.5)

where y(T ) is the temperature dependent lattice distance. The lin-
ear thermal expansion coefficients have been determined from the
lattice distance by

α(T ) = 1

y(T ) dy(T )dT
=

k1 + 2k2T

1 + k1T + k2T 2
. (3.6)

In the following, the temperature dependence is approximated by
a secant interpolation between the values at 20 and 1020°C:

αG
a/c
(T ) = 1

ya/c(T )
dya/c(T )

dT
≈ αG

a/c
(T0) + kGa/c∆T, (3.7)

The relation kG
a/c
= (αG

a/c
(T1) − αGa/c(T0))/(T1 − T0) delivers a secant

approximation of the temperature dependence. The thermal strain
εth can be determined from the thermal expansion coefficient by
integration

εth(T ) = ∫ T

T0

α(T̃ )dT̃ . (3.8)

Henderson and Taylor (1975) have delivered the following mate-
rial parameters: αGc (T0) = 1.955⋅10−6K−1, αGa (T0) = 0.795⋅10−6K−1,
kGc = 3.504⋅10

−9K−2, kGa = 4.846⋅10
−9K−2. Figure 3.2 a) shows the

thermal expansion coefficients for axial and basal direction and b)
the relative error e between the definition and the interpolation, see,
Eqs. (3.7). This shows that the non-linearity of these quantities is
negligible.
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Figure 3.2: a) Thermal expansion of β-crystals, b) relative error be-
tween the secant-approximation and the experimental values

3.3.2 Thermoelastic Model for the Glassy Matrix

Stiffness Tensor. The glassy matrix phase (M) is assumed to have
an isotropic material behavior. The temperature dependent stiff-
ness tensor then reads

C
M(T ) = 3KM(T )P1 + 2GM(T )P2, (3.9)

with the bulk modulus KM and shear modulus GM

KM =
EM

3(1 − 2νM) , GM =
EM

2(1 + νM) . (3.10)

The volumetric and deviatoric isotropic projectors are P1 = 1/3I ⊗ I

and P2 = I
S − P1, respectively. The variation of Young’s modu-

lus at elevated temperatures for several oxynitride glasses can be
found, e.g., in Hampshire et al. (1994). For this work, a glass
with 17 equiv.% of nitrogen has been chosen in order to repre-
sent the glassy phase in the bulk material under consideration.
This assumption is made due to the problems implied by the
experimental assessment of the material properties in the glassy
phase. At room temperature (T0 = 20○C), Young’s modulus is
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Figure 3.3: Thermal expansion of Y-Sialon glass (with 17% nitro-
gen and standard cation composition). The dots correspond to the
experimental data by Hampshire et al. (1994). The solid line is a
bilinear approximation. The data is used as model for glassy phase
on the microscale.

EM(T0) = 133GPa. At T1 ≈ 800○C, Young’s modulus has decreased
by approximately 8.6% (Hampshire et al., 1994). The variation is
linear in this temperature range, such that Young’s modulus can
also be expressed by a secant approximation

EM(T ) = EM(T0) + kM∆T, (3.11)

kM =
EM(T1) −EM(T0)

T1 − T0
. (3.12)

Due to the lack of experimental data, Poisson’s ratio is assumed to
have a constant value of νM = 0.29, which is motivated by (Hamp-
shire et al., 1994).

Then the stiffness tensor has the final representation

C
M(T ) = EM(T ) ( P1

1 − 2νM
+

P2

1 + νM
) . (3.13)
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Thermal strain. The thermal expansion for isotropic ma-
terials is denoted by α(T ) = α(T )I or εth(T ) = εth(T )I with
εth(T ) = ∫ T

T0
α(T̃ )dT̃ . Values for the expansion of oxynitride glasses

have been documented by Hampshire et al. (1994). The ther-
mal expansion coefficient is approximately constant at a value of
αM0 = 2.5⋅10

−6K−1 between T0 = 20
○C and T1 = 210

○C. Above T1
it has approximately the value αM1 = 6.5⋅10

−6K−1 (see Figure 3.3).
Hence, the thermal strain can be described by the piecewise linear
function

εMth (T ) = { αM0 (T − T0) if T0 ⩽ T < T1
αM0 (T1 − T0) + αM1 (T − T1) if T1 ⩽ T

. (3.14)

Such a piecewise linear approximation is in some contradiction
with respect to the assumption of a continuous differentiable ther-
moelastic strain energy function. A continuous approximation
could easily be generated, which would introduce more parame-
ters. But the non-differentiability is not of any importance in this
context.

3.4 Finite Element Model

3.4.1 Geometrical Model

The finite element calculations have been carried out on periodic
ensembles with 64 and 238 grains. These ensembles were generated
by the self-written microstructure generator, which was described
in Chapter 2.

Structures with mean grain length of around 12.2 and 7.3 µm and
mean aspect ratio of 3.4 and 3.0 for the 64 and 238 grain ensemble,
respectively, could thereby be obtained.
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Figure 3.4: Example for a periodic microstructure in high resolu-
tion; for a better insight into the structure, the grain volume fraction
has been reduced.

The visual comparison of silicon nitride and the generated mi-
crostructure shows a feasible agreement (Figure 2.11). A certain
grain overlapping can be seen in both the micrograph and the arti-
ficial structure.

Figure 3.4 shows an example for the three-dimensional microstruc-
tures after discretization in high resolution with the commercial
meshing tool ScanIP from Simpleware (Young et al., 2008). The
grain volume fraction has been reduced in order to give a better
insight into the three-dimensional microstructure. It is character-
ized by elongated grains with rounded grain boundaries and by an
isotropic orientation distribution with full periodicity.
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The number of degrees of freedom (DoF) has been varied in the
range of 5×105 and 1×106. The thermoelastic constitutive equations
have been implemented in Abaqus/Standard into the user material
routine UMAT (Hibbitt et al., 2001).

3.4.2 Projected Periodic Boundary Conditions

The periodicity of the deformation obtained using periodic dis-
placement fluctuation boundary conditions allows for an efficient
calculation of the effective thermoelastic properties of the micro-
heterogeneous material (Suquet, 1982). They avoid stress concen-
trations near the boundary of the unit cell, which are due to over-
constraints of the displacement field near the boundary of the con-
sidered volume element in the case of homogeneous boundary con-
ditions. The displacement field on the boundary u± can be decom-
posed additively into the periodic fluctuations w± = u± − ε̄x± and
the homogeneous displacement due to the prescribed mean strain
ε̄ according to w+ =w−.

Usually, periodic boundary conditions (PBCs) are implemented in
finite element formulations either in combination with regular
meshes or with meshes, which are preserving the periodicity of the
geometry in the discretization. The first approach implies that the
geometric information is approximated in a quite coarse manner or
a prohibitively fine mesh has to be used. The second approach see,
e.g., Flaquer et al. (2007) or Fritzen et al. (2009); Fritzen and Böhlke
(2010) is much more efficient. Here, a tetrahedral mesh is modified
on the boundaries to a conformal mesh. It is geometrically exact
and allows for the description of complicated microstructures with
a comparable small number of degrees of freedom. The disadvan-
tage is the complicated implementation due to the necessity of an
extension of an existing mesh generator.
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Figure 3.5: a) Cube with triangle-to-node and segment-to-node re-
lations, b) triangle with vectors

A further option is the approximation of periodicity of the dis-
cretization by geometric considerations. This approach will be used
in the following and represents one of the important technical re-
sults of the paper, because it allows for an efficient and accurate
estimation of the thermoelastic behavior with limited sizes of the
considered unit cells.

So, the node-wise correspondence can be weakened in a triangle-
to-node relationship on the faces and to a segment-to-node relation-
ship on the edges, see Figure 3.5 a). In order to find corresponding
triangle-node sets, it has to be distinguished, whether a node pro-
jection is inside or outside of a triangle. This can be accomplished
by a consideration of the norm N of the triangle, which is given by

N =max{nij ⋅ (xm − p′)
nij ⋅nij

} , (3.15)

with ij = 12,23,31, where nij are the midpoint based normals on
the edges. They can be calculated using the midpoint xm and the
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edge vectors vij of the triangle as depicted in Figure 3.5 b):

nij = xm −xi −
(xm −xi) ⋅ vij

vij ⋅ vij

vij , (3.16)

xm =
1

3
(x1 +x2 +x3) (3.17)

and vij = xi −xj . If 0 ⩽ N ⩽ 1, the node projection p′ is in the
triangle or on the edges. This point can be expressed in terms of the
triangle vectors, e.g., as

p′ = x1 + sv12 − tv31, (3.18)

such that the equation for the projected PBCs on the faces is

p′ − ε̄x+ = (1 − s + t)x1 + sx2 − tx3 − ε̄x−. (3.19)

The edges have to be considered in a similar manner. The corre-
sponding equation is finally denoted as

q′ − ε̄x+ = (1 − r)x1 + rx2 − ε̄x−. (3.20)

The mean deformation ε̄ is always prescribed on the corners of the
corresponding faces or edges of the unit cell.

3.4.3 Determination of Effective Thermoelastic
Material Properties

For the estimation of the macroscopic elastic stiffness tensor at room
temperature and at elevated temperatures, six orthogonal deforma-
tion modes have to be applied to the structures. The deformations
are shown in Figure 3.6.

The periodicity of the mechanical fields can be seen in all cases.
A comparison of the opposing edges of the unit cells shows the
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Figure 3.6: Six deformation modes on a periodic unit cell with 232
grains. The arrows indicate the deformation directions. The stress
distributions are inhomogeneous and periodic.

effect of the periodic boundary conditions, visualized by an over-
pronounciation of the deformation field.

The effective elastic properties can be obtained, if the α-th com-
ponent of the effective stress tensor ⟨σα⟩ due to the strain mode
ε̄β = ε0Bβ is divided by the components of the effective strain ten-
sor, so that C̄αβ = ⟨σα⟩⋅Bβ/ε0. The effective stress tensor is given
by the volume averages of the corresponding local fields.

The uniqueness of the temperature dependence parameter of the
stiffness kG can be seen, if the volume averages of stress with the
thermoelastic strain ε∗th ∶= ε − εth,

⟨σ⟩ = 1

V
∫
V
C(T )[ε∗th]dV (3.21)

is considered in detail. It contains contributions from the glassy
phase (M, Eq. 3.9) and from each grain (Gi, Eq. 3.2).

V ⟨σ⟩=∫
VM
C
M(T )[ε∗th]dVM+(1+kG∆T ) n

G

∑
i=1

(∫
V G
i

C
G
0 i[ε∗th]dV Gi ) (3.22)
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This equation evidently allows for a unique condensation of the
parameter kG .

The effective thermal expansion tensor ᾱ is obtained by the deriva-
tive of the effective strain tensor with respect to the temperature,
i.e., ᾱ(T ) = ∂T ⟨εth⟩. In an incremental setting with sufficiently
small ∆T , the expansion coefficient is given by ᾱ(T ) ≈∆⟨εth⟩/∆T .

3.5 Numerical Results

3.5.1 Effective Stiffness and Size of the Unit Cell

The macroscopic thermal expansion coefficient and Young’s mod-
ulus have been determined for the commercial silicon nitride
grade SL 200 BG within the ESIS project (Lube and Dusza, 2007).
Young’s modulus decreases from 302.9 GPa at room temperature
to 294.3 GPa at 800°C.

The homogenization of the elastic stiffness has been carried
out at room temperature (20°C) and the elevated tempera-
ture 800°C. Table 3.1 arranges the isotropic elastic constants,
which are calculated from the effective stiffness tensor C̄. The
symbols correspond to Figure 3.7. The consideration of the
eigenvalues of an isotropic stiffness tensor with 3K̄ = C̄⋅P1/∣∣P1∣∣2
and 2Ḡ = C̄⋅P2/∣∣P2∣∣2 allows for the calculation of the effective engi-
neering constants Young’s modulus Ē and ν̄ by Ē = 9K̄Ḡ/(3K̄ + Ḡ)
and ν̄ = (3K̄ − 2Ḡ)/(2(3K̄ + Ḡ)).
Figure 3.7 shows the values of Table 3.1 together with experimental
data from Lube and Dusza (2007). The linear isotropic decrease
of the β-Si3N4 stiffness components is determined to 4.42% bet-
ween room temperature and 1000°C, which corresponds to a factor
kG = −4.29⋅10−5K−1.
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Table 3.1: Effective isotropic elastic material properties, symbols
correspond with Figure 3.7; DoF denotes the degrees of freedom of
the used finite element discretization; the effective Poisson’s ratio
is ν̄ = 0.283 for all considered cases.

Sym. Grains DoF [106] T [○C] K̄ [GPa] Ḡ [GPa] Ē [GPa]
◾ 64 0.49 20 234.9 119.5 306.6
● 64 1.03 20 233.9 119.0 305.3
◾ 64 0.49 800 227.5 115.6 296.6
● 64 1.03 800 226.9 115.4 295.9
◆ 238 0.65 20 236.9 120.3 308.7
◆ 238 0.65 800 229.6 116.5 299.0
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Figure 3.7: Young’s modulus from experiment of Lube and Dusza
(2007) (–) and unit cells with 64 grains (◾, ●) and 238 (◆) grains
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The isotropic Young’s modulus can be compared to the directional
Young’s modulusE(ϑ,ϕ) see, e.g., Böhlke and Brüggemann (2001),
in order to examine the representativity of the investigated unit
cells. This can be done by consideration of the normalized differ-
ence between the two quantities: ∆E(ϑ,ϕ) = (E(ϑ,ϕ) − Ē)/Ē. The
error bars in Figure 3.7 indicate the minimum and maximum values
of the directional values. The maximum amplitude of ∣∆E(ϑ,ϕ)∣
is 8.4% for the 64 grain ensemble, and 3.5% for the 238 grain en-
semble. A slight effect due to mesh density can be seen between
the two values for the smaller ensemble: The value of Ē for the
coarser mesh (◾) is 0.41% higher than the one for the finer mesh (●).
The small overestimation of the data by the simulated values can be
attributed to uncertainties of the volume fraction of the materials
and of the assumed properties of glassy phase material.

3.5.2 Effective Thermal Expansion

The thermal expansion of the bulk material shows a significant
non-linear behavior (Figure 3.8). This data, as well as the recent
measurements, serve as comparison values for the validation of the
used homogenization.

In order to trace the non-linear temperature dependence of the ther-
mal strains between room and elevated temperature, the isother-
mal cooling process was discretized into ten time steps. The results
of the simulations have been compared to experimental data for
different grades of silicon nitride from present experiments (Sec-
tion 3.2) and from literature (Lube and Dusza, 2007).

The experimental data and the simulated curves of the
isotropic part of the thermal expansion coefficient ᾱ(T ) with
ᾱ(T ) = 1/3 tr(ᾱ(T )) are shown in Figure 3.8: The subfigures a), c)
and e) compose simulated values of the effective thermal expansion
with experimental values for AlY (SL 200 BG), MgLu and MgY
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as sintering additives. The subfigures b), d) and f) show thermal
expansion coefficients corresponding to the thermal expansion
curves in the left column.
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Figure 3.8: Simulated (- - -) and experimental values for the effec-
tive thermal expansion (a, c, e) and the effective thermal expansion
coefficients (b, d, e) of Lube and Dusza (2007) (●) and from present
experiments measured during heating (- ⋅ -) and cooling (—).
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The non-linear temperature dependence of the thermal expansion
in Figure 3.8 a), c) and e) in both the experimental and the simulated
curves corresponds directly to the non-linearity of the microscopic
results of Henderson and Taylor (1975), which have been used for
the derivation of the thermal expansion coefficients in Eqs. (3.5) and
(3.6). The influence of the non-linearity of the thermal expansion
of the assumed glassy phase (Eq. (3.14)) on the effective behavior
is almost negligible, due to its low volume fraction of 12%. It is
best visible as small kink in the thermal expansion coefficient in
Figure 3.8 b), d) and f).

The difference between simulated values and experimen-
tal results is reasonably small. Similarly to the Young’s
modulus, the difference between the homogenized direc-
tional representation of the thermal expansion coefficient
∆α(T,ϑ,ϕ) = (α(T,ϑ,ϕ) − ᾱ(T ))/ᾱ(T ) can be used to evaluate
the homogeneity of the obtained effective thermal expansion
coefficient.

At room temperature, the anisotropy of the effective thermal ex-
pansion coefficient is more pronounced than at higher tempera-
tures, which is a result of the increasing anisotropy of the thermal
expansion coefficients of the β-grains at lower temperatures, com-
pare Figure 3.2 a). At room temperature, the difference is 13.5%
for the cell with 64 grains, and 9.5% for the cell with 238 grains.
At 900°C, the difference is approximately 8.1% for the cell with 64
grains and 5.5% for the cell with 238 grains. Thus, the same trend as
for the effective Young’s modulus is observed. Interesting is the fact
that the anisotropy of the thermal expansion coefficients at room
temperature is higher than the ansiotropy of the elasticity tensor.

62



Thermoelastic Properties

Figure 3.9: Periodic ensemble with 238 grains: a) hydrostatic pres-
sure, b) maximum principal stress, c) elastic strain energy; all val-
ues in [MPa]

3.5.3 Residual Stress Distribution within the Unit Cell

For a better understanding of the influence of the thermal strains on
the material behavior, it is useful to consider the local field solutions
of the finite element simulations. The following figures show the
hydrostatic pressure, the maximum principal stress and the elastic
strain energy density after the cooling-down process from the glass
transition temperature. Above this temperature, a stress relaxation
is assumed. Additionally, three different measures for stress triaxi-
ality are shown for comparison.

Figure 3.9 a) shows the hydrostatic pressure field. The glass pockets
are exposed to significant hydrostatic tension, whereas the grains
are mainly under slight compression. The subfigures 3.9 b) and c)
show two quantities, which are expected to act as driving forces
for the crack propagation in brittle materials. The maximum prin-
cipal stress in Figure 3.9 b) can be used as fracture criterion. Here,
the matrix pockets and the grain boundaries are under significant
tensile stresses. The elastic strain energy, Figure 3.9 c), indicates,
which locations are most likely to initiate micro cracks. These re-
gions can be found within the glassy pockets and near the grain
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boundaries, which are exposed to both pronounced tensile stresses
and high elastic energy densities. A comparison between the com-
puted stress fields and the results from Peterson and Tien (1995)
for silicon nitride with 88% β-crystals using the Eshelby inclusion
method show a good agreement. The periodicity of the deforma-
tions and with it the periodicity of the depicted static quantities can
be observed in all cases.

The triaxiality measures are especially of interest, if silicon nitride
is exposed to elevated temperatures above the glass transition tem-
perature, where plastic flow plays a prominent role for the de-
scription of high temperature effects like creep or stress relaxation.
The first considered triaxiality measure is the classical triaxiality
T = −p/σeq, where p is the hydrostatic pressure and σeq is the von
Mises stress. For uniaxial tensile stress is T = 1/3. A higher pos-
itive value means higher amplitude of hydrostatic tension with-
out driving force for stress reduction due to plastification after the
von Mises yield criterion. A clear drawback is the incapability of
the distinction between generally deviatoric stress fields and pure
shear: In both cases is T = 0. A second option for the description of
multi-axial stress fields is the Lode parameter

µ =
2σ2 − σ1 − σ3
σ1 − σ3

, (3.23)

with the maximum, intermediate and the minimum principal stres-
ses σ1, σ2 and σ3, respectively (Lode, 1926). The intermediate stress
plays a prominent role here. The Lode parameter varies between −1
and 1. Values around ±1 indicate a general compressive/tensile
state, respectively. Shear stresses are characterized by vanishing
values. The third quantity is the determinant or third invariant of
the normalized deviatoric stress with

ĨII
∗
= 3
√
6det (σ′/∥σ′∥) , (3.24)

which is closely related to the Lode angle. Like the Lode param-
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Figure 3.10: Periodic ensemble with 238 grains: a) the classical tri-
axiality T , b) the Lode parameter µ and c) the third invariant of the
normalized deviatoric stress ĨII

∗

eter, ĨII
∗

has fixed bounds. It varies between ±1, where 1 means
uniaxial elongation, 0 is plane strain compression, and −1 is simple
compression see, e.g., Böhlke and Bertram (2001) or Wippler and
Böhlke (2010).

The main difference is the switch of signs. The equation µ = −ĨII
∗

has seven solutions. Three are simple and quite obvious. If the
intermediate stress σ2 is searched for, the equation has solutions
in σ2 = σ1, σ2 = σ3 and σ2 = 1/2 (σ1 + σ3). These solutions are linked
to the parameter values ±1 and 0. The other four solutions have a
complicated structure and result from a fourth-order polynomial.

Figure 3.10 a) shows clearly that the glass pockets are undergo-
ing a high stress triaxiality, due to the hydrostatic tension (see Fig-
ure 3.9). The grains are under compression, such that they see a
slight negative stress triaxiality. The subfigures 3.10 b) and c) show
the Lode parameter and the third invariant of the normalized de-
viatoric stress. As mentioned above, they show a similar picture
with exchanged signs. The grain boundaries are characterized by a
jump from positive to negative sign of the two quantities, indicating
shear stress gradients in these locations.
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3.6 Summary and Conclusions

The magnitude of the stress fields, which have been obtained by the
finite element method is in agreement with the predictions from the
Eshelby method of Peterson and Tien (1995).

The advantage of the consideration here is that full-field results are
obtained. The local fields of thermal strains, stresses and triaxiality
measures give deeper insight into the self-loading of silicon nitride
due to cooling down from sintering temperature.

The numerically obtained temperature dependent effective mate-
rial parameters show a feasible representation of the experimen-
tally observed effective material parameters.

The material behavior on the microlevel had to be adjusted due to
missing information on the temperature dependence of the stiffness
tensor for β-Si3N4. So, a linear dependency on a single parame-
ter was chosen, which has been determined by solving an inverse
problem. The uniqueness of the inverse procedure was shown by
a consideration of the volume averages, which have been used for
the calculation of the effective stiffness tensor.

The thermal expansion for the glassy phase has been modeled
piecewise linear according to the experimental observations. The
non-linearity of the grains’ thermal expansion was modeled by a
quadratic ansatz. With these ingredients, it was possible to calcu-
late the effective thermal expansion of bulk silicon nitride from mi-
crostructural information.

Hence, the thermoelastic modeling based on temperature depen-
dent data was successful, hereby, giving a complete thermoelastic
model of silicon nitride. Due to the relatively low number of grains
in the ensembles, some deviations from isotropy in mainly single-
digit percentage have been observed. The trend to convergence for
an increasing number of grains is clearly visible.
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Based on the numerical results on the stress fields it can be con-
cluded that the most endangered regions are the glass pockets and
the grain boundaries, because here high stress and strain energy
concentrations are arising, which can lead to cracking on the mi-
croscale during the cooling phase.

This implies that the model can be applied for further considera-
tions such as fracture simulations under thermal influences. So, the
thermal strains and stresses definitively have to be considered for
the fracture behavior of silicon nitride, which will be addressed in
the next chapter.

The implementation of the periodic boundary conditions in an ap-
proximative setting using a projection algorithm allows for an ef-
ficient mapping microstructure by relatively low numerical costs.
They avoid the undesirable effects of uniform kinematic and static
boundary conditions. Therefore, they appear as a versatile ap-
proach for the determination of effective material behaviors in the
context of complex microstructures. To the best knowledge of the
authors this is the first implementation of periodic boundary con-
ditions in such a format.
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Chapter 4

Fracture Behavior

4.1 Introduction

In this chapter, the fracture properties of silicon nitride for the
onset of cracking will be examined. The aim of the work is the
formulation of an effective material behavior, which is based on
micromechanical considerations. The approach is widely used in
engineering mechanics, when an efficient description of a micro-
heterogenous material is desired.

In particular, this means that the geometric and thermoelastic ma-
terial information on the microscopic scale has to be incorporated
into one detailed model (Maugin, 1992). So, the results from the
Chapters 2 and 3 are extended with assumptions on the fracture
behavior for all relevant constituent components.

As it has been already mentioned, the sinter material consists
mainly of β-Si3N4 grains, which give high strength and stiffness
to the bulk material. The glassy phase appears in two different
morphologies: First, it forms glass pockets at grain-free material
volume and second, it develops intergranular films between the
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grains. Both are crucial for the fracture behavior. The first form
is relevant for the residual stresses in the material, which are im-
portant for the formation of bridging grains, as it is pointed out
in the work of Peterson and Tien (1995) (see as well, Sections 3.1
and 3.5.3). Kruzic et al. (2008) describes in detail how the properties
of the second manifestation of the glassy phase are crucial for the
efficient exploitation of the bridging grains and with it for the effec-
tive fracture properties of silicon nitride: Relatively low strength of
the intergranular films lead to toughening due to crack path devia-
tion, i.e., cracks have to propagate around the strong grains. So, the
crack propagation consumes more energy; a tougher material with
relatively low fracture strength is the consequence. On the other
hand, high interface strength leads to an increased fracture strength
at comparable low fracture toughness. Hence, a good compromise
has to be found, in order to obtain optimum overall fracture prop-
erties.

A comprehensive constitutive model has to be created for each
fracture mechanism on the microscale, which incorporates all fea-
tures of importance, i.e., fracture of the brittle glass pockets and
the grains under maximum normal stresses and the delamination
of the grain boundaries under tensile and shear tractions.

Given the microscopic models, the effective fracture behavior can
be determined. Although such effective behavior in general can be
determined by rigid methods, this approach is difficult – not to say
– practically impossible for a complex material behavior, because
the effective material would need an infinite number of internal
variables for the description of the material state evolution, as it
has been pointed out in Maugin (1992).

The calculation of effective fracture properties for a brittle material
with growing microcracks is a topic of ongoing research. A ther-
modynamical rigid method for the estimation of effective proper-
ties in a solid material with growing cracks has been proposed by
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Costanzo et al. (1996). Here, fourth-order localization tensors are
used for the determination of the effective solution. However, the
method is using several assumptions, which are not valid for the
considered case of silicon nitride. Nevertheless, the method yields
the inspiration for a consideration of the stress power. This concept
will be used to show the energetic consistence of the proposed vol-
ume averaging technique. More relevant for a practical implemen-
tation for the determination of the fracture behavior in brittle solids
with complex microstructure due to adhesive and cohesive failure
is the work of Verhoosel et al. (2010). Here, a FE2-approach was
used to model a composite material in a two-dimensional frame-
work. Although the approach appears promising due to the fact
that the FE2-method is only applied in the domains, which are ex-
posed to fracture, the numerical costs are definitely to high for a
three-dimensional application.

So, another way had to be found, which is conceptually simpler
and numerically feasible for the considered case of silicon nitride.
Thus, a phenomenological model has been identified, which incor-
porates the main features of the observable macroscopic fracture
behavior and which allows for the subsequent determination of a
limited number of fracture properties from the effective results of
unit cell simulations.

4.2 Theoretical Aspects of Local

and Effective Material Behavior

As already mentioned, is the description of the effective material
behavior by an averaging method over all local material behav-
iors on the microscale the primary aim of this work. The chosen
method in this section is based on the unit cell approach, which
has been introduced in Section 3.5. In the case of thermoelasticity,
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Figure 4.1: Volume element on the microscopic and macroscopic
level with corresponding quantities

the balance of microscopic and macroscopic stress power is a priori
fulfilled, as it is well known, since the fundamental work of Hill
(1963). For a material with growing cracks and load transfer over
the crack flanks, in addition to the purely linear elastic stress power,
contributions from those cracks have to be incorporated.

In Figure 4.1 a portion of the considered material can be seen
on both the micro- and the macroscale. The left side shows the
microheterogeneous material with local stress and strain fields σ

and ε. Additionally, cracks are visible, which are designated
as interfaces I. On these interfaces traction vectors t = σnn

(Lemma of Cauchy) and separations, defined as displacement
jumps d = Ju+ −u−K ∀ x ∈ I on the singular surfaces I ∈ V are act-
ing.

The right side of Figure 4.1 shows the same portion of the material
after the averaging procedure. Here, only the effective quantities σ̄
and ε̄ are visible. For sake of thermodynamic consistency of the
model, it is important to consider the balance of the effective stress
power P̄ and the stress power P

µ on the microscale. The Hill-
Mandel condition (Hill, 1963) delivers a framework, which allows
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for this considerations and can be denoted by

P̄ =P
µ. (4.1)

The effective stress power is defined by

P̄ = σ̄ ⋅ ˙̄ε (4.2)

and the stress power on the microscopic level is motivated by the
work of Costanzo et al. (1996)

P
µ
= ⟨σ ⋅ ε̇⟩ + 1

V

nI

∑
ξ=1
∮
Iξ
t ⋅ ḋdA. (4.3)

The effective stress σ̄ can be identified by the volume average or its
boundary integral form due to the Theorem of Gauss

⟨σ⟩ = 1

V
∫
V
σ dV =

1

V
∮
∂V

sym(σn∗⊗x∗)dA (4.4)

with the normal vector n∗ and the locations x∗ on the external
boundary ∂V , see, Figure 4.1. So, the internal tractions on the in-
terfaces I do not enter the effective stress, such that σ̄ ≡ ⟨σ⟩ holds.
The effective strain ε̄ needs a more detailed consideration. Simi-
larly to the effective stress σ̄, it can be determined by a boundary
integral from the local displacement field u, see, e.g., Hill (1963). In
general, there are contributions from the displacement in the con-
tinuum uV

= ⟨ε⟩x, from the displacement fluctuations in the con-
tinuum wV due to the micro heterogeneity of the material with its
restrictions due to the periodic boundary conditions (Suquet, 1982)
and from the interface delamination, which is represented by the
variable uI . Together,

u = uV +wV +uI (4.5)

is obtained. In this relation, the interesting part is the displace-
ment field due to the interface delamination uI . It is thought as
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Figure 4.2: Kinematic of a unit cube, examplified on a projection
into the e1-e2-plane

a generalization of the Heaviside function concept, which has been
proposed by Simo et al. (1993) and used by Verhoosel et al. (2010)
for a single crack to the considerably more challenging case of a
crack pattern, which is not known in detail. The variable uI has
in general an extremely complicated form, which is not accessible
by analytical standard techniques. Due to this fact, this issue is not
followed further in the context of this work. In case of a unit cube
with periodic boundary conditions, the effective strain ε̄ can be de-
termined from the effective displacement gradient H̄ by the con-
sideration of three displacement vectors of the unit cube corners ǔi

with the coordinates x̌i and i = 1 . . .3 (Verhoosel et al., 2010). Fig-
ure 4.2 shows the kinematic relationships for a projection of a unit
cube into the e1-e2-plane. The solid square represents the original
configuration. The dashed sketch shows a general case for a pe-
riodic displacement with stretch and shear contributions and the
solid rhomboid is the original square deformed by the effective dis-
placement gradient H̄ . So, following representation is used:

ǔi = H̄x̌i ⇔ o = H̄x̌i − ǔi, (4.6)

74



Fracture Behavior

where o is the zero vector. An application of the linear map allows
for the transformation

0 = (H̄ −
3

∑
i=1

ǔi ⊗ x̌i

x̌i ⋅ x̌i

) x̌i, x̌i ∶= wei ≠ o, (4.7)

which delivers the effective deformation gradient as function of the
cube size and the corner displacement by

H̄ =
1

w

3

∑
i=1

ǔi ⊗ ei. (4.8)

The infinitesimal strain tensor is the symmetric part of the displace-
ment gradient, such that

ε̄ =
1

w

3

∑
i=1

sym(ǔi ⊗ ei) (4.9)

holds. The displacement on the corners ǔi can by described by
a simplified version of the general displacement formula from
Eq. (4.5). The displacement fluctuation w vanishes on the cor-
ners due to the definition of the periodic boundary conditions (Sec-
tion 3.4.2). Displacements due to continuum strain are represented
by ǔV

i = w⟨ε⟩ei and the interface separation is captured in the vari-
able ǔIi , such that

ǔi = ǔ
V
i + ǔIi . (4.10)

Hence, the effective strain rate is obtained by time differentiation
from Eqs. (4.9) and (4.10) and can be written in two equivalent rep-
resentations:

˙̄ε =
1

w

3

∑
i=1

sym( ˙̌ui⊗ei) = ⟨ε̇⟩+ ˙̄εI , ˙̄εI ∶=
1

w

3

∑
i=1

sym( ˙̌uIi ⊗ei). (4.11)

Inserting this into Eq. (4.2) expands the effective stress power to

P̄ = ⟨σ⟩ ⋅ ˙̄ε = ⟨σ⟩ ⋅ ⟨ε̇⟩ + ⟨σ⟩ ⋅ ˙̄εI . (4.12)
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Nearby is the definition of the stress power due to continuum
strains and due to interface delamination so that the following
terms

P̄V = ⟨σ⟩ ⋅ ⟨ε̇⟩, P̄I = ⟨σ⟩ ⋅ ˙̄εI , (4.13)

P
µ
V = ⟨σ ⋅ ε̇⟩, P

µ
I =

1

V

nI

∑
ξ=1
∮
Iξ
t ⋅ ḋdA. (4.14)

can be identified. Together the extended Hill-Mandel condition is
then denoted

P̄ = P̄V + P̄I =P
µ
V +P

µ
I =P

µ. (4.15)

This equation will be fulfilled in every case, when the preconditions
are met, i.e., if there is no source or sink of power inside the region
of interest.

Due to the fact that the interface contribution to the stress power
on the microlevel P

µ
I is practically inaccessible in a complex three-

dimensional finite element model, it can be described by the inter-
face contribution to the stress power on the macroscopic level P̄I ,
when the classical form of the Hill-Mandel P̄V =P

µ
V condition is

still valid.

Figure 4.3 is a compilation of effective stress, strain and stress
power quantities, which have been described in the context of this
section. They have been determined by the introduced averaging
techniques, which have been applied to a unit cell with 36 grains
with an impressed shear deformation of 1% (see, Figure 4.19). The
details of the implemented material and interface properties will
be described in the following sections. This consideration is ded-
icated on the gereral effective behavior of a portion of material,
as described in Figure 4.1. The colors and hatching of the curves
is chosen according to their meaning throughout the compilation.
Figure 4.3 a) and b) show the effective shear stress component over
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Figure 4.3: Effective quantities: Shear stress ⟨σ13⟩ over a) contin-
uum shear ⟨ε13⟩ (−⋅−), b) shear ε̄13 (—), c) shear quantities ⟨ε13⟩ (—),⟨ε13⟩ (− ⋅ −) and interface shear ε̄I13 (−−−), d) stress power contribu-
tions: P̄ (—), P

µ
V (− ⋅ −), P̄I (− − −) and P

µ
V + P̄I (⋅ ⋅ ⋅),

the two different concepts of the effective strain. In a) the choosen
strain is the volume average ⟨ε13⟩, which is excluding any inter-
face seperation in the body. In contrast in b) the axis of abscissae
is the effective shear strain ε̄13 after Eq. (4.9). It can be seen, that
the fracture of the material can be mainly addressed to the interface
separation, whereas the continuum strain is partially reversible due
to the unloading of the unit cell after the loss of the load carrying
capacity. This effect is visualied in subfigure c). The three curves
illustrate the concept of Eq. (4.11): The effective strain ε̄13 (—) can
be decomposed into a continuum part ⟨ε13⟩ (− ⋅ −) and an integral
contribution due to the interface separation ε̄I13 (− − −).

77



Theoretical Aspects

Subfigure d) compiles the different contributions to the extended
stress power. Both the terms of Eq. (4.13) and the continuum
term Eq. (4.14)1 are plotted over the effective strain. It can be
seen, that in the linear elastic regime the classical Hill-Mandel re-
lation is describing the energetic behavior of the considered body
in a realistic way. In the instant of fracture, this changes radi-
cally. Obviously, the continuum stress power P

µ
V (− ⋅ −) is sig-

nificantly suffering from the unloading of the solids and, there-
fore, is beneath the effective value P̄ (—). The interface contribu-
tion P̄I (− − −) contains the main part of the lacking portion of the
stress power. The peak signalizes the fast separation at high a stress
level (compare b), c) and d)). The remaining difference between the
sum P

µ
V + P̄I (⋅ ⋅ ⋅) and the effective stress power P̄ (—) has to be

attributed to dynamic effects, which are unavoidable, when a brittle
material behavior is considered. After the abrupt failure, the fur-
ther behavior is dominated by shear stresses due to the friction of
the delaminated interfaces. In this quasi-static process, the balance
of stress power after Eq. (4.15) is fulfilled.

So, it can be summarized that the energetic behavior in a body with
growing cracks does not obey the classical Hill-Mandel condition,
which is only considering stress power contributions due to contin-
uum strains and stresses. Thus, an extended version of this balance
equation has been suggested, which incorporates the contributions
of the interface delamination. The most essential finding in terms
of complex finite element simulations is that this interface contribu-
tion can be described by the consideration of quantities, which are
accessible from the outer boundary and the continuum volume of
the body.

78



Fracture Behavior

4.3 Fracture Behavior of Silicon Nitride

on the Local Level

4.3.1 Interface Delamination

An interface I can be considered as a singular surface between two
solid bodies B± (Figure 4.4, a)). A local coordinate system is defined
by the orthogonal unit vectors {nn,nt1 ,nt2} according to Wei and
Anand (2004). The mechanical behavior of the interface has to be
described in tractions and separations, which have been defined
in Section 4.2. The tractions can be decomposed into normal and
tangential contributions by projections on the unit normal vectors

tn = t ⋅nn, tt1 = t ⋅nt1 and tt2 = t ⋅nt2 . (4.16)

With those projections,

t = tnnn + tt1nt1 + tt2nt2 (4.17)

represents the traction vector. In perfect analogy with the tractions
Eqs. (4.16) and (4.17), the separations can be split into the normal
and tangential contributions.

Figure 4.4: a) Schematic diagram of an interface with the local coor-
dinate system {nn,nt1 ,nt2} and b) delamination conditions φIn = 0
and φIt = 0 in the tn-τ -space
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The delamination conditions have been assumed as an extension of
Coulomb’s friction law into the tensile domain. Hence, the strength
and the stiffness of the interface degrade after an exceedance of the
elastic admissible traction level. Furthermore, no separation is as-
sumed to remain after unloading from any state. Figure 4.4, b) gives
a graphical representation of the criteria. Due to the assumption of
isotropy in the tangential plane, the traction vector in the local co-
ordinate system can be transformed into the tangential system by

τ = tn nn + τ nt, nt =
1

τ
(tt1 nt1 + tt2 nt2), (4.18)

where τ is defined as the norm of the tangential traction compo-
nents:

τ = ∥(I −nn ⊗nn) t∥ =√t2t1 + t2t2 . (4.19)

The same relationship transforms the separation vector d in the lo-
cal coordinate system into the tangential space separation δ.

The conditions for tensile and shear direction can be described by

φIn = tn − s + q and φIt = τ + f tn − s + q. (4.20)

The influence of the normal traction on the shear delamination con-
dition φIt is scaled by the non-negative constant f , which is as-
sumed to be the coefficient of friction. The initial debonding resis-
tances for normal and tangential loading are assumed to be equal
and are represented by s. The degradation stress is given by

q(℘) = s(1 − exp(−H℘)), (4.21)

where H is the rate of degradation and ℘ with ℘̇ ⩾ 0 is the internal
separation-like variable due to the degradation of the interface.

The criteria can be vectorized like the tractions and separations

φI ∶= Ξτ − (s − q)i, i = nn +nt, (4.22)
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where Ξ ∶= ∂τφI = P nn + f P tn +P tt is the coupling tensor, which
is identical with the traction derivative of the fracture criteria.
The used projectors are defined P nn ∶= nn⊗nn, P tn ∶= nt⊗nn and
P tt ∶= nt⊗nt with the tangential contribution implied by Eq. (4.19).
It has to be mentioned, that the unit normal vectors do not depend
on the traction vector τ in the tangential space. The vectorized
form simplifies the determination of the interface tangent operator,
which will be carried out later in this section.

The degrading stiffness K and the compliance S of the interface are
correlated by the classical relation S =K−1, which induces positive
definiteness. According to the choice of the delamination criteria,
the stiffness and the compliance are assumed to be isotropic in the
tangential plane, such that

K =KnnP nn +KttP tt and S = SnnSnn + SttP tt. (4.23)

Following Govindjee et al. (1995), a quasi-hyperelastic framework
with the notion of maximum dissipation under side conditions is
used for the determination of the stress rate and the evolution of
the internal variables. Hence, the Helmholtz free energy has an
elastic and a degradational contribution

ψ =
1

2
τ ⋅Sτ +S (℘). (4.24)

The degradation energy S depends on the accumulated degra-
dational separation ℘ and can be determined from the rela-
tion −∂℘S ∶= q.

With the time derivative of the Helmholtz free energy, the dissi-
pation due to the increasing separation can be formulated. Here,
the second law of thermodynamics for the isothermal case deliv-
ers D = −ψ̇ + τ ⋅ δ̇ ⩾ 0 and can be reformulated to

D =
1

2
τ ⋅ Ṡτ + q ℘̇ ⩾ 0. (4.25)
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The Lagrange formula L = −D + γ̇ ⋅φI with γ̇ = γ̇nnn + γ̇tnt maxi-
mizes the dissipation under the side conditions, i.e., the delamina-
tion criteria with respect to the Lagrangian multipliers γ̇i ⩾ 0 for the
determination rates of the internal variables. An expansion of the
terms delivers

L = −
1

2
τ ⋅ Ṡτ − q℘̇ + γ̇ ⋅ (Ξτ − (s − q)i) . (4.26)

The derivatives of the Lagrange formula with respect to the stress-
like variables,

∂τL
!
= 0 = −Ṡτ +Ξγ̇, (4.27)

∂qL
!
= 0 = −℘̇ + γ̇n + γ̇t, (4.28)

together with the Kuhn-Tucker conditions

γ̇i ⩾ 0, φi ⩽ 0 and γ̇ ⋅φI = 0 ⇔ γ̇iφi = 0 (4.29)

deliver the rate equations for the compliance tensor, when the pro-
jector properties of orthogonality and idempotency are exploited:

Ṡ =
P nnΞγ̇ ⊗nn

P nnτ ⋅nn

+
P ttΞγ̇ ⊗nt

P ttτ ⋅nt

=∶ ṠnnP nn + ṠttP tt. (4.30)

The compliance rate components for normal and shear direction
have the values Ṡnn = (γ̇n + f γ̇t)/tn and Ṡtt = γ̇t/τ , respectively. For
the internal degradation variable, ℘̇ = γ̇n + γ̇t is following trivially.

The constitutive assumption for the stress-strain rate equation is

τ̇ =K(δ̇ −Ξγ̇.) (4.31)

Eq. (4.27) can be exploited, in order to obtain a different represen-
tation for the traction state:

τ̇ =K(δ̇ − Ṡτ ). (4.32)
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Noteworthy is the interface tangent operator, which describes the
degradation and which can be obtained from the traction rate
Eq. (4.31) following Simo and Hughes (2000):

τ̇ =KI δ̇ =
∂τ̇

∂δ̇
∣
γ̇

δ̇ +
∂τ̇

∂γ̇
γ̇ = (∂τ̇

∂δ̇
+
∂τ̇

∂γ̇

∂γ̇

∂δ̇
) δ̇. (4.33)

Comparing coefficients gives ∂
δ̇
τ̇ =K and ∂γ̇ τ̇ = −KΞ. The sec-

ond term of the Lagrangian multiplier contribution has to be deter-
mined from the consistency condition on the delamination criteria

0 = φ̇
I
=
∂φ̇
I

∂δ̇
δ̇ +

∂φ̇
I

∂γ̇
γ̇ ⇒ dγ̇

dδ̇
= −
⎛⎝∂φ̇

I

∂γ̇

⎞⎠
−1
∂φ̇
I

∂δ̇
. (4.34)

The differentials can be identified by a consideration of the
Eqs. (4.22) and (4.31) such that

J ∶=
∂φ̇
I

∂γ̇
=KΞ + q′ i⊗ i and

∂φ̇
I

∂γ̇
=KΞ. (4.35)

Hence, the tangent operator can be denoted by

KI
=K (I +ΞJ−1KΞ) . (4.36)

The allowed fracture parameters can be determined from the re-
quirement of regularity of the tangent operator. An evaluation of
the inverse determinant det(KI)−1 ≠ 0 delivers the upper bound

sH <
K0

nnK
0
tt

K0
tt + (1 − f)2K0

nn

(4.37)

for ℘→ 0, i.e., onset of delamination. The Jacobian matrix J ,
Eq. (4.35)1 yields the same information. Figure 4.5 shows the initial
tangent stiffness components over the fracture parameters for a fric-
tion coefficient of f = 0.8 and isotropic initial stiffness (K0

nn/K0
tt = 1).
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Figure 4.5: Components of the interface tangent over the delami-
nation parameters for K0

nn =K
0
tt and f = 0.8: KInn (− −), KInt (− ⋅ −),

KItn (− ⋅ −), KItt (⋯), limit on sH (—)

It can be seen, that the pure normal component KInn (− −) is strictly
negative, if sH > 0. The signature of the pure tangent compo-
nent KItt (⋯) as well as the coupling component KInt (− ⋅ −) depend
on the combination of the friction coefficient and the fracture pa-
rameters. The coupling component KInt (− ⋅ −) is negative in every
case. The asymptotic behavior to the limit from Eq. (4.37) (—) can
be seen for all curves. It has to be kept in mind, that this surprising
effect of “friction hardening” is only present for ℘→ 0. Afterwards,
the strong softening takes place at once.

The Lagrangian multipliers have to be determined by a numeri-
cal method due to the non-linearity of the problem. For the im-
plementation into the Abaqus/Explicit user subroutine VUINTER-
ACTION, the classical return-mapping algorithm after Simo and
Hughes (2000) including a standard Newton-Raphson scheme on
the fracture conditions has been chosen.
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magnitude in a), b) pure tensile loading (—), c) pure shear loading (—) and d) coupled loading
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In order to support the understanding of the implemented ideas,
the behavior of the interface model has been depicted for different
cyclic load paths, which are prescribed by the separation magni-
tude in Figure 4.6 a). The pure tensile traction (—) in Figure 4.6 b)
shows the features of a damage behavior in tensile direction, i.e.,
the direct correspondence between the degradation of strength and
stiffness, which leaves no remainder of inelastic separation after
complete unloading of the interface. In the compressive domain,
the behavior sustains its initial stiffness K0

nn. The unloading cy-
cles shows the degradation of strength and stiffness. The arrows
indicate the possible loading and unloading paths, which are re-
lated to the irreversibility of the interface behavior. Figure 4.6 c)
depicts the application of the magnitude in a) as shear separation
(—). Here, the distinction between loading directions is not made,
see, Eq. (4.20)2, such that the interface degrades for negative shear
tractions as well. In Figure 4.6 d) a combined load path is prescribed
for both the tensile (—) and the shear direction (—). The effects of
the superposition of the tractions, i.e., the friction, and their effects
on the degradation behavior can be observed in detail. The soften-
ing influence or hardening effect of tensile or compressive tractions
are obvious and according to the expectations.

For the unit cell fracture simulations the initial interface stiffness
of K0

nn =K
0
tt = 10 GPa/nm has been assumed. This is the highest

value, which allows for a numerical stable simulation with the used
framework. The initial interface strength, degradation constant and
the friction coefficient have been set to s = 1200 MPa, H = 0.1 nm−1

and f = 0.8, respectively.
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4.3.2 Fracture of Phases

Glassy Phase

The glassy matrix in the model is assumed to be formed by an
oxynitride glass with 17% nitrogen, whose thermoelastic properties
have been introduced in Section 3.3.2.

The estimation of the strength is a challenging task due to the fact,
that the fracture of brittle materials is subjected to a significant vol-
ume effect. So, the Weibull theory has to be used, if the macroscopic
strength results shall be used for a motivated determination from
macroscopic experiments. The relation

σMc (V ) = σMc (V0) (V0V )
1/m

Γ(1 + 1/m) (4.38)

provides a relation between the fracture strength at different volu-
metric expansions (see, e.g., Gross and Seelig, 2007). Let the vol-
ume of the experimentally assessed sample be V0. The volume
of the portion, whose strength should be estimated is V . The
Weibull modulus, which is a measure for the scatter in the ex-
perimental data is denoted by m. As macroscopic strength val-
ues, the experimental data from Iba et al. (1999) is used. Here,
fibers with a diameter d0 = 20 µm were made from oxynitride
glass. These fibers resisted stresses between 3 and 5 GPa. To-
gether with an assumed fiber length of l0 = 30 mm the fiber vol-
ume is V0 = π/4 d20 l0 = 9.42⋅10−3 mm3. For the Weibull modulus of
glass fibers Le Bourhis (2008) provides a wide range between 10
and 30. An estimation of a glass pocket is possible, if a larger
glass pocket in Figure 2.4 is considered. If it is assumed to have
the shape of a regular tetrahedron with an edge length of 1 µm,
then the volume would be V = l3/4√3 = 1.44⋅10−10 mm3. If those
assumptions are put together, the strength map in Figure 4.7 a) can
be obtained from Eq. (4.38). It can be seen that a strong dependence
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Figure 4.7: Fracture stress of the glassy phase: a) Contour plot of
fracture stress of the glassy phase σMc [GPa] based on the assump-
tions for Weibull modulus m and glass fiber strength σMc , b) Con-
tour plot of the isotropic failure criterion φM = 0 for the glassy ma-
trix phase in the principal stress space, σMc = 10 GPa, p = 20; planes
indicate vanishing stresses.

is given especially for the Weibull modulus. The predicted strength
values reach from σMc = 5.36 . . .28.7 GPa. Hence, the assumption
of σMc = 10 GPa appears as reasonable choice. The fracture behav-
ior of the glassy matrix phase M is assumed to be caused by the
maximum tensile stress. They are obtained from the eigenvalue
problem σppr

= σprppr with the principal stresses σpr and the cor-
responding eigenvectors ppr. The problem is solved numerically
by a Jacobi-scheme (see, e.g., Nipp and Stoffer, 2002). The fracture
criterion is formulated as ℓp-norm on the tensile part of the princi-
pal stresses, where 1 ⩽ N ⩽ 3 is the number of different eigenvalues
of the stress tensor σ and σMc is the cracking stress of the matrix
material. Thus, the criterion can be denoted

φM =
⎛⎝

N

∑
ξ=1

(max{0, σpr
ξ
} /σMc )p⎞⎠

1/p

− 1. (4.39)
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The fracture criterion transforms into the strict maximum principal
stress criterion, if p→∞. In Figure 4.7 b) the contours the fracture
criterion φM = 0 in the principal stress space are depicted. Here, the
assumed cracking stress is 10 GPa.

β-Si3N4 Grains

The cracking criterion for the β-phase G is motivated by the
transverse-isotropy of the elastic stiffness tensor. Hence, the
positive eigenvalues max{0, σpr

ξ
} and the corresponding projec-

tors P
pr
ξ
∶= ppr

ξ
⊗ppr

ξ
have been used for the tensile stress tensor in

spectral representation σ+ = ∑N

ξ=1max{0, σpr
ξ
} P pr

ξ
.

The projectors P G
ζ
= nG

ζ
⊗nG

ζ
, ζ = 1 . . .4 have been constructed from

the normal directions of a grain (Section 2.2.2). The tensile stress
tensor is mapped on those projectors in order to capture the
anisotropy. The ℓp-norm for the grain φG fracture criterion takes
the form

φG =
⎛⎝

4

∑
ζ=1

∣P Gζ ⋅σ+/σGc,ζ ∣p⎞⎠
1/p

− 1. (4.40)

Figure 4.8 a) shows the three-dimensional contour of the fracture
criterion φG = 0 for the grain, depicted on the right. Motivated
by the ab-initio simulation results of Ogata et al. (2004), the se-
lected parameters are σGc,1...3 = 1923 MPa and σGc,4 = 2000 MPa and
p = 20. The anisotropy and the influence of the crystal planes is
slightly pronounced. In axial direction, the fracture stress is approx-
imately 4% higher than the fracture stress in the basal direction. In
the basal plane, a slight influence of the used normal vectors is vis-
ible. In Figure 4.8 b) the influence of the orientation on the cracking
direction is visualized. The notched sample is thought to be cut
out of a single crystal. The directions are indicated by the small
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coordinate system, which is drawn in to the sketches in the lower
row of the compilation. The sample is loaded by displacements
on the front faces of the sample, as it is indicated by the vertical
arrows. The upper row shows the distribution of the fracture crite-
rion φG . Green dyeing indicates high stress levels around the notch
tip shortly before cracking.

a)

b)

Figure 4.8: a) Contour plot of the fracture criterion for the β-
grain φG = 0 in the principal stress space; planes indicate vanish-
ing stresses; b) examination of the fracture behavior on a simplified
compact tension specimen with different grain orientations
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It can be seen that the orientation of the contour lines corresponds
with the crystal orientation. The lower row shows the cracks. In-
teresting is the fact that the sample never breaks finally in the di-
rection of the notch, although an onset of cracking occurs in case
of the crystal, which is oriented in loading direction. In general, a
cracking into the direction of the weaker stress can be observed in
all cases.

The fracture criteria are implemented as user subroutine VUMAT

for Abaqus/Explicit. In integration points, where the fracture crite-
ria φM/G are fulfilled, stress is set to zero.

4.4 Fracture Behavior of the Effective Material

The fracture of the effective material has been assumed to occur un-
der maximum principal stresses. This has been implemented into a
continuum damage mechanics model. The criterion is denoted

φ̄ =
N

max
ξ=1
{σ̄pr

ξ
} − σ̄c + q̄, (4.41)

where q̄ is given in analogy to Eq. (4.21), redefining all parame-
ters by effective parameters for the continuum model. The frac-
ture model uses the same thermodynamical consistent framework
like the interface delamination behavior. As already described in
Section 4.3.1, the material is assumed to remain elastic after it un-
dergoes damage, i.e., degradation of strength and stiffness. Conse-
quently, following again Govindjee et al. (1995), the Helmholtz free
energy for the quasi-hyperelastic continuum has the form

ψ̄ =
1

2
σ̄ ⋅ S̄[σ̄] + S̄ (℘̄). (4.42)

The effective degradational energy S̄ (℘̄) is defined in analogy to
the corresponding quantity for the interface degradation, intro-
duced in Eq. (4.21). The compliance tensor and the stiffness tensor
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are linked by the relation S = C
−1. The dissipation obtains the form

D̄ =
1

2
σ̄ ⋅ ˙̄S[σ̄] + q̄ ˙̄℘ ⩾ 0, (4.43)

such that the Lagrange formula for the determination of the internal
variables is

L̄ = −
1

2
σ̄ ⋅ ˙̄S[σ̄] − q̄ ˙̄℘ + ˙̄γ ( N

max
ξ=1
{σ̄pr

ξ
} − σ̄c + q̄) . (4.44)

An evaluation of the conditions for the maximum dissipation

∂σ̄L̄
!
= 0 = − ˙̄S[σ̄] + ˙̄γ P̄ , P̄ ∶= ∂σ̄φ̄ = p̄pr

max ⊗ p̄pr
max, (4.45)

∂q̄L̄
!
= 0 = − ˙̄℘ + ˙̄γ (4.46)

delivers the rates of the internal variables. The form of the fracture
criterion allows an application of the linear map for the derivation
of the compliance rate in the sense of an associated flow rule

˙̄
S = ˙̄γ

P̄ ⊗ P̄

σ̄ ⋅ P̄
. (4.47)

Here, the dissipation relevant direction, i.e., the direction of the
maximum principal stress is considered only. The rate of the strain-
like damage variable follows trivially ˙̄℘ = ˙̄γ.

The stresses can be determined from the rate form of Hooke’s law

˙̄σ = C̄[ ˙̄ε − ˙̄γP̄ ]. (4.48)

It has to be mentioned that this definition of the stress-rate is sym-
metric with respect to tensile and compressive loads, which is cum-
bersome, if crack closure plays a role for the material behavior, e.g.,
for cyclic loading. An option for a distinction between the tensile or
the compressive domain can be obtained by the consideration of the
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Figure 4.9: Stress-strain curve for continuum undergoing elastic
damage; contours describe the degradation of the effective elastic
stiffness C̄.

projection of the present strain tensor ε̄ on normal direction of the
crack plane P̄ . Tensile or orthogonal modes deliver ε̄ ⋅ P̄ ⩾ 0 and
compressive loading is characterized by ε̄ ⋅ P̄ < 0. For the case of
crack closure, the initial stiffness is a reasonable choice for the stiff-
ness of the material. Nevertheless, such discontinuity would give
rise to certain issues on the definition of the energy formulation.
Due to the fact that for the present cases, the crack closure case is
not considered, this questions are not examined in more detail here.

Like in the case of the interface behavior, the Lagrange multiplier is
determined numerically by the standard procedure after Simo and
Hughes (2000).

Figure 4.9 shows a typical stress strain curve for a uniaxial tensile
deformation of the material in e1-direction. The constants for the
initial elastic stiffness are taken from Section 3.5. The effective frac-
ture strength is σ̄c = 1000 MPa and the effective degradation con-
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stant is H̄ = 200. The curve shows, how the continuum reaches the
point of material instability. Afterwards, the resistance and the stiff-
ness degrade, such that after unloading no inelastic strain remains,
which is symbolized by the unloading cycle. The spherical projec-
tions of the elastic stiffness (Böhlke and Brüggemann, 2001) show
the evolving transverse-isotropy of the stiffness tensor C̄, due to the
degradation process.

For the issues of uniqueness and well-posedness of problems in
continuum mechanics a consideration of the tangent operator for
damage C̄

d is important. It is given by the relationship

C̄
d
=
dσ̄

dε̄
. (4.49)

The determination of this total differential is based on the consid-
eration of the total differentials of stress Eq. (4.48) and the cracking
condition Eq. (4.41) with respect to the strain and delivers (Simo
and Hughes, 2000)

C̄
d
= C̄ −

C̄[P̄ ]⊗ C̄[P̄ ]
P̄ ⋅ C̄[P̄ ] − q̄′ , q̄′ = H̄σ̄c exp(−H̄℘̄). (4.50)

Care has to be taken for the choice of the softening constants, be-
cause a vanishing denominator has to be avoided. At the onset
of cracking, i.e., ℘̄ = 0, the initial softening modulus is q′0 = H̄σ̄c.
Hence, it is worth to see, if there is an absolute limit for the
softening constants. The denominator can be simplified fur-
ther by the evaluation of the projection of the isotropic stiff-
ness C̄ = λ̄ I ⊗ I + 2Ḡ I

S on the cracking direction P :

q′0 <min
P̄
(P̄ ⋅C[P̄ ]) = λ̄ min

P̄
(tr2(P̄ )) + 2G. (4.51)

Because of tr2(P̄ ) ⩾ 0, the upper limit for the initial derivative is

q̄′0 = σ̄cH̄ < λ tr
2(P̄ ) + 2Ḡ. (4.52)
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Hence, the choice of the parameters is case sensitive. A pure tensile
stress field allows a higher degradation rate, than shear stress.

The spontaneous loss of definiteness in the moment, when fracture
occurs, can be shown by the scalar product P̄ ⋅ C̄d[P̄ ] with any
cracking direction tensor P̄ ≠ 0. An application of the linear map
delivers

P̄ ⋅ C̄d[P̄ ] = − q̄′ P̄ ⋅ C̄[P̄ ]
P̄ ⋅ C̄[P̄ ] − q̄′ , (4.53)

which is strictly negative for any admissible initial softening con-
stants. Consequently, mechanical problems, which use this consti-
tutive assumption have to be regularized.

4.5 Results

4.5.1 Unit Cell Approach for the Determination
of the Effective Fracture Behavior

The micromechanical finite element model has to incorporate all
described constitutive and geometric features as well as the bound-
ary conditions. The generated geometry (see, Chapter 2) is meshed
with ScanIP from Simpleware (Young et al., 2008). In Figure 4.10
a schematic of a periodic unit cell with the phase- and interface-
wise constitutive assumptions is depicted. The used symbols cor-
respond with the symbols in the previous sections. The material
orientations are delivered by the structure generator.

The teal layer (●) is necessary to avoid a strong influence of small
imperfections to periodicity of the unit cells after the meshing with
ScanIP, which arise from the smoothing technique. So, it occurs that
grain interfaces on opposing sides of the unit cube are not matching
perfectly to each other, which would cause significant artifacts.
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Figure 4.10: Schematic of a periodic unit cell embedded into ef-
fective material (●) with grains (G), glassy matrix (M) and inter-
faces (I) between grains and grains (—) and matrix (—)

A feasible workaround is the application of the projected periodic
boundary conditions (Section 3.4.2) on a layer with the effective
thermoelastic properties (Section 3.5). The resulting boundary con-
ditions are a linear combination of the imposed displacement field
and the surface tractions implied by those displacements through
the elastic properties of the layer. More generally this is a weighted
combination of the Dirichlet and Neumann type boundary condi-
tions. This third type of boundary conditions is often called after
Robin, but other eponyms are possible as well (Gustafson and Abe,
1998).

The consideration of the degrading material behavior leads in gen-
eral to a local loss of Hadamard’s strong ellipticity condition (see,
e.g., Bažant and Belytschko, 1985; Sluys, 1992; Govindjee et al.,
1995). The result is an ill-posed problem, which makes a regular-
ization inevitable. A well introduced option for a regularization
of the static problem is the solution of a related dynamic prob-
lem, such that the inertial forces due to mass density and mate-
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rial velocity have to be incorporated into the balance equation. In
order to obtain a quasi-static solution, the dynamic effects from
the inertial contributions must not influence the solution of the
considered problem. Here, an estimation of reasonable values of
the imposed deformation speed and the speed of sound in the
material is required. Following Kinsler et al. (2000), the wave
speeds in an isotropic and homogeneous solid aggregate are de-
termined by the bulk and shear modulus and its density. So, the
longitudinal and shear wave speed is given by c2l = (K + 4/3G)/ρ
and c2s = G/ρ, respectively. With the values for the effective prop-
erties from Table 3.1 at room temperature and a density of bulk
silicon nitride of ρ = 3.2 kg/l the tensile and shear relevant velocity
are cl = 11.1 km/s and cs = 6.1 km/s.
A quasi-static deformation of a homogeneous unit cube with
an initial edge length w is obtained, if the deformation
time tū = ū/v̄ = ε̄w/v̄ is several orders of magnitude smaller than the
wave travel time tcl/s = w/cl/s in the cube for the considered defor-
mation mode. Hence, an estimation of the time or speed ratio can
be given by tū ⩽ ξ tcl/s or v̄ ⩽ ξ ε̄ cl/s with ξ ≪ 1. An appropriate selec-
tion of the factor ξ is crucial for the attainment of a realistic determi-
nation of a material behavior. Reasonable choices are between 0.1
and 1% of the relevant wave travel time. The displacement field
has to be applied by a smooth technique to avoid velocity and ac-
celeration jumps, which would induce uninteded shock waves in
the model and with it dynamic artifacts. This means, the velocity
and acceleration has to vanish at the beginning of the deformation
process.

4.5.2 Structure-Property Relation

The microstructure of silicon nitride together with the grain bound-
ary toughness are the crucial properties for the design of a well-
balanced fracture strength and toughness. These properties can be
assessed on the macroscopic level by R-curve measurements. The
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curves describe the relation between fracture toughness and crack
extension as it is outlined in detail in Munz (07). In general, a ris-
ing R-curve is indicating a tough material. In silicon nitride, four
stages of the R-curve can be distinguished, which is explained in
Fünfschilling et al. (2011). The first domain characterizes the frac-
ture behavior during the first micrometers of the crack extension.
Here, the microscale mechanisms, i.e., the delamination and crack-
ing of the large and elongated β-Si3N4 grains are the dominating
effects. The most important finding is that the steep increase in
toughness can be addressed to elastic bridges, which are formed
by large grains. Those grains are perfectly bound to other grains
and/or to the glassy phase, while a crack is propagating around
them. Depending on the angle of incidence and the grain boundary
toughness, the crack is circumventing the large grain and grows for-
ward through smaller grains. This results in elastic bridges, which
are formed by the large grains. These are the main reinforcement
contribution in the early crack stage and, therefore, improve the
fracture toughness significantly. The highly heterogeneous stresses,
which are carried by the bridging grains are regarded as bridg-
ing stresses. In the classical fracture mechanics theory, an effec-
tive bridging stress field can be determined from the R-curve by
the usage of weight functions (Fett et al., 2005). Differently to the
R-curves, the bridging stress fields are seen as material property,
which is induced by the microstructure and which, therefore, re-
mains uninfluenced by the geometry of the considered specimen
(Fünfschilling et al., 2011). This is essential for an experimental and
macroscopic characterization of a structural-reinforced ceramics
material. For a microscopic assessment, based on a space-resolved
finite element simulation framework, a detailed consideration
would be premature, such that this research direction is not fol-
lowed further in the context of this work.

Due to the complex experimental assessment, the first part of the
crack resistance curve was firstly documented by Fett et al. (2008),
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Figure 4.11: Three unit cells with different mean aspect ratios: cell I
(⟨AI⟩ = 3.07), cell II (⟨AII⟩ = 4.03) and cell III (⟨AIII⟩ = 4.93)

where a special four-point bending test on notched beams together
with an elaborated semi-analytical evaluation technique was used
to distinguish between the influences of the notch radius and the
short cracks. Here, the finding that silicon nitride gains 90% of the
its final fracture toughness during the first 10 µm of the crack prop-
agation.

In order to give further insight into the acting mechanisms, this sec-
tion will examine the influence of different grain-length to aspect
ratio distributions at a given grain boundary toughness under uni-
axial tensile deformations with effective free transverse contraction.

For this examination, three different periodic unit cells in the fur-
ther context with 64 grains, designated with I , II and III have
been created. The cells with mean aspect ratios of ⟨AI⟩ = 3.07,⟨AII⟩ = 4.03 and ⟨AIII⟩ = 4.93 have been generated in eight seeding
steps with eight grains each. The width w of the cells is 3 µm. The
cells can be seen in Figure 4.11. The difference in the mean grain
shapes appears in all cases.

The usage of the same random seed for the structure generation
algorithm allows for a comparison of the different realizations of
the unit cell. Only the axial growth velocity has been varied.
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The cells are deformed uniaxially with a free transverse contraction
by the strain tensor ε̄ = ε̄0(Bi + ν̄(I −Bi)), i = 1 . . .3. The follow-
ing images in Figure 4.12 and 4.13 show the degradation process for
the unit cell III with the highest mean aspect ratio, when deformed
along the e3-axis. On the left side of the images, the displacement
field in the loading direction u3 is shown. The right side is reserved
for the corresponding stress fields σ33.

Figure 4.12 a) shows the state after the cooling down from the sin-
tering temperature. Thus, only thermal strains and residual stresses
are present. The displacement field is smooth and characterized
by slight fluctuations due to the phase contrasts. The subfigure b)
shows the state, where the effective mechanical strain in loading
direction is equilibrating the thermal strain. This leads to consid-
erable stresses in the microstructure. A load transition to the large
grain, which is mostly aligned with the e3-axis, can be observed.
Subfigure c) shows the onset of delamination, which is visible due
to a first displacement jump. The images in Figure 4.13 shows
the progress of the final fracture. It can be seen, that the bridging
grain is carrying a large amount of the load. The displacement field
now shows a new jump on the right side of the model. Subfigure
b) and c) visualize the fracture of the bridging grain, which leads to
material instability.

The findings from the image series can be summarized as follows:
The main features of the fracture in silicon nitride are represented
in the model in a simplified, but nevertheless significant way. The
crack path deviation due to elastic bridging by long and elongated
grains is clearly visible.

In order to examine the influence of the structural properties on the
effective behavior a consideration of the relations between effective
stress ⟨σ⟩ and strain ε̄ in tensile direction have been considered, see,
Eqs. (4.4) and (4.9). Those two quantities allow for the determina-
tion of the fracture toughness, when certain assumptions are made.
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Figure 4.12: Time evolution of fracture for unit cell III – 1
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Figure 4.13: Time evolution of fracture for unit cell III – 2
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The fracture toughness of a material is characterized by the energy
release rate G , i.e., the variation of the internal energy due to the
crack propagation. Following the basic relations of the linear frac-
ture mechanics, as it is outlined in detail in Munz and Fett (1999),
the energy release rate is given by

G =
1

2
F 2 dS

dA
. (4.54)

Here, F is assumed to be the force on the surface of the unit cube,
such that F ∶= ⟨σ⟩w2. The compliance is denoted by S = u/F with
the boundary displacement u = ε̄w. The cracked area A has to be
determined under the assumption of a certain fracture mode, be-
cause here information of the crack geometry is needed. Therefore,
the stress intensity factor for fracture under mode I is considered
as relevant for the uniaxial tensile load of a brittle material. This
factor has two representations, which have to be exploited. First, it
is a relation between the critical stress ⟨σ⟩ or the related force F and
the crack length a:

KR = ⟨σ⟩√aY = F

w2

√
aY. (4.55)

The geometry factor Y is the geometry function, which plays a cru-
cial role for the evaluation of fracture experiments. For a basic un-
derstanding, it can be considered as a constant for a certain crack
shape and, therefore, a value of 1 is assumed. The second relation
exists between the energy release rate and the stress intensity fac-
tor. Given the effective uniaxial stress state, which is a special case
of plane stress, the relation

K2
R = G Ē, (4.56)

holds, where Ē is initial Young’s modulus. Introducing the
Eqs. (4.54) and (4.55) into Eq. (4.56) delivers

dA =
w4Ē

2
√
AY 2

dS, (4.57)
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when the crack area is assumed have a unit shape. From this rela-
tion, an incremental calculation of the crack surface is possible.

In Figure 4.14 the effective stress-strain curve, the compliance, the
energy release rate and the stress intensity factor are compiled for
the different geometries and for representative load paths. Fig-
ure 4.14 a) shows the different tensile behaviors. A significant im-
provement of the fracture strength can be seen. This trend can be at-
tributed to the higher content of large and elongated grains, which
are transferring higher local loads. In Figure 4.14 b) the compli-
ance S∗ is depicted for the fracture domain over the effective strain.
In order to achieve a better feeling for the quantities, the curves
are normalized on the initial Young’s modulus Ē and on the edge
length w of the unit cell, so that S∗ = ESw̄ = Ēε̄/⟨σ⟩. The curves
start, where the degradation of the material, mainly due to inter-
face delamination begins. In the moment of fracture compliance
rises quickly. The influence of the structural reinforcement can be
seen.

Of special interest are the subfigures c) and d). Both curves are
normalized on the unit cell size w. The most obvious feature is the
general rising trend of the curves, which corresponds to experimen-
tal observations of Fett et al. (2008). Important appears the feature
that here a significant influence of the grain shape can be observed.
The clear trend: The higher the aspect ratio, the higher and steeper
is the R-curve.

It is naturally that an effect of the loading direction can be observed.
This is, basically, due to the limited size of the considered unit cells.
However, the general trend towards increasing fracture strength
and resistance with increasing aspect ratios is observable, as it can
be seen in Figure 4.15. The influence of the geometry can be seen in
all cases and becomes more pronounced with increasing aspect ra-
tio. The microscopic reasons for the differences in the macroscopic
behaviors can be observed in Figure 4.16. Here, the corresponding
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Figure 4.14: Influence of the mean aspect ratio on different effective
properties; ⟨AI⟩ (− −), ⟨AII⟩ (− ⋅ −), ⟨AIII⟩ (⋅ ⋅ ⋅); a) effective stress-
strain curve, b) normalized compliance S∗ over the effective strain,
c) energy release rate G over crack surface (normalized on the unit
cell cross section w2) and d) stress intensity factor KR over crack
length (normalized on the edge length of the unit cell w)

displacement (left) and stress fields (right) for the microstructure II
with the medium mean aspect ratio is gathered for the two loading
directions with the biggest difference in the macroscopic behavior.
The values of the displacement field are minimum and maximum
values at the present state. The stress field color code is starting
with blue color (●) at –100 MPa, which represents the compressive
stresses in the grains due to thermal strains and is ending in red
color (●) at 2000 MPa, which is the fracture strength of the grains in
axial direction. The high values of strength and fracture toughness,
which have been measured for the loading direction e3 (◇) can be
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Figure 4.15: a) Maximum crack stress and b) maximum fracture
resistance values for the three considered geometries under loading
direction e1 (▽), e2 (◻) and e3 (◇), mean values (●) and trend line
due to linear regression (—)

addressed to the presence of a large and elongated grain, which is
aligned mainly in this direction. The right side of Figure 4.16 a)
shows the displacement field. The jump in the field is next to the
grain, which indicates, that the crack has to propagate around this
grain. The subfigure b) shows the corresponding stress field. In
the region with the separation, the stress field is almost vanishing
due to the post-failure unloading. The load is carried by the elastic
bridging grain, where loads up to 2000 MPa are localized.

For this geometry (II) a considerable outlier is observed, when
loaded in e2-direction (Figure 4.15 (◻)). This decreased fracture
stress and toughness has its origin in the presence of an unrein-
forced plane in the unit cell, which can be seen in Figure 4.16 c)
and d). Here, the displacement and the stress field are depicted,
after the fracture occurred. The fracture surface is extremely planar
due to no bridging grains.

Summarizing, it can be said, that the results are affirmating the
experimental observations, where long and elongated grains lead
to higher fracture toughness. The result for the unit cell II has
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Figure 4.16: Displacement and stress fields for the unit cell III ;
a) Displacement and b) stress at the onset of fracture with bridging
grain (loading direction e3), c) Displacement and d) stress field after
fracture without structural reinforcement (loading direction e2)
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shown what the effect of missing denticulation of the structure
is: A significant decrease of the fracture toughness, but not of the
strength.

Concerning the concrete values of the determined fracture tough-
nesses it has to be mentioned that they underestimate the fracture
toughness, which can be observed experimentally for silicon ni-
tride. This is not unexpected, due to the simplicity of the chosen
fracture mechanics framework and due to the very limited size of
the unit cube, which is beneath the critical crack length in silicon
nitride. The procedure solely tried to give an idea over the fracture
toughness on the microlevel. For this conceptual consideration, the
results are confirming the picture, which is given by experimental
observations of, e.g., Fett et al. (2008): The R-curve starts for very
short cracks of single microns at a level, which is approximately
one half of the plateau level, as it can be seen in Figure 4.14 d).
The decrease afterwards can be addressed to the complete failure
of the limited size of the unit cells. Therefore, the main features of
the complex fracture process in silicon nitride can be captured by
the unit cell approach with structure and the related constitutive
assumptions.

4.5.3 Influence of Stress-Triaxiality

Stress fields in solids are in general inhomogeneous, which can be
attributed to phase contrasts in the material on the microscale (Sec-
tion 3.5.3) or to the geometry of the loaded body, e.g., notches or
cracks. Those inhomogeneities can be quantified by triaxiality mea-
sures, which have been introduced earlier and will be considered in
more detail later in this section. A well known fact is the influence
of the stress triaxialities on the effective fracture behavior. A wide
body of literature on the effects of triaxiality on the degradation of
ductile materials is available. Prominent examples are the funda-
mental works of Gurson (1977) or Lemaitre (1985), where the pore
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growth or the formation of microcracks are identified as damag-
ing mechanisms. Both concepts include the reduction of the inter-
nal load carrying capacity and the observation of ductile-to-brittle
transition with increasing stress triaxiality T = −p/σeq. T is further
tagged as ‘classical’ triaxiality. Here, the invariants of the stress ten-
sor are considered only, which means that the influence of the ratio
of the principal stresses itself do not enter the consideration. The
consequence is that shear stresses are not considered as relevant for
the degradation. Here, a different triaxiality measure, which has
been introduced by Lode (1926), provides an option for doing so. It
has to be emphasized that the triaxiality is mainly considered in the
field of elastoplasticity. Nevertheless, an influence on a quasi-brittle
material can be expected as well.

The following examinations are based on a parameterization of the
stress tensor by the two triaxiality measures and the maximum
principle stress, which allows for the determination of a corre-
sponding deformation state. All calculations assume the effective
isotropic elasticity of the bulk material at room temperature. This is
the case only prior to fracture. The isotropic stiffness or compliance
can be described by a consideration of the projector properties:

C̄ = 3K̄P1 + 2ḠP2 ⇔ S̄ =
P1

C̄ ⋅ P1

+
P2

C̄ ⋅ P2

=
P1

3K̄
+

P2

2Ḡ
. (4.58)

Here, the values from Table 3.1 from the 238 grain unit cell for
the bulk and shear modulus, K̄ = 236.9 GPa and Ḡ = 120.3 GPa are
used. So, an effective principle stress state, which is characterized
by a certain effective triaxiality measure can be impressed on a unit
cube by the usage of the parameterized effective stress tensor.

Classical Triaxiality. For the classical triaxiality a transverse-
isotropic stress state can be assumed. Hence, only one degree of
freedom is left, such that

σ̄ = σ̄0(B1 + kT (I −B1)) (4.59)
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with kT < 1 is used for the description of the stress state. Inserting
this into the definition of the effective hydrostatic pressure p̄ and
the equivalent stress σ̄eq after von Mises delivers

p̄=−
1

3
tr(σ̄)= 1

3
σ̄0(1+2kT ); σ̄eq=

√
3

2
∥σ̄ + p̄I∥ = σ̄0 (1−kT ) (4.60)

and with it the parameterized classical triaxiality

T =
1 + 2kT

3 (1 − kT ) . (4.61)

This can be rearranged, so that the triaxiality parameter

kT =
3T − 1

3T + 2
. (4.62)

Hence, the stress tensor can also be denoted by

σ̄ = σ̄0 (B1 +
3T − 1

3T + 2
(I −B1)) . (4.63)

The limiting values T > −2/3 and kT < 1 can be seen easily from this
relations. Figure 4.17 a) shows the relationship between the triaxi-
ality T and the parameter kT .

The effective principle strains can be determined from the Hooke’s
law

ε̄ = σ̄0
K̄ + ḠT

K̄Ḡ(2 + 3T ) (B1 + (1 − 3K̄

2 (K̄ + ḠT )(I −B1))) . (4.64)

In Figure 4.17 b) the maximum (− −) and minimum (− ⋅ −) principal
strain amplitude for an expected fracture stress of σ̄0 = 1000 MPa

are depicted. The singularity for T → −2/3 can be observed, which
would lead to an infinite stress state, see, Eq. 4.63, and is therefore
not admissible. For T →∞ the spherical strain state ε̄ = σ̄0/3K̄ I
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is obtained. Interesting is the fact that the ratio of the principal
strains, i.e., the negative of the scaling factor of the transverse prin-
cipal strain in Eq. 4.64, is 1/2 (1 − 1/ν̄), when the engineering con-
stants Young’s modulus Ē and Poisson’s ratio ν̄ are inserted. This
remains finite for all ν̄ > 0. For silicon nitride (ν̄ = 0.283), it has a
value of approximately 1.27 as it can be seen in Figure 4.17 c). Here,
the value for ν̄ for the uniaxial tensile state with T = 1/3 and the pure
deviatoric deformation mode T = 0 are marked.

The Lode Parameter. The parameterization of the effective princi-
pal stress and strain tensor with the Lode parameter

µ =
2σ̄2 − σ̄1 − σ̄3
σ̄1 − σ̄3

, σ̄1 ⩾ σ̄2 ⩾ σ̄3, (4.65)

has two degrees of freedom, if the magnitude of the maximum
principal stress is given by σ̄1 = σ̄0. Then σ̄2 = σ̄0k

µ
2 and σ̄3 = σ̄0k

µ
3 .

Hence, Lode’s parameter ends in

µ =
2k

µ
2 − 1 − kµ3
1 − kµ3

. (4.66)

As it has been already mentioned in Section 3.5.3, general ten-
sile stress states are characterized by µ = −1, which is identical
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to kµ2 = k
µ
3 . Shear stresses are obtained for µ = 0, which is character-

ized by kµ2 = 1/2(1 + kµ3 ). The compressive states µ = 1 can be reached
by kµ2 = 1. In Figure 4.18, the contours of Eq. (4.66) are depicted. For
the parameters kµ2 = k

µ
3 = 1 the contour lines show indeterminacy,

which is corresponding to a purely hydrostatic stress state.

For the further considerations it is interesting to see the influence
of the Lode parameter µ on the fracture behavior, when a certain
classical triaxiality T is given. So, the Eqs. (4.63) and (4.64) can be
considered as a special case with kµ2 = k

µ
3 or µ = −1 of more general

equations. The general parameterization can be developed, when
the stress is denoted by

σ̄ = σ̄0(B1 + k
µ
2 B2 + k

µ
3 B3). (4.67)

Relatively compact expressions can be obtained, when the Lode pa-
rameter is introduced through the elimination of kµ2 by Eq. (4.66),
which gives the expression

σ̄ = σ̄0 (B1 +
1

2
(1 + kµ3 + µ − kµ3µ)B2 + k

µ
3 B3) . (4.68)

For this representation of the stress state, the classical triaxiality T
can be determined, which allows for the elimination of the param-
eter kµ3 and delivers

k
µ
3 = −

3 + µ − 3f0

3 − µ + 3f0
, f0 = T

√
3 + µ2 (4.69)

or inserted into the stress state

σ̄ = σ̄0 (B1 +
2µ − 3f0

3 − µ + 3f0
B2 −

3 + µ − 3f0

3 − µ + 3f0
B3) . (4.70)

These equations yield a restriction on the admissible states for the
classical triaxiality T . Claiming a strictly positive denominator
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ends with

T >
µ − 3

3
√
3 + µ2

, (4.71)

where the aforesaid limit T > −2/3 for µ = −1 is included. Like in
Eq. (4.64), the effective principal strain tensor can be calculated to

ε̄ = S̄[σ̄] = f∗0 (f1B1 + f2B2 + f3B3), (4.72)

where the coefficients

f∗0 = σ̄0(2ḠK̄(3(1 + f0) − µ))−1, (4.73)

f1 = 2f0Ḡ + (3 − µ)K̄, (4.74)

f2 = 2(f0Ḡ + µK̄), (4.75)

f3 = 2f0Ḡ − (3 + µ)K̄ (4.76)

have been introduced for sake of lucidity. The principal strain com-
ponents are depicted in Figure 4.18 b). The trend is generally sim-
ilar with Figure 4.17 b), however the different limiting triaxiality
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Figure 4.19: Unit cell with 36 grains used

values can be seen well pronounced. Interesting is the observation,
that for the compressive state µ = 1 (⋯) the second principal strain
is higher than the first principal strain, although the principal stress
convention Eq. (4.65)2 is a priori fulfilled.

For the determination of the triaxiality influence on the fracture
stress of silicon nitride a unit cell, consisting of 36 grains with a
mean aspect ratio of 3.7 and 88% grain volume fraction has been
used (see, Figure 4.19).

The triaxiality T has been varied between 0 and 4/3 in 5 intervals
and Lode’s parameter has been diversified between −1 and 1 in 7
levels, such that 35 simulations have been carried out and evalu-
ated for the effective stress and strain curves. In Figure 4.20, two
prominent examples of loading paths, i.e., volume average of stress
over strain, are shown. The corner combinations lowest/highest
Lode parameter and triaxiality. Both curves start at the strain level
due to the thermal cool down. It can be seen, that the stress triaxial-
ity affects all features of the brittle material behavior: The stiffness
in the tensile direction, the fracture stress and degradation process.
This can be attributed to the complex interactions of the stress fields
in the grains and the tractions on the grain boundaries, which are
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Figure 4.20: Volume averages of stress and strain for two combina-
tions of Lode’s parameter and stress triaxiality {µ,T }: {−1, 4/3} (—)
and {1,0} (− − −)

relevant for the microscopic and with it for macroscopic damage
behavior. A loading with high triaxiality T under mainly tensile
deformation delivers a significant steeper elastic slope and a higher
fracture stress with an extremely brittle fracture afterwards (—).
The unloading path is almost parallel to the loading path, which
is an indication for few frictional contacts between the crack flanks.
The case of high Lode parameter and low triaxiality (− − −) shows
a different picture. Here, the elastic slope is relatively shallow and
the fracture strength is significantly decreased. The unloading is
characterized by a hysteresis due to the frictional dissipation, which
occurs between the compressively loaded crack flanks.

In Figure 4.21 a) the results of all simulations are comprised. Here,
the fracture stress is considered to be the stress-maximum of the
effective stress-strain curve, because here final fracture occurs.
It is clearly visible, that the resistance of the material is sensitive
on both the Lode parameter and the triaxiality. The peak fracture
stress level with value σ̄c ≈ 1250 MPa is obtained at a high triaxiality
and low Lode parameters, where a significant share of hydrostatic
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Figure 4.21: Effective fracture stress σ̄c in dependence of triaxial-
ity T and Lode’s parameter µ; a) results from the simulations b)
bi-quadratic fit with the function σ̄c(T , µ) = σ̄0c vT ⋅Avµ

stress due to hindered transverse contraction and negligible shear
contribution avoid an early failure, which is abrupt then. The low-
est values are obtained for a combination of low triaxiality and high
Lode parameters. This can be interpreted, when Figure 4.18 b) is
considered again. The corresponding deformation state can char-
acterized by a biaxial tension in the e1-e2-plane and compression
in e3-direction. This leads to unfavorable combinations of tensile
and shear stresses, which weakens the material especially on the
interfaces but leads to a slower degradation process. On the other
hand, a slower degradation process is observed, when the corre-
sponding curve in Figure 4.20 (− − −) is viewed.

In subfigure b) the resulting fracture strengths are adjusted to the
bi-quadratic function. This form is chosen due to the expected,
slightly nonlinear influence of the triaxiality measures. Higher or-
der estimates are possible, but are not expected to deliver further
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insight. Hence, the fracture strength be written as

σ̄c(T , µ) = σ̄0c vT ⋅Avµ, vT =
⎛⎜⎝

1

T
T 2

⎞⎟⎠ , vµ =

⎛⎜⎝
1

µ

µ2

⎞⎟⎠ (4.77)

with the polynomial vectors vµ and vT and the coupling matrix A.
The offset cracking stress for T = µ = 0 is σ̄0c = 1140 MPa. The cou-
pling factors are

A =
⎛⎜⎝

100.0 −10.5 −11.0
17.5 14.3 14.5

−9.4 −6.6 −6.3

⎞⎟⎠%. (4.78)

The fact that the relative error between adjusted function and the
underlying data is never greater than 3.2% and mostly beneath 1%
appears the chosen form feasible.

4.5.4 Effective Material Behavior

Analytical Example – Double Cantilever Beam

A double cantilever beam is a very simple, however, realistic exam-
ple for a fracture experiment under fracture mode I. The big advan-
tage of this geometry is that an analytical solution for the energy
release rate and, hence, the stress intensity factor can be derived by
a standard procedure from the beam theory. The geometry in Fig-
ure 4.22 a) can be assumed to consist of two cantilever beams with
free bending length a, which act as series connection. The system is
assumed to be loaded by dead loads with the magnitude F . Hence,
the compliance of the structure is S = 4a3/Ebh3. The total potential
as sum of the elastic stored energy and the potential of the external
forces F is given by Πtot

= −1/2F 2S. For displacement boundary
conditions, the potential of the external load vanishes, which de-
livers an a priori negative energy release rate and, therefore, stable
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Figure 4.22: a) Double cantilever beam with geometric and consti-
tutive quantities, b) R-curve behavior of the double cantilever beam
for different initial crack lengths and applied loads

crack growth. For the dead load, the applied energy release rate
can be derived by

G = −
1

b

dΠtot

da
=
12a2F 2

Eb2h3
. (4.79)

Figure 4.22 b) shows the relationship for the stress intensity factors,
which can be derived from the energy release rate by Eq. (4.56).

Crack propagation takes place, when the critical energy release rate
is exceeded. The distinction can be made, when the tangent condi-
tion

G (a) = Gc(∆a) and
∂G (a)
∂a

=
∂Gc(∆a)
∂∆a

(4.80)

for a constant force F is examined. The differential part of the
equation system only comes into play, if the fracture resistance is
not constant for increasing crack lengths a = a0 +∆a. In order to
visualize this effect, a simple power-law form for the critical energy
release rate is assumed:

Gc = k∆a
1/n. (4.81)
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With this assumption, the critical crack length increment is

∆ac =
a0

2n − 1
(4.82)

and the critical (and constant) force is

Fc =
1

4
√
3

b

n

√
E h3 k∆a

1−2n
2n

c . (4.83)

This is an interesting result, because, it shows, that for a given ge-
ometry and the chosen R-curve behavior and all other properties
known the critical crack length depends only on the initial crack
length and the R-curve exponent. The like holds for the force. Dif-
ferent forces (⋅ ⋅ ⋅) or initial crack lengths (− − −) lead to critical crack
growth, when the tangent conditions in Eqs. (4.80) are fulfilled or
the system has no solution. Otherwise, stable crack growth takes
place.

Application of the Effective Damage Model

on the Four-Point Bend Test

The implementation of the effective material behavior after Sec-
tion 4.4 tries to describe the macroscopic material behavior by a
very limited number of material parameters: the initial effective
elastic isotropic constants, the effective initial crack stress σ̄c and
the degradation velocity constant H̄ . Those parameters have to
be chosen according to the information, which has been gathered
from the microscopic simulations. This means, a unit cube, con-
sisting of the effective material should show the same behavior
as the underlying heterogeneous unit cube and have been deter-
mined to 800. . .1200 MPa for the effective fracture stress σ̄c and
to 200. . .390 for the effective degradation velocity parameter H̄ .
Note that for those high values between, the limiting relation
Eq. (4.52) has to be evaluated.
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Figure 4.23: Four-point bending test with sharp notched specimen,
see, e.g., Munz and Fett (1999)

As it has been already mentioned in Section 4.5.2, the crack resis-
tance curve of a material and for a certain geometry can be deter-
mined from the load-displacement curve.

In order to achieve good comparability with existent experimen-
tal results, (see, Fett et al., 2008; Fünfschilling, 2010) the four-point
bend test with sharp notched bars, according to DIN CEN/TS
14425-5 (2004), has been used to examine the effective fracture be-
havior (Figure 4.23). Important for the consideration of the steeply
rising R-curve of structural reinforced ceramics is the onset of frac-
ture, i.e., extremely small crack lengths. Therefore, a very small
notch root radius of 7 µm according to Fett et al. (2008) has been
chosen for the simulations, which requires a distinction between a
long- and short-crack solution for the stress intensity factor.

Due to the sophisticated evaluation of the load-displacement
curves, a short summary of the most important relations appears
useful. First of all, the stress intensity factor for a long crack, i.e., a
crack, which is significantly longer than the magnitude of the notch
radius, is determined from the equation

K∗ =
√
πa σY (α) = F

B
√
W
Ŷ (α) (4.84)
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with the dimensionless crack length α = a/W . The crack length can
be computed from the compliance S of the specimen, because on
the one hand it is known from the experiment S = u/F and on the
other hand it can be determined (semi)-analytically by a consider-
ation of the geometry of the specimen. For a notched four-point
bend bar the expression

∆S∗ =
9

2
π
(S1 − S2)2
BW 4E′

∫
a0+ℓ

a0
Ŷ (ã/W )2ãdã (4.85)

can be found. The semi-analytical geometry function Ŷ is given
in Fett and Munz (1997) by

Ŷ =
kS1(1−α)3/2 (15−10α+3α2+120α2(1−α)6 + 9 exp(−kS2 α

1−α
)) , (4.86)

with the numerical factors kS1 = 4.67⋅10
−2 and kS2 = 6.1342.

The short-crack solution for the stress intensity factor is given by
the relation from Munz and Fett (1997)

K

K∗
≅ tanh

⎛⎝k∗
√

ℓ

R

⎞⎠ , k∗ = 2.243. (4.87)

Here, the special considerations of weight functions allows for a
distinction between the influence of the notch and the crack. Fol-
lowing (Fett, 1995), this factor has to be included into the integrand
of Eq. (4.85) (Fett, 1995), such that

∆S =
9

2
π
(S1 − S2)2
BW 4E′

∫
ℓ

0
Ŷ (a0 + ℓ̃

W
)2tanh2 ⎛⎝k∗

√
ℓ

R

⎞⎠ ℓ̃dℓ̃ (4.88)

is obtained as short crack solution for the compliance increment.

The simulations have been carried out on a model with extremely
refined mesh in the notch root, in order to be able to resolve the
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intrinsic length scale of the crack propagation. The bending speci-
men has been deformed quasi-statically by a pure Dirichlet bound-
ary conditions. The flexure of the bend bar is measured in the
middle of the sample. Exemplarily, a force-displacement curve is
depicted in Figure 4.24. The black dots indicate the finite element
solution, which shows a slight scattering due to the material insta-
bilities. This leads to significant influence on the determination of
the crack length and the fracture resistance. In order to obtain a
smooth solution, a linear fit used. Following Fünfschilling (2010),
the compliance increment from the test is given by

∆Ŝ =
u − S0 F

F
. (4.89)

It is used for the determination of the crack length ℓ by solving the
equation ∆Ŝ(F,u) =∆S(ℓ) with Eq. (4.88) numerically. Once, the
crack length is determined, the R-curve can be calculated by the
Eqs. (4.84) and (4.87).

For the visualization of the influence of the effective degradation
rate H̄ on the R-curve behavior of the model, five simulations with
an assumed effective fracture strength σ̄c = 1000 MPa and the val-
ues H̄ = {100,150,200,250,390} have been carried out. The results
are compiled in Figure 4.25. The subfigure a) shows the adjusted
force-displacement curves from the simulations together with the
initial slope, i.e., the elastic response of the sample without fracture
behavior. The difference between the curves appears comparable
small, but a significant effect of the stiffness degradation constant H̄
is noticed, when the applied force is plotted over the compliance
increment ∆Ŝ, see, subfigure b). The crack lengths, based on the
small-crack solution are depicted in subfigure c). As expected, the
cracks in the specimen are growing faster, when the degradation
constant H̄ increases. In subfigure d) the short-crack solution of
the R-curve is plotted. The resulting curve for the highest value
ofH = 390 is reproducing the results of Fett et al. (2008). However, a
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Figure 4.24: Force over displacement, finite element solution (⋅ ⋅ ⋅),
initial slope (—) and linear fit of the fracture load path (—)

slight overestimation of the plateau value can be observed as well.
It has to be noticed that the model is used at its conceptual limit,
due to the restrictions for the choice of the degradation parameter,
see, Eq. (4.52). However, the suggested procedure is capable of cap-
turing the microscopic fracture behavior and allows for a usage of
the obtained results for the effective behavior.

4.6 Conclusions

The fracture behavior of silicon nitride has been described by mi-
cromechanical finite element simulations, which have been used to
address the different aspects of the complex behavior on the mi-
croscale. Hence, the results on the microstructure (Chapter 2) and
the thermoelasticity (Chapter 3) have been incorporated into a more
general context, which includes fracture due to phase cracking and
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increment, c) crack length over displacement, d) fracture resistance
over crack length

interface delamination. Based on the unit cell simulations, an av-
eraging technique allows for an estimation of the effective material
behavior.

For a thermodynamical consistent unit cell approach, it is a precon-
dition that the consistency of microscopic and macroscopic stress
power is preserved. In case of purely thermoelastic behavior, this
is a priori fulfilled, because the Hill-Mandel condition holds for the
chosen boundary conditions. In the case of fracture due to inter-
face delamination the Hill-Mandel condition had to be extended
in order to capture the contributions of the tractions and separa-
tions. The concept has been proved by a consideration of a unit
cube, which has been exposed to a shear deformation. Here, the
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consistency between micro- and macroscopic stress power for the
different features of the implemented material behavior, i.e., elas-
ticity, fracture and post-failure friction could be observed, such that
general consistency can be attributed.

Furthermore, the chapter was focused on a detailed consideration
of the fracture behavior of the solid phases and the phase bound-
aries. Models for fracture under maximum principal stresses for the
isotropic glassy matrix and the assumption of anisotropic fracture
of the β-grains have been suggested. The used fracture strengths
have been motivated by experimental observations and ab-initio
simulations. The grain boundary delamination has been imple-
mented as an extension of Coulomb’s friction law with respect to
elasticity and degradation. For this, a thermodynamical consistent
framework has been used. In particular, the dissipation due to in-
terface debonding has been maximized under two side conditions,
i.e., the delamination criteria for tensile and for shear delamination.
The equations have been examined in detail, such that an upper
limit for the choice of the degradation parameters could be found
by a consideration of the interface tangent operator.

All mentioned features have been incorporated into a simulation
framework for the usage with Abaqus/Explicit.

The unit cell approach has been used to improve the understanding
of the influence of the microstructure on the effective properties.
In order to do so, three different cells with mean aspect ratios be-
tween 3 and 5 have been created and loaded in different spatial
directions. The obtained effective stress-strain curves have been
evaluated by the fundamental equations of the linear elastic frac-
ture mechanics, which delivered the fracture toughness of the ma-
terial. A clear trend towards increasing fracture toughness with
increasing mean aspect ratio can be attributed, although a certain
influence of the microstructure has been observed, as well. This
is consistent with the experimental observations on silicon nitride
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samples and can be addressed to the load carrying capacity of large
and elongated grains. So, it was observed that the fracture tough-
ness is decreased significantly, when the crack can propagate in a
plane, where no interlocking grains are providing elastic bridges as
crack obstacle. On the other hand, the enormous effect of the elastic
bridging grains could be observed in detail.

Furthermore, the influence of stress triaxiality has been examined,
in order to understand the effect of inhomogeneous loads on the
brittle material. In order to do so, the principal stress tensor has
been parameterized by the maximum principal stress, the classical
stress triaxiality and Lode’s parameter. The obtained stress tensor
has been used to derive an effective strain tensor, which delivered
the prescribed displacement boundary conditions. Findings are
that the fracture stress is significantly increased, when the material
is loaded by high stress triaxiality and mainly tensile stress fields,
i.e., a low Lode parameter. The opposite relation holds as well. The
detailed evaluation of fracture stresses allowed for the empirical
adjustment of the relationship between fracture stresses, classical
triaxiality and the Lode parameter.

Hence, it can be concluded, that it is in generally possible to capture
the main features of silicon nitride in finite element simulations. In
particular, the most important feature for the high fracture tough-
ness and the steeply rising R-curve has been carefully examined. It
can be addressed to the existence of grains, which are forming elas-
tic bridges over the cracks faces on the microscopic scale. Here, the
highest fracture toughnesses could be observed, when the grains
where loaded until the assumed fracture stress has been exeeded
and the grain cracked. This was mainly the case for high mean
aspect ratios and high stress triaxialities. The fracture strength and
toughness has been decreased significantly, when the fracture oc-
curred only intergranular, which was the case for low aspect ra-
tios and biaxial tensile loading states with uniaxial compression or
shear dominance.
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On the other end, the effective fracture properties of silicon ni-
tride have been described by a damaging material, which assumes
anisotropic degradation of strength and stiffness in the direction of
the maximum principal stress. Like the interface behavior, the effec-
tive fracture behavior has been implemented by the notion of dis-
sipation due to material degradation. An upper limit for the choice
of the degradation constants has been derived analytically from the
continuum tangent operator. The parameters of the effective ma-
terial have been determined from the results of the unit cell simu-
lations. The obtained effective material behavior has been used to
describe the fracture of four-point bend bars. From the achieved
load-displacement curves the determination of the corresponding
R-curves was possible. Here, the short-crack solution of Fett et al.
(2008) delivered results, which are in close correspondence with the
experimental observations.

Concluding, the statement should be allowed that the whole frame-
work is delivering excellent results, which prove the concept of
structural reinforcement by elastic bridging grains. These find-
ings explicitly support the results of Fünfschilling et al. (2011) and,
therefore, are describing one of the most important material fea-
tures of silicon nitride for structural applications.
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Chapter 5

Discussion and Outlook

The following discussion chapter tries to step back and take a look
at the whole picture. In order to avoid boredom of the reader, a
detailed summery and conclusions on the particular considerations
of this work are given at the end of each specific chapter.

Summing up the entire work, it can be said that the limits for finite
element simulations on the microscale have been pushed forward
considerably. The concentration of elaborated techniques into one
simulation framework is unique in the field to the best knowledge
of the author.

Hence, it might be interesting to start with a short consideration
of the concept in general. The focus of this work lies on the sim-
ulation of a highly complex material behavior on the microstruc-
tural level and the subsequent determination of effective proper-
ties. Due to the key relevance of the microgeometry as well as the
microbehavior a huge amount of details had to be considered to
be able to implement the concept, which has been introduced in
Figure 1.2. The highest priority was the experimental motivation
and mathematically strict implementation of the concept. So, ex-
perimental observation have been used as direct as possible for the
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implementation of the microstructure, thermoelastic, and fracture
behavior. Of course, it has to be admitted that this often was dif-
ficult due to a lack of relevant data. At some points a good por-
tion of intuition combined with all the necessary rigor has lead to
justifiable assumptions and approximations. Examples are the case
consideration for the implementation of the structure generator, the
introduction of the projected periodic boundary conditions, imple-
mentation of the interface behavior, fracture behavior of the phases,
and, especially, the homogenization of the complex behavior.

In the end, the concept could be proved by a comparison of ex-
perimental results with numerical simulations on the macroscale,
which were based on the results of the microscopic simulations.

The most important conclusion for the research on silicon nitride is
that the grain bridging is of crucial importance. Of course, this is
not essentially new, but due to the fact, that the fracture behavior
on the microscale is experimentally not observable, the simulations
deliver significant proof to the concept of the elastic bridging grains
and with it to the concept of the related bridging stresses.

The key achievement of this work is the practical implementation
of a numerical framework, which is straight forward, thermody-
namically consistent and – within its field of application – efficient.
It appears feasible, to apply the used techniques to any other brittle
material through the usage of different geometries, e.g., a Voronï
or a Johnson-Mehl tessellation would meet the requirements for a
geometrical representation of alumina or zirconia. The same holds
for the material assumptions for thermoelasticity and the fracture
assumptions. An extension of the material and interface assump-
tion into the domain of plasticity would open up the application
range for cermets or hard metals like tungsten.

The perspective of the created microscale simulation framework is
an application for further research on silicon nitride. Interesting
questions that might be addressed, include the influence of differ-
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ent grain boundary toughnesses for a given geometry or the influ-
ence of the temperature on the fracture process. A consideration of
wear could be enlightening as well.

A wide range of potential applications of the model for the elastic
degradation of the effective material is possible as well. So, most of
the ceramics and other non-metals like concrete or rock fail under
fracture modes, which allow for the assumption of damage.

Technical improvement of the model can be achieved at several
points as well. It would be highly desirable to have the option of
perfectly periodic finite element meshes, which would make the us-
age of a Robin boundary condition superfluous in the fracture sim-
ulations. The fracture of the phases could be significantly improved
by applying the extended finite element method. Here, numerical
artifacts due to the deletion of elements could be avoided.

Finally, one can say that the implementation of the finite ele-
ment framework for fracture simulations of microheterogeneous
material has been a great success and should be widely used for
the improvement of the understanding of complex microstructure-
property relations, which can influence the development of new or
at least better materials.

131





Bibliography

Ahrens, J., Kohrt, K., 1983. ALGORITHM 599 – Sampling from
Gamma and Poisson distributions. ACM Transactions on Mathe-
matical Software 9/2, 255 – 57.

Bažant, Z., Belytschko, T., 1985. Wave propagation in a strain soft-
ening bar; exact solution. Journal of Engineering Mechanics 111,
381 – 89.

Becher, P., Sun, E., Plucknett, K., Alexander, K., Hsueh, C., Lin, H.-
T., Waters, S., Westmoreland, C.-G., 1998. Microstructural design
of silicon nitride with improved fracture toughness I: Effects of
grain shape and size. Journal of Crystal Growth 81, 2821 – 30.

Böhlke, T., Bertram, A., 2001. The evolution of Hooke’s law due to
texture development in FCC polycrystals. International Journal
of Solids and Structures 38, 9437 – 9459.

Böhlke, T., Brüggemann, C., 2001. Graphical representation of the
generalized Hooke’s law. Technische Mechanik 21/2, 145 – 58.
URL http://preview.tinyurl.com/6e9uxkc

Borbély, A., Kenesei, P., Biermann, H., 2006. Estimation of the
effective properties of particle-reinforced metal-matrix compos-
ites from microtomographic reconstructions. Acta Materialia 54,
2735 – 44.



Bibliography

Cooper, D., 1988. Random-sequential-packing simulations in three
dimensions for spheres. Physical Review A 38, 522 – 24.

Costanzo, F., Boyd, J., Allen, D., 1996. Micromechanics and homog-
enization of inelastic composite materials with growing cracks.
Journal of Mechnics and Physics of Solids 44, 333 – 40.

DIN CEN/TS 14425-5, 2004. Hochleistungskeramik-Prüfverfahren
zur Bestimmung der Bruchzähigkeit von monolithischer Kera-
mik – Teil 5: Verfahren für Biegeproben mit V-Kerb (SEVNB-
Verfahren).

Federov, F., 1968. Theory of Elastic Waves in Crystals. Plenum Press,
New York.

Fett, T., 1995. Notch effects in determination of fracture toughness
and compliance. International Journal of Fracture 72, 27 – 30.

Fett, T., Fünfschilling, S., Hoffmann, M., Oberacker, R., 2008. R-
curve determination for the initial stage of crack extension in
Si3N4. Journal of the American Ceramic Society 91, 3638 – 42.

Fett, T., Munz, D., 1997. Stress Intensity Factors and Weight
Functions. Computational Mechanics Publications, Southamp-
ton, UK.

Fett, T., Munz, D., Kounga Njiwab, A., Rödel, J., Quinn, G., 2005.
Bridging stresses in sintered reaction-bonded Si3N4 from COD
measurements. Journal of the European Ceramic Society 25, 29 –
36.

Flaquer, J., Rios, A., Martín-Meizoso, A., Nogales, S., Böhm, H.,
2007. Effect of diamond shapes and associated thermal bound-
ary resistance on thermal conductivity of diamond-based com-
posites. Computational Materials Science 41 (2), 156 – 163.

134



Bibliography

Fritzen, F., Böhlke, T., 2010. Periodic three-dimensional mesh gener-
ation for particle reinforced composites with application to metal
matrix composites. International Journal of Solids and Structures
48, 706 – 18.

Fritzen, F., Böhlke, T., Schnack, E., 2009. Periodic three-dimensional
mesh generation for crystalline aggregates on Voronoi tessela-
tions. Computational Mechanics 43, 701 – 713.

Fünfschilling, S., 2010. Mikrostrukturelle Einflüsse auf das R-
Kurvenverhalten bei Siliciumnitridkeramiken. Ph.D. thesis, KIT
- Campus South.

Fünfschilling, S., Fett, T., Hoffmann, M., Oberacker, R., Schwind,
T., Wippler, J., Böhlke, T., Özcoband, H., Schneider, G., Becher,
P., Kruzic, J., 2011. Mechanisms of toughening in silicon nitrides:
The roles of crack bridging and microstructure. Acta Materialia
59, 3978 – 89.

Govindjee, S., Kay, G., Simo, J., 1995. Anisotropic modelling and
numerical simulation of brittle damage in concrete. International
Journal for Numerical Methods in Engineering 38, 3611 – 33.

Gross, D., Seelig, T., 2007. Bruchmechanik. Springer Berlin Heidel-
berg.

Gurson, A., 1977. Continuum theory of ductile rupture by void
nucleation and growth, part I: Yield criterion and flow rules for
porous ductile materials. Ph.D. thesis, Brown University.

Gustafson, K., Abe, T., 1998. The third boundary condition – was it
Robin’s? The Mathematical Intelligencer 20, 63 – 71.

Hampshire, S., Nestor, E., Flynn, R., Goursat, P., Sebai, M., Thomp-
son, D., Liddell, K., 1994. Yttrium oxynitride glasses: Properties
and potential for crystallisation to glass-ceramics. Journal of the
European Ceramic Society 14, 261 – 73.

135



Bibliography

Henderson, C., Taylor, D., 1975. Thermal expansion of the nitrides
and oxynitrides of silicon in relation to their structures. Transac-
tions and Journal of the British Ceramic Society 74, 49 – 53.

Hibbitt, Karlsson, Sorensen, 2001. ABAQUS/CAE user’s manual.
Hibbitt, Karlsson & Sorensen, Inc.

Hill, R., 1963. Elastic properties of reinforced solids: Some theoreti-
cal principles. Journal of the Mechanics and Physics of Solids 11,
357 – 72.

Iba, H., Naganuma, T., Matsumara, K., Kagawa, Y., 1999. Fabri-
cation of transparent continuous oxynitrid glass fiber-reinforced
glass matrix composit. Journal of Material Science 34, 5701 – 05.

Kinsler, L., Frey, A.R. Coppens, A., J.V., S., 2000. Fundamentals of
Acoustics. John Wiley & Sons, Inc., New York.

Kitayama, M., Hiraro, K., Toriyama, M., Kanzaki, S., 1998a. Mod-
eling and simulation of grain growth in Si3N4 – I. Anisotropic
ostwald ripening. Acta Metall. 46/18, 6541 – 50.

Kitayama, M., Hiraro, K., Toriyama, M., Kanzaki, S., 1998b. Model-
ing and simulation of grain growth in Si3N4 – II. The α-β trans-
formation. Acta Metall. 46/18, 6551 – 57.

Kitayama, M., Hiraro, K., Toriyama, M., Kanzaki, S., 2000. Mod-
eling and simulation of grain growth in Si3N4 – III. Tip shape
evolution. Acta Materialia 48, 4635 – 40.

Krämer, M., Hoffmann, M., Petzow, G., 1993. Grain growth kinet-
ics of Si3N4 during α/β-transformation. Acta Metallurgica 41/10,
2939 – 47.

Krämer, M., Wittnüss, D., H., K., Hoffmann, M., Petzow, G., 1994.
Relations between crystal structure and growth morphology of
β-Si3N4. Journal of Crystal Growth 140, 157 – 66.

136



Bibliography

Kruzic, J., Satet, R., Hoffmann, M., Cannon, R., Ritchie, R., 2008. The
utility of r-curves for understanding fracture toughness-strength
relations in bridging ceramics. Journal of the American Ceramic
Society 91, 1986 – 94.

Lange, F., 1973. Relation between strength, fracture energy, and mi-
crostructure of hot-pressed Si3N4. Journal of The American Ce-
ramic Society 56, 518 – 22.

Le Bourhis, E., 2008. Glass – Mechanics and Technology. Wiley-
VHC.

Lemaitre, J., 1985. A continuous damage mechanics model for duc-
tile fracture. Journal of Engineering Materials Technology 107,
83 – 89.

Lode, W., 1926. Versuche über den Einfluss der mittleren
Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und
Nickel. Zeitschrift der Physik 36, 913 – 19.

Louis, P., Gokhale, A., 1996. Computer simulations of spatial ar-
ragement and connectivity of particles in three-dimensional mi-
crostructure: Application to model electrical conductivity of
polymer matrix composite. Acta Materialia 44, 1519 – 28.

Lube, T., Dusza, J., 2007. A silicon nitride reference material – a test-
ing program of esis tc6. Journal of the European Ceramic Society
27, 1203 – 09.

Maugin, G., 1992. The Thermomechanics of Plasticity and Fracture.
Cambrigde University Press.

Mücklich, F., Hartmann, S., Hoffmann, M., Schneider, G., Ohser, J.,
Petzow, G., 1994. Quantitative description of Si3N4 microstruc-
tures. Key Engineering Materials 5, 465 – 70.

137



Bibliography

Munz, D., 07. What can we learn from r-curve measurements. Jour-
nal of the American Ceramic Society 90, 1 – 15.

Munz, D., Fett, T., 1997. Stress Intensity Factors and Weight
Functions. Computational Mechanics Publications, Southamp-
ton, UK.

Munz, D., Fett, T., 1999. Ceramics – Mechanical Properties, Failure
Behaviour, Materials Selection. Springer.

Nipp, K., Stoffer, D., 2002. Lineare Algebra. VDF Hochschulverlag
AG.

Ogata, S., Hirosaki, N., Shibutani, Y., 2004. A comparative ab initio
study of the ’ideal’ strength of single crystal α- and β- Si3N4. Acta
Materialia 52, 233 – 38.

Ohji, T., Hirao, K., Kanzaki, S., 1995. Fracture resistance behavior
of highly anisotropic silicon nitride. Journal of the Amermican
Ceramic Society 78, 3125 – 28.

Ohser, J., Mücklich, F., 2000. Statistical Analysis of Microstructures
in Materials Science. Wiley-VHC.

Peillon, F., Thevenot, F., 2002. Microstructural designing of silicon
nitride related to toughness. Journal of the European Ceramic So-
ciety 22, 271 – 78.

Peterson, I., Tien, T.-Y., 1995. Effect of the grain boundary thermal
expansion coefficient on the fracture toughness in silicon nitride.
Journal of the American Ceramic Society 78, 2345 – 52.

Satet, R., 2002. Einfluss der Grenzflächeneigenschaften auf
die Gefügeausbildung und das mechanische Verhalten von
Siliciumnitrid-Keramiken. Ph.D. thesis, Universität Karlsruhe
(TH).

138



Bibliography

Shoemake, K., 1992. Graphics Gems III. Academic Press, London,
Ch. Uniform Random Rotations, pp. 124 – 32.

Silverman, B., Jones, M., Wilson, J., Nychka, D., 1990. A smoothed
EM approach to a class of problems in image analysis and inte-
gral equations. Journal of the Royal Statistical Society Series B 52,
271 – 324.

Simo, J., Hughes, T., 2000. Computational Inelasticity. New York,
Springer.

Simo, J., Oliver, J., Armero, F., 1993. An analysis of strong disconti-
nuities induced by strain-softening in rate-independent inelastic
solids. Computational Mechanics 12, 277 – 96.

Sluys, L., 1992. Wave propagation, localization and dispersion in
softening solids. Ph.D. thesis, Delft University of Technology.

Sun, E., Becher, P., Plucknett, K., C.-H., H., Alexander, K., S.B.,
W., 1998. Microstructural design of silicon nitride with improved
fracture toughness II: Effects of yttria and alumina additives.
Journal of the American Ceramic Society 81, 2831 – 40.

Suquet, P., 1982. Plasticité et homogénéisation. Ph.D. thesis, Uni-
versité Pierre et Marie Curie, Paris.

Suquet, P., 1985. Local and global aspects in the mathematical the-
ory of plasticity. pp. 279 – 310.
URL http://preview.tinyurl.com/5whlysv

Tschopp, M., Wilks, G., Spowart, J., 2008. Multi-scale characteriza-
tion of orthotropic microstructures. Modelling and Simulation in
Materials Science and Engineering 16, 1 – 14.

Vardi, Y., Shepp, L., Kaufman, L., 1985. A statistical model for
positron emission tomography. Journal of the American Statis-
tical Society 80 (389), 8 – 37.

139



Bibliography

Verhoosel, C., Remmers, J., Miguel, A., de Borst, R., 2010. Com-
putational homogenization for adhersive and cohesive failure in
quasi-brittle solids. International Journal for Numerical Methods
in Engineering 83, 1155 – 79.

Vogelgesang, R., Grimsditch, M., Wallace, J., 2000. The elastic con-
stants of single crystal β-Si3N4. Applied Physics Letters 76/8,
982 – 84.

Wei, Y., Anand, L., 2004. Grain-boundary sliding and separation in
polycrystalline metals: application to nanocrystalline fcc metals.
Journal of the Mechanics and Physics of Solids 52, 2587 – 616.

Wippler, J., Böhlke, T., 2010. Thermal residual stresses and triaxial-
ity measures. In: PAMM – Proceedings in Applied Mathematics
and Mechanics. Vol. 10. pp. 137 – 38.

Wippler, J., Böhlke, T., 2011. An algorithm for the generation of sili-
con nitride structures. Journal of the European Ceramics Society
32, 589 – 602.

Wippler, J., Fünfschilling, S., Fritzen, F., Böhlke, T., Hoffmann, M.,
2011. Homogenization of the thermoelastic properties of silicon
nitride. Acta Materialia 59, 6029 – 38.

Young, P., Beresford-West, T., Coward, S., Notarberardino, B.,
Walker, B., Abdul-Aziz, A., 2008. An efficient approach to con-
verting three-dimensional image data into highly accurate com-
putational models. Philosophical Transactions of the Royal Soci-
ety A 366, 3155 – 73.

140



Felix Fritzen
Microstructural modeling and computational homogenization
of the physically linear and nonlinear constitutive behavior of 
micro-heterogeneous materials. 2011
ISBN 978-3-86644-699-1 

Rumena Tsotsova
Texturbasierte Modellierung anisotroper Fließpotentiale. 2012
ISBN 978-3-86644-764-6

Johannes Wippler
Micromechanical Finite Element Simulations of Crack Propagation 
in Silicon Nitride. 2012
ISBN 978-3-86644-818-6

Schriftenreihe Kontinuumsmechanik im Maschinenbau  
Karlsruher Institut für Technologie
(ISSN 2192-693X)

Herausgeber: Prof. Dr.-Ing. Thomas Böhlke 

Band 1

Band 2

Band 3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder  
als Druckausgabe bestellbar.



9 783866 448186

ISBN 978-3-86644-818-6

ISSN 2192-693X 
ISBN 978-3-86644-818-6

Karlsruher Institut für Technologie 

Schriftenreihe
Kontinuumsmechanik im Maschinenbau

Micromechanical Finite Element Simulations 
of Crack Propagation in Silicon Nitride

Johannes Wippler

3
Silicon nitride is used for challening applications like cutting inserts or forming 
rolls, which require high strength and fracture toughness. The elongated grains 
support the crack path deviation and, therefore, the fracture toughness. This 
complex material behavior has been modeled with 3D unit cells for finite ele-
ment simulations, which include the thermoelastic properties and the fracture 
behavior. The key result is that the reinforcement by elastic bridging grains has 
been observed in detail, which supports recent research. Furthermore, effective 
load paths have been used for the examination of different aspects of the model.
Finally, an effective fracture model has been implemented, which allows for a 
comparison of the findings on the microscale with experimental results. So, ba-
sed on the micromechanical results, R-curve experiments have been reproduced.
This thesis improves the understanding for the fracture behavior of silicon nitride 
and clears the way for new applications.
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