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I

Abstract

3D reconstruction and visualization of environments is increasingly important and
there is a wide range of application areas where 3D models are required. Recon-
structing 3D models has therefore been a major research focus in academia and
industry. For example, large scale efforts for the reconstruction of city models
at a global scale are currently underway. A major limitation in those efforts is
that creating realistic 3D models of environments is a tedious and time consum-
ing task. In particular, two major issues persist which prevent a broader adoption
of 3D modeling techniques: a lack of affordable 3D scanning devices that enable
an easy acquisition of 3D data and algorithms capable of automatically process-
ing this data into 3D models. We believe that autonomous technologies, which
are capable of generating textured 3D models of real environments, will make
the modeling process affordable and enable a wide variety of new applications.
This thesis addresses the problem of automatic 3D reconstruction and we present
a system for unsupervised reconstruction of textured 3D models in the context of
modeling indoor environments. The contributions are solutions to all aspects of
the modeling process and an integrated system for the automatic creation of large
scale 3D models. We first present a robotic data acquisition system which allows
us to automatically scan large environments in a short amount of time. We also
propose a calibration procedure for this system that determines the internal and
external calibration which is necessary to transform data from one sensor into the
coordinate system of another sensor. Next, we present solutions for the multi-view
data registration problem, which is essentially the problem of aligning the data of
multiple 3D scans into a common coordinate system. We propose a novel non-
rigid registration method based on a probabilistic SLAM framework. This method
incorporates spatial correlation models as map priors to guide the optimization.
Scans are aligned by optimizing robot pose estimates as well as scan points. We
show that this non-rigid registration significantly improves the alignment. Next,
we address the problem of reconstructing a consistent 3D surface representation
from the registered point clouds. We propose a volumetric surface reconstruction
method based on a Poisson framework. In a second step, we improve the accuracy
of this reconstruction by optimizing the mesh vertices to achieve a better approx-
imation of the true surface. We demonstrate that this method is very suitable for
the reconstruction of indoor environments. Finally, we present a solution to the
reconstruction of texture maps from multiple scans. Our texture reconstruction
approach partitions the surface into segments, unfolds each segment onto a plane,
and reconstructs a texture map by blending multiple views into a single composite.
This technique results in a very realistic reconstruction of the surface appearance
and greatly enhances the visual impression by adding more realism.
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1 Introduction

Realistic 3D representations of environments are becoming increasingly important
to a wide variety of current and future applications: content creation for com-
puter games and geospatial applications, 3D walkthroughs of real estates, digital
preservation of cultural heritage and crime sites, and many more. In particular,
3D models of indoor environments are important for emergency planning, facility
management, and surveillance applications. Creating such models from blueprints
is a tedious task and hard to automate since many buildings do not comply with
the blueprints created by their architects. Even accurate blueprints do not contain
objects added after the building construction such as appliances and furniture.

Methods to digitize and reconstruct the shapes of complex three dimensional ob-
jects have evolved rapidly in recent years. The speed and accuracy of digitizing
technologies owe much to advances in the areas of physics and electrical engineer-
ing, including the development of laser, Charge-Coupled Device (CCD), and high
speed sampling Analog-to-Digital Converter (ADC) technology. Such technolo-
gies allow us to take detailed shape measurements with a resolution better than 0.1
mm1 at rates exceeding 1 million samples per second2.

Digital photography has also significantly evolved in the past decades and is likely
to see further advances in the near future. The pixel count is only one of the major
factors, though it is the most heavily marketed figure of merit. High-resolution dig-
ital cameras with sensors exceeding 12 megapixels3 are available as a commodity
and are even put into cellphones4. Other factors include the lens quality and image
post-processing capabilities. Some cameras5 have the function to combine mul-
tiple images shot with different exposures into one High Dynamic Range (HDR)
image.

With all of the upcoming range finding and imaging technologies available at our
disposal, it still remains very challenging to digitize environments such as building
interiors. To capture a complete environment, many millions of range samples and
many hundreds of images must be acquired. The resulting mass of data requires

1Cyberware Large Statue 3D Scanner (Model LSS) used in the Digital Michelangelo Project
2Velodyne HDL-64E used by many successful teams at the 2007 DARPA Urban Challenge
3Nikon D700 full-frame digital single-lens reflex camera
4Apple’s iPhone 4 comes with a 5 megapixel camera
5Pentax K-7 camera with in-camera high dynamic range imaging function
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algorithms that can efficiently and reliably generate computer models from these
samples. The environment needs to be scanned from different viewpoints in order
to completely reconstruct it leading to the question of where the best viewpoints
are and how many are required for a complete scene coverage. Because each range
scan and each camera image has its own local coordinate system, all data must be
transformed into a common coordinate frame. This procedure is usually referred
to as registration.

Raw range measurements obtained from scanning devices are often not a very suit-
able format for later use in applications. Parametric representations are typically
more appropriate since they allow for the definition of surface attributes (normals,
gradients) and are more suitable for rendering, efficient reduction, and collision
testing. One fundamental question in digital geometry processing is how to repre-
sent a surface: What mathematical description should be chosen to represent the
surface of a 3D object on a computer? Industrial design applications for car and
airplane construction prefer Non-Uniform Rational B-Spline (NURBS) while the
game and movie industries have focused on polygonal representations such as tri-
angle meshes. In either case, the set of range samples has to be pre-processed into
a set of point samples and then converted into a certain surface representation, e.g.,
a polygonal mesh or a collection of spline patches.

Often the purpose for scanning environments and reconstructing their surfaces is a
visualization on a computer monitor. In this case, obtaining the surface geometry
is not enough and we can get a much more realistic impression by reconstructing
the surface appearance as well. A textured 3D model almost completely hides
the polygonal nature of the underlying surface representation and results in a very
natural appearance. Even the surface geometry appears to be more detailed which,
in reality, is only an optical illusion that falsely represents the actual geometry.

Since the acquisition process merely samples the real environment, noise is in-
evitably introduced into the captured dataset. To minimize the negative effects
of noise, post processing steps might be applied depending on the purpose of the
data: for applications that aim at human perception, a pleasing visualization is em-
phasized whereas for others, such as autonomous navigation, an accurate and rich
representation is preferred over attractiveness.

Today, the reconstruction and modeling process is still primarily done manually,
ranging from a complete design from scratch to a semi-automated data acquisition
with manual registration and reconstruction. Since human labor is expensive, these
models usually lack details that might be vital for applications such as autonomous
robot navigation.
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1.1 Motivation

We are motivated to consider the 3D reconstruction problem by a number of ap-
plication areas in science and engineering, including robotics, cultural heritage,
video games, and city modeling. This section briefly discusses each of these ap-
plications.

Robotics

A robotic system must perceive the environment in which a task (navigation, ma-
nipulation) has to be executed. If a robot has to interact in an environment it must
either be supplied with a sufficient model or it must build an internal representation
of this environment from sensor data. So far, most approaches to mobile robot nav-
igation assume that the robot operates in a plane. In this case, a 2D map marking
drivable areas and obstacles may be sufficient for navigation. However, to navi-
gate non-flat areas or to solve complex robotic tasks involving object manipulation
a 3D representation becomes necessary. There is also a tendency to introduce high-
level semantic information in several areas of robotics. Recent work in mapping
and localization tries to extract semantically meaningful structures from sensor
data during map building [Nüchter et al., 2005], or to use semantic knowledge for
grasp planning and object manipulation [Xue et al., 2009]. This includes structure
and high-level understanding of objects and their functions. A reconstructed 3D
model can serve as rich source of information for semantic knowledge extraction
and spatial reasoning.

Real Estate

A 3D walkthrough is the best way to visualize a property without actually going
there. High-quality computer generated animations let you experience a home and
get a realistic feel for its size and layout. Realtors already use this powerful tool
to showcase a building while it is in the planning stages and to attract potential
buyers through online presentations. Currently these models are crafted by artists
and the process is tedious and time consuming. As the level of architectural realism
increases so do the labor costs and creation time. For this reasons 3D walkthroughs
are only generated for high-end real estate.

In recent years, there has been an increasing interest in the automatic generation of
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3D models of entire cities. For example, GoogleEarth6 and Microsoft Bing Maps7

have started providing 3D models for a few cities and landmarks. This process not
only results in high costs, which inhibits broad use of the models, but also makes it
impossible to use them for applications where the goal is to monitor changes over
time, such as detecting damage or possible danger zones after catastrophes.

Cultural Heritage

Monuments and buildings of outstanding universal value from the perspective of
history, art, or science are often under threat from environmental conditions, struc-
tural instability, increased tourism and city development. 3D laser scanning, in
combination with other digital documentation techniques and traditional survey
methods, provides an extremely reliable and accurate way to document the spatial
and visual characteristics of these sites. Digital representations not only provide
an accurate record of these rapidly deteriorating sites, which can be saved for pos-
terity, but also provide a comprehensive base dataset by which site managers, ar-
chaeologists, and conservators can monitor sites and perform necessary restoration
work to ensure their physical integrity.

Entertainment Industry

The creation of compelling models is a crucial task in the development of suc-
cessful movies and computer games. However, modeling large and realistic three-
dimensional environments is a very time-consuming and expensive process, and
it can require several person years of labor. For example, consider using a real-
istic 3D model of the Sistine Chapel in a 3D computer game. To create a realis-
tic virtual reality of this famous place, a modeling process has to be performed,
which includes taking numerous measurements and building a geometrically and
photometrically correct representation. Today this process is primarily done by
hand due to the high complexity of these environments. In the case of the Sistine
Chapel, a computer graphics artist would have to spend many tedious hours of
CAD-modeling while often facing the problem of a lack of photo-realism once the
objects are rendered. The result may look visually correct, but lacks in architec-
tural details, such as interior decoration and photo-realistic textures. This process
could be drastically simplified by having an automatic 3D reconstruction system.

6http://earth.google.com/
7http://www.microsoft.com/maps/
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1.2 Problem Statement

In engineering, building construction, manufacturing and many other industries,
we create physical objects from digital models on a daily basis. However, the re-
verse problem, inferring a digital description from an existing physical object or
environment, has received much less attention. We refer to this problem as reverse-
engineering or 3D reconstruction. Specifically, the reconstruction of indoor and
outdoor environments received interest only recently as companies began to recog-
nize that using reconstructed models is a way to generate revenue through location
based services and advertisements. There are various properties of a 3D envi-
ronment that one may be interested in recovering, including its shape, its color,
its material properties, and even its functional properties. This thesis addresses
the problem of recovering 3D shape, also called surface reconstruction, and the
problem of recovering surface appearance, also called texture reconstruction. We
present a complete system for automatic reconstruction of textured 3D models.
The tasks required to fulfill our goal can be organized into a sequence of stages
that process the input data. Each of these stages confronts us with its specific
problems. From those, the questions addressed in this thesis are:

• How can we scan the environment’s surface geometry using laser range-
finders and color cameras?

• How can we accurately express all the data in a single coordinate system?

• How can we convert separate scans into a single surface description?

• How can we combine the color information from the different views to re-
construct a high quality texture?

1.3 Taxonomy of 3D Reconstruction Systems

Four main criteria define the taxonomy of a 3D reconstruction system: first, the
architecture of the computational system itself; second, the nature of the target
that is to be reconstructed; third, the type of sensors being used; and forth, the
representation acting as an output of the modeling procedure.

1.3.1 System Architecture

The process of digitally reconstructing an environment can be decomposed into
several modules, each performing a distinct part of the complex task. A general



1. INTRODUCTION 6

Figure 1.1: Generic structure of a system for 3D reconstruction.

framework embracing the modules is shown in Figure 1.1.

The function of each module is as follows:

• Acquisition: This module contains all functionality related to the acquisition
of data relevant to the reconstruction process. This may include controlling
a camera to take pictures, using a lidar for distance measurements, and even
controling a mobile robot to position the sensors. The results of this module
are raw measurements, such as images, distance measurements, and robot
wheel odometry.

• Multi-view Registration: Typically, multiple data acquisitions from different
view-points are necessary to digitize scenes without occlusions. The task of
this module is to merge data from different views into a common coordinate
system. This is a difficult problem to resolve since an externally referenced
position estimate of the sensors is usually not available.

• Geometry Reconstruction: The efficient processing of geometric objects re-
quires suitable data structures. In many applications, the use of polygonal
meshes as surface representation is advantageous because of a good sup-
port in modern graphics cards and a well-defined spatial connectivity within
the data structure. In this context, the registered data has to undergo post-
processing in order to extract a consistent surface representation. This is
referred to as surface reconstruction. Due to the enormous complexity of
meshes acquired by 3D scanning, mesh decimation techniques are manda-
tory for error-controlled simplification.

• Appearance Reconstruction: In order to obtain photo-realistic models, the
surface appearance is reconstructed and applied to the geometric model in
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the last step. The appearance of a material is a function of how that material
interacts with light which includes simple reflectance or it may exhibit more
complex phenomena such as sub-surface scattering. Specifically, for appli-
cations that aim to visualize for human observers, correctly reconstructing
and reproducing the surface appearance greatly enhances the visual impres-
sion by adding more realism.

The inherent structure of this architecture suggests an implementation as a set of
modules, each performing one or more of the subtask discussed above.

1.3.2 Object Type

An import criterion that defines a 3D reconstruction system is the type of object or
environment that is supposed to be reconstructed. An obvious aspect to take into
account is the object’s size. Small objects, such as the mechanical parts depicted
in Figure 1.2(a), can be held in one hand or put on a turntable to measure them
from all sides keeping the sensors stationary. The reconstruction of large objects,
such as statues (see Figure 1.2(c)), requires measurements from various different
view-points to correctly capture all the details. When it comes to the reconstruc-
tion of environments, such as buildings and historical sites, such as the Taj Mahal
(see Figure 1.2(b)), the data acquisition and modeling process can be extremely
difficult. Thousands of scans may be necessary to capture the entire environment
in a satisfactory resolution.

Not only the size, but also the complexity of three-dimensional objects is relevant
for the design of a 3D reconstruction system. Specifically, non-convex objects may
cause self-occlusions in the measuring process requiring more scans and a more
complex sensor system.

The material of an object is another important aspect to be considered. Dark tex-
ture absorbs most of the light and makes geometry reconstruction with active light
sources difficult. For the same reason, specular and transparent surfaces are ex-
tremely difficult to reconstruct.

1.3.3 Sensor Type

The nature of the sensor technology used in the reconstruction system affects the
design of the acquisition module of the system. In the past, different kinds of
3D scanners were used for reconstruction. Focussing on non-contact sensors, 3D
scanners can be divided into two main categories:
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(a) Pistons.

(b) Taj Mahal. (c) Michelangelo’s David.

Figure 1.2: Examples of reconstruction objects: (a) mechanical parts, (b) histori-
cal sites, and (c) statues

Passive sensors do not emit any kind of light or other forms of radiation, but
rather measure reflected ambient light. The most prominent technology in this cat-
egory is stereoscopic vision, which uses two cameras observing the same scene
from slightly different positions. The slight differences in the camera images are
used to estimate depth by triangulation. Numerous other approaches exist exploit-
ing different aspects of the image formation process typically referred as shape-
from-x. Here x refers the underlying concept, e.g., shading, texture, defocus, and
many more. The goal, however, is always the same: how to derive a 3D scene
description from one or more 2D images. Passive sensors are typically cheap, be-
cause the cameras used in these sensors are built in mass-production and no other
special hardware is required.

Active sensors emit some kind of radiation or light and detect its reflection in
order to probe an object or environment. There are three sub-categories of active
sensors which are widely used for reconstruction:

• Time-of-flight sensors measure the distance to a surface by timing the round-
trip time of a pulse of light or sound. Examples include laser range finders
and sonar sensors.
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• Active triangulation sensors use the position of reflected light dots or stripes
in a camera image to determine the distance of the underlying surface.

• Structured light sensors project a pattern of light on an object and look at
the deformation of the pattern on the surface in order to determine depth and
orientation.

Mobile robotics have relied heavily on active ranging sensors because most pro-
vide direct distance measurements. Active sensors also tend to provide more ro-
bust and accurate measurements since the technology does not rely on external
illumination. In this thesis, we focus on active sensors for geometry reconstruc-
tion (in particular actuated laser range finders) and passive sensors (cameras) for
appearance reconstruction.

1.3.4 Data Representation

The point clouds produced by 3D scanners are usually not used directly, although
for simple visualization and measurement in the architecture and construction
world, points may suffice. The process of converting a point cloud into a usable
3D model is called reconstruction or modeling. The following representations are
commonly used:

In a polygonal representation of a shape, a curved surface is modeled as many
small faceted planar surfaces. Polygon models, also called mesh models, are use-
ful for visualization since polygons can be efficiently rendered on graphics cards.
Reconstruction of a polygonal model from point cloud data involves finding and
connecting adjacent points with straight lines in order to create a continuous sur-
face.

A more sophisticated type of modeling surfaces involves using curved instead of
planar surface patches to model a shape. These might be NURBS, Bézier patches
or other curved representations of curved topology. Curved surface models have
the advantage of modeling smooth surfaces more accurately and are more manip-
ulable when used in Computer-Aided Design (CAD).

A third class of data representations are volumetric representations. In the simplest
case, the space containing the object or scene to be reconstructed is equidistantly
divided into small cubical volume elements called voxels. If a particular voxel
does not belong to the object it is set transparent, whereas voxels within the object
remain opaque and can additionally be colored according to material properties.
Thus, the entire scene is composed of small cubes approximating the volume of
the objects. In particular, medical applications make frequent use of this implicit
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representation because it is often necessary to visualize various tissue layers and
the internal aspects of the human body.

1.4 State of the Art / Related Work

Several efforts have been made in the past regarding the creation of environment
maps out of 3D range data. Since the creation of such maps involves the combina-
tion of several algorithms, we will address the most relevant publications for our
work below. Related work on particular parts of the reconstruction pipeline will
be addressed in their respective sections.

1.4.1 Automatic 3D Modeling Robots

One of the first projects that was concerned with an automatic system to recon-
struct textured 3D models of building interiors is RESOLV (REconstruction us-
ing Scanned Laser and Video) [Sequeira et al., 1999]. A portable unit known as
an EST (Environmental Sensor for Telepresence) is a push trolley that is moved
around in the environment that shall be captured. The EST includes a scanning
laser range finder for capturing the 3D structure of the surroundings and a video
camera for adding the textures. A picture of EST is presented in Figure 1.3(a). The
researchers developed software that performs several functions, including meshing
of the range data, registration of video texture, and registration and integration of
data acquired from different capture points. The RESOLV project aimed at mod-
eling interiors for virtual reality and tele-presence which is part of our motivation.
However, their approach was designed to reconstruct small (single-room sized)
environments. Operating on the scale of a full office floor poses a major challenge.

The AVENUE (Autonomous Vehicle for Exploration and Navigation in Urban En-
vironments) project [Allen et al., 2001] at Columbia University targeted the au-
tomation of urban site modeling. The research group around Peter K. Allen built a
mobile robot based on iRobot’s ATRV-2 plattform (see Figure 1.3(b)). The system
is equipped with real-time kinematics (GPS, compass, tilt-sensors) and a cam-
era for navigation. The main sensor for 3D reconstruction is a Cyrax laser range
scanner that delivers high quality distance measurements at up to 100 m operating
range. The focus of this work was on building a mobile data acquisition platform,
including the design of a software architecture, localization components, and path
planning.

Many research groups use 2D laser range finders to build 3D volumetric
representations of the environment. Several approaches [Thrun et al., 2000,
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(a) EST. (b) AVENUE. (c) Waegele.

Figure 1.3: Automatic 3D Modeling Robots.

Früh and Zakhor, 2003, Zhao and Shibasaki, 2001] use two 2D laser range find-
ers to acquire 3D data. One scanner is mounted horizontally while the other one
is mounted vertically. The latter one acquires a vertical scan line and transforms
it into 3D points using the current robot pose, which is estimated from the range
scans of the horizontal scanner. By accumulating the vertical scans, the system
generates accurate three-dimensional models. An application of this was pre-
sented by [Thrun et al., 2004] to obtain 3D models of underground mines. The
same setup with two scanners has been used by [Hähnel et al., 2003b] in indoor
and outdoor applications. Along the same line as the approaches described above,
the Wägele robot comprises two vertical laser range finders to obtain 3D informa-
tion and a third one is used for localization. In this robot, an additional omnidi-
rectional stereo camera provides texture information as well as additional range
measurements [Biber et al., 2006]. See Figure 1.3(c) for a picture of the Wägele
robot.

1.4.2 3D Mapping for Navigation

The reconstruction of 3D maps for robot navigation gained significant interest in
robotics research over the past years. Nearly all state-of-the-art methods for mo-
bile robot navigation assume robot operation in a two-dimensional environment
and therefore three parameters, two for position and one for heading, are sufficient
to describe the robot’s state. Just recently, researchers have been extending solu-
tions to full 6 DoF poses [Nüchter et al., 2004], and mapping of 3D environments
[Howard et al., 2004, Hähnel et al., 2003b, Borrmann et al., 2008].

The mobile robot Kurt3D, developed by Hartmut Surmann and colleagues
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[Surmann et al., 2003], digitalizes environments in 3D. It uses a 3D laser range
finder that is built on the basis of a 2D range which is actuated with a cus-
tom tilt unit. Self localization is a major issue for 3D map building, there-
fore the team developed a fast registration approach [Nüchter et al., 2003a,
Nüchter et al., 2004] which extends the well known ICP (Iterative Closest Point)
[Besl and McKay, 1992] algorithm. The data is further processed by extracting 3D
planes and labeling those into the four categories: Wall, Floor, Ceiling, and Door.
This is achieved by enforcing semantic constraints [Nüchter et al., 2003b] like: "A
wall is orthogonal to the floor" or "A door is under the ceiling and above the floor".

At the 2007 Urban Challenge, a race for autonomous vehicles, many of the suc-
cessful teams [Urmson et al., 2008, Miller et al., 2008, Montemerlo et al., 2008,
Bohren et al., 2008, Kammel et al., 2008] made use of a novel 3D laser range
finder. The Velodyne HDL-64E laser8 has a spinning unit that includes 64 lasers
collecting approximately one-million 3D points each second. This rich source of
information was used for lane-precise localization, obstacle avoidance, and track-
ing of other vehicles. For navigation, 2D occupancy grid maps were predomi-
nantly used. Occupancy maps define obstacles in a crude binary sense, which
overly simplifies the complex interactions between the robot and the environment.
No distinction can be made between a small object that the vehicle could drive
over and a large object that must be avoided. In order to construct more detailed
maps for a fully autonomous system, it is necessary to expand the occupancy grid
to three dimensions. A major drawback of rigid grids in 3D is their large memory
requirements. This issue was addressed by [Wurm et al., 2010] using octree data
structures which allocate memory only for occupied regions.

1.4.3 3D Reconstruction from Multiple Images

In the robotics community laser range finders are predominant for accurate map-
ping tasks. However, in the computer-vision domain researchers have devel-
oped powerful algorithms to reconstruct 3D models from photographs. The al-
gorithms can be roughly clustered into two areas addressing two distinct issues:
the first key challenge is registration, i.e., finding correspondences between im-
ages, and how they relate to one another in a common 3D coordinate system.
This is also called Structure from Motion (SfM). Robust features, such as Lowe’s
Scale Invariant Feature Transform (SIFT) [Lowe, 2004] and techniques from pho-
togrammetry such as bundle adjustment [Triggs et al., 2000] are now regarded
as the gold standard for performing optimal 3D reconstruction from correspon-
dences [Hartley and Zisserman, 2004]. The result of common SfM algorithms is

8http://www.velodyne.com/lidar/
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a sparse 3D point cloud and the 6 DoF poses. The second key challenge is the
reconstruction of a dense 3D model given the known camera poses. Multi-View
Stereo (MVS) [Seitz et al., 2006] is one of the most successful approaches for pro-
ducing dense models. The Middleburry dataset [Seitz et al., 2006] provides an ex-
tensive benchmark and evaluation suite for multi-view stereo reconstruction algo-
rithms. Each dataset in the benchmark is registered with a ground-truth 3D model
acquired via a laser scanning process. A notable example of a state-of-the-art
multi-view stereo algorithm is [Furukawa et al., 2009], who presented a fully au-
tomated 3D reconstruction and visualization system for architectural scenes based
on camera images. Although significant progress to improve the robustness of
computer-vision reconstruction approaches has been made in the past decade, the
approaches cannot yet compete with the accuracy of laser range finders. Specifi-
cally, textureless scenes which are often found in indoor environments remain very
challenging.

1.4.4 3D Reconstruction of Objects

In addition to the approaches mentioned above, which are mainly used in the
context of robot navigation of reconstruction of large environments, several re-
searchers have studied the problem of creating high-resolution models of scientif-
ically interesting objects. For example, in the Michelangelo project presented in
[Levoy et al., 2000], historic statues were scanned with a high-resolution 3D scan-
ning system. Techniques like this require significant manual assistance or make
assumptions about the scene characteristics or data collection procedure. A more
automated approach was presented in [Huber et al., 2000]. With their system, it
is possible to take a collection of range images of a scene and automatically pro-
duce a realistic, geometrically accurate digital 3D model. In both approaches the
major focus lies on data acquisition and registration of the individual scans. Color
information is typically mapped onto the resulting models after creating the three-
dimensional structures.

1.4.5 Commercial Products

While numerous operational sensors for 3D data acquisition are readily available
on the market (optical, laser scanning, radar, thermal, acoustic, etc.), 3D recon-
struction software offers predominantly manual and semi-automatic tools (e.g.,
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Cyclone9, PhotoModeler10, and Google’s Sketch-up11).

1.5 Goal and Structure

Until now, creating textured 3D models of environments was a tedious and time-
consuming task that was mainly performed manually. This restricted the use of
such models to a limited number of applications. The main issues preventing a
broader adoption of 3D modeling techniques are: 1) A lack of affordable 3D scan-
ning devices which allow for an easy acquisition of range data, and 2) algorithms
capable of automatically processing range data into 3D models, in particular, al-
gorithms for data registration, surface reconstruction, and texture reconstruction.
The goal of this thesis is to address both issues by developing an affordable and ca-
pable system for unsupervised reconstruction of textured 3D models in the context
of modeling indoor environments. The main contributions are:

• a robotic data acquisition system that enable an automatic acquisition of
large amounts of textured 3D scans in a short amount of time;

• probabilistic algorithms for non-rigid registration which incorporate statisti-
cal sensor models and surface prior distributions to optimize alignment and
the reconstructed surface at the same time;

• algorithms for reconstruction of a consistent 3D surface representation from
registered point clouds and for the optimization of the resulting mesh to
closely approximate the true surface;

• and methods to automatically generate blended textures from multiple im-
ages and multiple scans which are mapped onto the 3D model for photo-
realistic visualization.

A significant contribution of this research is a functional system that covers all
steps required to automatically reconstruct textured 3D models of large indoor
environments. In the remainder of this thesis, we define this system and its com-
ponents. Figure 1.4 depicts an overview on the complete reconstruction process
which is divided into four distinct steps: data acquisition, global registration, sur-
face reconstruction, and texture reconstruction.

9http://www.leica-geosystems.com
10http://www.photomodeler.com
11http://sketchup.google.com
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Figure 1.4: Overview of the reconstruction and modeling process.
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Chapter 2 is dedicated to the first step, data acquisition. In this chapter, we describe
a hardware setup which allows for automatic 3D scanning. In order to fuse data
from multiple sensors, we need to represent the data in a common reference frame.
We present a calibration procedure that first calibrates the sensors internal param-
eters and then determines the external calibration, which is necessary to transform
data from one sensor into the coordinate system of another sensor. In this chapter,
we further address the navigation algorithms used for automatic exploration and
scanning large environments.

In Chapter 3, we are concerned with the problem of multi-view data registration,
which is essentially the problem of aligning the data of multiple 3D scans into
a common coordinate system. We first give an introduction in multi-view regis-
tration, followed by an analysis of a widely used pairwise registration technique.
We then present a new method for multi-view registration that directly uses in-
formation obtained from pairwise registration, yet distributes the registration error
evenly over all views. We also present a novel probabilistic and non-rigid registra-
tion method which incorporates sensor uncertainties and surface priors.

In Chapter 4 we investigate the problem of reconstructing a consistent 3D surface
representation from registered point clouds. We propose a volumetric surface re-
construction method based on a Poisson framework in combination with surface
optimization. The algorithm determines the topological type of the surface and
produces a mesh which approximates the true surface. In a second step, we seek
to improve the accuracy of this reconstruction by optimizing the mesh. We present
an algorithm that adjusts the location of the mesh vertices to optimize the surface
in order to achieve a better approximation of the true surface.

Chapter 5 is dedicated to the reconstruction of the surface appearance from mul-
tiple scans. We will demonstrate that reconstructing and adding a texture to the
surface model results in a drastically more realistic 3D model. Our texture re-
construction approach consists of the following steps: surface partitioning (seg-
mentation and slicing), surface unfolding, mesh re-parameterization, color recon-
struction, and blending. The texture reconstruction is a key component of our 3D
modeling system to create photo-realistic 3D models.

In Chapter 6, we present several applications of the reconstruction system pre-
sented in Chapters 2 to 5. Chapter 7 concludes the thesis and discusses possible
future directions.
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2 Data Acquisition

2.1 Introduction

An automated data acquisition system is the foundation for our 3D reconstruction
system. Currently, robots suitable for this task are only available in research. For
our experiments, a system was designed to match the requirements for scanning
indoor environments and gives ample control over the data acquisition process.
This scanning robot is put in a previously unmodeled environment and has the task
to acquire the data necessary to reconstruct a 3D model. The data acquisition task
can be decomposed into three subproblems: exploration, navigation, scanning.

Before continuing this chapter, some basic concepts have to be specified. A fun-
damental quantity to describe the position and orientation of data relative to some
coordinate system is the pose:

Definition 2.1.1 (Pose). The pose of a rigid body is defined as six dimensional
vector xF =

(
x y z φ θ ψ

)ᵀ
consisting of a three Cartesian coordinates and the

orientation expressed as rotations about the three coordinate axes relative to the
coordinate system F.

In our case, all poses are expressed in the same global coordinate system and the
frame designator is omitted for a compact notation. Note that the pose can also be
expressed as a translation vector and a rotation matrix; refer to Appendix 8.1 for
more details.

Definition 2.1.2 (Scan). A scan S = {P, C,x} is defined as the union of a set of
3D points: P = {p1:M} with pi ∈ R3; and a set of color images C = {G1:N}
along with a robot pose x.

In the context of scans, the robot pose is also denoted as viewpoint or just view.
The definition of an image G as a mathematical matrix is arbitrary, and it can be
argued that a definition as a two-dimensional finite grid of image elements (pixels)
or a functional representation is more appropriate. However, in our context, no
specific definition is required.

The remainder of the chapter is structured as follows. In Section 2.2 we propose
the hardware configuration of a scanning system and in Section 2.3 we present
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(a) Simplified model. (b) 3D Reconstruction Robot.

Figure 2.1: Hardware setup of our data acquisition system.

the calibration of such a system. In Section 2.4, we address the subproblem of
exploration and present an algorithm using active exploration which allows the
robot to select optimal viewpoints for 3D scans.

2.2 Physical Setup

The stated goal of this thesis is to study a system for unsupervised model gener-
ation. This implies a data acquisition system which is capable of performing all
required measurements automatically. Our system for data acquisition consists of
the following main parts. For our robotic platform we use a Segway RMP 200.
The RMP can carry loads up to 91 kg over a range of up to 24 km. For the purpose
of high-quality measurements, we equipped the RMP with an additional castor-
wheel and disabled the dynamic stabilization. To collect data and perform online
mapping and exploration, two on-board Mac Mini computers (2.0GHz Core 2 Duo
processor, 1GB RAM) are mounted under the base plate. The computers use the
open-source Robot Operating System (ROS) [Quigley et al., 2009] which provides
a structured communications layer on top of the host operating system (linux in our
case). Figure 2.1 depicts the hardware setup of our scanning robot.

3D scans are obtained by a laser range finder (SICK LMS200) and a digital SLR
camera (Nikon D90) mounted rigidly on a pan-tilt unit. The laser range finder is
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Figure 2.2: Example scan: panoramic range image (top) and texture image (bot-
tom) with 1/2 degree resolution. Invalid cells are marked red.

mounted on a pan-tilt unit such that the plane of the laser’s sweep is aligned with
the vertical axis. Panning the laser about the vertical axis yields a panoramic range
scan of the environment covering the full sphere. A range image created by our
3D scanner is shown in Figure 2.2. The camera is equipped with a fish-eye lens
and mounted on the same rotation unit opposite of the laser. This setup allows us
to capture high-resolution, wide angle still images of the scene while panning the
laser. Because of the camera’s wide field-of-view, it only requires six pictures to
cover the scanned space. Stitching the captured images into a composite yields a
full cylinder panorama similar to the range image (see Figure 2.2). A second laser
range finder is mounted on the base and sweeps horizontally. This sensor is used
for navigation and obstacle avoidance.

2.3 System Calibration

In order to fuse data from multiple sensors, namely lidar and camera, we need to
represent the data in a common reference frame. On our platform, the camera pro-
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vides intensity information in the form of an image and the 3D laser supplies depth
information in form of a set of 3D points. The internal and external calibrations
of this system enable the reprojection of the 3D points from the laser coordinate
frame to the 2D coordinate frame of the image.

2.3.1 Internal Calibration

Camera Model

Cameras, or more general imaging devices which may or may not be equipped with
lenses, have been studied well. The pinhole perspective projection model, first pro-
posed by Brunelleschi at the beginning of the 15th century, is widely used to model
the image formation processes in a camera since it provides a good approximation
of most lenses and is mathematically convenient. According to [Tsai, 1987], a
camera with lens distortions can be described by the following parameters:

• The focal length in pixels in the 2× 1 vector fc =
(
fx fy

)ᵀ
.

• The principal point coordinates given by the 2× 1 vector cc =
(
cx cy

)ᵀ
.

• The scalar skew coefficient defining the angle αc between the x and y pixel
axes.

• The image distortion coefficients (radial and tangential distortions) in the
5× 1 vector kc =

(
k1 k2 k3 p1 p2

)ᵀ
.

A projection from world coordinates p =
(
xc yc zc

)ᵀ
to image coordinates p′ =(

u v
)ᵀ

is described in the following. First, the normalized pinhole projection
applied:

xn =

(
xc/zc
yc/zc

)
=

(
xn
yn

)
. (2.1)

The normalized point after taking lens distortion into account:

xd =

(
xd
yd

)
=
(
1 + k1r

2 + k2r
4 + k3r

6
)
xn + dx , with r2 = x2

n + y2
n ,

(2.2)

where dx is the tangential distortion vector:

dx =

(
2p1xnyn + p2(r2 + 2x2

n)
p1(r2 + 2x2

n)2p2xnyn

)
. (2.3)
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Figure 2.3: A 3D laser scanner is built by rotating a 2D lidar around its radial axis
using a panning unit.

Once distortion is applied, the final pixel coordinates of the point are given by:

p′ =

(
fx αcfx cx
0 fy cy

)xdyd
1

 . (2.4)

The estimation of the parameters fc, cc, kc, and αc has been studied well
[Heikkila and Silven, 1997, Zhang, 1999, Hartley and Zisserman, 2004]. In this
work we employ the method of [Zhang, 1999]. This procedure requires observ-
ing a planar reference checkerboard calibration patterns, a scripted sequence of
recorded camera views, and an off-line data processing. Recent years, however,
have seen increasing interest in camera self-calibration methods. Continuous
stereo self-calibration methods such as the one described in [Dang et al., 2009]
could allow the recovery of camera parameters without a special calibration object
and while the scanning robot is acquiring data.

Laser Model

A basic 2D laser range finder or Light Detection And Ranging (LIDAR) system
consists of a 1D laser range finder rotating mirror deflecting the beam to different
directions (see left side of Figure 2.3). The laser sweeps over the scene, gathering
distance measurements at specified angle intervals. The motion of the mirror is
restricted to a rotation around one axis resulting in 2D range measurements.

In order to enable 3D range measurements, our scanning system rotates a 2D scan-
ner in a continuous manner around its radial axis. This 3D scanner is depicted
in Figure 2.3. Combining the rotation of the mirror inside the 2D scanner by an
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angle φ with the external rotation by an angle θ of the scanner itself yields mea-
sured points conveniently described in spherical coordinates. However, since the
two centers of rotation are not identical, offsets have to be added to the measured
parameters. The 3D coordinates of a scanned point p corresponding to a measured
range r in the coordinate frame of the 3D scanner are given by:

p =

xy
z

 =

cos (θ) (cos (φ) r + dx)
sin (θ) (cos (φ) r + dx)

sin (φ) r + dz

 . (2.5)

The rotation angles φ and θ are available at each measurement from the state of
the 2D scanner and the panning unit respectively. The fixed parameters dx and dz
are manually measured once for the hardware configuration.

In addition to the actual point data, we also want to estimate the statistical error
inherent to the 3D measurements for later use in the registration and reconstruction
algorithms. As pointed out by [Böhler et al., 2003], there are mainly two sources
of errors disturbing the measurements of a 2D laser scanner: ranging and deflection
errors.

In most laser range finders, range is computed using the time of flight or a phase
comparison between the emitted and the returned signal. Ranging scanners for
distances up to 100 m show about the same range accuracy for any range. Ranging
errors mostly stem from distance and reflectivity of the scanned objects which
directly affects range measurements along the laser beam. The distribution chosen
to model these errors is Gaussian:

r = r̂ + er , er ∼ N
(
0, σ2

r

)
(2.6)

Through evaluating hundreds of scans of a flat surface, we determined our scan-
ner’s standard deviation σr was 5 mm.

Deflection errors arise from discrepancies between the actual deflection angles of
the scanning laser beam and the measured angles of the mirror inside the scanner.
Since the positions of single points are difficult to be verified, few investigations of
this problem are known. Errors can be detected by measuring short horizontal and
vertical distances between objects (e.g., spheres), which are located at the same
distance from the scanner. Comparing those scans to measurements derived from
more accurate surveying methods yields an error estimate. In practical applica-
tions, angular errors are negligible compared to ranging errors. For completeness
we also model deflection errors as a Gaussian distribution:

φ = φ̂+ eφ , eφ ∼ N
(
0, σ2

φ

)
(2.7)
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and set σφ = 0 05 ◦ which is a reasonable value according to the specification of
our scanner. Since ranging and deflection errors stem from independent physical
processes, we can justify to model the distributions to be independent as well. In
Section 3.4.4, we will use this error model and its parameters to derive a proba-
bilistic model of the measurement process used in a new registration algorithm.

2.3.2 Extrinsic Calibration

As a second calibration step, we seek to find the rotation R and the translation
t – the external calibration – between the camera and the laser range finder. In
photogrammetry, the function to minimize is usually the error of reprojecting a 3D
point onto the image plane. This would require knowing the exact correspondence
of a 3D lidar measurement and a 2D image point. These correspondences are diffi-
cult to establish and would require a calibration pattern exhibiting features visible
in both sensors. Instead, we use a planar checkerboard calibration pattern, such as
the one we employed to find the internal camera parameters in Section 2.3.1. More
specifically, the procedure of [Zhang, 1999] estimates the location of the calibra-
tion plane in 3D. The shape of the same calibration pattern can also be observed
by the laser range finder and one can robustly establish a correspondence between
camera and lidar data.

For the region in the range image corresponding to the calibration pattern, a robust
total least squares estimator is used to fit a plane to the set of points in 3D. The
equation of a plane using a unit normal vector n and a scalar distance d from the
origin is:

n · x− d = 0 , (2.8)

where x denotes a 3D point in the plane. The least squares estimator results in
an estimate of nl and dl in the laser coordinate frame, whereas the previously de-
scribed camera calibration procedure results in an estimate of nc and dc in the
camera coordinate frame. Figure 2.4 depicts a camera image of the employed
calibration target and the corresponding laser range image. Estimating the rigid
transformation between the laser and camera frame can now be achieved by find-
ing the transform that minimizes the difference in observations of the calibration
plane. While a distance metric for point features can be defined easily, it is not so
obvious for planes. We separate the problem by estimating translation and rotation
independently.

The translation t can be estimated by minimizing the difference in distance from
the camera origin to the planes, represented in the camera coordinate system and
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(a) Camera image. (b) Laser range image.

Figure 2.4: Camera and lidar are calibrated by aligning a planar calibration target.
The checkerboard pattern is used to estimate a plane in camera coordinates while
a least squares estimator finds the same plane in the range image (right). The
estimated plane is marked in yellow.

the laser coordinate system. The distances are given by dl and dc and upon trans-
lation by t, the new distance becomes dc − nc · t. The squared difference for one
camera image/range image observation pair becomes:

∆d2 =
[
dl − (dc − nc · t)

]2
. (2.9)

Now, consider a multitude of such pairs generated by moving the calibration tar-
get to different locations. For this over-constrained estimation the translation t is
estimated over all pairs with the following objective function:

t̂ = argmin
t

∑
i

[
dl,i − (dc,i − nc,i · t)

]2
. (2.10)

A closed form solution of this minimization problem can be found by concatenat-
ing the plane parameters into a matrix form, e.g., Dl =

(
dl,1 dl,2 . . . dl,n

)ᵀ
for

n camera image/range image observation pairs. Then the least squares objective
function for t is equivalent to

t̂ = argmin
t

∥∥Dl −
(
Dc −NT

c t
)∥∥2

, (2.11)

which has a closed form solution given by:

t̂ =
(
NcN

T
c

)−1

Nc

(
Dc −Dl

)
. (2.12)
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The rotation R can be estimated by minimizing the difference in the angular dif-
ference between the normals of the corresponding planes. The objective function
may be written as the rotation that maximizes the sum of cosines of the respective
angles, or

R̂ = argmax
R

∑
i

nT
c,i R nl,i . (2.13)

To ensure the resulting solution R̂ is a member of the rotation group SO(3), we
have to enforce the orthonormality condition RTR = I3 as well as the orienta-
tion preserving property det

(
R
)

= 1. This problem is an instance of the well-
studied Orthogonal Procrustes Problem (OPP) [Schönemann, 1966] and has the
closed form solution given by:

R̂ = VUT (2.14)

where NlN
T
c = USVT is the associated singular value decomposition.

2.4 Exploration

In robotics terms, exploration is the task of controlling a robot so as to maximize
its knowledge about its environment. In our case, the robot has to acquire a static
3D model of the environment; and therefore, the exploration means to maximize
the cumulative information we have about each part of the environment. Since
our robot has no prior knowledge, the information is zero in the beginning and the
exploration is successful when enough measurements are taken to cover the whole
environment. In other words, an exploration strategy is required to determine the
next viewpoint the robot should move to in order to obtain more information about
the environment.

Our exploration strategy is a two step procedure. First, we define the set of possible
viewpoints or candidate viewpoints. Second, we evaluate those candidates to find
the best one. To define a set of candidate viewpoints we use a frontier heuristic
[Yamauchi, 1997] yielding a small set of viewpoints V = {x1, . . . ,xn}. The
exploration algorithm maintains a 2D occupancy grid map [Elfes, 1989] to record
which parts of the environment have been observed. Obstacle free boundaries
between observed and unobserved regions, so called frontiers (see Figure 2.5),
define candidate viewpoints. A grid cell is considered as observed if it has eight
neighbors and its uncertainty, measured by the entropy in the patch, is below a
threshold. The entropy of the i-th grid cell mi is defined as:

hi = h (mi) = −pi log pi − (1− pi) log (1− pi) , (2.15)
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Figure 2.5: The robot maintains a 2D grid map for exploration. The next view-
point for a 3D scan is determined by the boundary between observed and unob-
served regions (frontiers).

with pi = p(mi) denotes the cell’s occupancy probability. A location is considered
a candidate viewpoint if it is reachable by the robot, and there is at least one frontier
cell that is likely to be observable from that viewpoint. The utility of a candidate
viewpoint xi is the expected information gain which is approximated using its en-
tropy h (xi) [Thrun et al., 2004]. The cost for the candidate is defined by the travel
distance from the current viewpoint xj to the candidate t (xi,xj) = dist (xi,xj).
Now we select the candidate viewpoint as our next viewpoint to perform a 3D scan
that maximizes the following equation:

x̂i = argmax
i

h (xi)− β t(xi,xj) , (2.16)

with β ≥ 0 being a quantity that determines the relative importance of utility
versus cost. The next viewpoint is used as goal point for the robot’s navigation
system. Upon arriving at a goal point, the robot will perform a full 3D scan of its
environment and update its exploration map. New boundaries and a new goal point
will then be calculated. This process repeats until no reachable frontiers remain.

2.5 Conclusion

In this chapter, we described methods for automatic data acquisition. We pro-
posed, a 3D scanning robot which allows for autonomous exploration and scanning
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of large environments. This hardware configuration was specifically designed to
match our requirements for scanning indoor environments with a mobile robot.
This configuration, however, represents a much larger group of scanning devices
that combine distance sensors, such as laser range finders, stereo-cameras, with
imaging sensors, such as cameras. In fact, the algorithms for processing the data
acquired by our system described in the subsequent chapters are hardware agnostic
and can be applied to any other system using range and color sensing. Further-
more, we presented a novel calibration procedure to calculate the extrinsic cali-
bration between camera and laser range finder. Our method extracts the plane of a
calibration target in the camera image and in the laser range image. Estimating the
rigid transformation between the laser and camera frame was then performed by
finding the rotation and translation that minimizes the difference in observations
of the calibration plane. This external calibration enables subsequent processing
steps to transform data points between sensor coordinate systems and fuse color
with range data. Lastly, we addressed the subproblem of exploration and view
point selection for 3D scanning. The presented algorithm uses active exploration
enabling the robot to select optimal viewpoints for 3D scans. This algorithm gen-
erates navigation targets that maximize the expected information gain based on a
2D map representation.
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3 Multi-View Registration

In this chapter, we address the problem of multi-view data registration, which
is essentially the problem of aligning multiple scans into a common coordinate
system. This chapter presents new algorithms for aligning multiple scans. We
first give an introduction to multi-view registration followed by a description of
a widely used pairwise registration technique. We then present a new method
for multi-view registration that directly uses information obtained from pairwise
registration yet distributes the registration error evenly over all views. In the last
part we present a novel probabilistic registration method which incorporates sensor
uncertainties and surface priors. Our method performs a non-rigid registration and
therefore not only estimates the rigid transformations that align the scans but also
allows for deformations of the scans themselves. A short discussion concludes the
chapter.

3.1 Introduction

Scans produced by 3D scanners, such as the one described in the previous chapter,
are intrinsically limited by occlusions and range restrictions. This requires the

Figure 3.1: An example for multi-view registration in 2D. An environment is
scanned from eight different views (left). A poor registration (middle) results in a
heavily distorted point cloud whereas a good registration (right) is required for the
reconstruction of a consistent model.



3. MULTI-VIEW REGISTRATION 29

acquisition of multiple scans covering parts of an environment. In practice, the
3D scanner is moved to various locations within an environment and the surfaces
visible to the scanner are captured. The scanner is then reoriented, so that other
parts of the environment can be scanned, and this is repeated until most (ideally,
all) of the environment is captured. Clearly, if we want to construct a complete and
consistent model of an environment from the scans, we have to first align the scans
and express all data in one common coordinate system. In order to align scans we
have to find the rigid body transform that precisely aligns the overlapping parts
of scans from different locations into a consistent model as shown in Figure 3.1
on the right. This process is called registration or multi-view registration since it
typically involves many scans.

The registration problem would be easy to solve if we could precisely measure
an externally referenced pose for each scan. Unfortunately, even very expensive
pose estimation systems do not deliver enough accuracy to register scans purely
based on their output. In practice, the accuracy of pose estimates is much less than
that of a laser scanner. Figure 3.1 shows an example of the multi-view registration
problem in 2D. Here, a 2D environment is scanned by a simulated scanner from
eight different views (left). The figure in the middle depicts a registration based on
a (noisy) external pose reference which results in a heavily distorted point cloud.
Aligning the scans using multi-view registration techniques can achieve superior
results and recover a consistent model of the simulated environment (right). Note,
that approximate pose estimates such as an external pose reference or wheel odom-
etry can serve as a good starting point for multi-view registration algorithms that
are discussed in this chapter.

Exploration of metric maps while maintaining an accurate position estimate is a
frequent issue in robot navigation. Specifically, problems in which the robot has
no a priori map and no external position reference are particularly challenging.
Such scenarios may arise for Autonomous Underwater Vehicles (AUV), mining
applications, or planetary surface explorations. This problem has been referred to
as Concurrent Localization and Mapping (CLM) and Simultaneous Localization
and Mapping (SLAM). The CLM or SLAM problem can be posed as a multi-view
registration problem: given a set of scans, find the rigid body transforms that will
align the scans and form a globally consistent a map.

In this work we want to address the problem of reconstructing a map based on
range measurements from a mobile platform. In recent years, building maps
of physical environments with mobile robots has been a central problem for
the robotics community. Research over the last decade has led to impres-
sive results. Several successful algorithms emerged, among them Relaxation
[Duckett et al., 2002], CEKF [Guivant and Nebot, 2002], SEIF [Thrun, 2002],
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FastSLAM [Montemerlo et al., 2002], MLR [Frese and Duckett, 2003], TJTF
[Paskin, 2003], and ATLAS [Bosse et al., 2003]. Nearly all state-of-the-art meth-
ods are probabilistic and most of them are robust to noise and small variations of
the environment. Comprehensive surveys can be found in [Thrun, 2002] or more
recently in [Bailey and Durrant-Whyte, 2006a, Bailey and Durrant-Whyte, 2006b,
Bonin-Font et al., 2008].

3.2 Pairwise Rigid-Registration

The core of many multi-view registration schemes is a pairwise registration al-
goritm. Algorithms for the pairwise registration of points clouds can be roughly
categorized into two classes: voting methods and correspondence methods.

Voting methods make use of the fact that the rigid transform is low-dimensional.
Those methods exhaustively search for the small number of parameters required
to specify the optimal transform. For example, the Generalized Hough transform
[Hecker and Bolle, 1994], geometric hashing [Wolfson and Rigoutsos, 1997], and
pose clustering [Stockman, 1987] quantize the transformation space into a six di-
mensional table. For each triplet of points in the model shape and each triplet in
the data shape, the transformation between the triplets is computed and a vote is
recorded in the corresponding cell of the table. The entry with the most votes gives
the optimal aligning transform.

Correspondence methods solve the registration problem by finding the correspond-
ing points in two scans. Given a set of point-pairs, a rigid transformation can
be computed by minimizing the distance between corresponding points. The
quasi-standard method for aligning two point clouds and also a classical exam-
ple for correspondence methods is the Iterative Closest Point (ICP) algorithm
[Besl and McKay, 1992]. We will briefly discuss the algorithm in the following
section since it constitutes the base for our multi-view registration approach.

3.2.1 The Iterative Closest Point Algorithm (ICP)

The ICP algorithm is widely used for geometric alignment of three-dimensional
models when an initial estimate of the relative pose is known. Many variants
of ICP have been proposed [Rusinkiewicz and Levoy, 2001, Nüchter et al., 2004],
affecting all phases of the algorithm. Given two independently acquired sets of
3D points P = {pi} with M points and Q = {qi} with N points, we want to
find the rigid body transformation T consisting of a rotation R and a translation
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Figure 3.2: The ICP algorithm iteratively finds point pairs and determines the rigid
body transformation that minimizes the registration error. In this example, corre-
sponding points (marked by green lines) are determined based on point distance,
normal distance, and color similarity.

t which minimizes a given alignment error metric H . The outline of the original
ICP algorithm is as follows:

1. Choose a subset of P consisting of K ≤ M points, and for each point pi
in this subset find the closest point qi. Those point pairs

(
pi,qi

)
form the

correspondence set J .

2. Using the correspondence set, determine the rigid body transformation T
that minimizes the alignment error by minimizing H .

3. Apply the transformation T to all points in P: pi 7→ Rpi + t.

4. Repeat step 1 to 3 until convergence is reached.

Figure 3.2 shows an example for an ICP based registration. In the original formu-
lation of ICP the alignment error is defined as:

H (R, t) =
∑

(pi,qi)∈J

‖Rpi + t− qi‖2 . (3.1)
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This formulation directly minimizes the sum of squared distances between the
paired points. Ideally, pi and its pair qi should correspond to the same point on
the object’s surface. In this case the ICP algorithm converges to a perfect alignment
in just one iteration. In practice, finding the correct correspondences of partially
overlapping surfaces without a good initial alignment is very difficult. There-
fore, the ICP algorithm estimates the registration transformation in small steps.
[Besl and McKay, 1992] showed that the algorithm converges always monotoni-
cally to a local minimum. In other words, each iteration will improve the regis-
tration even if the pairings are not perfect. As the surfaces move closer, finding
better point pairs becomes more likely. However, ICP is not guaranteed to reach a
global minimum. Most often this occurs in situations when the initial alignment is
very poor. In this case, ICP may converge to a local minimum of H and therefore
a wrong alignment. In the following sections we will discuss all phases of ICP in
more detail and present various improvements to the original algorithm.

3.2.2 Correspondence Search

In each iteration step, the ICP algorithm selects a set of corresponding points
(pi,qi). In traditional ICP [Besl and McKay, 1992] the Euclidean distance in 3D
space is used to find corresponding points. For each point pi ∈ P the closest point
qi ∈ Q is found by:

qi = argmin
q∈Q

‖Rpi + t− qn‖2 . (3.2)

This means closest points are searched for in 3D Euclidean space. In many cases
this pairing process is suboptimal as we can see from the example shown in Fig-
ure 3.3 on the left. In our case, we have color data available for each point hence
better correspondences can be found by including this information in the corre-
spondence search. We modify the distance metric of Equation 3.2 and add terms
for color similarity as well as normal similarity:

qi = argmin
q∈Q

[
‖Rpi + t− qn‖2 + α ‖Rni − nn‖2 + β ‖ci − cn‖2

]
. (3.3)

Here, ni denotes the normal vector and ci denotes the color triplets of the corre-
sponding 3D point pi. The constants α and β are weighting factors that define
the importance of the respective term for the search of the closest point. A similar
metric has been previously suggested by [Johnson and Kang, 1997a]. An example
of correspondences for this distance metric are presented in Figure 3.3 on the right.

In a brute force implementation, the search for correspondence is of the complexity
O
(
(M +N)2

)
with M being the number of points in P and N being the number
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(a) matching without normals. (b) matching with normals.

(c) matching without texture. (d) matching with texture.

Figure 3.3: The traditional ICP algorithm proposed by [Besl and McKay, 1992]
finds point pairs using the Euclidean distance in 3D (a). Including normal (b) and
texture (d) information into this matching process improves the number of correct
pairs.

of points in Q respectively. kD-trees (here k = 9) have been suggested by various
authors [Zhang, 1994, Rusinkiewicz and Levoy, 2001] to speed up the data access.
This ensures that a data correspondence can be selected in O

(
log(M +N)

)
.

3.2.3 Error Metric

The next piece of the ICP algorithm is the error metric and the algorithm for min-
imizing it. The metric originally proposed by [Besl and McKay, 1992] minimizes
the sum of squared distances between corresponding points and is therefore called
point-to-point error metric. For an error metric of this form, there exist closed
form solutions for determining the rigid-body transformation that minimizes the
error. An evaluation of the numerical accuracy and stability of solutions using
singular value decomposition, quaternions, and orthogonal matrices is available in
[Eggert et al., 1997]. These evaluations conclude that differences among different
solutions are small. [Chen and Medioni, 1992] considered the more specific prob-
lem of aligning range data for object modeling and their approach assumes the
data to be locally planar. Their point-to-plane error metric minimizes the sum of
squared distances from each source point to the plane containing the destination
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(a) point-to-point error metric. (b) point-to-plane error metric.

Figure 3.4: Using the point-to-point error metric (left) the sum of squared Eu-
clidean distances of all point pairs

(
pi,qi

)
is minimized. In contrast, the point-to-

plane error metric [Chen and Medioni, 1992] minimizes the sum of the squared
distance between each source point and the tangent plane at its corresponding des-
tination point (right).

point and oriented perpendicular to the destination normal:

H (R, t) =
∑

(pi,qi)∈J

[
(Rpi + t− qi) · ni

]2
(3.4)

where ni denotes the normal at the corresponding point qi (see Figure 3.4). In this
case, H minimizes the sum of squared distances for each pi to the corresponding
tangent plane at qi. Unfortunately, no closed-form solutions are available for this
minimization. However, the least-squares equation may be solved using a generic
non-linear method (e.g., Levenberg-Marquardt). In order to find the transforma-
tion which minimizes the alignment error, we assume that rotations are small and
linearize Equation 3.4, approximating cos(θ) by 1 and sin(θ) by θ. We obtain a
rotation matrix which is a linear function of the rotation angles:

R =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3.5)

≈

 1 −ψ θ
ψ 1 −φ
−θ φ 1

 ≈ I3 +4R . (3.6)

Here φ, θ, and ψ are rotations about the x, y, and z axis, respectively. The expres-
sions cψ := cos(ψ) and sψ := sin(ψ) are used for notational brevity. Inserting the
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linearized rotation matrix into Equation 3.4 leads to:

H (R, t) ≈
∑

(pi,qi)∈J

[
((I3 +4R) pi + t− qi) · ni

]2
=

∑
i(pi,qi)∈J

[
(4Rpi) · ni + t · ni + (pi − qi) · ni

]2
. (3.7)

Since4Rpi = r×pi where r =
(
φ θ ψ

)ᵀ
is a vector of rotations, we can define

(4Rpi) · ni = (r× pi) · ni = r · (pi × ni) . (3.8)

Setting ci = pi × ni, the alignment error may be written as

H (R, t) ≈
∑

(pi,qi)∈J

[
(pi − qi) · ni + t · ni + r · ci

]2
. (3.9)

Now, we solve for the aligning transform by setting the partial derivatives of H in
Equation 3.9 to zero w.r.t. r and t. The form of the resulting linear system is

CCT︸ ︷︷ ︸
A

(
r
t

)
︸︷︷︸

x

= −Cd︸ ︷︷ ︸
b

(3.10)

with

C =

(
c1 · · · cK
n1 · · · nK

)
, and d =

 (p1 − q1) · n1

...
(pK − qK) · nK

 . (3.11)

Equation 3.10 is of the form Ax = b where x is the 6× 1 vector of unknowns we
want to retrieve. As A is symmetric and positive definite, we can solve Ax = b
by first computing the Cholesky decomposition A = LLT with L being a lower
triangular matrix with strictly positive diagonal entries, then solving Ly = b for
y, and finally solving LTx = y for x.

3.2.4 Experiments

In the first experiment a dataset captured from a conference room with our scan-
ning system is used to evaluate different variants of the pairwise ICP matching
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(a) Two unregistered scans. (b) Registered scans.

Figure 3.5: A scanned conference room serves as input to the algorithms. The
left picture shows two out of four scans coarsely aligned by wheel odometry. All
methods converge to the same correct registration (right).

algorithm. Figure 3.5 depicts two out of four scans from this dataset. The scene
is an easy case for most ICP variants, since it contains well defined coarse-scale
geometry features which make an alignment easy. Yet it is very representative for
the data acquired by our scanning system. The dataset is manually aligned to ob-
tain ground truth robot poses. We then evaluate the performance of different ICP
algorithms relative to this correct alignment. The metric we will use to compare
the results is root-mean square point-to-point distance for the points in the test
dataset and the corresponding points in the aligned reference dataset. This allows
for a more objective comparisons of the performance of ICP variants than using
the error metrics computed by the algorithms themselves.

We first look at the performance for different methods of the correspondence
search. Figure 3.6(a) presents a comparison of convergence rates for different
correspondence search methods. For the selected scene, our proposed method us-
ing a combination of point, normal, and color matching produces the best results.
All methods converge to the same correct registration. However, incorporating
additional clues, such as normal and color information, to the standard correspon-
dence search leads to a faster convergence. We hypothesize that the reason for
this is that more correct pairings are formed in early iterations. Secondly, we
compare the performance of two error metrics: point-to-point and point-to-plane.
Figure 3.6(b) depicts a comparison of convergence rates for both metrics. On the
choosen dataset, we see that the point-to-plane error metric performs significantly
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better than the point-to-point metric. It takes the algorithm using a point-to-point
metric more than 100 iterations to converge and the residual alignment error is 1.45
mm. The alignment error of the unregistered dataset is 0.48 m. The algorithm us-
ing a point-to-plane metric, however, converges to a simular residual alignment
error within 5 iterations.

In the second experiment, we use ICP for a pairwise alignment of a larger dataset.
This dataset maps the first floor of Stanford’s Gates Building and it consists of 8
scans (see Figure 3.7). An initial registration of the data is performed by using
the robot’s wheel odometry. This aligns the scans only coarsely but serves as a
good starting point for the ICP registration. Next, we perform a registration with
our ICP variant using point, normal, and color similarity for the correspondence
search as well as the point-to-plane error metric. The result of this registration is
presented on the right side of Figure 3.7. One will note that each pair is seemingly
aligned well. However, small residual errors in this pairwise registration process
accumulate and cause inconsistencies in the data. In our case, the first and the last
scan are not aligned well.

3.2.5 Conclusion

In this section, we presented a pairwise ICP alignment strategy for solving the
multi-view registration problem. We have shown typical results that capture the
significant differences in performance using variations of the standard ICP algo-
rithm. We demonstrated that ICP-based registration techniques work well for a
pairwise registration of point clouds.

There are three main sources of error for ICP. The first source of error is wrong
convergence: ICP can converge to a local minimum out of the attraction area of
the true solution. The reasons for this behavior are the iterative nature of the al-
gorithm. A coarse initial alignment of the data is essential for ICP to converge to
the correct alignment. In our case, a good starting point for the ICP registration
is given by the robot’s wheel odometry. The second source of error is under-
constrained situations: in some environments there is not enough information to
estimate the pose of the robot completely. Those situations occur when surfaces
can slide in one or more directions without affecting the error function. Refer to
[Gelfand et al., 2003] for a comprehensive analysis. Our strategy for finding cor-
respondences by adding color and normals to the search not only leads to a better
convergence but also alleviates the effect of underconstraint alignments. The third
source of error is sensor noise: even though ICP arrives in the attraction area of the
true solution, the outcome is different because of noise. Sensor noise is difficult
to address in ICP since data points are assumed fixed and without error. Allowing
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(a) Correspondence search.
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(b) Error metrics.

Figure 3.6: Comparison of different ICP variants on scanned data. We analyze the
convergence rates using different methods of correspondence search (top) as well
as different error metrics (bottom) on the conference room dataset.
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(a) Registration using odometry. (b) Registration using ICP.

Figure 3.7: Results for the registration on 8 scans. Registration based on wheel
odometry (left) retrieved from the scanner leads to a highly distorted model. Using
the ICP algorithm with several modifications yields good results for registering
textured 3D scans (right). However, residual errors in this registration process
accumulate and cause inconsistencies when scanning large loops.

data points to adjust for noise implies a fundamentally different type of non-rigid
registration which we will address in Section 3.4.

When applied to a larger number of scans, an incremental registration process may
result in residual errors which accumulate over time. This leads to inconsistencies
especially when scanning large loops such as depicted in Figure 3.7(b). Without
a global registration technique even small errors accumulate while sequentially
registering the scans of those loops. Specifically, errors in orientation may cause
large displacements as they act like levers in a sequential registration process.

In the following sections we will use the ICP variant using point distance, normal
distance, and color similarity for the correspondence search as well as the point-
to-plane error metric for pairwise scan matching.

3.3 Global Registration

As discussed in the previous section, pairwise matching methods accumulate reg-
istration errors such that the registration of many scans leads to inconsistent maps.
[Pulli, 1999] presented a method that minimizes the registration error by iteratively
registering one scan to all neighboring scans. In this way the accumulated align-
ment error is spread over the whole set of acquired 3D scans. While in Pulli’s
method the pairwise alignment was interactive, [Nüchter et al., 2004] extended
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this idea to a totally automated procedure. However, neither one of these meth-
ods easily allows to incorporate additional information, such as sensor noise and
the uncertainty of robot poses.

Our method belongs to the family of SLAM algorithms and is based on the con-
cepts of GraphSLAM [Thrun and Montemerlo, 2005]. GraphSLAM models robot
poses as nodes in a graph and edges correspond to constraints. An optimization
over the nodes seeks to satisfy all constraints as good as possible. Our approach
linearizes the optimization problem and solves the resulting equation system us-
ing the Conjugate Gradient (CG) method. This is similar to [Nieto et al., 2006]
in the way that scan matching is used in a global optimization scheme. However,
we explicitly incorporate uncertainties of the scan matching as well as the robot’s
position estimate.

[Olson et al., 2006] proposed Stochastic Gradient Descent (SGD) to optimize pose
graphs. This approach has the advantage of being easy to implement and excep-
tionally robust to wrong initial guesses. Later, [Grisetti et al., 2007a] extended this
approach by applying a tree based parameterization that significantly increases the
convergence speed. The main problem of these approaches is that they assume the
error in the graph to be more or less uniform, and thus they are difficult to apply
to graphs where some constraints are under-specified. Also, because of the itera-
tive nature of SGD a large number of iterations are required to reduce the residual
error.

3.3.1 Pose Graphs

Our multi-view registration problem naturally forms a sparse graph (see Fig-
ure 3.8). Each node in this graph represents a pose of the scanner at which a
scan was taken. The edges in the graph correspond to events: a motion event con-
nects two consecutive scanner poses, and a registration event links two poses that
were registered by aligning the corresponding scans using a registration algorithm
such as the ICP algorithm described in the previous section. The edges form soft
constraints and they carry information relating the relative position of two nodes,
along with the uncertainty of that information.

A constraint can be thought of as a spring attached to two nodes trying to pull
them into a certain configuration. The idle state of the spring corresponds to the
relative pose distance as a result of a motion or registration event. Mathematically,
a constraint is a set of simultaneous equations that relates the current estimate of
two poses xi and xj to a measured or observed relative pose d̃ij . We write this
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(a) Robot path. (b) Pose graph.

Figure 3.8: The multi-view registration problem forms a sparse graph. Nodes in
this graph represent scan poses while edges are formed by motion and registra-
tion events. The left picture shows the path of a scanning robot in a simulated
environment. The robot stops to create scans. The right picture shows the graph
representation of the corresponding multi-view registration problem.

relation as Mahalanobis distance:

χ2
ij =

(
dij − d̃ij

)T
Σ−1
ij

(
dij − d̃ij

)
(3.12)

where the dij = xj 	 xi corresponds to the relative pose between frames i and
j. See Appendix 8.2 for a detailed description of the pose compounding operation
and its properties. The difference between the current state and the observation is
the residual

rij = dij − d̃ij , (3.13)

which is scaled by the constraint’s confidence Σ−1
ij . We assume that the constraints

are uncertain quantities and that this uncertainty can be represented as a multi-
variate Gaussian distribution over the parameters of the rigid-body transformation.
Maximizing the probability P

(
dij |d̃ij

)
for all

(
i, j
)
∈ J simultaneously, where

J is a set of indices of node pairs in the pose graph connected by either motion or
registration edges, corresponds to finding the optimal estimate of all robot poses.
Under the assumption that all errors in the observations are distributed indepen-
dently, maximizing the probability P

(
dij |d̃ij

)
is equivalent to minimizing the
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following Mahalanobis distance:

EG =
∑

(i,j)∈J

rTij Σ−1
ij rij . (3.14)

EG represents a differentiable energy function that takes all motion constraints
and all registration constraints and measures how consistent they are (low energy
corresponds to high consistency).

Motion Constraints

Assume the scanner starts from a pose xa and travels some distance before reach-
ing a second pose xb. We denote the true difference in pose by dab. The odometry
of the scanning robot gives us an uncertain measurement d̃ab of the true pose dif-
ference, and we can directly define a term for each motion constraint in the energy
function Equation 3.14:

χ2
odo =

(
dab − d̃ab

)T
Σ−1

odo

(
dab − d̃ab

)
. (3.15)

The covariance matrix Σodo captures the uncertainty of the odometry measure-
ments. A detailed derivation of covariance matrices for robot motion based on
odometry will be covered in Section 3.4.3. For now, we can assume that we have
a good estimate of the covariance matrix.

ICP Matching Constraints

For each pair of overlapping scans
(
i, j
)
, a matching constraint between the cor-

responding poses of these scans is added to the pose graph. The ICP registration
algorithm described Section 3.2 is used to register one pair at a time into a common
coordinate system. The result is a rigid transformation that aligns the points of one
scan with the portions of a surface that it shares with another scan. This transform
is another estimate of true difference between two poses, and we can define a term
for each matching constraint:

χ2
icp =

(
dij − d̃ij

)T
Σ−1

icp

(
dij − d̃ij

)
. (3.16)

The accuracy of ICP depends on the geometric information (e.g., local curva-
tures) contained in the point sets. If insufficient shape information is avail-
able, inaccurate or incorrect registration may occur. Several methods have been
proposed for evaluating the stability of the registration [Stoddart et al., 1998,
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Bengtsson and Baerveldt, 2003, Gelfand et al., 2003, Segal et al., 2009]. We use
the method of [Bengtsson and Baerveldt, 2003] which estimates the covariance by
examining the shape of the error function. The idea is that if the error function
H is quadratic (which it is), then the optimal least-squares estimate would be
x = A−1b according to the linear system in Equation 3.10. The covariance of
x equals to

C =

(
1

2

∂2

∂x2
H (R, t)

)−1

σ2 . (3.17)

An unbiased estimate s2 of σ2 in Equation 3.17 would be s2 = H (R, t) /(K−3),
where K is the number of correspondences.

3.3.2 Optimal Pose Estimation

Linear Estimation

One approach for determining the optimal pose according to Equation 3.14 was
proposed by [Lu and Milios, 1997]. Their solution assumes the pose compounding
operation can be linearized and solve the resulting linear system. For the linear
case the compounding operation has the simple form

dij = xj 	 xi ≡ xj − xi . (3.18)

The energy function can can now be written as:

Elin =
∑

(i,j)∈J

(
xj − xi − d̃ij

)T
Σ−1
ij

(
xj − xi − d̃ij

)
. (3.19)

To minimize Equation 3.19, the equation is expressed in a matrix form:

Elin =
(
HX− D̃

)T
Σ−1

(
HX− D̃

)
. (3.20)

Here D̃ is a matrix concatenating all observations, X a matrix concatenating all
poses, and H an incidence matrix with all entries being 1,−1, or 0. The matrix Σ
is the new covariance matrix of D̃ which consists of Σij sub-matrices. Now, the
solution for X which minimizes Elin is given by:

X =
(
HTΣ−1H

)−1
HTΣ−1D̃ , (3.21)
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with a covariance of X:

ΣX =
(
HTΣ−1H

)−1
. (3.22)

As stated above, we assume the observations errors associated with each link to
be independent. Therefore, Σ will be block-diagonal and the solution of X and
ΣX can be simplified to improve the performance for the typically occurring large
number of observations. We set G = HTΣ−1H and B = HTΣ−1D̃ and expand
the matrix multiplications. The matrix G consists of the following sub-matrices:

G =


t∑

j=0

Σ−1
i,j (i = j)

−Σ−1
i,j (i 6= j)

, (3.23)

and the matrix B consists of the following sub-matrices:

B =
t∑

j=0; i 6=j

Σ−1
i,j D̃i,j . (3.24)

With this simplification, Equation 3.21 can be rewritten as:

GX = B . (3.25)

The proposed algorithm then requires G to be invertible. It has been shown that
this holds true when all link covariance matrices are positive or negative defi-
nite, and the pose graph is connected, i.e., there exist no two separate subgraphs
[Lu and Milios, 1997, Borrmann et al., 2008]. The second condition is met triv-
ially in practice since at least all consecutive poses are linked by motion links.

Assuming the linear case holds for the compounding operation, the optimal pose
estimation results in solving the sparse linear system of Equation 3.25. Refer to
Appendix 8.3.2 for details on methods for solving systems of this type. In general,
xj − xi is not a good approximation of the compound operator xj 	 xi since it
involves complex trigonometric operations. See Appendix 8.2 for more details.

Linearization of the Compound Operator

Instead of assuming the compound operation to be linear, a better approximation
is a direct linearization of Equation 3.14 through Taylor expansion. Suppose each
pose graph edge is a measurement d̃ of the true relative pose d = xj 	 xi. The
measurement covariance of d̃ is denoted by Σ̃. Let x̃i and x̃j be the measurements
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of xi and xj . The observation error is denoted by 4xi = x̃i − xi and 4xj =
x̃j − xj . The residual becomes:

4d = d̃− d (3.26)
= d̃− xj 	 xi (3.27)

= d̃− (x̃j −4xj)	 (x̃i −4xi) (3.28)
:= r (xi,xj) . (3.29)

A Taylor expansion leads to:

4d ≈ r (x̃i, x̃j) +
∂r (x̃i, x̃j)

∂x̃i
(xi − x̃i) +

∂r (x̃i, x̃j)

∂x̃j
(xj − x̃j) (3.30)

= d̃− (x̃j 	 x̃i)− Jx̃i	 {x̃j , x̃i}4xi − Jx̃j	 {x̃j , x̃i}4xj (3.31)

Analytical expressions of the Jacobians Jx̃j	 {x̃j , x̃i} and Jx̃i	 {x̃j , x̃i} are
straightforward though lengthy. We refer the reader to Appendix 8.2 for more
details. Equation 3.31 is a linar equation but not in the right format to be pro-
cessed in a linear system like in the previous section. However, Equation 3.31 can
be written as:

4d ≈ d̃− (x̃j 	 x̃i) + K̃−1
j

(
4xj − H̃ij4xi

)
(3.32)

with

K̃−1
j =

(
R̃j

I3

)
and (3.33)

H̃ij = H̃−1
j H̃i . (3.34)

Here R̃j denotes the rotation matrix corresponding to the pose estimate x̃j . The
matrix H̃i is defined as:

H̃i =



1 0 0 0 z̃icφ̃i
+ ỹisφ̃i

ỹicφ̃i
cθ̃i − z̃icθ̃isφ̃i

0 1 0 −z̃i −x̃isφ̃i
−x̃icφ̃i

cθ̃i − z̃isθ̃i
0 0 1 ỹi −x̃icφ̃i

x̃icθ̃isφ̃i
+ ỹisθ̃i

0 0 0 1 0 sθ̃i
0 0 0 0 sφ̃i

cφ̃i
cθ̃i

0 0 0 0 cφ̃i
cθ̃isφ̃i

 (3.35)
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using the expressions cφ̃i
:= cos(φ̃i) and sφ̃i

:= sin(φ̃i) for notational brevity.
The matrix H̃j is given analogously. If we now define a new residual to be4d′ =

−H̃jK̃j4d, then we can write:

4d′ =
(
H̃j4xj − H̃i4xi

)
− H̃jK̃j

(
(x̃j 	 x̃i)− d̃

)
(3.36)

= d′ − d̃′ (3.37)

where we denote

d̃′ = H̃jK̃j

(
(x̃j 	 x̃i)− d̃

)
(3.38)

d′ = H̃j4xj − H̃i4xi . (3.39)

The reason for substitution is that we now have an expressions which is very simi-
lar to the linear case of the compound operation in Equation 3.18. Specifically, we
have a measurement equation for d′ where d̃′ can be considered as an observation
of d′. The covariance Σ̃′ of d̃′ can be computed from the covariance Σ̃ of d̃:

Σ̃′ij = H̃jK̃jΣ̃ijK̃
T
j H̃T

j . (3.40)

Inserting the new expressions into our energy function of Equation 3.20 results in:

E ≈
∑

(i,j)∈J

(
d′ij − d̃′ij

)T
Σ̃′−1
ij

(
d′ij − d̃′ij

)
(3.41)

=
∑

(i,j)∈J

(
vj − vi − d̃′ij

)T
Σ̃′−1
ij

(
vj − vi − d̃′ij

)
(3.42)

with vi = H̃i4xi and vj = H̃j4xj . Following the steps discussed above, we can
minimize this function for vi and vj by solving the linear system in Equation 3.25.
We recall that the system had the following form:

GV = B . (3.43)

The presented linearization of the compound operator	 enables us to use the same
linear estimation as in the previous section by setting

G =


t∑

j=0

Σ̃′−1
ij (i = j)

−Σ̃′−1
ij (i 6= j)

(3.44)
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and

B =

t∑
j=0; i 6=j

Σ̃′−1
ij D̃′ij . (3.45)

Once again, D̃′ij is a matrix concatenating all observations d̃′ij . The matrix V, in
this case, concatenates all terms vi. Once we solve Equation 3.43 for all vi the
poses xi are simply calculated by:

xi = x̃i − H̃−1
i vi (3.46)

In practice, it takes several iterations for solving Equation 3.43 since linear ap-
proximations were made in deriving the optimization criterion. Solving for V re-
peatedly by re-evaluating G and B around the state estimate each time, improves
the pose estimates until convergence is reached.

3.3.3 Experiments

First, we use a synthetically-generated scene to evaluate different variants of the
global registration on pose graphs. The sphere scene (see Figure 3.9) is a simulated
trajectory in which the scanning system was moved on the surface of a sphere. It
consists of 2200 poses which are connected by 8647 constraints in a pose graph.
Consecutive poses are connected by motion constraints, and each pose is con-
nected to all its direct neighbors by matching constraints. The nodes of the pose
graph as well as the constraints between the nodes were distorted with Gaussian
noise. The resulting distorted graph (Figure 3.9(a)) serves as input to our algo-
rithms. To provide quantitative results, Figure 3.9(b) depicts the evolution of the
average error per constraint versus the iteration number. As expected, the linear
estimation method converges in just one iteration of solving the linear system and
additional iterations won’t improve the results (Figure 3.9(b)). However, it won’t
find an appropriate configuration of the pose graph since the non-commutativity
of the compound operation is simply ignored in this case. An optimization with
linearization of the compound operation and linear estimation, as presented in the
previous section, converges to a configuration with small errors in less than 10 it-
erations. In fact, from Figure 3.9(c) one can see that the structure of the sphere is
already recovered within the first few iterations and more iterations merely trans-
form the graph into the final configuration. For a comparison, we also applied
the approach of [Grisetti et al., 2007a] to the dataset. This approach converts a
posegraph into a tree structure and applies SGD optimization. It converges into a
configuration with small residual errors within 1000 iterations. Our optimization
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(a) Input pose graph.
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(b) Quantitative results.

(c) Our optimization using Iterative Least Squares.

(d) Optimization using Stochastic Gradient Descent [Grisetti et al., 2007a].

Figure 3.9: Optimization of a simulated trajectory of a robot moving on the surface
of a sphere. The top left image (a) shows the input trajectory which consists of
2,200 poses and 8,647 constraints.
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requires only 10 iterations for the same residual errors. Each SGD iteration takes
in the order of 1 s while solving the linear system in Equation 3.43 requires about
10 s per iteration. Therefore, our approach still is one order of magnitude faster
than SGD.

As a second example, we evaluate our global registration algorithm with a real data
acquired by our scanning system captured in an office environment. The dataset,
as depicted in Figure 3.10, consists of 133 scans covering an area of 50 m by 140 m
meter. Using the robot’s odometry, 132 motion constraints were added to the pose
graph. Applying a pairwise ICP registration on overlapping scans another 275
matching constraints were added to the pose graph. We compared the resulting
registration to a 2D floor plan, which was manually created by an architect since
ground truth for this dataset is not available. The total time for aligning the data is
532 s, while most time of the multi-view registration is spent on disk IO and the
ICP scan matching. Once the pose graph is generated, our optimization algorithm
converges with only a few iterations and in less than 1 second.

3.3.4 Conclusion

In this section, we presented a method for aligning scans globally. Our approach
resembles the concept of GraphSLAM by using the poses of the scanner as graph
nodes and observations (motion and ICP matching) as graph edges. The graph is
optimized by linearizing the compound operator and minimizing the resulting least
squares energy function. The linearized version of originally non-linear energy
function is essentially the information form where the matrix G in Equation 3.43
is called the information matrix and the matrix B in the same equation is denoted
as the information vector. If we solve Equation 3.43 for V, we have an Extended
Information Filter (EIF). With a different parameterization this estimation prob-
lem could also be formulated as an Extended Kalman Filter (EKF). The result
would be the same since EIFs are computationally equivalent to EKFs, but they
represent information differently: instead of maintaining a covariance matrix, the
EIF maintains an inverse covariance matrix (the information matrix).

In our experiments, we showed that this method is capable of optimizing large
datasets with hundreds of scans. Essentially, this method distributes the errors in-
troduced by uncertain measurements over the graph as whole. At the core of our
method, the ICP algorithm performs a pairwise rigid registration for overlapping
scans. This registration may not be perfect and local errors are introduced. How-
ever, our proposed global registration optimizes all poses simultaneously, which
effectively eliminates accumulations of local errors.

Our method assumes that pairs of scans can be aligned using a rigid registration,
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(a) Floor-plan with robot path.

(b) Registered point cloud.

Figure 3.10: The top figure shows a manually created floor plan and the path taken
by our scanning robot. The bottom figure presents the 3D point cloud registered
using our multi-view registration approach.
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i.e., the motion between two scans is rigid. It cannot adequately handle non-rigid
warps frequently present in real-world datasets. For example, imperfect sensor
calibrations add systematic errors to the data requiring a non-rigid deformation
between scans.

3.4 Probabilistic Non-Rigid Registration

In the previous section, we presented a least squares solution for the global regis-
tration problem. The formulation was based on the assumption that we can register
pairs of scans and spread the residual error over the whole set of scans. A key lim-
itation of this type of algorithm lies in the requirement to split the global registra-
tion into pairwise rigid registrations and a subsequent optimization. Typically the
later step involves reducing the data to a more sparse representation such as a pose
graph. Unfortunately, a lot of the originally retrieved information is discarded. For
example, wrong data associations can be detected and repaired during the opti-
mization process if the appropriate data is included in the optimization procedure.
Non-linearities in the rigid registration as well as imperfect sensor calibrations add
systematic errors into the data which are impossible to model in a rigid registra-
tion framework but they lead to artifacts, which drastically decrease the quality of
subsequent processing steps, such as surface reconstruction.

To address this issue, this section investigates an approach for aligning scans
in a probabilistic and non-rigid fashion. Our approach is an instance of a
probabilistic SLAM algorithm used to simultaneously perform a registration
and determine the most likely 3D map. Early work in SLAM assumed that
a map used for mobile robots could be modeled as a discrete set of land-
marks. Different kinds of representations or maps have been proposed in
robotics and in the artificial intelligence literature, ranging from low-level met-
ric maps such as landmark maps [Dissanayake et al., 2001] and occupancy grids
[Elfes, 1989], to topological graphs that contain high-level qualitative information
[Kuipers and Byun, 1993], and even to multi-hierarchies of successively higher
level abstractions [Fernandez-Madrigal and Gonzalez, 2002].

Traditionally SLAM implementations based on Kalman filter data fusion rely on
simple geometric models for defining landmarks. This limits landmark based al-
gorithms to environments suited for such models and tends to discard much po-
tentially useful data. Only more recently, the work in [Nieto et al., 2007] showed
how to define landmarks composed of raw sensed data.

The occupancy grid framework, as proposed in [Elfes, 1989], is used in many
practical SLAM implementations [Hähnel et al., 2003a, Grisetti et al., 2007b]. It
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employs a multidimensional (typically 2D or 3D) tessellation of space into cells,
where each cell stores a probabilistic estimate of its occupancy state. For each
grid cell, sensor measurements are integrated using, e.g., the Bayes rule to reduce
the effect of sensor noise. This allows a variety of robotic tasks to be addressed
through operations performed directly on the occupancy grid representation. The
limited resolution of grid maps is the source for several problems. As pointed out
in [Montemerlo and Thrun, 2004], a systematic error is introduced since the reso-
lution of sensors typically used for perception varies with distance. Generally, the
occupancy grid is modeled as a spatially uncorrelated random field. The individ-
ual cell states can be estimated as independent random variables. Again, a random
structure is assumed for this model.

The assumption of line-based environments [Garulli et al., 2005] and orthogonal-
ity as a geometrical constraints [Harati and Siegwart, 2007] have been previously
used by other researchers. Those approaches require features to be reliably ex-
tracted from the data as a preprocessing step which limits the performance of the
subsequent SLAM algorithm.

From the discussion above we can identify some limitations of current SLAM
approaches:

1. While much effort in robotic mapping is spent on large scale environments,
little attention is put on the true accuracy of the resulting map.

2. Most map representations used in current SLAM approaches assume a ran-
dom structure of the map or the features in the map. In reality, these assump-
tions rarely hold, since all man-made environments are highly structured.
For example, the insides of buildings are a common workspace for mobile
robots and are constructed with a well known methodology.

3. Information included in the sensor data is discarded at an early stage of
processing: landmark maps discard much useful data while occupancy grid
maps have an inherently limited resolution and suffer from discretization
errors.

In this section, we propose a novel formulation of the SLAM problem which
incorporates spatial correlation models and does not rely on the notion of dis-
crete landmarks or pairwise scan matching. We demonstrate that this formula-
tion can be used for a non-rigid multi-view registration of scans. This idea was
first presented in [Pitzer and Stiller, 2010] for 2D SLAM and extended to 3D in
[Pitzer et al., 2010].
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3.4.1 Formulation of the Probabilistic SLAM Problem

We start with an outline of the original formulation of probabilistic SLAM. At at
a time t the following quantities are defined:

• xt: A vector describing the robot pose (position and orientation). See Ap-
pendix 8.1 for more details.

• ut: The motion vector that carries information about the change of the
robot’s pose from xt−1 to xt.

• zt: A vector of observations taken by the robot at time t where zit denotes
the i-th observation.

• ct: A correspondence vector that contains indices of all features observed
at time t where cit denotes the i-th correspondence of an observation and a
map feature.

• M: A set of featuresM = {mi} representing the environment around the
robot.

• The setsX1:t, U1:t,Z1:t, C1:t are ensembles of all referred quantities for time
instances 1 through t.

Two basic Bayesian approaches to SLAM are frequently used. One is known as
the online SLAM problem with known correspondences. It involves estimating the
posterior over the momentary pose xt along with the mapM:

p (xt,M|U1:t,Z1:t, C1:t) . (3.47)

This approach is called online since it only involves estimating quantities at the
time t. The set of correspondences C1:t is assumed to be known and are not con-
sidered in the Bayesian formulation. In contrary, the full SLAM or offline SLAM
problem seeks to calculate a posterior over all quantities:

p (X1:t,M|U1:t,Z1:t, C1:t) . (3.48)

Here we focus on the latter problem since we make the assumption that all data
is available for the registration process. Like in Equation 3.3, probabilistic SLAM
can be treated as an estimation problem. During SLAM, the most probable se-
quence of states of the robot has to be estimated in addition to the map. This is
often solved using the Markov assumption. That is, the state transition is assumed
to be a Markov process in which the next state xt depends only on the immediately
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Figure 3.11: The Simultaneous Localization and Mapping (SLAM) problem. A
simultaneous estimate of both robot pose xt and landmark locations mi is re-
quired. The true locations are never known or measured directly. Observations zt
are made between true robot and landmark locations and the robot controls ut are
issued to drive the robot to various locations.

......

Figure 3.12: The left figure shows the structure of traditional landmark based
SLAM algorithms. The state transition is assumed to be a Markov process in
which the next state xt depends only on the immediately proceeding state xt−1 and
the applied control ut, and is independent of both the observations and the map.
Each observation zit is associated with a map feature mi. The right figure shows
our approach which incorporates correlations between features into a probabilistic
estimate. Such correlations are modeled as locally supported map priors.
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proceeding state xt−1, and the applied control ut, and is independent of both the
observations and the map. The structure of this problem is depicted on the left side
of Figure 3.12.

Bayes rule enables us to factorize the posterior in Equation 3.48:

p (X1:t,M|U1:t,Z1:t, C1:t)

=
p (zt|X1:t,M,U1:t,Z1:t−1, C1:t) p (X1:t,M|U1:t,Z1:t−1, C1:t)

p (zt|U1:t,Z1:t−1, C1:t)︸ ︷︷ ︸
:=const.

= η p (zt|X1:t,M,U1:t,Z1:t−1, C1:t) p (X1:t,M|U1:t,Z1:t−1, C1:t) ,

(3.49)

where η = 1/p (zt|U1:t,Z1:t−1, C1:t) is a normalizer that is independent of X1:t

andM and thus irrelevant for the following optimization process. The first prob-
ability on the right side of Equation 3.49 is reduced by dropping the conditioning
variables X1:t−1, U1:t, Z1:t−1, and C1:t−1 since an observation at time t only de-
pends on the pose at time t and the mapM:

p (zt|X1:t,M,U1:t,Z1:t−1, C1:t) = p (zt|xt,M, ct) .

(3.50)

The second probability on the right side of Equation 3.49 can also be factored by
partitioning X1:t into xt and X1:t−1

p (X1:t,M|U1:t,Z1:t−1, C1:t)

= p (xt|X1:t−1,M,U1:t,Z1:t−1, C1:t) p (X1:t−1,M|U1:t,Z1:t−1, C1:t) .

(3.51)

As stated above, xt depends only on the immediately proceeding state xt−1 and
the applied control ut, and is independent of the observations allowing us to drop
irrelevant condition variables

p (X1:t,M|U1:t,Z1:t−1, C1:t)

= p (xt|xt−1,ut) p (X1:t−1,M|U1:t−1,Z1:t−1, C1:t−1) .

(3.52)
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Inserting Equation 3.50 and Equation 3.52 into Equation 3.49 and recursively ap-
plying the Bayes rule leads to the final definition of the full SLAM posterior:

p (X1:t,M|U1:t,Z1:t, C1:t)

= η p (xt|xt−1,ut) p (zt|xt,M, ct) p (X1:t−1,M|U1:t−1,Z1:t−1, C1:t−1)

= η p (x1,M)
∏
t

p (xt|xt−1,ut) p (zt|xt,M, ct)

= η p (x1) p (M)
∏
t

p (xi|xt−1,ut) p (zt|xt,M, ct)

= η p (x1) p (M)
∏
t

p (xt|xt−1,ut)
∏
i

p
(
zit|xt,M, cit

)
.

(3.53)

Here, p (xt|xt−1,ut) is known as the motion model which describes state transi-
tions of the robot in terms of a probability distribution. The term p

(
zit|xt,M, cit

)
on the other hand denotes an observation model which models an observation zit
of a known feature from a known pose and a known map as a probability distri-
bution. Both models have been studied well for a variety of robots and sensors
[Thrun et al., 2005]. The two prior terms p (x1) and p (M) characterize prior dis-
tributions of the first robot pose and of the map respectively. Usually p (x1) is
used to anchor the initial pose to a fixed location. The map prior p (M) is typ-
ically assumed to be unknown and subsumed into the normalizer η. Finding the
most probable solution to the full SLAM problem is the process of finding the set
of poses X̂1:t and the map M̂ that maximizes the posterior probability of Equa-
tion 3.49:

X̂1:t,M̂ = argmax
X1:t,M

p (X1:t,M|U1:t,Z1:t, C1:t) . (3.54)

A significant limitation of SLAM algorithms of this form lies in the necessity
to select appropriate landmarks. By reducing the sensor data to a representation
by landmarks, most of the information originally retrieved is usually discarded.
Another critical issue which arises from using discrete landmarks in SLAM is the
problem of data association. Before fusing data into the map, new measurements
are associated with existing map landmarks. This step has been proven crucial in
practical SLAM implementations.

3.4.2 SLAM with Map Priors

SLAM remains a challenging problem mostly due to intrinsic limitations of sensor
systems. Specifically, highly structured environments with recurring patterns or
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plain and featureless environments often cause great problems in the early stages
of SLAM algorithms, namely the landmark extraction and data association. We
believe, that incorporating simple priors about the environment enables a robot to
reason better about the environment. Creating an exact probabilistic model of all
potential environments is not feasible and probably not even well defined, but in
most cases, assumptions are reasonable. For example, assuming the existence of
smooth manifolds instead of randomly distributed surfaces is a reasonable model.

In the following, we introduce prior expectations on typical environments into
SLAM by means of suitable a priori distributions p(M). First, we want to elimi-
nate the notion of landmarks. In the previous formulation it was assumed that the
correspondences C1:t are known beforehand, which permits a unique assignment
of an observation zit to a landmark mi. However, in practical SLAM implemen-
tations, this becomes a demanding task since correspondences between measure-
ments taken at different time instances are non-unique, and the imposture thereof
is a main source of deteriorated results for many SLAM implementations. There-
fore, we consider the measurements directly without extraction of any landmarks
and assume no immediate correspondences between measurements: For example,
a mobile robot equipped with a lidar, which takes a finite number of measurements
while it is in motion, is very unlikely to measure the exact same spot twice.

Here are the key modifications to the original SLAM formulation proposed in this
thesis:

1. Each observation zit stems from a unique feature in the map; no feature is
seen twice. Hence, no correspondences between observations and known
features are assumed.

2. Instead, a map prior p (M) is incorporated to guide the estimation of the
robot’s pose and the map.

The new posterior for this formulation is:

p (X1:t,M|U1:t,Z1:t)

= η p (x1) p (M)
∏
t

[
p (xt|xt−1,ut)

∏
i

p
(
zit|xt,M

)]
.

(3.55)

A graphical model of this new formulation is presented on the right side of Fig-
ure 3.12. Our modifications have some interesting implications. First, the state
space of our optimization problem is significantly larger than in landmark based
approaches because of the one-to-one correspondence of measurements and map
features. For the optimization of Equation 3.55 a good map prior is vital. This
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is due to the way the observation model, the motion model, as well as the prior
of the first pose in Equation 3.55 considered independently are best explained by
the measurements themselves. Only the map prior introduces statistical dependen-
cies of map features and measurements. An optimization of Equation 3.55 will
move points locally to comply with the map’s prior model. This is fundamentally
different from ICP-style rigid alignment techniques where only the robot pose is
optimized. The point motion will be constraint due to the dependence of measure-
ment and pose. In fact, a movement of a point will create a counter potential for
the point and for the corresponding pose to comply with the measurement model.
In other words, maximizing the posterior probability Equation 3.55 will lead to a
set of poses and map features that best explain the measurements as well as the
prior model. In the following sections, we will discuss the different components
of Equation 3.55 in more detail.

3.4.3 Probabilistic Motion Model

The first term of Equation 3.55 is the motion model. Here we assume that we have
some measurements of the relative motion of the robot. Most common are odom-
etry measurements, which are obtained by integrating wheel encoder information;
most robots make such measurements available in periodic intervals. If the odom-
etry measurements where perfect, we could simply calculate the robot’s pose at
any time by integrating over all measurements up to that time. Let ut = xt	xt−1

be the relative pose between the robot current pose t and the robots last pose t− 1
as measured by the odometry. Consequently, the current pose is obtained by:

xt = xt−1 ⊕ ut (3.56)
= (xt−2 ⊕ ut−1)⊕ ut (3.57)
= x1 ⊕ u2 ⊕ u3 ⊕ . . .⊕ ut . (3.58)

Here, ⊕ and 	 are pose compounding operations; refer to Appendix 8.2 for more
details. In reality the odometry measurement suffers from drift and slippage. We
assume that the odometry measurements are governed by a so-called probabilistic
motion model p (xt|xt−1,ut), which specifies the likelihood that the robot has the
current pose xt given that it previously was at xt−1, and the motion ut was mea-
sured. Few publications describe and characterize the uncertainty in motion mea-
surement; for example [Roy and Thrun, 1998] and [Eliazar and Parr, 2004] sug-
gest decomposing the motion into the distance traveled by the robot and the turn
performed. Here, we simply model the motion measurement as a random variable
with a zero-centered distribution with finite variance. Let us assume the actual
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measurements are given by a pose increment:

ũt =



x̃u
ỹu
z̃u
φ̃u
θ̃u
ψ̃u

 =


xu
yu
zu
φu
θu
ψu

+


4xu
4yu
4zu
4φu
4θu
4ψu

 =


xu
yu
zu
φu
θu
ψu

+N6

(
, Σ̆u

)
, (3.59)

where Σ̆u is the noise covariance matrix. A better model of the actual measure-
ment is thus

x̃t = xt−1 ⊕ (ut +4ut) (3.60)
≈ xt−1 ⊕ ut︸ ︷︷ ︸

:=g(xt−1,ut)

+N6 (,Σu) . (3.61)

Here, Σu is the covariance matrix which can be derived by calculating a trans-
form matrix Vt that approximates the mapping between the motion’s noise in the
relative frame and the motion’s noise the current pose frame

Σu ≈ VtΣ̆uV
T
t . (3.62)

The matrix Vt corresponds to the derivative of g (xt−1,ut) with respect to ut:

Vt =
∂g (xt−1,ut)

∂ut
= Jut⊕ {xt−1,ut} (3.63)

with Jut⊕ {xt−1,ut} being the Jacobian of the pose compound operation. Refer
to Appendix 8.2.2 for a derivation of this Jacobian. Now, we can form a Gaussian
probability distribution modeling the motion:

p (xt|xt−1,ut)

∝ exp

{
1

2
(xt − g (xt−1,ut))

T
Σ−1
u (xt − g (xt−1,ut))

}
.

(3.64)

3.4.4 Probabilistic Observation Model

In the 3D world, range sensors measure the 3D coordinates of a surface point
mi =

(
mx my mz

)T
. The beam model approximates the physical properties of

a range measurement by simply stating that range finders measure a distance rm
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along a beam which originates at the origin of the sensor’s local coordinate system
[Thrun et al., 2005]. The angular orientations of the sensor beam are denoted as
the azimuth angle θm (x-y plane) with 0 < θm < 2π and the polar angle φm (z
axis) with 0 < φm < π. This definition corresponds to spherical coordinates, also
called spherical polar coordinates [Arfken, 1985]. We denote

zit =

rmθm
φm

 (3.65)

to be a measurement of mi. The endpoint of this measurement is now mapped into
the sensor coordinate system via the trigonometric transformationrmθm

φm

 =


√

(mx − x)
2

+ (my − y)
2

+ (mz − z)2

tan−1
(
my−y
mx−x

)
− θ

cos−1
(
mz−z
rm

)
− φ

 , (3.66)

where xt =
(
x y z φ θ ψ

)T
denotes the pose of the sensor in global coordinates.

In reality, range measurements are subject to noise. In case of a laser range finder,
the range measurement is mainly disturbed by variations in the structure of the
measured surface. The light exits the device in form of a cone which creates an
elliptical footprint when hitting a surface. It is not well defined which surface point
is actually measured within this ambiguity ellipse. This may lead to significant er-
rors in the range measurement if the cone overlaps a surface border or a steep ridge.
Also the angular measurements may be subject to noise. Even very small misalign-
ments, such as eccentricities or axis deviations, can lead to errors in the angular
orientation. Error models and specific characterizations of measurement uncer-
tainties are, for example, given in [Deumlich and Staiger, 2002, Gordon, 2008],
[Benet et al., 2002], and [Gutierrez-Osuna et al., 1998] for laser, infrared, and ul-
trasonic range finders, respectively. We assume, the range values and angular
orientations are disturbed by independent noise. We will model this noise by a
zero-centered random variable with finite variance. Let us assume the actual mea-
surements are given by r̃mθ̃m

φ̃m

 =

rmθm
φm

+

εα1

εα2

εα3

 =

rmθm
φm

+N3 (,Σm) (3.67)

and

Σm =

α2
1 0 0

0 α2
2 0

0 0 α2
3

 (3.68)
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is the noise covariance matrix in measurement space. A better model of the actual
measurement is thus

z̃it =

 r̃mθ̃m
φ̃m

 (3.69)

=


√

(mx − x)
2

+ (my − y)
2

+ (mz − z)2

tan−1 (my − y,mx − x)− θ
cos−1

(
mz−z
rm

)
− φ


︸ ︷︷ ︸

h(xt,mi)

+N3 (,Σm) . (3.70)

Now, we can form a Gaussian probability distribution modeling the observation:

p
(
zit|xt,mi

)
∝ exp

{
1

2

(
zit − h (xt,mi)

)T
Σ−1
m

(
zit − h (xt,mi)

)}
.

(3.71)

3.4.5 Prior of the Initial Pose

The prior distribution p (x1) should anchor the intial pose, for example, to the
origin of the global coordinate system. It is easily expressed by a Gaussian distri-
bution

p (x1) ∝ exp

{
1

2
(x1 − x̃1)

T
Σ−1

1 (x1 − x̃1)

}
, (3.72)

where x̃1 is the initial believe in the initial pose. The covariance Σ1 is a matrix
with variances close to zero on the diagonal and zero else.

3.4.6 Spatial Correlation Models

The probability distribution p (M) in Equation 3.55 represents a prior distribu-
tion of all measured scenes. An exact probabilistic model of this distribution is not
feasible and probably not even well defined. Hence, we focus on partial models,
which represent properties of the surface structure. In our approach we use lo-
cally defined spatial correlation models representing two properties: manifoldness
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f (M) and shape g (M). The final prior p (M) is defined as the combination of
both models:

p (M) =
1

η
f (M) g (M) , (3.73)

where η denotes a constant factor, which corresponds to the integral over all other
factors and therefore normalizes p (M) to be a probability density function. In
practice, this factor can be safely omitted as the normalization does not have an
effect on the optimization.

Manifold Model

The intuition of this correlation model is that map observations belong to struc-
tured surfaces in the robot’s environment. This means that for a 3D map the most
probable surface must be a compact, locally connected, two-dimensional mani-
fold, possibly with boundary, and embedded in R3. The first step towards defining
a potential function which captures this property is to compute a tangent plane
associated with each map point mi. A tangent plane is defined by a point oi
and normal ni. For each point, we choose a local neighborhood Nε of varying
diameter (typically ε = 10 . . . 50 points). The center oi is taken to be the cen-
troid of Nε, and the normal ni is determined using principal component analysis
[Hoppe et al., 1992]: the eigenvector with the smallest eigenvalue corresponds to
the normal ni. The projected distance di of the point onto its tangent line is defined
by the dot product:

di = (mi − oi) · ni . (3.74)

Now, we define a Gaussian manifold potential function of the form:

f (M) ∝
∏
i

exp

{
− d2

i

2σ2
M

}
, (3.75)

where σ2
M is the variance of tangent plane distances. This parameter makes it

possible to taylor the optimization to specific types of environments. For ex-
ample, when creating maps of office buildings, one may find a dominant use of
straight and smooth surfaces. Thus the tangent plane distance variance σ2

M will
be set to a small value. In our application this parameter was hand tuned but
[Diebel et al., 2006] demonstrated that prior parameters in a Bayesian framework
such as ours can be determined through supervised learning techniques.

Figure 3.13 illustrates the properties of the manifold correlation model. The data
points are drawn to their corresponding tangent planes. Hence, the most probable
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Figure 3.13: The manifold model uses a fixed neighborhoodNε of points to create
a tangent plane defined by a point oi and the normal ni. The potential is then
modeled as a Gaussian function over the projected distance d to the tangent plane.

arrangement of map points regarding this potential is when all points are located
on a 2D plane embedded in 3D. It should be noted that the manifold potential is
a set of locally supported functions. In other words, each map point is associated
with a plane calculated from the points neighborhood and the size of Nε defines
the region of influence. We allow ε to adapt locally, which makes the requirement
that the data is uniformly distributed over the surface less stringent. To select and
adapt the neighborhood size, we use a kernel density estimator [Parzen, 1962] and
set ε proportional to the computed density.

Shape Model

The shape model addresses consistency of surface orientations. If two surface
regions (c.f. Figure 3.14) belong to the same physical surface, the orientation of
edges representing the same portion should have a consistent orientation. In other
words, we are looking for geometric relations (parallelism, orthogonality) of adja-
cent surface regions since we assume a predominantly rectilinear environment.

A simple approach is to examine the normals of adjacent surface regions. If the
angle is close to one of 0◦, 90◦, 180◦, or 270◦ the shape potential will draw the
points towards a rectilinear case. Such a potential can be defined as follows: Let
mi, mj , and mk be adjacent points in the same surface region. The normal on the
surface region is defined by:

ni =
(mj −mi)× (mk −mi)

‖(mj −mi)× (mk −mi)‖
. (3.76)

Now, let ni and n∗i be the normals on two corresponding surface regions S and
S∗ respectively (c.f. Figure 3.14). Then the shape potential for the 0◦ case has the
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Figure 3.14: The shape potential uses the orientation of adjacent surface regions.
The differences between two corresponding normals ni and n∗i are modeled as
Gaussian functions over the normals differences.

following form:

g0 (M) ∝
∏
{i,j}

exp

{
−1

2
(n∗i − ni)

T
ΣO (n∗i − ni)

}
. (3.77)

Here, ΣO corresponds to a covariance matrix for the orientation of adjacent surface
regions. This covariance matrix was again hand tuned to our application.

We define individual functions for the 90◦, the 180◦, and the 270◦ case, in similar
ways. Ultimately, the shape model is only applied to region pairs that fall within
a small margin of 10◦ normal angle deviation of one of the respective categories.
All other cases will not contribute to the shape potential. The final shape potential
is defined as a product of the individual surface potentials:

fS (M) = g0 (M) g90 (M) g180 (M) g270 (M) . (3.78)

3.4.7 Implementation

In Equation 3.55 we defined a novel probabilistic model for the SLAM problem
and in the previous sections we discussed the different components of this model.
Map and pose are calculated from the Maximum A-Posteriori (MAP) solution of
Equation 3.55. Now we want to focus on a practical implementation to calculate
this solution. Since maxima of Equation 3.55 are unaffected by monotone trans-
formations, we can take the negative logarithm of this expression to turn it into a
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sum and optimize this expression instead

X̂1:t,M̂ = argmin
X1:t,M

p (X1:t,M|U1:t,Z1:t)

= argmin
X1:t,M

− log η − log p (x1)− log p (M)

−
∑
t

log p (xt|xt−1,ut)

−
∑
t

∑
i

log p
(
zit|xt,mi

)
= argmin
X1:t,M

E (X1:t,M) . (3.79)

Finding the most probable solution now reduces to finding the global minimum of
the function E (X1:t,M) which is a sum of log-likelihoods. The term − log η is
constant therefore not relevant for minimizing E (X1:t,M).

Algorithm 1 Calculate
1: for all controls ut do
2: xt ← motion_model (ut,xt−1)
3: for all observations zit do
4: mi ← observation_model

(
xt, z

i
t

)
5: end for
6: end for
7: X1:t,M← global_registration (X1:t,M) % see Section 3.3 for more details
8: repeat
9: create prior model p (M)

10: fix state variables X1:t

11: M← conjugate_gradient_iteration (X1:t,M)
12: fix state variables m1:i

13: X1:t ← conjugate_gradient_iteration (X1:t,M)
14: until convergence

Our Algorithm consists of three main steps: first we use the motion model and the
observation model from Equation 3.58 and Equation 3.66 respectively to calculate
an initial estimate for X1:t andM. Next, an initialization is performed to improve
this estimate. Finally, we use a non-linear conjugate gradient variant to find the
parameters which minimizeE (X1:t,M). An outline of this algorithm is presented
in Algorithm 1.

Unfortunately, the objective function E (X1:t,M) is non-linear and thus finding
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the global minimum is known to be difficult. For this reason, we use a scan align-
ment algorithm prior to the optimization. In particular, we use the global registra-
tion methods which we presented earlier in Section 3.3 in order to create an initial
alignment and a better starting point for our optimization. Our experiments show
that this starting point is usually sufficiently close to the global minimum of E that
the following optimization procedure will converge into the correct solution.

The most probable path and the most probable map are estimated by finding the
global minimum of the function E (X1:t,M). The minimization itself is a high
dimensional and sparse optimization problem. Therefore, the method of non-linear
Conjugate Gradient (CG) is used to find a good solution. A detailed description
of this a method can be found in [Shewchuk, 1994]. In our implementation we
use a modified version of CG which addresses the structure of the state space.
Each CG iteration consists of two sub-optimization steps. First, we fix all pose
state variables and optimize the map feature positions. Next, the map features
are fixed and the positions are optimized. By splitting the optimization in two
steps, we loose the optimality of our solution; however, in practice, this scheme
leads to a better convergence than optimizing all state variables simultaneously.
Each sub-optimization step employs a standard Newton-Raphson line search and
the Fletcher-Reeves formulation to linearly combine the negative gradient of the
function E (X1:t,M) with previous such gradients.

3.4.8 Experimental Results

2D Registration

We start with an application of our non-rigid registration method to 2D mapping.
By setting insignificant state variables to 0, we can modify our approach for the
2D case. For example, the pose of a robot in 2D is defined as:

x2D =


x
y
0
0
0
ψ

 . (3.80)

First, we use synthetic data created in a simulated 2D environment
[Gerkey et al., 2003]. The dataset consists of 16 simulated 360◦ scans with 720
measurements in each scan. The ground truth of the entire dataset and of two de-
tails are depicted in Figure 3.15. This ground truth was then distorted by adding
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Figure 3.15: For the evaluation of our algorithms a synthetic 2D dataset is used.
The first column shows the full dataset, whereas the second and third column de-
pict magnified details. The ground truth (top) was then distorted by adding Gaus-
sian noise (bottom) in order to create a realistic input for all algorithms.

Gaussian noise to the measurements (range and bearing) and to the odometry in
order to create a realistic input for all algorithms. For a comparison, we use a the
variant of the ICP algorithm described in Section 3.2, which incrementally regis-
ters all scans and the global registration described in Section 3.3. The thickness
of walls is a general indication of the error distribution—a divergence of the robot
pose typically results in map distortions, such as bend/double walls, while noise of
the range sensor has a fixed mean and makes walls appear fuzzy and blurred (see
Figure 3.16).

We also assess the algorithm performance by comparing the reconstructed trajec-
tory and the reconstructed map with the available ground truth (see Figure 3.17).
On one hand, ICP is able to align groups of scans correctly, but it fails to create a
globally consistent map. This behavior is expected since ICP is a pairwise align-
ment algorithm. On the other hand, the global registration produces a consistent
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Figure 3.16: Evaluation of our algorithms on a synthetic 2D dataset. The ICP
algorithm yields a good pairwise alignment but results in an inconsistent map
(top). The global registration method (middle) produces a consistent map on the
first glance, but the details reveal fuzzy surfaces (first detail) and small pose error
residuals (second detail). The probabilistic non-rigid algorithm creates a globally
consistent map and is able to eliminate measurement errors almost entirely (bot-
tom).
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Figure 3.17: Absolute pose and map feature errors for the synthetic dataset.

map, although some residual pose errors remain. Both ICP and global registration
adjust robot poses only and therefore feature measurement errors are not corrected.
In contrast, the probabilistic non-rigid registration algorithm creates a globally
consistent map and is able to minimize measurement errors. Figure 3.17 shows
the absolute robot pose and map feature errors and the following table presents the
corresponding first and second moments:

Pose error (m) Map error (m)
Algorithm mean std-dev mean std-dev
ICP 0.597 0.199 0.702 0.238
Global Registration 0.088 0.115 0.115 0.005
Probabilistic Registration 0.035 0.048 0.047 0.002

In the second experiment we use data gathered by a real robot. Here, we use
the fr079 dataset which is publicly available at the Robotics Dataset Repository
(Radish) [Howard and Roy, 2003]. It consists of 4791 scans from a Sick LMS
lidar with odometry pose estimate for each scan. For a comparison we again use
the global registration described in Section 3.3. The reconstruction of the full map
is presented on the right side of Figure 3.18. Both global registration and our
algorithm result in a similar map. One may notice that the walls appear thinner in
the map reconstructed by our algorithm, which quantitatively shows our algorithm
provides a sensible estimation of the robot path. The details on the left side of
Figure 3.18 reveal a significantly better registration of the data. Our algorithm
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Figure 3.18: A comparison of our algorithm to sequential registration with the ICP
algorithm and the global registration on the fr079 dataset. The right side shows the
full dataset, and on the left side, we present magnifications of two details.

performs very well on straight walls since those features are represented best by
our correlation models. Some outliers and smoothed corners are produced on sharp
features since our models are not well defined at corners.

3D Registration

The second experiment shows the full functionality of the non-rigid registration
algorithm in all 6 degrees of freedom. We used data from the data acquisition
system presented in the previous chapter, acquired in an office of Robert Bosch
LLC in Palo Alto. Figure 3.19 depicts two details from this office dataset. The
left side shows the datasets aligned with the global registration method presented
in Section 3.3, the right side presents the results for the probabilistic non-rigid
registration method. The color coding corresponds to the surface distance dS at
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the corresponding points. We define the surface distance as

dS :=
[
(pi − qi) · ni

]2
(3.81)

with the point pi of point cloud P being the closest point to qi of point cloud
Q and ni being the normal vector at point qi. This essentially is the point-to-
plane metric proposed by [Besl and McKay, 1992]. The color coding reveals a
signficant residual registration error of up to 50 mm in both examples. This error
is effectively reduced using the probabilistic non-rigid registration.

3.4.9 Conclusion

In this section, we presented an novel approach for aligning scans in a proba-
bilistic and non-rigid fashion. We used a map representation which stores all ob-
servations as unique features in this map. Instead of assuming correspondences
between observations like it is done in traditional SLAM approaches, we incor-
porated two spatial correlation models as map priors to guide the optimization.
With this approach, we formulated the full SLAM problem as a maximum a-
posteriori estimation problem which we optimized using a nonlinear conjugate
gradient method. Scans are aligned by optimizing the robot’s pose as well as by
optimizing the measurements. This non-rigid alignment is fundamentally different
from ICP-style rigid alignment techniques where only the robot pose is optimized.
The measurement point motion will be constrained due to the dependence of mea-
surement and pose. In fact, a movement of a measurement point will create a
counter potential for the point and for the corresponding pose to comply with the
measurement model. Finally, we demonstrated the performance of our algorithm
on synthetic data and on large real-world datasets. Our framework efficiently han-
dles a large number of scans comprising millions of samples. In comparison to the
rigid-registration methods, we demonstrate with a number of 2D and 3D datasets
that our non-rigid registration significantly improves the alignment quality.
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(a) Global registration. (b) Probabilistic registration.

(c) Global registration. (d) Probabilistic registration.

Figure 3.19: Comparison of 3D registration algorithms: Global registration (left)
and probabilistic non-rigid registration (right). The enlarged details demonstrate
that using our probabilistic non-rigid method results in a more accurate registra-
tion: The registration error visualization reveals a slight miss-alignment for the
ICP registered dataset, while our non-rigid technique results in a good alignment
over the whole surface.
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4 Surface Reconstruction

4.1 Introduction

An efficient processing of 3D maps demands – just like in any other field of
computer science – the design of suitable data structures. At first glance, one
might simply generate 3D maps by generalizing well known 2D map structures
like grid maps to the third dimension. The resulting growth of the computational
cost for accessing, modifying, and storing the map will be immense. If we store
the occupancy evidence as single bytes, then an evidence grid with 1024 cells
along each dimension requires a megabyte of memory in 2D and a gigabyte in
3D. Since most cells will remain empty, data structures that represent surfaces
only are more suitable. In the past, various approaches for modeling environ-
ments in 3D more efficiently have been proposed. Point clouds, elevation maps
[Hebert et al., 1989], multi-level surface maps [Triebel et al., 2006], and octree

Figure 4.1: Given a set of registered scans, a surface reconstruction algorithm re-
constructs a parametric surface that closely approximates the original surface. The
left image shows a point cloud of 17K points sampled on a statue of an elephant
and the right image presents the reconstructed surface mesh.
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structures [Wurm et al., 2010] are some examples.

Typically, 3D maps are further processed (e.g., denoising, segmentation, classifi-
cation) to obtain a more appropriate parametric representation. The most common
parametric description of surfaces are piecewise linear surface models with poly-
gons (e.g., triangles, quadrilaterals). Such a description allows the definition of
surface attributes (normals, gradients) and they are well suited for fast rendering,
efficient data reduction, and collision testing. For these reasons we have selected
a triangle mesh as our basic world representation.

The input data for the surface reconstruction process is given as a point cloud
P = {pi} which is a set of 3D points pi ∈ R3 stemming from a sampling process
such as a 3D scanner. The goal of the surface reconstruction is then to reconstruct
a parametric 2D manifold embedded in 3D space which closely approximates the
true surface. Figure 4.1 presents an example for such a surface reconstruction. We
define the resulting parametric surface as follows:

Definition 4.1.1 (Parametric surface). A parametric surface is defined by a vector-
valued function f : Ω → S , that maps a two-dimensional parameter domain
Ω ∈ R2 to the surface S = f(Ω) ⊂ R3.

In this thesis, the parametric surface is defined as a triangle mesh:

Definition 4.1.2 (Triangle mesh). A triangle mesh M =
{
V,F

}
is defined as

a graph structure (simplicial complex) with a set of vertices: V =
{
v1, . . . , vV

}
;

and a set of triangular faces connecting them: F =
{
f1, . . . , fF

}
, fi ∈ V×V×V .

Equivalent is a topological representation in terms of the edges of the respective
graph: E =

{
e1, . . . , eE

}
, ei ∈ V × V .

In a triangle mesh, each triangle defines, via its barycentric parametrization, a
linear segment of a piecewise linear surface representation. We define a mesh
to be 2-manifold, which is the case if the surface is locally homeomorphic to a
disk (or a half-disk at boundaries) for each vertex. This is the case for a triangle
mesh in case it neither contains non-manifold edges, nor non-manifold vertices,
nor self-intersections. A non-manifold edge has more than two incident trian-
gles and a non-manifold vertex is generated by pinching two surface sheets to-
gether at that vertex, such that the vertex is incident to two fans of triangles. See
[do Carmo, 1976] for more details.

Artifacts of the data acquisition process as well as complex surface topologies pose
great challenges for the design of surface reconstruction algorithms. Specifically,
we need to consider the imperfection of the sensing system. The sampling of the
true surface may be uneven and noisy while the surface itself may have features
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Figure 4.2: Surface reconstruction from scanned point clouds is a difficult task.
The sampling of the true surface may be uneven and noisy while the surface itself
may have a difficult topology such as thin surfaces or small features.

hardly more elevated than the sensor noise, features close to the sampling interval,
and a complex topology. Figure 4.2 depicts some examples which often occur in
real world datasets. We can summarize the following problems a surface recon-
struction algorithm needs to address:

1. The size of the point cloud and so the number of input points P for the
reconstruction can be very large, especially since many viewpoints are re-
quired to capture the entire scene. Therefore, a reconstruction algorithm to
scale well with large datasets.

2. The scene may contain a variety of objects, which introduce occlusions and
depth discontinuities. An algorithm needs to reliably reconstruct the cor-
rect surface topology in the presence of a considerable amount of noise and
occlusions.

3. The scene may contain features at varying scales: large surfaces like walls,
floors or columns, as well as small objects with a size close to the noise level.
Therefore, a multi-resolutional representation of the reconstructed surface
mesh is advantageous, using less triangles for smooth areas but keeping the
detail of small features.

Previous approaches to surface reconstruction can be roughly put into three cate-
gories: volumetric approaches, combinatorial approaches, and global fitting ap-
proaches.
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Pioneered by the work of [Hoppe et al., 1992], volumetric approaches always
start with a simple scheme to estimate tangent planes and to define an im-
plicit function as the signed distance to the tangent plane of the closest
point. Signed distances can also be accumulated into a volumetric grid
[Curless and Levoy, 1996]. Afterwards, a triangulation algorithm, such as march-
ing cubes [Lorensen and Cline, 1987], is employed to reconstruct the surface at the
zero level-set of the implicit function. These approaches rely on oriented points as
input, which may be difficult to obtain from scanning devices. More recently, an
implicit surface reconstruction method based on Fourier desciptors was developed
by [Kazhdan, 2005]. The advantage to this method is that the reconstructed surface
is smooth, and noise as well as gaps in the data are handled robustly. However,
computing even a single Fourier coefficient requires a summation over all input
samples since the basis functions are globally supported. This was later modi-
fied in [Kazhdan et al., 2006]. The modification utilizes an octree and finds the
implicit function by solving a Poisson equation yielding a much more computa-
tional tractable and memory efficient algorithm [Bolitho et al., 2007]. The method
of [Kazhdan et al., 2006] is one of the most promising approaches for large scale
3D reconstruction. It will serve as basis for our approach that extends the original
method using bilateral filters and a subsequent data driven optimization.

The second category approaches the problem of surface reconstruction from
the computational geometric point of view. Several algorithms are based on
combinatorial structures, such as Delaunay triangulations [Boissonnat, 1984,
Kolluri et al., 2004] or Voronoi diagrams [Amenta et al., 2001]. These schemes
typically create a triangle mesh that interpolates all or most of the points. The
computational geometric approaches typically perform poorly under the influence
of noise and are, therefore, not well suited for our data. The resulting surfaces are
often jagged and have to be smoothed [Kolluri et al., 2004] in subsequent process-
ing.

Algorithms in the third category, called surface fitting methods, approach the re-
construction problem by deforming a base-model to optimally fit the input sam-
ple points [Terzopoulos and Vasilescu, 1991, Chen and Medioni, 1995]. These ap-
proaches represent the base-shape as a collection of points with springs between
them and adapt the shape by adjusting either the spring stiffnesses or the point
positions as a function of the surface information. As with the computational ge-
ometric approaches, these methods have the advantage of generating a surface
whose complexity is on the order of the size of the input samples. However, these
methods tend to be of limited use for our application as the topology of the recon-
structed surface needs to be the same as the topology of the base shape. This limits
the class of models that can be reconstructed using this method. Other global fit-
ting methods commonly define an implicit function as the sum of Radial Basis
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Figure 4.3: Triangulated range data in 2D grid becomes a 3D mesh. Depth dis-
continuities will cause wrong connections.

Functions (RBF) centered at the points [Carr et al., 2001]. However, ideal RBFs
(polyharmonics) are globally supported and nondecaying, leading to a complexity
that is quadratic in the number of basis functions. For our datasets, which have a
large number of data points and a complex topology, surface fitting methods are
not well suited.

4.2 Direct Polygonal Meshing of Range Images

The scanning process already lays out the 3D input points in a grid like structure
referred to as range image. Each data point in this range image is represented
by a depth value associated with the laser beam’s two polar angles (φ,θ). An in-
tuitive approach for reconstructing a surface is a triangulation of the grid points.
Similar procedures have been proposed by [Turk and Levoy, 1994, Curless, 1997,
Levoy et al., 2000]. A 3D mesh is created by connecting a point in the range image
with two of its neighbors in each angular direction which yields a triangulation in
the 2D range image space (see Figure 4.3). Since we know the corresponding 3D
position in space for each range image point, the 2D triangulation can be easily
transfered into a 3D mesh. If the scanned surface is perpendicular to the scanning
direction, the triangles in 3D space will be isosceles. As the angle to the surface
decreases, the triangles become more elongated and depth discontinuities produce
very long and thin triangles. Since triangle edges may span over depth disconti-
nuities, a plausibility check has to be performed. By thresholding the edge length
and the dihedral angles, potentially bad triangles can be detected and removed.

The triangulation procedure is performed for each scan individually leading to a
set of meshes with overlapping areas. We integrate the overlapping areas to reduce
the size of the resulting model and to obtain a single consistent mesh representa-
tion. This is a difficult task even for noise free meshes. There is an exponential
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Figure 4.4: Overview of our Volumetric Surface Reconstruction approach. The
input data points are used to define a signed distance function. A mesh is recon-
structed by triangulating the zero-set of this function.

number of ways to connect two triangulated surfaces; however, only a few are ac-
ceptable. The Polygon Zippering [Turk and Levoy, 1994] algorithm removes over-
lapping portions of meshes, clips one mesh against another, and finally removes
small triangles introduced during clipping. This approach is rather inefficient if
there is a significant overlap between individual views since meshes are stitched
over and over again. Another shortcoming in algorithms of this type is that over-
lapping measurements of a surface area are considered redundant and are therefore
discarded in the process. Ideally, we would like to use all available data to recon-
struct the surface.

4.3 Volumetric Surface Reconstruction

The algorithm described in the following does not make any prior assumptions
about connectivity of points. Our algorithms is a volumetric approach for surface
reconstruction that is more efficient than a direct polygonal meshing in situations
where multiple scans are taken of the same surface; see [Curless and Levoy, 1996,
Davis et al., 2002] for examples of volumetric surface reconstruction algorithms.
Figure 4.4 depicts an overview of our algorithm. The basic idea of our volumetric
surface reconstruction is using the input data points to define an signed distance
function and compute its zero-set. The surface is therefore regarded as a level
surface of an implicit function defined over the entire embedding space. The first
step is concerned with estimating the signed distance function. This is done by
discretizing the input points into an octree grid that is used to efficiently represent
a smoothed normal field. The distance function is then estimated by solving a
Poisson equation using the smoothed normal field. Finally, a mesh is reconstructed
by triangulating the zero-set of this function at the octree grid cells.
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(a) Oriented points V . (b) Signed distance function ζ.

(c) Implicit surface S .

Figure 4.5: A set of oriented points (top left) is transformed into a signed distance
function (top right). The zero-set of the signed distance function (bottom) is a
good estimate of the true surface.

4.3.1 Signed Distance Function Estimation

Consider the function ζ : R3 → R of a set V in a metric space which determines
how close a given point x ∈ R3 is to the boundary of V . The function has positive
values at points inside V , it decreases in value as x approaches the boundary of V
where the signed distance function is zero, and it takes negative values outside of
V . The implicit surface S is then defined as a zero-set of this (scalar) function S :
ζ (x) = 0. An implicit surface that represents the measurement data well is found
if the volumetric field function ζ (x) is smooth and the zero-set approximates the
real surface as closely as possible. Figure 4.5 presents an example for surface
reconstruction using a signed distance function.

Instead of a signed distance function we seek to calculate a 3D indicator function
χwith χ being defined as 1 for points inside the model, and 0 for points outside the
model. [Kazhdan et al., 2006] have shown that there exists an integral relationship
between points sampled from a real surface and this indicator function. Specifi-
cally, they found that the problem of finding the indicator function can be reduced
to finding the scalar function χ whose gradient best approximates the vector field
V defined by oriented points from the scans (see Figure 4.6).

The gradient vectors of χ would be unbounded at the surface, which may lead
to numerical instabilities. Therefore, the indicator is convolved with a smoothing
filter F and instead the gradients of the smoothed function are considered. One can
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(a) Indicator function χ. (b) Indicator gradient∇χ.

Figure 4.6: The 3D indicator function and its gradient vector field.

show [Kazhdan et al., 2006] that the gradient of the smoothed indicator function is
equal to the smoothed surface normal field:

∇ (χ ? F ) (q) =

∫
S

F (q)NS (p) dp (4.1)

Here NS (p) corresponds to the surface normal at p ∈ S . If we now partition S
into distinct patches Ppi

,each corresponding to a point sample pi, we can approx-
imate the integral over the patch by the value at the point sample:

∇ (χ ? F ) (q) =

∫
S

F (q)NS (p) dp (4.2)

=
∑
pi∈P

∫
Ppi

F (q)NS (p) dp (4.3)

≈
∑
pi∈P

|Ppi
|Fpi

(q)Npi
(p) dp ≡ V (q) . (4.4)

Now we want to find the function χ̃ which is an approximation of the smoothed
indicator function such that ∇χ̃ = V. Since V is generally not integrable, we
apply the divergence operator which yields a standard Poisson problem:

4χ̃ = ∇ · ∇χ̃ = ∇ ·V . (4.5)

Equation 4.5 can be solved by discretizing the 3D space into a regular n×n×n grid
G and using this grid as a space of functions. This results in memory requirements
growing cubically with the resolution which becomes impractical very quickly.
Fortunately, the indicator function is piecewise constant (1 inside and 0 outside)
and changes only around the boundary. Therefore, an octree can be used to get an
accurate representation of the indicator function near the boundary. In this case,
the required memory grows only approximately quadratic.
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(a) Gaussian filter kernel. (b) Bilateral filter kernel at p.

(c) Noisy input data. (d) Result of Gaussian fil-
ter.

(e) Result of bilateral fil-
ter.

Figure 4.7: The bilateral filter smoothes the input data (here 1D) while preserv-
ing its edges. Each point is replaced by a weighted average of its neighbors. The
filter weighs each neighbor by a spatial component, which penalizes its Euclidean
distance, and a normal component, which penalizes the difference in normal vec-
tors. The combination of both components ensures that only nearby similar points
contribute to the final result.

For each grid cell c ∈ G, we set Fc : R3 → R to be the smoothing function
for a local patch. We choose Fc to be a bilateral filter [Aurich and Weule, 1995,
Tomasi and Manduchi, 1998, Jones et al., 2003] centered at the cell’s centroid:

Fc (q) =
1

wq

∑
i∈Nc

Gσs (‖oc − q‖)Gσr (|nc · ni|) ni , (4.6)

where Gσ (·) denotes a Gaussian kernel, nc is the cell’s normal vector, oc is the
cell’s centroid, and Nc is a set of the neighboring cells of c. The normalization
factor wq is defined as:

wq =
∑
i∈Nc

Gσs
(‖oc − q‖)Gσr

(|nc · ni|) . (4.7)

The parameters σs and σr are parameters controlling the fall-off of weights in
spatial and normal domains, respectively. Similarly to the Gaussian convolution,
the bilateral filter of Equation 4.6 is a normalized weighted average whereGσs

is a
spatial Gaussian that decreases the influence of distant cells. Gσr

corresponds to a
range Gaussian that decreases the influence of cells iwith a normal vector different
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Figure 4.8: The 15 unique configurations of corner classifications in the marching
cubes algorithm. Triangle vertices are formed on edges of a cube where one corner
of the edge is classified as being inside the surface (marked yellow) while the other
corner of the edge is classified as being outside.

from nc. See Figure 4.7(b) and Figure 4.7(a) for exemplary filter responses. The
main difference between this and a Gaussian filter is that the bilateral filter takes
the variation of normals into account in order to preserve edges. Figure 4.7 shows
a sample output of the bilateral filter compared to a Gaussian filter.

To make the computation tractable, two Gaussians Gσs
and Gσs

are approximated
by the n-th convolution of a box filter with itself scaled by the variance:

Gσ (x) ≈ B (x)
?n with B(t) =

{
1 |t| < 0 5

0 otherwise
. (4.8)

This limits the support for G to the domain [−1 5,1 5] for n = 3 and therefore
the number of cells whose function overlap. An advantage of this approximation
is that the basis functions are defined only locally. This leads to a sparse system
when optimizing Equation 4.5 which can be solved very efficiently.

Once the smoothed vector field is defined for each grid cell, the gradient field of the
indicator function defined in Equation 4.5 can be efficiently represented as linear
sum of all grid cell functions. Finally, the indicator function χ is solved such that
the gradient of χ is closest to V. Refer to [Kazhdan et al., 2006] for more details.

4.3.2 Iso-Surface Triangulation

Once we have computed the indicator function χ, we can obtain the reconstructed
surface S̃ by extracting the zero-set (iso-surface) of χ. We use a variation of the
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marching cubes algorithm [Lorensen and Cline, 1987]. This method creates ver-
tices at zero-crossings of χ along edges of the octree leafs. The vertices are con-
nected to triangles such that a continues manifold along S is formed.

The basic principle behind the marching cubes algorithm is to subdivide space into
a series of small cubes. The algorithm then marches through each of the cubes
evaluating the indicator function at the corner points and replacing the cube with
an appropriate set of polygons.

If the corners of all grid cells in G are classified as either being below or above the
zero-set (by evaluating χ), there are 28 = 256 possible configurations of corner
classifications. Two of the configurations are trivial: grid cells where all points
are above or below the zero-set. In those cases the cube will not contribute to the
surface. For all other configurations it is determined where along each cube edge
the iso-surface crosses, and use these edge intersection points to create one or more
triangular patches for the iso-surface. Accounting for symmetries, there are only
15 unique configurations of triangles which are presented in Figure 4.8.

Now, surface patches for all cubes can be created for the entire volume. For neigh-
boring cubes edge intersections are propagated between cubes which share the
edges. This results in a compact triangle meshM.

Figure 4.9 shows the result of iso-surface extraction with the marching cubes algo-
rithm for different grid resolutions. The selection of an appropriate grid resolution
is important for a good reconstruction. A coarse grid will lead to a low-pass fil-
tered geometry Figure 4.9(a) while a cell size in the order of the sensor resolution
(here 10mm) will reveal quantization noise as circular patterns on flat surfaces
Figure 4.9(c).

4.4 Surface Optimization

In the previous section, we presented an algorithm to reconstruct a parametric
surface from a set of unorganized points. As a result, we obtained a mesh which
approximates the true surface and its topological type. With the knowledge of the
surface topology and given the original point cloud P , the mesh M̃ will now be
optimized to improve reconstruction accuracy. The optimization is guided by the
following three constraints:

1. The mesh should perfectly fit the set of data points.

2. The topology of the mesh should remain the same.

3. The optimized surface should be a faithful approximation of the real surface.
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(a) Grid size 200mm.

(b) Grid size 50mm.

(c) Grid size 10mm.

Figure 4.9: Iso-surface reconstruction using the marching cubes algorithm
[Lorensen and Cline, 1987]. Each row corresponds to a reconstruction with a cer-
tain grid size. The left column shows the visited cells during the iso-surface ex-
traction, and the right column shows the rendered triangle mesh.
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To combine the three constraints, we formulate the surface optimization as an en-
ergy minimization problem and define the following energy function:

E
(
M̃,P

)
= κ1Efit

(
M̃,P

)
+ κ2Etopology

(
M̃
)

+ κ3Esmooth

(
M̃
)
,

(4.9)

which we seek to minimize in order to find an optimized surface representation:

M = min
M̃,P

E
(
M̃,P

)
. (4.10)

The three potential functions forming this continuous optimization problem can be
thought of as springs applying forces to the vertex locations. The fitting potential
Efit wants to move the vertices in a direction that minimizes the distance of the
data point to their closest triangle which improves the accuracy of the surface
reconstruction. The topology potential Etopology penalizes large deformations of
triangles and therefore preserves the originally reconstructed topology. The last
potential Esmooth is a smoothing term which prevents over-fitting and yields a
smooth surface. Figure 4.10 illustrates the potential functions.

4.4.1 Fitting Potential

The first potential Efit evaluates the distance of each point input point pi to the re-
constructed mesh (see Figure 4.10(a)). If the reconstructed surface would perfectly
fit the input data, all points would be part of this surface. This potential wants to
move the vertices in a direction that minimizes the distance of the data points to
their closest triangle, which improves the accuracy of the surface reconstruction.
The same potential function was previously suggested in [Hoppe et al., 1993].
As pointed out in their work, we are only considering piecewise linear surfaces
(meshes) and the data points themselves are noisy, there is a limit to the accuracy
that we can achieve.

We define the fitting potential Efit as:

Efit

(
M̃,P

)
=
∑

pi∈M̃

di

(
pi,M̃

)
, (4.11)

where di
(
pi,M̃

)
is the distance of a point pi to a mesh M̃ = {V,F}. This

distance is the minimal distance of pi to all faces fj ∈ F :

di

(
pi,M̃

)
= min
fj∈F

‖pi − ξ (fj ,pi)‖2 , (4.12)
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(a) Fitting potential. (b) Topology potential.

(c) Smoothness potential.

Figure 4.10: Potential functions used for the surface optimization. The fitting
potential (right) brings the surface close to the data points it was sampled from
the topology potential (middle) penalizes large deformations in the surface geom-
etry. The smoothness potential smoothes the reconstruction by preferring locally
consistent surface normals.

where ξ
(
fj ,pi

)
is a function which returns the closest point to pi on the triangle

fj . This function is more difficult than it appears at the first glance since the point
pi could be closest to the plane of the triangle, closest to an edge or closest to a
vertex. As a first step, the projection of pi into the triangle plane is calculated. Let
p1, p2, and p3 be the vertices and n the normal vector of a triangle face fj :

n =
(p2 − p1)× (p3 − p1)

|(p2 − p1)× (p3 − p1)|
. (4.13)

The projection p′i is defined as:

p′i = pi + dn (4.14)

where d is the scalar distance of pi to the triangle plane:

d = ‖p1 − pi‖ cosα (4.15)
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(a) Point to triangle distance. (b) Barycentric coordi-
nates.

Figure 4.11: The distance of a point pi to a triangle face is defined as the length
of the vector that connects pi to the closest point on the triangle. Barycentric
coordinates are used to determine the position of this point.

with α being the angle of the normal n and the vector p1 − pi:

cosα =
(p1 − pi) · n
‖p1 − pi‖

. (4.16)

In the trivial case that p′i falls inside the triangle fj , the closest point is p′i. If
instead p′i falls outside the triangle, the distance to the triangle is the distance to
the closest edge or to the closest vertex. In order to determine if p′i is inside/outside
the triangle, and if it is outside, which edge/vertex p′i is closest to, we calculate the
barycentric coordinates [Coxeter, 1969]. The barycentric coordinates of the point
p′i with respect to the vertices p1, p2, and p3 of the triangle fj are a triplet of
values, {b1, b2, b3}, such that p′i = b1p1+b2p2+b3p3, with b1+b2+b3 = 1. One
can show that b1, b2, and b3 are proportional to ratios of specific (signed) triangle
areas. If |p1p2p3| denotes the signed area of the triangle (given counter-clockwise
in that specific order), we can use Cramer’s rule which states that determinants
correspond to signed areas:

|p1p2p3| = det

(
p1 p2 p3

1 1 1

)
. (4.17)

Then, the barycentric coordinates are simply calculated by the ratios of the triangle
areas:

b1 =
|p′ip2p3|
|p1p2p3|

, b2 =
|p′ip3p1|
|p1p2p3|

, b3 =
|p′ip1p2|
|p1p2p3|

. (4.18)
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Now, we can distinguish the following cases:

1. p′i lies inside the triangle if b1, b2, and b3 are positive.

2. p′i lies on a triangle edge if one coordinate is zero while the other coordinates
are positive. E.g., b1 = 0 means the point lies on the edge {p2,p3}.

3. p′i falls together with a triangle vertex if two coordinates are zero leaving
the third coordinate to 1. E.g., the coordinates {1, 0, 0} correspond to the
point p1.

4. p′i lies outside the triangle and the closest point is one of the triangle’s ver-
tices in case two coordinates are negative while the the other coordinates is
positive. E.g., b2 < 0 and b3 < 0 means the closest vertex is p1.

5. p′i lies outside the triangle and the closest point lies on an edge in case one
coordinate is negative while the the other coordinates are positive. E.g.,
b1 < 0 means the closest edge is {p2,p3}.

In the last case (5), we need to project pi orthogonally onto the corresponding
edge. Let’s assume the edge is between p1 and p2, then the closest point is defined
by:

p′i = p1pi −
(
p1pi · p2p1

)
p2p1 (4.19)

with

p1pi = p1 − pi and (4.20)

p2p1 =
p2 − p1

‖p2 − p1‖
. (4.21)

Finally, we can define the function ξ (fj ,pi) which returns the closest point to pi
on the triangle fj based on the cases stated above.

4.4.2 Topology Potential

The second potential Etopology preserves the originally reconstructed topology.
The goal is to prevent the triangle edges from diverging arbitrarily from the original
reconstruction by penalizing changes in triangle edges. We define the topology
potential Etopology as:

Etopology

(
M̃
)

=
∑
vi∈V

∑
vj∈N1(vi,V)

‖vi − vj − ei,j‖2 , (4.22)
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where ei,j corresponds to the edge vector ṽi − ṽj before the optimization.
N1 (vi,V) is the one-ring vertex neighborhood of vi.

4.4.3 Smoothness Potential

The third potential Esmooth is a ’weak’ smoothness prior. The desired effect is to
create an optimized mesh that has a smooth curvature and enhanced sharp features
at the same time. With this potential, we seek to adjust the vertices in such a way
that the face normals of adjacent triangles match. In prior work [Levin et al., 2003,
Diebel et al., 2006], sub-quadratic potentials of the form ‖ni − nj‖p with p < 2
were suggested to smooth the mesh while enhancing features such as edges. In
comparison, the quadratic function p = 2 tends to over-smooth the edges and
remove fine features from the mesh. Here, we adapt the square-root potential
proposed by [Diebel et al., 2006]:

Esmooth

(
M̃
)

=
∑
fi∈F

∑
fj∈N1(fi,F)

√
(ni − nj)

T
(ni − nj) , (4.23)

where ni and nj are face normals as previously defined in Equation 4.13. In this
case N1 (fi,F) is the one-ring face neighborhood of fi.

4.4.4 Optimization

Finding an optimal surface mesh M according to Equation 4.10 results in a sparse
non-linear energy minimization problem for which a rich family of efficient algo-
rithms exists. The problem is sparse since only local neighborhoods (one-rings) are
used, and non-linear since both Esmooth and Efit require non-linear optimization
of the vertex positions. The term Efit requires a discrete optimization for finding
the data point closest to a face. Those correspondences are updated after each it-
eration of the energy optimization. Only Etopology is a true quadratic-potential,
and we noted that alongside its main purpose of topology preservation, it also acts
as a regularizing term that helps to guide the optimization into a desirable local
energy. As the optimization converges to the solution, the weight κ2 of this po-
tential is gradually reduced. This helps to locally adjust the mesh vertices for a
tighter fit. In order to optimize Equation 4.10 we can leverage existing optimiza-
tion algorithms to perform the minimization. Here we use the non-linear variant of
conjugate gradient (CG) algorithm which can be found in contemporary textbooks
[Shewchuk, 1994].
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Figure 4.12: The fandisk test dataset [Hoppe, 1993]. The 3D point cloud (left)
serves as input for our surface reconstruction approach and the manually created
surface model (right) is used as ground-truth for quantitative evaluations.

4.5 Experimental Results

Synthetic Data

To study the properties of our surface reconstruction approach, we use a synthetic
dataset. The so called fandisk [Hoppe, 1993] dataset was a manually created model
of a mechanical part and it consists of 6,475 vertices and 12,946 triangles. The
dataset is depicted in Figure 4.12. For our purposes, we ignore the triangles and
use the vertices as input for our surface reconstruction algorithm. The volumetric
surface reconstruction algorithm described in Section 4.3 results in a ”water-tight”
mesh, i.e., no hole should be allowed in the surface. In fact, the marching cubes
iso-surface extraction guarantees to produce a water-tight mesh for arbitrary indi-
cator functions. The grid discretization in conjunction with the smoothing filter
that is applied to the indicator function causes smoothing artifacts in the resulting
surface model. The sharp edges of the original model appear rounded in the recon-
struction. In the next step, we optimize the reconstructed surface model with the
method described in Section 4.4. The optimization algorithm adjusts the vertex
positions in order to minimize the energy function in Equation 4.10. The resulting
mesh fits the input data points considerably better than the initial reconstruction
(see Figure 4.13(b)). Triangle edges are aligned in directions of sharp edges to
achieve a better approximation of the true surface. The effect is surprising, since
the true surface is unknown to the algorithm and can only be estimated from the
input sample points. Also, no explicit heuristics are used in the optimization to
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(a) Mesh reconstruction using volumetric surface reconstruction (Section 4.3).

(b) Mesh optimization using energy minimization (Section 4.4).

Figure 4.13: Volumetric surface reconstruction and surface optimization on the
fandisk dataset. Left column shows the normal mapped mesh where the color
of a triangle corresponds to its normal direction; the middle column depicts the
rendered surface using Gouraud shading [Gouraud, 1971]; and the right columns
shows the reconstruction error approximated by the distance of a reconstructed
vertex to the true surface. Note that the color for the reconstruction error is taken
from a red-green-blue map, where red means zero error and blue means large error.

prefer sharp edges.

In order to quantify the reconstruction error, we use the Hausdorff distance be-
tween the reconstructed mesh and the original mesh [Cignoni et al., 1996]. The
one-sided Hausdorff distances between two meshesM andM′ is defined as the
maximum of all vertex to mesh distances:

d (M,M′) = max
v∈VM

d (v,M′) , (4.24)

where the distance d (v,M′) between a vertex v belonging to the meshM and a
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Figure 4.14: The conference room dataset serves as input point cloud for our
reconstruction approach.

meshM′ is defined as the minimal Euclidean distance:

d (v,M′) = min
v′∈VM′

‖v − v′‖ . (4.25)

Since the one-sided Hausdorff distance is in general not symmetrical, i.e.,
d
(
M,M′

)
6= d

(
M′,M

)
, it is more convenient to introduce the symmetrical

Hausdorff distance ds
(
M,M′

)
defined as the maximum between the two one-

sided Hausdorff distances:

ds (M,M′) = max
[
d (M,M′) , d (M′,M)

]
. (4.26)

The symmetrical distance provides a more accurate measurement of the error be-
tween two surfaces since the computation of a one-sided error can lead to signifi-
cantly underestimated distance values [Cignoni et al., 1996]. The following table
presents the results for the distance computation for the fandisk dataset. Here the
max presents the symmetrical Hausdorff distance as discussed before. The mean
and RMS columns are similar approaches for evaluating the reconstruction error
replacing the max operation in the Hausdorff equations Equation 4.26 and Equa-
tion 4.24 with the corresponding operations:

absolute distance (mm) w.r.t. b-box diag (%)
Algorithm max mean RMS max mean RMS
Surface Reconst. 0.1966 0.0253 0.0358 2.582 0.3327 0.4705
Surface Optim. 0.1051 0.0113 0.0172 1.380 0.1488 0.2263
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(a) Mesh reconstructed with volumetric surface reconstruction (Sec-
tion 4.3).

(b) Optimized with energy function (Section 4.4).

Figure 4.15: Volumetric surface reconstruction and surface optimization on the
conference room dataset. Left column shows the normal mapped mesh where the
color of a triangle corresponds to its normal direction and the right column depicts
the rendered surface using Gouraud shading [Gouraud, 1971].
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Real Data

In the second experiment we use scan-data. The input for the surface reconstruc-
tion is a point cloud which consists of 56,509 points from multiple overlapping
scans. The scans were automatically aligned with the algorithm described in Sec-
tion 3.4. The input data and a picture of the scene are depicted in Figure 4.14.
Compared to the synthetic data, the reconstruction has to deal with the imperfect-
ness of the sensing system and the complexity of the scanned scene. The point
cloud sampling varies from areas of very low density with less than 1 sample per
square centimeter to areas with very high density with more than 50 points per
square centimeter. This makes it difficult for our algorithm to reconstruct an ac-
curate model since the indicator function is calculated on a voxel grid and the
sampling rate determines the grid cell size. For this experiment, the grid cell size
was set to 2 cm in order to ensure at least one point falls into each cell. The vol-
umetric surface reconstruction algorithm finds a good approximation of the real
surface and results in a water-tight mesh with 5,993 vertices and 11,701 triangles
(see Figure 4.15(a)). Again, the sharp edges (e.g., table top, wall corner) are too
smoothly reconstructed. The subsequent optimization moves the triangle vertices
and aligns triangle edges along sharp edges to achieve a better approximation of
those features.

4.6 Conclusion

In this chapter, we presented an approach for volumetric surface reconstruction.
We have shown that the surface description can be derived from a set of unorga-
nized input points by finding a zero iso-surface of an indicator function over the
3D space. This indicator function can be efficiently expressed as a sum of func-
tions generated by an octree discretization of the function space computed from
the input data points. This octree forms a very compact representation of the en-
vironment which allows us to scale the reconstruction to large 3D models. To find
the indicator function, we adopted the method of [Kazhdan et al., 2006] which
uses a Poisson system defined on the grid cells. This approach was extended to
use locally supported bilateral filters to smooth the normal vector field. A mesh
is reconstructed by triangulating the zero iso-surface using the Marching Cubes
algorithm. This mesh only approximates the true surface and its topological type.
Errors may be introduced due to discretization and the necessity for smoothing the
normal vector field. Therefore, we presented a novel method for optimizing the
reconstructed mesh to improve reconstruction accuracy. This method moves the
mesh vertices to achieve a better fit with the input data points while keeping the
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topology as suggested by the Poisson reconstruction. Using synthetic and real scan
data we demonstrated that this method significantly reduces reconstruction errors.

We can summarize that the proposed volumetric surface reconstruction approach
with subsequent surface optimization is a very suitable framework for the recon-
struction of indoor environments. The presented algorithms can handle very large
input point clouds that occur when scanning indoor environments with many view-
points. Our approach handles occlusions and depth discontinuities well since the
data of all viewpoints is integrated into a single representation before reconstruc-
tion. It is also robust to noise since the normal vector field is smoothed as part of
the reconstruction.
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5 Photo-Realistic Texture
Reconstruction

5.1 Introduction

In the previous chapters we described methods to acquire 3D scans, register and
integrate this data into a single representation, and reconstruct surface models. In
this chapter, we present methods to reconstruct the surface appearance. In gen-
eral, objects are made out of a variety of different materials which mainly influence
their appearance. In essence, we think of the appearance of a material as being a
function of how that material interacts with light. The material may simply reflect
light, or it may exhibit more complex phenomena such as sub-surface scattering.
Specifically, for visualization applications a realistic reconstruction and reproduc-
tion of the surface appearance greatly enhances the visual impression by adding
more realism. Figure 5.1 demonstrates that reconstructing and adding a texture to
a surface model results in a drastically more realistic 3D model. One will note that
the textured model also suggests a higher level of geometry details (plant leaves,
power cord). This illusion is due to the human perception system’s lack of spatial
resolution. For a human observer, however, the simulation of fine 3D structures is
completely sufficient to convey realism. In computer graphics, this trick is often
used for simulating bumps and wrinkles on the surface of an object and is therefore
called bump mapping [Blinn, 1978b].

In this chapter, we describe a system to reconstruct visually realistic 3D models.
We will not attempt to study the optical and semantic implications of texturing
3D models, a careful review of which is available in [Carey and Greenberg, 1985].
Rather, we present methods for the reconstruction of surface materials – namely
surface textures – from sensor data.

5.1.1 Appearance Models

To further study the appearance of objects, we will introduce two fundamental
radiometric quantities. The radiance is the amount of light that passes through
a particular area and falls within a given solid angle in a specified direction. In
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(a) Rendered geometry of an indoor
scene.

(b) Texture mapped onto the geome-
try.

Figure 5.1: Texture mapping is one of the most successful techniques to create
high quality and visually realistic 3D models. Although the geometric model (a)
gives us a good idea about the scene, we can get a much more realistic picture by
reconstructing and mapping a texture onto the mesh surface (b).

contrast, the irradiance represents the amount of light falling onto a surface. For
example, if an ideal point light source radiates uniformly in all directions and there
is no absorption, then the irradiance is reduced in proportion to the inverse square
of the distance to the source.

The surface appearance can be thought of as a combination of the both concepts.
Whenever a light sources illuminates a surface we can measure the irradiance at a
particular point. Based on its material, the surface emits all or only a portion of
the irradiance, and we can measure the emitted light at a view point. The emitted
light can vary with direction (directional distribution), and we are interested in the
amount of light emitted per unit surface area. Hence, we arrive at the definition of
radiance: namely, the power emitted per unit area (perpendicular to the viewing
direction) per unit solid angle. This is perhaps the most fundamental unit in com-
puter vision and graphics. It is easy to show that the irradiance on the observer’s
retina or a camera sensor is proportional to the radiance of the observed surfaces.

One way to model the surface appearance is by describing reflectance properties.
Unfortunately, reflectance itself is a complex phenomenon. In general, a surface
may reflect a different amount of light at each position, and for each possible
direction of incident and reflected light (see Figure 5.2(a)). A common way to
model the reflection is the Bidirectional Reflectance Distribution Function (BRDF)
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[Nicodemus, 1965], which defines the reflection at an opaque surface. This 4-
dimensional function

fr (ωi,ωo) =
Lo (ωo)

Li (ωi)
(5.1)

returns the ratio of reflected radiance Lo exiting along the outgoing direction ωo,
to the irradiance incident Li on the surface from the incoming light direction ωi.
Each direction ω is itself parameterized by the two polar angles φ and θ with
respect to the surface normal n. Following this definition, the reflected radiance at
a surface point p is calculated with:

Lo (ωo) =

∫
Ωp

Li (ωi) fr (ωi,ωo) cos θidωi , (5.2)

where the integral is defined over the 3D upper hemisphere Ωp at the point p.
Here θi denotes the angle made between ωi and the surface normal n. There
exists a large variety of lower dimensional approximations for the BRDF exploit-
ing common material properties such as homogeneity and isotropy (radiance is
unchanged if the incoming and outgoing vectors are rotated by the same amount
around the surface normal). Two common examples are the Lambertian BRDF
[Wolff et al., 1992] which assumes fr := const. resulting in a matte or diffuse
appearance, and the Blinn-Phong BRDF [Blinn, 1977], which models the reflec-
tions as a lobe centered around the direction of an ideal mirror reflection for each
incident angle that contains significantly more energy than the rest. This model
is designed to represent glossy materials. As we can see, the reflection functions
embody a significant amount of information. They can tell us whether a surface is
shiny or matte, metallic or dielectric, smooth or rough. Knowing the reflectance
function of a surface allows us to make complete predictions of how that surface
appears under any possible lighting. For real surfaces the BRDF is spatially vary-
ing since the surface material itself is varying. This spatial variation adds two
more dimensions to the BRDF and is then called the Spatial Varying Bidirectional
Reflectance Distribution Function (SVBRDF).

Even the SVBRDF is not enough to characterize all materials. Many surfaces
exhibit translucency: a phenomenon in which light enters the object, is reflected
inside the material, and eventually re-emerges from a different point on the sur-
face. Such sub-surface scattering can have a dramatic effect on appearance.
The Bidirectional Scattering-Surface Reflection Distribution Function (BSSRDF)
models the phenomenon of light leaving the surface at a different point than the one
at which it entered. This is done by adding two more dimensions to the SVBRDF:

BSSRDF (pi,ωi,po,ωo) (5.3)
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(a) Reflection. (b) Sub-surface scattering.

Figure 5.2: The reflection at an opaque surface can be thought of as a function
of the incoming light direction ωi and the outgoing ωo light direction (left). Sub-
surface scattering is a phenomenon in which light enters the object, is reflected
inside the material, and eventually re-emerges from a different point on the surface
(right).

Unfortunately, even the BSSRDF is not enough. Moreover, some surfaces are
fluorescent: they emit light at different wavelengths than those present in the in-
cident light. Some other surfaces may have appearance that changes over time
because of chemical changes or physical processes such as drying or weathering.
Other surfaces might capture light and re-emit it later leading to phosphorescence
and other such phenomena. Thus, a complete description of light scattering at a
surface needs to add at least two wavelength (λi, λo) and two time dimensions
(ti, to) to the BSSRDF. Thus, the full description of the material appearance is
the 12-dimensional scattering function. A taxonomy of different reflection and
appearance models is presented in Figure 5.3.

5.2 Appearance Reconstruction

So far, there has been little effort put into capturing the full scattering function
since its high dimensionality leads to immense difficulties in capturing and work-
ing with it directly. However, many efforts exist to capture one or more of its
low-dimensional subsets.

While a first approach for efficiently measuring the BSSRDF reflectance fields has
recently been proposed by [Garg et al., 2006], an exhaustive coverage of incident
light situations still has not been achieved due to the huge amount of capture effort
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Figure 5.3: Taxonomy of different surface reflection and surface scattering func-
tions. Our focus lies in reconstructing a diffuse texture, which is a 2D function
modeling the surface appearance as a spatially varying color.

and required data storage. Therefore, usually simplifying assumptions are made to
reduce the dimensionality of the problem. The methods of [Debevec et al., 2000],
[Marschner et al., 2000], [Sato et al., 1997], and others have produced high qual-
ity measurements leading to the creation of very realistic visualizations. How-
ever, most of the previous work has been conducted under highly controlled
lighting conditions, usually by careful active positioning of a single point light
source. Even methods that work outdoors, such as those of [Yu and Malik, 1998],
[Sato and Ikeuchi, 1994], are designed specifically for natural illumination, and
assume a simple parametric model for skylight. [Bernardini et al., 2001] pro-
posed a system that uses an inexpensive, electronic camera-based setup and do
not assume a highly controlled lighting. They reconstruct texture and normal
maps based on low-resolution range images and high-resolution intensity images.
[Johnson and Kang, 1997b] proposed a similar method as they also combine infor-
mation from multiple overlapping scans to avoid jumps in color appearance and
to reduce noise. Both methods require multiple images to achieve a very coarse
approximation of the Lambertian BRDF.

We do a simple calculation to get a sense of how much data is required to densely
sample the SVBRDF of a regular surface: if the shape of the object is known
and the light source and view directions are given, each pixel in a photo taken
of the surface provides one sample of the SVBRDF (or the BRDF at a particular
surface point). Sampling the BRDF in 1◦ angular increments therefore requires
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1,049,760,000 samples to cover the 3D upper hemisphere a single surface point.
This means, we required to capture hundreds-of millions of images to sample mul-
tiple surface points. Clearly, capturing millions of images per object is highly
impractical.

5.2.1 Reconstruction of Diffuse Texture Maps

Possible solutions for capturing the surface appearance are improved acquisition
systems or low dimensional approximations of the surface scattering function.
Here, we choose to approximate the surface scattering function since data acquisi-
tion systems such as the ones used in [Debevec et al., 2000] or [Garg et al., 2006]
are impractical to employ on a mobile platform. We assume the material to be
spatially varying Lambertian, which means the appearance of a surface can be de-
scribed by a two dimensional diffuse texture storing the constant BRDF for each
surface point. This means the appearance model can be measured from as little
as one image as we will see later. Here, we define a texture map rather loosely
as a function τ : T ⊂ R2 defined on the domain T which is mapped onto the
2-dimensional space of a surface representation. In our case τ , is a function of
the surface color [Catmull, 1974] while in computer graphics systems, a variety
of other functions have been used such as normal vector perturbation (bump map-
ping) [Blinn, 1978b], specularity (the glossiness coefficient) [Blinn, 1978a], and
transparency [Gardner, 1985].

5.2.2 Texture Mapping

The surface color is stored in 2D texture maps which are mapped onto the recon-
structed 3D surface for visualization. Mathematically, texture mapping means the
mapping of a texture T onto a surface S ⊆M. The surface S is a continuous part
of a parametric manifold M –a triangle mesh in our case– representing the ob-
ject’s surface. The texture is mapped onto the surface by a function: f : S → T .
Figure 5.4 depicts an example for such a mapping. The choice of a good mapping
f is critical for visually pleasing results. Homeomorphic (topology-preserving)
mappings that produce little geometric distortions are preferred since these map-
pings conserve the sampling rate across the surface. We also want the mapping to
be bijective, which means that each surface point maps to a single texture point.
Discontinuities at edges of texture maps are also undesirable since they cause dis-
continuities of texture on the surface. Mappings that fulfill those criteria are called
isometric isomorphisms, and they map an arbitrary two-dimensional manifold em-
bedded in R3 to a subset of R2 without geometric distortions. Unfortunately, for
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Figure 5.4: A sphere can be cut on a meridian and unfolded to create a texture
map. This process will cause geometric distortions near the poles of the sphere.

reconstructed mesh models, those generally do not exist. In fact, they only exists
for developable surfaces: those are surfaces with zero Gaussian curvature. How-
ever, we can show that a good partitioning ofM leads to good approximations of
such mappings.

An example for a texture mapping is shown in Figure 5.4. Each point p =
(
x, y, z

)
on the surface of the sphere is mapped to the texture coordinates p′ =

(
φ, θ
)
.

The iso-φ and iso-θ lines form a regular grid in the texture, but a a significant
distortion is noticeable near the poles when mapped back onto the sphere. In fact,
the mapping results in singularities right at the poles where a single point on the
surface is mapped to an infinite number of points in the texture domain.

This kind of surface mapping, also called surface parameterization, is a well-
studied problem in computer graphics. In general, surface parameterization refers
to segmenting a 3D surface into one or more patches and unfolding them onto
a plane without any overlap. Borrowing terminology from mathematics, this
is often referred to as creating an atlas of charts for a given surface. See
[Floater and Hormann, 2005] and [Sheffer et al., 2006] for some recent surveys.

5.3 Multi-view Texture Reconstruction

In our system, we capture color images from a digital camera together with the
geometry. We use the captured images to reconstruct diffuse texture maps which
are mapped onto the 3D model to generate a greater realism. Our texture recon-
struction approach consists of the following steps which will be explained in the
following sections: surface partitioning, surface unfolding, color reconstruction,
and color blending.
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Figure 5.5: For the texture reconstruction the mesh is segmented into nearly planar
regions and each region is unfolded onto a 2D plane. The texture of each region
is reconstructed from all camera images observing this part of the surface, and the
resulting color composite is blended afterwards to avoid discontinuity artifacts.

5.3.1 Surface Partitioning

The first subproblem we have to address is the surface partitioning. In other words:
which partitions S ⊆ M are suitable for a good mapping? There are two com-
mon approaches to this problem. The first is to find a single cut for the surface
that makes the modified surface homeomorphic to a disk [Sheffer and Hart, 2002,
Ni et al., 2004]. This method is unsuitable for meshes with complex topology and
creases. The other approach is to divide the surface into a collection of patches that
can be unfolded with little stretch [Alliez et al., 2002, Lévy et al., 2002]. Though
stretch is minimized, this approach creates seams between the patches. This may
lead to noticeable discontinuities if color variation across the seams is not treated
with care.

We seek to break the surface into several segments such that the distortion when
unfolding each segment onto a plane is sufficiently small while the number of seg-
ments remains small at the same time. Since planes are developable (zero curva-
ture) by definition, one possible approach is to segment the surface into nearly pla-
nar segments [Cohen-Steiner et al., 2004, Diebel et al., 2006, Jenke et al., 2006].
We employ an incremental clustering approach with a subsequent merging strat-
egy which is explained in this section.

The segmentation starts by randomly selecting an initial mesh face as a seed. The
initial segment is now the exact location of this seed. The segment is then grown
from this seed face to adjacent faces if the orientation matches with the seed face.
The segment is finished when no more faces can be added and the algorithm starts
over by selecting a new seed face. The procedure stops when all the faces are
classified as belonging to a segment. The outline of this seeded region growing
algorithm is as follows:
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Algorithm 2 Cluster mesh faces into nearly planar partitions.
1: while not all faces F ∈M are assigned to a segment do
2: randomly choose a seed face fseed which is not assigned to a partition yet
3: create a new segment S and add fseed to S
4: let nseed be the normal vector on fseed

5: add all one-ring neighbors of fseed to open list L
6: while L is not empty do
7: pop face f from open list
8: if f is not assigned to a partition then
9: let n be the normal vector on f

10: if ‖nseed − n‖ < ε then
11: add f to S
12: add all one-ring neighbors of f to open list L
13: end if
14: end if
15: end while
16: end while

Often, this segmentation procedure results in a highly segmented surface (com-
pare Figure 5.6(a)). In order to reduce this over-segmentation, we append an opti-
mization procedure to merge neighboring segments by incorporating information
about their similarity. The basic concept of such a procedure was developed by
[Haris et al., 1998] for Region Adjacency Graphs (RAG) in image segmentation
and can be applied to the mesh segmentation as well, if the scalar dissimilarity
measures are adequately modified to evaluate normal features.

We define an objective function F (P) that evaluates the error of a partition P .
The optimal partition Po can then be found by minimizing F (P) for a certain par-
tition size. This is a combinatorial optimization problem which can be efficiently
approximated in an incremental manner: at each iteration all pairs of adjacent re-
gions are selected and tested, however, only the pair which introduces the least
error is merged.

The square error of the piecewise planar approximation of the input mesh is chosen
here as objective function F (P). For a segment Si the square error is given by:

E(Si) =
∑

ni∈Si

(ni − µSi)
T

(ni − µSi) , (5.4)

where the value µSi that minimizes E(Si) is equal to the mean normal value of
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the segment

µSi =
1

|Si|
∑

ni∈Si

ni . (5.5)

Now, the objective function is simply defined as

F (P) =
∑
Si∈P

E(Si) , (5.6)

(a) 1385 segments. (b) 53 segments. (c) 11 segments.

Figure 5.6: Mesh partitioning into nearly-planar segments.

Given a surface partition Pn with n segments, and assuming it to be optimal for its
size, a new partition Pn−1 of cardinality n − 1 is sought such that F (Pn−1) has
the smallest value among all possible merges of just one segment pair in Pn. It can
be shown [Alvarado, 2004] that the best n − 1 segments are obtained by merging
the segment pair that minimizes the function

γ (Si,Sj) =

{
|Si|·|Sj |
|Si|+|Sj |

(
µSi − µSj

)T (
µSi − µSj

)
for Si adjacent to Sj ,

+∞ otherwise .

(5.7)

We can now derive an iterative optimization as follows:

Algorithm 3 Iterative merging of mesh segments.
1: while min γ (Si,Sj) < εγ do
2: find

{
S∗i ,S∗j

}
= min γ (Si,Sj)

3: merge segments S∗i and S∗j into new segment Sk
4: end while
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Here, εγ is a dissimilarity threshold which regulates the resulting number of seg-
ments. Figure 5.6 depicts the results of the previously described seeded region
growing algorithm with subsequent merging.

In our experiment, the initial partition found by the surface segmentation in Al-
gorithm 2 consists of 1385 segments (see Figure 5.6(a)). The merging procedure
with a stop criterion εγ = 0 02 and εγ = 0 05 results in 53 and 11 segments re-
spectively (see Figure 5.6(b) and Figure 5.6(c)). Once we have determined a good
partition, we can break the mesh into several pieces, one for each segment, and
reconstruct a texture for each piece individually. The cuts will introduce discon-
tinuities in the texture. In practice, the cuts naturally fall together with edges and
corners in the geometry where we also expect to see abrupt changes in texture and
shading.

5.3.2 Surface Unfolding

The second step considers the surface-to-texture mapping which is often called
unfolding. This means, once a set of disjoint surface regions is obtained, a map-
ping is computed that maps each point on the surface of a region onto the cor-
responding texture domain. The classical approach treats the unfolding problem
as finding the minimum of some functional that measures the stretch introduced
by the parameterization [Eck et al., 1995, Floater and Hormann, 2005]. In this ap-
proach the boundary vertices of the surface patch S are assigned to initial positions
(e.g., a circle or a square). Then, the parameterization for the interior vertices is
determined by solving a large linear system or through a nonlinear optimization
process. This works well if the shape of S resembles the initial position. To allow
the boundary vertices of a patch to be free from the arbitrary initial assignment,
[Lévy et al., 2002] use a least-squares conformal mapping. These methods are
typically based on differential geometry which cannot be directly applied in the
presence of creases since the differential quantities they estimate are undefined on
the creases. Also, ill-shaped triangles, which are common in scanned meshes, may
cause numerical instabilities.

A rather simple idea for constructing an unfolding of a triangle mesh draws form
the previously described segmentation procedure, which results in almost planar
surface segments. Suppose a surface segment ST is contained in a plane so that
its vertices have coordinates pi =

(
xi, yi,0

)
with respect to some appropriately

chosen coordinate frame. A mapping can then be defined by just using the local
coordinates itself by setting ui =

(
xi, yi

)
. As we can easily see, this parameteriza-

tion is globally isometric and thus optimal in our sense. As discussed above, only
isometric mappings are topology-preserving and without geometric distortions.
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Figure 5.7: Example mesh for a typical mesh segment that should be unfolded
onto a plane for texture reconstruction.

Typically, the vertices of ST are not perfectly contained in a plane since the seg-
mentation procedure balances the planarity of each segment and the number of
resulting segments. An example for a typical mesh segment is depicted in Fig-
ure 5.7. In this case, we can find the best fitting plane in a least squares sense
by using principal component analysis (PCA). The result is an orthogonal linear
transformation W that transforms the data point pi =

(
xi, yi, zi

)
to a new coordi-

nate system p̃i =
(
x̃i, ỹi, z̃i

)
such that the greatest variance of the data is along the

first coordinate and the smallest variance along the third coordinate respectively.
Then a mapping can be defined by projecting the transformed coordinates onto the
plane spanned by the first and the second coordinate axis:

ui =

(
x̃i
ỹi

)
=

(
1 0 0
0 1 0

)
p̃i . (5.8)

Figure 5.9(a) presents such an orthogonal parameterization. One will note in Fig-
ure 5.9(c) that a texture is mapped to the surface with little distortions (white)
in flat areas, but with significant distortions (red) in areas where surface triangles
have an oblique angle in respect to the x-y plane. In fact, the distortion even causes
some of the mapped triangles to intersect and flip. This violates our requirement
for the mapping to be bijective. This resulting distortion becomes apparent once
we map a homogeneous checkerboard pattern onto the surface (Figure 5.9(e)).

From a theoretical point of view, as pointed out by [Floater and Hormann, 2005],
there are two independent qualities that quantify the distortion: angular distor-
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Figure 5.8: A conformal parameterization f
(
u, v
)

transforms an elementary circle
in the texture domain into an elementary circle in the surface domain.

tion and area distortion. For texture mapping, finding a conformal mapping which
preserves the angular distortion is typically more beneficial than finding an au-
thalic mapping which preserves the area. One reason is that for continuous
surfaces conformal mappings are nearly unique, whereas authalic mappings are
not [Floater and Hormann, 2005]. Often there exists a number of area-preserving
mappings which introduce a large amount of angular distortion.

Here, we focus on minimizing the angular distortion, or shear, of the parameter-
ization. In mathematics, a conformal map is a function between domains which
preserves angles. In other words, a conformal parameterization transforms an ele-
mentary circle in the texture domain into an elementary circle on the surface (see
Figure 5.8). If we now consider a triangle {pi,pj ,pk} of the surface, we can
define a local orthonormal basis B = {x,y} in the supporting plane by setting:

x =
pj − pi
‖pj − pi‖

,

n =
x× (pk − pi)

‖x× (pk − pi)‖
,

y = n× x . (5.9)

In this basis, we can define the parameterization f , the function that maps a point
p′i = (ui, vi) in the texture space T to a point pi = (xi, yi,0) defined in B. The
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gradients of this function are given by:

∇u =

(∂u
∂x
∂u
∂y

)
,

=
1

2|T |

(
yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi

)uiuj
uk

 ,

= MT

uiuj
uk

 , (5.10)

∇v = MT

vivj
vk

 . (5.11)

where the matrix MT is constant over the triangle T and |T | denotes the area of
T . Next, we want the mapping to be conformal and more precisely to preserve
angles. With the previously derived gradients this property can be expressed as:

∇v = rot90(∇u) =

(
0 −1
1 0

)
∇u . (5.12)

Here rot90 denotes the anti-clockwise rotation by 90 degrees. Only mappings that
fulfill this property for all points are called conformal maps. In the continuous
setting, Riemann proved that any surface admits a conformal parameterization
[Petersen, 2006]. However, in our case of piecewise linear functions on a triangle
mesh, only developable surface parts admit a conformal parameterization. There-
fore, we seek to minimize the discrete conformal energy that corresponds to the
"non-conformality" in a least-square sense:

min
∑

{i,j,k}∈F

∥∥∥∥∥∥MT

vivj
vk

− (0 −1
1 0

)
MT

uiuj
uk

∥∥∥∥∥∥
2

. (5.13)

This formulation is equivalent to the complex conformal energy proposed by
[Lévy et al., 2002]. The quadratic form in Equation 5.13 can be minimized by
setting its gradient to zero and solving the resulting sparse linear system of the
form Ax = 0. The matrix A has the form:

Ai,j =

{
wij (i, j) ∈ N1 ,

0 otherwise ,
(5.14)
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(a) Orthogonal mapping. (b) Conformal mapping.

(c) Distortion orthogonal. (d) Distortion conformal.

(e) Texture orthogonal. (f) Texture conformal.

Figure 5.9: Unfolding of triangular meshes onto the two-dimensional texture do-
main. The orthogonal mapping creates a significant angular distortion in areas
where triangles are not parallel to the plane of projection while the conformal
mapping minimizes the overall angular distortion by globally optimizing the ver-
tex positions.
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where N1 denotes the one-ring neighborhood and wij are edge weights as a result
of Equation 5.13. The matrix A is singular, since conformality is invariant through
similarities, namely affine transformations in Euclidean space. By fixing the u,v-
coordinates of two vertices, we obtain 4 degrees of freedom what yields a positive
definite system. The coordinates for these two vertices as well as initial coordinates
for all other points p′i can be determined by an orthogonal mapping as described
earlier.

Figure 5.9(b) presents a least-square conformal parameterization. The distortion
introduced by this parameterization, visualized in Figure 5.9(d), is lower than in-
troduced using the orthogonal projection (see Figure 5.9(c)). Specifically, areas
where surface triangles have an oblique angle in respect to the x-y plane expe-
rience significantly less distortion compared to the orthogonal parameterization
method. We observe that the distortion is more evenly spread over the entire tex-
ture domain. This is expected since the described procedure globally minimizes
distortion over all triangles.

5.3.3 Color Reconstruction

After having determined a mapping for each segment, we now want to reconstruct
a diffuse texture for each segment. Knowing the pose and the intrinsic calibration
of our scanner allows us to project any 3D surface point into any of the original
camera images to retrieve the color from this particular view. However, each view
carries only information for one part of the reconstructed surface. The color re-
construction process first finds the camera images that have information about a
particular 3D point and then determines the best color for this location.

To find out if a given 3D point is visible in a certain view, we first transform the
point into the camera coordinate system using the known view pose. Next, we
use the intrinsic camera calibration to project the point to pixel coordinates. If the
resulting coordinates are valid (i.e., in the range of the image dimensions) we can
conclude that the 3D point is in the camera’s view. However, the geometry of the
environment may create complex occlusions. This makes it difficult to recognize
if a 3D point was truly observable by the camera. The most accurate way to test if
the 3D point is occluded in this view would be to trace the rays originating at the
point to the center of the camera and determine if it intersects with any surface.
However, this is a very inefficient method since the amount of points and surfaces
is large.

We propose a method to estimate the correct camera image for each point by con-
sidering the original point-cloud. First, for each point we want to colorize, we
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(a) Reconstruction of vertex colors. (b) Reconstruction of high-resolution
texture.

Figure 5.10: Visualization of a mesh using colored vertices only leads to poor tex-
ture resolution. Our texture mapping algorithm automatically generates stitched
textures for parts of the mesh by composing parts from images captured by differ-
ent scans.

find the n nearest neighbor points in the original point-cloud. This can be effi-
ciently done by using kD-Trees. For each point in the scanned point-cloud we can
uniquely identify the corresponding camera image as discussed earlier. We then
calculate a histogram of images and project the 3D point into the image used most
often among the n neighbors and use the color resulting from this projection. The
rational for this procedure is that it identifies the most likely camera image based
on a local neighborhood.

We perform this procedure for all vertices in the triangle mesh and change the
color in the corresponding point on the texture map. The result for this color
reconstruction is presented on the left side of Figure 5.10. The colors at positions
that were previously occluded by the robot were successfully reconstructed from
other scans. However, one will notice that the texture resolution is very poor,
and it varies over the model. The reason for this behavior is that the described
process does not actually create textures, it merely retrieves a color for each vertex
of the reconstructed mesh. The color between vertices is interpolated from the
surrounding vertex colors by the rendering system. This effect is even more drastic
once simplification algorithms are applied to the geometry. In order to obtain
a high-resolution texture we first re-parameterize the mesh to obtain a densely
sampled surface, then reconstruct a texture for the dense mesh, and finally apply
the texture to the original mesh.
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For the re-parameterization we use an equidistant point grid in texture space (c.f.
Figure 5.11(a)) where each grid point corresponds to a texture pixel. The space
spanned by this grid will become our texture space T . The resolution of the pixel
grid is kept constant for all segments in order to achieve a constant texture resolu-
tion over the whole 3D model. Now, we assume that our surface to texture mapping
f is bijective1. In other words, the surface area ST of a triangle T uniquely maps
to a part of the texture space TT ⊂ T . The mapping f : S → TS ⊂ T does not
guarantee that the texture space will be used completely. We can conclude that any
point p̃ ∈ T either uniquely falls inside one mapped triangle or is not part of the
mapped surface at all.

In order to determine if p̃i = (ui, vi) is inside or outside of a mapped triangle, we
calculate the barycentric coordinates [Coxeter, 1969]. See Section 4.4.1 for more
details on the calculation of barycentric coordinates. In this way, we find the corre-
sponding triangles for all points of the grid and use the barycentric coordinates to
interpolate the mapping f at the point’s coordinates. Grid points that are not part
of the mapped surface are discarded. Figure 5.11(b) shows the resulting equally
sampled surface points compared with the original mesh.

(a) Mapped surface with point grid. (b) Re-parameterization grid points.

Figure 5.11: Mesh re-parameterization is used to create an equally sampled sur-
face grid in which each point uniquely corresponds to a texture pixel.

1Even though the methods described in the previous section are not guaranteed to be bijective, we
can easily check this criterion for each mapping. In a bijective map, the order of the triangle vertices
(anti-clockwise) will be preserved. In practice, the conformal mapping is bijective in our case since the
surfaces are almost developable and the fixed vertices are well chosen.
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5.3.4 Color Interpolation

Since the reconstructed texture maps are composites from multiple camera images,
discontinuity artifacts usually become visible. The reason for those artifacts is
that the true surface appearance varies by distance and incidence angle while our
simple model assumes a Lambertian BRDF. For a consistent texturing we want to
minimize the visibility of these discontinuity artifacts. We approach this problem
by using a blending technique, which globally adjusts the color of all pixels.

Figure 5.12: Our poisson blending approach uses a guidance vector field V com-
posed from color gradients and boundary constraints to guarantee smooth bound-
aries between texture regions reconstructed from different photos

(
Ω1 . . .Ω3

)
. The

result is a blended composite with no visible discontinuities at region boundaries.

Our algorithm extends the ideas of [Pérez et al., 2003] to use a Poisson formulation
for the multi-view blending problem. The procedure is as follows: for a texture
with regions reconstructed from n camera images, we can treat the regions as
separate functions: f1:n. Now, let Ω1:n be the definition space of f1:n, ∂Ωi,j
be the boundary between Ωi and Ωj , and ∂Ωi the texture boundary of the ith

texture. Finally, we define V to be a guidance vector field defined over Ω1:n. See
Figure 5.12 (left) for an illustration of this notation.

Our goal is to find a new set of functions f ′1:n which have the same definition space
as f1:n and no visible discontinuities at their boundaries. We cast this problem as
a membrane interpolant that satisfies:

f ′1:n = min
f1:n

∑
i

x

Ωi

|∇fi −V|2 , (5.15)

with the Dirichlet boundary conditions fi |∂Ωi,j= fj |∂Ωi,j and fi |∂Ωi= fi |∂Ωi .
We set the guidance vector field V to equal the derivatives of f1:n, which means
we constrain the derivatives of f1:n to be the same as the derivatives of f1:n. The
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first boundary constraint guarantees a smooth boundary between texture regions,
while the second constraint is necessary because the gradient operator is invariant
through multiplicative factors. The solution of Equation 5.15 is the unique solution
of the following Poisson equation:

∇ · ∇f1:n = 4f1:n = ∇V over Ω1:n , (5.16)

with the same boundary conditions as Equation 5.15. In the discrete texture do-
main, this can be efficiently solved as a sparse linear system. For each pixel p ∈ T ,
let Np be the set of its 4-connected neighbors and let {p,q} be a pixel pair such
that q ∈ Np. The boundary between the two regions i and j is now defined as:

∂Ωi,j = {p ∈ Ωi : Np ∩ Ωj 6= ∅} (5.17)

and the texture boundary of region i is:

∂Ωi = {p ∈ Ωi : |Np ∩ T | < 4} . (5.18)

The finite difference discretization of Equation 5.15 yield the following quadratic
optimization problem:

f ′1:n = min
f1:n

∑
i∈1:n

∑
{p,q}∩Ωi

(
fi (p)− fi (q)− vpq

)2

(5.19)

with

fi (p) = fj (p) for all p ∈ ∂Ωi,j (5.20)

and

fi (p) = fi (p) for all p ∈ ∂Ωi (5.21)

where vpq equals the projection of the guidance vector field V onto the oriented
edge −→pq = q− p:

vpq = V

(
p + q

2

)
· −→pq (5.22)

The solution for this optimization problem satisfies the following simultaneous
linear equations for all i ∈ 1 : n and p ∈ Ωi:

|Np| fi (p)−
∑

q∈Np∩Ωi

fi (q) =
∑

q∈Np∩∂Ωi,j

fj (q) +
∑
q∈Np

vpq (5.23)
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(a) Stitched textures. (b) Naïve blending. (c) Poisson blending.

(d) Texture panorama without blending.

(e) Texture panorama blended with poisson blending.

Figure 5.13: The texture blending globally optimizes the texture color and re-
moves discontinuities at boundaries between texture regions reconstructed from
different camera images. Compared to a naïve blending method, such as aver-
aging, the proposed algorithm results in consistent texture maps without visible
discontinuities.

This sparse, symmetric, positive-definite system can be solved using a sparse linear
solver. We directly solve the system through LU decomposition with partial piv-
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oting and forward/back substitution. For large T , the size of the resulting system
can easily reach an order of 106 and LU decomposition becomes intractable. In
this case, a well-known iterative solver (e.g., Gauss-Seidel or Conjugate Gradient)
can be used to achieve an approximate solution within a few iterations. Results of
this blending approach are presented in Figure 5.13.

5.4 Conclusion

In this chapter, we described algorithms for the reconstruction of the surface ap-
pearance and, in particular, the reconstruction of a two-dimensional diffuse texture.
The texture stores a constant BRDF for each surface point and is mapped onto the
reconstructed 3D surface for visualization. This technique results in a very realis-
tic reconstruction and reproduction of the surface appearance and greatly enhances
the visual impression by adding more realism.

Our reconstruction approach consists of the following steps: surface partition-
ing (segmentation and slicing), surface unfolding, color reconstruction, and color
blending. The surface partitioning is a pre-processing step used to slice a com-
plex surface mesh in pieces with less complexity. This is necessary to permit an
unfolding of each piece onto a plane. We presented an efficient split-and-merge
approach which first segments the mesh into almost regions based on surface nor-
mal similarity followed by an iterative merging of mesh segments to avoid over
segmentation. Empirically, we found that this procedure results in segments with
low complexity. The unfolding step computes a mappping which maps the surface
of each segment onto a corresponding texture. We presented an approach using a
least-squares conformal mapping computed from the surface triangles. This map-
ping minimizes geometric distortions, which is very important as to avoid artifacts
in the texture reconstruction. We demonstrated that this approach globally mini-
mizes distortion over all surface triangles and clearly outperforms naïve orthogo-
nal mappings. The texture domain is then discretized and the color reconstruction
step retrieves a color for each texture pixel. This is done by finding the best camera
images that carry information about the surface area corresponding to the texture
pixel. This procedure results in one texture map per mesh segment composed of
multiple camera images. This compositing may lead to visible discontinuity arti-
facts. Hence, we proposed a novel variational blending technique which globally
adjusts the color of all pixels within one texture and eliminates compositing arti-
facts. This blending method enforces smooth transitions between texture regions
reconstructed from different camera images and employs a vector guidance field
constructed from the texture gradients to propagate those constraints throughout
the texture.
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In the quest for more realistic imagery, we can conclude that reconstruction of the
surface appearance is a key component of the 3D modeling system. Reconstruct-
ing diffuse textures and mapping those onto the reconstructed surface mesh is a
relatively efficient mean to create a realistic surface appearance. We presented a
pipeline for a way of automatically reconstructing such texture maps from multiple
camera images. For a visualization system it is typically true that realism demands
complexity, or at least the appearance of complexity. We demonstrated that with
diffuse texture maps, the appearance of complex 3D models can be achieved with-
out actually modeling and rendering every 3D detail of a surface.
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6 Results and Applications

6.1 Photo-Realistic Reconstruction of Indoor Envi-
ronments

The 3D reconstruction and visualization of architectural scenes is an increasingly
important research problem, with large scale efforts underway to recover models of
cities at a global scale (e.g., Street View, Google Earth, Virtual Earth). The process
of creating a realistic virtual model of an environment begins with modeling the
geometry and surface attributes of objects in an environment along with any lights.
An image of the environment is subsequently rendered from the vantage point of a
virtual camera. Great effort has been expended to develop CAD systems that allow
the specification of complex geometry and material attributes. Similarly, a great
deal of work has been undertaken to produce systems that simulate the propaga-
tion of light through virtual environments to create realistic images. Unfortunately,
current methods of modeling existing architecture, in which a modeling program
is used to manually position the elements of the scene, have several drawbacks.
First, the process is extremely labor-intensive, typically involving surveying the
site, locating and digitizing architectural plans (if available), or converting exist-
ing CAD data (again, if available). Second, it is difficult to verify whether the
resulting model is accurate. Most disappointing, though, is that the renderings of
the resulting models are noticeably computer-generated; even those that employ
liberal texture-mapping generally fail to resemble real photographs.

The system presented in this thesis can be used to effectively create photo-realisic
reconstructions of large indoor environments. A number of experiments have been
conducted using the described approach. In particular, we have created a 3D model
of Bosch’s office in Palo Alto. Snapshots of this model are depicted in Figure 6.1.
The largest fraction of the time required for the complete 3D reconstruction pro-
cess was spent on the data acquisition; 6 hours were necessary to scan one office
floor by taking 127 scans (approx. 3 min per scan). Registration, surface and tex-
ture reconstruction took around 100 minutes for the Bosch dataset on a standard
desktop computer (3.4 GHz, 4GB RAM). About 70% of this time was spend on IO
operations on the 8GB of compressed raw data. The registration was performed
on a sub-sampled dataset and took 20 minutes to converge. Projecting the regis-
tration results onto the high-resolution data yielded good results. Our volumetric
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(a) Reconstructed 3D Model of Bosch’s RTC.

(b) A conference room rendered from a virtual camera.

(c) Kitchen.

Figure 6.1: Reconstruction of photo-realistic models from real indoor environ-
ments. The reconstructed office model presented here consists of 28,167,234 ver-
tices and 54,745,336 triangles covering an area of 50 m by 140 m.
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surface reconstruction approach found a highly detailed approximation of the real
surface in approximately 65 minutes. Again, we employed a multi-grid scheme to
speed up the reconstruction. Structures such as legs of chairs, as well as plants,
due to fine leaf and branch structures turned out to be problematic. The recon-
struction typically fused multiples of such structures into a single blob or merged
them with a nearby wall. Improvements are certainly possible by scanning using a
higher resolution, with the obvious drawback of increased memory requirements
and extended acquisition and processing times. For the final step of model recon-
struction, we found that the automatic texture reconstruction procedure resulted in
high-quality texture maps in only 15 minutes for the Bosch dataset.

6.2 Rapid Inspection

Reconstructed 3D models are also directly applicable usable in inspection tasks.
In many industrial applications, it is important to detect changes made in a given
installation or track the progression of work in a new construction site. Typically, it
is necessary to verify that the actual installation or construction complies with the
design and that it continues to be correct over time. The size of installations, such
as power plants and laboratories, as well as the complexity of their design and pro-
cess, poses an enormous challenge when considering 100% verification before the
facility comes into operation. Nowadays, inspectors prioritize equipment or ran-
domize the inspection since an in-depth verification of everything is not feasible.
In settings like nuclear power plants, the inspections continue over the lifetime of
the facility. Being able to maintain a consistent knowledge of previously inspected
areas and changes made over time is a critical issue for the safe operation of the
facility.

Using technologies such as described in this thesis allow a rapid generation of ac-
curate 3D models of large environments. This will help to make the inspection task
easier and more accurate. Our system allows the creation of realistic ”as built”1

3D models and and it can be used to detect and verify deviations from a reference
model, such as a CAD design or a previously reconstructed and inspected model.
In the first step, the reconstructed model is aligned to a reference model using the
same techniques as described in Chapter 3. Subsequently, we can use geomet-
ric metrics (see Section 4.5) or visual metrics (see [Lindstrom and Turk, 2000]) to
quantify the difference in both models. These differences can be displayed as color

1The phrase ”as-built” in construction is equivalent to ”as-is”. 3D models deemed ”as-built” are
thus models that show the existing conditions as they are, or ”as-is” – these are the actual existing
conditions as opposed to designs or proposed conditions.
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(a) Reference model. (b) Reconstructed model.

(c) Automatically detected deviations. (d) Picture of the scene.

Figure 6.2: Automatic model reconstruction can be used for inspection tasks. In
this experiment, a reconstructed model is compared to a reference model by calcu-
lating Hausdorff distances [Cignoni et al., 1996] for each surface element. Pseudo
coloring based gives an intuitive way of showing deviations between the models
and highlights the removed first aid kit and fire blanket.

maps that give a visual indicator of the deviation between the reconstructed model
and the reference model.

6.3 Model Reconstruction for Augmented Reality

Augmented Reality (AR) is the synthesis of real imagery and computer gener-
ated models. It can be used to give the user senses, which are not ordinarily
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available. Data from arbitrary sensors can be presented visually in a meaning-
ful way, for example, in an industrial plant, the sensed temperature or flow rate
in coolant pipes could be visually represented by color or motion, directly su-
perimposed on a user’s view of the plant. Besides visualizing real data, which
is otherwise invisible, AR can be used to preview objects which do not exist,
for example in architecture or design: Virtual furniture or fittings could be re-
arranged in a walk-through of a real building. The primary technical hurdle for
AR is a robust and accurate registration between the real images and the vir-
tual objects. Without accurate alignment, a convincing AR is impossible. The
most promising approaches for accurate and robust registration use visual track-
ing [Klein and Murray, 2007, Davison et al., 2007]. Visual Tracking attempts to
track the head pose by analyzing features detected in a video stream. Typically,
a camera is mounted to the head-mounted display, and a computer calculates this
camera’s pose in relation to known features seen in the world. Unfortunately, real-
time visual tracking is a very difficult problem. Extracting a pose from a video
frame requires software to make correspondences between elements in the image
and known 3D locations in the world, and establishing these correspondences in
live video streams is challenging. The majority of current AR systems operate
with prior knowledge of the user’s environment. This could be CAD model or a
sparse map of fiducials known to be present in the scene.

The 3D models generated by our system provide a comprehensive description of
an environment since they contain detailed geometric and material information. A
registration of an AR system could be performed directly from those models which
allows for a camera-based AR tracking.
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7 Summary and Conclusion

7.1 Summary

Data Acquisition In chapter 2 we presented solutions to the first step of every
3D reconstruction system: data acquisition. For 3D reconstruction of indoor en-
vironments, the data acquisition problem can be divided into three subproblems:
exploration, navigation, scanning. We described, a 3D scanning robot that enables
autonomous exploration and scanning of large environments. This hardware con-
figuration was specifically designed to match our requirements for scanning indoor
environments. It represents, however, a much larger group of scanning devices that
combine distance sensors, such as laser range finders, stereo-cameras, etc., with
imaging sensors, such as cameras. Further, we presented a novel calibration pro-
cedure to calculate the external calibratrion between camera and laser range finder
using a planar calibration target. Lastly, we addressed the subproblem of explo-
ration and presented an algorithm using active exploration which allows the robot
to select optimal viewpoints for 3D scans. Regarding economic aspects, the data
acquisition is probably the most important part of a 3D reconstruction system to
automate. Labor cost is currently the dominating factor in current reconstruction
approaches. The proposed robotic system and the method for exploration provide
a framework for efficient data acquisition.

Multi-View Registration Chapter 3 was dedicated to solutions for the alignment
of multiple scans into a common coordinate system. We presented a novel method
for multi-view registration that directly uses information obtained from pairwise
registration, yet distributes the registration error evenly over all views. Our ap-
proach resembles the concept of GraphSLAM by using the poses of the scanner
as graph nodes and observations as graph edges. We optimize the graph by lin-
earizing the compound operator and minimizing the resulting least squares energy
function. We demonstrated that this method is capable of optimizing large datasets
with hundreds of scans. Essentially, this method distributes the errors introduced
by uncertain pose measurements over the entire graph. Systematic data acquisi-
tion errors and non-linear point cloud deformations are inherent in data acquired
by real 3D scanners. Those errors are impossible to model in a rigid registration
framework; however, they lead to artifacts that may drastically decrease the re-
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sult of subsequent processing steps, such as surface reconstruction. To address
this issue, we presented a novel approach for aligning scans in a probabilistic and
non-rigid fashion. This approach incorporates spatial correlation models as map
priors to guide the optimization towards a consistent registration. The key dif-
ference of this approach to traditional GraphSLAM approaches is that scans are
aligned by adjusting robot poses as well as scan points. This non-rigid alignment
is fundamentally different from ICP-style rigid alignment techniques where only
robot poses are optimized. We demonstrated a practical algorithm that has been
evaluated on synthetic data and on large real world datasets. A good alignment
is very important for a 3D reconstruction application. Even small misalignments
will cause the subsequent surface reconstruction to fail. So far, most effort in scan-
based SLAM was spent on large scale environments while only little attention was
put on the true accuracy of the resulting map. With our non-rigid alignment we
showed that compared to other state-of-the-art techniques, we can improve the
alignment for a variety of 2D and 3D datasets.

Surface Reconstruction In chapter 4 we were concerned with the problem of re-
constructing a consistent 3D surface representation from aligned point clouds. We
proposed a volumetric surface reconstruction method based on a Poisson frame-
work with subsequent surface optimization. Our method estimates the surface de-
scription from a set of unorganized 3D input points by finding a zero iso-surface of
an indicator function over 3D space. To find the indicator function, we adopted the
method of [Kazhdan et al., 2006] which uses a Poisson system defined on the grid
cells of an octree discretiztion generated from the input data points. There exists
an integral relationship between the input points and this indicator function which
allows using a Poisson system to efficiently solve for the indicator function on the
octree grid. Our approach extended the Poisson framework to use locally sup-
ported bilateral filters to define the normal vector field. Finally, a triangle mesh is
reconstructed by triangulating the indicator function’s zero-set. We found that the
resulting mesh approximates the true surface and its topological type well but re-
sults in an overly smooth surface representation due to discretization and the neces-
sity for filtering the normal vector field. Therefore, we presented a novel method
for optimizing the reconstructed mesh to improve reconstruction accuracy. This
method moves the mesh vertices to achieve a better fit with the input data points
while keeping the topology as suggested by the initial reconstruction. Using syn-
thetic and real scan data, we demonstrated that this method significantly reduces
reconstruction errors. The proposed surface reconstruction approach can handle
very large input point clouds which occur when scanning large environments with
many viewpoints. Our approach handles occlusions and depth discontinuities well
since the the data of all viewpoints is integrated into a single representation before
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reconstruction. It is also robust to noise since the normal vector field is smoothed
as part of the reconstruction.

Photo-Realistic Texture Reconstruction Chapter 5 was dedicated to the recon-
struction of photo-realistic textures from multiple scans. We demonstrated that re-
constructing and adding a texture to the surface model results in a drastically more
realistic 3D model. We presented an algorithm for reconstructing a high-quality
spatially varying diffuse texture using only a small number of images. Our recon-
struction approach consists of the following steps: surface partitioning (segmen-
tation and slicing), surface unfolding, color reconstruction, and color blending.
This composition of multiple images into one texture is the most critical part in
our texture reconstruction approach to generate realistic texture maps. Hence, we
proposed a novel variational blending technique which globally adjusts the color
of all pixels within one texture and eliminates compositing artifacts. Our blending
method enforces smooth transitions between texture regions reconstructed from
different camera images and employs a vector guidance field constructed from the
texture gradients to propagate those constraints throughout the texture. By map-
ping the reconstructed textures onto the surface mesh our system is able to recon-
struct visually realistic 3D models. When visualized, the textured models often
suggest very fine geometric detail which is not represented in the acquired mesh.
We showed that surface appearance reconstruction is a key component of the 3D
modeling system to create photo-realistic 3D models.

7.2 Conclusion

The goal of this thesis was to address two fundamental problems preventing a
broader adoption of 3D modeling techniques: 1) A lack of affordable 3D scanning
devices that enable an easy acquisition of range data, and 2) algorithms capable of
automatically processing range data into 3D models, in particular, algorithms for
data registration, surface reconstruction, and texture reconstruction. The main con-
tributions of this dissertation are: a systematic analysis of the 3D reconstruction
problem; a complete system for an automatic creation of large scale 3D models,
including a robotic data acquisition system that enables scanning large indoor en-
vironments in a short amount of time; a novel probabilistic algorithm for non-rigid
registration of scans that incorporates surface prior distributions to optimize the
alignment; an algorithm for the reconstruction and optimization of a consistent
3D surface representation from registered point clouds; and a novel method that
blends multiple images into a photo-realistic texture composite. While the pre-
sented techniques extend the current state-of-the-art, a significant contribution of
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this research is a functional system that covers all steps required to automatically
reconstruct textured 3D models of large indoor environments.

A common restriction made in 3D reconstruction systems is the assumption of a
static environment. Our system obliges the same restriction. Although the regis-
tration is fairly robust to artifacts created by a limited amount of dynamic objects
during the scan process, the methods presented for geometry and texture recon-
struction will fail. More research is required to distinguish dynamic and static
parts in a scene and to then consider only the latter for 3D modeling. The ulti-
mate goal remains a system being able to operate autonomous in dynamic or even
crowded environments for an indefinite amount of time.

A second direction worth more investigation lies in the application of photo-
realistic 3D models of indoor scenes. In this work, we mostly focused on method-
ologies enabling to efficiently create such models. However, we believe that once
those methodologies are broadly available a variety of novel applications will also
emerge. Chapter 6 highlighted a selection of those potential applications.
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8 Appendix

8.1 Pose Vectors and Rigid Body Transforms

This section described the fundamental representations for the position and orien-
tation of a rigid body in 3D Cartesian space.

8.1.1 Position

The position of a rigid body in 3D Cartesian space is described by a column vector
of the coordinates x, y, z

p :=

xy
z

 (8.1)

A position vector is not only used to specify a 3D point, in this case it is typically
denoted as p, but also it is used to describe a 3D location, in which case it is
denoted as t.

8.1.2 Orientation

The most common way to represent the orientation or attitude of a rigid body is a
set of three Euler angles. These are popular because they are easy to understand
and easy to use. Euler angles are expressed as rotations

o :=

φθ
ψ

 (8.2)

about three orthogonal axes, as shown in Figure 8.1. It can be shown that with
a sequences of three consecutive rotations about the three orthogonal axes a rigid
body can be moved into any orientation. In fact, of the 27 possible sequences of
three rotations, there are only 12 that satisfy the constraint that no two consecutive
rotations in a valid sequence may have the same axes. Borrowing aviation termi-
nology, we use the sequence roll, pitch, and yaw. This means the first rotation is
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Figure 8.1: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

an angle φ about the x-axis, the second rotation is the angle θ about the y-axis, and
the third rotation is the angle ψ about the z-axis.

Rotations about a single coordinate axis are called coordinate rotations. The coor-
dinate rotations Ri : R→ SO(3) , for i ∈ {x, y, z} are:

Rx =

1 0 0
0 cos (φ) − sin (φ)
0 sin (φ) cos (φ)

 (8.3)

Ry =

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 (8.4)

Rz =

cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 (8.5)

Here Ri denotes a rotation matrix whose multiplication with a vector rotates the
vector while preserving its length. The so called special orthogonal group of all
3×3 rotation matrices is denoted by

SO(3) =
{
R | R ∈ R3×3, RTR = RRT = I

}
. (8.6)

Thus, if R ∈ SO(3), then

det (R) = ±1 and R−1 = RT . (8.7)

A matrix representing the end result of all three rotations is formed by successive
multiplication of the matrices representing the three axis rotations, as in the correct
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order

R = RzRyRx =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (8.8)

where cx := cos(x) and sx := sin(x). We define the rotation matrix that encodes
the orientation of a rigid body to be the matrix that when pre-multiplied by a vector
expressed in the body fixed coordinates yields the same vector expressed in the
worked coordinates. The set of all proper rotation matrices is called the group of
rotations in three dimensions.

8.1.3 Rigid Body Pose

The pose of a rigid body is the position and attitude of that body. It is defined as
six dimensional vector

xF =


x
y
z
φ
θ
ψ

 (8.9)

consisting of a three Cartesian coordinates and the orientation expressed as the
rotations about the three coordinate axes relative to the coordinate system F. The
order of rotations is: roll φ, pitch θ, yaw ψ.

8.1.4 Rigid Body Transforms

The displacement of a rigid body can be described via a homogeneous transforma-
tion matrix:

T :=


t1,1 t1,2 t1,3 t1,4
t2,1 t2,2 t2,3 t2,4
t3,1 t3,2 t3,3 t3,4
0 0 0 1



=


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ tx
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ ty
−sθ cθsφ cθcφ tz

0 0 0 1
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=

(
R t

1

)
(8.10)

The 4×4 matrix T represents a rotation given by φ, θ, and ψ followed by a trans-
lation given by tx, ty , and tz . The set of all displacements or the set of all such
matrices with the composition rule above, is called SE(3), the special Euclidean
group of rigid body displacements in three-dimensions:

SE(3) =

{
T | T =

(
R t

1

)
, R ∈ SO(3), t ∈ R3

}
(8.11)

The homogeneous transformation matrix is a convenient representation of the
combined transformations; therefore, it is frequently used in robotics, mechanics,
computer graphics, and elsewhere.

For every rigid body pose a function which maps between coordinates defined in
the rigid body frame and a global coordinate frame exists. The function

fxW
(p) =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

p +

xy
z

 (8.12)

= Rp + t (8.13)

maps 3D points p from the local coordinate frame of rigid body to global co-
ordinates. fxW

(p) is equal to applying the rigid body transform defined by the
parameters of the rigid body pose to the 3D point. Thus, we can define a function
which converts from a rigid body pose xW to a homogenous transform matrix T

T (xW) =


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ x
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ y
−sθ cθsφ cθcφ z

0 0 0 1

 (8.14)

The back conversion from a homogeneous matrix T to a rigid body pose xW is
given by:

x (T) =


x
y
z
φ
θ
ψ

 (8.15)
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with

x = t1,4 (8.16)
y = t2,4 (8.17)
z = t3,4 (8.18)
φ = atan2 (t2,1, t1,1) (8.19)
θ = atan2 (−t3,1, cos (φ) t1,1 + sin (φ) t2,1) (8.20)
ψ = atan2 (sin (φ) t1,3 − cos (φ) t2,3,− sin (φ) t1,2 + cos (φ) t2,2) (8.21)

Here, the function atan2 is a special kind of inverse tangent that takes the quadrant
into account

atan2 (y, x) =



arctan( yx ) x > 0

π + arctan( yx ) y ≥ 0, x < 0

−π + arctan( yx ) y < 0, x < 0
π
2 y > 0, x = 0

−π2 y < 0, x = 0

undefined y = 0, x = 0

. (8.22)

For arguments x and y not both equal to zero, the value returned by atan2 is the
angle in radians between the positive x-axis of a plane and the point given by the
coordinates (x, y) on it.

8.2 Pose Operations in 3D

8.2.1 The Pose Compounding Operations in 3D

Mainly two operations are required to transform a rigid body in 3D space: The
positive compounding operation denoted by ⊕ and the inversion denoted by 	.
Those operations are similar to the pose compounding operation in 2D space de-
fined in [Smith and Cheeseman, 1987] and [Brooks, 1987]. Let xA and xB be
two rigid body pose defined in a global coordinate frame and xA,B the relative
displacement between the poses. The compounding operation is given by:

xB = xA ⊕ xA,B (8.23)

= x
(
T (xA)T (xA,B)

)
. (8.24)
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The inversion of this operation is given by:

xA,B = xB 	 xA (8.25)

= x
(
T (xA)

−1
T (xB)

)
(8.26)

and one can also verify the reverse relative pose is given by:

xB,A =
(
0 0 0 0 0 0

)T 	 xA,B (8.27)
= 	xA,B (8.28)

When for example a robot moves from pose xt to the pose xt+1 and the transition
is defined by an odometry reading xt+1,t, the new pose of the robot w.r.t. the world
reference is given by xt+1 = xt ⊕ xt+1,t. Note, that the compounding operation
is not commutative, but associative. This means, we can define the compounding
of a series of poses.

8.2.2 Jacobian of the Pose Compounding Operation

The Jacobians of the positive compounding operation xC = xA ⊕ xB are given
by

JA⊕ {xA,xB} =
∂ (xA ⊕ xB)

∂xA
(8.29)

JB⊕ {xA,xB} =
∂ (xA ⊕ xB)

∂xB
. (8.30)

Their values can be calculated by

JA⊕ =

(
I3 M

K1

)
and JB⊕ =

(
RA

K2

)
(8.31)
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with

M =

−(yC − yA) (zC − zA)cφA
tA1,3yB − tA1,2zB

xC − xA (zC − zA)sφA
tA2,3yB − tA2,2zB

0 −xBcθA − yBsθAsψA
− zBsθAsψA

tA3,3yB − tA3,2zB


K1 =

1 [sθCs(φC−φA)]/cθC [tB1,2sψ3 + tB1,3cψC
]/cθC

0 c(φC−φA) −cθAs(φC−φA)

0 [s(φC−φA)]/cθC [cθAc(φC−φA)]/cθC


K2 =

 [cθBc(ψC−ψB)]/cθC s(ψC−ψB) 0
−cθBs(ψC−ψB) c(ψC−ψB) 0

[tA1,3cφC
+ tA2,3sφC

]/cθC [sθCs(ψC−ψB)]/cθC 1


RA =

cψA
cθA cψA

sθAsφA
− sψA

cφA
cψA

sθAcφA
+ sψA

sφA

sψA
cθA sψA

sθAsφA
+ cψA

cφA
sψA

sθAcφA
− cψA

sφA

−sθA cθAsφA
cθAcφA


Note that xA, yA, etc., are elements of the rigid body pose vector xA and tAi,j
are elements of the corresponding homogeneous transform matrix according to
Equation 8.10.

8.2.3 Jacobian of the Inverse Pose Compounding Operation

The Jacobian of the inverse compound operation xB = 	xA is given by

J	 {xA} =
∂ (	xA)

∂xA
(8.32)

=

(
−RA

T N
Q

)
(8.33)

with

N =

tA2,1x− tA1,1y −tA3,1xcφ − tA3,1ysφ 0
tA2,2x− tA1,2y −tA3,2xcφ − tA3,2ysφ + zsθsψ zB
tA2,3x− tA1,3y −tA3,3xcφ − tA3,3ysφ + zsθcψ −yB


Q =

 −t
A
3,3/(1− (tA1,3)2) −tA2,3cφ/(1− (tA1,3)2) tA1,1t

A
1,3/(1− (tA1,3)2)

tA2,3/
√

(1− (tA1,3)2) −tA3,3cφ/
√

(1− (tA1,3)2) tA1,2/
√

(1− (tA1,3)2)

tA3,3t
A
1,3/(1− (tA1,3)2) −tA1,2cψ/(1− (tA1,3)2) −tA1,1/(1− (tA1,3)2)
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8.3 Linear Algebra

8.3.1 Solving Linear Systems

Assume we have to solve the following system of linear equations:

Ax = b , (8.34)

where is an x is an unknown vector, b is a known vector, and A is a known, square
matrix. There are many algorithms available for solving Equation 8.34, e.g.,

Gaussian Elimination

The standard algorithm for solving a system of linear equations is based on Gaus-
sian Elimination. The process of Gaussian elimination has two parts. The first
part (Forward Elimination) reduces a given system to either triangular form. This
is accomplished through the use of elementary row operations. If this results in
a degenerate equation it means the system has no solution. The second step uses
back substitution to find the solution of the system.

LU Decomposition

The matrix A is decomposed into a lower triangular matrix and an upper triangular
matrix such that

Ax = LUx = b . (8.35)

The solution x is now done in two logical steps: First, solving the equation Ly =
b for y, and second, solving the equation Ux = y for x. Note that in both
cases we have triangular matrices (lower and upper) which can be solved directly
using forward and backward substitution without using the Gaussian elimination
process. Thus the LU decomposition is computationally efficient only when we
have to solve a matrix equation multiple times for different b; it is faster in this
case to do an LU decomposition of the matrix A once and then solve the triangular
matrices for the different b, than to use Gaussian elimination each time.
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Cholesky Decomposition

If the matrix A has some special structure, this can be exploited to obtain faster or
more accurate algorithms. For instance, systems with a symmetric positive definite
matrix can be solved twice as fast with the Cholesky decomposition. Here, A is
decomposed such that

Ax = LLTx = b , (8.36)

where L is a lower triangular matrix with strictly positive diagonal entries, then
solving Ly = b for y, and second, solving the equation LTx = y for x. When it
is applicable, the Cholesky decomposition is roughly twice as efficient as the LU
decomposition for solving systems of linear equations [Trefethen and Bau, 1997].

8.3.2 Linear Least Squares

The method of least squares is a standard approach to the approximate solution of
overdetermined systems, i.e., sets of equations in which there are more equations
than unknowns. "Least squares" means that the overall solution minimizes the
sum of the squares of the errors made in solving every single equation. A common
problem is to find the solution of the least square problem

min
x
‖Ax− b‖2 . (8.37)

A solution can be found by setting the partial derivatives of Equation 8.37 to zero:

ATAx = ATb . (8.38)

If A is square and nonsingular, the solution to Equation 8.38 is the solution to
Ax = b and the methods described above can be applied to solve for x. If is
not square than Ax = b is overconstrained which means it has more linearly
independent equations than variables. In this case there may or may not be a
solution to Ax = b but it is always possible to find a value of that minimizes
Equation 8.37. In situation where A is not symmetric, not positive-definite, and
even not square, the method of Conjugate Gradients [Shewchuk, 1994] can be used
to find the minimum.
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