Identifikation des Mehltauresistenzlocus *Rpv10* für die Rebenzüchtung

Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich genehmigte DISSERTATION von Dipl.-Biol. Florian Schwander

aus

Freiburg im Breisgau

Dekan: Prof. Dr. Martin Bastmeyer Referent: apl. Prof. Dr. Eva M. Zyprian Korreferent: Prof. Dr. Holger Puchta Tag der mündlichen Prüfung: 15.12.2011

Die Durchführung dieser Arbeit erfolgte am Julius-Kühn-Institut (JKI), Institut für Rebenzüchtung Geilweilerhof und wurde durch die finanzielle Unterstützung vom Forschungsring des Deutschen Weinbaus (FDW) bei der Deutschen Landwirtschafts-Gesellschaft (DLG) über das Projekt: "Entwicklung von molekularen Markern für Resistenzeigenschaften aus der asiatischen Wildrebe *Vitis amurensis* gegenüber dem Falschen Mehltau *Plasmopara viticola*" ermöglicht.

Teile dieser Arbeit wurden bereits in der Fachzeitschrift *Theoretical and Applied Genetics* (Volume 124, Number 1, 163-176) unter dem Titel: *Rpv10*: a new locus from the Asian *Vitis* gene pool for pyramiding downy mildew resistance loci in grapevine (DOI: 10.1007/s00122-011-1695-4) veröffentlicht. Die aus dieser Veröffentlichung verwendeten Abbildungen wurden aus Gründen des *Copyrights* durch Zitierung gekennzeichnet.

Inhaltsverzeichnis

INHALTS	SVERZEICHNIS	I
ABBILD	OUNGSVERZEICHNIS	IV
TABELL		VII
ABKÜRZ	ZUNGSVERZEICHNIS	VIII
ZUSAMN	MENFASSUNG	1
ABSTRA	ACT	2
1	EINLEITUNG	3
1.1	Resistenzzüchtung bei Reben	4
1.1.1	Genetische Ressourcen für Resistenz	4
1.1.2	Markergestützte Selektion	5
1.2	Falscher Mehltau der Rebe	7
1.2.1	Infektionszyklus und –verlauf	
1.2.2	Bekämpfungsstrategien	
1.3	Pflanzliche Resistenzen	10
1.3.1	Präformierte Resistenz	11
1.3.2	Pathogenerkennung	
1.3.3	Induzierte Resistenzen	13
1.4	Genetische Kartierung	16
1.4.1	Erstellen der genetischen Karte	16
1.4.2	QTL-Analyse	17
1.5	Zielsetzung	

2	MATERIAL & METHODEN	20
2.1	Material	
2.1.1	Pflanzenmaterial	21
2.1.2	Plasmopara viticola-Sporenmaterial	
2.1.3	Genetische Ressourcen	
2.2	Methoden	
2.2.1	Ermittlung der Plasmopara-Resistenz durch Blattscheibentests	
2.2.2	Stilben-Analyse mittels HPLC	
2.2.3	Kallose-Nachweis	
2.2.4	DNA-Extraktion	
2.2.5	SSR-Marker	
2.2.6	Polymerasekettenreaktion und Fragmentlängenanalyse	
2.2.7	Erstellen der genetischen Karten	
2.2.8	QTL-Analysen	
2.2.9	Statistische Tests auf Normalverteilung	
2.2.10	Abgleich mit den Genomsequenzen	
3	ERGEBNISSE	29
3.1	Phänotypisierung der <i>Plasmopara</i> -Resistenz	
3.2	Stilben-Analyse	
3.3	Kallose-Nachweis	
3.4	Genetische Kartierung	
3.5	QTL-Analysen	
3.6	Effekt der Pyramidisierung von Resistenzen	
3.7	Abgleich des <i>Rpv10</i> -Locus mit dem Referenzgenom	
3.8	Stammbaum der Kreuzungspopulation	
3.9	Untersuchung ausgewählter Sorten auf den <i>Rpv10</i> -Locus	51
3.10	Untersuchung genetischer Ressourcen	

4	DISKUSSION
4.1	Phänotypische Evaluierung der <i>Plasmopara</i> -Resistenz58
4.2	Stilben-Analyse und Kallose-Nachweis 59
4.3	Genetische Karte und QTL-Analysen 60
4.4	Abgleich mit den veröffentlichten Genomsequenzen64
4.5	Abstammungsanalysen
4.6	Genetische Identifizierung von <i>Rpv10</i> ⁺ -Ressourcen67
4.7	Schlussfolgerungen
LITERATU	JRVERZEICHNIS IX
ANHANG.	xx

Abbildungsverzeichnis

- Abbildung 7: Benetzbarkeit der Blattunterseite (Freilandmaterial) von Gf.Ga-52-42 und 'Solaris'. Bei Gf.Ga-52-42 kommt es zu einer fast vollständigen Benetzung (links oben), wodurch sich das mit Fluorescein versetze Wasser nicht vollständig entfernen lässt (links unten). Auf 'Solaris' verhindert die dichte hydrophobe Behaarung ein Benetzung der unteren Blattoberfläche (rechts oben). Dies ermöglicht ein fast vollständiges Entfernen des Tropfen (rechts unten). Größenbalken entspricht 2 mm.

- Abbildung 9: Entwicklung der Kartierung des *Rpv10*-Locus von der Identifikation auf der LG 09 (a) über mehrere Zwischenstufen (b, c) bis zur Feinkartierung (d). Dargestellt sind die jeweiligen Versionen der Kopplungsgruppe, die 1-LOD- und 2-LOD-Konfidenzintervalle sowie der graphische Verlauf der Interval Mapping (IM)- (grün) und Multiple QTL Mapping (MQM)-Analyseergebnisse (rot).

- Abbildung 12: Quantitative Faktoren der Merkmalsausprägung (LOD) der *P. viticola* Resistenz auf LG 05 der integrierten Karte. Markerabstände in cM. IM (grün, Quadrate) und MQM (rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD- (Linie) Konfidenzintervalle. Die LG Kopplungsgruppen (LG)-spezifische Signifikanzschwelle von 2,6 wird durch die gepunktete Linie gekennzeichnet.

- Abbildung 16: Stammbaum der bearbeiteten F1-Kreuzungspopulation Gf.Ga-52-42 x 'Solaris'. Durchgezogene Linien kennzeichnen durch SSR-Markerdaten bestätigte Beziehungen zwischen den getesteten Sorten (durchgezogen umrandete Kästen). Gestrichelte Linien und Kästen entsprechen den Angaben im "Vitis International Variety Catalogue" (http://www.vivc.de; Stand: Okt. 2011). Hellgrau hinterlegte Sorten besitzen den *Rpv3*-Resistenzlocus, während Akzessionen die *Rpv10* tragen, durch einen dunkelgrauen Hintergrund gekennzeichnet sind (Schwander *et al.* 2011).
- Abbildung 17: Abstammungsoptionen der Sorte 'Solaris'. a) Durch die Markeranalyse ermittelter, b) gegenwärtig angegebener (Staatliches Weinbauinstitut Freiburg 2010) und c) ursprünglich beschriebener (Becker 1981) Stammbaum von 'Solaris'. Durchgezogene Linien kennzeichnen durch Markerdaten bestätigte Verbindungen zwischen den getesteten Sorten (in durchgezogen umrandeten Kästen). Sorten in gestrichelten Kästen und gestrichelte Verbindungen kennzeichnen Abstammungen nach dem "Vitis International Variety Catalogue" (http://www.vivc.de; Stand: Okt. 2011). Dunkelgrauer Hintergrund kennzeichnet die Sorten, welche den *Rpv10*-Locus aufweisen. Ob 'Saperavi Severnyi' den *Rpv10*-Locus besitzt ist unbekannt (Schwander *et al.* 2011).

Tabellenverzeichnis

Tabelle 1: Landwirtschaftliche Anbauflächen und Fungizidmengen der Hauptkulturen in der
Europäischen Union. Angabe der Mittelwerte von 5 Jahren (1999-2003). Quelle: Eurostat (2007)
Tabelle 2 Taxonomische Einordnung von <i>Plasmopara viticola</i> nach http://www.speciesfungorum.org/.
Tabelle 3: Für die Feinkartierung entwickelte und kartierte SSR-Marker. 26
Tabelle 4: Mögliche Segregationsmuster und Genotypen in einer Kreuzungspopulation
Tabelle 5: Tests der phänotypischen Resistenzdaten auf Normalverteilung
Tabelle 6: Korrelationskoeffizienten zwischen dem Plasmopara-Resistenzniveau und den analysierten
Stilbenen
Tabelle 7: Hauptmerkmale der Kopplungsgruppen (LGs, "linkage groups") in der integrierten Karte,
der mütterlichen Gf.Ga-52-42-Karte sowie der väterlichen Karte von 'Solaris'
Tabelle 8: Identifizierte QTL in der Kreuzungspopulation Gf.Ga-52-42 x 'Solaris'
Tabelle 9: Untersuchung ausgewählter Sorten mit 12 den Rpv10-Locus flankierenden Markern. Die
resistenzkorrelierenden Fragmentlängen sind grau hinterlegt
Tabelle 10: Genetische Überprüfung von Genotypen mit Amurensis-Abstammung auf das Auftreten
des Rpv10-Locus. Abstammungen nach den Angaben im VIVC (http://www.vivc.de; Stand: Jun.
2011). Das Vorhandensein der resistenzkorrelierenden Allellänge (Zeile 3) wurde durch ein "+",
das Fehlen durch ein "-" gekennzeichnet. In der letzten Spalte ist das Ergebnis mit $Rpv10^+$ oder
<i>Rpv10⁻</i> zusammengefasst
Tabelle 11: Identifizierte Genotypen mit dem Rpv10-Locus. Anordnung in den Spalten anhand der
Generationen nach der Introgression von V. amurensis. Die Anordnung in den Zeilen erfolgte
anhand der Abstammung. Kursive Sorten in Klammern wurden nicht getestet, sondern anhand
der im VIVC vorgegebenen Abstammung als Resistenzüberträger aufgeführt

Abkürzungsverzeichnis

ATP	Adenosintriphosphat
Avr	Avirulenz
BLAST	Algorithmus zum Abgleich von Sequenzen, engl.: "basic local alignment search tool"
CC-NBS-LRR	NBS-LRR mit N-terminaler "coiled-coil"-Domäne
сM	Centi Morgan, Maßeinheit für die genetische Distanz aus der Rekombinationsfrequenz
DNA	Desoxyribonukleinsäure, engl.: "deoxyribonucleic acid"
ERF	Ethylen-sensitiver Transkriptionsfaktor, engl.: "ethylene-responsive transcription factor"
GBP	Engl: "glucanohydrolase binding proteins"
Gf/GF	Geilweilerhof (im Zuchtstammnamen und bei neuen SSR-Markern verwendet)
GTP	Guanosintriphosphat
HPLC	Hochleistungsflüssigkeitschromatographie, engl.: "high performance liquid chromatography"
HR	Hypersensitive Reaktion
HSR1	Engl.:hypersensitive response factor 1"
IM	Engl.:interval mapping"
JA	Jasmonsäure
kh	Kilohasen (10 ³ Basen)
LG	Konnlungsgrunne engl · linkage groun"
LOD	Wahrscheinlichkeitsahschätzung engl: logarithm of the odds"
IRR	Leucin-reichen Wiederholungssequenzen engl: leucine-rich-reneat"
ΜΑΡ	Mitogen aktiviertes Protein
MAS	Markergestützte Selektion angl: marker assisted selection"
MOM	Engl : Multiple OTL Menning"
MQM NDC LDD	Engl., "Multiple QTL Mapping
NBS-LKK	Rezeptorprotein, engl.: "nucleotide-binding site-ieucine-rich repeat
NU NDD 1	
NPKI	Engl.: "nonexpressor of pathogenesis-related genes 1"
OIV	International Organisation of Vine and Wine (http://www.oiv.int)
PAMP	Pathogen-assoziated Moleküle, engl.: "pathogen-associated molecular pattern"
PCR	Polymerase-Kettenreaktion, engl.: "polymerase chain reaction"
PEN1	Engl.: "penetration 1"
PDF2	Engl.: "protodermal factor 2"
PN40024	homozygoter Inzuchtstamm von 'Pinot Noir', zur Genomsequenzierung verwendet
PR-Protein/Gen	Pathogen-induziertes Protein/Gen, engl.: "pathogenesis related protein/gene"
PTI	PAMP-getriggerte Immunantwort
QTL	Region eines quantitativen Merkmals, engl.: "quantitative trait locus"
RGA	Resistenzgenanalog
R-Gen	Resistenz-Gen
RLK	Engl.: "receptor like kinases"
ROS	Reaktive Sauerstoffspezies, eng .: "reactive oxygen species"
Rpv	Resistenz-Locus gegen Plasmopara viticola
RuBisCo	Ribulose-1,5-bisphosphat-carboxylase/-oxygenase
SA	Salicylsäure, engl.: "salicylic acid"
SAR	Systemische Resistenz, engl.: "systemic aquired resistance"
SSR	Engl.: "simple sequence repeats" oder Mikrosatelliten (kurze, repetitive Basenabfolgen)
TIR-NBS-LRR	NBS-LRR mit N-terminalertoll/interleukine-1"-Domäne
VHS	Vps27p, Hrs und STAM Domäne (am Membrantransport beteiligte Proteine)
Vir	Virulenz
VIVC	RebendatenbankVitis International Variety Catalogue" (http://www.vivc.de)
VRP1	Vitis Resistenz gegen Plasmopara 1
WRKY	Zink-Finger-Transkriptionsfaktoren mit typischem WRKYGOK-Motiv

Zusammenfassung

Ein neuer Resistenzlocus (Rpv10) gegen den Erreger des Falschen Mehltaus an der Rebe (Plasmopara viticola) konnte für die gezielte Nutzung in der Rebenzüchtung erschlossen werden. Die Untersuchungen erfolgten an einer Kreuzungspopulation zwischen dem Zuchtstamm Gf.Ga-52-42 und der Sorte 'Solaris' mit 265 F1-Individuen. Über SSR-Markeranalysen wurde eine genetische Karte der Kreuzungspopulation erstellt. Die Varianz der Plasmopara-Resistenz innerhalb der Population wurde durch die Verwendung des Blattscheibentests ermittelt. In den QTL-Analysen ergaben sich bei der Verrechnung der phänotypischen Resistenzdaten mit der genetischen Karte zwei starke QTLs auf den Kopplungsgruppen (LGs) 09 und 18. Der QTL auf LG 09 wurde von 'Solaris' in die Kreuzungspopulation eingebracht und erklärt bis zu 50 % der phänotypischen Varianz. Dieser neue, als *Rpv10* benannte Resistenzlocus stammt ursprünglich aus der asiatischen Wildart Vitis amurensis. Durch die Neuentwicklung Locus-spezifischer SSR-Marker anhand der Referenzgenomsequenz erfolgte eine Feinkartierung des Rpv10-Locus. Der resultierende QTL-Locus weist ein Konfidenzintervall (1-LOD) von nur noch 0,5 cM in der MQM-Analyse auf. Der korrespondierende Bereich zwischen den QTL flankierenden Markern entspricht 79 kb auf der 12x PN40024-Referenzgenomsequenz. In dieser Region sind ein RGA mit NBS-LRR-Motiv, ein Ethylen-sensitiver Transkriptionsfaktor, ein Protein mit Ankyrin-Domäne sowie eine mutmaßliche Ribonuclease als potentielle Kandidatengene annotiert. Bei dem zweiten starken QTL auf der LG 18 handelt es sich um den bei 'Regent' erstmals beschriebenen Rpv3-Locus. Die Genotypen der Kreuzungspopulation, welche sowohl den Rpv3 als auch den Rpv10 Locus aufweisen, zeigen eine signifikant erhöhte Resistenzausprägung. Dies weist auf einen additiven Effekt durch die Pyramidisierung der beiden Resistenzloci hin. Um den Rpv10-Locus in weiteren genetischen Ressourcen zu identifizieren wurden 94 Sorten und Zuchtstämme mit V. amurensis im Stammbaum mit Locus-spezifischen Markern getestet. Dabei konnten 22 Sorten als Resistenzträger ermittelt werden, die in der Resistenzzüchtung als Rpv10-Donor eingesetzt werden könnten. Bei dieser Untersuchung zeigte sich auch, welche SSR-Marker sich am besten für die Verwendung in der markergestützten Selektion (MAS) eignen. Die molekularen Marker zeigten zudem, dass 'Severnyi' und nicht wie irrtümlich in der Literatur angenommen 'Zarya Severa' ein Großelternteil von 'Solaris' ist, über den die Resistenz von V. amurensis eingebracht wurde.

Abstract

Rpv10, a new locus originating from the Asian wild species Vitis amurensis mediates resistance against downy mildew on grapes caused by *Plasmopara viticola*. This locus was newly identified using a population derived from a cross between grapevine breeding strain Gf.Ga-52-42 and cultivar 'Solaris' consisting of 265 F1-individuals. A genetic map of the cross-population was constructed using SSR-Markers and all individuals were screened for downy mildew resistance. Quantitative trait locus (QTL) analysis revealed two major QTL on linkage groups (LGs) 09 and 18. 'Solaris' inherited the resistance related locus on LG 09 explaining up to 50 % of the phenotypic variation in the population. This locus, named Rpv10, was further restricted by adding newly developed locus-specific SSR markers. A minimum one-LOD confidence interval of 0.5 cM was achieved in MQM analyses. The region within the flanking markers spans a distance of 1.6 cM corresponding to 79 kb in the 12x reference genome sequence of PN40024. One resistance gene analogue (RGA) of the NBS-LRR type, an ethylene-responsive transcription factor, an ankyrin-like protein and a probable ribonuclease are annotated within this range to be considered as putative candidates for mediating resistance. The major QTL on LG 18 transmitted by Gf.Ga-52-42 is identical to the Rpv3 locus known from 'Regent' and 'Bianca'. The F1 sub-population which contains the *Rpv3* as well as the *Rpv10* locus showed a significantly higher degree of resistance indicating additive effects by pyramiding of resistance loci. Furthermore, the marker data revealed 'Severnyi' as the descent responsible for introgression of the V. amurensis resistance in 'Solaris' contradicting the previously assumed derivation.

Genetic resources having a *V. amurensis* background were screened for the *Rpv10* genotype. Twenty-two out of ninety-four varieties were identified providing the *Rpv10* locus which can potentially be used for implementing the locus into the further breeding progress. This screening also revealed the most suitable SSR-markers for a reliable identification of the *Rpv10* locus in marker assisted breeding (MAS).

1 Einleitung

Die Hauptpathogene der Kulturform der europäischen Rebe (Vitis vinifera L.) und damit des Weinbaus wurden Mitte des 19. Jahrhunderts von Nordamerika nach Europa eingeschleppt und verursachten katastrophale Schäden. Der pilzliche Erreger des Echten Mehltaus (Ervsiphe (syn. Uncinula) necator Schwein. 1834) gelangte um 1847 nach Europa und bewirkte Ernteausfälle von bis zu 80 % (Creasy & Creasy 2009). Etwa 1863 wurde die Reblaus (Daktulosphaira vitifoliae Fitch) eingeschleppt, die "langsam aber sicher alle europäischen Weinreben tötet, die sie erreichen kann" (Ordish 1987). Nur durch ein Aufpfropfen der Vitis vinifera Sorten auf amerikanische Wildreben mit Wurzelreblausresistenz oder -toleranz konnte der Weinbau "gerettet" werden (Campbell 2004). Tragischerweise wurde mit der Einfuhr solcher Unterlagsreben im Jahr 1878 ein weiteres Rebenpathogen eingeschleppt. Der Oomycet Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni 1888 befällt als Erreger des Falschen Mehltaus alle grünen Teile des Rebstockes, welche er über die Spaltöffnungen (Stomata) infizieren kann (Müller & Sleumer 1934). Starke Infektionen an Blättern und Trieben führen zu hohen Blattverlusten bis hin zur kompletten Entlaubung. Kommt es zu einem starken Befall vor oder während der Blüte kann dies zu einem totalen Ernteausfall führen (Mohr 2005; Nicholas et al. 1994).

Das Auftreten der Mehltaupilze im Weinbau erfordert jährlich hohe Fungizidaufwendungen um Schäden und Ernteausfälle an den Reben zu vermeiden. In der Europäischen Union werden 58 % der Fungizide in Rebanlagen ausgebracht. Die mit Reben bestockte landwirtschaftlichen Nutzfläche beträgt jedoch nur etwa 5 % (siehe Tabelle 1). Das unausgewogene Verhältnis verdeutlicht den im Vergleich zu allen anderen Kulturen äußerst intensiven Pflanzenschutzeinsatz.

Tabelle 1: Landwirtschaftliche Anbauflächen undFungizidmengen der Hauptkulturen in derEuropäischen Union. Angabe der Mittelwerte von5 Jahren (1999-2003). Quelle: Eurostat (2007)

	Anbauflä	che	Fungizidei	nsatz
	ha	%	t	%
Getreide	43974000	59.8	11433	7.5
Mais	10023000	13.6	0	0.0
Raps	7393000	10.1	1035	0.7
Reben	3573000	4.9	88325	58.2
Obst	3119000	4.2	25202	16.6
Zuckerrübe	2304000	3.1	1521	1.0
Kartoffel	2302000	3.1	10497	6.9
Gemüse	794000	1.1	13720	9.0

Dieser hohe Aufwand an Fungiziden im Weinbau ist einen beträchtlicher Kosten- und Arbeitsfaktor für den Winzer und belastet zudem die Umwelt stark. Wünschenswert sind daher Reben, welche Resistenzen gegenüber den Mehltaukrankheiten aufweisen und zudem alle wichtigen weinbaulichen Eigenschaften wie Qualität, Ertrag, Wuchsform, usw. aufweisen. Die Entwicklung von Reben mit diesen Eigenschaften ist das Ziel der Resistenzzüchtung (Töpfer *et al.* 2011a).

1.1 Resistenzzüchtung bei Reben

Bei der Rebenzüchtung für die Weinproduktion stellen eine hohe Weinqualität, gute Resistenzeigenschaften und die Anpassung an die gegebenen klimatischen Bedingungen die Hauptziele dar (Töpfer *et al.* 2011b). Die Kulturform der europäischen Rebe *V. vinifera* ist bis auf wenige Ausnahmen hoch anfällig gegen die Mehltauerreger. Deshalb nutzt die Resistenzzüchtung vor allem Resistenzmerkmale aus Wildformen, die durch gezieltes Einkreuzen in den Genpool der qualitätsbetonten Kulturformen eingebracht wurden.

1.1.1 Genetische Ressourcen für Resistenz

Resistenzquellen gegen die Mehltaupilze stellen vor allem amerikanische, aber auch einige asiatische Wildreben dar (Alleweldt & Possingham 1988; Di Gaspero & Cipriani 2003; Eibach *et al.* 2011). Allerdings weisen sie in aller Regel auch für den Weinbau unerwünschte Eigenschaften, allen voran eine mangelhafte Weinqualität, auf. Wiederholte Rückkreuzungen mit *V. vinifera*-Sorten sind daher erforderlich, um diese negativen Eigenschaften aus dem Zuchtmaterial zu eliminieren. Die Anfänge der gezielten Resistenzzüchtung gingen zunächst auf Kreuzungen mit amerikanischen Wildreben zurück. Diese anfangs in Nordamerika und später in Frankreich konzentrierten Aktivitäten führten zur Gruppe der sogenannten amerikanischen bzw. französischen Hybriden. Sie hatten vielfach zwar durchaus gute Resistenzeigenschaften, waren aber wegen noch mangelnder Weinqualität für den Anbau meist ungeeignet (Töpfer *et al.* 2011a). Allerdings wurden sie später auch in vielen anderen Ländern als Ausgangsmaterial in Rückkreuzungsprogrammen eingesetzt, aus denen viele der heutigen pilzwiderstandsfähigen Rebsorten hervorgegangen sind (z. B. 'Bianca', 'Johanniter', 'Medina', 'Phoenix', 'Regent', 'Zalagyöngye', u.v.m.) (Europäische Kommission 2002).

Obwohl die Mehltaupilze in Asien nicht endemisch sind konnten auch dort Wildarten mit Resistenzeigenschaften identifiziert werden (Eibach *et al.* 2011). Über eine mögliche Co-Evolution mit in Asien endemischen verwandten *Plasmopara*-Arten wurde spekuliert (Jürges *et al.* 2009; Schröder *et al.* 2011). *Vitis amurensis* Ruprecht ist eine der asiatischen Wildreben bei der Genotypen mit Resistenzeigenschaften gegenüber den Mehltaukrankheiten gefunden wurden (Wan *et al.* 2007). In China und in einigen Ländern der ehemaligen Sowjetunion wurde *V. amurensis*, die sich auch durch eine äußerst hohe Winterfrost-Toleranz auszeichnet, bereits sehr früh und umfangreich in der Rebenzüchtung genutzt. (Becker 1981; Shtin & Filippenko 1974). Im Gegensatz zu vielen der amerikanischen Wildarten weist *V. amurensis* keinen "Fuchsgeschmack" (Fox-Ton) auf, besitzt jedoch einen "uns fremden Geschmack" (Becker 1981). Dieser ist in Kreuzungen der ersten Generation auch noch vorhanden, während nach Becker (1981) Weine aus Rückkreuzungen der zweiten Generation bereits ohne jeden Fremdgeschmack sein können. Weiterführende Kreuzungen zwischen französischen Hybriden und *V. amurensis* Resistenzträgern ergaben bereits neue Sorten (z.B. 'Bronner', 'Solaris', 'Viktor') und vielversprechendes Zuchtmaterial mit hoher Resistenz und guten weinbaulichen Eigenschaften (Becker 1996; Csizmazia 1993; Hoffmann *et al.* 2007; Kozma 2000).

1.1.2 Markergestützte Selektion

Genetische Marker nutzen die DNA, die in identischer Kopie in allen Zellen und Geweben der Pflanze vorkommt. Dadurch sind diese Marker unabhängig vom Entwicklungsstadium, den Umwelteinflüssen und dem Gesundheitszustand der getesteten Pflanze (Sefc et al. 2009). Ist ein genetischer Marker mit einem spezifischen Merkmal gekoppelt, so lässt sich diese Eigenschaft in jedem Entwicklungsstadium nachweisen. Damit kann die Anwendung der MAS aufwendige und zeitintensive phänotypische Untersuchungen ersetzen. Elternsorten mit den gewünschten Eigenschaften lassen sich über die Marker gezielt auswählen und in der Kreuzungszüchtung verwenden. Über die MAS lassen sich anschließend bereits im Sämlingsstadium die Genotypen der Nachkommenschaft selektieren, denen diese Eigenschaften vererbt wurden. Dies ist unabhängig davon, ob die Merkmale zu diesem Zeitpunkt bereits physiologisch ausgebildet wurden. In der Rebenzüchtung spielen qualitative und physiologische Merkmale der Traube eine große Rolle. Der Sämling bildet jedoch erst nach drei bis vier Jahren die ersten Fruchtansätze, was dann erstmalig eine Überprüfung der Beeren erlaubt. Eine umfangreiche Evaluierung der Weinqualität ist sogar erst nach fünf bis acht Jahren möglich (Töpfer et al. 2011b). Bei Tafeltrauben ist unter anderem das Merkmal der "Samenlosigkeit" ein wichtiges Selektionskriterium (Mejia et al. 2011). Sind genetische Marker für solche Merkmale verfügbar, ist eine frühzeitige Selektion des Zuchtmaterials auf diese Eigenschaften möglich, was zu einem Zeitgewinn von mehreren Jahren führt. Auch komplexe Merkmale mit mehreren genetischen Komponenten können durch die molekularen Marker erfasst und im Zuchtverlauf berücksichtigt werden (Töpfer et al. 2011b).

In der Resistenzzüchtung erlauben die molekularen Marker eine zielgerichtete Kombination unterschiedlicher Resistenzmechanismen in einer neuen Sorte (Pyramidisierung), was zu einer breiten und dauerhaften Resistenz führt (Eibach *et al.* 2007). Eine stabile Resistenz ist bei der Rebe besonders wichtig, da sie als Dauerkultur für 30 oder mehr Jahre im Weinberg verbleibt. Gelingt es den Pathogenen die Resistenzmechanismen zu umgehen, so ist der züchterisch

aufwendig erarbeitete Vorteil verloren und ein vollständiger Pflanzenschutz wieder notwendig. Das Roden und eine Neupflanzung von Sorten mit verbesserten Resistenzeigenschaften kommt jedoch, vor allem für junge und mittelalte Anlagen, aus wirtschaftlichen Gründen nicht in Frage. Damit spielt die Stabilität der Resistenz eine weit größere Rolle im Anbau von Dauerkulturen als es für einjährige Pflanzen der Fall ist, zumal züchterische Erfolge auch erst sehr langsam in die Anbaupraxis integriert werden können. Deshalb ist es in der Rebenzüchtung ratsam, verschiedene Resistenzmechanismen gezielt zu kombinieren, um die Gefahr des Resistenzbruches zu minimieren. Dabei ist es empfehlenswert, nicht nur auf eine Kombination, sondern auf mehrere unterschiedliche Arten der Resistenzpyramidisierung zu setzen. Besonders in Weinbaugebieten kann ein Anbau von Sorten mit unterschiedlichen Pyramidisierungsvarianten einer einseitigen Selektion der Pathogene vorbeugen. (Schwander et al. 2011; Töpfer et al. 2011b) Die Fähigkeit von Pathogenen pflanzliche Resistenzbarrieren zu überwinden konnte bereits mehrfach beobachtet werden (McDonald & Linde 2002). Bei der Rebe konnte kürzlich gezeigt werden, dass ein tschechisches P. viticola-Isolat den rassenspezifischen Rpv3 Resistenzlocus überwunden hat (Peressotti et al. 2010). Dies zeigt, wie wichtig ein zielgerichtetes Zusammenführen von Resistenzen ist. Dabei hängt die benötigte Anzahl der zu pyramidisierenden Resistenzloci pro Pathogen vom Resistenzgrad ab, den die einzelnen Loci vermitteln. Dennoch sollten generell mindestens zwei, besser drei Resistenzloci pro Pathogen kombiniert werden (Schwander et al. 2011). Die Anstrengungen dürfen sich dabei nicht nur auf die Mehltaukrankheiten beschränken, denn weitere, bisher meist durch die Zusatzwirkung der eingesetzten Fungizide eher unbedeutende Krankheiten, wie beispielsweise Schwarzfäule, Roter Brenner, Phomopsis und Anthraknose könnten bei reduziertem Fungizideinsatz an Bedeutung gewinnen. In einigen deutschen Anbaugebieten Schwarzfäulebefall wurden bereits erhebliche Schäden durch in Anlagen mit pilzwiderstandsfähigen Neuzüchtungen beobachtet (Lipps & Harms 2004). Erste Resistenzloci gegen die Schwarzfäule sind in der Unterlagssorte 'Börner' identifiziert worden und werden der Züchtung in naher Zukunft zur Verfügung stehen (F. Rex, Dissertation in Vorbereitung).

Die Entwicklung merkmalsgekoppelter molekularer Marker ist zwingende Voraussetzung um ein Merkmal in der markergestützten Züchtung berücksichtigen zu können. Je mehr Merkmale so erfasst sind, desto besser lassen sich geeignete Kreuzungseltern auswählen um schnelle und umfangreiche Erfolge erzielen zu können. Mit einer frühzeitigen markergestützten Selektion der Nachkommen aus solchen Kreuzungen lässt sich der Arbeitsaufwand durch das Fokussieren auf wenige relevante Genotypen deutlich verringern. Der Einsatz molekularer Marker in der Rebenzüchtung erlaubt damit einen gezielten und wissensbasierten Zuchtablauf durch die Auswahl geeigneter Kreuzungseltern und eine frühzeitige Selektion der Nachkommen auf wichtige Eigenschaften. Dies ermöglicht eine starke Verkürzung der Zuchtdauer von bis zu 10 Jahren (Töpfer *et al.* 2011b).

1.2 Falscher Mehltau der Rebe

Der Schaderreger des Falschen Mehltaus bei der Rebe ist *Plasmopara viticola* (Berk. & M.A. Curtis) Berl. & De Toni 1888. Das Pathogen ist auf den wildwachsenden Rebarten Nordamerikas heimisch und wurde im Jahr 1878 nach Europa eingeschleppt. *P. viticola* gilt seitdem als die gefährlichste "pilzliche" Rebenkrankheit Mitteleuropas (Mohr 2005; Müller & Sleumer 1934). Befallen werden alle grünen Gewebe der Rebe, die Spaltöffnungen (Stomata) aufweisen (Blätter, junge Triebe, Gescheine, junge Beeren). Die Symptome des Blattbefalls zeigen sich durch die Ausbildung sogenannter "Ölflecken", Aufhellungen an der Blattoberseite durch einen Chlorophyllabbau aufgrund des Nährstoffentzugs (Abbildung 1a, b). Auf der Blattunterseite entsteht nach einer feuchtwarmen Nacht ein mehlartiger Belag, der durch die asexuellen Fortpflanzungsorgane (Sporangienträger) entsteht (Abbildung 1b). Später werden die befallenen Stellen nekrotisch und starker Befall kann eine vollständige Entlaubung verursachen. Kommt es vor oder während der Blüte zu einem Befall von Gescheinen, so entwickeln sich sogenannte "Lederbeeren" (Abbildung 1c). Dabei trocknen die Beeren ein und die Beerenhaut wird lederartig zäh. Ein solcher Befall kann zu einem Totalausfall der Ernte führen (Mohr 2005; Nicholas *et al.* 1994).

Abbildung 1: Schadbild des Falschen Mehltaus. a) Infizierte Blätter mit "Ölflecken" und ersten Nekrosen. b) "Ölflecken" auf der Blattoberseite und durch die Sporangienträger gebildeter mehlartiger Belag auf der Blattunterseite. c) Nach dem Befall der jungen Gescheine entstandene "Lederbeeren".

1.2.1 Infektionszyklus und –verlauf

Plasmopara viticola wird taxonomisch in die Familie der Peronosporaceae innerhalb der Klasse der Oomyceten ("Eipilze") eingeordnet (Tabelle 2). Obwohl Oomyceten und Echte Pilze (Eumycota) eine ähnliche Lebensweise aufweisen sind die Oomyceten näher mit den Algen verwandt (Hardham 2007).

P. viticola besitzt eine obligat biotrophe Lebensweise, was bedeutet, dass er sich nur von lebendem pflanzlichen Gewebe ernähren und darauf fortpflanzen kann (Burruano 2000).

Die Verbreitung erfolgt über einen sexuellen und einen vegetativen Fortpflanzungszyklus

(vgl. Abbildung 2). Geschlechtlich gebildete Oosporen von *P. viticola* gelangen mit dem Falllaub in den Boden, wo diese überwintern und auch mehrere Jahre überdauern können. Ab einer Temperatur von 11°C beginnen die Oosporen zu keimen und bilden Primärsporangien aus. Kommen diese mit flüssigem Wasser in Berührung, entlassen sie eine große Anzahl begeißelter Zoosporen. Durch spritzende Regentropfen können die Zoosporen vom Boden auf die Unterseite der Blätter gelangen. Dort schwimmen sie aktiv durch den Wasserfilm zu den Spalt-

Tabe	lle 2 Taxonomi	sche Einor	dnung
von	Plasmopara	viticola	nach
http:/	//www.speciesfu	ngorum.or	·g/.

Domäne	Chromista
Stamm	Oomycota
Klasse	Oomycetes
Ordnung	Peronosporales
Familie	Peronosporaceae
Gattung	Plasmopara
Art	Plasmopara viticola

öffnungen (Stomata) und dringen durch diese mit einem Infektionsschlauch in die Atemhöhle des Blattes ein (Mohr 2005; Müller & Sleumer 1934). Dabei orientieren sie sich an einen noch unbekannten Wirtsfaktor, der über die Stomata abgegeben wird (Kiefer et al. 2002). Erreicht der Infektionsschlauch eine pflanzliche Zellwand, so bildet er ein Appressorium aus, womit er die Zellwand durchdringt um im engen Kontakt mit der Zellmembran ein Haustorium zu etablieren. Das Haustorium dient der Versorgung des Parasiten mit Nährstoffen aus der lebenden Pflanzenzelle. Anschließend werden weitere Hyphen ausgebildet, mit denen sich P. viticola durch die Interzellularräume weiter ausbreitet (Kortekamp et al. 1998). Die Ausbreitungsgeschwindigkeit und damit auch die Inkubationszeit sind abhängig von Temperatur und relativer Luftfeuchtigkeit. Unter optimalen Bedingungen bei einer relativen Luftfeuchte von 100 % und 22 bis 25°C wurde bereits nach 2,5 Tagen die Ausbildung erster Sporangienträger beobachtet. Durchschnittliche Inkubationszeiten unter natürlichen Bedingungen liegen jedoch eher zwischen 5 und 18 Tagen (Müller & Sleumer 1934). Die Sporangienträger treten durch die Stomata aus dem Gewebe hervor und bilden baumartige Strukturen aus, an deren verzweigten Enden asexuelle Sporangiosporen entstehen (Kortekamp et al. 1998). Die Sporangiosporen werden durch Wind und Regen verfrachtet und sind für die epidemische Ausbreitung mit mehreren Zyklen über die Vegetationsperiode verantwortlich. Auch sie bilden und entlassen wie die Primärsporangien unter feuchtwarmen Bedingungen mehrere Zoosporen, welche einen erneuten Infektionszyklus hervorrufen (Mohr 2005). Begegnen sich im Gewebe zwei gegengeschlechtliche (heterothallische) Hyphen, dann kommt es vermehrt im Herbst zu einer sexuellen Vermehrung, bei der die winterharten Oosporen für die Neuinfektion im nächsten Jahr gebildet werden (Wong *et al.* 2001).

Abbildung 2: Schematischer Infektionszyklus von *Plasmopara viticola*. Der äußere (rote) Zyklus stellt die sexuelle Vermehrung dar, während der innere (grüne) Zyklus die asexuelle Vermehrung während der Vegetationsperiode zeigt (Quelle: Gobbin 2004).

Genetische Studien an *P. viticola* Isolaten in Europa konnten zeigen, dass dieses Pathogen eine sehr hohe genetische Diversität aufweist (Gobbin *et al.* 2006; Gobbin *et al.* 2003; Scherer & Gisi 2006). Dies kann eine Erklärung für die schnelle und erfolgreiche Ausbreitung nach

dem Einschleppen in ganz Europa und jüngere Beobachtungen zum Überwinden von Resistenzen sein (Bellin *et al.* 2009; Gobbin *et al.* 2006). Aktuelle Untersuchungen konnten weitere phylogenetisch unterscheidbare *Plasmopara*-Stämme auf amerikanischen *Vitis* Arten nachweisen (Schröder *et al.* 2011). Diese Erkenntnisse zeigen, wie wichtig umfangreiche und effektive Zuchtstrategien für eine zukunftsfähige Resistenzzüchtung sind.

1.2.2 Bekämpfungsstrategien

Kupferkalkbrühe, auch als "Bordeauxbrühe" bezeichnet, stellte das erste wirksame Bekämpfungsmittel gegen den Falschen Mehltau dar. Ursprünglich erfolgte deren Einsatz um Traubendiebstähle an Landstraßen zu vermeiden, wobei auffiel, dass derartig behandelte Rebstöcke keine Symptome aufwiesen (Müller & Sleumer 1934). Die fungitoxische Wirkung des Kupfers (Kupferoxychlorid, Kupferhydroxid, Kupferoktanoat) wird auch heute noch vor allem im ökologischen Weinbau genutzt, da dies dort die einzige zugelassene und zuverlässig wirkende Bekämpfungsmöglichkeit ist (Berkelmann-Löhnertz *et al.* 2008).

Im deutschen Weinbau sind chemische Fungizide gegen den Falschen Mehltau aus acht Wirkstoffkategorien, oft auch als Kombinationspräparate, zugelassen. Um Resistenzbildungen vorzubeugen dürfen Präparate einer Wirkstoffklasse höchstens dreimal in einer Vegetationsperiode eingesetzt werden (Staatliches Weinbauinstitut Freiburg 2011). Dabei ist eine kurative Wirksamkeit meist nur eingeschränkt gegeben, weshalb die Behandlungen weitgehend protektiv durchgeführt werden (Kassemeyer 2008). Um die Aufwendungen an Fungiziden möglichst gering zu halten und dennoch einen ausreichenden Pflanzenschutz zu erzielen sind computergestützte Prognosemodelle (z. B. http://www.vitimeteo.de) im Einsatz. Anhand der Wetterdaten werden die wichtigsten Schritte im Lebenszyklus von *P. viticola* ermittelt, was eine Bewertung der Infektionsrisiken erlaubt und gezielte Spritzungen ermöglicht (Bleyer 2008). Eine weitere, drastische Reduktion der Fungizidmenge ermöglicht der Anbau resistenter Neuzüchtungen.

1.3 Pflanzliche Resistenzen

Pflanzen schützen sich durch vielfältige Abwehrmechanismen vor Phytopathogenen. Zeigen diese gegen ein bestimmtes Pathogen keine Wirkung, so ist die Pflanze anfällig (suszeptibel). Es gelingt dem Pathogen die Pflanze zu besiedeln und es kann auf ihr seinen Lebenszyklus durch Sporenbildung beenden (kompatible Interaktion). Die am häufigsten vorkommende und dauerhafteste Form der pflanzlichen Pathogenresistenz ist die Immunität einer Pflanzen-

Spezies gegen alle Mitglieder einer Pathogen-Spezies. Sie wird als Nichtwirtsresistenz bezeichnet und ist der Grund dafür, dass die pflanzliche Resistenz gegen Pathogene die Regel ist und Anfälligkeit die Ausnahme darstellt (Heath 2000b). Dennoch ist sie die am wenigsten verstandene Art der Resistenz (Mysore & Ryu 2004). Sie besteht aus einem mehrschichtigen Abwehrsystem, bei dem sowohl präformierte, als auch induzierte Resistenzen wichtige Komponenten darstellen (Ferreira *et al.* 2006). Die Induzierbarkeit von Abwehrmechanismen setzt eine Erkennung des Pathogens voraus, die bei der Nichtwirtsresistenz unspezifisch über PAMPs ("pathogen-associated molecular pattern") erfolgt. Bei der Wirtsresistenz erfolgt dagegen eine rassenspezifische Erkennung über Resistenz (R)-Gene (Jones & Takemoto 2004).

1.3.1 Präformierte Resistenz

Präformierte Barrieren der Pflanze bilden die erste Hürde, die ein Pathogen überwinden muss. Strukturelle Barrieren wie eine dicke hydrophobe Wachsschicht, die Cuticula und dicke Zellwände hindern das Pathogen am Eindringen (Nürnberger & Lipka 2005), aber auch die Actin-Mikrofilamente des Cytoskeletts sind an der Inhibition der pilzliche Penetration beteiligt (Kobayashi et al. 1997). Eine dichte Behaarung mit Trichomen, wie in Abbildung 7 dargestellt, konnte als effektive Resistenzbarriere gegen P. viticola in Vitis Wildarten nachgewiesen werden (Kortekamp & Zyprian 1999). Auch der Aufbau der Spaltöffnungen kann P. viticola das Eindringen in die Pflanze erschweren. So konnte bei resistenten Akzessionen von V. riparia, V. rupestris, V. californica und V. amurensis, sowie bei vier von zehn V. sylvestris-Akzessionen eine zusätzliche innere cuticuläre Kante an den Schließzellen identifiziert werden. Deren mögliche Funktion als präformierte Resistenzbarriere wurde diskutiert (Jürges et al. 2009; Schröder 2010). Das Fehlen von spezifischen Oberflächenstrukturen oder -elementen, wie sie von vielen Pathogenen zur Wirtserkennung benötigt werden, kann ebenfalls zur Resistenz führen (Thordal-Christensen 2003). Eine Infektion kann auch an chemischen Barrieren scheitern. Viele Pflanzen lagern besonders in Vakuolen und Organellen der äußeren Zellschichten antimikrobielle Sekundärmetabolite ein um Infektionen zu verhindern (Osbourn 1996). Die Vielfalt der dabei beobachteten Komponenten ist enorm und umfasst unter vielen anderen phenolische und cyanogene Verbindungen, Lactone, Saponine und Stilbene (Dixon 2001). Nicht nur speziell vorgehaltene Stoffe sondern auch Mangelfaktoren, wie beispielsweise geringe Zucker-/Aminosäure-/Proteingehalte oder fehlende pflanzlichen Diffusate können eine Infektion verhindern. Für P. viticola konnte gezeigt werden, dass die Zoosporen in der Lage sind die Stomata aktiv und zielgerichtet zu finden, was auf einen durch die geöffneten Stomata diffundierenden, sortenspezifischen Wirtsfaktor zurückzuführen ist (Kiefer *et al.* 2002). Die kleinen Aldehyde Nonanal und Decanal sind Kandidaten für solche Faktoren (Schröder 2010).

Diese Form der Resistenz schützt die Pflanze vor einem großen Teil der Mikroorganismen. Dennoch haben pathogene Organismen gelernt, diese zu umgehen, worauf die Pflanze mit der Entwicklung weiterer Abwehrmechanismen reagieren musste. Diese werden erst dann ausgelöst, wenn die Pflanze in Kontakt mit einem Pathogen kommt, weshalb sie als "induzierte Resistenzen" bezeichnet werden (Ingle *et al.* 2006).

1.3.2 Pathogenerkennung

Eine Induzierbarkeit von Abwehrmechanismen setzt das Erkennen eines Pathogenbefalls durch die Pflanze voraus. Dazu besitzen pflanzliche Zellen RLK-Oberflächenrezeptoren ("receptor like kinases") auf der Plasmamembran mit denen molekulare, meist konservierte Strukturen von Pathogenen, so genannte PAMPs ("pathogen-associated molecular pattern"), erkannt werden können (DeYoung & Innes 2006; Ingle et al. 2006). Zu den auch als Elizitoren bezeichneten PAMPs zählen verschiedene Komponenten der äußeren Hülle gramnegativer Bakterien wie die Lipopolysaccharide, die Peptidoglycane und das Flagellin der grampositiven Bakterien, methylierte bakterielle DNA-Fragmente, Chitine, Ergosterole und Proteine der pilzlichen Zellwand, sowie Glucane von Oomvceten (Chisholm et al. 2006; Nürnberger & Lipka 2005). Dies ermöglicht eine umfassende Pathogenerkennung und führt zur Aktivierung von Signalwegen wie der Mitogen-aktivierten-Protein-(MAP)-Kinase-Signalkaskade, dem Anstieg der Ca²⁺-Konzentration im Zytoplasma oder der Bildung von Stickstoffmonoxid (NO) oder reaktiver Sauerstoffspezies (ROS). Diese Signalwege induzieren die PAMP-getriggerte Immunantwort (PTI). Dies geschieht in vielen Fällen über die Aktivierung von Transkriptionsfaktoren (z. B. WRKYs), welche eine schnelle Expression von PR-Genen ("pathogenesis related") auslösen können (Chisholm et al. 2006; Nürnberger & Lipka 2005).

Einigen Pathogenen ist es während der Co-Evolution gelungen durch Avirulenz-(Avr)-Gene codierte Effektoren zu entwickeln, die eine Aktivierung der PTI unterbinden, indem sie die Signalkaskaden in der pflanzlichen Zelle aktiv unterbrechen. Daraufhin entwickelten die Pflanzen R-Gene, deren Produkte direkt oder indirekt spezifische Effektoren erkennen können und daraufhin die Effektor-getriggerte Immunantwort (ETI) auslösen (Chisholm *et al.* 2006; Mysore & Ryu 2004). Nach der Gen-für-Gen-Theorie kommt es an der Infektionsstelle zu einer Abwehrreaktion die durch eine Hypersensitive Reaktion (HR) gekennzeichnet ist, wenn

ein Virulenz-(Vir)-Gen des Pathogens durch ein pflanzliches R-Gen erkannt werden konnte. Fehlt das Vir- oder das R-Gen, so ist die Pflanze anfällig, da ein spezifisches Erkennen des Pathogens nicht möglich ist (Flor 1971). Die R-Gene können in fünf Klassen eingeteilt werden. Die umfangreichste und differenzierteste Klasse bilden die NBS-LRRs. Die Nucleotid-Bindestelle (NBS) wird für die Bindung von ATP oder GTP benötigt und gehört zu einer größeren Domäne, die Homologie mit eukaryotischen Zelltodeffektoren besitzt. Des Weiteren besitzen diese Proteine eine variable Anzahl von Leucin-reichen Wiederholungssequenzen (LRR, "leucine-rich-repeat") am C-Terminus. Diese LRRs ermöglichen Interaktionen zwischen zwei Proteinen, zwischen Protein und Kohlenhydrat, sowie zwischen Peptid und Ligand und sind vermutlich für die spezifische Erkennung der Effektoren verantwortlich. Anhand ihrer N-terminalen Domäne können die NBS-LRRs in TIR-NBS-LRRs (toll/interleukine-1) und CC-NBS-LRRs (coiled-coil) unterschieden werden (Dangl & Jones 2001). Beide Typen kommen in der Rebe vor, wobei codierende Gene für 84 CC-NBS-LRRs, 37 TIR-NBS-LRRs und 112 unvollständige NBS-LRRs in der Sorte 'Pinot Noir' durch Genomsequenzierung identifiziert wurden (Gomès & Coutos-Thévenot 2009; Velasco et al. 2007). Nach einer P. viticola-Infektion an der resistenten Wildart V. riparia 'Gloire de Montpellier' kommt es dort zu einer spezifischen Expression von VRP1, einem strukturellen CC-NBS-LRR-Gen (Kortekamp et al. 2008). Über Primerbindestellen in konservierten NBS Regionen konnten bereits vor der Genomsequenzierung eine große Anzahl NBS-LRR in Muscadinia und Vitis Arten identifiziert und als Marker eingesetzt werden (Di Gaspero & Cipriani 2003; Donald et al. 2002). Die vier weiteren Klassen der R-Gene codieren für 1.) cytoplasmatische Serin/Threonin-Protein-Kinasen, 2.) extrazelluläre LRRs mit Membrananker, 3.) RLKs mit extrazellulärem LRR und mit einer intrazellulärer Serin/Threonin-Protein-Kinase und 4.) membranverankerte Proteine mit intrazellulärer CC-Domäne (Dangl & Jones 2001; Gomès & Coutos-Thévenot 2009).

1.3.3 Induzierte Resistenzen

Nach der Erkennung eines Pathogenbefalls kann es zu einer Vielzahl an Abwehrreaktionen der induzierten Resistenz kommen. Welche Kombination dieser Reaktionen ausgelöst wird, ist dabei abhängig von der jeweiligen Pflanze, dem Pathogen und dem aktivierten Signalweg. Eine häufige Reaktion führt zu Veränderungen und Verstärkungen von strukturellen Barrieren. Dabei werden starke Zellwandverdickungen, so genannte "Papillen", am Ort der Infektion gebildet, welche Kallose sowie andere Polysaccharide, phenolische Verbindungen, reaktive Sauerstoffspezies und verschiedenartige Proteine enthalten (Flors *et al.* 2005). Damit

versucht die Pflanze das Pathogen abzukapseln bzw. an einer Penetration zu hindern. Bei der resistenten Rebsorte 'Solaris' wurde Kallosebildung an den Stomata nach einer *P. viticola* Infektion beobachtet (Gindro *et al.* 2003). Die Bildung chemischer Abwehrstoffe kann durch den Infektionsprozess in der Pflanze ebenfalls induziert werden. So kommt es innerhalb weniger Stunden zur lokalen Produktion von antimikrobiellen, niedermolekularen sekundären Pflanzenstoffen, den Phytoalexinen (Hammerschmidt 1999). In den Sorten 'Solaris' und 'Bronner' konnten eine starke Akkumulation von Phytoalexinen aus der Stoffklasse der Stilbene 48 Stunden nach einer *Plasmopara*-Inokulation beobachtet werden. Dabei kam es zur Bildung der fungitoxisch wirksamen Stilbene Resveratrol, δ - und ε -Viniferin, für die eine starke Hemmung der Zoosporenmobilität und der Sporangienträgerbildung nachgewiesen wurde (Pezet *et al.* 2004a; Pezet *et al.* 2004b).

Ebenfalls durch Pathogenbefall spezifisch induziert werden PR-Proteine ("pathogenesis related proteins"), welche vor dem Befall in der Pflanze nicht nachweisbar sind und auf verschiedenste Arten antimikrobielle Wirksamkeit besitzen. Sie werden in 17 Klassen mit unterschiedlichen, teilweise noch unbekannten Funktionen (PR-1 und -17) unterteilt (Van Loon & an Strien 1999; van Loon *et al.* 2006b). Zu diesen sowohl lokal als auch systemisch gebildeten PR-Proteinen gehören Chitinasen (PR-3, -4, -8 und -11) und β -(1,3)-Glucanasen (PR-2), welche gezielt die pilzliche Zellwand angreifen. Auch Peroxidasen (PR-9), Proteinaseinhibitoren (PR-6), Endoproteinasen (PR-7), Thionine (PR-13), Defensine (PR-12), Lipid-Transfer-Proteine (PR-14), Oxalatoxidasen (PR-15 und -16) und Proteine, die Ähnlichkeit zu Thaumatin (PR-5) oder Ribonucleasen (PR-10) besitzen, werden zu den PR-Proteinen gezählt (van Loon *et al.* 2006b). Auch in der Rebe konnten Vertreter aus den verschiedenen Klassen von PR-Proteinen (mit Ausnahme von PR-13) bereits nachgewiesen oder in BLAST-Analysen identifiziert werden (Gomès & Coutos-Thévenot 2009).

Ein weiterer Abwehrmechanismus besteht in der Erhöhung der Konzentration an ROS wie dem Superoxidanion (O_2^{--}), Wasserstoffperoxid (H_2O_2) und Hydroxylradikal (OH⁻). Dieser Vorgang wird als "Oxidative Burst" bezeichnet. Verantwortlich für die Bildung der ROS sind Oxydasen, deren Produkte sowohl lokal (OH⁻), als auch nach Diffusion aus der Zelle (H_2O_2) wirken können. Diese Radikale sind in viele verschiedene Vorgänge der Pathogenabwehr involviert. Dabei können sie direkt antimikrobiell wirksam sein, zu strukturellen Veränderungen der Zellwand durch Vernetzung führen, die Genexpression von Resistenzgenen veranlassen oder die Hypersensitive Reaktion (HR) auslösen (Lamb & Dixon 1997; Wojtaszek 1997). Bei der HR handelt es sich um ein, durch biotischen oder abiotischen Stress hervorgerufenes, schnelles Absterben von Zellen am Ort der Infektion. Die HR beinhaltet dabei sowohl den programmierten Zelltod mit charakteristischen Nekrosen, als auch die Induktion weiterer pflanzlicher Abwehrreaktionen, die zu einem Schutz der Pflanze führen (Heath 2000a; Lam et al. 2001). Dabei wird das Pathogen an der Infektionsstelle gestoppt oder sogar getötet. Die HR gilt als charakteristische Resistenzantwort für eine rassenspezifische Pathogenerkennung nach der Gen-für-Gen-Theorie. Da sie somit nur gegen eine oder wenige pathogene Rassen wirksam ist, kann die Resistenz durch Entwicklungen in der Pathogenpopulation bereits nach wenigen Jahren gebrochen werden (Király et al. 2007). Ein solcher Resistenzbruch konnte in der Rebe bei dem HR-induzierenden Rpv3-Locus beobachtet (Peressotti et al. 2010) und detailliert untersucht werden (Casagrande et al. 2011). Durch das Erkennen eines Pathogens können von der befallenen Zelle neben lokalen auch systemische Resistenzreaktionen (SAR = "systemic acquired resistance") ausgelöst werden, um Sekundärinfektionen an der Pflanze zu verhindern. Dies geschieht über niedermolekulare Signalsubstanzen wie Salicylsäure (SA), Jasmonsäure (JA) und Ethylen. Dabei wirken die SA- und JA-abhängigen Signalwege antagonistisch auf die Stärke der Resistenzantwort. (Chisholm et al. 2006; Xu et al. 2011). Es hat sich gezeigt, dass die unterschiedlichen Signalwege auf verschiedene Pathogentypen spezifisch reagieren, wodurch es zu differenzierten Resistenzantworten kommen kann. An Rebblättern führten Behandlungen mit Methyljasmonsäure oder SA, sowie der Infektion mit unterschiedlichen Pathogenen, zu differentiellen Expressionsmustern verschiedener Abwehr- und Signalproteine (Chong et al. 2008).

Damit steht den Pflanzen ein breites Spektrum an Abwehrmechanismen zur Verfügung, die einen umfangreichen, aber keinen vollständigen Schutz gegen Pathogene vermitteln können. Da die Entwicklung der kultivierten Rebsorten in Abwesenheit der eingeschleppten heutigen Hauptpathogene (Echter und Falscher Mehltau, Reblaus oder auch Schwarzfäule) erfolgte, besitzen sie meist keine effektive Abwehrreaktion gegen diese. Die einzige bekannte Ausnahme stellt bislang der *Ren1*-Locus gegen den Echten Mehltau von 'Kishmish Vatkana' und 'Dzhandzhal Kara' dar (Coleman *et al.* 2009; Hoffmann *et al.* 2008; Töpfer *et al.* 2011b). Somit ist die Introgression von Resistenzen aus amerikanischen und asiatischen Wildarten ein geeigneter Weg um, funktionelle Resistenzmechanismen für den Anbau von Qualitätsreben nutzbar zu machen.

1.4 Genetische Kartierung

Kartierungsarbeiten werden z. B. mit SSR-Markern ("simple sequence repeats") durchgeführt. Dabei handelt es sich um Wiederholungen kurzer Sequenzabschnitte von meist 2 bis 6 Basen, welche auch als Mikrosatelliten bezeichnet werden. Durch die Sequenzhomogenität dieser Abschnitte entsteht eine erhöhte Variabilität in der Anzahl an Wiederholungen. Bei der Verwendung SSR-flankierender Primer in diploiden Organismen wie der Rebe, lassen sich spezifische Fragmentlängen für die beiden Allele ermitteln. SSR-Marker sind somit codominant und lassen sich verwenden, um die Allelmuster von Genotypen einer Kreuzungspopulation an einem Locus zu bestimmen. Für SSR-Loci werden Mutationsraten zwischen 1 x 10^{-4} und 5 x 10^{-6} pro Meiose angenommen. Damit liegen die Mutationsraten deutlich höher als in codierenden Sequenzbereichen, aber auch nicht so hoch wie bei hypervariablen Minisatelliten mit 10^{-2} Mutationen pro Meiose (Gobbin *et al.* 2003). Für Reben konnte gezeigt werden, dass die SSR-Marker über die *Vitis* und *Muscadinia* Arten recht gut konserviert sind und codominant vererbt werden. Damit zeigen SSR-Marker optimale Eigenschaften für Kartierungs- und Abstammungsanalysen (Sefc *et al.* 2009).

1.4.1 Erstellen der genetischen Karte

Um eine genetische Karte zu erstellen, werden Markerdaten für jedes Individuum einer Kreuzungspopulation erhoben. Anhand der Rekombinationsfrequenzen lassen sich Kopplungen zwischen den Markern feststellen und deren genetische Distanz bestimmen. Je näher zwei Marker beieinander liegen, desto seltener sind die Rekombinationsereignisse, desto geringer die genetische Distanz. Diese wird in centi Morgan (cM) angegeben, wobei ein cM einer Rekombinationsrate von einem Prozent entspricht. Da die starke Inzuchtdepression von Reben die Verwendung parentaler Inzuchtlinien ausschließt, verwendet man zur genetischen Kartierung F1-Kreuzungspopulationen heterozygoter Eltern. Unter Annahme einer hohen Heterozygotie werden dabei nach der "Double Pseudo-Testcross"-Strategie von Grattapaglia & Sederoff (1994) zunächst zwei elterliche Kopplungskarten erstellt, die anschließend in einer integrierten Karte zusammengeführt werden. Dafür verwendet das in dieser Arbeit genutzte Programm JoinMap 4 (Van Ooijen 2006) die gewichteten kleinsten Quadrate, um die integrierten genetischen Distanzen abzuschätzen. Somit ist es möglich, neben den vollinformativen Markern, auch solche in der Karte zu positionieren, die nur in einem Elternteil heterozygot sind und deshalb in der Nachkommenschaft 1:1 aufspalten

(Muster wie im Fall einer Rückkreuzung) oder eine 3:1 Aufspaltung (Muster einer F2-Nachkommenschaft) aufweisen (Grattapaglia & Sederoff 1994; Stam 1993; Van Ooijen 2006)

1.4.2 QTL-Analyse

Die Bereiche in einem Genom, die für die Ausprägung eines quantitativen Merkmals verantwortlich sind, lassen sich über QTL-Analysen statistisch erfassen. Die verfügbaren Methoden reichen vom einfachen statistischen Test einzelner Marker (z.B Varianzanalyse, t-Test, einfache lineare Regression) bis zu komplexen Modellen zum Testen mehrerer Marker und Wechselwirkungen (Doerge 2002). Die beiden leistungsstarken Methoden Interval Mapping (IM) und Multiple QTL Mapping (MQM), die für die Analysen in dieser Arbeit verwendet wurden, sind additiv und ermöglichen die Berechnung zuverlässiger QTLs für annähernd normalverteilte Datensätze.

1.4.2.1 Interval Mapping

Die Methode des Interval Mapping (IM) wurde von Lander & Botstein (1989) entwickelt und berechnet unter Einbeziehung der beiden benachbarten Marker für jede Position des Genoms die Wahrscheinlichkeit für einen segregierenden QTL. Zeitgleich erfolgt eine Berechnung des genetischen Effekts eines QTL und die verbleibende Varianz wird ermittelt (Van Ooijen 1994). Die Ausprägung des QTL wird durch den LOD-Wert ("logarithm of odds") beschrieben. Dieser gibt den dekadischen Logarithmus des Quotienten zwischen der Wahrscheinlichkeit für einen segregierenden QTL und der angenommenen Nullhypothese für keinen genetischen Effekt an. Übersteigt der ermittelte LOD-Wert für eine Position die Signifikanzgrenze, so wird eine genetische Kopplung des untersuchten Merkmals mit dieser Position angenommen. Die Signifikanzgrenze lässt sich durch einen Permutationstest mit einer ausreichenden Anzahl an Vertauschungen ermitteln (Churchill & Doerge 1994). Typischerweise wird der LOD-Wert als Signifikanzgrenze verwendet, welcher einen Fehler von 0,05 (5 %) aufweist (Van Ooijen 2009). Um die Position eines Locus zu beschreiben, wird ein Konfidenzintervall angegeben. Die am häufigsten verwendeten Konfidenzintervalle sind der 1-LOD bzw. 2-LOD, die einen Intervall zwischen den Positionen beschreiben, an denen der maximale LOD-Wert minus eins bzw. zwei erreicht wird. Entsprechend der logarithmischen Angabe des LOD-Wertes ist die Wahrscheinlichkeit an diesen Positionen gegenüber dem Maximum entsprechend 10- bzw. 100-fach reduziert. Aus Modellberechnungen ist bekannt, dass der QTL beim 1-LOD-Intervall etwa 80 % Aussagewahrscheinlichkeit besitzt, während diese beim 2-LOD-Intervall etwa 95% beträgt, wie sie in der biologischen Forschung meist gefordert ist. Dabei sind diese Angaben nur als Richtwerte zu sehen, da sie stark von der verwendeten Individuenanzahl und dem Anteil des QTL an der Varianz beeinflusst werden (Van Ooijen 1992). Ein limitierender Faktor bei der IM-Analyse stellt die zugrundeliegende Modellannahme eines einzelnen QTL dar. Dadurch ist es möglich, dass weitere QTLs nicht detektiert werden können. Darum empfiehlt sich eine nachgeschaltete MQM-Analyse (Costantini *et al.* 2009; Doerge 2002).

1.4.2.2 Multiple QTL Mapping

Bei den Berechnungen mit der Multiple QTL Mapping Methode (Jansen 1993; Jansen 1994; Jansen & Stam 1994) werden QTL-nahe Marker als Cofaktoren gewählt und in die Berechnungen der Wahrscheinlichkeiten einbezogen. Die verbleibende Varianz wird dabei reduziert und der Effekt des QTL von dem eng gekoppelten Marker absorbiert. Dadurch wird die Möglichkeit geschaffen weitere, meist schwächer ausgeprägte QTLs zu identifizieren, sofern solche vorhanden sind. Zudem besitzt diese Methode das Potential stark ausgeprägte QTLs präziser zu lokalisieren, was in reduzierten Konfidenzintervallen resultieren kann (Van Ooijen 1994).

1.5 Zielsetzung

Die Arbeiten wurden mit dem Ziel durchgeführt, eine neue Resistenzquelle gegen den Falschen Mehltau der Rebe (*Plasmopara viticola*) für die markergestützten Züchtung zu erschließen. Die aus der asiatischen Wildrebe *Vitis amurensis* stammenden Resistenzeigenschaften sollten dafür mit Hilfe einer spaltenden Kreuzungspopulation im Genom lokalisiert werden. Merkmalsgekoppelte molekulare Marker sollten dabei identifiziert und der/die Bereich/e durch die Entwicklung neuer Marker weiter eingeschränkt werden. Diese Marker sollten anschließend auf ihre Einsatzfähigkeit in der Züchtung getestet werden. Dabei können sie genutzt werden, um genetische Ressourcen, welche diese Resistenz aufweisen, zu identifizieren, um diese dann gezielt als Kreuzungseltern einzusetzen. Des Weiteren erlauben sie die Identifikation von Sämlingen mit pyramidisierten Resistenzen, um Genotypen mit erhöhter und dauerhafterer Resistenz gezielt zu selektieren.

Die Untersuchungen erfolgten an einer Nachkommenschaft aus der Kreuzung Gf.Ga-52-42 x 'Solaris' (Abbildung 3). Der Zuchstamm Gf.Ga-52-42 ('Bacchus' x 'Villard blanc') ist aus der Resistenzzüchtung des Instituts für Rebenzüchtung Geilweilerhof hervorgegangen und

besitzt gute Resistenzeigenschaften gegen den Falschen Mehltau, welche auf den aus den Sorten 'Regent' (Fischer *et al.* 2004; Welter *et al.* 2007) und 'Bianca' (Bellin *et al.* 2009) bekannten *Plasmopara*-Resistenzlocus *Rpv3* aus amerikanischen Wildarten zurückzuführen ist. Bei 'Solaris' ('Merzling' x Geisenheim 6493) handelt es sich um eine pilzwiderstandsfähige Ertragssorte, die 1975 am Staatlichen Weinbauinstitut Freiburg gezüchtet wurde (Zuchtstammnummer FR 240-75). Die Sorte zeichnet sich durch eine sehr frühe Reife mit hohen Mostgewichten und eine sehr hohe Festigkeit gegenüber dem Falschen Mehltau aus (Staatliches Weinbauinstitut Freiburg 2007).

Χ

Gf.Ga-52-42

(Bild: JKI, Institut für Rebenzüchtung Geilweilerhof)

Abbildung 3: Trauben der beiden Kreuzungseltern

(Bild: Staatliches Weinbauinstitut Freiburg)

Der weibliche Elternteil 'Merzling' ('Seyval' x ('Riesing' x 'Pinot Gris') ist Träger einer bislang nicht charakterisierten *P. viticola* Resistenz amerikanischer Wildarten, welche als "mittel bis hoch" eingestuft wird (Staatliches Weinbauinstitut Freiburg 2006). Für die Bestäubung von 'Merzling' wurde eine Pollenmischung der Kreuzungspopulation Geisenheim 6493 verwendet, die 1963 in der ehemaligen Tschechoslowakei gekreuzt und im Fachgebiet Rebenzüchtung der Forschungsanstalt Geisenheim aufgezogen wurde. Diese Population entstand als Rückkreuzung nach der Introgression eines Genotyps der asiatischen Wildart *Vitis amurensis*, die 1936 in der ehemaligen Sowjetunion durchgeführt wurde (Becker 1981). Die Lokalisierung und Feinkartierung dieser asiatischen Resistenzquelle gegen den Falschen Mehltau bildet den Schwerpunkt der durchgeführten Arbeiten.

2 Material & Methoden

2.1 Material

Geräte	Hersteller/Referenz
ABI 3130xl Genetic Analyzer	Applied Biosystems, Darmstadt
ABI 9700 Thermocycler	Applied Biosystems, Darmstadt
Feinwaage MC BA 100	Sartorius, Göttingen
Gefriertrocknung Beta 1102	Christ, Osterode
Gelelektrophorese EC360M mit EC105	Thermo Scientific, Dreieich
Handstanze	Harris Uni-Core
HPLC-System: P680, ASI-100 und PDA-100	Dionex, Olten, CH
mit den Säulen LiChrCART [®] 4-4 und 250-4	Merck, Darmstadt
Kugelmühle Tissue Lyser	Qiagen, Hilden
Liquidator ⁹⁶	Steinbrenner Laborsysteme, Wiesenbach
NanoPhotometer	Implen, München
Neubauer Zählkammer	Marienfeld, Lauda-Königshofen
Pipettierroboter FasTrans	AnalytikJena, Jena
Fluoreszenzmikroskop DM4000B	Leica, Wetzlar
Stereomikroskop MZ16 mit Kamera DFC420C	Leica, Wetzlar
Vortex-Genie2	Scientific Industries, Bohamia, NY, USA
Waage Precision Advanced	Ohaus, Florham, NY, USA
Zentrifuge 2K15	Sigma, Osterode am Harz
Zentrifuge 4K15	Sigma, Osterode am Harz
Zentrifuge Z160M	Hermle, Wehingen

Bioinformatische Software	Hersteller/Referenz
Chromelon 6.80SP3	Dionex, Olten, CH
Join Map 4	Kyazma, Wageningen, Niederlande
Gene Mapper 4.0	Applied Biosystems, Darmstadt
Map QTL 5 und 6	Kyazma, Wageningen, Niederlande
WebSat (http://wsmartins.net/websat/)	(Martins et al. 2009)
BioEdit 7	Ibis Biosciences, Carlsbad, CA, USA
MapChart 2.2	(Voorrips 2002)
R (Statistik Software)	(R Development Core Team 2011)

Chemikalien/Verbrauchsmaterial	Hersteller/Referenz
Acetonitril (Best.Nr.: 1.00030.2500)	Merck, Darmstadt
Agarose LE	Biozym, Hess. Oldendorf
Anilinblau, wasserlöslich (Art. 1275, Lot. 31525)	Merck, Darmstadt
Bacto-Agar	BD, Heidelberg
Biologische Testschalen (23x23x2,5 cm)	Nunc, Fisher Scientific, Schwerte
96er Deepwell-Platten	ABgene, Epson, UK
Methanol (Best.Nr.: 1.06007.2500)	Merck, Darmstadt
Multiplex PCR Kit	Qiagen, Hilden
NaHCO ₃ (Best.Nr.: 1.06580.1000)	Merck, Darmstadt
96/384er PCR-Platten	Eppendorf, Hamburg
	Kisker Biotech, Steinfurt
Primersynthese inkl. 5'-Label	Metabion, Planegg-Martinsried
0,2, 0,5, 1,5 und 2,0 ml Reaktionsgefäße	Eppendorf, Hamburg

2.1.1 Pflanzenmaterial

Die Untersuchungen wurden an einer Nachkommenschaft aus der Kreuzung zwischen dem Zuchtstamm Gf.Ga-52-42 ('Bacchus' x 'Villard blanc') und der Sorte 'Solaris' ('Merzling' x Geisenheim 6493) durchgeführt. Die Kreuzung erfolgte 2008. Im Frühjahr 2009 wurde die Population im Gewächshaus angezogen und 265 Pflanzen wurden verwendet, um von ihnen phänotypische und genetische Daten zu erheben.

Da die durchgeführte Kreuzung im Jahr 2008 sehr erfolgreich gewesen war und eine hohe Anzahl an Samen hervorgebracht hatte, waren im Frühjahr 2010 weitere 2700 Pflanzen angezogen worden um die Population für eine Locus-spezifische Feinkartierung erweitern zu können. Nach der Anzucht wurden die Sämlinge in 96er-Pflanzschalen vereinzelt und die Keimblätter beprobt.

2.1.2 Plasmopara viticola-Sporenmaterial

Verwendet wurde Sporenmaterial von Blättern unterschiedlicher Rebsorten ohne Fungizidbehandlungen mit natürlicher *P. viticola*-Infektion ("Ölflecken"). Die Sporangiensuspension wurde durch das Abpinseln der Sporangienträger von Blättern mit frischem Infektionsausbruch hergestellt. Dazu wurden diese am Tag vor dem Experiment gesammelt und in einer mit nassen Tüchern ausgekleideten Kunststofftüte über Nacht inkubiert.

2.1.3 Genetische Ressourcen

Die DNA der untersuchten Rebsorten und Zuchtstämme wurde von Pflanzen aus der am Institut angesiedelten, zur "Deutschen Genbank Reben" gehörenden (http://www.deutsche-genbank-reben.jki.bund.de/), Rebsortensammlung gewonnen.

2.2 Methoden

2.2.1 Ermittlung der Plasmopara-Resistenz durch Blattscheibentests

Die phänotypische Bewertung der Resistenz erfolgte über Blattscheibentests. Mit dieser Methode lässt sich die Blattresistenz nach künstlicher Infektion mit *P. viticola* unter kontrollierten Bedingungen ermitteln. Um ein einheitliches physiologisches Blattstadium zu untersuchen, wurden je Genotyp das dritte und vierte Blatt basipetal von der Triebspitze verwendet, um daraus Blattscheiben zu stanzen. Dies erfolgte mit einem Korkborer aus Edelstahl mit 18 mm Durchmesser. Vier Blattscheiben je Genotyp wurden mit der Blatt-unterseite nach oben in 23x23 cm große biologische Testschalen (Nunc, Fisher Scientific GmbH, Schwerte) mit 0,8 %igem Wasseragar (BD, Heidelberg) gelegt. Die künstliche Infektion mit *P. viticola* erfolge durch Auftropfen von 40 μ l Sporangiensuspension mit etwa 20.000 Sporangien pro Milliliter. Die Sporangiendichte wurde mit der Neubauer Zählkammer unter dem Mikroskop bestimmt und die Suspension vor der Verwendung entsprechend mit Wasser verdünnt. Die Blattscheiben mit der aufgetropften Sporangiensuspension wurden über Nacht bei 25 °C inkubiert und die Suspension am nächsten Tag mit Hilfe einer Wasserstrahlpumpe abgesaugt. Die weitere Inkubation erfolgte für 5 bis 7 Tage in der Klimakammer mit einem 12 h Tag-Nacht-Rhythmus und hoher relativer Luftfeuchte (>95 %).

Die Resistenzausprägung der einzelnen Individuen in der Population wurde in vier voneinander unabhängigen Blattscheibentests erhoben. Die Experimente wurden im Juli, August und September 2009 sowie im Mai 2010 durchgeführt.

Die Bewertung erfolgte anhand der Anzahl gebildeter Sporangienträger die unter dem Stereomikroskop bei 10facher Vergrößerung ermittelt wurde. Die Einteilung erfolgte analog zum Deskriptor Nr. 452-1 der OIV (International Organisation of Vine and Wine, http://www.oiv.int) in fünf Klassen (9: keine, 7:eins bis fünf, 5: sechs bis zwanzig, 3: mehr als zwanzig Sporangienträger, 1: dichter Sporangienträgerteppich). Abbildung 4 zeigt beispielhaft Blattscheiben der Boniturklassen 1, 5 und 9. Mit der gewählten Einteilung erhält man eine stringente Resistenzbewertung in den oberen Resistenzklassen. Sowohl die Daten

der Einzelexperimente (Mittelwert der vier Blattscheiben je Genotyp) als auch der Mittelwert aus allen Ergebnissen der vier Blattscheibentests wurden für die QTL-Analysen verwendet.

Abbildung 4: Beispiele für infizierte Blattscheiben der Boniturnoten 1, 5 und 9 (von links nach rechts; 2,5-fach vergrößerte Darstellung).

2.2.2 Stilben-Analyse mittels HPLC

Künstlich infiziertes Blattmaterial der Kreuzungspopulation wurde verwendet um die Konzentration mehrerer Stilbene 72 h nach einer *Plasmopara*-Infektion zu bestimmen. In den Untersuchungen von Pezet *et al.* (2004a) waren zu diesem Zeitpunkt die höchsten Stilbenkonzentrationen gemessen worden. Dazu wurden pro Pflanze je fünf Blattscheiben verwendet, um aus diesen den infizierten Bereich mit einem Skalpell auszuschneiden und ihn in ein 1,5 ml Reaktionsgefäß zu überführen. Das Blattfrischgewicht der Probe wurde über eine Feinwaage bestimmt und die Proben anschließend bei -70°C eingefroren. Die Extraktion und Analyse der Stilbene aus den Proben erfolgte am Agroscope Changins-Wädenswill (ACW) in Changins (Schweiz) in der Arbeitsgruppe Mykologie unter der Leitung von Dr. Katia Gindro mittels Hochleistungsflüssigkeitschromatographie (HPLC, "high performance liquid chromatography"). Die Stilbene wurden nach der von Gindro *et al.* (2006) veröffentlichten Methode mittels Methanol aus den Proben extrahiert und wie von Pezet *et al.* (2003) beschrieben aufgetrennt. Die Steuerung und Auswertung erfolgten über das Programm Chromelon V6.80 (Dionex).

2.2.3 Kallose-Nachweis

Kallose lässt sich spezifisch mit Anilinblau anfärben. Dazu wurde analog zu Gindro *et al.* (2003) das infizierte Blattstück mit einer Rasierklinge ausgeschnitten und für eine Minute in eine wässrige Lösung aus 0,2 % Anilinblau in 5 % Natriumhydrogencarbonat (NaHCO₃) gegeben. Die Probe wurde anschließend mit einem Fluoreszenzmikroskop (Leica DM4000B mit Filtersatz A) betrachtet.

2.2.4 DNA-Extraktion

Etwa 1 cm² Blattmaterial des dritten Blattes eines Triebes wurde für die Extraktion der genomischen DNA verwendet. Diese wurden in vorgekühlten 96er Deepwell-Platten (ABgene, Epson, UK) gesammelt und lyophilisiert (Christ, Osterode). Das Blattmaterial wurde in einer Kugelmühle (Qiagen, Hilden) zerkleinert und die DNA mit dem DNeasy 96 Plant Kit (Qiagen, Hilden) nach Handbuch oder alternativ nach Lemke et al. (2011) extrahiert. Weitere Extraktionen von Einzelproben wurden mit dem DNeasy Plant Mini oder Maxi Kit (Qiagen, Hilden) nach Handbuch durchgeführt. Die Menge und Reinheit der extrahierten DNA wurde auf dem Agarosegel und spektralphotometrisch (NanoPhotometer, Implen, München) bestimmt.

Die DNA-Extraktion der zusätzlichen 2700 Pflanzen der Kreuzungspopulation wurde anhand der einfachen DNA-Extraktionsmethode von Wang *et al.* (1993) etabliert. Hierfür wurden aus den Keimblättern junger Sämlinge Stücke mit 3 mm Durchmesser gestanzt (Handstanze von Harris Uni-Core). Diese wurden in 96er-PCR-Platten auf Trockeneis gesammelt und anschließend bei -80°C eingefroren. Zur Extraktion wurden je Vertiefung 20 μ l einer 0,5 N NaOH-Lösung zugegeben und gut gemischt. Nach einem Zentrifugationsschritt (6000 rpm, 2 min) wurden 4 μ l des Überstandes in 46 μ l 100 mM Tris-HCl, pH 8,0 überführt und gemischt.

2.2.5 SSR-Marker

Die Auswahl der verwendeten SSR-Marker erfolgte aus veröffentlichten Kartierungsarbeiten (Adam-Blondon *et al.* 2004; Bowers *et al.* 1999; Bowers *et al.* 1996; Cipriani *et al.* 2008; Di Gaspero *et al.* 2007; Di Gaspero *et al.* 2005; Di Gaspero *et al.* 2011; Doligez *et al.* 2006; Merdinoglu *et al.* 2005; Salmaso *et al.* 2008; Scott *et al.* 2000; Thomas & Scott 1993; Welter *et al.* 2007) nach Kartierungshäufigkeit, Lokalisation auf den Kopplungsgruppen und den benötigten PCR-Bedingungen. Diese Marker wurden auf ihre Funktionalität im gewählten Standard-PCR-Programm, auf ihre Multiplex-Tauglichkeit und ihr Segregationsmuster hin

getestet. Marker, die sich für die weitere Analyse als geeignet zeigten, wurden in Multiplex-Sets mit bis zu 12 Markern kombiniert. Diese Sets wurden an einem kleinen Satz an Individuen, den Eltern und einer Negativkontrolle getestet. Erfolgreich getestete Multiplex-Sets wurden auf die 265 Individuen umfassende Population und ausgewählte Sorten aus deren Stammbaum angewendet.

Des weiteren wurden neu entwickelte Marker verwendet, welche mit Hilfe der Software "WebSat" (Martins *et al.* 2009) vom Reben-Referenzgenom PN40024 (Jaillon *et al.* 2007) abgeleitet wurden. Diese wurden einheitlich mit dem Kürzel "GF" für Geilweilerhof, einer zweistelligen Zahl für das Chromosom und einer mit einem Bindestrich abgetrennten zweistelligen laufenden Nummer (z.B. GF01-03) benannt. Ein Teil der in der vorgestellten Kartierung verwendeten Marker wurden im Rahmen des Forschungsprojektes "GrapeReSeq" entwickelt (Fechter *et al.* in Vorbereitung). Weitere Marker, insbesondere im Bereich der Resistenzloci, wurden speziell für diese Kartierung entwickelt und sind in Tabelle 3 aufgeführt.

Marker- name	forward Primer	reverse Primer	Fragment- größe ^a	SSR-Motiv ^a	Phys. Position (bp) ^a	Segregati- onstyp ^b
GF09-13	TCTTGCCTCACATGGATATTGA	TGAGCATTAACTTGCAGAGGAG	400	(CT) ₉	1.923.329	<lmxll></lmxll>
GF09-14	GCAGGTGACAAGCAAGATAAGA	GCTCTGACCTCCTTCTATTCCA	366	(TC) ₉ (TA) ₆ (AG) ₁₆	2.454.185	<abxcd></abxcd>
GF09-16	ATACCCAACGGAGACAAGAGTG	AAGAACAAAGAGAAGTGGGCTG	230	(GA) ₉	5.920.527	<duxub></duxub>
GF09-19	TGAAGCCACAGAAAGAAGAGGTG	TTGATTGGAGTGGATGTCGTAG	322	(GA) ₁₁	13.305.311	<pre><nnxnp> & <lmxll></lmxll></nnxnp></pre>
GF09-24	CGGTCAACGAGAATAAAAGGTC	CGATCCAGAGGGTAGGAGTTTA	372	$(ATA)_7$	2.657.254	<abxcd></abxcd>
GF09-27	TTAACGGGGAACAACCTAACAG	TCTCTCCTCTTGGTCAACTTCC	381	(AAG) ₆	2.723.684	<pre><nnxnp> & <lmxll></lmxll></nnxnp></pre>
GF09-29	CAGCCCTTAGCATTTCCAATTA	CCGGTTCTTCAACCAATCTTT	329	$(ATT)_8$	2.731.717	<efxeg></efxeg>
GF09-42	CATAGCTCTTACATGGCACCAA	GTGGGAAACGCATTCGAG	419	$(AAT)_{11}(ATT)_6$	2.995.592	<lmxll></lmxll>
GF09-43	GGCCTTCAGTTCTGTATTGGAT	CACAGGCTTGATATTGCACATT	777	$(AT)_{20}$	3.147.101	<efxeg></efxeg>
GF09-44	CATCGTTCCTTACTCGCT	GCTAATGGAGGGTAGTGCTCAA	231	$(AG)_8$	3.388.801	<efxeg></efxeg>
GF09-45	CACTTCGTTGAGAAAAGCATCA	GAAGAAGATGGTGGTGGGATAG	219	(AG) ₉	3.564.900	<duxuu></duxuu>
GF09-46	GAGAGATTTGAGGGATTGTTGG	ATCCACGTTTGTAGCCTTTTGT	424	(GA) ₁₇	3.666.103	<efxeg></efxeg>
GF09-47	CCACATTCTTCCTGCACATAAA	CTGTTGTAAGGGCTCCCAATTA	295	$(GAT)_7$	3.703.008	<duxuu></duxuu>
GF09-48	TCTGGAAAGCACAGTAGAGAAGTG	ATGGAAGGAACCAATGCTAAGA	346	(TC) ₁₀ (CA) ₆	3.854.406	<duxuu></duxuu>
GF09-52	TGGAAGAACAGAAGGGATCATT	CTCACAGTCAAAACCCAAAACA	282	$(TCT)_7$	4.965.413	<duxuu></duxuu>
GF09-53	CATTATCACCTTCATGGCTTCA	TGAAATCTAGTGGGGCTTGACCT	367	(AATA) ₆	5.292.317	<lmxll></lmxll>
GF09-54	TTTGCGAGTCAAGAACTGGATA	AATGAATATAGCTGGGGACCGAC	275	(CTC) ₆	4.391.859	<lmxll></lmxll>
GF09-55	ACTCCTGTGATTTTAGGGGACGA	CAGGTTCAGGTTAGCAGGTGAT	260	(TC) ₁₄	4.406.559	<efxeg></efxeg>
GF09-57	CCCTTCCTTTGTCTAACTCCCT	GCGTTCTGTGATGATTGCTTA	356	$(\mathrm{CT})_6(\mathrm{TC})_9(\mathrm{CT})_6$	5.053.223	<efxeg></efxeg>
GF09-61	CAATTTATGTGCTCCAACCCTT	ATTCTTCCATTTCATGCCAGTT	411	(TCC) ₆	3.476.887	<efxeg></efxeg>
GF09-62	TCAGGTGGGTAGTCTTGGGGTAT	TCTACAAAGGGGTATCGGCTAA	389	$(AT)_7$	3.498.499	<efxeg></efxeg>
GF09-65	ATCCAAAGTGATTGGCTCAAGT	ATTCGTCCATATCCACAACCTC	314	$(AT)_9$	3.624.190	<duxub></duxub>
^a Fragmentgrö	ille, SSR-Motive und physikalische Position im 12x	PN40024 Referenzgenom. ^b Segregationstyp i	n der Kreuzungsp	opulation Gf.Ga-52-42 x	'Solaris' (entsprech	nend Tabelle 4)

Tabelle 3: Für die Feinkartierung entwickelte und kartierte SSR-Marker.
2.2.6 Polymerasekettenreaktion und Fragmentlängenanalyse

Um die Marker zu amplifizieren wurde die Polymerasekettenreaktion (PCR) in einem Multiplexverfahren eingesetzt. Dazu wurde das Qiagen Multiplex-PCR-Kit (Qiagen, Hilden) genutzt. In 10 µl Reaktionsansätzen wurden 1,5 bis 5 pmol jedes Primers und etwa 3 ng template DNA zusammen mit dem Qiagen Multiplex 2x PCR Mix eingesetzt. Die Amplifikation erfolgte in ABI 9700 Thermocyclern (Applied Biosystems, Darmstadt). Zur Aktivierung der HotStar*Taq* DNA Polymerase wurde eine initiale Denaturierung bei 95 °C für 15 min durchgeführt. Es folgten 30 Zyklen mit Denaturierung bei 94°C für 30 sec, Primerannealing bei 60 °C für 90 sec und einer Elongation bei 72 °C für 60 sec. Die abschließende Elongation betrug 20 min bei 72°C. Für die Proben aus der schnellen DNA-Extraktionsmethode wurden 1 µl der DNA-haltigen Lösung eingesetzt und die Anzahl der Zyklen auf 35 erhöht.

Die Fragmentlängen der PCR-Produkte (1 µl je Probe) wurden mit einem 16-Kapillar-Sequenzer (ABI 3130xl Genetic Analyzer, Applied Biosystems, Darmstadt) ermittelt. Für die automatische Detektion war ein Primer jedes SSR-Markers am 5'-Ende mit einem Fluoreszenzfarbstoff (6-FAM, HEX, TAMRA oder ROX) markiert (Primersynthese und Markierung durch Metabion, Planegg-Martinsried). Als Größenmarker wurde ein am Institut hergestellter Größenmarker mit BODIPY 639/650-Markierung, der einen Bereich von 35 bis 500 bp abdeckt, verwandt. Die Ergebnisse wurden mit dem Programm GeneMapper 4.0 (Applied Biosystems, Darmstadt) ausgewertet.

2.2.7 Erstellen der genetischen Karten

Das Programm JoinMap 4.0 (Van Ooijen 2006) wurde verwendet um anhand der Daten eine mütterliche und eine väterliche, sowie eine integrierte genetische Karte zu erstellen. Entsprechend des Segregationsmusters wurden die Genotypen nach den Vorgaben im Handbuch codiert (siehe Tabelle 4).

Segregation	Beschreibung	Genotypen				
<abxcd></abxcd>	Heterozygot in beiden Eltern mit vier Allelen	ac	ad	bc	bd	
<efxeg></efxeg>	Heterozygot in beiden Eltern mit drei Allelen	ee	ef	eg	fg	
<hkxhk></hkxhk>	Heterozygot in beiden Eltern mit zwei Allelen	hh	hk	kk		
<lmxll></lmxll>	Heterozygot im ersten Elternteil (Mutter)	11	lm			
<nnxnp></nnxnp>	Heterozygot im zweiten Elternteil (Vater)	nn	np			

Tabelle 4: Mögliche Segregationsmuster und Genotypen in einer Kreuzungspopulation

Die Konstruktion der Karten erfolgte unter Verwendung der "Double Pseudo-Testcross"-Strategie (Grattapaglia & Sederoff 1994). Für die Gruppierung der Marker wurde der "independence LOD score", welcher auf dem G²-Test, einer Form des Likelihood-Ratio-Tests, beruht, verwendet. Die Nummerierung der Kopplungsgruppen erfolgte nach Adam-Blondon *et al.* (2004) gemäß der Empfehlung des IGGP ("International Grape Genome Program"; http://www.vitaceae.org).

Eine Abschätzung der Genomlängen erfolgte nach der Berechnungsmethode von Hulbert *et al.* (1988). In die Formel E(G) = M(M-1)X/K fließen die Markeranzahl (M), die maximale Distanz zwischen zwei Markern (X) und die Anzahl an Locuspaaren oberhalb der LOD Signifikanzgrenze (K) ein.

2.2.8 QTL-Analysen

Die Analyse der Quantitative Trait Loci (QTL) wurde mit dem Programm MapQTL in den Versionen 5 bzw. 6 (Van Ooijen 2009) durchgeführt. Intervall Mapping (IM) und Multiples QTL Mapping (MQM) wurden verwendet, um merkmalsrelevante Genomabschnitte statistisch zu ermitteln. Dafür wurden Schrittweiten von 0,5, später von 0,1 cM gewählt und nah am QTL liegende Marker als Cofaktoren für die MQM-Analysen verwandt. Die Berechnungen wurden sowohl an den elterlichen Karten, als auch an der integrierten Karte durchgeführt. Die Signifikanzgrenzen bei $\alpha = 0.05$ (5%) wurde mit mindestens 1000 Permutationen bestimmt. Die graphische Darstellung der QTLs erfolgte mit dem Programm MapChart 2.2 (Voorrips 2002)

2.2.9 Statistische Tests auf Normalverteilung

Die statistische Überprüfung auf Normalverteilung erfolgte mit der Statistiksoftware R (R Development Core Team 2011). Dafür wurden Tests aus den Paketen 'nortest' (Groß 2006), 'tseries' (Trapletti & Hornik 2011) und dem Standardpaket 'stats' verwandt.

2.2.10 Abgleich mit den Genomsequenzen

Die beim Grape Genome Browser" (http://www.genoscope.cns.fr/Vitis) hinterlegte Referenzgenomsequenz des 'Pinot Noir'-Inzuchtgenotyps PN40024 (Jaillon *et al.* 2007) mit der verknüpften "Genewise Uniprot" Datenbank (http://www.uniprot.org) wurde genutzt, um annotierte Gene im *Rpv10*-Locusbereich zu identifizieren.

3 Ergebnisse

3.1 Phänotypisierung der Plasmopara-Resistenz

Die Lokalisierung von Resistenzregionen in einer Kreuzungspopulation setzt zuverlässige phänotypische Daten über die Resistenzausprägung voraus. Für den Falschen Mehltau lässt sich die Stärke des Befalls effektiv durch Blattscheibentests ermitteln. Die Resistenzbewertung für die Individuen der Kreuzungspopulation erfolgte anhand der Anzahl an gebildeten Sporangienträgern. Je weniger Sporangienträger das Individuum im Mittel aufwies, desto höher wurde seine Resistenzausprägung beurteilt. Die Bewertung der gebildeten Sporangienträger lässt Rückschlüsse auf die Fähigkeit des Pathogens zu, ein Blatt zu infizieren, zu besiedeln und neue Sporangien für eine weitere Ausbreitung zu bilden und somit den kompletten asexuellen Vermehrungszyklus zu durchlaufen. Gelingt es der Pflanze in einem der Stadien, die Pathogenentwicklung zu unterbrechen, resultiert dies in einer Reduktion oder dem Ausbleiben der Sporangienträgerbildung.

Die Verteilung der Resistenzausprägung gegen den Falschen Mehltau in der untersuchten Kreuzungspopulation Gf.Ga-52-42 x 'Solaris' ist im Histogramm der Abbildung 5 dargestellt.

Abbildung 5: Häufigkeitsverteilung der *Plasmopara viticola* Resistenzklassen (9: keine Sporangienträger, 7: eins bis fünf, 5: sechs bis zwanzig, 3: mehr als zwanzig Sporangienträger, 1: dichter Sporangienträgerteppich) in der Kreuzungspopulation Gf.Ga-52-42 x 'Solaris'. Die Daten basieren auf dem Mittelwert aus vier unabhängigen Bonituren mit je vier Blattscheiben während der Vegetationsperioden 2009 und 2010 an 265 Individuen. Die Pfeile geben die Resistenzbewertungen der Kreuzungseltern sowie der anfälligen Vergleichssorte 'Müller-Thurgau' an (Schwander *et al.* 2011).

Für jedes Individuum der Kreuzungspopulation wurde der Mittelwert von vier unabhängig durchgeführten Blattscheibentests mit je vier Blattscheiben in den Jahren 2009 und 2010 berechnet. Entsprechend dieser Mittelwerte wurden die 265 untersuchten Individuen der Kreuzungspopulation in die Resistenzklassen 1 (anfällig) bis 9 (resistent) eingeteilt.

Die Verteilung der Daten im Histogramm entspricht annähernd einer Normalverteilung mit einem Anteil von 8 % hoch resistenten und 9 % stark anfälligen Pflanzen. In Abbildung 5 wurden zudem die Mittelwerte der Resistenzausprägungen bei den Kreuzungseltern durch Pfeile gekennzeichnet (Gf.Ga-52-42: 4.4, 'Solaris': 4.6). Auffällig dabei ist, dass 30 % der Nachkommen in die deutlich höheren Resistenzklassen 7 und 9 eingeordnet wurden. Die *V. vinifera*-Sorte 'Müller-Thurgau' wurde als anfällige Referenzsorte im Blattscheibentest verwendet und zeigte erwartungsgemäß hohe Sporulationsraten.

Zur graphischen Überprüfung der Resistenzverteilung in der Kreuzungspopulation wurden neben dem Histogramm zwei weitere Darstellungsformen gewählt (Abbildung 6).

Abbildung 6: Graphische Überprüfung des phänotypischen Datensatzes auf Normalverteilung mit NQund Box-Plot. Beim NQ-Plot sind die erhobenen Daten gegen die erwarteten Daten einer Normalverteilung aufgetragen. Für einen normalverteilten Datensatz ist dabei ein linearer Verlauf zu erwarten. Der Box-Plot zeigt, dass eine symmetrische Verteilung im Datensatz vorliegt.

Der Normal-Quantil-(NQ)-Plot kann dazu verwendet werden, die erhobenen Werte mit den für eine Normalverteilung erwarteten Werten zu vergleichen. Ein linearer Verlauf der Werte spricht dabei für eine Normalverteilung. Die Beobachtung in Abbildung 6 zeigt, dass besonders der mittlere Bereich einer Normalverteilung nahe kommt, in den Randbreichen kommt es bei einzelnen Werten jedoch zu deutlichen Abweichungen. Im Box-Plot (oder Box-Whisker-Plot) sind der Median Z=4,8 (schwarzer waagrechter Balken), die oberen und unteren Quartile (Q_3 =6,5; Q_2 =3,2, obere und untere Grenze der Box) sowie die "Whisker" als 1,5-facher Vertrauensbereich ((Z-Q₁) bzw. (Q₃-Z)) angegeben. Die Box enthält dabei 50% der erhobenen Messdaten. Mit dieser Darstellung lässt sich feststellen, dass die Verteilung der Resistenzlevel in der Kreuzungspopulation weitgehend symmetrisch ist (Z mittig zwischen Q₃ und Q₂), was die Annahme einer Normalverteilung unterstützt.

Zudem wurden statistische Tests auf das Vorliegen einer Normalverteilung durchgeführt (Tabelle 5). Die Berechnungen erfolgten mit der Statistiksoftware R. Dabei konnte nur für den Kolmorov-Smirnov Test auf Normalverteilung kein signifikanter Unterschied zwischen dem Datensatz und einer Normalverteilung festgestellt werden. Die übrigen Testverfahren, welche eine höhere Güte (geringer Fehler 2. Art) aufweisen, zeigten mit p-Werten unter 0,05, dass der Datensatz signifikant von der einer Normal-

Tabelle5:TestsderphänotypischenResistenzdaten auf Normalverteilung.

Test auf Normalverteilung	P-Wert
Shapiro-Wilk	4,965 x 10 ⁻⁰⁵
Pearson chi-square	0,0001855
Shapiro-Francia	0,0003197
Cramer-von-Mises	0,001986
Anderson-Darling	0,00252
Jarque-Berea	0,004081
Lilliefors	0,01035
Kolmorov-Smirnov	0,2259

verteilung abweicht. Zusammen mit den graphischen Beobachtungen zeigt dies, dass der Datensatz keine optimale Normalverteilung aufweist, ihr jedoch sehr nahe kommt.

Für die Blattscheibentests wurde Gewächshausmaterial verwendet. Dadurch konnten Umwelteinflüsse, die sich bei Freilandmaterial auf die Resistenzausprägung auswirken könnten, reduziert werden. Hierbei spielt die bei 'Solaris' unter Freilandbedingungen beobachtete, stark ausgeprägte hydrophobe Behaarung (Trichome) der Blattunterseite sicherlich eine große Rolle. Diese bildet eine nahezu wasserundurchlässige Barriere, welche eine Benetzung der unteren Epidermis, in der sich die Stomata befinden, effektiv verhindern kann. Die Zoosporen von *P. viticola* sind auf einen Wasserfilm angewiesenen, um die Stomata zu erreichen und durch diese das Blatt erfolgreich infizieren zu können. Da eine dichte Behaarung den Kontakt zwischen Wasser und Stomata verhindert, wird die Wahrscheinlichkeit einer Infektion deutlich reduziert. Dies konnte elektronenmikroskopisch von Kortekamp & Zyprian (1999) dokumentiert werden und scheint ein essentieller Resistenzfaktor für die beobachtete Feldresistenz der Wildarten *V. davidii* und *V. doaniana* zu sein. Ein weiterer Effekt ergibt sich dadurch, dass die Blattunterseite durch das Abperlen von Wassertropfen schneller abtrocknet, wodurch auch die Zeitspanne für eine Infektion deutlich reduziert wird. Abbildung 7 zeigt den Effekt der hydrophoben Blattbehaarung am Beispiel der beiden Elternpflanzen der Kreuzungspopulation. Diese bei Freilandmaterial auftretende präformierte Resistenzbarriere konnte bei dem verwendeten Gewächshausmaterial nicht beobachtet werden. Zwar gab es auch Genotypen, die unter den Gewächshausbedingungen Trichome aufwiesen, jedoch war deren Anzahl viel zu gering, um eine Behaarung auszubilden, die dicht genug war, um eine Benetzung der Epidermis mit der Sporangiensuspension zu verhindern. Aufgrund der schwachen Ausprägung dieses Merkmals konnte die Variation in der Population am vorliegenden Pflanzenmaterial nicht erhoben werden. Die Verwendung von Gewächshausmaterial erlaubte damit aber eine gezieltere Erfassung der genetischen Resistenzeigenschaften.

Benetzbarkeit der Blattunterseite

Abbildung 7: Benetzbarkeit der Blattunterseite (Freilandmaterial) von Gf.Ga-52-42 und 'Solaris'. Bei Gf.Ga-52-42 kommt es zu einer fast vollständigen Benetzung (links oben), wodurch sich das mit Fluorescein versetze Wasser nicht vollständig entfernen lässt (links unten). Auf 'Solaris' verhindert die dichte hydrophobe Behaarung ein Benetzung der unteren Blattoberfläche (rechts oben). Dies ermöglicht ein fast vollständiges Entfernen des Tropfen (rechts unten). Größenbalken entspricht 2 mm.

3.2 Stilben-Analyse

Die Stilbene Resveratrol, Pterostilben, sowie ε - und δ -Viniferin haben zum Teil bereits bei geringen Konzentrationen eine toxische Wirkung auf *P. viticola* (Pezet *et al.* 2004a). Bei Infektionsversuchen an 'Solaris' war ein schneller Anstieg der Konzentrationen von Resveratrol, ε - und δ -Viniferin beobachtet worden, die innerhalb von 48 bzw. 72 h nach der Infektion Werte weit über der Toxizitätsgrenze erreichten (Pezet *et al.* 2004b). Die Analyse

der Proben erfolgte an dem am Agroscope Changins-Wädenswill etablierten System. Dabei wurden die Stilbene aus 246 Proben der Kreuzungspopulation extrahiert und mittels HPLC analysiert. Somit ließen sich die Konzentration in umol pro mg Frischgewicht der Stilbene Piceid, Resveratrol, Pterostilben, ε - und δ -Viniferin sowohl in der trans- als auch in der cis-Konformation bestimmen. Die Konzentrationen der einzelnen Stilbene wurden mit dem Resistenzniveau der untersuchten Pflanze verglichen. Dabei konnte keine lineare Korrelation zwischen der jeweiligen Stilbenkonzentration und dem Resistenzniveau festgestellt werden. Dies wird an den Korrelationskoeffizienten in Tabelle 6 ersichtlich, welche mit Werten nahe Null das Fehlen eines linearen

Tabelle6:KorrelationskoeffizientenzwischendemPlasmopara-Resistenz-niveauund den analysiertenStilbenen.

	Korrelation zum
	Resistenzniveau
tr-Piceid	0,0134
cis-Piceid	-0,1079
tr-Resveratrol	-0,1245
cis-Resveratrol	0,0724
cis-e-Viniferin	0,0366
tr-e-Viniferin	-0,0592
tr-δ-Viniferin	-0,0736
cis-δ-Viniferin	0,0005
tr-Pterostilben	0,0161
cis-Pterostilben	-0,1093
Piceid (gesamt)	-0,0346
Resveratrol (gesamt)	-0,1192
ε-Viniferin (gesamt)	-0,0580
δ-Viniferin (gesamt)	-0,0459
Pterostilben (gesamt)	0,0119
Stilbene (gesamt)	-0,0848

Zusammenhangs anzeigen. Jedoch ließen sich Beziehungen zwischen Resveratrol und ε -Viniferin (Korrelationskoeffizient 0,5878), Resveratrol und δ -Viniferin (0,5917), sowie zwischen ε - und δ -Viniferin (0,8454) feststellen. Dies lässt sich durch den Syntheseweg erklären, bei dem die Viniferine über eine Oxidation durch Peroxidasen aus Resveratrol synthetisiert werden (Pezet *et al.* 2004b).

Da im Gegensatz zu den Literaturangaben (Gindro *et al.* 2006; Pezet *et al.* 2004b) keine Korrelation zwischen den Stilbenen und der Resistenzausprägung nachgewiesen werden konnte, wurde auf Wiederholungen der Analyse verzichtet. Insgesamt waren die Stilbenkonzentrationen auch deutlich geringer, als die von Pezet et al. (2004a) dargestellten Werte für 'Solaris'. Die vorliegenden Daten wurden dennoch in einer QTL-Analyse mit der genetischen Karte verrechnet. Dabei konnten für die meisten Stilbene auch QTL ermittelt werden. Diese beruhen jedoch ausschließlich auf einem phänotypischen Datenpunkt und sind damit nicht abgesichert.

3.3 Kallose-Nachweis

Beobachtungen von Gindro *et al.* (2003) hatten gezeigt, dass eine *Plasmopara*-Infektion bei 'Solaris'-Blättern dazu führt, dass die Stomata in der Nähe einer Infektionsstelle mit Kallose verschlossen werden. Dieser Mechanismus kann Sekundärinfektionen durch weitere Zoosporen verhindern. Der einfach durchführbare Kallose-Nachweis mit Anilinblau (Gindro *et al.* 2003; Kortekamp *et al.* 1997) sollte verwendet werden, um dieses Merkmal in der Kreuzungspopulation zu untersuchen. Jedoch konnte dieser Effekt im verwendeten Material nicht beobachtet werden. Auch in den untersuchten Blättern von 'Solaris' kam es zu keiner Ablagerung von Kallose.

3.4 Genetische Kartierung

Erste Zielsetzung war die Erstellung einer genetischen Basiskarte mit einer gleichmäßigen Abdeckung von etwa fünf SSR-Markern je Chromosom. Diese wurde verwendet, um in ersten QTL-Analysen mit den bis dahin verfügbaren phänotypischen Daten erste Hinweise auf mögliche Resistenzloci zu erhalten. Damit war die Grundlage geschaffen, weitere Marker gezielt auswählen und entwickeln zu können. Dies erfolgte verstärkt für die Kopplungsgruppe (LG, "linkage group") 09, nachdem hier in ersten Verrechnungen ein ausgeprägter QTL beobachtet wurde. Zudem wurde die Karte mit randständigen SSR-Markern ergänzt, um eine möglichst umfassende Genomabdeckung zu erzielen. Damit umfasst die finale integrierte Karte 219 SSR-Marker (Abbildung 8, Tabelle 7, detailliertere Abbildungen der LGs in Anhang 1), für die Daten an den 265 Individuen der Kreuzungspopulation erhoben wurden. Dies entspricht 58.035 Datenpunkten. Die Marker decken dabei 1110 cM auf den 19 LGs des Rebengenoms ab. Die Kopplungsgruppen wurden mit LOD-Werten ("logarithm of odds") größer oder gleich 10 voneinander abgegrenzt. Aufgrund der Identifizierung eines starken QTL auf der LG 09 und der deshalb zusätzlich gezielt abgeleiteten Marker besitzt diese mit 48 Markern die höchste Markerdichte. Die LG 17 weist mit sechs Markern die geringste Anzahl an Markern auf.

Die finale mütterliche Karte von Gf.Ga-52-42 umfasst 166 SSR-Marker und weist zwischen 5 und 34 Markern pro LG auf. Dabei bilden die sechs Marker der LG 16 zwei getrennte Gruppen mit vier und zwei Markern (Tabelle 7). Bei der väterlichen 'Solaris' Karte (158 Marker) besitzt die LG 09 mit 33 Markern die höchste Abdeckung. Dagegen ist die LG 02 mit vier Markern unterrepräsentiert, während die LG 13 in zwei Gruppen mit drei und fünf Markern geteilt ist (Tabelle 7). Die zu erwartende Genomlänge wurde nach Hulbert *et al.* (1988) abgeschätzt und beträgt für die integrierte Karte 1015 cM. Damit ist die beobachtete Genomlänge mit 1110 cM größer als dieser geschätzte Wert. Für die elterlichen Karten ergeben sich etwas größere erwartete Genomlängen von 1378 cM in der mütterlichen Gf.Ga-52-42- und 1104 cM in der väterlichen 'Solaris'-Karte (Tabelle 7).

LGs ^a	Gs ^a Integrierte Karte			Mütterliche Ka	arte von Gf.(Ga-52-42	Väterliche Karte von 'Solaris'				
	Länge (cM)	Anzahl Marker	mittlerer Abstand (cM)	Länge (cM)	Anzahl Marker	mittlerer Abstand (cM)	Länge (cM)	Anzahl Marker	mittlerer Abstand (cM)		
1	62.66	14	4.48	68.36	12	5.70	56.48	10	5.65		
2	34.35	7	4.91	33.82	5	6.76	31.81	4	7.95		
3	51.06	8	6.38	57.37	7	8.20	48.41	5	9.68		
4	64.35	7	9.19	48.79	5	9.76	50.64	5	10.13		
5	68.18	10	6.82	47.26	7	6.75	64.11	6	10.69		
6	48.45	8	6.06	45.56	5	9.11	47.40	6	7.90		
7	71.63	10	7.16	78.20	9	8.69	65.24	8	8.15		
8	68.54	11	6.23	74.32	7	10.62	60.09	8	7.51		
9	57.38	48	1.20	66.64	34	1.96	49.49	33	1.50		
10	63.98	8	8.00	62.22	5	12.44	64.28	5	12.86		
11	55.32	8	6.92	68.36	7	9.77	46.21	7	6.60		
12	60.33	12	5.03	68.85	8	8.61	42.87	9	4.76		
13	58.79	13	4.52	59.25	12	4.94	9.26/10.81	3/5	3.48/3.15		
14	62.21	10	6.22	71.36	8	8.92	59.18	8	7.40		
15	42.07	7	6.01	44.89	6	7.48	31.74	5	6.35		
16	54.54	9	6.06	34.11/9.55	4/2	8.53/4.78	40.35	6	6.72		
17	48.73	6	8.12	48.08	5	9.62	48.02	6	8.00		
18	82.27	14	5.88	23.31	11	2.12	74.98	11	6.82		
19	55.20	9	6.13	52.52	7	7.50	40.74	8	5.09		
O(G) ^b	1110.05	219	6.07	1062.80	166	7.61	942.12	158	7.02		
E(G) ^c	1015.46			1377.71			1103.72				

Tabelle 7: Hauptmerkmale der Kopplungsgruppen (LGs, "linkage groups") in der integrierten Karte, der mütterlichen Gf.Ga-52-42-Karte sowie der väterlichen Karte von 'Solaris'.

^aKopplungsgruppen entsprechend den Chromosomen gemäß IPPG ("International Grape Genome Program") Nomenklatur. ^bO(G), beobachtete Genomlänge (Summe der Längen aller Kopplungsgruppen)

^cE(G), geschätzte Genomlänge, berechnet mit E(G)=M(M-1)X/K (Hulbert et al. 1988)

(M=Markeranzahl; X=maximaler Kartierungsabstand; K=Anzahl der Locuspaare über der LOD-Signifikanzschwelle)

Abbildung 8: Integrierte genetische Karte der Kreuzungspopulation Gf.Ga-52-42 x 'Solaris' mit 219 SSR-Markern auf den 19 Kopplungsgruppen der Rebe. Die Population umfasst 265 Individuen. Markerabstände werden in centi Morgan (cM) angegeben. An die Markernamen angehängt sind die kodierten Fragmentlängen (in bp) bei Markern, welche nur in einem Elternteil heterozygot sind. Die drei Resistenzloci sind mit schwarzem Balken markiert.

Um eine höhere Auflösung für den QTL-Bereich auf der LG 09 zu erhalten wurden gezielt weitere, am Institut vorhandene, SSR-Marker dieser Kopplungsgruppe kartiert. Die weitere, zielgerichtete Eingrenzung des Locus erfolgte über die Neuentwicklung Locus-spezifischer SSR-Marker anhand der PN40024-(12x)-Referenzgenomsequenz (siehe Abschnitt 2.2.5). Dabei wurden in sechs Entwicklungsrunden 43 neue SSR-Marker (mit 5 bis 12 neuen SSR-Markern je Entwicklungsrunde) getestet und die 22 informativen Marker kartiert. Anschließende QTL-Analysen mit den bis dahin vorliegenden phänotypischen Resistenzdaten ergaben reduzierte Konfidenzintervalle und damit die Möglichkeit gezielt weitere SSR-Marker für diesen Abschnitt zu entwickeln. Bei jedem Durchlauf konnte der Locus dabei weiter eingegrenzt werden. Einige dieser Kartierungsschritte sind in Abbildung 9 aufgezeigt. Auffällig dabei ist, dass in der ersten Karte (Abbildung 9a) die resultierende QTL-Region noch nicht erfasst war. Dies lässt sich in Anhang 3a besonders deutlich erkennen, da dort die homologen Marker zwischen den Kartenversionen miteinander verbunden wurden. Abbildung 9b zeigt den Stand der Karte nachdem die verfügbaren, kartierbaren Marker ergänzt worden waren. Anschließend erfolgte die Kartierung der neu entwickelten Locus-spezifischen SSR-Marker. Die Kartenversion wie sie in Schwander et al. (2011) veröffentlicht wurde ist in Abbildung 9c dargestellt und Abbildung 9d zeigt den aktuellen Stand der Karte, wie er in Abschnitt 3.5 beschrieben ist.

Als limitierender Faktor für eine weitere Eingrenzung des QTL stellten sich letztlich die in diesem Bereich auf der PN40024-Sequenz verfügbaren SSRs heraus. So wurden Marker für alle innerhalb des Konfidenzintervalls liegenden SSRs des Referenzgenoms entwickelt. Leider waren viele dieser SSRs homozygot oder nicht PCR-fähig und konnten deshalb nicht kartiert werden. Alle neu entwickelten und kartierten SSR-Marker sind in Tabelle 3 im Abschnitt 2.2.5 aufgeführt.

Da die Kreuzung sehr erfolgreich gewesen war und ausreichend Samen zur Verfügung standen wurden nachträglich weitere 2700 Pflanzen angezogen, um die Population für die Feinkartierung erweitern zu können. Den Pflanzen wurden im Keimlingsstadium DNA-Proben entnommen, welche auf Rekombinationen im *Rpv3-* und *Rpv10-*Locusbereich getestet wurden. Dabei konnten 28 Genotypen identifiziert werden, die im Bereich des feinkartierten *Rpv10-*Locus einen Rekombinationspunkt besitzen. Nachdem diese Genotypen ermittelt waren, stellte sich jedoch heraus, dass der limitierende Faktor für die Feinkartierung die zur Verfügung stehenden SSR-Marker und nicht die Rekombinationspunkte darstellten. Aus diesem Grund wurden diese Genotypen nicht weiter phänotypisch charakterisiert.

3.5 QTL-Analysen

Bereiche in der genetischen Karte, die mit der Merkmalsausprägung für die *Plasmopara*-Resistenz im Zusammenhang stehen, wurden mittels Intervall Mapping (IM) lokalisiert. Dabei wurden in der integrierten Karte LOD-Werte oberhalb der Signifikanzgrenze auf den LGs 09 und 18 identifiziert (Tabelle 8, Abbildung 10, Abbildung 11). Durch das Setzen von Cofaktoren in den beiden QTL-Bereichen konnte mittels MQM-Analyse ein weiterer QTL auf der LG 05 identifiziert werden (Tabelle 8, Abbildung 12).

Der auf der LG 09 ermittelte QTL (*Rpv10*) erreicht einen maximalen LOD-Wert von 39,9 bei den IM- und 48,1 bei MQM-Analysen und erklärt zwischen 49 und 50 % der beobachteten phänotypischen Varianz in der Population. Die für diesen QTL ermittelten Konfidenzintervalle (LOD_{max}-1) betragen 0,8 cM (IM) bzw. 0,5 cM (MQM). Der gleiche QTL wurde auch auf der väterlichen 'Solaris' Karte identifiziert (LOD_{max} 38,7; erklärt 49 % der Varianz), während der LOD-Wert in der mütterlichen Karte die Signifikanzgrenze nicht erreicht (Tabelle 8).

Der auf der LG 18 ermittelte QTL (*Rpv3*) erklärt bis zu 13,3 % der Varianz und besitzt LOD-Werte von 8,2 (IM) und 16,5 (MQM) in der Integrierten Karte. Das Konfidenzintervall beträgt 2,1 cM (IM) bzw. 0,9 cM (MQM) (Abbildung 11, Tabelle 8). Dieser QTL taucht bei den elterlichen Karten nur mütterlicherseits auf (LOD_{max} 8,1; erklärt 13.2 % der Varianz). Der in der väterlichen Karte aufgeführte schwache QTL auf LG 18 befindet sich außerhalb des beschriebenen Locus mit dem randständigen VMC2A3 als benachbartem Marker.

Der nur in den MQM-Analysen identifizierte Neben-QTL auf der LG 05 (*Rpv11*) wurde väterlicherseits vererbt, weist einen maximalen LOD-Wert von 4,7 auf und erklärt 3,0 % der phänotypischen Varianz. Auf der LG 03 konnte in der väterlichen Karte ein weiterer schwacher QTL (LOD_{max} 2,3; erklärt 2,9 % der Varianz) lediglich bei der IM-Analyse identifiziert werden. Bei der MQM-Analyse und in den Berechnungen mit der Integrierten Karte trat dieser nicht auf.

Die QTLs in den drei Karten (integrierte, väterliche und mütterliche) befinden sich immer zwischen den gleichen flankierenden Markern, weisen jedoch unterschiedliche absolute Positionen, gemessen in cM, auf (siehe Tabelle 8). Die beobachteten Verschiebungen entstehen durch die unterschiedliche Anzahl an Markern und den daraus resultierenden variierenden Gesamtlängen der Kopplungsgruppe. Im Fall der LG 18 fehlen beispielsweise die vier oberen Marker in der Gf.Ga-52-42-Karte, wodurch sich die errechnete Länge der LG um 59 cM und damit um 72 % verringert (siehe Tabelle 7).

LG 09

Abbildung 10: Quantitative Faktoren der Merkmalsausprägung (LOD) der *P. viticola*-Resistenz auf LG 09 der integrierten Karte. Markerabstände in centi Morgan (cM). Interval Mapping (IM, grün, Quadrate) und Multiple QTL Mapping (MQM, rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD- (Linie) Konfidenzintervalle. Die Kopplungsgruppen (LG)spezifische Signifikanzschwelle von 2,9 wird durch die gepunktete Linie gekennzeichnet.

Abbildung 11: Quantitative Faktoren der Merkmalsausprägung (LOD) der *P. viticola* Resistenz auf LG 18 der integrierten Karte. Markerabstände in cM. IM (grün, Quadrate) und MQM (rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD- (Linie) Konfidenzintervalle. Die Kopplungsgruppen (LG)-spezifische Signifikanzschwelle von 2,7 wird durch die gepunktete Linie gekennzeichnet.

Abbildung 12: Quantitative Faktoren der Merkmalsausprägung (LOD) der *P. viticola* Resistenz auf LG 05 der integrierten Karte. Markerabstände in cM. IM (grün, Quadrate) und MQM (rot, Kreise) mit Angabe der 1-LOD- (Box) und 2-LOD- (Linie) Konfidenzintervalle. Die LG Kopplungsgruppen (LG)-spezifische Signifikanzschwelle von 2,6 wird durch die gepunktete Linie gekennzeichnet.

Karte	LG ^a	Тур	LOD _{max}	LG spez.	Signifikanz-	LOD _{max}	Konfidenzintervall (cM)		Erklärte Cofactor	nächster
				Signifikanz-	grenze	Position ^c	[LOD _{max} -1]	[LOD _{max} -2]	Varianz	Marker
				grenze ^b	$genomweit^b$					
Integriert	00	IM	39.92	2.9	4.1	15.4 cM	15.2 - 16.0	15.1 - 16.4	50.0 %	GF09-46
	09	MQM	48.08	2.9	4.1	15.4 cM	15.3 - 15.8	15.2 - 16.1	49.1 % GF09-46	GF09-46
	10	IM	8.22	2.7	4.1	68.0 cM	67.2 - 69.3	64.5 - 75.5	13.3 %	UDV-737
	18	MQM	16.53	2.7	4.1	68.5 cM	67.6 - 68.5	67.6 - 68.5	12.5 % UDV-737	UDV-737
	05	MQM	4.73	2.6	4.1	19.0 cM	15.4 - 22.6	10.9 - 26.5	3.0 %	VCHR05C
Gf.Ga-52-42	09	IM	_ ^d	1.7	2.9	-	-	-	-	
		MQM	_ ^d	1.7	2.9	-	-	-	-	
	10	IM	8.12	1.5	2.9	3.2 cM	1.5 - 3.7	0.5 - 14.6	13.2 %	UDV-737
	18	MQM	8.12	1.5	2.9	3.2 cM	3.0 - 3.4	3.0 - 3.4	13.2 % UDV-737	UDV-737
	05	MQM	_ ^d	1.5	2.9	-	-	-	-	
'Solaris'	00	IM	38.73	1.6	2.7	15.0 cM	14.5 - 15.7	14.5 - 15.7	49.0 %	GF09-46
	09	MQM	38.73	1.6	2.7	15.0 cM	14.5 - 15.7	14.5 - 15.7	49.0 % GF09-46	GF09-46
	10	IM	_ ^d	1.5	2.7	-	-	-	-	
	18	MQM	1.99	1.5	2.7	0.0 cM	0-15.8	-	1.7 %	VMC2A3
	03	IM	2.29	1.3	2.7	40.7 cM	19.5 - 45.4	3.5 - 48.4	2.9 %	VVIH02
	05	MQM	1.57	1.5	2.7	17.0 cM	8.0 - 26.0	-	1.4 %	VCHR05C

Tabelle 8: Identifizierte QTL in der Kreuzungspopulation Gf.Ga-52-42 x 'Solaris'.

^b Anhand von 1,000 Permutationen bei $\alpha = 0,05$ geschätzt

^c QTL flankierende Marker sind identisch, Positionsunterschiede erklären sich durch verschiedene LG-Längen.

^d LOD-Wert unter Signifikanzgrenze

3.6 Effekt der Pyramidisierung von Resistenzen

Von besonderem Interesse für die Züchtung sind Individuen der Kreuzungspopulation, die eine Kombination (Pyramidisierung) beider identifizierter Resistenzloci aufweisen. Um den Effekt der Pyramidisierung auf die Resistenzausprägung zu untersuchen, wurde die Population anhand des Auftretens bzw. Fehlens der resistenzkorrelierenden Allele der Marker GF09-46 auf LG 09 und UDV-737 auf LG 18 unterteilt. Die Häufigkeitsverteilung der Resistenzklassen in den vier Gruppen von Genotypen wurde miteinander verglichen (Abbildung 13). Die Gruppe mit den Individuen, denen beide resistenzkorrelierenden Allellängen fehlen, weist im Mittel eine deutlich erhöhte Anfälligkeit auf (x=2.6 ±1,2). Dies zeigt sich in einer Verschiebung der Häufigkeitsverteilung zugunsten der niedrigeren Resistenzklassen.

Die Gruppe mit den resistenzkorrelierenden Allelen an beiden Genorten weist im Mittel den höchsten Resistenzgrad auf ($x=6,7\pm1,2$) und eine zugunsten der höheren Resistenzen verschobene Häufigkeitsverteilung. Die beiden Gruppen mit resistenzkorrelierten Allelen an jeweils nur einem Genort zeigen sowohl bezüglich des Resistenzgrades, als auch bezüglich

der Häufigkeitsverteilung ein intermediäres Verhalten. Die varianzanalytische Verrechnung ergab statistisch signifikante ($p \le 0.05$) Unterschiede zwischen den Datensätzen.

Abbildung 13: Häufigkeitsverteilung der Resistenzklassen bei Abwesenheit (-) oder Vorhandensein (+) der resistenzkorrelierten Allellängen der Marker GF09-46 auf LG 09 und UDV-737 auf LG 18. Mittelwert und Standardabweichung der Gruppen sind in Klammern angegeben (Schwander *et al.* 2011).

Um die Unterschiede zwischen den vier Gruppen mit einer weiteren Darstellung zu veranschaulichen wurden zusätzlich Box-Plots der vier Gruppen erstellt (Abbildung 14). Hier sind die Unterschiede in der Resistenzausprägung zwischen den vier Gruppen anhand der Mediane (schwarze waagrechte Balken) und der Boxen, welche 50% des Datenumfangs repräsentieren deutlich zu erkennen. Die "Whisker" geben den 1,5-fachen Vertrauensbereich an und Datenpunkte außerhalb dieses Vertrauensbereiches sind durch Kreise gekennzeichnet. In dieser Darstellung wird auch deutlich, dass die durch den *Rpv10*-Locus vermittelte Resistenzausprägung stärker ist als die des *Rpv3*-Locus.

Abbildung 14: Darstellung der Resistenzausprägung im Box-Plot bei Abwesenheit (-) oder Vorhandensein (+) der resistenzkorrelierenden Allellängen der Marker GF09-46 auf LG 09 und UDV-737 auf LG 18. Einzelne Datenpunkte außerhalb des 1,5-fachen Vertrauensbereiches der "Whisker" sind durch Kreise gekennzeichnet.

3.7 Abgleich des *Rpv10*-Locus mit dem Referenzgenom

Die annotierte genomische Sequenz des 'Pinot Noir' Inzuchtstamms PN40024 ermöglicht die Suche nach Genpositionen und -funktionen. Über die im "Grape Genome Browser" (http://www.genoscope.cns.fr/Vitis) hinterlegte "Genewise Uniprot" Datenbank (http://www.uniprot.org) konnte die zum Rpv10-Locus korrespondierende Sequenz in der physikalischen Karte entsprechend betrachtet werden. In einem ersten Ansatz wurde ein erweiterter Bereich um die ermittelte QTL-Region zwischen den Markern GF09-14 (Position: 2,4 Mb) und GF09-16 (Position: 5,9 Mb) (Abbildung 15b) auf der LG 09 (Abbildung 15a) untersucht. Dabei zeigte sich, dass neben einer Vielzahl putativer Rezeptorkinasen (u. a. Serin/Threonin-Protein-Kinasen und Phosphatasen) eine besonders hohe Anzahl von 26 Resistenzgenanaloga (RGAs) vom NBS-LRR-Typ in diesem Bereich annotiert waren. Die meisten RGAs waren in drei Clustern mit 3, 7 und 13 Genen in Regionen von 31, 102 bzw. 404 kb Umfang angeordnet (Abbildung 15b). Dabei zeigten die Gene des ersten Clusters Homologien zu RGAs, welche in Vitis riparia (Di Gaspero & Cipriani 2003) und V. bryoniifolia (Wang & Wang 2006) identifiziert worden waren. Cluster zwei enthielt vier V. vinifera-RGAs (Donald et al. 2002) sowie drei weitere NBS-LRR-Homologe. Dreizehn *V. amurensis*-Resistenzproteinkandidaten (Di Gaspero & Cipriani 2003) waren im dritten Cluster organisiert. Drei weitere NBS-LRRs befanden sich außerhalb der Cluster. Eines dieser RGAs war zwischen den Markern GF09-46 und GF09-47 lokalisiert und besitzt Homologie zu einem in *V. riparia* identifizierten NBS-LRR-Gen (Di Gaspero & Cipriani 2003).

Abbildung 15: a) Physikalische Karte der Kopplungsgruppe 09 des PN40024-Referenzgenoms (nur ausgewählte Marker), b) die erweiterte QTL-Region mit NBS-LRR-"Clustern" und c) die mit *Rpv10* korrespondierende Region auf der PN40024-Sequenz mit den vorhergesagten Proteinen zwischen den flankierenden SSR-Markern. Die Genoscope-Annotationen besitzen die Kennnummern GSVIVT010170**001 (**=Ziffern in Klammern).

Durch das Kartieren von neu entwickelten Locus-spezifischen Markern konnte der QTL auf eine kleinere Region zwischen den flankierenden Markern GF09-65 und GF09-47 mit dem zentralen Marker GF09-46 eingeschränkt werden (Abbildung 15c). Dieser 79 kb umfassende Bereich enthält jedoch keines der drei aufgeführten Cluster, sondern nur das beschriebene singuläre *V. riparia*-homologe NBS-LRR-Gen. Ansonsten waren codierende Raster für acht weitere Proteine zwischen den flankierenden Markern im Referenzgenom annotiert. Dabei handelte es sich um ein Protein mit repetitivem Ankyrin-Motiv, eines, das als Chaperonin an

eine RuBisCO-Untereinheit bindet, einen Ethylen-sensitiven Transkriptionsfaktor, ein Protein mit einer VHS-Domäne (\underline{V} ps27p, \underline{H} rs und \underline{S} TAM-Domäne bei Proteinen mit Beteiligung am Membrantransport), ein Protein mit möglicher Ribonuclease-Funktion sowie drei vorhergesagte Proteine mit unbekannter Funktion. Erwähnenswert ist zudem ein Aquaporin TIP2-1, welches sich zwar knapp außerhalb der flankierenden Marker befindet, bei dem jedoch in Expressionsstudien an *V. amurensis* eine erhöhte Expression nach einer *P. viticola*-Infektion nachgewiesen werden konnte (Wu *et al.* 2010).

3.8 Stammbaum der Kreuzungspopulation

Bei den Markeranalysen wurde neben den Individuen der Kreuzungspopulation auch die DNA naher Vorfahren getestet, soweit diese verfügbar war. Die erhaltenen Daten bestätigen 'Bacchus' und 'Villard Blanc' als Eltern des Zuchtstammes Gf.Ga-52-42 und 'Merzling' als Mutter von 'Solaris'. Da es sich bei Geisenheim 6493 um die Pollenmischung einer Kreuzungspopulation handelt, ist hierfür kein Genotyp verfügbar. Im "Vitis International Variety Catalogue" (http://www.vivc.de) waren zwei mögliche Abstammungen für diese Population angegeben (Abbildung 17b und c). In der einen Version wurde eine Kreuzung zwischen 'Zarya Severa' ('Seyanets Malengra' x *V. amurensis*) und 'Muscat Ottonel' angeführt (bestätigt durch Lott *et al.* 2010; Staatliches Weinbauinstitut Freiburg 2007), während in der zweiten Version 'Saperavi Severnyi' ('Severnyi' ('Seyanets Malengra' x *V. amurensis*) x 'Saperavi') als mütterlicher Kreuzungspartner für Geisenheim 6493 beschrieben wird (bestätigt durch Becker 1981; Hillebrand *et al.* 2003).

Um die korrekte Abstammung zu identifizieren, wurde DNA von 'Muskat Ottonel', 'Zarya Severa', 'Severnyi' und einer als 'Saperavi Severnyi' benannten Akzession mit SSR-Markern analysiert. Dabei stellte sich heraus, das 'Severnyi' und die 'Saperavi Severnyi'-Akzession identische Allelmuster aufwiesen. Ampelographische Untersuchungen ergaben, dass es sich bei beiden Akzessionen um 'Severnyi', wie in der "Ampelografija der USSR" (1955) beschrieben, handelt (Frau Dr. E. Maul, pers. Mitteilung). Beim Abgleich der 'Solaris'-Allele stellte sich heraus, dass das väterliche Allel immer mit einem der Allele von 'Servernyi' oder 'Muskat Ottonel' übereinstimmte. Dies konnte bei 'Severnyi' mit 57 SSR-Marker und für 'Muskat Ottonel' mit 27 SSR-Marker belegt werden. Die übrigen Marker erbrachten wegen Homozygotie, Nullallelen oder durch fehlende Daten keine Bestätigung, waren jedoch auch nie widersprüchlich. Das auffällig starke Ungleichgewicht an Markern lässt sich mit der hohen Markerdichte um den *Rpv 10*-Locus erklären, der von 'Severnyi' vererbt wurde.

Um 'Zarya Severa' als Vorfahren klar ausschließen zu können, wurde diese Sorte mit 58 SSR-Markern getestet. In sieben Fällen (etwa 1/8) weist 'Solaris' Allele mit Fragmentlängen auf, die väterlich vererbt wurden (nicht in 'Merzling') aber weder von 'Zarya Severa' noch von 'Muskat Ottonel', jedoch von 'Severnyi' stammen können. Dies wird in Abbildung 18 beispielhaft an drei Markern veranschaulicht. Eine vollständige Tabelle mit den ermittelten Fragmentlängen aller verwendeten SSR-Marker findet sich in Anhang 4. Das Markerdifferenzverhältnis und auch das Verhältnis der Allelübereinstimmungen zwischen 'Zarya Severa' und 'Severnyi' bestätigen, dass diese wie in der Literatur beschrieben Vollgeschwister sind. Abbildung 16 zeigt den aus den Untersuchungen abgeleiteten Stammbaum der Kreuzungspopulation. In dieser werden auch die Herkünfte der Resistenzloci und die durch Markerdaten verifizierten Beziehungen veranschaulicht. Die identifizierte 'Solaris'-Abstammung wird in Abbildung 17 den in der Literatur angegebenen Abstammungen gegenübergestellt.

Abbildung 16: Stammbaum der bearbeiteten F1-Kreuzungspopulation Gf.Ga-52-42 x 'Solaris'. Durchgezogene Linien kennzeichnen durch SSR-Markerdaten bestätigte Beziehungen zwischen den getesteten Sorten (durchgezogen umrandete Kästen). Gestrichelte Linien und Kästen entsprechen den Angaben im "Vitis International Variety Catalogue" (http://www.vivc.de; Stand: Okt. 2011). Grün hinterlegte Sorten besitzen den *Rpv3*-Resistenzlocus, während Akzessionen die *Rpv10* tragen, durch einen gelb-roten Hintergrund gekennzeichnet sind (Schwander *et al.* 2011).

Abbildung 17: Abstammungsoptionen der Sorte 'Solaris'. a) Durch die Markeranalyse ermittelter, b) gegenwärtig angegebener (Staatliches Weinbauinstitut Freiburg 2010) und c) ursprünglich beschriebener (Becker 1981) Stammbaum von 'Solaris'. Durchgezogene Linien kennzeichnen durch Markerdaten bestätigte Verbindungen zwischen den getesteten Sorten (in durchgezogen umrandeten Kästen). Sorten in gestrichelten Kästen und gestrichelte Verbindungen kennzeichnen Abstammungen nach dem "Vitis International Variety Catalogue" (http://www.vivc.de; Stand: Okt. 2011). Dunkelgrauer Hintergrund kennzeichnet die Sorten, welche den *Rpv10*-Locus aufweisen. Ob 'Saperavi Severnyi' den *Rpv10*-Locus besitzt ist unbekannt (Schwander *et al.* 2011).

a) Marker VMC3C11.1, LG 17

Abbildung 18: Beispielhafte SSR-Marker-Allellängen, die 'Zarya Severa' als Vorfahre von 'Solaris' ausschließen (a, b) und die Abstammung von 'Severnyi' (a, b) und 'Muscat Ottonel' (c) unterstützen. Die beobachteten Fragmentlängen (bp) für beide Allele sind unter dem jeweiligen Sortennamen angegeben. a) 'Solaris' hat das Allel mit der 120 bp-Fragmentlänge von 'Merzling' geerbt, welcher durch alle verwendeten Marker als mütterliches Elternteil von 'Solaris' bestätigt wurde. Geisenheim 6493 steht für die Pollenmischung einer Kreuzungspopulation, weshalb keine DNA für diesen Genotyp verfügbar ist. Deshalb muss das 102 bp lange Fragment von einem der Großeltern stammen. In diesem Fall findet sich die entsprechende Fragmentlänge in 'Severnyi', wobei das Fehlen dieses Allels in 'Zarya Severa' diese Sorte als 'Solaris'-Vorfahre ausschließt. b) Identische Situation wie in a) mit einem Marker im *Rpv10*-Locus. c) Beispiel für einen Marker, der 'Muscat Ottonel' als Großelternteil von 'Solaris' bestätigt. 'Saperavi Severnyi' lässt sich durch die Beobachtung, dass sich alle Allele der 58 Marker auf 'Severnyi' oder 'Muscat Ottonel' zurückführen lassen, ebenfalls als Großelternteil ausschließen. Andernfalls müsste man bei bis zu ¼ der Allele (im Fall ausschließlich heterozygoter Marker) die aus 'Saperavi' stammenden Allele in 'Solaris' beobachten können (Schwander *et al.* 2011).

3.9 Untersuchung ausgewählter Sorten auf den Rpv10-Locus

Um weitere Informationen über den Rpv10-Locus zu erhalten, wurden ausgewählte Sorten mit zwölf den Locus flankierenden SSR-Markern getestet (Tabelle 9). Die Auswahl erfolgte anhand des Abstands zum QTL_{max}, dem Informationsgehalt des Markers und der Kombinierbarkeit im Multiplex. Dabei zeigt sich, dass das Allelmuster von 'Zarya Severa' die Beobachtungen an den 58 SSR-Markern bestätigt. Vier Locus-nahe SSR-Marker (GF09-44, -61, -47 und -48) weisen die resistenzkorrelierenden Fragmentlängen auf, die übrigen acht Marker, inklusive dem im QTL zentral liegenden GF09-46, nicht. Dies schließt 'Zarya Severa' als Überträger des Rpv10-Resistenzlocus an 'Solaris' aus.

	Markername	Resistenzkorrelierte Fragmentlänge	Gf.Ga-52-42	Solaris	Merzling	Severnyi	Muskat Ottonel	Zarya Severa	Riparia Gloire de Montpellier	Bronner	Rondo	Saint Laurent
	GE09-11	256	254	256	277	248	254	260	273	256	256	286
	0100-11	200	280	280	280	256	-	-	276	280	-	-
	GE09-43	428	422	422	422	428	425	426	418	422	424	424
	01 00-40	720	426	428	430	-	450	462	447	428	428	-
	GE00-11	230	242	230	245	230	236	230	229	230	230	230
	01 03-44	200	245	245	-	244	245	242	-	245	-	245
	GE00-61	108	418	408	405	408	418	408	405	408	408	418
	0103-01	+00	-	-	-	-	-	418	-	-	-	-
	GE09-62	303	409	393	-	393	394	409	-	393	393	409
	01 03-02	535	-	-	-	-	-	-	-	-	409	-
	GE09-65	312	316	312	316	312	316	316	308	312	312	316
~	01 03-03	512	-	-	-	-	-	329	321	-	-	-
v10	GE09-46	116	423	416	406	416	425	407	407	416	416	423
Rp	01 03-40	-10	425	425	425	423	-	423	-	425	423	425
	GE09_47	200	296	296	296	296	292	296	289	296	296	296
	01 03-47	200	296	299	-	299	296	299	-	299	299	-
	GE00-48	350	349	349	349	349	349	349	351	349	349	349
	01 03-40	555	349	359	356	359	-	359	364	359	359	-
	GE00 55	240	238	249	262	249	237	260	248	249	249	237
	GF09-55	249	264	264	264	257	264	-	252	264	264	264
	GE00 52	306	393	393	393	393	393	393	393	393	393	393
	01 09-32	390	393	396	394	396	395	399	396	396	396	-
	CE00 57	302	347	303	360	303	365	301	354	303	303	347
	GF09-57	303	366	366	366	360	-	345	360	366	366	366

 Tabelle 9: Untersuchung ausgewählter Sorten mit 12 den *Rpv10*-Locus flankierenden

 Markern. Die resistenzkorrelierenden Fragmentlängen sind grau hinterlegt.

In dem Set wurde zudem 'Riparia Gloire de Montpellier' getestet, welcher auf der LG 09 den *Rpv5*-Locus aufweist. Mit dieser Untersuchung sollten die Loci nicht nur über ihren Ursprung (amerikanische vs. asiatische Herkunft), sondern auch anhand der Markerdaten voneinander abgegrenzt werden. Es zeigte sich, dass 'Riparia Gloire de Montpellier' lediglich bei dem 8,1 cM von der Position des LOD_{max} entfernten Marker GF09-52 die resistenzkorrelierende Fragmentlänge aufweist. Damit konnte abgesichert werden, dass es sich bei *Rpv5* und *Rpv10* um verschiedene Resistenzloci handelt.

Des Weiteren wurden die Neuzüchtungen 'Rondo' (Selektion aus der Kreuzungspopulation Geisenheim 6494, angegeben als 'Zarya Severa' x 'Saint Laurent') und 'Bronner' ('Merzling' x Geisenheim 6494) untersucht. Die beiden Sorten weisen bei allen 12 SSR-Markern die resistenzkorrelierten Fragmentlängen auf und besitzen damit eindeutig den *Rpv10*-Locus. Dadurch kann 'Zarya Severa' auch kein Elternteil der Kreuzungspopulation Geisenheim 6494 sein. Dies implementiert, dass 'Severnyi', wie bei 'Solaris' bereits aufgezeigt, als Resistenzdonor Verwendung fand. Diese Schlussfolgerung wird auch durch die enge begriffliche Beziehung zwischen den Kreuzungspopulationen Geisenheim 6493 und Geisenheim 6494 unterstützt. Die Kreuzungspartner 'Saint Laurent' bei 'Rondo' und 'Merzling' bei 'Bronner' konnten durch die Markerdaten bestätigt werden.

3.10 Untersuchung genetischer Ressourcen

Damit der genetisch neu identifizierte Resistenzlocus *Rpv10* effektiv in die Resistenzzüchtung einfließen kann, sollten Sorten, Zuchtstämme und Wildartakzessionen (im Weiteren Genotypen) mit diesem Locus identifiziert werden. Damit lässt sich der Zuchtprozess flexibler gestalten, da man aus einem breiteren Spektrum an Genotypen für die geplanten Kreuzungen wählen und weitere Eigenschaften berücksichtigen kann. Um diese Untersuchung in einem überschaubaren Rahmen zu halten, wurden aus dem Rebensortiment am Geilweilerhof Genotypen mit *V. amurensis* im Stammbaum über den VIVC (http://www.vivc.de) identifiziert. Die 94 ausgewählten Genotypen wurden mit sechs den *Rpv10*-Locus flankierenden Markern untersucht (siehe Tabelle 10). Dafür wurden die funktional besten, eng korrelierenden SSR-Marker in einem Multiplex kombiniert. Die Marker decken dabei einen Bereich von 8,4 cM um den QTL ab (vgl. Abbildung 10). Dabei konnte das bekannte *Rpv10*-tragende Allel in 22 Genotypen eindeutig identifiziert werden (alle sechs Marker weisen die resistenzkorrelierenden Allellängen auf). Bei 70 Sorten trat der Locus nicht oder nicht mit dem vollständigen Muster auf. Die erhobenen Daten lassen bei

zwei Genotypen keine abschließende Beurteilung zu. Lednice C 62 weist zwischen dem QTL flankierenden Marker GF09-65 und dem zentralen Marker GF09-46 einen Rekombinationspunkt auf, weshalb für diesen Genotyp ohne eine präzise Phänotypisierung keine eindeutige Aussage getroffen werden kann, ob der Rpv10-Locus vorhanden ist. Der Wildart-Akzession V. amurensis cv. Ruprecht (Accession-Nr.: DEU098-1990-444; Sort. Nr. 5011) fehlen drei der resistenzkorrelierenden Fragmentlängen, weist diese jedoch bei dem zentralen Markers GF09-46 auf. Die resistenzkorrelierende Fragmentlänge von GF09-46 (416 bp) konnte in dem getesteten Set ausschließlich bei den $Rpv10^+$ -Genotypen und bei den beiden bereits angesprochenen Genotypen identifiziert werden. Der Marker zeigt somit relativ zuverlässig das Vorhandensein des Rpv10-Locus an.

Bei den übrigen flankierenden Markern kann es, wenn man diese einzeln betrachtet, zu falsch positiven Identifikationen kommen, da die resistenzkorrelierende Fragmentlänge nicht ausschließlich auf dem *Rpv10*-tragenden Allel vorkommt. Dies zeigt sich, wenn man die getesteten Marker in Tabelle 10 betrachtet und die resistenzkorrelierende Fragmentlänge nur bei einzelnen Markern auftritt (+), während sie bei den übrigen fehlt (-). Ein mehrmaliges Rekombinationsereignis, ist aufgrund der geringen Markerabstände (8,4 cM zwischen den beiden äußeren Markern) sehr unwahrscheinlich. Mit einem dieser Marker durchgeführte Untersuchungen würden demnach einen Anteil der Genotypen fälschlicherweise als Merkmalsträger identifizierten. Im untersuchten Set war dies bei GF09-44 und GF09-65 für 16 Genotypen (17 %) und bei GF09-47 für 13 Genotypen (14 %) der Fall. Damit sind diese Marker für den Einsatz in der Züchtung zum Screening von Genotypen nur bedingt geeignet. Bei den Markern GF09-11 und GF09-48 trat die resistenzkorrelierende Fragmentlänge nur bei 4 bzw. 3 Sorten auf, die das *Rpv10*-tragende Allel nicht besitzen. Damit ist die Wahrscheinlichkeit für falsch positive Ergebnisse in einer Untersuchung deutlich reduziert.

In weiteren Untersuchungen von genetischen Ressourcen erlaubt eine Markerkombination mit GF09-11, GF09-46 und GF09-48 eine zuverlässige Identifikation des *Rpv10*-Locus. Aufgrund der unterschiedlichen Fragmentlängen dieser Marker ist dies auch problemlos in einem Multiplexansatz möglich.

Tabelle 10: Genetische Überprüfung von Genotypen mit *V. amurensis*-Abstammung auf das Auftreten des *Rpv10*-Locus. Abstammungen nach den Angaben im VIVC (http://www.vivc.de; Stand: Jun. 2011). Das Vorhandensein der resistenzkorrelierenden Allellänge (Zeile 3) wurde durch ein "+", das Fehlen durch ein "-" gekennzeichnet. In der letzten Spalte ist das Ergebnis mit $Rpv10^+$ oder $Rpv10^-$ zusammengefasst.

				Rpv	10-Lo	cus			
	SSR-Marker:	GF09-11	GF09-44	GF09-65	GF09-46	GF09-47	GF09-48	Rpv10	
Name	Resistenzkorr. Allellänge:	256	230	312	416	299	359		
65-151-5	A - 4/13 X LEMBERGER	_	+	-	_	_	-		
69-2-4	MEDOC NOIR X AMURENSIS	-	+	-	-	-	-	_	
80-13-27	(AMURENSIS)F2 X HARSLEVELUE	-	_	+	-	+	-	_	
A - 4/13	(VITIS AMURENSIS X VITIS VINIFERA) X THALLOCZY LAJOS	-	-	-	-	-	-	-	
AGAT DONSKOI	(ZARYA SEVERA X DOLORES) X RUSSKII RANNII	-	-	-	-	-	-	-	
ALLEGRO	CHANCELLOR X RONDO	-	-	-	-	-	-	_	
AMURENSIS 31-12-19		-	-	-	-	+	-	-	
AMURENSIS 31-13-17		+	-	+	-	-	-	-	
AMURENSIS 5380		+	-	-	-	-	-	-	
AMURENSIS 5325		-	-	+	-	+	-	_	
AMURENSIS Gm		-	-	+	-	+	-	-	
ANUSHAYUT	C 1262 (AMURENSIS X PERLE VON CSABA) X KARMRAYUT	-	-	-	-	-	-	-	
ARKTIK	AMURENSIS X SEVERNY CHERNY	-	-	+	-	-	-	-	
AROLANKA 8138	ARON X LANKA	-	-	-	-	-	-	-	
AROLANKA 8145	ARON X LANKA	-	-	-	-	-	-	-	
BARON	CABERNET SAUVIGNON X BRONNER	+	+	+	+	+	+	+	
BASHKANSKII	AMURENSIS X MUSCAT HAMBURG								
KRASNYI		+	-	-	-	-	-	-	
BEICHUN	MUSCAT HAMBURG X AMURENSIS	-	-	-	-	+	+	-	
BRONNER	MERZLING X GEISENHEIM 6494	+	+	+	+	+	+	+	
BUITUR	RIPARIA X AMURENSIS	-	-	-	-	-	-	-	
BURMUNK	AMURENSIS X MUSKAT VENGERSKIJ	-	-	-	-	-	-	-	
CABERNET CAROL	CABERNET SAUVIGNON X SOLARIS	+	+	+	+	+	+	+	
CABERNET CORTIS	CABERNET SAUVIGNON X SOLARIS	+	+	+	+	+	+	+	
CALASTRA	MERZLING X SIBERA	+	+	+	+	+	+	+	
CLARA	SOLARIS X MUSCAT BLEU	+	+	+	+	+	+	+	
CSARENCI	VINIFERA X AMURENSIS	-	+	-	-	-	-	-	
CVETOTSCHNYI	SEVERNYI X (MUSCAT LUNEL X MUSCAT OF ALEXANDRIA)	+	+	+	+	+	+	+	
DALNEVOSTOCHNYI RAMMINGA	DALNEVOSTOCHNYI TIKHONOVA X TAEZHNYI IZUMRUD	-	-	-	-	-	-	-	
DALNEVOSTOCHNYI TIKHONOVA	AMURENSIS X VINIFERA	-	-	-	-	+	-	-	
DNESTROVSKII	(NIMRANG X AMOURSKY) X MATHIASZ JANOS	-	+	+	-	+	+	_	
DONCSAK	PULJAKORSZKII X (HARSLEVELUE X AMURENSIS) X SZUVOROVEC	+	+	+	+	+	+	+	
DROUJBA	MISKET KAILACHKI (MUSKAT HAMBURG X S.V.12375) X (ZARIA SEVERA X MUSKAT HAMBURG)	-	-	-	-	-	-	-	
FESTIVALNYI	SEVERNYI X MUSCAT HAMBURG	-	+	+	-	-	-	-	
FIOLETOVYI RANNII	SEVERNYI X MUSCAT HAMBURG	-	-	-	-	-	-	-	
GALANTH	SOLARIS X MUSCAT BLEU	-	-	-	-	-	-	-	

	-	-	-	Rpv	<i>10-</i> Lo	cus		
	SSR-Marker:	GF09-11	GF09-44	GF09-65	GF09-46	GF09-47	GF09-48	Rpv10
Name	Resistenzkorr. Allellange: Abstammung nach VIVC	256	230	312	416	299	359	
GARANT	SOLARIS X MUSCAT BLEU	+	+	+	+	+	+	+
GOLUBOK	SEVERNYI X MIXTURI OF POLLEN: ODESSKII RANNII, 40 LET OKTIABRIA, (ALIKANT BOUSHE X CABERNET SAUVIGNON)	+	+	+	+	+	+	+
IYULSKII	SEVERNYI X MUSCAT HAMBURG	-	-	-	-	-	-	-
KABERAM	CABERNET SAUVIGNON X AMURENSIS	+	+	+	+	+	+	+
KABERNE SEVERNYI	(GALAN X AMURENSIS) X (AMURENSIS X VINIFERA)	-	-	+	-	-	-	-
KARIN	LERNATU X FIOLETOVYI RANNII	-	-	+	-	-	-	-
KARMRAHYUT	ADISI X NO 15-7-1 (AMURENSIS X SLADKII CHERNYI)	-	+	-	-	-	-	-
КАZАСНКА	(GETSH X AMURENSIS) X FIOLETOVYI RANNII	+	+	+	+	+	+	+
KENTVILLE WHITE 87-2	VINELAND 53035 X MICHURINETZ	-	+	+	-	-	-	-
KORINKA MICHURINA	VITIS AMURENSIS X KORINTHIAKI	-	-	+	-	-	-	-
KOZMA CSFT 2423	(PANNONIA KINCSE X S.V. 5276) X KUNBARAT	-	-	-	-	+	-	-
KRISZTALY	ALFOELD 100 X SV 12375	-	+	-	-	-	-	-
KUNBARAT	(AMURENSIS X VINIFERA) X ITALIA	-	-	-	-	+	-	-
KUNLEANY	(AMURENSIS X VINIFERA) X AFUS ALI	-	+	-	-	-	-	-
LANKA	DATTIER DE ST. VALLIER X DEKORATIVNYI	-	-	-	-	-	-	-
LEDNICE B 76	SEVERNYJ X PINOT NOIR	+	+	+	+	+	+	+
LEDNICE C 62	(AMURENSIS X MALINGRE PRECOCE) O.P. X KOCSIS IRMA	-	-	-	+	+	+	?
LEDNICE D 73	(ALICANTE BOUSCHET X CABERNET SAUVIGNON) X AMURENSIS	-	-	-	-	-	-	-
LELA	WELSCHRIESLING X KUNBARAT	-	-	-	-	-	-	-
LYUBITELSKII	RUSSKII KONKORD X MALINGRE PRECOCE	-	-	-	-	-	-	-
MEDOVYI	SEVERNYI X POLLENGEMISCH VON MUSKAT	-	-	+	-	-	-	-
MICHURINETS	AMURENSIS X GETSH	-	-	+	-	+	-	-
MILA	KUNLEANY X MUSCAT OTTONEL	-	+	-	-	-	-	-
MUSKAT DONSKOI	SEVERNYI X MUSKAT BELYI	-	-	-	-	-	-	-
NAGRADA	RUSSKII KONKORD X ARAKSENI BEL YI	-	-	-	-	-	-	-
NEGRU DE YALOVEN	MERLOI NOIR X AMURENSIS	-	-	-	-	-	-	-
NERKARAT	C 1262 (AMURENSIS X PERLE VON CSABA) X KARMRAYUT	-	-	-	-	-	-	-
OLIMPIJEC	(CABERNET SAUVIGNON X MUSKAT DONSKOJ) X SZTYEPNOJ	+	+	+	+	+	+	+
OSELLA	SOLARIS X MUSCAT BLEU	+	+	+	+	+	+	+
PETRA	KUNBARAT X PINOT NOIR	-	+	-	-	+	-	-
PRIGODNYI	SEVERNYI X POLLENGEMISCH MUSKAT-CVS	-	-	+	-	-	-	-
PRIOR	FREIBURG 4-61 X BRONNER	+	+	-	-	-	-	-
RANI RIZLING	WELSCHRIESLING X KUNBARAT	-	-	-	-	+	-	-
RONDO	SEVERNYI X SAINT LAURENT	+	+	+	+	+	+	+
RUSSKII KONKORD	CONCORD X AMURENSIS	-	+	+	-	-	-	-
RUSSKII RANNII	SHASLA SEVERNAYA X MICHURINETS	-	-	-	-	-	-	-
SARMAT	FIOLETOVYI RANNII X STEPNOI	+	+	+	+	+	+	+
SEVERNYI	SEYANETS MALENGRA X AMURENSIS	+	+	+	+	+	+	+

				Rpv	10-Lo	ocus		
	SSR-Marker:	GF09-11	GF09-44	GF09-65	GF09-46	GF09-47	GF09-48	Rpv10
Name	Resistenzkorr. Allellänge: Abstammung nach VIVC	256	230	312	416	299	359	
SEVERNYI BELYI	unbekannt	-	-	-	-	-	-	-
SEVERNYI	SEVERNYI X GYULYABI							
GYULYABI		-	-	-	-	-	-	-
SHASLA	SEVERNYI X CHASSELAS ROSE	_	_	_	_	_	_	
SEVERNAYA			_	_	_			_
SIBERA	SAPERAVI SEVERNYI X (FOSTER'S WHITE SEEDLING X PRACHTTRAUBE)	+	+	+	+	+	+	+
SIZYI	HARSLEVELUE X (AMURENSIS X PINOT NOIR)	-	+	-	-	-	-	-
SKOROSPELYI DONSKOI	VINIFERA X AMURENSIS	-	-	-	-	-	-	-
SLAVA	TAGOBI X (TAGOBI X AMURENSIS)	+	+	+	+	+	+	+
SOLARIS	MERZLING X GEISENHEIM 6493	+	+	+	+	+	+	+
SOPERNIK	SEVERNYI X SMES PYLTSY MUSKATOV	-	-	-	-	-	-	-
SPARTANETS	SEIBEL 13666 X SAPERAVI SEVERNII							
MAGARACHA		-	-	-	-	-	-	-
SREMSKI KARLOVCI	KUNBARAT X TRAMINER		+			_		
77-4-5		-		_	_	_	-	-
SUVOROVETS	SEVERNYI X MUSCAT CULTANINA	-	-	+	-	-	-	-
TSVETOCHNYI	SEVERNYI X (MUSCAT BELYI + MUSCAT VENGGERSKII + MUSCAT OF ALEXSANDRIISKII)	-	-	-	-	-	-	-
VISHNEVYI RANNII	VIR P-35-20 (NIMRANG X VITIS AMURENSIS) X MIXTURE OF POLLEN PINOT RANNII, 40 LET OKTYABRYA	-	-	-	-	-	-	-
VITIS AMURENSIS RUPRECHT 5011	Accession Nr.: DEU098-1990-444	-	+	-	+	+	-	?
VOSTORG	(ZARYA SEVERA X DOLORES) X RUSSKII RANNII	-	-	-	-	-	-	-
VYDVIZHENETS	SEVERNYI X MIXTURE OF POLLEN MUSCAT VENGERSKII + MUSCAT BELYI + MUSCAT ALEXANDRIISKII	-	-	-	-	-	-	-
VYNOSLIVYI	GETSH X 14-19-42 (MUSCAT HAMBURG X AMURENSIS)	+	+	+	+	+	+	+
ZARYA SEVERA	SEYANETS MALENGRA X AMURENSIS	-	+	-	-	+	+	-
ZLATA	IRSAI OLIVER X KUNLEANY	-	-	-	-	-	-	-
ZOLOTISTYI USTOICHIVYI	VIR II-35-20 (NIMRANG X AMURENSIS) O.P.	-	-	-	-	-	-	-

Um die züchterische Relevanz der identifizierten $Rpv10^+$ -Genotypen darzustellen, wurden diese anhand der Anzahl an Generationen nach dem Einkreuzen von *V. amurensis* in Spalten angeordnet (siehe Tabelle 11). Damit die Abstammung der Sorten, soweit dies nachvollziehbar war, ersichtlich wird, wurden die Sorten entsprechend in den Zeilen angeordnet. Dabei ist auffällig, dass der überwiegende Teil von 16 Sorten und Zuchtstämmen der $Rpv10^+$ getesteten Genotypen Nachkommen von 'Severnyi' sind.

Tabelle 11: Identifizierte Genotypen mit dem *Rpv10*-Locus. Anordnung in den Spalten anhand der Generationen nach der Introgression von *V. amurensis*. Die Anordnung in den Zeilen erfolgte anhand der Abstammung. Kursive Sorten in Klammern wurden nicht getestet, sondern anhand der im VIVC vorgegebenen Abstammung als Resistenzüberträger aufgeführt.

1. Generation	2. Generation	3. Generation	4. Generation
KABERAM			
SEVERNYI	CVETOTSCHNYI		
	(FIOLETOVYI RANNII)	SARMAT	
	GOLUBOK		
	LEDNICE B 76		
	RONDO		
	(GEISENHEIM 6494)	BRONNER	BARON
	(GEISENHEIM 6493)	SOLARIS	CABERNET CAROL
			CABERNET CORTIS
			CLARA
			GARANT
			OSELLA
	(SAPERAVI SEVERNYI)	SIBERA	CALASTRA
	KAZACHKA		
	SLAVA		
	VYNOSLIVYI		
		DONCSAK	
		OLIMPIJEC	

4 Diskussion

4.1 Phänotypische Evaluierung der Plasmopara-Resistenz

Der Blattscheibentest ist eine gut etablierte und häufig angewandte Methode, um zuverlässig Resistenzausprägungen gegen den Falschen Mehltau an Reben zu bestimmen (z. B. Casagrande et al. 2011; Deglene-Benbrahim et al. 2010; Eibach et al. 1989; Eibach et al. 2007; Sotolar 2007). Standardisierte Infektionsbedingungen und eine hohe Durchsatzrate erlauben reproduzierbare Untersuchungen mit hohen Individuenzahlen, wie sie in Kreuzungspopulationen vorkommen. In der Literatur wird belegt, dass die Daten gute Korrelationen zu denen von natürlichem Befall im Weinberg, künstlich infizierten Topfpflanzen und abgetrennten, künstlich infizierten Blättern aufweisen (Bellin et al. 2009; Boso & Kassemeyer 2008; Boso et al. 2006; Brown et al. 1999; Eibach et al. 1989). Es ist beschrieben, dass die Umwelteinflüsse durch die Verwendung von Gewächshauspflanzen reduziert werden können, was in Kombination mit dem kontrollierten Blattscheibentest zu einer Verkleinerung des QTL-Konfidenzintervalls führt (Bellin et al. 2009). In der verwendeten Kreuzungspopulation konnte durch die Verwendung von Gewächshauspflanzen zudem die Ausbildung einer starken Behaarung auf der Blattunterseite, wie sie bei der Elternsorte 'Solaris' im Freiland auftritt (siehe Abbildung 7), verhindert werden. Damit konnte der Einfluss der, als präformierte Resistenzbarriere bekannten, Blattbehaarung auf die Resistenzausprägung gegen P. viticola (Kortekamp & Zyprian 1999) weitgehend ausgeschlossen werden.

Im Vergleich zu den Freilandbeobachtungen weist die Elternsorte 'Solaris' in diesen Untersuchungen ein relativ geringes Resistenzniveau auf (Mittelwert: 4,6; Abbildung 5). Neben einem hohen Infektionsdruck durch die künstliche Sporenapplikation und der strikteren Einteilung der Resistenzklassen in dieser Untersuchung könnte auch die im Freiland beobachtete, deutlich stärker ausgeprägte Blattbehaarung dieser Sorte den Unterschied erklären. Für die feldresistenten Wildarten *V. davidii* und *V. doaniana* ist die dichte Blattbehaarung ein essentieller Resistenzfaktor, da *P. viticola* nach dem Ausschalten dieser Barriere durch eine Detergenzbehandlung die Blätter erfolgreich infizieren konnte (Kortekamp & Zyprian 1999). Somit könnte die Kombination aus dichter Blattbehaarung und *Rpv10*-Locus die hohe Feldresistenz von 'Solaris' erklären.

Quantitative Merkmale weisen eine kontinuierliche phänotypische Varianz in einer Kreuzungspopulation auf. Den QTL-Berechnungen liegt deshalb die statistische Modelannahme eines normalverteilten qualitativen Merkmals zugrunde (Doerge 2002). In der untersuchten Kreuzungspopulation Gf.Ga-52-42 x 'Solaris' zeigt sich die Resistenzausprägung gegen den Falschen Mehltau in den graphischen Darstellungen als annähernd normalverteilt (Abbildung 5 und Abbildung 6). Bei den durchgeführten statistischen Tests ermittelte der Kolmorov-Smirnov-Test eine signifikante Übereinstimmung des Datensatzes mit einer Normalverteilung. Die übrigen Testverfahren ergaben, dass die Verteilung im Datensatz von der einer Normalverteilung abweicht. Da bei den einzelnen statistischen Tests die Daten unterschiedlich gewertet werden und sie dadurch auch unterschiedlich sensitiv sind, kommt es zu diesen widersprüchlichen Ergebnissen. Gründe dafür können geringe Probenzahlen, grobe Bewertungskriterien und die bei einigen Tests vorhandene hohe Gewichtung der Randbereiche sein. Somit ist anzunehmen, dass der erhobene Datensatz zur *Plasmopara*-Resistenz zwar nicht optimal normalverteil ist, dieser Verteilung jedoch sehr nahe kommt und damit für QTL-Berechnungen geeignet ist.

Die phänotypische Verteilung eines quantitativen Merkmals ergibt sich aus der Überlagerung der Effekte, die von den beteiligten Loci hervorgerufen werden. In der untersuchten Kreuzungspopulation mit den zwei stark ausgeprägten Loci *Rpv3* und *Rpv10* kann die resultierende Verteilung (Abbildung 5) durch das Aufsummieren der vier genotypischen Verteilungen (Abbildung 13) nachvollzogen werden. Unter der Annahme, dass der Phänotyp durch zwei ähnlich stark ausgeprägte Loci bestimmt wird, ist eine Verteilung von ¹/₄ anfälliger Pflanzen (ohne Resistenzlocus), ¹/₂ teilresistenter Pflanzen (¹/₄ nur mit *Rpv3* & ¹/₄ nur mit *Rpv10*) und ¹/₄ hochresistenten Pflanzen (mit *Rpv3* & *Rpv10*) zu erwarten. Die reale Verteilung der Kreuzungspopulation folgt mit 22 %, 25 %, 23 % und 30 % etwa diesem Muster. Der beobachtete additive Effekt auf den Resistenzgrad durch die Kombination der Resistenzloci *Rpv3* und *Rpv10* belegt die Eignung dieser beiden Loci für eine effektive Pyramidisierung von *Plasmopara*-Resistenzen.

4.2 Stilben-Analyse und Kallose-Nachweis

In 'Solaris' kommt es nach einer *Plasmopara*-Infektion innerhalb von 72 h zu einer Akkumulation der zu den Phytoalexinen gehörenden Stilbene Resveratrol, Pterostilben, ε - und δ -Viniferin (Pezet *et al.* 2004a; Pezet *et al.* 2004b). Diese führen bereits in niedrigen Konzentrationen zu einer deutlichen Reduktion der Zoosporenmobilität und hemmen die Entwicklung von *P. viticola*, was in verringerten Sporulationsraten resultiert (Pezet *et al.* 2004a). Damit stellen diese fungitoxisch wirksamen Substanzen einen effektiven Resistenzmechanismus dar. Um diesen als weiteres phänotypisches Merkmal zu kartieren

wurden die Stilbenkonzentrationen der Nachkommenschaft ermittelt. Es ließ sich jedoch kein linearer Zusammenhang zwischen der Resistenzausprägung und der Konzentration der einzelnen Stilbene feststellen, wie er in Pezet *et al.* (2004b) und Gindro *et al.* (2006) beschrieben wurde. Auch in den Proben von 'Solaris' wurden die in den Veröffentlichungen ermittelten Stilbenkonzentrationen nicht erreicht. Markeranalysen erwiesen eine genetische Übereinstimmung der 'Solaris'-Akzessionen in beiden Instituten. Damit kann eine Sortenverwechslung ausgeschlossen werden und ist nicht ursächlich für die beobachtete Differenz. Als Begründung kommen Unterschiede im *Plasmopara*-Infektionsmaterial oder in den Kulturbedingungen der Reben in Betracht. Da ein Einfluss der Stilbene auf die Resistenzausprägung nicht nachweisbar war, fanden keine weiteren Untersuchungen in dieser Richtung statt.

Als eine weitere Resistenzantwort von 'Solaris' auf eine Plasmopara-Infektion konnten Gindro et al. (2003) induzierte Kalloseablagerungen an den Stomata in der Nähe von Infektionsstellen beobachten. Dadurch wurden diese verschlossen und können von weiteren Zoosporen nicht als Eintrittspforte in das Blatt verwendet werden. Der in Gindro et al. (2003) verwendete Kallose-Nachweis mit Anilinblau ist eine einfache Methode zur Identifikation solcher Strukturen. Jedoch waren keine Kalloseablagerungen an den Stomata im untersuchten, künstlich infizierten Blattmaterial zu beobachten. Dies gilt für 'Solaris', Gf.Ga-52-42 und 'Müller Thurgau', sowie für stichprobenartig ausgewählte Genotypen der Kreuzungspopulation. Ein Fehler in der Methodik kann ausgeschlossen werden, da auch am etablierten System des Agroscope Changins-Wädenswill der Nachweis von Kallose am eigenen Untersuchungsmaterial nicht möglich war, während dort durchgeführte Infektionen an der genetisch identischen 'Solaris' zur Kallosebildung führten. Auch hier sind abweichende Kulturbedingungen der Reben oder eine Divergenz im Plasmopara-Infektionsmaterial mögliche Erklärungen für die beobachteten Unterschiede. Da ein Nachweis von Kallose nicht möglich war, konnten auch keine entsprechenden Daten für eine QTL-Analyse erhoben werden.

4.3 Genetische Karte und QTL-Analysen

Das Erstellen genetischer Karten anhand einer Kreuzungspopulation ist eine gebräuchliche Vorgehensweise, um segregierende Merkmale auf dem Genom zu lokalisieren. Eine Auflistung der bisher untersuchten Kreuzungspopulationen bei Reben mit den daran lokalisierten Merkmalen wird auf der Homepage des "Vitis International Variety Catalogue" (VIVC; http://www.vivc.de) bereitgestellt.

In einem ersten Schritt wurde für die 265 Nachkommen umfassende Kreuzungspopulation Gf.Ga-52-42 x 'Solaris' eine genetische Basiskarte mit vier bis fünf SSR-Markern auf jeder der 19 Kopplungsgruppen (LGs) erstellt. Diese Minimalabdeckung des Genoms erlaubte QTL-Berechnungen mit den zu diesem Zeitpunkt vorliegenden phänotypischen Daten. Auf diesem Weg konnten in dieser ersten vorläufigen Karte bereits signifikante QTL auf den LGs 09 und 18 identifiziert werden. Somit war anhand der ersten Resultate eine zielgerichtete Ergänzung der Basiskarte mit ausgewählten SSR-Markern möglich. Da es sich bei dem QTL auf LG 18 um den bereits bekannten Rpv3-Locus handelt (siehe unten), lag der Fokus besonders auf dem neu identifizierten QTL der LG 09, der von 'Solaris' vererbt worden war und dessen Herkunft auf V. amurensis zurückgeht. Um den QTL einzugrenzen, wurden neue Locus-spezifische Marker entwickelt und kartiert. Die Entwicklung neuer SSR-Marker anhand der PN40024-Referenzgenomsequenz (Jaillon et al. 2007) hat sich hierfür als zielgerichtete und effiziente Methode bewährt. Neben den Locus-spezifischen Markern wurden für die Kartenerweiterung auch Marker gewählt, die an den Enden der LGs lokalisiert sind. Dadurch wurde die Genomabdeckung erhöht, um möglichst alle merkmalsrelevanten Bereiche bei den Analysen erfassen zu können. Die beschriebene referenzgenombasierte chromosomale Feinkartierung erwies sich letztlich als sehr effizient und erfolgreich. Über das Merkmal der Plasmopara-Resistenz hinaus bietet die entwickelte Karte eine gute Basis für Untersuchungen von weiteren, in dieser Population segregierenden, Merkmalen.

Die in dieser Karte erzielte Genomabdeckung entspricht der von ähnlich umfangreichen Karten (Moreira *et al.* 2011; Zhang *et al.* 2009) und repräsentiert 66 % bis 77 % der Größe von genetischen Karten mit deutlich höheren Markerdichten (Di Gaspero *et al.* 2007; Doligez *et al.* 2006; Vezzulli *et al.* 2008; Welter *et al.* 2007).

In der Kreuzungspopulation Gf.Ga-52-42 x 'Solaris' konnten zwei Haupt-QTL für die *Plasmopara*-Resistenz identifiziert werden. Der starke QTL auf LG 18 wurde von Gf.Ga-52-42 vererbt und ist identisch mit dem in 'Regent' gefundenen (Fischer *et al.* 2004; Welter *et al.* 2007) und als *Rpv3* in 'Bianca' beschriebenen *Plasmopara*-Resistenzlocus (Bellin *et al.* 2009). Das resistenztragende Allel in Gf.Ga-52-42 stammt von 'Villard Blanc', der ebenfalls Vorfahre von 'Bianca' und ein Vollgeschwister von S.V. 12-417, einem Großelternteil von 'Regent', ist. Als ursprünglicher *Rpv3*-Resistenzdonor wird eine *V. rupestris*-Akzession aus dem Mittleren Westen der USA vermutet (Casagrande *et al.* 2011). Aus Untersuchungen an 'Bianca' ist bekannt, dass die Resistenz mit der Bildung von

Nekrosen als Ergebnis einer lokalen hypersensitiven Reaktion (HR), einer signifikanten Reduktion des Mycelwachstums im Mesophyll und einer spärlichen Ausbildung von Sporangienträgern einhergeht (Bellin *et al.* 2009). Im Bereich des Locus befinden sich Resistenzgene mit TIR-NBS-LRR-Motiven und Proteine mit Ähnlichkeit zu LRR-Rezeptorkinasen. Bei einer rassenspezifischen Erkennung eines *P. viticola*-Isolats mit entsprechendem *Rpv3*-Avirulenzfaktor kommt es zu erhöhten Expressionsraten von *HSR1* (einem Marker für die HR), den Pathogen-induzierten Genen *PR-1* und *PR-2* (einer β -1,3 Glucanase), sowie der WRKY-Transkriptionsfaktoren *WRKY4* und *WRKY30* (Casagrande *et al.* 2011). Die durch den *Rpv3*-Locus vermittelte Resistenz ist rassenspezifisch, was durch den Resistenzbruch eines tschechischen *Plasmopara*-Isolates belegt werden konnte (Peressotti *et al.* 2010). Dies zeigt wie wichtig eine geeignete Strategie zur Pyramidierung verschiedener Resistenzquellen und -mechanismen in der Rebenzüchtung ist, um Sorten mit stabilen und dauerhaften Resistenzeigenschaften zu entwickeln.

Direkte Vergleiche von QTL-Ausprägungen eines Locus zwischen Kreuzungspopulationen sind aufgrund der vielfach unterschiedlichen genetischen Hintergründe und/oder verschiedenen Methoden zur Erfassung der Merkmalsausprägung meist nur sehr bedingt möglich. Der in diesen Untersuchungen für den Rpv3-Locus ermittelte LOD-Wert von 16,5 liegt im mittleren Bereich der für diesen Locus angegebenen LOD-Werte bei anderen Kreuzungspopulationen (Bellin et al. 2009; Fischer et al. 2004; Peressotti et al. 2010; Welter et al. 2007). Der Vergleich wird jedoch durch das Vorhandensein eines zweiten Haupt-QTL in dem untersuchten genetischen Material maßgeblich beeinflusst. So weist der Rpv10-Locus einen deutlich höheren genetischen Einfluss auf die Resistenzausprägung auf (vgl. Abbildung 14). Möglicherweise gibt es auf Grund der unterschiedlichen genetischen Hintergründe auch weitere Faktoren, die den Varianzanteil der beiden Loci beeinflussen. Im Hinblick auf die von Peressotti et al. (2010) beschriebene rassenspezifische Resistenz des Rpv3-Locus, ist nicht auszuschließen, dass ein Anteil der Plasmopara-Sporen in der Inokulationssuspension aus Rassen stammte, die die Rpv3-spezifische Resistenz überwunden haben. Dies würde zu einer reduzierten phänotypischen Varianz des Rpv3-Locus führen.

Der mit einem maximalen LOD-Wert von 48,8 sehr stark ausgeprägte QTL auf der LG 09 erklärt bis zu 50 % der phänotypischen Varianz. Dieser QTL wurde durch 'Solaris' vererbt und stammt ursprünglich von einer asiatischen Wildrebe der Art *Vitis amurensis*, welche 1936 in Russland für eine Kreuzung mit der *V. vinifera*-Sorte 'Seyanets Malengra' verwendet
wurde (http://www.vivc.de nach Ampelografija of the USSR 1955). Erste genetische Informationen über die *Plasmopara*-Resistenz bei *V. amurensis* sind mittlerweile beschrieben. In einer Kreuzungspopulation, die *V. rotundifolia* und *V. amurensis* im Stammbaum aufweist, wurden QTL auf den LG 01 und LG 06 lokalisiert (Moreira *et al.* 2011). Luo et al. (2001) konnten einen SCAR-Marker entwickeln, der mit der *Plasmopara*-Resistenz von in China heimischen Wildreben, inklusive *V. amurensis*, korreliert ist. Ein Abgleich der Primersequenz des Markers mit dem PN40024-Referenzgenom ergab, dass der Marker dort auf dem Chromosom 01 an der Position 10,9 Mb lokalisiert ist und somit nicht den *Rpv10*-Locus beschreibt. In einer *V. amurensis*-S1-Population konnte kürzlich der *Rpv8*-Resistenzlocus auf der LG 14 identifiziert werden, der eine vollständige Resistenz gegenüber *P. viticola* vermitteln soll (Blasi *et al.* 2011).

Auf der LG 09 wurde bereits der Plasmopara-Resistenzlocus Rpv5 an der Kreuzungspopulation 'Cabernet Sauvignon' x V. riparia 'Gloire de Montpellier' identifiziert (Marguerit et al. 2009). Die beschriebenen QTLs für die Merkmale "Resistenzausprägung" und "Sporangienzahl" weisen sehr breite Konfidenzintervalle von mindestens 28,9 cM auf, welche auch den in dieser Arbeit identifizierten QTL-Bereich einschließen. Aufgrund der völlig unterschiedlichen Resistenzquellen Resistenzquellen (V.riparia ist ausschließlich im amerikanischen Raum, V.amurenis ausschließlich im asiatischen Raum beheimatet) war jedoch davon auszugehen, dass es sich um unterschiedliche Resistenzen handelt. Um dies genetisch zu belegen, wurde 'Gloire de Montpellier'-DNA mit zwölf den QTL-Bereich flankierenden SSR-Markern überprüft (Tabelle 9). 'Gloire de Montpellier' weist die in 'Solaris' identifizierten resistenzkorrelierenden Allellängen nicht auf. Somit konnte gezeigt werden, dass sich der in diesen Untersuchungen identifizierte Resistenzlocus auf der LG 09 von dem durch Marguerit et al. (2009) identifizierten Resistenzlocus auf der gleichen LG unterscheidet. In dieser Untersuchung wurde u. a. auch die Sorte 'Bronner' mit den Markern getestet. Sie weist im QTL-Bereich identische allelische Muster wie 'Solaris' auf. Damit könnte der Resistenzlocus dem in einer 'Bronner'-Nachkommenschaft identifizierten QTL entsprechen, der in einer Kurzbeschreibung Erwähnung findet und dort 52 % der phänotypischen Variation erklären soll (Blasi et al. 2010). Der in dieser Arbeit genetisch lokalisierte und in der Feinkartierung auf einen Bereich von 0,8 cM eingeschränkte Resistenzlocus wird im Folgenden als Rpv10 bezeichnet. Dabei war die Feinkartierung letztlich durch die in diesem Bereich zur Verfügung stehenden SSRs limitiert. Marker für alle SSRs im relevanten Bereich waren in einer letzten Kartierungsrunde entwickelt und getestet worden. Leider stellten sich diese als monomorph heraus oder amplifizierten unter den gewählten PCR-Bedingungen nicht. Für eine feinere Kartierung wären daher andere Markertypen wie beispielsweise SNPs ("single nucleotide polymorphism") zu verwenden. SNPs stellen die am häufigsten beobachteten genetischen Unterschiede in verschiedenen Arten dar (Vezzulli *et al.* 2008) und liegen sicherlich auch im QTL-Bereich vor. Für deren Entwicklung müssen jedoch die DNA-Sequenzen des Locus in den Elternsorten bekannt sein. Diese Sequenzierungsarbeiten waren im Rahmen des Projektes nicht mehr möglich.

Da eine weitere Feinkartierung nicht, wie ursprünglich erwartet, durch die zur Verfügung stehenden Rekombinanten limitiert wurde, konnten die bei der Untersuchung der ergänzenden 2700 Nachkommen identifizierten Kandidaten mit Rekombination in diesem Bereich keine weiteren Erkenntnisse liefern. Sollten jedoch neue molekulare Marker verfügbar werden, ständen für die Untersuchungen weitere 28 Genotypen mit Rekombinationspunkt im Bereich des *Rpv10*-Locus zur Verfügung.

Neben den beiden starken QTL konnte in den MQM-Berechnungen ein schwacher QTL identifiziert werden, der lediglich 3.0 % der phänotypischen Varianz erklärt. Ein ebenfalls schwacher QTL an dieser Position der LG 05 wurde bereits durch Fischer *et al.* (2004) beschrieben. Diesem Locus konnte ein an der hypersensitiven Reaktion beteiligtes Ca^{2+} -Bindeprotein zugeordnet werden (Salmaso *et al.* 2008). Obwohl der Bereich in den beschreibenden Kreuzungspopulationen nur einen geringen Einfluss auf die Ausprägung der Widerstandsfähigkeit besitzt und deshalb für die Resistenzzüchtung von eher untergeordnetem Interesse ist, wird dieser Locus aufgrund der wiederholten Identifizierung an verschiedenen Kreuzungspopulationen im folgenden als *Rpv11* bezeichnet.

Auf der väterlichen 'Solaris'-Karte konnten zudem schwache QTL auf den LGs 03 im IM und 18 im MQM identifiziert werden, welche die LG-spezifischen Signifikanzgrenzen zwar übersteigen, in der integrierten Karte und bei der jeweils anderen Analysemethode jedoch nicht auftraten. Da es sich bei der Position des QTL auf der LG 18 um einen randständigen Marker handelt und die QTLs nur einmalig auftraten, scheint es sich dabei um falsch positive Ereignisse (Typ I Fehler) zu handeln (Jansen 1994).

4.4 Abgleich mit den veröffentlichten Genomsequenzen

In der Genomsequenz der *V. vinifera*-Sorte 'Pinot Noir' wurden von Velasco *et al.* (2007) Resistenzgene vorhergesagt, davon 37 RGAs auf der LG 09. Die Hauptgruppe umfasst 19 Resistenzgene mit CC-NBS-LRR-Motiv und befindet sich innerhalb der ersten sechs Megabasen. Damit befindet sich das größte CC-NBS-LRR-Cluster des Genoms im Umfeld des in dieser Arbeit gefundenen *Rpv10*-Locus. NBS-LRR-Proteine ermöglichen der Pflanze die Anwesenheit von Effektoren zu erkennen, die durch das Pathogen in die Pflanzenzelle eingeschleust werden, um die Nichtwirtsresistenz zu inhibieren. Durch die Effektorerkennung wird eine entsprechende Abwehrreaktion der Wirtsresistenz ausgelöst (Chisholm *et al.* 2006). Zudem gibt es nach Velasco et al. (2007) in 'Pinot Noir' homologe Sequenzbereiche zu dem pathogen-assoziierten Protein PDF2 und in vier Fällen zu dem nichtwirtsresistenz-assoziierten *PEN3*, wobei sich drei davon im weiteren Umfeld des QTL befinden.

Die hohe Anzahl von NBS-LRRs in dieser Region wird auch durch das PN40024-Referenzgenom bestätigt (siehe 3.7 und Abbildung 15). Durch das Hinzufügen neu entwickelter Locus-spezifischer SSR-Marker konnte der QTL auf einen relativ kleinen Bereich von 79 kb zwischen den beiden flankierenden Markern GF09-65 und GF09-47 bezogen auf das PN40024-Referenzgenom eingeschränkt werden. Dieser Sequenzabschnitt beinhaltet lediglich ein RGA vom NBS-LRR-Typ mit Homologie zu einem in *V. riparia* identifizierten Protein.

Weitere in diesem Sequenzabschnitt annotierte Proteine haben eine bekannte Funktion in der Pathogenabwehr. Nahe des zentralen SSR-Markers GF18-46 befindet sich ein Ethylensensitiver Transkriptionsfaktor (ERF). Das gasförmige Ethylen reguliert verschiedene physiologische und wachstumsrelevante Prozesse und beeinflusst auch die Resistenzreaktion bei Schädlingsbefall. Beobachtungen in verschiedenen Pflanzen-Pathogen-Interaktionen zeigen, dass Ethylen dabei sowohl resistenzsteigernd als auch befallsfördernd wirken kann (van Loon *et al.* 2006a). ERF-Transkriptionsfaktoren bewirken eine direkte Expressionsregulation von PR-Genen ("pathogenesis-related") über die bevorzugte Bindung mit der GCC-Box von PR-Gen-Promotoren. Dabei scheinen diese Transkriptionsfaktoren in der Lage zu sein, die durch eine Infektion ausgelösten Ethylen-, Jasmonsäure- und Salicylsäuresignalwege zu integrieren und die Abwehrreaktion entsprechend zu modulieren (Xu *et al.* 2011).

Die Ankyrin-Domäne ist ein funktional essentieller Bestandteil des NPR1-Gens ("nonexpressor of pathogenesis-related genes 1"), welches als positiver Regulator von Salicylsäuresensitiven PR-Genen in der systemischen Resistenz von *Arabidopsis thaliana* agiert (Cao *et al.* 1997; Durrant & Dong 2004; Koornneef & Pieterse 2008). Auch andere resistenzassoziierte Gene, wie das *Star*-Gen (*Solanum tuberosum* ankyrin repeat) der Kartoffel (Wu *et al.* 2009) oder die GBP 1- und 2-Gene ("glucanohydrolase binding proteins") in *Nicotiana plumbaginifolia* (Wirdnam *et al.* 2004), weisen das Ankyrin-Motiv auf.

PR-Proteine mit struktureller Ähnlichkeit zu Ribonucleasen wurden als Reaktion auf pilzliche Elizitoren in mehreren Pflanzen nachgewiesen (Poupard *et al.* 2003; Rushton *et al.* 1996).

Eine Wirksamkeit gegen Viren, durch das spezifische Zerschneiden viraler RNA und eine antimikrobielle Wirksamkeit gegen einen Oomyceten konnte für Vertreter dieser PR-Proteinklasse (PR-10) nachgewiesen werden (Park *et al.* 2004). In der Rebe kommt es durch eine *P. viticola*-Infektion zur Induktion ('Riesling') oder verstärkten Expression ('Gloire de Montpellier') eines PR-10-Proteins (Kortekamp 2006).

Die zwei verbleibenden Gene (RuBisCO-Untereinheit, Protein mit VHS-Domäne), die in diesem Bereich annotiert wurden, scheinen rein funktionell keinen unmittelbaren Einfluss auf die Pathogenabwehr zu haben. Dies trifft ebenso auf das aufgeführte Aquaporin TIP2-1 zu, für welches jedoch durch Wu et al. (2010) ein Anstieg in der Expression nach erfolgter Plasmopara-Infektion gezeigt werden konnte. Es wurde jedoch gezeigt, dass TIP-analoge Aquaporine neben Wasser auch das chemisch analoge Hydrogenperoxid (H₂O₂) transportieren können, welches eine wichtige Rolle bei der Stressantwort spielt (Maurel 2007). Eine indirekte Beteiligung an Abwehrmechanismen kann daher nicht ausgeschlossen werden. Für die bislang uncharakterisierten Gene kann keine funktionelle Aussage getroffen werden. Somit konnten mit dem NBS-LRR, dem ERF, dem Protein mit Ankyrin-Domäne und der mutmaßlichen Ribonuclease vier potentielle Kandidatengene für die Rpv10-Region auf dem Referenzgenom identifiziert werden. Trotz der hohen Anzahl an Resistenz-assoziierten Genen besitzt der für das Referenzgenom sequenzierte 'Pinot Noir' keine Plasmopara-Resistenz, weshalb davon auszugehen ist, dass gerade in diesen Bereichen ein hoher Grad an allelischer Diversität herrscht (Hvarleva et al. 2009). Dennoch unterstützt die hohe Anzahl an resistenzassoziierten Genen die potentielle Bedeutung dieser Region für die Ausprägung von Resistenzen.

4.5 Abstammungsanalysen

Die durchgeführten Markeranalysen ergaben, dass der bisher angenommene Stammbaum der Sorte 'Solaris' unzutreffend ist. Es konnte belegt werden, dass es sich bei 'Severnyi' und 'Muscat Ottonel' um die wahren Eltern des Pollendonors (Geisenheim 6493) handelt, mit dem 'Merzling' gekreuzt wurde. Die Identität des für die DNA-Extraktion verwendeten 'Severnyi'-Stocks wurde ampelographisch überprüft und bestätigt (Frau Dr. E. Maul, pers. Mitteilung). Anhand der Markerdaten konnte gezeigt werden, dass es sich bei 'Zarya Severa' und 'Severnyi' um Vollgeschwister handelt. Interessanterweise besitzt 'Zarya Severa', welche als *Plasmopara*-resistent beschrieben ist (Ampelografija of the USSR 1954), nicht alle der resistenzkorrelierten Allellängen von *Rpv10*. Die Auswertung von 12 flankierenden Markern ergab, dass die korrelierenden Allellängen bei vier nah lokalisierten Markern (GF09-44, GF09-61, GF09-47 und GF09-48) in 'Zarya Severa' auftreten, aber bei den übrigen acht Marken, inklusive dem zentralen GF09-46, fehlen. Für die Marker GF09-44 und GF09-47 konnte bei der Untersuchung der genetischen Ressourcen (Kapitel 3.10) festgestellt werden, dass die resistenzkorrelierte Allellänge zudem gehäuft bei *Rpv10*⁻Allelen vorkommt. GF09-46 stellte sich dagegen als sehr zuverlässiger Indikator für den *Rpv10*⁻Allelen vorkommt. GF09-46 stellte sich dagegen als sehr zuverlässiger Indikator für den *Rpv10*⁻Locus heraus. Dadurch ist es sehr unwahrscheinlich, dass die beschriebenen *Plasmopara*-Resistenzen von 'Severnyi' und 'Zarya Severa' identisch sind. Dies wiederum bedeutet, dass 'Zarya Severa' einen anderen Resistenzlocus von *V. amurensis* geerbt hat, der in einer der Kreuzungen nicht auf 'Solaris' weitervererbt wurde. Die von Boso & Kassemeyer (2008) beobachtete Reduktion der *Plasmopara*-Resistenz bei 'Solaris' im Vergleich zu *V. amurensis* unterstützt die Annahme, dass es zu einem Verlust weiterer Resistenzfaktoren gekommen ist. Bei diesem zweiten Locus könne es sich eventuell um den kürzlich in einer *V. amurensis*-Selbstungspopulation identifizierten *Rpv8*-Locus auf der LG 14 handeln (Blasi *et al.* 2011).

'Merzling' als mütterlicher Elternteil von 'Solaris' besitzt ebenfalls eine von 'Seyval' geerbte hohe Widerstandsfähigkeit gegen den Falschen Mehltau (Becker 2005), die jedoch nachweislich nicht vom *Rpv3*-Locus stammt. Da der schwache QTL auf LG 05 (*Rpv11*) kaum die ausschließliche Erklärung für den hohen Resistenzgrad von 'Merzling' sein dürfte, ist davon auszugehen, dass 'Merzling' eine weitere Resistenz aufweist, die jedoch nicht an 'Solaris' weitergegeben wurde. Der *Rpv11*-Locus, der von 'Solaris' in die Kreuzungspopulation eingebracht wurde, könnte den verfügbaren Markerinformationen zufolge sowohl von 'Severnyi', als auch von 'Merzling' stammen. Beide Sorten besitzen die resistenzkorrelierende Allellänge beim nächstgelegenen Marker VCHR05C.

4.6 Genetische Identifizierung von *Rpv10⁺*-Ressourcen

Umfangreiche Charakterisierungen von genetischen Ressourcen erlauben einen zielgerichteten und flexiblen Einsatz der verfügbaren genetischen Vielfalt im Zuchtverlauf. Um Sorten und Zuchtstämme, die als $Rpv10^+$ -Resistenzquellen eingesetzt werden können, zu identifizieren, wurde ein Set von 94 Genotypen mit *V. amurensis*-Abstammung untersucht. Die dabei als Rpv10-Resistenzträger identifizierten 22 Genotypen bilden ein breites Auswahlspektrum für die Introgression des $Rpv10^+$ -Kreuzungseltern können nun weitere züchterisch interessante Aspekte einbezogen werden. Züchterisch am interessantesten sind sicherlich

Genotypen, die aus mehreren Rückkreuzungen hervorgegangen sind und damit bereits einen erhöhten genetischen *V. vinifera*-Anteil besitzen. Da bei 15 der identifizierten Genotypen der Locus über 'Severnyi' vererbt wurde, könnten besonders Sorten wie 'Doncsak' und 'Olimijec' interessante Alternativen zu den 'Severnyi'-Nachkommen als Resistenzdonor darstellen (siehe Tabelle 11).

Zudem lieferte diese Untersuchung wichtige Erkenntnisse über die Anwendbarkeit der gefundenen resistenzgekoppelten molekularen Marker in der Züchtung. Außerhalb einer definierten Kreuzungspopulation kann die resistenzkorrelierende Fragmentlänge auch bei Allelen auftreten, die den Resistenzlocus nicht tragen. Um einschätzen zu können, wie oft dies bei den einzelnen Markern der Fall ist, sind Untersuchungen an vielen Sorten und Zuchtstämmen mit mehreren resistenzgekoppelten Markern notwendig. Eine Identifikation des locustragenden Allels kann dabei über das durchgängige Vorhandensein der resistenzkorrelierenden Fragmentlängen aller getesteten Marker erfolgen. Hierbei können Rekombinationspunkte zwischen den Markern die Bewertung erschweren, wie in dieser Arbeit beispielsweise bei Lednice C 62 beobachtet. In solchen Fällen müsste eine genaue phänotypische Überprüfung klären, ob die Resistenz übertragen wurde und eine mögliche Beteiligung von weiteren Plasmopara-Resistenzloci ausgeschlossen werden kann. Bei dieser Betrachtung lassen sich ausschließlich Genotypen ermitteln, die das Allel der ursprünglichen V. amurensis-Quelle von 'Solaris' aufweisen. Dies schließt nicht aus, dass es weitere V. amurensis Wildartakzessionen oder deren Nachkommen gibt, die trotz abweichender Fragmentlängen der SSR-Marker in dieser Region ähnliche oder identische Resistenzeigenschaften besitzen. Vor allem evolutionäre Distanz zwischen den Wildarten könnten zu Unterschieden in den SSR-Markern geführt haben. Die Identifikation des/der Resistenzgene und die Entwicklung von genspezifischen Markern wäre hierfür vorteilhaft.

Für die Anwendung in der Züchtung eignen sich besonders Marker, die eng mit dem Merkmal gekoppelt sind und deren resistenzkorrelierte Fragmentlänge überwiegend oder ausschließlich auf dem locustragenden Allel vorkommt. Im untersuchten Set weist der zentral im QTL gelegene SSR-Marker GF09-46 beide Eigenschaften auf und ist damit besonders für die Anwendung im Rahmen der markergestützten Selektion geeignet. Um das Ergebnis abzusichern, ist es jedoch ratsam zusätzliche geeignete Marker für die Identifikation eines Locus zu verwenden. Anhand der vorliegenden Ergebnisse empfiehlt sich im Fall des *Rpv10*-Locus die Kombination der drei SSR-Marker GF09-11, GF09-46 und GF09-48 zu verwenden. Obwohl die beiden Marker GF09-11 und GF09-48 eine etwas geringere Merkmalskopplung

aufweisen als die direkt flankierenden Marker, erlauben sie aufgrund des deutlich selteneren Auftretens der resistenzkorrelierenden Allellänge auf weiteren Allelen eine bessere Identifikation.

Mit den identifizierten $Rpv10^+$ -Genotypen und der empfohlenen multiplextauglichen Markerkombination steht der Zuchtpraxis nun ein direkt anwendbares und zuverlässiges Werkzeug zur Verfügung um den neu identifizierten Rpv10-Resistenzlocus effektiv in das Zuchtprogramm zu integrieren.

4.7 Schlussfolgerungen

In der vorliegenden Arbeit konnte ein neuer Resistenzlocus (*Rpv10*) gegen den Falschen Mehltau für die markergestützte Resistenzzüchtung von Reben erschlossen werden. Der *Rpv10*-Resistenzlocus stammt ursprünglich aus einem *V. amurensis*-Genotyp und wurde über 'Severnyi' und einen Genotyp der Kreuzungspopulation Geisenheim 6493 an die Rebsorte 'Solaris' ('Merzling' x ('Severnyi' x 'Muskat Ottonel')) vererbt. In einer Kreuzungspopulation mit 265 Nachkommen zwischen Gf.Ga.52-42 ('Bacchus' x 'Villard Blanc') und 'Solaris' konnten durch QTL-Analysen die *Plasmopara*-Resistenzloci *Rpv3* und *Rpv10* kartiert werden. Individuen der Population, die beide Loci geerbt haben, weisen höhere Resistenzgrade als die Elternsorten auf, was auf einen additiven Effekt hinweist und damit die Eignung dieser beiden Loci für die Resistenzpyramidisierung belegt. Ein dritter, jedoch deutlich schwächer ausgeprägter Locus (*Rpv11*) wurde auf der LG 05 identifiziert.

Die Entwicklung neuer Locus-spezifischer SSR-Marker ermöglichte eine Feinkartierung des *Rpv10*-Locus auf ein Konfidenzintervall von nur 0,5 cM in der MQM-Analyse. Dabei wurde die Auflösungsgrenze der genetischen Kartierung mit SSR-Markern unter Verwendung des Referenzgenoms erreicht. Der Bereich zwischen den QTL-flankierenden Markern entspricht einem Sequenzabschnitt von 79 kb auf der PN40024-Referenzgenomsequenz, der auf Resistenz-assoziierte Annotationen untersucht wurde. Ein RGA mit NBS-LRR-Motiv, ein Ethylen-sensitiver Transkriptionsfaktor, ein Protein mit Ankyrin-Domäne sowie ein mutmaßliche Ribonuclease wurden als potentielle Kandidatengene identifiziert. Weitere Details können nur durch eine Sequenzierung des *Rpv10*-Genomabschnitts aufgeklärt werden. Anhand der Sequenzunterschiede könnten SNP-Marker abgeleitet werden, um eine höhere Kartenauflösung zu erzielen. Die Sequenzen erlauben zudem den Abgleich der Kandidatengene zwischen anfälligem und resistentem Genotyp und eine mögliche Identifikation weiterer, nur im resistenten Genotyp auftretender, Resistenzkandidatengene.

Eine abschließende Identifikation des/der für die Resistenzausprägung verantwortlichen Gens/e könnte über eine funktionelle Analyse erfolgen

Die eng korrelierten SSR-Marker wurden verwendet, um den *Rpv10*-Locus in Genotypen mit *V. amurensis* im Stammbaum zu identifizieren. Die 22 dabei identifizierten Sorten und Zuchtstämme stehen als *Rpv10*-Resistenzquellen für die Züchtung zur Verfügung. Bei dieser Untersuchung zeigte sich auch, welche Marker sich für die MAS am besten eignen. Durch den Einsatz dieser Marker kann der *Rpv10*-Locus in der Züchtung zur Pyramidisierung mit weiteren *Plasmopara*-Resistenzloci eingesetzt werden, um neue Sorten mit breiten und dauerhaften Resistenz-Eigenschaften zu entwickeln.

Literaturverzeichnis

Adam-Blondon, A. F., C. Roux, D. Claux, G. Butterlin, D. Merdinoglu und P. This. 2004. Mapping 245 SSR markers on the *Vitis vinifera* genome: a tool for grape genetics. *Theor Appl Genet*, 109(5): 1017-1027.

Alleweldt, G. und J. V. Possingham. 1988. Progress in grapevine breeding. *Theor Appl Genet*, 75(5): 669-673.

Ampelografija of the USSR. 1954. Pishchepromizdat, Moscow.

Ampelografija of the USSR. 1955. Pishchepromizdat, Moscow.

Becker, H. 1981. Erste Ergebnisse der Züchtung interspezifischer Ertragssorten mit der Erbmasse der *Vitis amurensis* Ruprecht in Geisenheim. *Deutsches Weinbau Jahrbuch*,(32): 25-35.

Becker, N. 1996. Pilzwiderstandsfähige Rebenneuzuchten des Staatlichen Weinbauinstituts Freiburg. *Der Badische Winzer*, 7: 25-28, 8: 27-30, 9: 18-20.

Becker, N. Zwei pilzresistente Weißweinsorten für den ökologischen Weinbau. http://www.landwirtschaft-bw.info. 26-8-2005. 11-1-2011.

Bellin, D., E. Peressott, D. Merdinoglu, S. Wiedemann-Merdinoglu, A. F. Adam-Blondon, G. Cipriani, M. Morgante, R. Testolin und G. Di Gaspero. 2009. Resistance to *Plasmopara viticola* in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. *Theor Appl Genet*, 120(1): 163-176.

Berkelmann-Löhnertz, B., Heibertshausen, D., Baus-Reichel, O., Hofmann, U., und Kauer, R. Ohne Kupfer geht es nicht – Status quo im ökologischen Weinbau nach vier Jahren BÖL-Verbundprojekt. Fachgespräch "Bedeutung von Kupfer für den Pflanzenschutz, insbesondere für den Ökologischen Landbau - Reduktions- und Ersatzstrategien". 2008. Berlin. 29-1-2008.

Blasi, P., Schnee, S., Wiedemann-Merdinoglu, S., Prado, E., Godard, S., Coste, P., Onimus, C., Gindro, K., Schneider, C., Viret, O., und Merdinoglu, D. Genetic analysis of the resistance to downy and powdery mildews derived from cultivar Bronner. 6th International Workshop of grapevine downy and powdery mildew . 2010. 4-7-2010.

Blasi, P., S. Blanc, S. Wiedemann-Merdinoglu, E. Prado, E. Rühl, P. Mestre und D. Merdinoglu. 2011. Construction of a reference linkage map of *Vitis amurensis* and genetic mapping of *Rpv8*, a locus conferring resistance to grapevine downy mildew. *Theor Appl Genet*, 123(1): 43-53.

Bleyer, G. 2008. Die Peronospora-Prognose wird immer wieder verbessert. Der Badische Winzer, 4: 23-26.

Boso, S. und H. H. Kassemeyer. 2008. Different susceptibility of European grapevine cultivars for downy mildew. *Vitis*, 47(1): 39-49.

Boso, S., M. C. Martinez, S. Unger und H. H. Kassemeyer. 2006. Evaluation of foliar resistance to downy mildew in different cv. Albarino clones. *Vitis*, 45(1): 23-27.

Bowers, J. E., G. S. Dangl und C. P. Meredith. 1999. Development and characterization of additional microsatellite DNA markers for grape. *Am J Enol Viticult*, 50(3): 243-246.

Bowers, J. E., G. S. Dangl, R. Vignani und C. P. Meredith. 1996. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (*Vitis vinifera* L). *Genome*, 39(4): 628-633.

Brown, M. V., J. N. Moore, P. Fenn und R. W. McNew. 1999. Comparison of Leaf Disk, Greenhouse, and Field Screening Procedures for Evaluation of Grape Seedlings for Downy Mildew Resistance. *Hortscience*, 34(2): 331-333.

Burruano, S. 2000. The life-cycle of *Plasmopara viticola*, cause of downy mildew of vine. *Mycologist*, 14(4): 179-182.

Campbell, C. 2004. *Phylloxera : how wine was saved for the world*. HarperCollins, London.

Cao, H., J. Glazebrook, J. D. Clarke, S. Volko und X. Dong. 1997. The *Arabidopsis* NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. *Cell*, 88(1): 57-63.

Casagrande, K., L. Falginella, S. Castellarin, R. Testolin und G. Di Gaspero. 2011. Defence responses in *Rpv3*-dependent resistance to grapevine downy mildew. *Planta*, doi: 10.1007/s00425-011-1461-5: 1-13.

Chisholm, S. T., G. Coaker, B. Day und B. J. Staskawicz. 2006. Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response. *Cell*, 124(4): 803-814.

Chong, J., G. Le Henanff, C. Bertsch und B. Walter. 2008. Identification, expression analysis and characterization of defense and signaling genes in *Vitis vinifera*. *Plant Physiol Bioch*, 46(4): 469-481.

Churchill, G. A. und R. W. Doerge. 1994. Empirical Threshold Values for Quantitative Trait Mapping. *Genetics*, 138(3): 963-971.

Cipriani, G., M. Marrazzo, G. Di Gaspero, A. Pfeiffer, M. Morgante und R. Testolin. 2008. A set of microsatellite markers with long core repeat optimized for grape (*Vitis* spp.) genotyping. *BMC Plant Biol*, 8(1): 127.

Coleman, C., D. Copetti, G. Cipriani, S. Hoffman, P. Kozman, L. Kovacs, M. Morgante, R. Testolin und G. Di Gaspero. 2009. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. *Bmc Genetics*, 10(89): 1-20.

Costantini, L., F. M. Moreira, E. Zyprians, J. M. Martínez-Zapater and M. S. Grando. 2009. Molecular Maps, QTL Mapping & Association Mapping In Grapevine in Roubelakis-Angelakis, K. A. (ed) *Grapevine Molecular Physiology & Biotechnology*. Springer Netherlands.

Creasy, G. L. and L. L. Creasy. 2009. Grapevine pests, diseases and disorders in Creasy, G. L. and L. L. Creasy (eds) *Grapes*. CABI, Wallingford.

Csizmazia, J. 1993. VIKTOR, Perle von Zala x Kazatshkah - eine Polyvitis-Hybride. *Deutsches Weinbau Jahrbuch 1993*, 63-66.

Dangl, J. L. und J. D. G. Jones. 2001. Plant pathogens and integrated defence responses to infection. *Nature*, 411(6839): 826-833.

Deglene-Benbrahim, L., S. Wiedemann-Merdinoglu, D. Merdinoglu und B. Walter. 2010. Evaluation of Downy Mildew Resistance in Grapevine by Leaf Disc Bioassay with In Vitroand Greenhouse-Grown Plants. *Am J Enol Viticult*, 61(4): 521-528.

DeYoung, B. J. und R. W. Innes. 2006. Plant NBS-LRR proteins in pathogen sensing and host defense. *Nature Immunol*, 7(12): 1243-1249.

Di Gaspero, G. und G. Cipriani. 2003. Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. *Mol Genet Genomics*, 269(5): 612-623.

Di Gaspero, G., G. Cipriani, A. F. Adam-Blondon und R. Testolin. 2007. Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. *Theor Appl Genet*, 114(7): 1249-1263.

Di Gaspero, G., G. Cipriani, M. T. Marrazzo, D. Andreetta, M. J. P. Castro, E. Peterlunger und R. Testolin. 2005. Isolation of (AC)n-microsatellites in *Vitis vinifera* L. and analysis of genetic background in grapevines under marker assisted selection. *Mol Breeding*, 15(1): 11-20.

Di Gaspero, G., D. Copetti, C. Coleman, S. Castellarin, R. Eibach, P. Kozma, T. Lacombe, G. Gambetta, A. Zvyagin, P. Cindric, L. Kovacs, M. Morgante und R. Testolin. 2011. Selective sweep at the *Rpv3* locus during grapevine breeding for downy mildew resistance. *Theor Appl Genet*, doi: 10.1007/s00122-011-1703-8: 1-10.

Dixon, R. A. 2001. Natural products and plant disease resistance. *Nature*, 411(6839): 843-847.

Doerge, R. W. 2002. Mapping and analysis of quantitative trait loci in experimental populations. *Nat Rev Genet*, 3(1): 43-52.

Doligez, A., A. F. Adam-Blondon, G. Cipriani, V. Laucou, D. Merdinoglu, C. P. Meredith, S. Riaz, C. Roux, P. This und G. Di Gaspero. 2006. An integrated SSR map of grapevine based on five mapping populations. *Theor Appl Genet*, 113(3): 369-382.

Donald, T. M., F. Pellerone, A. F. Adam-Blondon, A. Bouquet, M. R. Thomas und I. B. Dry. 2002. Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. *Theor Appl Genet*, 104(4): 610-618.

Durrant, W. E. und X. Dong. 2004. Systemic acquired resistance. *Annu Rev Phytopathol*, 42: 185-209.

Eibach, R., H. Diehl und G. Alleweldt. 1989. Investigations on the heritability of resistance to *Oidium tuckeri*, *Plasmopara viticola* and *Botrytis cinerea* in grapes. *Vitis*, 28: 209-228.

Eibach, R., L. Hausmann und R. Töpfer. 2011. Use of genetic diversity for grapevine resistance breeding. *Mitt Klosterneuburg*, 60: 332-337.

Eibach, R., E. Zyprian, L. Welter und R. Töpfer. 2007. The use of molecular markers for pyramiding resistance genes in grapevine breeding. *Vitis*, 46(3): 120-124.

Europäische Kommission. Study on the use of varieties of interspecific vines. http://ec.europa.eu/agriculture/markets/wine/studies/vine_en.pdf Contract No AGR 3088. 30-12-2002.

Eurostat. The use of plant protection products in the European Union. http://epp.eurostat.ec.europa.eu . 5-2-2007.

Ferreira, R. B., S. Monteiro, R. Freitas, C. N. Santos, Z. J. Chen, L. M. Batista, J. Duarte, A. Borges und A. R. Teixeira. 2006. Fungal pathogens: The battle for plant infection. *Crit Rev Plant Sci*, 25(6): 505-524.

Fischer, B. M., I. Salakhutdinov, M. Akkurt, R. Eibach, K. J. Edwards, R. Töpfer und E. M. Zyprian. 2004. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. *Theor Appl Genet*, 108(3): 501-515.

Flor, H. H. 1971. Current Status of the Gene-For-Gene Concept. *Annu Rev Phytopathol*, 9(1): 275-296.

Flors, V., J. Ton, G. Jakab und B. Mauch-Mani. 2005. Abscisic Acid and Callose: Team Players in Defence Against Pathogens? *J Phytopathol*, 153(7-8): 377-383.

Gindro, K., R. Pezet und O. Viret. 2003. Histological study of the responses of two *Vitis vinifera* cultivars (resistant and susceptible) to *Plasmopara viticola* infections. *Plant Physiol Bioch*, 41(9): 846-853.

Gindro, K., J. L. Spring, R. Pezet, H. Richter und O. Viret. 2006. Histological and biochemical criteria for objective and early selection of grapevine cultivars resistant to *Plasmopara viticola*. *Vitis*, 45(4): 191-196.

Gobbin, D., G. Bleyer, S. Keil, H. H. Kassemeyer und C. Gessler. 2006. Evidence for sporangial dispersal leading to a single infection event and a sudden high incidence of grapevine downy mildew. *Plant Pathol*, 56(5): 843-847.

Gobbin, D., I. Pertot und C. Gessler. 2003. Identification of microsatellite markers for *Plasmopara viticola* and establishment of high throughput method for SSR analysis. *Eur J Plant Pathol*, 109(2): 153-164.

Gobbin, Davide. Redefining *Plasmopara viticola* epidemiological cycle by molecular genetics. 2004. Swiss Federal Institute of Technology, Zürich. Dissertation.

Gomès, E. and P. Coutos-Thévenot. 2009. Molecular Aspects of Grapevine-Pathogenic Fungi Interactions in Roubelakis-Angelakis, K. A. (ed) *Grapevine Molecular Physiology & Biotechnology*. Springer Netherlands, Dordrecht.

Grattapaglia, D. und R. Sederoff. 1994. Genetic-Linkage Maps of Eucalyptus-Grandis and Eucalyptus-Urophylla Using A Pseudo-Testcross - Mapping Strategy and Rapd Markers. *Genetics*, 137(4): 1121-1137.

Groß, Jürgen. Tests for Normality. [R package version 1.0]. 8-2-2006.

Hammerschmidt, R. 1999. PHYTOALEXINS: What Have We Learned After 60 Years? *Annu Rev Phytopathol*, 37(22): 285-306.

Hardham, A. R. 2007. Cell Biology of Fungal and Oomycete Infection of Plants in Howard, R. J. and N. A. R. Gow (eds) *Biology of the Fungal Cell*. Springer, Berlin Heidelberg NewYork.

Heath, M. C. 2000a. Hypersensitive response-related death. Plant Mol Biol, 44(3): 321-334.

Heath, M. C. 2000b. Nonhost resistance and nonspecific plant defenses. *Curr Opin Plant Biol*, 3(4): 315-319.

Hillebrand, W., H. Lott, Pfaff and F. 2003. *Taschenbuch der Rebsorten*, 13 edn. Fraund, Mainz, Germany.

Hoffmann, S., Cindric, P., und Kozma, P. Breeding resistante cultivars to downy and powdery mildew.

http://www.oiv2007.hu/documents/viticulture/314_breeding_resistante_cultivars_to_1_.pdf . 2007. Paris; France, Organisation Internationale de la Vigne et du Vin (OIV). 27-9-2011.

Hoffmann, S., G. Di Gaspero, L. Kovács, S. Howard, E. Kiss, Z. Galbács, R. Testolin und P. Kozma. 2008. Resistance to *Erysiphe necator* in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. *Theor Appl Genet*, 116(3): 427-438.

Hulbert, S. H., T. W. Ilott, E. J. Legg, S. E. Lincoln, E. S. Lander und R. W. Michelmore. 1988. Genetic analysis of the fungus *Bremia lactucae*, using restriction fragment length polymorphisms. *Genetics*, 120(4): 947-958.

Hvarleva, T., A. Bakalova, K. Rusanov, G. Diakova, I. Ilieva, A. Atanassov und I. Atanassov. 2009. Toward Marker Assisted Selection for Fungal Disease Resistance in Grapevine. *Biotechnol Biotec Eq*, 23(4): 1431-1435.

Ingle, R. A., M. Carstens und K. J. Denby. 2006. PAMP recognition and the plant-pathogen arms race. *Bioessays*, 28(9): 880-889.

Jaillon, O., J. M. Aury, B. Noel, A. Policriti, C. Clepet, A. Casagrande, N. Choisne, S. Aubourg, N. Vitulo, C. Jubin, A. Vezzi, F. Legeai, P. Hugueney, C. Dasilva, D. Horner, E. Mica, D. Jublot, J. Poulain, C. Bruyere, A. Billault, B. Segurens, M. Gouyvenoux, E. Ugarte, F. Cattonaro, V. Anthouard, V. Vico, C. Del Fabbro, M. Alaux, G. Di Gaspero, V. Dumas, N. Felice, S. Paillard, I. Juman, M. Moroldo, S. Scalabrin, A. Canaguier, I. Le Clainche, G. Malacrida, E. Durand, G. Pesole, V. Laucou, P. Chatelet, D. Merdinoglu, M. Delledonne, M. Pezzotti, A. Lecharny, C. Scarpelli, F. Artiguenave, M. E. Pe, G. Valle, M. Morgante, M. Caboche, A. F. Adam-Blondon, J. Weissenbach, F. Quetier und P. Wincker. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. *Nature*, 449(7161): 463-468.

Jansen, R. C. 1993. Interval mapping of multiple quantitative trait loci. *Genetics*, 135(1): 205-211.

Jansen, R. C. 1994. Controlling the Type-I and Type-II Errors in Mapping Quantitative Trait Loci. *Genetics*, 138(3): 871-881.

Jansen, R. C. und P. Stam. 1994. High-Resolution of Quantitative Traits Into Multiple Loci Via Interval Mapping. *Genetics*, 136(4): 1447-1455.

Jones, D. A. und D. Takemoto. 2004. Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. *Curr Opin Immunol*, 16(1): 48-62.

Jürges, G., H. H. Kassemeyer, M. Dürrenberger, M. Düggelin und P. Nick. 2009. The mode of interaction between *Vitis* and *Plasmopara viticola* Berk. & Curt. Ex de Bary depends on the host species. *Plant Biol*, 11(6): 886-898.

Kassemeyer, H. H. 2008. So wächst die Rebenperonospora. Der Badische Winzer, 5: 28-30.

Kiefer, B., M. Riemann, C. Buche, H. H. Kassemeyer und P. Nick. 2002. The host guides morphogenesis and stomatal targeting in the grapevine pathogen *Plasmopara viticola*. *Planta*, 215(3): 387-393.

Király, L., B. Barna und Z. Király. 2007. Plant Resistance to Pathogen Infection: Forms and Mechanisms of Innate and Acquired Resistance. *J Phytopathol*, 155(7-8): 385-396.

Kobayashi, Y., M. Yamada, I. Kobayashi und H. Kunoh. 1997. Actin Microfilaments are Required for the Expression of Nonhost Resistance in Higher Plants. *Plant Cell Physiol*, 38(6): 725-733.

Koornneef, A. und C. M. J. Pieterse. 2008. Cross Talk in Defense Signaling. *Plant Physiol*, 146(3): 839-844.

Kortekamp, A. 2006. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. *Plant Physiol Bioch*, 44(1): 58-67.

Kortekamp, A., L. Welter, S. Vogt, A. Knoll, F. Schwander, R. Töpfer und E. Zyprian. 2008. Identification, isolation and characterization of a CC-NBS-LRR candidate disease resistance gene family in grapevine. *Mol Breeding*, 22(3): 421-432.

Kortekamp, A., R. Wind und E. Zyprian. 1997. The role of callose deposits during infection of two downy mildew-tolerant and two-susceptible *Vitis* cultivars. *Vitis*, 36(2): 103-104.

Kortekamp, A., R. Wind und E. Zyprian. 1998. Investigation of the interaction of *Plasmopara viticola* with susceptible and resistant grapevine cultivars. *J Plant Dis Protect*, 105(5): 475-488.

Kortekamp, A. und E. Zyprian. 1999. Leaf hairs as a basic protective barrier against downy mildew of grape. *J Phytopathol*, 147(7-8): 453-459.

Kozma, P. jr. 2000. Winegrape breeding for fungus disease resistance. *Acta Hort. (ISHS)*, 528: 511-516.

Lam, E., N. Kato und M. Lawton. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. *Nature*, 411(6839): 848-853.

Lamb, C. und R. A. Dixon. 1997. The oxidative burst in plant disease resistance. *Annu Rev Plant Physiol Plant Mol Biol*, 48(1): 251-275.

Lander, E. S. und D. Botstein. 1989. Mapping Mendelian Factors Underlying Quantitative Traits Using Rflp Linkage Maps. *Genetics*, 121(1): 185-199.

Lemke, L., M. Rex, E. Zyprian und R. Töpfer. 2011. A simple, inexpensive and environmentally friendly method for high throughput DNA extraction from grapevine (*Vitis* spp.). *Vitis*, 50(1): 7-10.

Lipps, H. P. und M. Harms. 2004. Schwarzfäule - ein neues Problem im deutschen Weinbau. *Die Winzer-Zeitschrift*, 19(6): 28-29.

Lott, H., F. Pfaff and B. Prior. 2010. Taschenbuch der Rebsorten, 14 edn. Fraund, Mainz, Germany.

Luo, S., P. He, P. Zhou und X. Zheng. 2001. Identification of molecular genetic markers tightly linked to downy mildew resistant genes in grape. *Acta Genet Sinica*, 28(1): 76-82.

Marguerit, E., C. Boury, A. Manicki, M. Donnart, G. Butterlin, A. Nemorin, S. Wiedemann-Merdinoglu, D. Merdinoglu, N. Ollat und S. s. d. i. f. Decroocq. 2009. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. *Theor Appl Genet*, 118(7): 1261-1278.

Martins, W. S., D. C. S. Lucas, K. F. Neves und D. J. Bertioli. 2009. WebSat - A web software for microsatellite marker development. *Bioinformation*, 3(6): 282-283.

Maurel, C. 2007. Plant aquaporins: Novel functions and regulation properties. *FEBS Letters*, 581(12): 2227-2236.

McDonald, B. A. und C. Linde. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. *Annu Rev Phytopathol*, 40(1): 349-379.

Mejia, N., B. Soto, M. Guerrero, X. Casanueva, C. Houel, M. de los Angeles Miccono, R. Ramos, L. Le Cunff, J. M. Boursiquot, P. Hinrichsen und A. F. Adam-Blondon. 2011. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. *BMC Plant Biology*, 11(1): 57.

Merdinoglu, D., G. Butterlin, L. Bevilacqua, V. Chiquet, A. F. Adam-Blondon und S. Decroocq. 2005. Development and characterization of a large set of microsatellite markers in grapevine (*Vitis vinifera* L.) suitable for multiplex PCR. *Mol Breeding*, 15(4): 349-366.

Mohr, H. D. 2005. Farbatlas Krankheiten, Schädlinge und Nützlinge an der Weinrebe. Ulmer, Stuttgart, Germany.

Moreira, F., A. Madini, R. Marino, L. Zulini, M. Stefanini, R. Velasco, P. Kozma und M. Grando. 2011. Genetic linkage maps of two interspecific grape crosses (*Vitis* spp.) used to localize quantitative trait loci for downy mildew resistance. *Tree Genet Genomes*, 7(1): 153-167.

Müller, K. und H. Sleumer. 1934. Biologische Untersuchungen über die Peronosporakrankheit des Weinstockes. *Landwirtsch Jb*, 79(4): 509-576.

Mysore, K. S. und C. M. Ryu. 2004. Nonhost resistance: how much do we know? *Trends Plant Sci*, 9(2): 97-104.

Nicholas, P., P. Magarey and M. Wachtel. 1994. Diseases and Pests: Grape Production Series No.1. Winetitels, Adelaide, Australia.

Nürnberger, T. und V. Lipka. 2005. Non-host resistance in plants: new insights into an old phenomenon. *Mol Plant Pathol*, 6(3): 335-345.

Ordish, G. 1987. The great wine blight, 2 edn. Sidgwick & Jackson, London.

Osbourn, A. E. 1996. Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack. *Plant Cell*, 8(10): 1821-1831.

Park, C. J., K. J. Kim, R. Shin, J. M. Park, Y. C. Shin und K. H. Paek. 2004. Pathogenesisrelated protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. *Plant J*, 37(2): 186-198.

Peressotti, E., S. Wiedemann-Merdinoglu, F. Delmotte, D. Bellin, G. Di Gaspero, R. Testolin, D. Merdinoglu und P. Mestre. 2010. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety. *BMC Plant Biol*, 10(147): 1-11.

Pezet, R., K. Gindro, O. Viret und H. Richter. 2004a. Effects of resveratrol, viniferins and pterostilbene on *Plasmopara viticola* zoospore mobility and disease development. *Vitis*, 43(3): 145-148.

Pezet, R., K. Gindro, O. Viret und J. L. Spring. 2004b. Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. *Physiol Mol Plant P*, 65(6): 297-303.

Pezet, R., C. Perret, J. B. Jean-Denis, R. Tabacchi, K. Gindro und O. Viret. 2003. deltaviniferin, a resveratrol dehydrodimer: One of the major stilbenes synthesized by stressed grapevine leaves. *Journal of Agricultural and Food Chemistry*, 51(18): 5488-5492.

Poupard, P., L. Parisi, C. Campion, S. Ziadi und P. Simoneau. 2003. A wound- and ethephoninducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. *Physiol Mol Plant P*, 62(1): 3-12.

R Development Core Team. R: A Language and Environment for Statistical Computing. 2011. Vienna, Austria.

Rushton, P. J., J. T. Torres, M. Parniske, P. Wernert, K. Hahlbrock und I. E. Somssich. 1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. *EMBO Journal*, 15(20): 5690-5700.

Salmaso, M., G. Malacarne, M. Troggio, G. Faes, M. Stefanini, M. S. Grando und R. Velasco. 2008. A grapevine (*Vitis vinifera* L.) genetic map integrating the position of 139 expressed genes. *Theor Appl Genet*, 116(8): 1129-1143.

Scherer, E. und U. Gisi. 2006. Characterization of Genotype and Mating Type in European Isolates of *Plasmopara viticola*. *J Phytopathol*, 154(7-8): 489-495.

Schröder, Stephan. Plant immunity as a result of co-evolution: Using the pair grapevine / downy mildew as a model. 2010. Karlsruher Institut für Technologie (KIT). Dissertation.

Schröder, S., S. Telle, P. Nick und M. Thines. 2011. Cryptic diversity of *Plasmopara viticola* (Oomycota, Peronosporaceae) in North America. *Org Divers Evol*, 11(1): 3-7.

Schwander, F., R. Eibach, I. Fechter, L. Hausmann, E. Zyprian und R. Töpfer. 2011. *Rpv10*: a new locus from the Asian *Vitis* gene pool for pyramiding downy mildew resistance loci in grapevine. *Theor Appl Genet*, 124(1): 163-176.

Scott, K. D., P. Eggler, G. Seaton, M. Rossetto, E. M. Ablett, L. S. Lee und R. J. Henry. 2000. Analysis of SSRs derived from grape ESTs. *Theor Appl Genet*, 100(5): 723-726.

Sefc, K. M., I. Pejic, E. Maletic, M. R. Thomas and F. Lefort. 2009. Microsatellite Markers for Grapevine: Tools for Cultivar Identification & Pedigree Reconstruction in Roubelakis-Angelakis, K. A. (ed) *Grapevine Molecular Physiology & Biotechnology*. Springer Netherlands.

Shtin, L. T. und I. M. Filippenko. 1974. Inheritance of resistance to downy and powdery mildew in European-Amur grape hybrids. *Soviet Genetics*, 10: 1348-1363.

Sotolar, R. 2007. Comparison of grape seedlings population against downy mildew by using different provocation methods. *Not Bot Horti Agrobo*, 35(2): 61-68.

Staatliches Weinbauinstitut Freiburg. Sorteninfoblatt Merzling. http://www.wbi-freiburg.de . 16-2-2006. 14-6-2011.

Staatliches Weinbauinstitut Freiburg. Sorteninfoblatt Solaris. http://www.wbi-freiburg.de . 6-2-2007. 14-6-2011.

Staatliches Weinbauinstitut Freiburg. 2011. Rebschutz 2011. Der Badische Winzer, Sonderbeilage: 1-12.

Stam, P. 1993. Construction of integrated genetic linkage maps by means of a new computer package: Join Map. *The Plant Journal*, 3(5): 739-744.

Thomas, M. R. und N. S. Scott. 1993. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (Stss). *Theor Appl Genet*, 86(8): 985-990.

Thordal-Christensen, H. 2003. Fresh insights into processes of nonhost resistance. *Curr Opin Plant Biol*, 6(4): 351-357.

Töpfer, R., L. Hausmann and R. Eibach. 2011a. Molecular Breeding in Adam-Blondon, A. F., J. M. Martinez-Zapater and C. Kole (eds) *Genetics, Genomics and Breeding of Grapes*. Science Publishers, Enfield, USA.

Töpfer, R., L. Hausmann, M. Harst, E. Maul, E. M. Zyprian and R. Eibach. 2011b. New Horizons for Grapevine Breeding in Flachowsky, H. and M. V. Hanke (eds) *Fruit, Vegetable and Cereal Science and Biotechnology 5*. Global Science Books.

Trapletti, A. und Hornik, K. tseries: Time Series Analysis and Computational Finance. [R package version 0.10-26]. 2011.

Van Loon, L. C. und E. A. an Strien. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. *Physiological and Molecular Plant Pathology*, 55(2): 85-97.

van Loon, L. C., B. P. J. Geraats und H. J. M. Linthorst. 2006a. Ethylene as a modulator of disease resistance in plants. *Trends in Plant Science*, 11(4): 184-191.

van Loon, L. C., M. Rep und C. M. J. Pieterse. 2006b. Significance of Inducible Defenserelated Proteins in Infected Plants. *Annu. Rev. Phytopathol.*, 44(1): 135-162.

Van Ooijen, J. W. 1992. Accuracy of mapping quantitative trait loci in autogamous species. *Theor Appl Genet*, 84(7): 803-811.

Van Ooijen, J. W. Comparison of a single-QTL model with an approximate multiple-QTL model for QTL mapping. Van Ooijen, J. W. und Jansen, J. Proceedings of the 9th Meeting of EUCARPIA Section on Biometrics in Plant Breeding (1994). Biometrics in Plant Breeding: Applications of Molecular Markers , 205-212. 1994. Wageningen, Netherlands, Centre for Plant Breeding and Reproduction Research.

Van Ooijen, J. W. JoinMap ® 4, Software for calculation of genetic linkage maps in experimental populations. 2006. Wageningen, Netherlands, Kyazma B.V.

Van Ooijen, J. W. MapQTL ® 6, Software for mapping of quantitative trait loci in experimental populations of diploid species. 2009. Wageningen, Netherlands, Kyazma B.V.

Velasco, R., A. Zharkikh, M. Troggio, D. A. Cartwright, A. Cestaro, D. Pruss, M. Pindo, L. M. FitzGerald, S. Vezzulli, J. Reid, G. Malacarne, D. Iliev, G. Coppola, B. Wardell, D. Micheletti, T. Macalma, M. Facci, J. T. Mitchell, M. Perazzolli, G. Eldredge, P. Gatto, R. Oyzerski, M. Moretto, N. Gutin, M. Stefanini, Y. Chen, C. Segala, C. Davenport, L. Dematte, A. Mraz, J. Battilana, K. Stormo, F. Costa, Q. Z. Tao, A. Si-Ammour, T. Harkins, A. Lackey, C. Perbost, B. Taillon, A. Stella, V. Solovyev, J. A. Fawcett, L. Sterck, K. Vandepoele, S. M. Grando, S. Toppo, C. Moser, J. Lanchbury, R. Bogden, M. Skolnick, V. Sgaramella, S. K. Bhatnagar, P. Fontana, A. Gutin, Y. Van de Peer, F. Salamini und R. Viola. 2007. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. *Plos One*, 2(12): e1326.

Vezzulli, S., M. Troggio, G. Coppola, A. Jermakow, D. Cartwright, A. Zharkikh, M. Stefanini, M. Grando, R. Viola, A. F. Adam-Blondon, M. Thomas, P. This und R. Velasco. 2008. A reference integrated map for cultivated grapevine (*Vitis vinifera* L.) from three crosses, based on 283 SSR and 501 SNP-based markers. *Theor Appl Genet*, 117(4): 499-511.

Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. *J Hered*, 93(1): 77-78.

Wan, Y., H. Schwaninger, P. He und Y. Wang. 2007. Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes. *Vitis*, 46: 132-136.

Wang, H., M. Q. Qi und A. J. Cutler. 1993. A Simple Method of Preparing Plant-Samples for PCR. *Nucleic Acids Res*, 21(17): 4153-4154.

Wang, X. P. und Wang, Y. J. Isolation and diversity analysis of resistance gene analogs (RGAs) from wild Chinese *Vitis* species. Submitted May 2006 to the EMBL GenBank DDBJ databases . 2006.

Welter, L. J., N. Gokturk-Baydar, M. Akkurt, E. Maul, R. Eibach, R. Töpfer und E. M. Zyprian. 2007. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (*Vitis vinifera* L). *Mol Breeding*, 20(4): 359-374.

Wirdnam, C., A. Motoyama, E. Arn-Bouldoires, S. van Eeden, A. Iglesias und F. Meins. 2004. Altered expression of an ankyrin-repeat protein results in leaf abnormalities, necrotic lesions, and the elaboration of a systemic signal. *Plant Mol Biol*, 56(5): 717-730.

Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. *Biochem J*, 322(3): 681-692.

Wong, F. P., H. N. Burr und W. F. Wilcox. 2001. Heterothallism in *Plasmopara viticola*. *Plant Pathol*, 50(4): 427-432.

Wu, J. A., Y. L. Zhang, H. Q. Zhang, H. Huang, K. M. Folta und J. A. Lu. 2010. Whole genome wide expression profiles of *Vitis amurensis* grape responding to downy mildew by using Solexa sequencing technology. *BMC Plant Biol*, 10.

Wu, T., Z. Tian, J. Liu, C. Yao und C. Xie. 2009. A Novel Ankyrin Repeat-rich Gene in Potato, *Star*, Involved in Response to Late Blight. *Biochem Genet*, 47(5): 439-450.

Xu, Z. S., M. Chen, L. C. Li und Y. Z. Ma. 2011. Functions and Application of the AP2/ERF Transcription Factor Family in Crop ImprovementF. *J Integr Plant Biol*, 53(7): 570-585.

Zhang, J. K., L. Hausmann, R. Eibach, L. J. Welter, R. Töpfer und E. M. Zyprian. 2009. A framework map from grapevine V3125 (*Vitis vinifera* 'Schiava grossa' x 'Riesling') x rootstock cultivar 'Börner' (*Vitis riparia* x *Vitis cinerea*) to localize genetic determinants of phylloxera root resistance. *Theor Appl Genet*, 119(6): 1039-1051.

Anhang

Anhang 1a: LG 01 bis LG 10 der integrierten genetischen Karte (Details siehe nächste Seite).

Anhang 1b: LG 11 bis LG 19 der integrierten genetischen Karte der Kreuzungspopulation Gf.Ga-52-42 x 'Solaris' mit 219 SSR-Markern. Der Umfang der Population beträgt 265 Individuen. Markerabstände in centi Morgan (cM). An die Markernamen angehängt sind die codierten Fragmentlängen (bp) bei Markern, welche nur in einem Elternteil heterozygot sind.

Anhang 2a: Kopplungsgruppen 01 bis 04 mit der maternalen Gf.Ga-52-42 Karte (M) links, der integrierten Karte (LG-Nr.) in der Mitte und der paternalen 'Solaris' Karte (P) rechts. Die Positionen der Marker auf den Karten sind über Linien miteinander verbunden.

Anhang 2b: Kopplungsgruppen 05 bis 08 mit der maternalen Gf.Ga-52-42 Karte (M) links, der integrierten Karte (LG-Nr.) in der Mitte und der paternalen 'Solaris' Karte (P) rechts. Die Positionen der Marker auf den Karten sind über Linien miteinander verbunden.

Anhang 2c: Kopplungsgruppen 09 bis 12 mit der maternalen Gf.Ga-52-42 Karte (M) links, der integrierten Karte (LG-Nr.) in der Mitte und der paternalen 'Solaris' Karte (P) rechts. Die Positionen der Marker auf den Karten sind über Linien miteinander verbunden.

Anhang 2d: Kopplungsgruppen 13 bis 16 mit der maternalen Gf.Ga-52-42 Karte (M) links, der integrierten Karte (LG-Nr.) in der Mitte und der paternalen 'Solaris' Karte (P) rechts. Die Positionen der Marker auf den Karten sind über Linien miteinander verbunden.

Anhang 2e: Kopplungsgruppen 17 bis 19 mit der maternalen Gf.Ga-52-42 Karte (M) links, der integrierten Karte (LG-Nr.) in der Mitte und der paternalen 'Solaris' Karte (P) rechts. Die Positionen der Marker auf den Karten sind über Linien miteinander verbunden.

Anhang 3: Kartierungsablauf des *Rpv10*-Locus von der Identifikation auf der LG 09 (a) über mehrere Zwischenstufen (b, c) bis zur Feinkartierung (d). Dargestellt sind die jeweiligen Versionen der Kopplungsgruppe, die 1-LOD- und 2-LOD-Konfidenzintervalle für IM (grün) und MQM (rot). Die Versionen sind über die homologen Marker verknüpft um die Entwicklung der LG nachvollziehen zu können.

Marker	LG	Kreuzungs- muster	Gf.Ga	-52-42	Sola	ris	Bacc We	hus iss	Villa Bla	ard nc	Merz	zling	Serve	ernyi	Mus Otto	kat nel	Ries We	ling iss	Sey	val	Zar Seve	ya era
GF01-03	01	<nnxnp></nnxnp>	141		141	146	141	143			na		141		141		141		146		na	
GF01-06	01	<efxeg> & <nnxnp></nnxnp></efxeg>	0	339	333	348	333	0	339		na				333	339	333	348	333	348	na	
GF02-04	02	<efxeg></efxeg>	301	315	311	315	315		301	305	305	315	307	315	305	311	305	315	301	305	na	
GF02-06		<nnxnp></nnxnp>	99	99	99	105	99	114	99	105	99	105	99	123	105		99	123	99	105	99	123
GF02-20	02	<lmxll></lmxll>	373														373				na	
GF02-28	02	<nnxnp></nnxnp>	192	192	183	192	183	192	192	192	192		192	198	183		192		192	192	na	
GF03-01	03	<lmxll></lmxll>	118	122	118		118		122		na		118		118		118		118		na	
GF03-03	03	<lmxll></lmxll>	211	219	0	219	219		211	217	na		219				211	219	219		na	
GF05-01	05	<efxeg></efxeg>	172	175	165	175	175		172		165	175	162	175	172	175	165	175	165		162	172
GF05-07	05	2x <nnxnp></nnxnp>	331	0	333	340	338		331		340				333	340	331	343	333		340	
GF06-04	06	2x <lmxll></lmxll>	202	215	207		202		202	215	207	209	202	207	202	207	202	207	202	207	198	209
GF07-04	07	<abxcd></abxcd>	234	243	246	260	234		234	243	na		264		234	260	234		246	260	na	
GF08-07		<efxeg></efxeg>	216	243	224	243	230	243	216 / 230	243	212 / 224	243	212	224	212	224	243	230	210 / 222	243	na	
GF08-08	08	<nnxnp></nnxnp>	173	173	139	166	139	173	139	173	139	166	166		166	173	139		139	144	na	
GF08-09	08	<nnxnp></nnxnp>	0	182	180	182			180	182	180	182	182		182		181		180	182	na	
GF09-01.1	- 09	<lmxll></lmxll>	280	259		259	259		266	280	259				259	280	259	272	280			
GF09-04	- 09	2x <lmxll></lmxll>	159	164	0	0	159	164	159		159		159		164	164	159		159		na	
GF09-05	09	2x <lmxll></lmxll>	250	253 / 255	255		253	255	250	255	250		250	255	250		250	253	250		255	
GF09-06	09	<lmxll></lmxll>	357						357		na								357		na	
GF09-06	- 09	<efxeg></efxeg>	141	0	159	0			141		na		159								na	
GF09-08	- 09	<efxeg></efxeg>	247	259	269	259	259		247		259		269		259		245	259	254		259	269
GF09-09	09	2 x <lmxll></lmxll>	191	196			191		192	196	191		196		191	194	191	194	192		196	
GF09-10	09	2 x <nnxnp></nnxnp>	215	215	218	227	215		215	233	215	218	215	227	215		215	218	218	230	218	227
GF09-11	09	<nnxnp></nnxnp>	281		257	281	281		285		276	281	257		254		281		276		260	
GF09-12	- 09	<efxeg></efxeg>	271		287		271		271		287	338	271		287	343			287	338	287	
GF09-13	09		419	421			419		421		419		417				419				416	419
GF09-14	09	<abxcd></abxcd>	357	353	369	351	353	357	353		357	369	351	353	353		357	373	369	373	353	365
GF09-16	09	<nnxnp></nnxnp>			244								244								244	

Anhang 4: Ermittelte Fragmentlängen der für die Kartierungsarbeiten und die Stammbaumanalysen verwendeten SSR-Marker der Kreuzungseltern 'Solaris' und Gf.Ga-52-42, sowie den getesteten Sorten mit Relevanz für die Stammbaumanalysen.

Marker	LG	Kreuzungs- muster	Gf.Ga	-52-42	Sola	ris	Bacc We	chus iss	Villa Bla	ırd nc	Mer	zling	Serve	ernyi	Mus Otto	kat nel	Riesl Wei	ling iss	Sey	val	Zar Sev	rya era
GF09-19	- 09	<lmxll></lmxll>	320				320		320			!	320		320		320					
GF09-19	- 09	<lmxll></lmxll>	325				325				325						325				325	
GF09-19_317	- 09	<nnxnp></nnxnp>			317								317									
GF09-24	- 09	<abxcd></abxcd>	371	378	352	367	371		369	378	367	371	352	367	371	378	371		367	371	na	
GF09-27	09	<lmxll> & <nnxnp></nnxnp></lmxll>	384	387	327	384	374	384	374	387	327	376 / 384		384		384		384	327	377 / 384	na	
GF09-29	- 09	<efxeg></efxeg>	313	341	320	341	317	341	307	313	335	341	320		322	334	336	341	334		na	
GF09-42	- 09	<lmxll></lmxll>	416						416												na	
GF09-43	- 09	<efxeg></efxeg>	422	426	422	428	422		426	428	422	430	428		424		422		424		na	
GF09-44	- 09	<efxeg></efxeg>	242	245	230	245	244	245	242		245		230	244	236	245	236	245	230		230	242
GF09-45	- 09	<nnxnp></nnxnp>	213		213	219	213		213		213		213	219	213		213		213		213	
GF09-46	- 09	<efxeg></efxeg>	424	426	417	426	424	426	408	424	406	426	417	424	399	426	424?	426	406	418?		
GF09-47	- 09	<nnxnp></nnxnp>	296	296	296	299	296		296	289	296	289	296	299	292	296	296	289	296	289	181	
GF09-48	- 09	<nnxnp></nnxnp>	349	349	349	359	349		349		349	356	349	359	349		349		349	352	na	
GF09-52	- 09	<nnxnp></nnxnp>	393	393	393	396	393		393		393		393	396	393		393		393		na	
GF09-53	- 09	<lmxll></lmxll>	364	368	364	0	364	384	368		364		385		356	368	364	368	368		na	
GF09-54	- 09	<lmxll></lmxll>	276	270	0	270	270	276	276		270	276	270		270	276	270	276	276		na	
GF09-55	- 09	<efxeg></efxeg>	238	264	250	264	245	256	238	264	260		250	256	238	264	238	264	238	264	na	
GF09-57	- 09	<efxeg></efxeg>	347	366	303	366	347	366	347	351	361	366	303	361	347	366	347	366	361		na	
GF09-61	- 09	<efxeg></efxeg>	418	0	408	0			418				408		418		Ì		418		na	
GF09-62	- 09	<efxeg></efxeg>	409		393				409				393		394		412		409			
GF09-65	- 09	<nnxnp></nnxnp>	316		312		316		322		316		312		316		316		316			
GF10-07	10	<lmxll></lmxll>	316	317	316	316	316		314	317	314	316	310	316	310	316	316		314	316	na	
GF11-10	11	<efxeg></efxeg>	142	159	142	150	129	142	142	159	142	159	133	151	150		142	129	135	158	150	137
GF12-05	12	<nnxnp></nnxnp>	167	167	167	178	167	169	167		169	178	167	169	169	171	167	169	167	178	167	
GF12-06	12	<lmxll></lmxll>	334						334													
GF12-08	12	<abxcd></abxcd>	178	164	170	0	178		164	170	170	170	164				164		164	170	164	170
GF14-01	14	<abxcd></abxcd>	215	222	212	216	215		222		216		212	215	212	215	215		216		212	216
GF14-05	14	<abxcd></abxcd>	82	75	0	88	91	82	75		0	0	85	88	94		90		97		85	88
GF14-22_198		<lmxll></lmxll>	198						198										198			
GF14-23	14	<nnxnp></nnxnp>	398	398	394	398	398		398		394	398			398		398	402	394	398		
GF15-08	15	<lmxll></lmxll>	225	234	234	234	225		225	234	na		225	234	234		225	234	234		na	
GF16-01	16	<efxeg></efxeg>	350	342	346	342	337	342	339	350	342	353	346		337	346	342	350	350	353	337	
GF16-04	16	<nnxnp></nnxnp>			138						138								138			
GF17-03	17	<abxcd></abxcd>	304	280	291	302	291	304	280	302	291		285	291	291	302	291	304	280	291	285	291
GF17-05	17	<nnxnp></nnxnp>			186						na		186		186		Î				na	

Marker	LG	Kreuzungs- muster	Gf.Ga	-52-42	Sola	aris	Baco We	chus ciss	Vill Bla	ard nc	Mer	zling	Serve	ernyi	Musl Otto	kat nel	Ries We	ling iss	Sey	val	Zai Sev	rya 'era
GF18-01	18	<abxcd></abxcd>	279	274	277	267	279		274		274	277	266		267	277	279		277		271	
GF18-06	18	<abxcd></abxcd>	382	388	375	387	382		388		375	376	382	397	376	387	382	385	375	375	371	382
GF18-08	18	<abxcd></abxcd>	391	397	386	387	391		381	397	386	387	387	388	386	387	386	391	387		na	
GF18-10	18	<lmxll></lmxll>	386				386				386		386				386					
GF18-11	18	<abxcd></abxcd>	493	485	0	487	493		485		493		493		487		493		493			
GT183H07	13	<efxeg></efxeg>	246	252	255	252	252		246	255	255		246	252	252		252	255	255		246	255
SCU06	17	<abxcd></abxcd>	164	0	163	175	164		178	187	na		171	175	171	177	163	175	172	187	na	
SCU10	18	<nnxnp></nnxnp>	209	209	206	209	206	209	209		na		206		209	215	206	209	209		na	
SCU11	19	<nnxnp></nnxnp>	248	248	235	242	248		248		na		235	248	248		248		242		na	
SCU14	16	<lmxll></lmxll>	165	179	179	179	165	179	165	179	165	179	177	179	165	179	165	179	179	183	176	179
UDV-020		<abxcd></abxcd>	151	0	144	146	140	151	146	0	na		144		137		146		146		144	1
UDV-023	19	<abxcd></abxcd>	190	179	226	201	190	201	179	184	na		184	201	179	201	190	201	201	226	na	i I
UDV-024	12	<efxeg></efxeg>	197		177		177	197	186		177		177	186	177		177	197				
UDV-034	04	<abxcd></abxcd>	181	169	171	178	178	181	169	181	na		167	180	167	178	169	181	171	180	na	í
UDV-037	13	<abxcd></abxcd>	158	160	167	169	158	167	160		158	167	158	169	158	169	158	167	158	167	na	
UDV-052	16	<lmxll> & <nnxnp></nnxnp></lmxll>	0	180		165	165	180	184	0	165		165	172	165		170	180	167	170?	165	167
UDV-059	10	<efxeg></efxeg>	146	162	141	162	141	162	146		na		na		162		141	162	146		na	
UDV-076	02	<efxeg></efxeg>	181	166	158	166	158	166	170	181	na		158	179	153	158	158	166	168	178	na	
UDV-088	13	<nnxnp></nnxnp>	Ì		208						208		Î		Ì				208			
UDV-090	06	<nnxnp></nnxnp>	144		144	170	144		144		144		147	170	144	170	141	144	144		146	170
UDV-093	03	<efxeg></efxeg>	163	167	150	167	163		157	167	150	167	154	158	150	158	154	164	150		150	
UDV-107	- 09	<nnxnp></nnxnp>			138				138				138								138	
UDV-108	18	<abxcd></abxcd>	214	237	227	238	214	234	237		227	238	214	250	214	238	214	238	227	240	na	
UDV-122	18	<lmxll></lmxll>	223		223		223				na		223		223		223				na	
UDV-305	18	<lmxll></lmxll>	230	301			230		301								230				na	
UDV-737	18	<abxcd></abxcd>	298	281	274	309	293	298	281	302	274	287	287	304	291	309	298		274	299		
VCHR01B	01	<efxeg></efxeg>	95	108	95	87	95	108	87	108	na		95		95	108	95	108	87		na	
VCHR01C	01	<lmxll></lmxll>	89	97	89	0	89	97	89	97	na		89		97		89	97	89	97	na	
VCHR03A	03	<efxeg></efxeg>	181	200	187	200	200	209			na		na		187		200		na		na	i •
VCHR04A	04	<nnxnp></nnxnp>		181	198	181	na		na		na		na		na		na		na		na	1
VCHR05A	05	<efxeg></efxeg>	242	239	258	239	239		242	258	na		248		258		239	251	242	258	na	
VCHR05B	05	<efxeg></efxeg>	177	194	182	194	182	194	177	190	na		190	194	194		194		177	190	na	
VCHR05C	05	<nnxnp></nnxnp>	102		102	105	102		102	105	na		105	125	102		102		105		na	
VCHR06A	06	<nnxnp></nnxnp>	0	0	176	181	185		181		na		172	181	181		170		176	181	na	

Marker	LG	Kreuzungs- muster	Gf.Ga	-52-42	Sola	aris	Bace We	chus eiss	Vill Bla	ard nc	Merz	zling	Serv	ernyi	Mus Otto	kat nel	Riesli Weis	ng ss	Sey	val	Zai Sev	rya era
VCHR07A	07	<lmxll> & <nnxnp></nnxnp></lmxll>	142	137	127	137	142		137		na		137		137	142	142		137		na	
VCHR07B	07	<abxcd></abxcd>	177	186	169	190	186		177		na		181	190	169	177	186		169	177	na	
VCHR08A	08	<efxeg></efxeg>	208	0	198	0	191	208			na		198		198		191		198		na	
VCHR09B	- 09	<lmxll></lmxll>	0	141	0	0	141				na						141				na	
VCHR10A	10	<lmxll></lmxll>	130						130												na	
VCHR11B	11	<nnxnp></nnxnp>	159	159	151	155	155	159	159		na		155		155		155	159	155	163	na	
VCHR12B	12	<nnxnp></nnxnp>	166	166	158	166	166		166		na		158	166	166		166		166		na	
VCHR13A	13	<lmxll></lmxll>	150	139	139	139	145	150	139		na		139	150	139	150	145	150	134		na	
VCHR13C	13	<lmxll></lmxll>	114	121	124	124	114	124	121		107	114	114		114	124	114		114	121	na	
VCHR14A	14	<efxeg></efxeg>	187	130	192	130	187	176	130		na		187	192	130	187	187	175	130		na	
VCHR15B	15	<nnxnp></nnxnp>	0	80	88	80			80		na		80	90	88		88	93	73	80	na	
VCHR16A	16	<efxeg></efxeg>	119	111	100	111	100	111	111	119	na		100	107	100		111	119	119		na	
VCHR16B	16	<nnxnp></nnxnp>	189		169	189	189		189		169	189	189		189		165	189	169	189	na	
VCHR17A	17	<efxeg></efxeg>	156	183	174	183	183		156	183	na		156		174	183	183		162	183	na	
VCHR18A	18	<nnxnp></nnxnp>	158	158	141	150	158	162	158	162	150		141	150	162	169	162		150		na	
VCHR18B	18	<efxeg></efxeg>	144	149	144	145	144	153	135	149	144		145	153	145	153	144	145	144	149	na	
VCHR18C	18	<lmxll></lmxll>	121	127		127	121	127	121	127	na		121	127	121	127	127		127		na	
VCHR19A	19	<nnxnp></nnxnp>	132	132	135	149	na		na		na		na		na		na		na		na	
VCHR19B	19	<abxcd></abxcd>	167	171	163	0	167	171	171		171		171		163	167	167		na		na	
VMC16F3	07	<abxcd></abxcd>	177	0	165	185	177	185	177	0	na		165	186	179	185	177	182	185		na	
VMC1C10	- 09	<abxcd></abxcd>	168	133	149	146	156	168	133	162	149	168	146	162	143	156	143	168	149		149	161
VMC1F10	08	<lmxll></lmxll>	208	204	0	204	208		204		na		208		202		208		204		na	
VMC1G3.2	12	<efxeg></efxeg>	138	0	130	0	124	138	138	0	124		130		124		138				123	
VMC2A3	18	<efxeg></efxeg>	159	157	155	157	157	175	151	159	157	159	155	181	149	181	157	175	159	171	146	134
VMC2A9	- 09	<lmxll></lmxll>	101	95		95	95		101		95		95		95		95		95		95	
VMC2C7		<abxcd></abxcd>	139		132	141 / 143			132	139	na		132	141 / 145	139	141	146		132	139 / 143	na	
VMC2D9	- 09	<efxeg></efxeg>	63	68	88	68	63	68	68	68	66	88	68		88		63	66	66	88	63	68
VMC2E11	- 09	<abxcd></abxcd>	97	106	108	91	97		106		na		91		108		97		101	108	na	
VMC2F10	06	<lmxll></lmxll>	98	100	94	94	94	98	100		na		100	104	94	100	98	102	94	100	na	
VMC2F12	08	<efxeg></efxeg>	252	213	190	213	252		194	213	213	252	190	252	194	210	193	252	202	213	na	
VMC2H4	12	<abxcd></abxcd>	0	202	229	208	225		202	208	na		208	220	202	215	205		208	229	na	
VMC3B8	12	<abxcd></abxcd>	161	147	165	141	131	161	141	147	147	165	132	141	147	161	133	157	136	165	na	
VMC3B9	05	<lmxll></lmxll>	92						92		92		92				92				92	
VMC3C11.1	17	<abxcd></abxcd>	114	107	102	120	114		107		96	120	102	111	99	111	114	120	96	99	100	120

Marker	LG	Kreuzungs- muster	Gf.Ga	-52-42	Sola	aris	Bac We	chus eiss	Vill Bla	ard inc	Mer	zling	Serve	ernyi	Mus Otto	skat onel	Ries We	ling eiss	Sey	val	Zai Sev	rya era
VMC3D7	10	<efxeg></efxeg>	156	161	159	161	161		156	159	na		156	159	159	161	159	161	161	170	na	
VMC3E11.2	10	<nnxnp></nnxnp>	80		80	88	80	83	83		na		80		83	88	80	88	83		na	
VMC3E12	11	<abxcd></abxcd>	136	0	117	123	123	136	0	0	na		117	136	123	0	123	136	128	136	na	
VMC3E5	18	<lmxll></lmxll>	109	114	109		109		114		109	114	109		109		109		109	117	109	118
VMC3F8	08	<efxeg></efxeg>	260	268	257	268	260	268	268		na		257		257	260	257	268	268		na	
VMC3G9	01	<lmxll></lmxll>	120	123		123	123		120	130	na		123		120	123	123		123	131	na	
VMC4A1	09	<nnxnp></nnxnp>			279						279	1			279				279			
VMC4F3.1	12	<efxeg></efxeg>	160	0	164	0	160				na		164				164				na	
VMC4F8	01	<lmxll></lmxll>	115	116	115		115		115	116	115		115	117	115		115		115		115	117
VMC4G6	06	<efxeg></efxeg>	139	121	121	123	129	139	121		na		125		123	133	123	127	121		na	
VMC4H6	- 09	<efxeg></efxeg>	156	160	154	160	160		154	156	na		154	160	156	160	156	160	156	158	na	
VMC5A10	19	<lmxll></lmxll>	159				159								159		159				159	
VMC5E9	19	<abxcd></abxcd>	192	213	194	207	192	204	192	213	na		196		194	207	192		192	194	na	
VMC5F5	16	<efxeg></efxeg>	64	0	95	0	64		64		na		64		64	95			64	95	na	i
VMC5G7	02	<lmxll></lmxll>	191	198	198	198	191	198	198		na		191		198		198		198		na	;;
VMC6D12	- 09	<lmxll></lmxll>	171	179	169		171	178	179		na		178		171		169	179	178		178	
VMC6E1	14	<efxeg></efxeg>	129	0	149	0	149	0	129	142	na		149		140	142	141	149	129	149	na	
VMC6E4	- 09	<abxcd></abxcd>	0	141	145	112	143	0	122	141	145		112	143	145		152		143		112	143
VMC6F5	17	<abxcd></abxcd>	321	342	317	334	321		342		na		317	334			321		317		na	
VMC6G10	04	<lmxll></lmxll>	139	172	164	164	139	172	136	172	164				139	164	164	172	172		139	164
VMC7H2	08	<lmxll></lmxll>	132	120	120	120	120	132	120	129	na		120	132	129	132	132		120		na	
VMC8A7	01		168						168		na										na	
VMC8E6	04	<abxcd></abxcd>	0	280	263	253			253	280	263		253						263		254	258
VMC8F10	03	<lmxll></lmxll>	231	196	196	196	na		na		na		na		na		na		na		na	
VMC8G3.2	15	<efxeg></efxeg>	290	297	285	297	297		290	297	297		293	297	285		295		293	297	285	309
VMC8G9	12	3x <lmxll> & 2x <nnxnp></nnxnp></lmxll>	160	170 /173	176	182	160	170 /173	173	190	na		158	174 /176	170	182	160	170 /173	165	182	na	
VMC9D2.2	09	<nnxnp></nnxnp>	148	148	152	0	148		148		148		148	152	148		148		148		148	1
VMC9D3	01	<abxcd></abxcd>	206	189	187	200	193	206	189		na		200	202	200	206	193		187	189	na	
VMC9F2	01	<abxcd></abxcd>	209	288	283	311	208	288	209	290	na		273	290	211	311	207	311	283	290	na	
VMCNG1D3		<nnxnp></nnxnp>			166								166								166	
VMCNG1E1	14	<abxcd></abxcd>	104	0	79	96			87	104	na		96		96		94		74	79	na	
VMCNG1F1.1	04	<nnxnp></nnxnp>		134	146	134	134	143	134		146		144		134		136	143	131	146	139	146
VMCNG1H7	01	<abxcd></abxcd>	209	182	174	201	196	209	174	182	na		190		182	201	195	209	174		na	
VMCNG2B6	08	<nnxnp></nnxnp>	118	0	118	120	118		118		118		117		120		117	122	109	118		

Marker	LG	Kreuzungs- muster	Gf.Ga	-52-42	Sol	aris	Bace We	chus eiss	Vill: Bla	ard nc	Mer	zling	Serve	ernyi	Mus Otto	kat nel	Ries We	ling iss	Sey	val	Zai Sev	rya 'era
VMCNG2E1	04	<efxeg></efxeg>	119	111	101	111	111		111	119	na		101		101	111	101	111	101	105	na	
VMCNG2E2			112	125	123	139	112	123	125	131	na		138	140	112	139	121		123	139	na	
VMCNG2H1	11	<efxeg></efxeg>	240	263	243	263	240	243	263		na		255	263			240	243	240	263	na	
VMCNG2H7a		<lmxll></lmxll>	180	0	184	0	186	0	180	184	184				186				178	184	180	
VMCNG2H7a		<nnxnp></nnxnp>			146								146								146	
VMCNG4B9	06	<efxeg></efxeg>	149	157	136	157	136	157	149	157	128	136	149	157	157	161	136		136		149	157
VMCNG4E10.1	13	<abxcd></abxcd>	291	230	259	265	259	291	230		na	1	265		265	291	259	291	247	259	na	
VRZAG14	18	<efxeg></efxeg>	163		138		142		163		138		138		138						136	
VRZAG67	15	<nnxnp></nnxnp>			135		135				na		135		135		135		135		na	
VRZAG79	05	<lmxll></lmxll>	241						241		na										na	
VRZAG83	04	2x <lmxll></lmxll>	188	190			188		190		na		190		190		188	193	188	194	na	
VVIB01	02	<lmxll></lmxll>	301	309	301		301		292	309	na		293	307	297		291	301	287	293	na	
VVIC51	13	<lmxll></lmxll>	166	168	161	161	159	166	168		na		184		161	166	156	166	161	172	na	í
VVIF52	01	<abxcd></abxcd>	248	258	250	260	258	260	248	270	250		274	281	258	260	260		248	250	260	274
VVIH02	09	<nnxnp></nnxnp>	137		131	137 / 140	137				137		131		140		137				125	131 /133
VVIM04	11	<abxcd></abxcd>	88	76	102	82	88	102	76		88	102	82		76		88	102	76	88	82	
VVIM42.1	15	<efxeg></efxeg>	277	261	264	261	261		261	277	na	ļ	261	268	264		256	273	256	261	na	
VVIM43	06	<nnxnp></nnxnp>	82	0	82	106	82	0	82	86	na	Ì	106		90	95	82	94			na	
VVIN16	18	<lmxll></lmxll>	146	151	146		149	151	146	151	na		146	151	146		151	151	146		na	
VVIN31	06	<abxcd></abxcd>	140	166	161	168	140	168	152	166	na		161	163	140		161	168	156? 158?	164	na	
VVIN52	16	<lmxll></lmxll>	88	104	88	88	88	104	98	104	na		88		88	104	88	104	104		na	
VVIN56	07	<efxeg></efxeg>	166	160	168	160	160	171	160	166	162 /168	171	160		169		160	171	166	168	160	171
VVIN57	09	<lmxll></lmxll>	339						339								339					
VVIN61	01	<abxcd></abxcd>	361	373	356	375	373		358	361	na		347	375	361	375	373		354	356	na	
VVIN62	13	<abxcd></abxcd>	357	365	0	359	357	363	365		na		351	357	357	359	357	363	363		na	
VVIN73	17	<abxcd></abxcd>	259	268	264	266	259	266	256	268	na		264	266	264	266	266		256		na	
VVIN74	19	<efxeg></efxeg>	283	279	286	279	279		281	283	279	281	279	290	286	289	279		282		286	289
VVIO52	09	<lmxll></lmxll>	383						383								383		383		383	1
VVIP17	19	<efxeg></efxeg>	80	76	82	76	76		78	80	76	78	76	86	82	86	76		78		82	86
VVIP31	19	<abxcd></abxcd>	173	177	184	170	173		173	177	na		170	177	182		173		170	184	na	
VVIP33	15	<efxeg></efxeg>	404	346	396	346	na		na		na		na		na		na		na		na	
VVIP60	01	<abxcd></abxcd>	306	317	321	0	306	323	317	321	na		317	323	317	321	306	323	321		na	
VVIQ52	09	<abxcd></abxcd>	76	78	83	85	78		76	78	78	83	78	85	83		76	83	78	83	78	85

																				-	
LG	Kreuzungs- muster	Gf.Ga	-52-42	Sola	aris	Bace We	chus eiss	Vill Bla	ard Inc	Mer	zling	Serve	ernyi	Mus Otto	skat onel	Ries We	ling iss	Sey	val	Za Sev	rya 'era
- 09	<nnxnp></nnxnp>	183		183	185	183		183		183		183	185	183	185	180	183	183		183	
- 09	<lmxll></lmxll>	237						237								237		237		237	
15	<efxeg></efxeg>	338	373	338	362	373		338	373	na		338	373	362	373	338	355	338		na	
05	<nnxnp></nnxnp>	229	229	221	235	221	229	229	235	na		221		227	235	229		235		na	
14	<nnxnp></nnxnp>	209	209	204	215	209	215	206	209	204	206	204	215	209		206	215	204	209	na	
11	<efxeg></efxeg>	248	254	236	254	248	254	240	254	236	254	236	254	248	254	248	254	236	256	na	
05	<lmxll> & <nnxnp></nnxnp></lmxll>	178	186	174	186	178	186	178	186	182	186	178	180	174	186	178	186	186		na	
03	<abxcd></abxcd>	230	238	220	270	230	246	236	238	na		246	254	260	270	230	236	238	254	na	
07	<abxcd></abxcd>	203	213	209	219	203	213	213		na		209	222	213	215	203	213	200	219	na	
04	<efxeg></efxeg>	274	242	266	242	254	274	242	258	na		241	242	242	266	254	274	253	274	na	

÷

÷.

1

1

237 242

261

240

128

215

÷

246

134

261 273

237 242

132 143

1

- i

251 261

133 143

232

247

215

227 238 na

212 215 na

÷.

236

124

na

na

1

1

÷

242 na

Marker

VVIQ66

VVIU37

VVIV67

VVMD14 VVMD24

VVMD25

VVMD27

VVMD28

VVMD31

VVMD32 VVMD36

VVMD5

VVMD7

VVS2

VVS3

03

07

11

<efxeg>

<abxcd>

<abxcd>

16 <lmxll>

02 < |mxl| >

266

232

246

152

212

251

236

143

261

242

136

÷

251

240

128

251 261

242 246

-

232

152

237

236

132

212

i.

266 na

143 na

215 na

250

na

Danksagungen

Mein Dank gilt allen, die zum Gelingen dieser Arbeit beigetragen haben, besonders:

- Apl. Prof. Dr. Eva Zyprian f
 ür die Übernahme der Erstkorrektur und der steten Unterst
 ützung bei allen Fragen.
- Dr. Rudolf Eibach f
 ür die gute Projektbetreuung und die vielen Anregungen.
- Dr. habil. Reinhard Töpfer für die Möglichkeit diese Arbeit am Institut für Rebenzüchtung Geilweilerhof durchführen zu können und die visionären Denkanstöße.
- Dr. Achim Schmitt, Alexander Dürrhauer, Friederike Rex, Dr. Iris Fechter, Iván Carreño, Dr. Ludger Hausmann und Tina Moser für fruchtbare Diskussionen und stete Hilfsbereitschaft.
- Allen Mitarbeiterinnen und Mitarbeitern im Labor f
 ür die gute Arbeitsatmosph
 äre und hervorragende Zusammenarbeit.
- Eberhardt Corfier und seinen Mitarbeiter/innen für die Pflege der Pflanzen.
- Dr. Erika Maul f
 ür die ampelographischen Erkenntnisse und eine sehr hilfreiche VIVC-Datenbank.
- dem Team der Bibliothek für schnelle und umfangreiche Literaturbeschaffungen.
- Claudia Welsch f
 ür "Express"-Bestellungen und "Materialortung" und Ulla M
 üller f
 ür den EDV-Support.
- Rolf Wind für die Unterstützung mit seinem riesigen technischen und methodischen Wissen und Dr. Andreas Kortekamp für seine Informationen zu Untersuchungsmethoden bei *Plasmopara*-Infektionen.
- Dr. Katia Gindro, Dr. Virginia Alonso-Villaverde und Dr. Olivier Viret für die Möglichkeit die Stilben-Analyse am Agroscope Changins-Wädenswil durchführen und erlernen zu können.

Mein besonderer Dank gilt meiner Ehefrau Jessica, unseren Kindern Nick & Nele, meinen Eltern Wolfgang und Cornelia Schwander und meinen Schwiegereltern Philipp und Marietta (†) Storck. Ohne eure Unterstützung und euer Verständnis wäre diese Arbeit nicht möglich gewesen. Danke!