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Abstract—Varying illumination conditions cause a dramatic
change in facial appearance that leads to a significant drop
in face recognition algorithms’ performance. In this paper,
to overcome this problem, we utilize an automatic frequency
band selection scheme. The proposed approach is incorporated
to a local appearance-based face recognition algorithm, which
employs discrete cosine transform (DCT) for processing lo-
cal facial regions. From the extracted DCT coefficients, the
approach determines to the ones that should be used for
classification. Extensive experiments conducted on the Yale face
database B and the extended Yale face database B have shown
that benefiting from frequency information provides robust face
recognition under changing illumination conditions.
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I. INTRODUCTION

Face recognition under varying illumination conditions is
known to be one of the most difficult problems of face
recognition research [1]. The variation in the facial appear-
ance of an individual caused by illumination changes can
dominate the one due to identity differences [2]. Therefore,
face recognition algorithms have to consider this issue and
they should be able to recognize the person, although his or
her face looks more like a different person’s face illuminated
the same way, than the same person’s face under different
illumination.

Face recognition under varying lighting has attracted
significant attention and there have been many solutions
proposed for this problem to provide illumination robust
face recognition [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. These solutions can be classified as: invariant
features, canonical forms, and variation modeling [3]. In the
first approach, features insensitive to illumination variations
are searched for [2]. The second approach tries to remove the
illumination variation either by an image transformation or
by synthesizing a new image [3], [4], [5], [6]. Finally in the
third approach, illumination variation is learned and modeled
in a suitable subspace [7], [8], [9], [10], [11]. Besides these
solutions, in [12] near-infrared lighting is proposed to have
illumination invariant capture conditions.

In this study, we propose an automatic frequency band
selection approach to handle facial appearance variations
caused by changing illumination conditions. The employed

face recognition algorithm is based on the one presented
in [13], which uses discrete cosine transform (DCT) co-
efficients to represent local facial regions. The approach
automatically determines which frequency band to rely on
for the classification task. In the study, we first analyzed the
effect of using different frequency bands for face recognition
and assess their classification performance under different
conditions. We observed that there is no unique frequency
band that can handle all the facial appearance variations. For
different conditions, different frequency bands are found to
be useful. Following this observation, we develop a face
recognition system that adapts itself automatically to the
environmental conditions by utilizing a multi-band classi-
fication scheme, in which the frequency band that is most
confident about its classification output is chosen to be the
most reliable one to perform classification. Experimental
results obtained on the Yale face database B and extended
Yale face database B show that the proposed approach is
able to handle illumination variations successfully.

The organization of the paper is as follows. In Section II,
used local appearance-based face recognition algorithm is
described. The effect of frequency bands on classification
performance is assessed in Section III. In Section IV,
automatic frequency band selection scheme is explained.
Experimental results are presented and discussed in Section
V. Finally, in Section VI, conclusions are given.

II. LOCAL APPEARANCE-BASED FACE RECOGNITION

A local appearance-based face recognition algorithm is
used for face recognition. It is a generic face recognition
approach that has been found to be robust against expression,
illumination, and occlusion variations as well as real-world
conditions [13]. The algorithm has been evaluated on several
benchmark face databases and found to be significantly
superior to other generic face recognition algorithms [13]. In
addition, it achieved the best recognition rates in the CLEAR
2007 evaluations [14]. The algorithm uses discrete cosine
transform for local appearance representation. There are sev-
eral advantages of using the DCT. Its data independent bases
make it very practical to use. There is no need to prepare a
representative set of training data to compute a subspace. In
addition, it provides frequency information, which is very



useful for handling changes in facial appearance. It also
facilitates fast feature extraction.

In the proposed approach, a detected and registered face
image is divided into non-overlapping blocks of 8×8 pixels
size. Afterwards, on each block, the DCT is performed.
The obtained DCT coefficients are ordered using zig-zag
scanning. From the ordered coefficients, according to a
feature selection strategy, M of them are selected and
normalized resulting in an M -dimensional local feature
vector. Finally, the DCT coefficients extracted from each
block are concatenated to construct the overall feature vector.
Classification is done using a nearest neighbor classifier with
L1 norm as the distance metric. For details of the algorithm
please see [13].

III. ANALYSIS OF FREQUENCY BANDS

It is known that different frequency bands play different
roles depending on the classification task [15]. Therefore, an
important aspect in local appearance-based face recognition
using the DCT is the selection of frequency content to
be used for classification. Each DCT basis has a different
response which goes from coarser to finer as the basis index
increases. The bases’ outputs depict how strong a specific
basis pattern is observed in the corresponding block. The low
frequency coefficients represent most of the input block’s
energy, whereas the higher frequency coefficients correspond
to finer details. However, neither conserving more energy
nor having finer details guarantees better discrimination.
Depending on the identification task, the required frequency
band may change. In order to analyze the effect of feature
dimensionality and frequency content on face recognition
performance simultaneously, we employed a sliding win-
dow scheme, in which windows with varying sizes were
moved from the beginning to the end of the ordered DCT
coefficients. The coefficients obtained this way were used to
derive the local feature vectors. From each block, the same
frequency band is utilized for feature extraction. A separate
classification is performed for each frequency band.

Two experiments have been conducted on the Face
Recognition Grand Challenge (FRGC) database [16]. One,
FRGC1, with face images collected under controlled studio
settings and one, FRGC4, with face images collected under
uncontrolled conditions, such as in hallways or outdoors. For
both cases, we selected 120 individuals from the database,
who have at least ten images both in fall 2003 and spring
2004 recordings. We used the images from fall 2003 for
training and the ones from spring 2004 for testing. Sample
images from the data sets are shown in Figure 1.

The results of the experiments can be seen from Figure 2
and Figure 3. In the figures, the x-axes show how many DCT
coefficients are removed from the beginning, while y-axes
show the local feature dimension. The number of possible
shifts depends on the dimensionality of the local feature
vector. For example, when the local feature dimension is

Figure 1. Sample images from the FRGC database. First row, controlled
settings. Second row, uncontrolled conditions

two, there are 63 possible shifts, and when 63-dimensional
local feature is used only two shifts are possible. The upper
diagonals in the figures are padded with zeros, since at that
region there exists no local feature dimension and shift com-
bination. Dark red color indicates high correct recognition
rates, whereas dark blue color corresponds to low correct
recognition rates. It can be observed from Figure 2 that,
in the case of controlled settings, low dimensional feature
vectors that contain low frequency content are beneficial for
face recognition. On the other hand, as can be seen from
Figure 3, higher dimensional feature vectors that contain
higher frequency content are required to achieve high cor-
rect recognition rates under uncontrolled conditions. This
outcome justifies that different frequency bands are useful
for handling different conditions.

IV. AUTOMATIC FREQUENCY BAND SELECTION

As shown in the previous section, different types of
variations can be handled by different frequency bands.
Therefore, an automatic frequency band selection scheme
is employed for the local appearance-based face recognition
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Figure 2. Comparison of different frequency bands on FRGC1
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Figure 3. Comparison of different frequency bands on FRGC4

algorithm. In the utilized scheme, the classification is done
using multiple frequency bands, that is, by selecting different
DCT coefficients with a sliding window of size M and
performing classification using the feature vectors extracted
from each frequency band. In order to save processing time,
we used a fixed window size of M = 10. In addition, we
only scan the DCT coefficients from lower diagonal, since
most of the DCT coefficients from upper diagonal are zeros.
The frequency band that provides the maximum separation
between the closest two identity candidates is chosen to
be the most reliable band, and its decision is used as the
classification output. The separation between the closest two
candidates are measured by calculating the ratio between the
closest and the second closest identity candidates’ distance
values, which is shown to be a robust measure to assess
the classification outputs’ reliability [17]. Note that this
approach can be seen as using max rule [18] to combine
multiple classification outputs. Other classifier combination
approaches, such as sum rule or product rule [18], can also
be used for this task. However, max rule provides a faster
combination scheme and it is found to perform as well as
the sum rule and product rule on a validation set.

V. EXPERIMENTS

The algorithm’s robustness against varying illumination
conditions is tested extensively using the Yale face database
B [7] and the extended Yale face database B [10]. The
extended Yale face database B contains 38 subjects under
64 different illumination conditions. The first subset that
has close to frontal illumination is used for training. For
testing, subsets 2, 3, 4 and 5 are used. These subsets contain
12, 12, 14, 19 images per person, and the experiments with
them are labeled ExtYale2, ExtYale3, ExtYale4, and ExtYale5,
respectively. With increasing subset number, the illumination
variations become stronger. The Yale face database B [7]
is also used in the experiments, which is a subset of the

Figure 4. Sample images from the Yale face database. First row: Sample
training images. Other rows, from top to bottom: Sample images from
subsets 2, 3, 4 and 5, respectively

extended Yale face database B and contains only 10 subjects.
The extended Yale face database B is recently released, and
there are many studies already conducted on the Yale face
database B. Therefore, in order to be able to compare the
obtained results with the ones in the literature, both of them
are used. Sample images can be seen in Figure 4.

The obtained correct recognition rates are presented in
Table I. The results attained without automatic frequency
selection are from the local appearance-based face recog-
nition algorithm that uses only the low frequency band as
in [19]. As can be noticed, the algorithm can already han-
dle changing illumination conditions very well. Especially,
when the illumination variation is not too strong, as in
the case of ExtYale2 and ExtYale3, it can achieve 100%
correct classification rate. It can be observed that automatic
frequency band selection contributes to the performance
significantly when the illumination variation is strong. This
shows that by using the appropriate frequency band, the
algorithm is able to adapt itself automatically to the changing
illumination conditions. Compared to the obtained results in
the recent studies on the same databases, such as the ones
in [6], [10], the proposed approach performs as well as or
even better. Note that in [6], [10] prior illumination-related
information is utilized. On the other hand, we did not use any
illumination-specific information in the proposed approach.
Therefore, it is more general. Moreover, the algorithm is
very fast and able to work real-time.

VI. CONCLUSIONS

In this paper, we analyzed the effect of frequency bands on
face recognition performance. Confirming the psychological
studies on face perception, we found that different frequency
bands are useful for handling different types of variations.
We developed a classifier reliability based frequency band
selection scheme to automatically determine to the frequency



Experiment No Auto Freq. Sel. Auto. Freq. Sel.

Yale2 100% 100%
Yale3 100% 100%
Yale4 95.6% 100%
Yale5 96.8% 100%
ExtYale2 100% 100%
ExtYale3 100% 100%
ExtYale4 93.1% 98.7%
ExtYale5 93.1% 99.0%

Table I
RESULTS OF AUTOMATIC FEATURE SELECTION EXPERIMENTS

band to be used for classification. Experimental results on
the extended Yale face database B have shown that the
proposed algorithm is robust against changing illumination
conditions.
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