
Multi-resolution Local Appearance-based Face Verification

Hua Gao, Hazım Kemal Ekenel, Mika Fischer, Rainer Stiefelhagen

Institute for Anthropomatics

Karlsruhe Institute of Technology

Karlsruhe, Germany

Email: {hua.gao, ekenel, mika.fischer, rainer.stiefelhagen}@kit.edu

Abstract—Facial analysis based on local regions / blocks
usually outperforms holistic approaches because it is less
sensitive to local deformations and occlusions. Moreover, mod-
eling local features enables us to avoid the problem of high
dimensionality of feature space. In this paper, we model the
local face blocks with Gabor features and project them into
a discriminant identity space. The similarity score of a face
pair is determined by fusion of the local classifiers. To acquire
complementary information in different scales of face images,
we integrate the local decisions from various image resolutions.
The proposed multi-resolution block based face verification
system is evaluated on the experiment 4 of Face Recognition
Grand Challenge (FRGC) version 2.0. We obtained 92.5%
verification rate @ 0.1% FAR, which is the highest performance
reported on this experiment so far in the literature.
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I. INTRODUCTION

Face recognition / verification has been an attractive

research domain for decades, and it becomes a more chal-

lenging problem due to uncontrolled condition in modern

security applications. The local appearance-based face rep-

resentation is one of the most promising approaches that

can successfully deal with appearance variations caused by

illumination or expression changes [1].

An initial study of the local representation for face recog-

nition can be found in [2], where the local facial regions such

as eyes, nose, and mouth are modeled with separate linear

subspaces. However, this local component based approach

requires a precise localization of salient facial features which

is not an easy task. A more generic local appearance based

approach was proposed later in [3], [4]. This approach

divides an input image into non-overlapping local blocks

and performs subspace or frequency analysis separately on

the local blocks. Experiments have proved that this approach

is superior to the holistic approaches as well as the local

component based approaches.

However, the non-overlapping block partition does not in-

clude the spatial correlation information between the neigh-

boring blocks. There are some studies which model local

appearance with overlapping blocks [5], [6]. In this paper,

we integrate part of the neighboring frequency information

by utilizing the nature of the Gabor wavelet filters, in

which the local filter response is smoothed with neighboring

pixels. On the other hand, the Gabor wavelet transformation

usually results in very high dimensional feature vectors,

which may result in singular within-class scatter matrices

if we want to perform dimensionality reduction with linear

discriminant analysis (LDA) [7]. Some solutions such as

the nullspace methods have been proposed to potentially

solve this dimensionality problem [8]. Dividing the Gabor

responses into local blocks has also been proven to be an

effective solution [7]. It implicitly incorporates the spatial

correlation information from the neighboring blocks and

solves the dimensionality problem decently.

As a major contribution, we combine the local Gabor

feature modeling with a multi-resolution face representation,

which enable us to acquire complementary information from

image spatial space as well as scale space. The proposed

face modeling is evaluated on the FRGC experiment 2.0.4,

which is considered to be the most challenging experiment

among the FRGC experiments. With the multi-resolution

local appearance-based face representation, we achieved

92.5% verification rate (VR) @ 0.1% false acceptance rate

(FAR), which is the best result on this experiment reported

in the literature.

II. METHODOLOGY

Our face image processing pipeline is illustrated in Fig. 1.

A given face image is first normalized with the available eye

locations in a specific resolution defined by the inter-ocular

distance. The aligned face image is then preprocessed to

remove the effects of illumination variations, especially local

shadowing and highlights. We follow the sequence of steps

in [9] with Gamma correction, Difference of Gaussian (DoG)

filtering, and highlights suppression. Then we transform the

preprocessed face image with a 2D Gabor wavelet filter bank

and obtain a set of filter responses with different scale and

orientation parameters. We divide the 2D Gabor responses

into local non-overlapping blocks and build local experts

with the extracted local Gabor features. By merging the local

experts in different alignment resolutions we obtain the final

classification score for face verification.

A. Local Gabor Feature Representation

2D Gabor wavelets are considered to be one of the most

successful local descriptors for face representation due to
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Figure 1. The procedure of LGMI extraction

their biological relevance. The Gabor wavelets are the math-

ematical model of visual cortical cells of mammalian brains,

which decompose an input image into multiple scales and

multiple orientations. The extracted feature representation

has been widely used in the computer vision domain due

to its optimal localization properties in both spatial and

frequency domain.

A 2D Gabor wavelet can be considered as an excellent

bandpass filter which consists of a planar sinusoid multiplied

by a two dimensional Gaussian. Such a complex filter can

be defined as follows:

Ψu,v =
‖ku,v‖

2

σ2
e(−‖ku,v‖

2‖z‖2/2σ2)
[

ei
~ku,vz − e−σ2/2

]

(1)

where ku,v = kve
iΦu , kv = kmax

fv is the parameter for

the frequency, Φu = uπ
8 , Φu ∈ [0, π) is the parameter

for the orientation. The sinusoid wave defined in Equation

1 is activated by frequency information in the image. The

Gaussian envelope ensures that the convolution is dominated

by the image region that is close to the wavelet center. This

means, when a signal is convolved with the Gabor wavelet,

the frequency information near the frequency of the sinusoid

wave is captured and the other frequency information will

be neglected.

When varying the parameter u and v, for example, in

the range [0, 7] and [0, 4] respectively, we get 40 Gabor

wavelets in different forms with 8 orientations and 5 scales.

A filter with a certain orientation and scale parameter

captures corresponding edge information to a specific degree

of detail. Instead of convolving the filter kernels in image

space, we filter the input image in Fourier space by trans-

forming the image and convolution kernels with the FFT,

and transforming the filtered Fourier feature back to into

image space with the inverse FFT. After filtering we obtain

40 Gabor magnitude images (GMI) in different scales and

orientations. In order to reserve location information, the

Gabor features are spatially partitioned into N local blocks,

each of which corresponds to a local patch of the face image.

Fig. 1 illustrates the feature partition on the GMIs.

We perform separate PCLDA (principal component and

linear discriminant analysis) on each of the extracted local

GMIs (LGMI) to reduce dimensionality and transform it to

a discriminative feature space. The local expert Ci for a

certain local block is then based on the nearest neighbor

classification in the trained PCLDA space. The final decision

is obtained by fusing the N local experts Ci in a simple

weighted form:

C =

N
∑

i=1

wi · Ci (2)

where wi is the weight of Ci.

B. Multi-resolution Face Models

Face registration is an important step for accurate face

recognition. In addition to the precision of the registration,

the proportion of the face region is also a crucial parameter

which can be adjusted to achieve better performance. As

we use the location of the eye centers to register faces, the

aligned image (with fixed size) represents different details

of the face depending on the inter-ocular distance parameter

used for alignment. As shown in Fig. 2, if we align a

face image into a low resolution (with low inter-ocular

distance) more information is included in the image such as

face contour, hair, etc. Aligning the face image into a high

resolution results in a more close view of the face and only

the inner part of the face is present in the aligned image.

Although the face alignment with a smaller inter-ocular dis-

tance provides more discriminant information about the face

(e.g face contour), it also includes some background clutter

which adds noise to the face representation. The medium

resolution in the middle of Fig. 2 is an empirical trade-

off between information content and noise. Since different

resolutions focus on its own view of analysis, combining

the local experts on different resolution may potentially

increase the robustness for classification. This idea has been

successfully exploited in [10], [11].

Figure 2. Face alignment with different interocular distances resulting in
different resolutions : low, medium, and high
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III. EXPERIMENTS

We evaluated our method on the experiment 4 in the

Face Recognition Grand Challenge (FRGC) v2.0 [12]. The

training set for this experiment consists of 12, 776 images

from 222 individuals. The gallery and probe set only consist

of a single still image per subject. This experiment contains

8, 014 uncontrolled query images and 16, 028 controlled

target images from 466 subjects. It is the most challenging

experiment due to uncontrolled conditions including large

illumination changes, out of focus, and partial occlusions.

The performance is reported as verification rate (VR) at

0.1% FAR. There are three Receiving Operator Character-

istic (ROC) curves can be generated, which correspond to

three different time gaps. ROC I corresponds to the images

collected within a semester, ROC II within a year, and ROC

III between semesters.

A. Experimental Results

The FRGC data set provides labels of salient facial

features such as eye centers and mouth corners. We use

the provided eye labels to align the face images. After

alignment, the size of the face image is 128 × 160 pixels,

with the eye distance being 72 pixels, which corresponds to

the medium resolution. After 2D Gabor filtering, the result-

ing GMIs are spatially partitioned into 20 non-overlapping

patches of 32 × 32 pixel size. Since we use 40 Gabor

wavelets for this experiment, the dimension of each LGMI

is 32 × 32 × 40 = 40960, which is very high compared

to the number of subjects in the training set (222). So

the LGMIs are uniformly down-sampled by averaging the

magnitude values in an 8 × 8 grid before the subspace

analysis. After down-sampling, the dimension of each LGMI

is reduced to 640 (= 4 × 4 × 40). Each dimension of

one LGMI is normalized with zero mean unit variance.

Each individual normalized LGMI is then projected into

a discriminant identity space with PCLDA. Normalized

correlation is adopted as the distance metric to calculate the

similarity of local blocks. Combining all the local experts,

we get the final similarity score for one single resolution.

The weights wi for each local classifier Ci were assigned

equally.

The ROC performance on experiment 4 for the medium

resolution is plotted in Fig. 3. It can be noticed that the ap-

plied preprocessing contributes a performance improvement

of about 5% for all the three ROCs.

As ROC III evaluates the matching with large time gap

(between semesters), we compared the ROC III performance

in the later experiments to face the challenge. In Fig. 4, we

compared the ROC performance between different alignment

resolutions and their fusion. As expected, the VR of medium

resolution (RES M ) outperforms the low (RES L) and

high (RES H) alignment resolution. As a compromise of

information content and noise the RES M achieved 88.1%
VR at FAR of 0.1%, while RES L and RES H achieved
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Figure 3. Effect of the preprocessing.

86.8% and 86.4% respectively. However, as we believe that

different resolution may contribute complementary views of

the whole face appearance, the decision from each resolution

is fused to a multi-resolution similarity score. As can be

observed in Fig. 4, a noticable performance gain is achieved

with this multi-resolution method (Multi-RES). Using sum-

rule fusion, we obtained 92.0% VR @ 0.1% FAR in ROC III.

We carried out additional experiments to see whether

an additional face representation contributes complementary

information for verifying faces. We used another local

face representation based on discrete cosine transformation

(DCT) [3] as extra evidence. The multi-resolution study

was also applied on this representation.We combined the

similarity matrix obtained from this representation with

the one with local gabor features on score-level, and the

verification rate was improved further to 92.5%.
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Figure 4. Multi-resolution performance in Exp. 4 of the FRGC data set
(ROC III).

Finally, we compare our results with the FRGC baseline

and other best known results [7], [9], [11], [13] in Table I.
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Hwang et al. modeled separate frequency bands in a holistic

way. Different face models in different resolutions were

merged later [11]. In [9], Local Binary Patterns (LBP) and

global Gabor features were fused in feature level and kernel-

based subspace analysis was applied to extract discriminant

nonlinear features. Our method is partially inspired by

the work in [7], however, they differ in several aspects:

a) Instead of using equal kernel mask size for different

scale parameters, we set the mask size according to the σ

of Gaussian envelope. This avoids the distortion of filter

response if the kernel mask size is too small for the largest

scale. b) We normalize image contrast with some prepro-

cessing steps, which boost our performance to 88.1% with

single resolution. c) The multi-resolution decision making

improved the performance further. The result in [13] is close

to our best result. However, the identity information in the

target set was utilized, which did not follow the protocol of

the experiment 4. Overall, our proposed method improves

the baseline by 80.5% in VR @ 0.1% FAR.

Table I
PERFORMANCE COMPARISON ON EXP. 4 OF THE FRGC DATA SET (ROC

III).

Method VR @ 0.1% FAR

FRGC Baseline 12.0%

Method in [11] 74.3%

Method in [9] 83.6%

Method in [7] 86.0%

Method in [13] 91.3%

Our Method 92.5%

IV. CONCLUSIONS

This paper presents a multi-resolution local appearance-

based face verification system. The local facial appearance

is modeled with Gabor features and they are separately pro-

jected into a discriminant identity space. The similarity score

of a face pair is determined by merging the local experts.

To acquire complementary information in different scales of

face images, we integrate the local decisions from various

image resolutions. The proposed system was evaluated on

experiment 4 of the FRGC data set. We achieved 92.5%
VR @ 0.1% FAR, which is the best result reported in the

literature.
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