Multi-view Based Estimation of Human Upper-Body Orientation
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Abstract—The knowledge about the body orientation of
humans can improve speed and performance of many service
components of a smart-room. Since many of such components
run in parallel, an estimator to acquire this knowledge needs
a very low computational complexity. In this paper we address
these two points with a fast and efficient algorithm using
the smart-room’s multiple camera output. The estimation is
based on silhouette information only and is performed for
each camera view separately. The single view results are fused
within a Bayesian filter framework. We evaluate our system
on a subset of videos from the CLEAR 2007 dataset [1] and
achieve an average correct classification rate of 87.8 %, while
the estimation itself just takes 12 ms when four cameras are
used.
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I. INTRODUCTION AND RELATED WORK

In recent years much research has been conducted to-
wards enhancing the way people interact by unobtrusively
providing services in a smart-room environment. CHIL (http:
//chil.server.de) and AMI (http://amiproject.org) are just two
of the major European projects in this field. A typical smart-
room is equipped with multiple acoustic and visual sensors
which are used to analyze the scene in order to both provide
the user contextual information and attempt to anticipate the
user’s needs. Therefore, an essential role in a smart-room
architecture is played by components providing means to
percept human activities.

The knowledge about the orientation of the body (angle
around the axis perpendicular to the ground plane) can be
a useful cue. While tracking the position of people, this
information can help to deduce the most likely movement
direction of the target. Model-based human motion capture
systems can also benefit from this as the process of model-
fitting is computationally very costly and the incorporation
of the body orientation can reduce its complexity.

Since in many cases the legs can be occluded by furniture
or other objects, it is beneficial to estimate the orientation
of the upper-body only. The estimator should also yield a
very low computational complexity to be useful because it
would be just one of many software components running in
parallel. Thus, we present in this paper a fast approach to

classify the upper-body orientation of a person inside of a
smart-room.

To our best knowledge not much research has been
conducted to explicitly estimate the orientation of the human
body. In [2] the estimation is based on the motion of a
tracked person and the size of its bounding ellipse. An
analysis of the shape of the silhouette in images from ceiling
mounted cameras is performed in [3], [4]. These approaches,
though very fast, just give a course estimation and are
sensitive to arm movement. Peng and Quian [5] use a multi-
camera scenario and perform multi-linear analysis to extract
orientation vectors from binary silhouette images. From
these a one-dimensional manifold is learned which is used
to retrieve the body orientation by solving a nonlinear least
squares problem. However, a disadvantage of this approach
is its low speed.

In contrast to other works, our system is fast, accurate, and
also flexible in regard to the number of used camera views at
the same time. To be independent of the user’s appearance,
we estimate the upper-body orientation using silhouette
information only. This approach however introduces am-
biguities that are difficult to resolve using a monocular
setup (see Fig. 1). Therefore we show in our work that by
increasing the number of camera views such ambiguities can
be partly compensated and an overall increase in the system
performance is achieved. In particular, we investigate the
encoding of the silhouette information using either shape
contexts or histogram of shape context (HoSC) descriptors
as a base for the estimation. For each camera view in the
smart-room the orientation angle is classified separately and
the single hypotheses are fused within a Bayesian filter
framework. This way we only need to train one estimator
that can be used for any view as long as the inclination
angle of the camera to the ground plane is similar with
the views used for training. We evaluated our approach on
five sequences from the CLEAR 2007 evaluation dataset
and achieved an average correct classification rate of 87.8%,
when using 12 orientation classes.



Figure 1. Ambiguity when only using silhouette based features: it is
difficult to tell appart a frontal view (left) from a rear view (right).

II. ESTIMATING THE UPPER-BODY ORIENTATION

Our approach is based on silhouette features as they are
easy to extract by using foreground-background segmenta-
tion, but at the same time contain much relevant information
to estimate the upper body orientation angle. For each
camera view the estimation is carried out separately. The
upper-body region is extracted and the silhouette is encoded
using local features described in Sec. II-A. We then classify
the extracted feature vector to obtain a hypothesis for the
orientation angle based on the observation of each camera
and fuse the results within a Bayesian filter framework as
described in Sec. II-B. Since we want to omit the need
of training a separate classifier for each view, the output
of the classifiers is given relative to the coordinate system
of the capturing camera. The transformation to the world
coordinate system is performed while merging the single
hypotheses.

A. Image Descriptors

Since segmentation algorithms are not reliable enough to
provide noise free silhouettes, we need an encoding of the
silhouette information that is partly robust to segmentation
failures. The image descriptor should also be invariant to
scaling as the input silhouettes are usually not of the same
size. Both shape contexts and HoSC descriptors provide
these advantages.

In [6] shape contexts are introduced as rich local descrip-
tors of contour information. In order to transform a shape
to its shape context representation, the silhouette points are
sampled, resulting in a set of n points. For each sampled
point a shape context can be calculated as a histogram of
the relative position of its neighboring points. The histogram
bins are uniform in log-polar space making shape contexts
more sensitive to differences of nearby points. Invariance to
scaling of the shapes is obtained by normalizing the point
distances with the mean distance between all point pairs. As
the histograms are calculated relative to each point, shape
contexts are also translation invariant.

A major disadvantage of shape context descriptors is its
high dimensionality. For instance, the parameters used in
our experiments lead to 2400-dimensional feature vectors.

A dimensionality reduction can be achieved using a bag-
of-features scheme as described in [7]. The space spanned
by all shape contexts obtained from the training images is
first vector quantized using k-means clustering which yields
a k-dimensional codebook of the cluster means. In order
to transform a new sample shape to a HoSC feature, its
shape contexts are binned to a histogram where each bin is
associated to one of the codebook vectors. Effects of spatial
quantization are reduced by employing a soft-voting scheme.
Thus we calculate the contribution 1 of a shape context SC
to a cluster C_", as in [8] using:

minj—y..k|SC — Cj|?
|SC — G2

The obtained 7); are summed up over all shape contexts and

the resulting histogram is normalized to unit length.

ni(SC) = (1)

B. Multi-view Fusion

Similar to our previous work [9], we merge the estima-
tions that are performed for each view to obtain the final
orientation class 6; by using Bayes’ theorem:

0, = arg max ¢ - p(Zy|a;) P(w;) )
i€

Here p(Z;|x;) denotes the class-conditional probability of
an observation Z; at time ¢ given the i-th orientation class
x;, with X = {x;} being the discrete state-space. P(x;) is
the prior probability of the occurrence of class x; and c is
a normalizing constant being equal to the total probability.
The class-conditional p(Z;|x;) is calculated by averaging
the classification confidence for each view, which is based
on a confusion matrix learned on validation data. The prior
P(x;) depends on the previous state a’ at time ¢ — 1, as the
turning speed of the body is usually limited. Thus it can be
computed as:

P(x;) = Z P(x)2"\P(2'| Z—1), (3)
r’'eX
where the state-transition probability P(x;|z’) we model
with a zero-mean Gaussian Ny, (z; — x’). We determined
the standard deviation ¢ during experiments on validation
data and set it to 20°. When no preceding state is known,
we assume the prior to be equal for each state.

III. EXPERIMENTS

We evaluated the proposed approach on a subset of video
sequences from the CLEAR 2007 head-pose evaluation
dataset. Each of the sequences consists of about 2700 frames
and contains one person that randomly changes his body
orientation. The camera setup used to capture the videos
can be seen in Fig. 2. Within the sequences we annotated
the position of the shoulders in all views, so that the body
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Figure 2. Camera setup of the smart-room

position and orientation could be retrieved using multi-view
geometry. Additionally, we segmented foreground regions
using the algorithm presented in [10]. Because the annota-
tion process is very time-consuming, our test set consisted
of five 3 minutes long sequences (15 fps, 320 x 240 pixels),
each containing one different person.

The evaluation was performed using a leave-one-out ap-
proach, where each sequence was used as testing data once,
while the remaining sequences were used for training. In
our experiments we evaluated SVM classification together
with HoSC features (hosc_svm) and Nearest-Mean classifi-
cation (NMC) with both shape contexts (sc_nmc) and HoSC
features (hosc_nmc). Because of the high dimensionality of
shape context features and limited amount of training data,
we did not further investigate SVM classification of shape
contexts in our experiments. This was also supported by very
low initial experimental results. We favor the use of NMC
over Nearest-Neighbor classification, since the low speed of
the latter one prohibits its use in a smart-room environment.

For the SVM classification we use a RBF kernel and a
one-vs-one approach. We handle the multi-class case with
a max-win voting strategy, where each SVM votes for
one class and the recognition result is the mostly voted
class. Both classifiers use the x2? metric as a distance
function between features. When encoding a silhouette with
shape contexts, all extracted features from one silhouette
are concatenated to one feature vector. We determined all
parameters experimentally on separate validation data and
set the histogram dimensions to r = 6 and ¢ = 8 for
HoSC features and » = 4 and a = 8 for shape contexts. We
sampled 50 points equidistantly on the upper-body silhouette
and used a 50 element HoSC codebook. The size of one class
was set to 30° since it makes the evaluation independent of
errors introduced through the labeling process.

In our first experiment we used an all-to-all classification
scheme where only one classifier is trained using data from
all four views and used to estimate the orientation angle in

Table I
OVERALL PERFORMANCE OF THE ALL-TO-ALL CLASSIFICATION
SCHEME

[ Method | Correct Class |
hosc_svm 82.6 %
hosc_nmc 79.1 %
sc_nmc 85.0 %

Table II
OVERALL PERFORMANCE OF THE ONE-TO-ONE CLASSIFICATION
SCHEME

[ Method | Correct Class |
hosc_svm 65.9 %
hosc_nmc 76.8 %
sc_nmc 87.8 %

each view. As can be seen in Tab. I, sc_nmc outperforms
the other approaches with an average correct classification
rate of 85.0%.

In a multi-camera setup, the body silhouette my look
different depending on the distance from the camera. In
order to investigate the impact of such appearance changes
on the performance of our approach, we used in the next
experiment for each camera a separate classifier trained only
with data captured with that camera (one-fo-one scheme).
In Tab. II it can be observed that the performance of the
NMC approach deviates only insignificantly from the results
in the previous experiment showing its view-independence.
However, when using the SVM classifier a clear decrease
in performance is visible which we believe is due to the
smaller amount of training data per estimator caused by the
experimental setup.

In a final experiment, we show the benefits of using a
multi-camera setup to estimate the orientation angle. To do
this, we evaluated the system performance when using all
possible combinations of camera views during testing and
averaging the results for each number of views that are used
to derive the final estimation. In Fig. 3, it can be clearly
seen that with each additional view the performance of all
systems improves greatly. When comparing the results of a
single camera based estimation with the results of using all
four views, the highest relative performance gain of 38% can
be observed for sc_nmc. These results strongly suggest that
basing the estimation on multiple views can compensate for
the loss of discrimination between frontal and rear views.

Using an unoptimized C++ implementation on a 3GHz
Intel Pentium IV machine, the computation of one con-
catenated shape context feature vector takes 2ms and its
classification with the NMC additional 1ms. This clearly
shows the suitability of the proposed approach as an auxil-
iary component in a smart-room environment.
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Figure 3.  Overall performance (one-to-all scheme) when changing the
number of views

IV. CONCLUSION

We presented a classification based approach to estimate
the upper-body orientation of a person inside of a smart-
room. For each of the camera views used in the sensor
setup of the room, we build a single hypothesis of the
orientation angle using silhouette information only. A joint
measurement is then obtained with a Bayesian filter frame-
work. This makes our approach flexible, as no retraining is
needed whenever the camera setup is changed. We showed
that the use of four cameras instead of a single one greatly
improves the performance of our approach and achieved an
average correct classification rate of up to 87.8% on five
sequences from the CLEAR 2007 evaluation dataset. The
high performance and low computational complexity (12ms
per estimation when using four views) makes our approach
well suitable as an auxiliary component in a smart-room
scenario.
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