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Abstract. This paper presents our data collection and first evaluations
on estimating visual focus of attention during dynamic meeting scenes.
We included moving focus targets and unforeseen interruptions in each
meeting, by guiding each meeting along a predefined script of events that
three participating actors were instructed to follow. Further meeting at-
tendees were not introduced to upcoming actions or the general purpose
of the meeting, hence we were able to capture their natural focus changes
within this predefined dynamic scenario with an extensive setup of both
visual and acoustical sensors throughout our smart room. We present an
adaptive approach to estimate visual focus of attention based on head
orientation under these unforeseen conditions and show, that our system
achieves an overall recognition rate of 59%, compared to 9% less when
choosing the best matching focus target directly from the observed head
orientation angles.

1 Introduction

Smart rooms, or smart spaces, proclaim proactive computer services in unob-
trusive sensor environments. Knowing at all times, who enters the room, who
interacts with whom and where all people reside and look at, allows interfaces to
adapt for personal needs and input modalities to relate to context and semantics.
Research in this area covers both the fundamental fields of (multiview) visual
and acoustical perception, such as face identification [1], gaze recognition [2,3,4],
speech detection [5] and speaker localization [6] or audio-visual multi-person
tracking and identification [7,8], as well as the combination of all modalities in
order to allow higher-level observations and summarizations, as for example in
transcribing meetings [9] or analyzing floor control and interaction patterns [9].
One particular cue for modeling (inter-)actions between a group of people or
understanding actions and occupations of observed meeting participants and
group members, is to understand their visual focus and deduce the respective
attentional target they focus on. By means of recognizing objects, colleagues
are working on together, or the recognition of a group’s joint attention towards
a specific speaker during an observed lecture, smart room systems obtain one
further cue to modeling a scene’s context and individual behavior.
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To follow eye-gaze and obtain knowledge about one’s viewing direction, head
orientation usually acts as an approximation to allow non-intrusive sensor setups
as applied in our described environment. Due to individual head turning styles,
gaze and head orientation tend to differ and a direct interpretation from observed
head rotations to a discrete set of focus targets is not always possible as studies
and evaluations show [10,11,12]. Measured head rotations are therefore mostly
used to describe individually shifted means around predefined focus targets,
which, recently in combination with multimodal cues such as presentational slide
changes or speech activity [13] both increase recognition rate and allow analysis
of group activities or role models during meetings, but still limit the applicational
area to a predefined set of non-moving focus targets around a table.

In [14], we extended our system to estimate visual focus of attention from
monocular views during recorded meetings [12] to using multi-view head orien-
tation in order to allow for a sensorless work area on the meeting table. Applying
the motivation for unrestricted behavior and dynamic scenes to the recorded set-
tings and peoples’ focus, we now collected a new dataset, in which a number of
scripted events - such as people entering and leaving the room, or phones ringing
in the room - were introduced, in order to provoke attention shifts of the meeting
participants from their ongoing work. Hence, all meetings contain a varying set
of participants and different seating positions as well as the introduction of new
objects and moving targets.

2 Dataset

The dataset we recorded consists of 10 meeting videos in total. Each video is
approximately 10 min. long and starts with each participant entering the room
and finally ends with all persons leaving the room again. For introducing dynamic
events and behavior and ensuring the same over all videos, each video consists
of three acting participants, that followed a predefined script and a varying
number (one or two) of unaware persons, whose attention was to be distracted
by different kinds of interruptions, unforeseen persons walking through the room
in different trajectories or newly introduced objects.

2.1 Sensor Setup

The sensor setup we recorded with, consisted of 4 fixed cameras in the upper
corners of the room, each recording with a resolution of 640× 480 pixels and 15
frames per second. The purpose of these cameras is to obtain a coarse view of the
whole room, for allowing people to move and behave as naturally as possible and
walk around and interact with each other without being limited by a predefined
setup and a restricted sensor range. The camera array was extended with a
panoramic view from a fisheye lens camera that was installed on the ceiling (same
specifications). For a complete recording of the scenery and its context, audio
was recorded by means of four T-shaped microphone arrays, each installed on
every wall of the room (northern, western, southern and eastern side), allowing
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Fig. 1. Example scene of one meeting video. Shown are two out of four camera views
from the room’s upper corners and the panoramic view, captured from the ceiling.
In this scene, interrupting person P04 passes the meeting-table towards the entrance
door and walks in between the projection screen and person P00 sitting in front of it,
working on his notebook.

for the inclusion of audio source localization, and one table-top microphone for
speech recognition and acoustical context modelling.

2.2 Dynamic Meetings

We defined a predefined set of events in a script, that were initiated and followed
by all actors in each recorded meeting. The remaining participants were unaware
of what was to happen during the recordings, hence, their observed reaction was
spontaneous and unplanned. Each meeting consisted of three acting participants
and one or two participants that were not aware of the scripted events and
the exact purpose of the data collection. To obtain groundtruth information
about head orientation and position, one of the unaware persons was wearing a
magnetic motion sensor (Flock of Birds, Ascension Technologies) on top of his
or her head, calibrated along the room’s (hence global) coordinate system. All
persons were tagged with respect to their seating position in counter-clockwise
order around the meeting table and/or acting role during the meeting: The
person sitting at the table’s northern edge was named P00, the person to the
west P01, the person at the southern edge, always wearing the magnetic sensor
was named P02 and the person at the eastern edge P03. The fourth person, called
P04 was chosen to interrupt the meeting from time to time, hence entering and
leaving the room multiple times and not being bound to one particular seat
around the table. The seating positions and roles of all acting persons were
changed and rotated during the recordings to prevent repetitive patterns.

In general, the used script followed the particulars given below:

– Person P02 is to be seated beforehand, calibrated along the room’s coordi-
nate system. Persons P00, P01 and P03 enter the room successively, meet
and greet at the table before sitting down.

– All participants start a discussion about ’Computer Vision’ in general and
a possible reason for the current meeting.

– The interrupting person P04 enters the room, recognizes the meeting and
spontaneously grabs a nearby chair to join it. One of the yet seated par-
ticipants needs to make room for the additional member, hence his or her
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seating position changes - a new person is therefore added around the table,
the seating positions disturbed temporarily.

– After a small talk, person P04 stands up, moves his or her chair and leaves
the room on either of two possible ways around the table.

– One acting member (P00, P01 or P03) stands up, walks towards the projec-
tion screen and starts to give a presentation. Thereby, the presenter gesticu-
lates in front of the screen, changing position in front of it and explains the
bullet points listed on the presented slide. All remaining participants were
instructed to make notes on the notebooks in front of them on the table and
interrupt the presentation with questions and own discussion.

– Person P04 enters the room again, walks towards ’Desktop-Computer 2’,
sits down and starts working. P04 chooses either way of walking through the
room and thus interrupts the presentation for a short amount of time.

– The presenter walks to a nearby placed camera, grabs it, walks back to being
in front of the screen and meeting table and introduces the camera before
placing it on top of the table for everyone to examine and holding it. The
presentation continues.

– The presenter sits down, back onto his or her previous seat. The meeting
continues.

– Person P04 starts to play a loud, interrupting sound, initiated from his or
her current location in front of ’Desktop-Computer 2’. P04 suddenly stands
up, apologizes to the meeting group and rushes to turn the loudspeakers off.
P04 then rapidly leaves the room. The meeting continues.

– A cellphone, previously placed inside a cupboard, suddenly starts to ring.
Person P04 enters the room, interrupts the meeting by asking if anybody has
seen his or her cellphone and follows the ringing sound towards the cupboard.
He or she grabs the cellphone, shows it to the meeting participants, turns it
off and leaves the room with it. The meeting continues.

– The printer starts to output papers. Person P04 enters the room again, walks
to the printer and while shaking and pretending to repair it, P04 complains
loudly about a pretended malfunction. P04 grabs papers and leaves the room.
The meeting continues.

– All meeting participants, except P02 wearing the sensor, stand up, shake
hands and leave the room.

2.3 Annotated Focus Targets

Considering abovely scripted events, a minimum focus target space can be set
up with the following:

– Persons P00, P01, P02, P03 and P04 (as available and participating)
– Entrance to the room
– Meeting Table (further, each individual’s notebook on top of the table)
– Projection Screen (for during the presentation)
– Camera (that is being introduced during the presenter’s talk)



Visual Focus of Attention in Dynamic Meeting Scenarios 5

Fig. 2. Camera 1’s view of a recorded meeting scene during a short presentation, given
by person P00. Person P02, sitting opposite to the presenter, is wearing the magnetic
motion sensor to capture her true head orientation, depicted by the red (x), green
(y) and blue (z) coordinate axes. All axis aligned bounding boxes of focus targets we
annotated, visible from this view, are highlighted in white.

Fig. 3. Left: Overview of annotated focus targets throughout the meeting room. Right:
Observed trajectories of all meeting participants. Rather than only gathering meetings
with fixed seating positions, participants were advised to walk throughout the entire
room, to distract the visual focus of the remaining meeting members.

– Loudspeakers (interrupting the meeting by outputting a disruptive sound)
– Cupboard enclosing the later-on interrupting cellphone
– Printer

For completing the list of potential targets, such as surrounding tables, chairs,
working places or cupboards, the room’s interieur was completely modeled in 3D:
The position and bounding box of each object was measured and head bounding
boxes of all meeting participants were annotated for every camera view and
every frame recorded. The head bounding boxes were used to triangulate 3D
positions of the corresponding heads’ centroids in room coordinates and provide
basis for future estimation of head orientation for all participants. In addition,
the magnetic motion sensor provided groundtruth information about the head
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orientation for person P02 with approx. 30Hz. Person P02 was always made
sure to be one of the unaware meeting participants. All in all, a total of 36
targets were made available for the annotation process, classifying each meeting
participant’s visual focus. As can be seen in Fig. 3, air conditioning, all chairs
and sofas, desktop PCs and cupboards were included as potential targets, too.
Even a small robot head we used for different experiments was considered as
a potential target due to its position near the meeting table. Fig. 4 depicts a
distribution of all annotated objects and persons for how often they were focused
throughout the entire dataset by either meeting participant and thus provides a
complete overview of all included focus targets. An example of a meeting, with
some of the targets being highlighted, can be seen in Fig. 2.

3 Estimating Visual Focus of Attention

3.1 Target Modeling

Due to targets moving, we decided to describe each object and person by its axis
aligned bounding box in 3D space (see Fig. 2). In order for targets to be able
to be focused, their box must overlap or intersect with the respective person’s
viewing frustum. This viewing cone was defined to open up 60◦ horizontally
and 50◦ vertically. A potential target Fi thus lies within the viewing frustum, if
its axis aligned bounding box contained at least one point Pi = (x, y, z) on its
shell within that cone. For gaining that representational point Pi, we computed
the nearest point (by its euclidean distance) on the box, relative to the head
orientation vector. Pi either resembles a true intersection or a point on the box’
edges. Pi is verified to reside within the viewing cone - targets outside the viewing
frustum are ignored, their likelihood to be focused was set to 0.

3.2 Baseline: Choosing the Nearest Target

A comparative baseline is established by classifying for target Fi, who seems to
be nearest to the observed head orientation. Hence, we distinguished targets by
their euclidean distance, computed with their respective representative points
Pi and the head pose vector.

3.3 An Adaptive Focus Model

We adopted the described visual focus model presented in [15], which summarizes
a linear correlation between the corresponding gaze angle αG towards the target
and the observable head turning angle αH when focusing on it:

αH = kα · αG (1)

We analyzed this relation for dynamic and moving persons and objects by
computing αH based on the annotations we made upon our dataset and all
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Fig. 4. Distribution of visually focused targets. Each column depicts the focus distri-
bution for the person sitting at the respective position (P00, P01, P02, P03, P04). Each
row describes one single focus target.

targets representational points Pi described in 3.2. A measured mapping coeffi-
cient kα could thus be obtained with

kα =
αH

αG
(2)

As depicted in Fig. 6 and intuitively assumed, kα’s value does not stay fixed
throughout the observations, but rather changes, depending on the dynamics
in the observed scene. Its variance can be described as rather high, changing
from positive to negative values, adapting to focus changes that happen over
time. The presented camera view in Fig. 6 shows the recorded scene during
the highlighted time range in kα’s plot. Its values were computed for person
P02 (left person in the images), who is positioned at the table’s southern edge,
wearing the magnetic motion sensor on her head and being one of the unaware
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meeting participants. The scene shows all participants meeting at the table,
greeting each other. P02’s focus changes from Person P03 (standing to the right
at the table’s western edge, with an approximate horizontal gaze angle of +60◦)
to person P00 (standing right in front of her to the north, at approximately
−10◦ horizontally). While looking at P03, head orientation was measured to
intersect with the target, hence the mapping factor of 1.0. During focus change
to P00, head pose slowly adapted to the observable gaze change, but stopped
at approximately +3◦: the mapping coefficient kα changed to a value of − 3
to shift the head vector onto the target’s real position at −10◦. Fig. 5 shows an
exemplary depiction of this process: Depicted are three targets to focus on. In
the top row of the image, focus changes quickly between targets 2 and 3. Due to
the rapid interaction, head orientation slows down right between the two persons
and eye gaze is used to overcome the difference to focus on the particular target.
A fixed mapping coefficient would map target 2’s position towards target 3 and
target 3’s position even further away. If only this kind of interaction is given, a
static model interprets the shifted position of target 2 successively and classifies
correctly for person 2, even though its position seems rather shifted. The bottom
row shows a successive focus change between targets 1 and 2. Here, using the
same fixed mapping coefficient would map target 2’s position towards target 3
again (but not as far as in the top row) and target 1’s position towards target
2. A static model trained with these head observations, would assume target 2’s
gaze angle to lie nearer in front than the static model trained with observations
from the top image. Further, the fixed mapping coefficient clearly shows, that
head orientation, when focusing on target 1, is clearly mapping into the wrong
direction. It needs to adapt to a lower value. The example shows, how the region
of interaction and interest influences the necessary transformation value and
should be due to adapt.

To better model the dynamics in mapping, we defined a discrete set of possible
coefficients (kα, kβ) for mapping horizontal and vertical head orientation αh and
βH , and reweighed them by means of the most likely focus target Fi’s a-posteriori
probability, given the corresponding mapping:

π(kα,kβ),t = γ · π(kα,kβ),t−1 + (1 − γ) · arg max
Fi

p(Fi|Φkα,kβ
) (3)

The mapping coefficient pair (kα, kβ) with highest weight is chosen for map-
ping head pose and finally classifying for the target, that shows maximum a-
posteriori probability.

Since most coefficients might intersect with a target, hence return a high
likelihood for the given transformation, each target includes an a-priori factor
for stating the probability of actually focusing it or changing focus towards it.

In general, the a-posteriori likelihood is defined by

p(Fi|Φkα,kβ
) =

p(Φkα,kβ
|Fi) · P (Fi)

p(Φkα,kβ
)

(4)
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Fig. 5. Top row: Focus changes back and forth between target 2 and target 3 (high-
lighted red): when focusing target 2 (middle image), a fixed mapping coefficient
0 < kα < 1 maps head orientation (solid arrow) onto target 3 (dashed arrow). The
gaze angle to target 3’s is put even further away than its real position (right image).
Bottom row: successively happening focus change between target 1 and target 2: while
in the top row, when focusing target 2, head pose tends to cluster towards target 3,
here, its corresponding head orientation can be observed between target 1 and 2. Fur-
thermore, target 1’s mapped gaze position is shifted towards the second target, instead
of backwards to its real origin.

with Φkα,kβ
= (αH

kα
, βH

kβ
) being the adapted head orientation with the horizontal

rotation αH , transformed with the mapping factor kα and βH being the vertical
head rotation transformed with kβ .

The a-posteriori probability of a target Fi is composed of different factors that
describe possible models of the scene’s context. By now, we simply include the
likelihood of looking at this target in the last n frames and secondly a change of
pose to the target in the current frame T :

P (Fi) =
1
n

T−1∑

t=T−n

(pt(Fi|(Φt))) · ϕ(
∂(� (Φ, Fi)))

∂t
) (5)

The angular difference � (Φ, Fi) describes the distance between the real head
orientation and target Fi’s representational point Pi. If the head is rotated to-
wards a target Fi, the angular difference decreases, hence its derivation ∂( � (Φ,Fi))

∂t
over time shows peaks of negative values and implies a more likely focus change
towards that particular target.

3.4 Experimental Evaluation

We reduced the target space to meeting participants, meeting table and pro-
jection screen only. This included 88% of all focused objects as annotated in
Table 4 and reduces complexity both for these first evaluations and annotations,



10 M. Voit and R. Stiefelhagen

Fig. 6. Respective plot of person P02’s mapping coefficient kα and the corresponding
scene in the meeting to the highlighted time window in the plot: Person P02 is standing
to the left in the images. Her mapping coefficient k to project the horizontal head
orientation to its respective gaze-angle does not stay fixed over time (as visible in
the plot). Values of 1 depict, that head orientation points directly to the target and
intersected its axis aligned bounding box. The strong variance in the highlighted time
window depicts a focus change to person P00 standing in front of her and shows that
head orientation not always points behind gaze angles, but depending on the direction
focus changes are happening from, might also point ahead of the targets’ true positions.
Thus, k needs be adapt to a much lower value to map head pose to a lower gaze angle.

Table 1. Recognition rates on the described dataset for person P02. Four different
approaches are compared (three direct mappings with a fixed mapping coefficient kα

respectively and our adaptive approach with a variable kα). The constant mapping
factor kα = 0.72 was computed as being the mean mapping coefficient when mapping
the observed head orientation to the annotated targets. Head orientation was measured
with a magnetic motion sensor.

Mapping Meeting 1 Meeting 2 Meeting 3 Meeting 4 Mean

Direct Mapping (kα = 1) 54% 49% 57% 51% 53.5%

Direct Mapping (kα = 0.5) 53% 49% 43% 55% 49.5%

Direct Mapping (kα = 0.72) 53% 52% 48% 51% 50%

Adaptive Mapping (γ = 0.95) 58% 59% 55% 61% 59%

which are still happening and take a lot of time to define all object and person
positions. At the current time writing this paper, all of the videos are annotated
for all persons’ corresponding visual focus, but only four videos provide the po-
sitions and bounding boxes of above mentioned targets. Due to missing upper
body annotations for all remaining participants, our evaluations only included
estimating focus for person P02, wearing the magnetic motion sensor, whose
body orientation was always made sure to show towards the projection screen.
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Fig. 7. Left image: Recognition Rate (upper green plot) and mean difference of esti-
mated kα to groundtruth kα (lower red plot), with respect to increasing adaption factor
γ. A value of γ = 1.0 describes that the scores πkα are not adapted at all. In this case,
the constant mapping coefficient kα = 0.72 was used, which showed to be the measured
mean mapping factor over all videos for person P02. Right image: Groundtruth (red
plot) versus estimated (green plot) mapping values kα in a 30sec. long scene.

The low numbers clearly show the difficulty of the task, especially of this par-
ticular setting we chose for meetings: Person P00’s seat is right in front of the pro-
jection screen. Reliantly distinguishing between the two targets is only possible,
if either of them is ignored for any reason (possibly due to person P00 sitting a lot
nearer and thus overlapping too much of the viewing frustum towards the screen)
or context is further taken into account for understanding whether the interest
relies on a person sitting in front of the screen or the screen directly behind.

Clearly visible from the results however is, that an adaptive mapping of head
pose to the respective focus target increases the recognition rate in almost ev-
ery case. The only exception shows to be video 3, where a direct interpretation
of head pose seems to perform slightly better than a variable (or even fixed
with different values) mapping. This might be due to the fact, that this per-
son mostly used its eye gaze to focus on targets - head orientation stayed fixed
for most of the time. During the video, our system kept the mapping coeffi-
cient relatively constant due to the missing head movements. Especially, rapid
focus changes between two targets were more or less completely ignored by our
system: Where in the remaining videos slightly head rotations towards the re-
spective targets were observable, here, only gaze was used to switch back and
forth - hence, our approach only recognized one target focused during this time;
due to the mapped head orientation often the wrong one during these interac-
tions. Further, especially moving targets, for example person P04 passing by in
between the meeting table and the projection screen as depicted in Fig. 1, only
distracted person P02’s visual focus by quick eye movements, instead of letting
head orientation follow that respective trajectory. The focus did not change for
more than fractions of frames, it was kept on the previous target all the time.
However, the a-priori likelihood described in equation 5 includes the derivation
of the difference between head pose and a target’s gaze angle. This derivation
even shows peaks, if head orientation stays fixed and the target passes by, since
then, the angular distance decreases down to the point where head pose and the
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trajectory intersect. This factor seems to provide a possible basis for recognizing
focus changes, but does not allow to distinguish between real focus changes and
moving objects or persons only. In the example of person P02 during meeting
video 3, the interrupting person shows high likelihoods for being focused at when
walking only through the room, even though head pose stayed fixed. The focus
change here, is enforced to be recognized, even though in this case it does not
happen at all.

Hence, general questions that are to be answered in future work (especially
as soon as the complete dataset annotation process is finished) are, how head
orientation correlates to moving targets and if a fitting user model for this per-
ception can be found during meetings (do people tend to follow behind the
target’s trajectory or do they rather estimate the trajectory in advance and
adapt to movement changes?) as well as how several focus targets merge into
one single group of interest for particular meeting members or objects instead
of distinguishing between every single item. Future work also includes the fast
estimation of upper body orientation to easily recognize every meeting mem-
ber’s resting position and initial head orientation when looking straight forward.
This cue, also should show strong correlation to group behavior and allow focus
target abstractions by separating persons into groups, analyzing group roles and
including multi-person focus of attention and region of interests with respect to
individual groups and their interactions.

4 Conclusion

In this paper we presented our work on enhancing the estimation of visual fo-
cus of attention in group meetings: We collected a new dataset to include dy-
namic scenes and moving persons and objects. The dataset contains recordings
of meetings from the beginning where all participants enter the room and follows
a predefined script of events that three acting meeting members in the record-
ings were to follow and suprise further attending and unaware participants with.
The sensor setup both contains visual recordings from wideangle cameras in the
room’s upper corners and a panoramic camera on the ceiling as well as audio
recordings from T-shaped microphone arrays and one table-top microphone on
top of the meeting table. All recordings were annotated for the participants’ head
bounding boxes, everybodies’ visual focus of attention and the complete room’s
interieur in 3D by means of bounding boxes of each object and allowed target
that was annotated. Secondly, we described and evaluated our first system to es-
timate visual focus of attention for one person on moving targets and achieved an
overall mean recognition rate of 59%. We compared our approach to interpreting
head orientation as the actual gaze direction and mapping its vector onto the
first-best matching, nearest corresponding focus target and our enhancements
showed an overall increase in recognition rate by almost 9%. Current and ongo-
ing work and research include the analysis of the targets’ movements, adding a
correlation model to moving focus targets and extending the target space to all
annotated objects in the room. Further, in order to adopt our approach on every
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meeting participant, independent of his or her movement, research on estimating
upper body orientation is due to be done and combined with estimating head
orientation and a fully automate multi-person tracking and identification.
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