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Abstract

Partial di�erential equations are typically solved by means of �nite di�erence, �nite volume or
�nite element methods resulting in large, highly coupled, ill-conditioned and sparse (non-)linear
systems. In order to minimize the computing time we want to exploit the capabilities of modern
parallel architectures. The rapid hardware shifts from single core to multi-core and many-core
processors lead to a gap in the progression of algorithms and programming environments for these
platforms � the parallel models for large clusters do not fully utilize the performance capability
of the multi-core CPUs and especially of the GPUs. Software stack needs to run adequately on
the next generation of computing devices in order to exploit the potential of these new systems.
Moving numerical software from one platform to another becomes an important task since every
parallel device has its own programming model and language. The greatest challenge is to provide
new techniques for solving (non-)linear systems that combine scalability, portability, �ne-grained
parallelism and �exibility across the assortment of parallel platforms and programming models.
The goal of this thesis is to provide new �ne-grained parallel algorithms embedded in advanced
sparse linear algebra solvers and preconditioners on the emerging multi-core and many-core
technologies.

With respect to the mathematical methods, we focus on e�cient iterative linear solvers. Here,
we consider two types of solvers � out-of-the-box solvers such as preconditioned Krylov subspace
solvers (e.g. CG, BiCGStab, GMRES), and problem-aware solvers such as geometric matrix-based
multi-grid methods. Clearly, the majority of the solvers can be written in terms of sparse matrix-
vector and vector-vector operations which can be performed in parallel. Our aim is to provide
parallel, generic and portable preconditioners which are suitable for multi-core and many-core
devices. We focus on additive (e.g. Gauss-Seidel, SOR), multiplicative (ILU factorization with or
without �ll-ins) and approximate inverse preconditioners. The preconditioners can also be used
as smoothing schemes in the multi-grid methods via a preconditioned defect correction step.
We treat the additive splitting schemes by a multi-coloring technique to provide the necessary
level of parallelism. For controlling the �ll-in entries for the ILU factorization we propose a
novel method which we call the power(q)-pattern method. We prove that this algorithm produces
a new matrix structure with diagonal blocks containing only diagonal entries. This approach
provides higher degrees of parallelism in comparison with the level-scheduling/topological sort
algorithm. With these techniques we can perform the forward and backward substitution of
the preconditioning step in parallel. By formulating the algorithm in block-matrix form we can
execute the sweeps in parallel only by performing matrix-vector multiplications. Thus, we can
express the data-parallelism in the sweeps without any speci�cation of the underlying hardware
or programming models.

In object-oriented languages, an abstraction separates the object behavior from its implemen-
tation. Based on this abstraction, we have developed a linear algebra toolbox which supports
several platforms such as multi-core CPUs, GPUs and accelerators. The various backends (se-
quential, OpenMP, CUDA, OpenCL) consist of optimized and platform-speci�c matrix and vector
routines. Using uni�ed interfaces across all platforms, the library allows users to build linear
solvers and preconditioners without any information about the underlying hardware. With this
technique, we can write our solvers and preconditioners in a single source code for all platforms.
Furthermore, we can extend the library by adding new platforms without modifying the existing
solvers and preconditioners.

In our tests we consider two scenarios � preconditioned Krylov subspace methods and matrix-
based multi-grid methods. We demonstrate speed ups in two directions: �rst, the precondition-
ers/smoothers reduce the total solution time by decreasing the number of iterations, and second,
the preconditioning/smoothing phase is e�ciently executed in parallel providing good scalability
across several parallel architectures. We present numerical experiments and performance anal-
ysis on several platforms such as multi-core CPU and GPU devices. Furthermore, we show the
viability and bene�t of the proposed preconditioning schemes and software approach.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Scienti�c Computing � Simulations and E�cient Numerical Methods

Many physical phenomena can be described by Partial Di�erential Equations (PDEs). Typically,
these equations can be solved e�ciently by means of �nite di�erence/element/volume methods
[29, 37, 54, 76, 97]. The �nite approximations of these problems result in large and sparse systems.
For many applications, the iterative methods have been proven to be one of the most e�cient
solution schemes. For various sparse linear problems, the preconditioned Krylov subspace solvers
(e.g. preconditioned CG, BiCGStab and GMRES) provide low complexity in comparison to other
iterative solvers such as splitting methods [15, 42, 114]. In addition, they can be used as out-of-
the-box solvers without any information about the underlying linear system. On the other hand,
multi-grid methods relying on hierarchical grid decomposition techniques give linear complexity
with respect to the number of unknowns in the system and thus, for many elliptic problems,
they are one of the most e�cient and optimal solvers [117, 124].

Scienti�c computing is a �eld of study which focuses on numerical methods and their realiza-
tion. For linear solvers, the performance of the solution process depends on the characteristics of
the used method and its realization on a particular computer system [48, 114]. Typically, mini-
mizing the run time and increasing the performance depend on the complexity and the e�ciency
of the selected method, algorithmic optimization and hardware-speci�c tuning, see Figure 1.1.
Especially in the area of sparse linear solvers, the choice of a proper and e�cient method, and a

Figure 1.1: Abstraction of typical performance gains in a scienti�c computation application

solution scheme with good characteristics (e.g. memory storage, degree of parallelism, etc) has

1
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the largest impact on the performance pro�le. For many applications, algorithm optimization
and better software design can deliver additional improvement and performance gain. Typically,
hardware-speci�c tuning such as loop unrolling and peeling, instruction-level-parallelism, vector
units, etc can speed up the solution phase only by a limited factor.

Furthermore, the time of the solution process depends on the speci�c hardware features of
the system. Therefore, we need to ensure that the proper solution process takes into account the
characteristics of the selected method, speci�c implementation details and hardware features.
Numerical methods that are aware of the hardware features and utilize the platform e�ciently
provide the best performance.

1.1.2 Hardware Shifts

For most of the software products, single core processors have been proven to provide good
hardware performance, portability and forward compatibility. In this context, portability and
compatibility are de�ned as the ability to move a program from one computer system to another
without any code modi�cation. To increase the performance of the single core processors, the
major micro-processor producers rely strongly on hardware improvements such as instruction
pipe-lining, out-of-order execution, pre-fetching schemes and, most important, increase of the
clock frequency [56]. These techniques ensure better performance on the majority of sequential
programs. However, due to physical limitations of the semiconductor technology these trends
are not sustainable [9]. One of the major obstacles in continuing to increase the clock frequency
is the power constraint combined with heat dissipation restrictions. In the last few years the
combined restrictions of the memory bandwidth and latency as well as the limited acceleration
factors of the instruction level parallelism have caused a hardware shift � moving from single-core
to multi-core and many-core processors and devices.

1.1.3 Emerging Multi-core and Many-core Devices

New emerging multi-core and many-core technologies mostly di�er from the previous single-core
concept by providing more cores on the chip. Furthermore, the internal memory structure of the
micro-processors is evolving � the local internal processor memory is moving from caches that
are large, automatic and transparent to small and mostly manually managed local or shared
memory. This is a necessary step in order to provide a scalable internal memory system for
handling the accesses and transfers from the global memory to the processor. In addition, the
compute power is rearranged from a few fat computational cores to many lighter compute units in
di�erent homogeneous or heterogeneous setups. Typical examples are Graphics Processing Unit
(GPU) devices [104, 105], Sony Toshiba IBM Cell Broadband Engine (STI Cell BE) processor
[67] and state-of-the-art technologies such as Intel Many Integrated Core (MIC) or Single-Chip
Cloud (SCC) architecture [72, 74].

1.1.4 Software Impact

The hardware shifts and emerging multi-core and many-core devices cause a signi�cant software
impact. The largest problem arises from the fact that old legacy codes are not able to automat-
ically take advantage of the new hardware technologies. Due to the growing peak performance
gap between single core and multi-core/many-core devices, the single-threaded programs tend
to perform even worse on the emerging platforms � theoretically, on a dual core system (typical
Intel/AMD CPUs in 2006 [71]) a sequential program would utilize 50% of the peak performance
of the machine, while on a 500-core chip (typical NVIDIA GPUs in 2011 [104]) it would utilize
only 0.2%. Furthermore, programs designed for clusters do not utilize the full power potential
of modern multi-core CPUs due to the di�erent synchronization mechanisms. These programs
are not able to run on any of the GPU devices, since none of the many-core platforms support
explicit communication control.
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Thus, especially in the scienti�c computing, many of the programs have to be re-programmed
and re-designed in order to achieve full utilization of these new systems.

1.1.5 Programming Models and Languages

The new �eld of many-core processors imposes a shift in various software concepts and pro-
gramming paradigms. Without clear vision about the future architecture with respect to the
memory managements and core communication mechanisms, we observe a large variety of pro-
gramming models such as fork-and-join, point-to-point communication, global address space and
data-stream model. This results in programming languages like OpenMP [106], IBM Cell SDK
[66], UPC [22], CUDA [100], OpenCL [100], Cilk plus [70], Thread Building Blocks [75] and
many more.

Many numerical algorithms and schemes have been developed in sequential manner. This im-
plies not only a necessity of re-programming but also re-designing in order to move the programs
to this new era of parallel devices. Many of the numerical schemes and algorithms need to be
adapted to this new technology. In some cases, a parallel algorithm could have higher complexity
and more sophisticated steps than its sequential pre-successor. In addition, the parallelism of
an algorithm could imply also a scalable and e�cient implementation only on a particular hard-
ware platform. This, of course, leads to limited portability and �exibility of the new software.
Thus, it becomes an important issue to provide a sustainable e�cient parallel programs which
are portable across di�erent hardware platforms.

1.1.6 Numerical Adaptation and Challenges

The adaptation of many numerical methods for multi-core and many-core devices becomes a
critical aspect for modern simulations. In the recent years several research groups have been
working on developing solutions to this problem. The process has started with migrating and
adapting some of the numerical methods to the new parallel devices. However, this leads to
isolated solutions for many applications and devices such as CG solver on IBM Cell BE [60],
lattice Boltzmann methods on ClearSpeed boards [63] and others.

Next we need to develop portable numerical methods that are not restricted to speci�c devices.
This interdisciplinary task not only requires an adaptation of the numerical schemes with respect
to the �ne-grained parallelism but it also requires a generic strategy to maintain an abstraction
of the underlying programming model. The critical goal is to achieve hardware and software
abstraction.

Currently, several linear algebra libraries are under development. General sparse linear algebra
routines are provided in libraries as ViennaCL [112] and LAMA [44]. However, they provide
limited functionality, especially with respect to the preconditioning schemes which are important
for many applications. A geometric multi-grid solver supporting several platforms has been
developed in the FEAST project [48]. Built on a locally structured grid, the smoothers are
developed to work only with structured matrices.

General numerical methods and libraries for sparse linear systems suited for multi-core and
many-core platform are still missing. The aim of this work is to provide the next step in this
�eld of research in terms of new numerical algorithms with �ne-grained parallelism.

1.2 Goal and Thesis Contributions

Implementation of e�cient and scalable numerical methods on highly-parallel processors is an
interdisciplinary task which requires knowledge in applied mathematics and computer science.
Our aim is to provide new highly parallel schemes and a generic software framework for building
di�erent iterative solvers on multi-core and many-core platforms. Special focus goes to the
preconditioning equation, where we propose a new technique for the incomplete LU-factorization
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with �ll-ins. Furthermore, we rely on the block-wise form of the solution scheme and therefore
bring a high level of abstraction for additive (splitting), multiplicative and approximate inverse
preconditioners. This abstraction leads to portable solvers that cover various of programming
models and hardware speci�cations.

The contributions of this thesis are summarized as follows:

Fine-grained Parallel Preconditioners To provide a �ne-grained level of parallelism we
propose a block-wise solution scheme form of the LU-based preconditioners for additive and
multiplicative schemes. Since the sparsity pattern of the preconditioning matrix is not changed,
the additive (splitting) preconditioners are treated with multi-coloring decomposition. For the in-
complete LU-factorization with �ll-ins we propose a new method, called power(q)-pattern method,
in which we control the sparsity pattern. Thus, we can construct the preconditioning matrix in
a special way to provide high degree of parallelism for the forward and backward substitutions.

Multi-platform Library Design From an implementation standpoint, we develop a multi-
platform linear algebra toolbox which supports several backends such as multi-core CPUs, GPUs
and accelerators. Based on abstract data types and uni�ed interfaces for all platforms, we
provide a new library to build a numerical scheme without any hardware-speci�c information.
We implement several iterative methods and preconditioners which can be executed e�ciently
in parallel on di�erent backend platforms.

Numerical Examples and Benchmarks Analysis To quantify the proposed parallel strat-
egy and software library we consider two types of solvers � preconditioned Krylov subspace solvers
(CG, BiCGStab, GMRES) and a matrix-based multi-grid method. We focus on the quality of the
preconditioners/smoothers by showing acceleration factors in terms of reduction of the number
of iterations. Furthermore, we present speed ups and benchmark pro�les on various systems,
show the computing time with respect to di�erent preconditioners/smoothers and display the
bene�ts of using multi-core and many-core systems. We demonstrate several benchmarks based
on di�erent hardware con�gurations (CPUs and GPUs).

1.3 Thesis Outline

In Chapter 2 we provide a brief introduction to the �nite elements method for elliptic PDEs.
We continue with an overview of the linear solvers and focus on iterative methods which include
splitting methods, Krylov subspace methods and multi-grid methods. Furthermore, we empha-
size the importance of the preconditioning phase and we demonstrate some of the most common
techniques for building the preconditioning equation. We conclude the chapter with remarks on
the algorithmic complexity and computational intensity.

In Chapter 3 we present parallel techniques for performing linear algebra, solvers and precon-
ditioners. We start with the parallelism of the basic linear algebra routines (BLAS) including
some comments and remarks on accuracy and consistency of the results. We continue with the
parallel solvers � presenting our concept for full-parallel and hybrid-parallel schemes. Special
focus goes to describing parallel execution of preconditioners based on additive and multiplica-
tive decomposition. By formulating the forward and backward substitutions in a block-matrix
form we can execute them in parallel by only performing matrix-vector multiplications without
any speci�cation of the underlying hardware or programming models. We treat the additive
splitting schemes by a multi-coloring technique to provide the necessary level of parallelism. For
controlling the �ll-in entries in the incomplete LU factorization we propose a novel method the
power(q)-pattern method. This algorithm produces a new matrix structure with diagonal blocks
containing only diagonal entries. With this approach we obtain a higher degree of parallelism in
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comparison with the level-scheduling/topological sort algorithm. At the end of the chapter we
present remarks on other parallel preconditioning schemes.

Our concept and realization of the multi-platform linear algebra toolbox for sparse iterative
solvers is presented in Chapter 4. We give an overview of the memory access model and the key
object methods which help us to build e�cient preconditioners and solvers for various platforms.
We also describe the design that allows us to maintain a single source code program.

In Chapter 5 we give a qualitative performance analysis of the parallel linear solvers and
preconditioners on a variety of problems. First, we consider the Poisson and the convection-
di�usion problems. For the Poisson problem we present performance results for preconditioned
CG method and multi-grid solver on a 2D L-shaped locally re�ned grid. The convection-di�usion
equation is solved with preconditioned GMRES. We present results that demonstrate the impact
of the physical dimensions (2D, 3D) and of the �nite elements (linear, quadratic) on the multi-
coloring decomposition. Furthermore, after factorization, we investigate the sparsity patterns for
the level-scheduling and power(q)-pattern method. We show the behavior of the preconditioned
solvers executed on di�erent matrices. These tests show the strength of the power(q)-pattern
method and the ability to use it as an out-of-the-box scheme. For the preconditioned solvers we
present the impact on the number of iterations as well as on the total computational time on
multi-core CPU and GPU devices.
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Chapter 2

Mathematical Background

In this chapter, we present a brief introduction to the �nite element methods for elliptic partial
di�erential equations. We continue with an overview of the linear solvers and we focus on iterative
methods which include splitting methods, Krylov subspace methods and multi-grid methods.
Furthermore, we emphasize the importance of the preconditioning phase and we demonstrate
some of the most common techniques for building the preconditioning equation. We conclude
this chapter with remarks on the algorithmic complexity and computational intensity.

2.1 Finite Element Methods

The major part of physical phenomena can be modeled by PDEs. Due to the nature of these
problems, an analytic solution in most of these cases is not possible to be found. Therefore, the
only way to �nd an approximation to the solution is to solve the problem by using numerical
methods. The main aspects of these methods are the e�cient solution procedure and control of
the errors. Finite Element Methods (FEM) combined with adequate linear solvers provide these
key features.

Let us consider a general form of a linear PDE with homogeneous Dirichlet boundary condi-
tions of the form

Lu = g in Ω,
u = 0 on ∂Ω,

(2.1)

where Ω ⊂ Rn is a bounded domain with su�ciently smooth boundary ∂Ω (∂Ω = Ω̄ \ Ω). The
di�erential operator L is de�ned by

L =
∑

|β|,|γ|≤m

(−1)|γ|Dγaβγ(x)Dβ

and is assumed to be a uniformly elliptic operator in Ω, i.e.∑
|β|=|γ|=m

ξβaβγ(x)ξγ ≥ c|ξ|2m for almost all x ∈ Ω, ξ ∈ Rn. (2.2)

Here aβγ(x) ∈ L∞(Ω̄), Dγ is the partial derivative with multi-index γ which takes values in Zn
and |γ| =

∑n
i=1 γi. The classical solution of (2.1), when it exists, belongs to C2m(Ω) ∩Hm

0 (Ω),
where C2m are all 2m times di�erentiable functions and

Hm
0 (Ω) := {u ∈ L2(K) : Dαu ∈ L2(K) for |α| ≤ m and all K ⊂ Ω compact}.

We test the equation with an arbitrary in�nitely many times di�erentiable function with

7
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compact support v ∈ C∞0 (Ω) and we get

(Lu, v) =
∑

|β|,|γ|≤m

(−1)|γ|
∫
Ω

Dγ(aβγ(x)Dβu)vdx.

In this way, we obtain a weak solution only in Hm
0 (Ω). Moreover, after integrating by parts, the

boundary terms vanish due to the compact support of v (see [54]), and the problem in its weak
form reads

a(u, v) = f(v) (2.3)

for

a(u, v) :=
∑

|β|,|γ|≤m

∫
Ω

aβγ(x)(Dβu)(Dγv)dx, (2.4)

f(v) :=
∫
Ω

g(x)v(x)dx. (2.5)

Obviously, a classical solution is also a weak solution. We can present the problem in the following
form

Find u ∈ Hm
0 (Ω) such that a(u, v) = f(v), for all v ∈ C∞0 (Ω).

Since the space C∞0 (Ω) is dense in Hm
0 (Ω), the weak formulation is equivalent to

Find u ∈ V such that a(u, v) = f(v), for all v ∈ V, (2.6)

where V is Hm
0 (Ω), see [54]. Clearly, a : V × V → R is a bounded bilinear form, i.e.

|a(u, v)| ≤ ε||u||V ||v||V . (2.7)

Furthermore, using (2.2), we can show that a is coercive, i.e. there exists a constant α > 0, for
all v ∈ V such that

a(v, v) ≥ α||v||2V . (2.8)

Then, by the Lax-Milgram Theorem, it follows that there exist a unique solution u ∈ V of
problem (2.3) [30].

The main idea behind the Ritz-Galerkin method is to replace the in�nite dimensional vector
space V by a �nite-dimensional space Vh, where Vh ⊂ V (dimVh < ∞ and dimV = ∞). The
solution of this problem is called Ritz-Galerkin solution with the associated space Vh.

In �nite dimensional spaces we can represent the solution uh ∈ Vh as a �nite linear combination
of the basis elements bi of Vh, namely

Vh = span{b1, ..., bN},

uh =
N∑
i=1

uibi,

where ui ∈ R are the component coe�cients of the discrete vector uh := (u1, ..., uN ) [54]. Doing
so, we can obtain the Ritz-Galerkin solution by solving the linear system

Auh = fh, (2.9)
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where A = (ai,j) and fh are de�ned as

ai,j := a(bi, bj) for all i, j ∈ {1, ..., N}, (2.10)

fh := (fi) = f(bi) for all i ∈ {1, ..., N}. (2.11)

One of the key points of a good numerical scheme is the control of the errors in the method. For
FEM, the theorem of Céa provides the error estimation

||u− uh||V ≤
α

ε
inf

vh∈Vh

||u− vh||V ,

where u is the solution of (2.6), uh is the Ritz-Galerkin solution, α comes from the coercivity
condition (2.8) and ε comes from the boundedness condition (2.7) of the bilinear form. In
other words, by taking the space Vh closer to the unknown function space V we obtain a better
discretization error [30, 43, 54].

The general form of the Ritz-Galerkin method leads to a dense matrix A. This can be
avoided by introducing a compact support of the basis functions bi over some interior section of
the original domain Ω. Let us consider a triangulation Th = {T1, ..., TM} of our domain Ω into
M small sub-domains (called cells) with ∪i=1..MTi = Ω. The �nite elements are local to each cell
from the triangulation. This ensures the condition ai,j = a(bi, bj) = 0 if Tk and Tl have empty
intersection for k, l ∈ {1, ...,M}, where the i-th node belongs to the cell Tk and the j-th node
to the cell Tl. Thus, the integrals (2.4) and (2.5) over the domain Ω can be split into sums of
integrals over the triangulation Th. Then the assembling of the matrix A and the right-hand side
vector fh can be done locally by summing the contributing coe�cients.

We can de�ne di�erent �nite elements with respect to the di�erent nodal bases of the associate
polynomials. Considering only the vertices of a triangular or a rectangular element we can de�ne
the Lagrangian linear and bilinear �nite elements in 2D domain as follows

P1(K) = a0 + a1x1 + a2x2, with (x1, x2) ∈ K and ai ∈ R,
Q1(K) = a0 + a1x1 + a2x2 + a3x1x2, with (x1, x2) ∈ K and ai ∈ R.

In this way we can de�ne our space as

Vh = {v ∈ C0(Ω̄) : v|K ∈ P1(K) for all K ∈ Th} (2.12)

for triangular elements, and as

Vh = {v ∈ C0(Ω̄) : v|K ∈ Q1(K) for all K ∈ Th} (2.13)

for rectangular elements.

Detailed information about constructing di�erent �nite elements and their characteristics can
be found in [54, 76].

2.1.1 FEM Solution Procedure

In the general case, we want to solve a time-dependent and (non-)linear PDE. With respect to the
time variable, the problem is tackled by an explicit or an implicit numerical integration scheme
such as Euler, Runge-Kutta or another multi-step method [31, 97, 122]. Using this technique as
well as other, like operator splitting methods, we can solve general PDEs with FEM [46, 97]. A
typical FEM solution procedure is presented in Figure 2.1. As input the solver reads information
concerning the physical domain and the object geometry. In addition, it reads what kind of
boundary function is to be prescribed at a certain geometric section. These data are then passed
to the meshing module and after triangulation the initial mesh is produced. The next module is
responsible for the de�nition of Finite Elements (FE) over the mesh and the degrees of freedom
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Figure 2.1: FEM solution scheme

over the whole grid. In order to obtain the �nal matrix (or matrices) and the corresponding
right-hand side we need to integrate the discrete formulation (2.10) and (2.11). This integration
is usually done on a local level � the integral is computed locally for each cell element of the mesh
and the contributing weights are added in the matrix. At this stage we need to solve a linear
or non-linear system of equations. The non-linear systems are usually solved with a Newton-like
method, where in each iteration we need to compute the inverse of the Jacobian matrix which is a
very costly procedure. This can be circumvented by solving a linear system on each step. Thus,
we need to solve many linear systems. We can apply several algorithms which are presented
further in this section. However, this is the most time consuming operation from the whole
solution procedure and therefore it is important to utilize all the available hardware resources.
In case of time-dependent model, after the solution of the (non-)linear system has been obtained
we need to perform time stepping scheme where another linear system has to be solved. In case
of an irregular solution (e.g. grid points on which the solution has a very steep gradient) we can
improve the accuracy and the stability of the scheme � based on a local a-posteriori estimation we
can select certain (or all) cells of our mesh and then we can either increase the resolution of the
spatial disrectization (h-FEM) or we can increase the local polynomial degree of the FE (p-FEM)
[40, 43]. Then we need to assemble and solve the new system. At the end we can visualize our
results and do post-processing analysis or measurements. Details on the �nite element solution
procedure can be found in several works [11, 29, 30, 37, 43, 51, 76, 80, 108].

Even in the simplest simulation scenario of a linear and stationary PDE without singular
points we need to solve a linear system. Having more complicated models with time stepping
and adaptive schemes we need to solve more and larger sparse systems. Therefore, it is of great
importance to build not only solvers with low complexity but to minimize the computing time
by creating an e�cient implementation of the solution process.

2.2 Discrete Representation of Di�erential Operators

In general, the discrete di�erential operator A in (2.9) can be represented in two di�erent ways
depending of the topology of the grid and the FEs.

2.2.1 Stencils

For rectangular domains in any dimensions (e.g. 2D, 3D) with equidistantly distributed degrees
of freedom and constant discretization scheme we can de�ne the discrete di�erential operator as
a stencil. We have a constant relation among all nodes in the domain, details can be found in
[51, 118]. This allows us to apply the discrete operator by performing N -dimensional loops with a
certain connectivity rule. By using �nite di�erence schemes or lower order FEs this connectivity
is a simple weighted combination of the neighboring nodes. An example is presented in Figure 2.2.
Here, we consider a 2D square domain with a lexicographical order of the degrees of freedom.
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Figure 2.2: Example of a structured grid

The discrete vectors vi,j and ui,j are de�ned on all grid points i, j = 1, . . . , N . To apply the
stencil operator to u and obtain values of v we need to take a linear combination of the given
stencil coe�cients on every grid point. In the example we present a 5-points stencil � this is a
typical discretization scheme based on �nite di�erence methods for the 2D Laplace operator.

The stencil operator, however, imposes several drawbacks when handling more complicated
domains and boundary conditions. In this form it does not allow free distribution of the grid
points which is essential in cases of singularity or complex geometry.

2.2.2 Sparse Matrices

Independently of the geometry, boundary condition, type of FEs and distribution of the degrees
of freedom, we can represent the di�erential operator by a matrix. The relations between the
neighboring points can be written in a matrix form, where after a enumeration, the rows cor-
respond to the node of the system and the columns represent the contributing coe�cients from
the neighboring points. First, we need to give a unique enumeration to every grid point. The
discrete operator on the i-th node of the grid is a linear combination of all the neighboring nodes
weighted with the values of the column entries. In Figure 2.3 we present an example of an
unstructured grid. By U we denote the set of all nodes for which elements in the triangulation
Th contain the i-th node. In this example, the γ-weight contributing coe�cients are written in

Figure 2.3: Example of an unstructured grid

the i-column of the matrix A. To apply the operator A to u and to obtain the resulting value
v we can apply a sparse matrix-vector multiplication. As we mentioned, the relation between
two nodes i and j is described in the matrix coe�cient ai,j (see (2.10)). Due to the fact that
our nodal-basis functions have locally compact support, the sti�ness matrix A contains a large
amount of zero elements, i.e. it is a sparse matrix, see [29, 76, 108, 118]. We denote the non-zero



12 MATHEMATICAL BACKGROUND

matrix pattern (sparsity pattern) of an N -by-N matrix A = (ai,j)i,j=1,...,N by

NNZ(A) := {(i, j) | ai,j 6= 0, i, j = 1, . . . , N}.

The sparsity structure of the matrix depends on the di�erential operator (e.g. �rst order,
second order, etc), the physical space dimension of the problem (e.g. 2D, 3D), the discretization
scheme (e.g. �nite di�erences/elements/volumes), the grid distribution and the enumeration.
The matrix structure can also be represented as a directed graph where the grid points (the rows
in the matrix) de�ne the nodes, the non-zero column elements represent the vertices, and their
values determine the weights. Thus, we can de�ne the connectivity of a graph as a collection of
all vertices.

For coercive elliptic problems the diagonal elements are non-zeroes. By using Ritz-Galerkin
method (i.e. using the same space for the test and the trial functions) we obtain ai,i := a(bi, bi) >
0 for all i from 1, . . . , N , see (2.8). The resulting matrix is sparse. There are several formats to
store such matrices e�ectively, details can be found in [15, 114].

2.3 Linear Solvers

The linear solvers mainly fall into two categories - direct and iterative methods. The complexity
of the direct solvers depends on the matrix size and the connections in the graph of the sparse
matrix A. The solution of the system can be obtained only after performing a pre-de�ned num-
ber of steps. This is in contrast to the iterative solvers where an approximation to the solution
can be extracted at each iteration step of the solving procedure. The e�ciency (i.e. conver-
gence properties) of these schemes typically depends on the condition number and the spectral
distribution of the eigenvalues of the matrix. From all of the above mentioned methods, the
multi-grid methods have the lowest complexity but they require additional information of the
system. Characteristics with respect to convergence properties of the linear solvers can be found
in [35, 41, 42, 50, 114, 124].

Direct solvers typically perform a Gaussian elimination (or variation of it) to obtain the so-
lution of the system [41]. For sparse matrices the computational complexity can be decreased
from O(N3) to lower, where N is the dimension of the linear system. Parallelism can be ob-
tained by performing a multi-frontal method instead of the classical Gaussian elimination [2, 3].
However, during the elimination process the sparsity structure of the matrix is lost. In this
case, a memory-saving strategy can be introduced by only temporary storing the �ll-ins. For
small matrices with low connectivity these techniques are very e�cient and they provide a fast
solution process. Unfortunately, for very large linear systems arising from FEM problems these
techniques do not provide enough memory e�ciency and are also not scalable with a large num-
ber of compute units. Problem speci�c solvers, as Fast Fourier Transformation (FFT) and cyclic
reduction methods, are another direct methods [35, 45]. These methods are proven to be e�cient
solvers with respect to the complexity. However, they can be applied only to tridiagonal matrices
in case of cyclic reduction and to Toeplitz matrices in case of FFT solver.

Due to the fact that we want to solve a very large linear system arising from an arbitrary FEM
problem, we focus only on iterative solvers such as Krylov subspace and multi-grid methods.

2.4 Iterative Solvers

In this section, we present three major type of solvers � splitting methods, Krylov subspace
projection methods and multi-grid methods. We focus on their convergence characteristics and
implementation aspects.
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2.4.1 Splitting Methods

These methods are based on a simple matrix decomposition of the original matrix A into A =
M +N . Thus, we can de�ne a linear �xed-point iteration scheme of the form

xk+1 = M−1(b−Nxk). (2.14)

We need to ensure that the iteration matrix M−1N has spectral radius (i.e. maximum of all
eigenvalues in absolute value) less than 1. In the case of regular splitting methods, where M is
non-singular (i.e det(M) 6= 0) and M and N are non-negative (i.e. xTMx ≥ 0 and xTNx ≥ 0
for all vectors x) it can be shown if A is non-singular and A−1 is non-negative then the spectral
radius of M−1N is less than 1. Standard splitting schemes as Jacobi, Gauss-Seidel, Successive
Over-Relaxation (SOR) and their symmetric equivalents are de�ned as follows

MJacobi := D (2.15)

MGauss-Seidel := D + L or MGauss-Seidel := D +R (2.16)

MSymmetric Gauss-Seidel := (D + L)D−1(D +R) (2.17)

MSOR :=
1
ω

(D + ωL) or MSOR :=
1
ω

(D + ωR) (2.18)

MSymmetric SOR :=
1

ω(2− ω)
(D + ωL)D−1(D + ωR) (2.19)

where A = L+D+R, L is a strict lower-triangular matrix, R is a strict upper-triangular matrix,
D is a matrix containing the diagonal elements of the matrix A and the relaxation parameter ω
is in the interval (0, 2), see [42, 114].

Typically, these methods have very bad convergence rates and are usually not used in practice
[42, 114]. In some cases, the SOR method with special calculation of the relaxation parameter
ω could deliver a better convergence rate which is closer to the rate of the projection methods
[133]. On the other hand, these methods do not require extra data storage and they are simple
to implement. As we will show later in this chapter, these splitting schemes can be successfully
employed as preconditioners for Krylov subspace solvers and as smoothers for multi-grid solvers.

2.4.2 Krylov Subspace Methods

A projective iterative method is a scheme where we start with an initial solution x0 and we look
for for a new one x̂ = x0 + Km such that b − Ax̂ ⊥ Lm, where Lm and Km are m-dimensional
subspaces of Rn. We can de�ne the Krylov subspace methods as a subclass of the projection
methods with

Km := Km(A, r0) := span{r0,Ar0,A2r0, ...,Am−1r0},

where r0 := b−Ax0.

In the general case of symmetric and positive de�nite matrices we can take Km = Lm. This
leads to the the best known algorithm � the Conjugate Gradient (CG) method. It can be derived
in two ways from the Lanczos's algorithm, detailed information can be found in [114]. Due to
the symmetry of the matrix A, a key characteristic of this algorithm is the three-term residual
recurrence formula which comes from the Lanczos vectors. This allows us to construct the Krylov
subspace by only keeping three vectors � p, q and r, see Algorithm 1.

The condition number of a squared matrix A can be de�ned, for λmin 6= 0, by

κ(A) =
λmax
λmin

,
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Algorithm 1 (Non-)Precondition Conjugate Gradient

r0 = b−Ax0 // compute initial residual
for i = 1 to MAXiter and ||ri||2 ≥ ε||r0||2 do
Solve zi = M−1ri for PCG or zi = ri for CG
ρold = ρ, ρ = rTi zi
if i = 1 then
β = 0

else
β = ρ/ρold

end if
pi = βpi + zi // �nd a new search direction
qi = Api // projection
α = ρ/pTi qi
xi = xi + αpi // update the solution vector
ri = ri − αqi // update the residual vector (r = b−Ax)

end for

where λmax and λmin are respectively the maximal and minimal eigenvalues of the matrix A.
It can be shown that the convergence rate of the CG algorithm can be expressed by

||x∗ − xk||A ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]k
||x∗ − x0||A,

where ||x||A :=
√
xTAx is the energy norm, x∗ is the true solution, x0 is the initial value, and

xk is the k-th approximation of the solution.

In many cases, this is only a rough upper bound and in practice the method converges much
faster. Lower bounds and super-linear convergence properties can be found in [18].

For the non-symmetric case one can use the Generalized Minimal Residual Method (GMRES).
The main di�erence to the CG is that we need to build the whole Krylov space. This means
that we need to build a dense matrix of size m×m+ 1, where m is the dimension of the Krylov
space. Although that typically m is smaller than the size N of the linear system, in practice it is
not feasible to store the whole basis. A remedy to that is to restart the algorithm after certain
space size is reached. Details about the derivation and convergence rate of the restarted GMRES
can be found in [114]. Another solver for non-symmetric matrices is the Bi-Conjugate Gradient
Stabilized method (BiCGStab), see [130]. This method can be seen as a mixture between CG
and GMRES methods � it requires less computation and storage than GMRES method but in
some cases could lead to divergence [119].

To improve the convergence rate of the above mentioned schemes, we can decrease the con-
dition number of the matrix and in�uence its spectrum by multiplying it with the inverse of an
auxiliary matrix M , see [35, 42, 114]. This technique is called preconditioning, see Section 2.5.
We can avoid inversion and matrix multiplication by solving a linear system based only on the
matrix M . Employing a fast solver for the preconditioned system we can often dramatically
decrease the execution time of the iterative solver.

2.4.3 Multi-grid Methods

Multi-grid methods are one of the most e�cient solvers for elliptic problems. In this subsection,
we present the concept of geometric multi-grid methods. They are based on the idea of solving
the associate linear problem by tackling it on several hierarchical grid levels. First, we need
to build a restriction operator which reduces a vector de�ned on a higher resolution grid to a
vector de�ned on a lower resolution grid. In a similar way, we can de�ne a prolongation operator
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which interpolates a vector de�ned on a lower resolution grid onto a vector de�ned on a higher
resolution grid. Doing so, we can transfer vectors de�ned on a �ne grid to a coarse grid and vice
versa. By a defect correction procedure we can transform the problem to a residual equation
and solve it on a coarser grid. The idea of the multi-grid method is to solve the problem by
damping the high frequency error components (smoothing phase) and solving recursively the
residual problem by coarse grid approximations. We can damp the high frequency components
by applying iterative schemes such as splitting methods. However, after smoothing on each level,
the problem still contains low frequency error components. The multi-grid methods handle that
by traversing the problem over the hierarchy of grids � going to a coarse resolution grid, the low
frequency components of the error on the �ner grid become high frequency error components on
the coarser grid. Applying this recursively, we can reduce the problem size and then solve the
system directly at the coarsest level. This leads to an asymptotic optimal linear complexity for
the multi-grid methods. Theoretical and numerical results as well as practical aspects can be
found in [117, 124].

Algorithm 2 Multi-grid Cycle: uk = MGC(Ak, uk, fk)

Pre-smoothing step
uk = SMOOTH(Ak, fk, ν1)

Coarse grid restriction step
dk = fk −Akuk
dk−1 = Ik−1

k dk
Solution step

Solve Ak−1vk−1 = dk−1 or call vk−1 = MGC(Ak−1, vk−1, dk−1)
Fine grid prolongation step

vk = Ikk−1vk−1

uk = uk + vk
Post-smoothing step

uk = SMOOTH(Ak, fk, ν2)

Algorithm 2 presents a multi-grid cycle. The smoothing step can be realized by applying
several steps of the defect correction scheme (2.20). The number of iterations performed in the
pre-processing phase is denoted by ν1 and in the post-processing phase by ν2. The transfer
operators which restrict the defect vector from a �ne to a coarser grid are Ik−1

k , and the ones
which interpolate the correction vector from a coarse to a �ner grid are Ikk−1. The discrete
di�erential operator on the k-th level is denoted by Ak. The multi-grid cycle can be executed
several times recurrently until the coarsest grid system is obtained and �nally, this small system
can be solved directly or by a proper iterative scheme with higher precision.

The grid cycles can be traversed in di�erent ways. Starting from a �nest grid and going to the
coarsest level and after that backwards the V-cycle can be de�ned. Better convergence properties
can be obtained by multi-grid cycles with di�erent depths [124]. The V-cycle and W-cycle are
presented in Figure 2.4, where the coarsest grid is denoted by 5 and the �nest by 1. In the
multi-grid algorithm there are many parameters describing how many pre- and post-smoothing
steps need to be performed, what kind of smoothing steps are needed, how coarse the coarsest
grid should be in order to have a good representation of the prescribed geometry and a good
approximation to the solution, what kind of prolongation and restriction schemes have to be
used. For many applications these parameters are determined only by a heuristic approach. In
these cases, the multi-grid method can be successfully used not as a solver but as a preconditioner
[124].

An alternative to the geometric multi-grid method is the algebraic version of it. It can be
used as a black-box solver and does not require any speci�cation of the grid hierarchy. Two of
the main drawbacks of the classical algebraic multi-grid methods are the inherited sequential
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Figure 2.4: Structure of V-cycle and W-cycle

setup phase and the heuristic algorithm for building the transfer operators [124].

2.5 Preconditioners, Iterative Schemes and Smoothers

Preconditioners are used in the context of iterative solvers for decreasing the number of necessary
iterations for reaching a prescribed error tolerance. This technique can be successfully used to
a�ect the condition number of the system matrix and its spectrum.

Let us consider a linear system of the type Ax = b. We can modify the spectrum of the
matrix A by applying a linear transformation, e.g. by multiplying the system with an auxiliary
matrix M−1 (or a pair of matrices M−1

L and M−1
R ). The problem reads

M−1Ax = M−1b (left preconditioner),

AM−1x̂ = b,where x̂ = Mx (right preconditioner),

M−1
L AM−1

R x̂ = M−1
L b,where x̂ = MRx (split preconditioner).

In most of the iterative solvers, we can avoid sparse matrix inversions and matrix-matrix multi-
plications by solving an additional linear system for the matrix M . In the rest of this section we
present di�erent types of preconditioning matrices M and the ways to solve Mz = r. Unfortu-
nately, there is no fundamental theory for convergence or e�ciency � there is only some insight
with respect to special matrices related to some well-studied equations on simple domains [11, 42].

We can classify the solving process of the preconditioning phase as explicit or implicit. The
implicit type requires a solution phase of the preconditioning equation Mz = r. Typically,
this is done by representing the preconditioning matrix in a triangular form by performing a
Gaussian elimination. Splitting-type preconditioners based on additive splittings of the system
matrix fall into this class. Classical schemes are Jacobi, Gauss-Seidel, their block versions and
relaxed variants (e.g. SOR). Multiplicative factorizations as incomplete LU factorization maintain
certain sparsity patterns or allow �ll-ins into designated positions increasing the number of non-
zero elements. Explicit preconditioners are the ones that directly build M−1; these are the so
called approximate inverse techniques. Detailed descriptions on preconditioners can be found in
[35, 42, 114].

Now, we can show a connection between the preconditioning matrix M and the linear �xed-
point iterative scheme. The general form of an iterative solver can be written as xk+1 = Gxk+f .
Then, for solving the linear system Ax = b, we can split the matrix A = M +N and de�ne the
iteration matrix as G = M−1N = M−1(M − A) = I −M−1A with right-hand side f = M−1b.
Thus, we obtain the preconditioned defect correction scheme

xk+1 = xk − ωM−1(Axk − b), (2.20)
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where ω is the relaxation parameter of the iteration.

In the context of multi-grid methods, the defect correction scheme combined with a precon-
ditioner M is used as a smoothing step. A proper choice of the matrix M decreases the number
of cycles in the multi-grid solver.

2.5.1 Additive Preconditioners

Preconditioning matrices based on the original structure of the matrix A are derived using Jacobi,
Gauss-Seidel, Symmetric Gauss-Seidel, SOR and symmetric SOR schemes. These methods are
based on the splitting technique A = L + D + R, where the matrix M is constructed as a
combination of L,R and D, see (2.15)-(2.19). These methods are very widely spread because
they do not require extra storage of the matrix and they do not need a special building procedure
for the preconditioning matrix.

These standard schemes have good smoothing properties and are used in all kinds of geometric
and algebraic multi-grid methods. Details can be found in [117, 124].

2.5.2 Multiplicative Preconditioners

An important class of preconditioners is based on an Incomplete LU (ILU) factorizations. Here,
we are looking for a lower-triangular matrix L and an upper-triangular matrix U such that
A −M with M := LU satis�es some criteria such as preserving certain sparsity patterns. To
obtain the L and the U matrix we can perform a Gaussian elimination. In the general case,
after this process, the L and the U part are not sparse, although the input matrix A is a sparse
matrix. There are two algorithms for producing sparse structure of the resulting lower and upper
matrices � preserving the original sparsity pattern of the matrix A or allowing �ll-in entries. In
Algorithm 3 we present the ILU(0) factorization without �ll-ins.

Algorithm 3 Incomplete LU-factorization without �ll-in elements - ILU(0)

for i = 2 to N do
for k = 1 to i− 1 and (i, k) ∈ NNZ(A) do
ai,k = ai,k/ak,k
for j = k + 1 to N and (i, j) ∈ NNZ(A) do
ai,j = ai,j − ai,kak,j

end for
end for

end for

The quality of the ILU factorization depends on the sparsity pattern of the produced L and
U matrices. Therefore, to increase the accuracy of the factorization we can allow new �ll-in
elements in the produced matrices. A common technique to control the �ll-ins is to introduce
levels. Each new element of the factorization process is associated with a certain level. The
ILU(p) factorization with �ll-ins is presented in Algorithm 4. Details on this technique can be
found in [35, 114].

One of the weak points of this algorithm is to predict the new non-zero pattern of the pro-
duced matrices for p > 0. Without an estimation of the distribution of the new elements, the
computational costs for allocating and updating the matrix can be very high. Usually, this
building process is split into two parts � symbolic step (determines the sparsity pattern) and
numerical step (produces the factorization). A weighted drop-o� technique can be applied to
decrease the �ll-in entries and to reduce the storage requirements while keeping the quality of
the preconditioning matrix. Such algorithm is called ILU with threshold (ILUT factorization),
see [114].
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Algorithm 4 Incomplete LU-factorization with �ll-in elements - ILU(p)

Set lev(ai,j) = 0 for all non-zero elements ai,j ∈ NNZ(A), lev(ai,j) =∞ otherwise
for i = 2 to N do
for k = 1 to i− 1 and lev(ai,k) ≤ p do
ai,k = ai,k/ak,k
for j = k + 1 to N do
ai,j = ai,j − ai,kak,j
lev(ai,j) = min(lev(ai,j), lev(ai,k) + lev(ak,j) + 1)

end for
end for
for j = 2 to N do
if lev(ai,j) > p then
delete ai,j

end if
end for

end for

In general, there is no guarantee that the ILU factorization can be computed. Breakdown of
the algorithm is possible if there are zero or close to zero diagonal elements of the matrix A. In
order to ensure a stable factorization we can sort the zero or the closet to zero elements. This
technique is called pivoting [114].

2.5.3 Approximate Inverse Preconditioners

Another preconditioners are obtained by direct approximations of the inverse matrix M−1. In-
stead of solving the preconditioning equation Mr = z we can apply only a matrix-vector mul-
tiplication with the approximate inverse matrix. Although the matrix M is sparse this cannot
be guaranteed for its inverse. In this subsection, we consider a few methods for constructing a
sparse approximate inverse matrix.

There are many algorithms and schemes for building the approximate M−1 directly. The
simplest way to do this is to use the Neumann series

∞∑
k=0

Jk = (I − J)−1, (2.21)

where the spectrum radius of the matrix J is strictly less than one. We can approximate A−1 by
shifting the spectrum of the matrix A by a parameter ω (greater or equal to the spectral radius
of A) and taking J = I −A/ω, see [15, 114].

Another polynomial scheme is the Chebyshev polynomial approximation. We can expand the
approximate inverse matrix A−1 in terms of Chebyshev-matrix-values polynomials

A−1 =
c0

2
I +

∞∑
i=0

ciCi(Z), (2.22)

where Z = 2
β−α

[
A− α−β

2 I
]
is a shift matrix operator and the Chebyshev polynomials are de�ned

by the recurrent formula
Cj(Z) = 2ZCj−1(Z)− Cj−2(Z) (2.23)

with starting values C0(Z) = I and C1(Z) = Z. The coe�cients α and β in the shift matrix
approximate respectively the largest and the smallest eigenvalue of the matrix A in order to
shift the spectrum in to the interval [0, 1]. The polynomial preconditioners control the sparsity
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pattern of the matrix automatically. The main drawback of these schemes is that they require
information about the spectrum of the matrix A.

Another technique for building the approximate inverse is to minimize the Frobenius norm

||I −GA||2F :=
N∑
i=0

||ei − giA||22, (2.24)

where ei and gi are respectively the columns of the identity matrix and of the approximate
matrix G := M−1. However, this does not imply any restriction on the pattern of G. Using the
minimal residual iteration one can build an approximate inverse matrix. Typically, this process is
cheap but the output is a dense matrix. To obtain a certain sparsity we need additional drop-o�
techniques [114]. In [53] the authors propose an algorithm called Sparse Approximate Inverse
(SPAI) which provides an adaptive sparsity pattern. But it requires QR-decompositions and
sorting procedures which are typically highly expensive.

We can obtain a set of least-squares minimization problems by prescribing a non-zero pattern
NNZAI to the approximate inverse matrix. Thus the normal equation of (2.24) reads

(GAAT )i,j = ATi,j for (i, j) ∈ NNZAI . (2.25)

This leads to a set of small and independent linear systems for each column j of the matrix G.

There are several methods for constructing a preconditioner using (2.24), see [36]. Few prob-
lems arise when constructing the preconditioners by solving directly (2.24) � there is no guarantee
that the matrix is not singular and in the symmetric case the minimization problem does not
necessarily build a symmetric preconditioner which is critical (e.g. for CG).

A very e�cient algorithm with respect to the complexity of the building phase is the Factor-
ized Sparse Inverse (FSAI) method. For symmetric and positive de�nite matrices, the scheme
preserves the symmetry of the preconditioner. This method is presented in [79]. It builds an
approximation not to the original matrix but to the Cholesky factorization A = LAL

T
A. However,

the idea can be generalized for non-symmetric matrices as well. For the symmetric case, we look
for an approximation GL ≈ L−1

A and doing so the approximate inverse preconditioned equation
GA with G := GTLGL reads

GTLGLA ≈ I or GLAG
T
L ≈ I. (2.26)

Due to the fact that the approximation is a lower-triangular matrix we have to restrict our
sparsity pattern NNZAI to

NNZLAI = {(i, j) ∈ NNZAI | (j ≤ i)}. (2.27)

In this way, from (2.25) we obtain

(GLA)i,j = (LTA)i,j for (i, j) ∈ NNZLAI .

But on the other side, LTA is an upper-triangular matrix and by prescribing only a lower-triangular
pattern we obtain only diagonal elements. This leads to the following system

(GLA)i,j = 0 for i 6= j,

(GLA)i,j = (LA)i,j for i = j.

The most interesting and remarkable fact about this method is that we do not need to know the
diagonal entries of the Cholesky decomposition. As it is described in the original work [79], we
can solve the problem by taking an auxiliary matrix, applying a Jacobi scaling GL := DĜL and
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solving the new system
(ĜLA)i,j = δi,j ,

where δi,j is the Kronecker delta symbol. After that we can rescale with D = diag(ĜL)−1/2. At
the end, the building procedure requires only solutions of small, symmetric and positive de�nite
problems, which can be processed in parallel. In Chapter 5, we consider a technique for building
a proper sparsity pattern NNZAI .

Another technique for building an approximate inverse is based on bi-conjugation � a gener-
alization of the Gram-Schmidt process. The Approximate Inverse preconditioner (AINV) has a
very robust building procedure. However, it is purely sequential and it requires drop-o� tech-
niques to maintain the sparsity structure, see [20, 21].

2.5.4 Other Preconditioners

2.5.4.1 Block Jacobi and Additive Schwarz Preconditioners

We can decompose the linear system Ax = b into small sub-problems based on

Ai = RTi ARi for i = 0...n,

where Ri are restriction operators. Although the original matrix A is invertible, we cannot
conclude this for the restricted matrices Ai. With respect to the di�erent de�nitions of the
restriction operators we can de�ne the following schemes

• Block Jacobi � the restriction operators are built to produce only block-diagonal matrices
without overlapping. Thus, all the couplings among the o�-diagonal blocks are deleted, see
Figure 2.5 (left).

• Additive Schwarz � the restriction operators produce sub-matrices which overlap. This
leads to contributions from two (or more) preconditioners on the overlapped area, see
Figure 2.5 (middle). Typically, these contribution sections are scaled by 1/k, where k is
the number of sub-domains in which the variable is represented.

• Restricted Additive Schwarz (RAS) � this is a mixture of the pure block-Jacobi and the
additive Schwarz scheme. Again, the matrix A is decomposed into squared sub-matrices.
The sub-matrices are large as in the additive Schwartz approach � they include overlapped
areas from other blocks. After we solve the preconditioning sub-matrix problems, we
provide solutions only to the non-overlapped area, see Figure 2.5 (right).

Figure 2.5: Example of a 4 block-decomposed matrix � block Jacobi preconditioner (left), additive
Schwarz with overlapping preconditioner (middle), restricted additive Schwarz preconditioner
(right)
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Originally, the additive Schwarz methods have been developed for solving iteratively PDEs
on several sub-domains. Further information could be obtained from [109, 120, 123] as well as
from [114]. The RAS scheme is presented in [33]. Note that the restriction operators can be built
upon information from the matrices or from the underlying grid if the linear system is based on
FEM.

2.5.4.2 Support-tree/Vaidya Preconditioners

Vaidya proposed several new families of preconditioners. The �rst one is based on maximum
spanning trees (i.e. trees that include all vertices and a subset of the edges) of the underlying
matrix graph. The second approach is based on extra edges and shows a speed up in convergence.
The third approach is based on a maximum weighted basis that works by dropping the non-zero
elements from the coe�cient matrix and factorizing the remaining matrix. The �rst two pre-
conditioner families apply only to M-matrices (diagonally dominant matrices with non-positive
o�-diagonals elements), while the third preconditioner works only for diagonally-dominant sym-
metric matrices. Unfortunately, most of the original work has not been published but has been
used in commercial software. An analysis and implementation of these preconditioners can be
found in [34]. One of the very strong points of this type of preconditioners is the full control
of the condition number of the new system. Further details can be found in the series of new
papers [23, 25, 26, 27, 28].

2.5.4.3 Schur Complement Preconditioners

The main idea of the Schur complement is to divide the initial linear system into small sub-
problems by performing a block-Gaussian elimination. As already mentioned, in general the
sub-matrices of the original matrix A are not invertible. To ensure invertibility, this method
is used with domain decomposition schemes [109, 120, 123]. Dividing the original domain Ω of
problem (2.1) into non-overlapping sub-domains Ω = ∪Ωi results into a block-linear system. The
block-matrices inside the system represent the sub-domains and the couplings between them (the
skeleton-matrix). In this case, we can apply a block-Gaussian elimination to reduce the problem
size or to directly solve the problem. This technique can be used as a solver as well as a
preconditioner. An example for application of the Schur complement as a parallel preconditioner
for a �ow problem can be found in [24].

2.5.4.4 Hierarchical Matrix Preconditioners

Hierarchical matrices are sub-block matrices based on sparse representations of a fully populated
system [17, 32, 55]. This idea is similar to other multi-level structures such as sparse grids [131]
and hierarchical basis [134]. This is in contrast to the multi-grid method where the data is built
on a hierarchy of admissible partitions of the matrix indices and on a cluster-tree decomposition
[17]. Preconditioners for hierarchical matrices can be built by approximate inverse and LU
decomposition. The hierarchical inversion is mainly based on Schur complement decompositions
and it comes at the cost of matrix-matrix multiplications. The solution process for the LU
decomposed system is based on triangular solvers.

2.5.4.5 Tridiagonal Preconditioners

Tridiagonal systems can be e�ciently solved by a modi�cation of the Gaussian elimination pro-
cess called Thomas Algorithm [97, 107]. Unfortunately, very few problems result in tridiagonal
matrices. However, these matrices can be used for an approximation to the original linear sys-
tem and thus for a preconditioning equation. We consider the tridiagonal preconditioner as a
part of the splitting methods. These preconditioners can be used in the context of a multi-grid
smoothers as well. Details can be found in [48].
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2.5.4.6 Iterative Schemes as (Non-)Constant Preconditioners

Up to now, we have worked only with a �xed preconditioning matrixM . However, we can supply
a non-constant operatorM−1 for solving the preconditioned system. On each step of the iterative
solver we can use di�erent preconditioning schemes or we can give di�erent approximations to
the solution of the system Mz = r. As an example, we can use a Krylov subspace method for
the inner (preconditioning) and for the outer solver. As a consequence, the outer solver needs
to build a Krylov subspace that represents the new problem based on variable preconditioning
matrices. Such methods are the �exible GMRES [113] and the �exible CG method [12].

We can use an inner-solver which provides a constant operator M−1. Such methods are the
simple iteration schemes, Chebyshev iteration and multi-grid methods, see [15, 35, 114, 124].

2.6 Algorithmic Complexity and Computational Intensity

In this section, we present a short overview and classi�cation of the algorithmic complexity of the
linear solvers that we have described so far. All of the solvers have some basic vector-vector and
matrix-vector routines. To classify which routine depends on the bandwidth/communication
or on the computation performance, we can de�ne the computational intensity I = f/w in
asymptotic value for large data sets, where w represents the necessary data transfers (i.e. all load
and store operations) and f is the number of �oating point operations for executing the routine.
Table 2.1 presents the performance characteristics of the main vector-vector and matrix-vector
functions, where N is the vector size, NNZ and SM are respectively the non-zero elements and
the data structure of a sparse matrix. NNZ denotes only the values of the non-zero elements
and SM � the coordinates of the corresponding entries.

Function w f I = f/w
[Data] [Flop]

Vector norm N + 1 2N − 1 2.0
Scalar product 2N + 1 2N − 1 1.0
Vector update 3N + 1 2N 0.7

Laplace 3D stencil 2.75N 8N 2.9
Sparse matrix-vector mult NNZ + 2N + SM 2NNZ < 2.0
Dense matrix-vector mult N2 + 2N N2 −N < 1.0

Table 2.1: Computational intensity and performance bounds for the basic linear routines

A lower bound for the total run-time TR of an algorithm is given by TR ≥ TC +TT , where TC
is the computing time and TT is the time for data transfers. In case of asynchronous transfers,
overlapping of communication and computation, the lower bound can be taken as max{TC , TT }.
On a given platform an algorithm is compute-bound for TC > TT and bandwidth-bound for
TT > TC . A simple performance model can be derived by information of the algorithm and the
hardware characteristics. Then we get lower bounds TT ≥ Sw/B where S = 4 or S = 8 bytes for
single precision or double precision data, B (in Byte/time) is the maximal bandwidth between
the memory and the cores. Furthermore, for fully pipelined instructions we �nd TC ≥ f/P where
P (in Flop/time) is the accumulated theoretical peak performance of the functional units. An
upper bound for the e�ective performance Peff of the corresponding implementation can be given
by

Peff =
f

TR
≤ f

max{TC , TT }
≤ min

{
P,
fB

Sw

}
.

For unlimited bandwidth (B very large) or compute-dominated algorithms (f very large), the
upper bound is basically the peak performance P . For unlimited computing capability (P very
large) the e�ective performance is bounded by Peff ≤ fB/(Sw).
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Taking the characteristics of the current CPU and GPU platforms (peak performance and
bandwidth) and applying this formula, we can easily conclude that all vector-vector routines
and matrix-vector multiplications are bandwidth bounded. No matter in what order we combine
these routines, the �nal algorithm is bandwidth bounded. With such a model the CG algorithm
is studied in [60].

In Figure 2.6 we present a classi�cation of the most basic routines and algorithms. We de�ne
the complexity as the number of necessary �oating point operations that need to be performed.
We start with the basic linear algebra routines (BLAS). All of the vector-vector (BLAS1), sten-

Figure 2.6: Classi�cation of the computational complexity

cil routines, sparse and dense matrix-vector multiplications (BLAS2) have linear complexity
O(n)/O(n). We can construct very wide stencils with a large number of coe�cients. We can
build such stencils by taking higher order �nite elements. In this case, for some platforms this is
already a compute-bounded routine. Going further to a higher complexity of O(nlog(n))/O(n)
leads to a compute-bounded algorithm such as the fast Fourier transformation (FFT). One level
above is the dense matrix-matrix multiplication (BLAS3) with complexity of O(n3)/O(n2) which
normalized to O(n) is O(n3/2)/O(n). Going further, the N-Body algorithms (particle physics)
need to perform O(n2) operations on O(n) data sets.
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Chapter 3

Parallel Linear Algebra, Solvers and
Preconditioners

In this chapter, we present parallel techniques for performing linear algebra routines, solvers
and preconditioners. We start with the parallelism of the Basic Linear Algebra Subroutines
(BLAS) including some comments and remarks on the accuracy and the consistency of results.
We continue by presenting our concept for full-parallel and hybrid-parallel schemes. Special focus
goes to describing the parallel execution of preconditioners based on additive and multiplicative
decompositions. By formulating the forward and backward substitutions in a block-matrix form
we can execute them in parallel by only performing matrix-vector multiplications without any
speci�cation of the underlying hardware or programming models. We treat the additive splitting
schemes with a multi-coloring technique to provide the necessary level of parallelism. For the
ILU factorization with �ll-ins we propose a novel method for controlling the �ll-in entries which
we call the power(q)-pattern method. This algorithm produces a new matrix structure with
diagonal blocks containing only diagonal entries. With this approach we obtain a higher degree
of parallelism in comparison to the level-scheduling/topological sort algorithm. At the end of
the chapter, we present remarks on other parallel preconditioning schemes.

3.1 Parallel Basic Linear Algebra Routines

As shown in Chapter 2, there are a few basic routines which are performed in almost every linear
solver: vector norm, scalar product, matrix-vector multiplication, scaling and vector update
functions. All of these routines and many more are standard part of an interface known as
Basic Linear Algebra Subroutines (BLAS). There are libraries that provide BLAS routines, see
[10, 1, 73, 99]. These basic components provide a wide variety of unique interfaces that cover
almost all programming languages. These functions are also highly optimized in order to provide
the most e�cient utilization of the platform resources and so they are one of the basic references
for performance analysis. In this section we present how to execute these routines on parallel
architectures with shared memory.

3.1.1 Vector-vector Routines

All vector-vector functions are classi�ed as BLAS1 routines. Here we show how to compute
vector norm, scalar product and vector updates in parallel.

Vector updates are de�ned as x = αx + y, x = x + αy, x = αx, x = αy, where x, y ∈ RN

and α ∈ R. In these routines, there is no data dependency and therefore all components can be
updated in parallel � by partially distributing the loop or by updating the values in component-
wise form.

25
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Another routines are based on reduction operations � vector norm ||x||2 and scalar product
xT y, where x, y ∈ RN . Here the sequential reduction leads to O(N) operations on O(N) data.
In order to execute them in parallel we can introduce a partial reduction based on 2 components
of the vector, see Figure 3.1 (left). The reduction needs to perform N − 1 operations on N = 2k

elements which leads to O(log(N)) parallel steps.

Figure 3.1: Reduction (left) and sparse matrix-vector multiplication (right) routines

We can load and compute more than 2 elements on each level. The performance pro�le of
the parallel reductions with respect to the di�erent blocking techniques is di�erent on every
individual hardware. Chips designed to perform loads and to execute operations on large data
sets (e.g. CPUs) perform better when computing more elements per reduction cycle. On the
other hand, chips which are designed to work with small data sets (e.g. GPUs) perform better
when computing reduction based on a few elements.

3.1.2 Sparse Matrix-vector Routines

A typical sparse matrix produced by FEM discretization has a very low ratio of non-zero elements
compared to the total size of the matrix. The most common formats for representing this sparse
structure is the Compressed Sparse Row (CSR) format [15, 114]. The matrix in this format
contains a row pointer array representing the o�set of each row with respect to the number of
elements per row. Additionally, column and value arrays represent the column indices and the
element entries respectively. In the sparse matrix-vector multiplication (SpMV), each row can be
computed independently of the others. Thus, a common technique is to perform all dot products
of the SpMV in parallel, see Figure 3.1 (right).

Better performance for matrices with a larger number of non-zero elements per row can be
obtained by using parallel reduction techniques, where two or more compute units work per
row. Matrices with repeatable sparsity patterns can be represented as compressed structure
of small matrices. Using this representation we can minimize the memory transfers. In order
to minimize cache misses due to irregular memory access of the multiplication vector, we can
introduce additional zero �ll-ins. Doing so, we obtain a full-blocks structure which can improve
the performance.

General remarks can be found in [15, 114], di�erent optimization techniques for CPUs can be
found in [132], and GPU implementation for di�erent matrix formats can be found in [16, 19].

3.2 Accuracy and Consistency of the Results

One of the most important aspects in the computer �oating point arithmetic is to ensure accuracy
and consistency of the results. The consistency should be considered not only as reproducibility
of the results on the same machine but also as reproducibility of the results from one system
to another. Therefore, almost all processors used for mathematical simulations support the
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IEEE Standard for Floating-Point Arithmetic (IEEE 754). This standard de�nes strict rules for
arithmetic operations, formats, rounding and exception handling [69].

Even in the case of full IEEE 754 compliance it is hard to de�ne reproducibility of the results
since the �nite arithmetic is neither an associative nor a distributive operation (i.e. (a + b) + c
is not a+ (b+ c) and a ∗ (b+ c) is not a ∗ b+ a ∗ c).

3.2.1 IEEE standard

The IEEE 754 standard de�nes the way to treat �oating point numbers in a �nite arithmetic. In
addition to the formats and the operations, this standard de�nes the methods used for rounding
numbers during arithmetic and conversion operations. The rounding algorithms specify rounding
to nearest with ties to even or ties away from zero, rounding to plus or minus in�nity, and trun-
cation rounding mode. Another characteristic of the standard is the treatment of the denormal
(subnormal) numbers, the support of Not-a-Number (known as NaN) and in�nity values, and
handling of the over�ow [49, 69, 77].

It is important to note that not all processors and accelerator boards are fully compliant with
the IEEE 754 standard. There are several GPU cards that support the standard for single/double
precision �oat-point formats only partially. Also, some processors do not support hardware
division and square root, therefore these operations are handled on a software level. Therefore,
if we want to make a fair comparison of numerical results produced on two machines, we have
to ensure that both of the systems support the IEEE 754 standard.

3.2.2 Fused Multiply-add

In addition to the basic arithmetic operations (+,−, ∗, /), there is also an operation which
updates a value by the product of another two values a = a + bc, called fused multiply-add
(fused-MAD). On some platforms, this operation is directly supported on the hardware level.
An interesting issue is the fact that this operation has higher accuracy in comparison to the
multiplication and addition functions (i.e. d = bc and a = a + d) [69]. In order to ensure
reproducibility of the results all platforms must use the same hardware routines for multiply-add
operation.

3.2.3 Number of Parallel Units

The execution path of an algorithm can depend on the number of execution units (level of
parallelism). Examples for routines which are independent of the number of compute units are
the parallel vector updates � the order of updating the components of a vector is irrelevant to
the �nal result. However, the parallel reduction operations in �nite �oating arithmetic as vector
norm and scalar product depend on the partitioning of the data which relies on the number of
execution units. Working with vectors that are �lled with sensitive data (e.g. very large and very
small values) we obtain di�erent results for sequential or parallel reduction due to the di�erent
propagation of the rounding errors. This implies that if we compute a vector norm sequentially
on a single core system and compute the same norm on a GPU device with hundreds of execution
units in parallel, the results could be di�erent even if both of the platforms have identical �oating
point arithmetic.

3.2.4 Hardware Errors and ECC Protection

Hardware errors could appear in a computer system due to overheating, cosmic rays, electric,
magnetic or radiation �elds. In practice these errors are very hard to detect and handle. However,
some vulnerable parts of the computer such as the memory can be protected by using special
algorithms that check the correctness of the memory transactions. Error Correction Codes (ECC)
is such a mechanism � it works by introducing check sums over the transferred data for correctness
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control. On the modern GPU devices we can enable and disable the ECC control. The use of
ECC results in memory bandwidth and capacity decreasing [103].

3.2.5 Impact on the Basic Routines and Solvers

Clearly, any �oating point error has impact on the basic routines and on the solvers as well. In
Table 3.1 we summarize the in�uence of the di�erent errors.

Scalar product/Vector norm SpMV/Stencil Vector-updates

Hardware-errors Yes Yes Yes
IEEE-754 Yes Yes Yes

# Parallel units Yes No/Yes No
Fused-MAD Yes Yes Yes

Loop-reorganization Yes No/Yes No
Re-ordering techniques Yes Yes No

Table 3.1: Impact of di�erent �oating point errors on the basic linear routines

Re-ordering the degrees of freedom of the discrete problem leads to di�erent error propagation
in the scalar product, the vector norm and the SpMV routines. Reduction routines are typically
performed in a single or group form of component-wise loops and thus, reorganization of these
loops leads to a di�erent error propagation. The accuracy of the multiply-add operation depends
on the use of fused routine. The error propagation of the routines whose execution path depends
on the number of parallel units (i.e. reduction operations such as vector norm, scalar products
and in some cases SpMV) is a function of their number.

Perturbed data and results in the basic linear algebra routines also have impact on the solvers.
Thus, the reproducibility of the results is a combination of the hardware speci�cations, properties
of the solver and characteristics of the discrete problem.

3.3 A Concept for Parallel Solvers and Preconditioners

3.3.1 Flexibility, Portability and Scalability

Our concept is not to provide an isolated parallel implementation for a speci�c solver but to es-
tablish a general framework for developing, supporting and maintaining preconditioned iterative
solvers and multi-grid methods. Based on our experience, it is a great challenge to develop such
a solver. But it is an even greater challenge to develop it in a portable and �exible way � without
modifying the solver code and by only supplying add-ons to execute the solver on a new parallel
platform. However, this should not come at the cost of poor e�ciency and scalability.

In order to ful�ll all requirements, we propose a concept to build all considered solvers and
preconditioners only on the top of vector-vector, matrix-vector and matrix-matrix operations
which are highly parallel.

3.3.2 Full-parallel Schemes

Most of the iterative solvers can be built only with the basic linear algebra routines � such
solvers are CG, BiCGStab, Chebyshev-iteration and others. If we assume that we can solve the
preconditioning equation (based on additive, multiplicative and approximate inverse schemes) in
the same way, then we can include as well preconditioned CG, BiCGStab, additive (splitting)
iterative schemes and multi-grid methods.

As already mentioned, most of the solvers can be built on the top of basic linear algebra
routines which can be executed in parallel. The main e�ort in this direction is to provide full
parallel solvers for the preconditioning matrix � this is addressed in Section 3.4
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3.3.3 Hybrid-parallel Schemes

Due to the speci�c solver requirements, we can perform platform-optimized routines as an exe-
cution of sequential tasks. An example for that is the execution of the GMRES solver � based on
Givens rotations, it builds the Hessenberg matrix sequentially. The solver can be performed on a
hybrid architecture (e.g. GPU-CPU platform) by performing the vector-vector and matrix-vector
routines on a highly parallel platform and computing the Hessenberg matrix on the sequential-
optimal device. Another example is the multi-grid method, where one could perform a direct
solver (typically a sequential process) on the coarsest level on the CPU device.

3.4 Parallel Preconditioners

In the following sections, we present several methods and techniques which adapt or construct the
sparsity structure of the matrixM in order to solve the preconditioning systemMz = r e�ciently
and in parallel. Our goal is to obtain highly parallel preconditioners without sequential parts that
can be used as black-box algorithms on parallel hardware platforms. From a practical point, it is
important to decrease not only the number of iterations but also the total time for the iterative
solver. Therefore, it is a key point to perform the preconditioning step as fast and as cheap as
possible while maintaining the iteration reduction property.

3.5 Block Jacobi and Additive Schwarz Preconditioners

As we have shown in Section 2.5.4.1, the block Jacobi, restricted additive Schwarz (RAS) or
general additive Schwarz decouple the preconditioning matrix into sub-blocks. The obtained
sub-matrices can be computed in parallel. The level of parallelism is given by the number of
blocks in these schemes. The Jacobi preconditioner is one of the simplest preconditioners and
can be derived by increasing the number of blocks in the block-Jacobi case to the size of the
matrix.

The main disadvantage of these schemes is the lack of scalability � as the number of blocks
increases (i.e. the levels of parallelism) the coupling and thus the quality and the e�ciency of
the preconditioner decreases, see [61].

3.6 LU-based Preconditioners/Block-wise Sweeps

We propose to decompose the matrix into smaller blocks. In our context, the level of parallelism
is not determined by the number of blocks but by the number of elements per block. Our concept
for LU-based parallel preconditioners is to iterate over the blocks on the diagonal in a sequential
manner, where each block or block row is processed in parallel. The number and the size of
the blocks in the decomposition is derived by analyzing the matrix structure. We use matrix
re-ordering schemes in order to identify maximal independent sets of nodes and to eliminate
dependencies by multi-coloring or level-scheduling algorithm (which are considered later in this
section). Matrix decompositions are either additive (splitting-type methods) or multiplicative
(ILU-type methods). In the latter case, there is a pre-processing step for producing the matrix
factorization. Moreover, matrix re-orderings are performed in the pre-processing phase as well.
The idea of the matrix re-ordering schemes (also called permutation) is to re-number the nodes
of the matrix in order to obtain a new non-zero pattern. In some cases, during the factorization
process additional �ll-ins are permitted and are a necessary building block for maintaining matrix
couplings. Special measures are taken to control the �ll-in-pattern and to prevent �ll-ins into
the diagonal blocks.

To solve a triangular linear system, we need to perform a forward substitution. As an example,
in Figure 3.2 we present a lower-triangular matrix of size 3-by-3.
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Figure 3.2: Example of a 3-by-3 block-decomposed matrix with element/block-wise elimination
� with green we denote the inversion of the element/block; with red the elements/blocks which
are subtracted during the substitution; with orange � the already computed elements/blocks

We want to solve Lz = r for some given vector r. Thus we can perform the following three steps

z1 = L−1
11 (r1),

z2 = L−1
22 (r2 − L21z1),

z3 = L−1
33 (r3 − L31z1 − L32z2).

Note that this works not only for matrices of size 3-by-3 but also for block-matrices with 3-by-3
blocks. The only di�erence is in the inversion of the diagonal blocks L11, L22, L33. In the classical
forward substitution this is performed in a point-wise manner, while the block-wise version is
performed by matrix-vector multiplications and inversions. In the latter case, the major di�culty
is to provide an e�cient inversion of the diagonal blocks.

3.6.1 Additive Preconditioners

For splitting-type preconditioners we choose a block decomposition A = D + L + R where
D := diag(D1, . . . , DB) with square matrices Di of size bi × bi, i = 1, . . . , B, L is a strict lower
triangular matrix and R is a strict upper triangular matrix. The decomposition of the system
matrix A into 4 blocks (B = 4) is shown in Figure 3.3 (left).

Figure 3.3: Example of a 4-by-4 block-decomposed matrix � additive splitting for Gauss-Seidel-
type methods (left) and multiplicative splitting for ILU-type methods (right)

Thus, for the symmetric block-Gauss-Seidel (SGS) preconditioner we choose M := (D +
L)D−1(D + R) and solve the preconditioning equation Mz = r by the sequence (D + L)x = r,
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D−1y = x and (D +R)z = y. This translates to

xi = D−1
i (ri −

i−1∑
j=1

Li,jxj) for i = 1, . . . , B, (3.1)

yi = Dixi for i = 1, . . . , B, (3.2)

zi = D−1
i (yi −

B−i∑
j=1

Ri,jzi+j) for i = B, . . . , 1, (3.3)

with block vectors rk, xk, yk and zk of length bk, k = 1, . . . , B.

3.6.2 Sweeps Granularity

The bracket expressions on the right-hand sides of (3.1) and (3.3) now consist of i − 1 and
B − i matrix-vector products with vectors of length bj and bi+j , respectively. In total B2 sparse
matrix-vector products and 2B sparse matrix inversions are necessary to compute (3.1)-(3.3).
The vectors xk, yk and zk, k = 1, . . . , B are block vectors of length bk. For a block row-wise
execution the degree of parallelism in each step is bi (assuming parallel inversion of Di). The
value of bi is N/B for a uniform block size and is typically much larger than B.

The blocks in a block row can either be processed in a single step by means of a speci�c
kernel or can be processed one after another by calling standard SpMV and BLAS routines.
Sequential usage of data parallel BLAS1 and BLAS2 routines on each block has the same degree
of parallelism, i.e. the height bk of the block row. Although, instead of one kernel for the whole
block row, B SpMV kernels are called, the work complexity stays the same. We emphasize that
the usage of standard routines is a key point for a �exible implementation. This design decision
keeps maximal portability with respect to new platforms.

3.6.3 Multi-coloring and Parallel Sparse Triangular Solvers

The inversion of the diagonal blocks Di can be easily done when the blocks contain only diagonal
elements. Thus, we are looking for a permutation π of the matrix A which produces a block-
decomposed matrix with only diagonal elements in the diagonal sub-matrices. This can be
achieved by applying the multi-coloring algorithm as a preprocessing step. Triangular solvers
are then reduced to the inversion of diagonal matrices and matrix vector products, both of which
can be performed in parallel on each block level with a high degree of parallelism.

The basic idea of the multi-coloring approach is to resolve dependencies between neighboring
elements by introducing neighborship classes (colors) such that for non-zero matrix elements
ai,j ∈ NNZ(A) with A = (ai,j)i,j=1,...,N both indices i and j are not members of the same class
(color). A straightforward greedy algorithm for determining the colored index sets is Algorithm 5,
see [114]. Here, Adj(i) = {j 6= i | ai,j 6= 0} are the adjacent non-zero nodes to node i. By re-

Algorithm 5 Multi-coloring

for i = 1 to N do
Set color(i)=0

end for
for i = 1 to N do

Set color(i)=min(k > 0 : k 6=color(j) for j ∈ Adj(i))
end for

numbering the nodes by colors, the diagonal blocks Di become diagonal. Here B is the number
of colors and bk is the number of elements of color k. The inversion of the diagonal matrix then is
only a component-wise scaling of the source vector. Due to the data parallelism of the associated
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vector and matrix-vector routines there is no load imbalance even for varying block sizes (unless
the number of elements per block is too small compared to the number of parallel units). Based
on the index colors we can build π by re-ordering the nodes by groups of colors.

3.6.4 Multiplicative Preconditioners � Incomplete LU Factorization

A similar idea applies to ILU decompositions. Here, the matrix is decomposed into a product
A = LU + R of a lower triangular matrix L, an upper triangular matrix U and a remainder
matrix R. Typically, the diagonal entries of L are taken to be ones and both matrices are stored
in the same data structure (omitting the ones). As before, the matrix is further decomposed into
blocks as illustrated in Figure 3.3 (right).

In the preconditioning step, i.e. when solving Mz = r with M := LU , we have to perform
two triangular sweeps � the forward step Lx = r for the L-part and the backward step Uz = x
for the U -part. We can re-write these classical LU sweeps in block matrix-vector form by

xi = D−1
Li (ri −

i−1∑
j=1

Li,jxj) for i = 1, . . . , B, (3.4)

zi = D−1
Ri (xi −

B−i∑
j=1

Ri,jzi+j) for i = B, . . . , 1. (3.5)

The major di�culty in computing (3.4) and (3.5) arises from solving the diagonal blocks DLi and
DRi, which are usually non-diagonal themselves. In the following sections, we present di�erent
algorithms and techniques for handling these issues.

3.6.5 ILU(0) with Sparsity Pattern Based on the Original Matrix

Let a matrix decomposition A = LU + R be given with some sparse remainder matrix R. The
occupancy pattern of L and U in the ILU(0) decomposition is chosen such that no additional
elements are inserted into originally unpopulated positions. Additional elements are o�oaded
to the remainder matrix R. We are looking for a permutation π that re-arranges A in such a
way that we obtain only diagonal elements in its diagonal blocks DLi and DRi (cf. Figure 3.3
(right)). With this new representation, only easy matrix inversions in (3.4) and (3.5) have to be
done. The problem of �nding π can be solved by using the multi-coloring Algorithm 5 applied
to A.

3.6.6 ILU(p) with Fill-in Elements

The approximation quality of the ILU factorization depends on the sparsity pattern of the re-
sulting matrices. Therefore, in order to increase the quality of the factorization we can allow
further �ll-in elements in the factorization matrices. A common technique to control the �ll-ins
is to introduce levels. Each new element of the factorization process is associated with a certain
level p, see Algorithm 4, Section 2.5.2. The produced factorized matrices associated with the
p-level of �ll-ins are denoted by Lp and Up.

A di�culty that arises with the �ll-ins in the algorithm is to predict the new non-zero pattern
of the resulting factorization matrices for p > 0. There should be no �ll-ins into the diagonal
blocks. Without preliminary information on the distribution of the inserted elements, the costs
for allocating the memory and updating the matrix during the factorization construction by
means of dynamical data structures can be signi�cant. Unfortunately, there is no general answer
about the way in which the multi-coloring method a�ects the locality structure of a speci�c
matrix. In most implementations, the incomplete factorization with �ll-ins is constructed in
two phases � algebraic step (determines the sparsity pattern) and numerical step (performs the
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factorization). There are few works discussing the behavior of the matrix structure based on
levels and the way to build this structure in parallel, see [65, 116]. As before, our aim is to
provide an easy inversion of the diagonal blocks DLi and DRi which are non-diagonal in general.

3.6.7 Level-scheduling Algorithm

We want to perform the forward step (3.4) and the backward step (3.5) for the ILU(p) factor-
ization with �ll-ins in parallel. However, due to the �ll-ins, the sparsity patterns of Lp and Up
do not correspond anymore to the sparsity pattern of A. Multi-coloring on the level of the Lp
and Up matrices cannot be applied because this would destroy their upper and lower diagonal
structure (no exchange of elements is allowed over the diagonal). Therefore, we need to sort the
unknowns in such a way that the i-th equation depends only on the previous i − 1 unknowns.
This method is called topological sorting. The level-scheduling algorithm proposed in [114] is
based on this method and has linear time complexity. The level-scheduling algorithm for a lower
triangular matrix given in Algorithm 6 de�nes levels of depth for all rows i = 1, . . . , N corre-
sponding to a node i in the adjacency graph and to the variable i, respectively. Then we can

Algorithm 6 Level scheduling algorithm

Let A = (ai,j) be a lower triangular matrix
for i = 1 to N do

depth(i) = 1 + maxj{depth(j) for all j with ai,j 6= 0}
end for

create a permutation matrix π that groups all the nodes with the same depth. The degree of
parallelism is given by the number of elements per block, i.e. the number of nodes with the same
depth, where the matrix is processed block after block.

Simple tests on a suite of matrices show that the number of levels produced by the level-
scheduling algorithm is quite high, see Section 5.3.3. Slightly better results can be obtained if
the ILU(p) factorization is preformed after a multi-coloring step and level-scheduling is applied
afterward. This additional step decreases the number of levels in comparison to the version
without multi-coloring permutation. However, in many cases this improvement is not signi�cant.

In the general case, where NNZ(Lp) 6= NNZ(UTp ), the decomposition requires two permuta-
tions � π1 for the Lp part and π2 for the Up part. This is a necessary step, otherwise the solutions
of the Lp and Up sweeps are incompatible. Thus, we need to permute the matrix A (or make
indirect indexing) during the preconditioning phase. This is in contrast to the multi-colored
ILU(0) where the permutation is appliesd as a pre-processing step.

To the best of our knowledge, there are few works on that, see [98, 114, 115]. Regardless of the
implementation, the number of levels of the resulting matrix is relatively high which decreases
the level of parallelism signi�cantly. In our approach, the number of SpMV in the triangular ILU
solver scheme is B2−B, where B is the number of blocks (i.e. levels) which can be processed in
parallel. Therefore, the number of levels should be kept as low as possible (to prevent function
call overheads for small sub-matrices) and the number of elements per level should not be too
small.

3.6.8 Power(q)-pattern Method

For the parallel solution of the ILU(p) sweeps with �ll-ins we propose the power(q)-pattern
method. The main idea is to produce a block matrix structure with only diagonal elements in
the diagonal blocks after the factorization. In this subsection we derive an upper bound for the
non-zero pattern of the modi�ed matrix factorization.

The produced non-zero pattern of the ILU(p) factorization matrix with level-based �ll-ins
looks very similar to the sparse matrix-matrix multiplication pattern. This leads to the observa-
tion that the non-zero sparsity pattern after the factorization of ILU(p) grows like |A|p+1, where
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|.| denotes the element-wise modulus of the matrix, i.e. |A| = (|ai,j |). Inspired by this fact, we
can restrict the non-zero pattern of the factorization to the pre-determined pattern of |A|p+1,
see [62]. A modi�cation of the original algorithm is presented in Algorithm 7.

Algorithm 7 Power(q)-pattern enhanced ILU(p,q) with q = p+ 1
Determine sparsity pattern NNZ(|A|p+1) of matrix power |A|p+1

Set lev(ai,j) = 0 for all non-zero elements ai,j ∈ NNZ(A), lev(ai,j) =∞ otherwise
for i = 2 to N do
for k = 1 to i− 1 and (i, k) ∈ NNZ(|A|p+1) with lev(ai,k) ≤ p do
ai,k = ai,k/ak,k
for j = k + 1 to N and (i, j) ∈ NNZ(|A|p+1) do
ai,j = ai,j − ai,kak,j
lev(ai,j) = min(lev(ai,j), lev(ai,k) + lev(ak,j) + 1)

end for
end for
for j = 2 to N do
if lev(ai,j) > p then
delete ai,j

end if
end for

end for
Delete all entries ai,j where ai,j = 0 (compress the matrix due to possible erasement)

This variation of the original ILU(p) scheme (cf. Algorithm 4) ensures that �ll-ins up to level
p only appear in positions determined by the sparsity pattern of |A|p+1. Moreover, in comparison
to the original ILU(p) algorithm, the two inner loops are restricted to a few values that are known
in advance. Consequently, building the ILU decomposition can be done much faster. There is no
more need to run the full inner loops and to insert elements in a dynamic data structure. And
not less important, by constructing the factorization in this way we have a full control over the
sparsity patterns of the factor matrices Lp and Up. More precisely, we �nd:

Proposition 3.6.1. Let Lp and Up be the output of the power(q)-pattern enhanced ILU(p,q)
decomposition of the matrix A with q = p + 1 as detailed in Algorithm 7. Then we have
NNZ(Lp) ∪NNZ(Up) ⊆ NNZ(|A|p+1).

Proof. The assertion follows by construction. New elements in Lp and Up can only occur in
positions already populated in |A|p+1.

In case p = 0 or p = 1 there is no di�erence in the factorization results between Algorithm 7
and the original ILU(p) Algorithm 4. For p ≥ 2 the original algorithm might produce slightly
larger non-zero patterns for general sparse matrices. However, for all of the cases we study, the
power(q)-pattern enhanced ILU(p,q) algorithm with q = p+ 1 produces the same matrix factors
as the original ILU(p) algorithm.

By the next proposition we see that the matrix pattern can be further in�uenced and controlled
by a multi-coloring step.

Proposition 3.6.2. Let A = (ai,j)i,j=1,...,N be a matrix with non-zero elements on its diagonal,
i.e. ai,i 6= 0 for i = 1, . . . , N . Let π be the permutation matrix based on the multi-coloring
algorithm applied to the matrix |A|q for an integer q ≥ 1. Then, for every positive integer l ≤ q,
the matrix transformation π|A|lπ−1 results in a block-decomposed matrix where the diagonal blocks
have non-zero elements on their diagonals only.

Proof. With π given by the multi-coloring permutation for input |A|q, we de�ne Â := π|A|qπ−1.
This is a block-decomposed matrix with only diagonal elements in its diagonal blocks. With
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Ã := π|A|π−1 we �nd Ãq = Â and Ãl = π|A|lπ−1 for all l. We also �nd |Ã| = Ã. If a
positive matrix element bn,m of a non-negative matrix B = (bi,j)i,j=1,...,N is given and the non-
negative matrix C = (ci,j)i,j=1,...,N has positive diagonal elements, i.e. ck,k > 0 for all k, then
the corresponding element (BC)n,m of the matrix product BC is positive due to (BC)n,m =∑

k bn,kck,m ≥ bn,mcm,m > 0. By this, for l, q integers, we conclude

NNZ(Ã) = NNZ(|Ã|) ⊆ NNZ(|Ã|l) = NNZ(Ãl) ⊆ NNZ(|Ã|q) for all 0 < l ≤ q

and so we �nd

NNZ(πAπ−1) ⊆ NNZ(π|A|lπ−1) ⊆ NNZ(π|A|qπ−1) for all 0 < l ≤ q.

Hence, πAπ−1 and π|A|lπ−1, 1 ≤ l ≤ q, are block-decomposed matrices where the diagonal
blocks have only diagonal elements.

Now, we combine Proposition 3.6.1 and Proposition 3.6.2 to formulate

Proposition 3.6.3. Let A = (ai,j)i,j=1,...,N be a matrix with all non-zero elements on its diag-
onal, i.e. ai,i 6= 0 for i = 1, . . . , N . Let π denote the multi-coloring permutation based on the
matrix |A|p+1 and Aπ := πAπ−1 be the resulting block-decomposed matrix with only diagonal
elements in its diagonal blocks. Then the power(q)-pattern enhanced ILU(p,q) factorization with
q = p+ 1 given by Algorithm 7 applied to Aπ produces two block-decomposed factorized matrices
Lp and Up which have only diagonal elements in their diagonal blocks. Fill-ins occur only outside
the diagonal blocks.

Proof. By Proposition 3.6.2 the matrix Aπ is a block-decomposed matrix with only diagonal
elements in its diagonal blocks. By applying Algorithm 7 to Aπ we obtain matrix factors Lp and
Up with NNZ(Lp) ∪ NNZ(Up) ⊆ NNZ(|Aπ|p+1) due to Proposition 3.6.1. Since |Aπ|p+1 =
π|A|p+1π−1 has o�-diagonal elements equal to zero in its diagonal blocks, both matrices Lp and
Up have no �ll-ins in its diagonal blocks.

Application of Proposition 3.6.3 results in the following Algorithm 8, the power(q)-pattern
enhanced multi-colored ILU(p,q) method. In the general case q is taken as q = p + 1. Later, we
consider also the case 0 < q ≤ p.

Algorithm 8 Power(q)-pattern enhanced multi-colored ILU(p,q) method with re-arranged �ll-
ins for parallel triangular sweeps

Building of power(q)-pattern enhanced multi-colored ILU(p,q)
Perform multi-coloring analysis for |A|q with q = p+ 1 and obtain

� corresponding permutation π
� the number of colors B
� local block sizes bi

Permute Aπ := πAπ−1

Apply modi�ed ILU(p,p+ 1) factorization (cf. Algorithm 7) to Aπ
Obtain factor matrices Lp and Up with only diagonal elements in diagonal blocks

�no further �ll-ins into diagonal blocks

Perform parallel forward/backward sweeps
Perform parallel triangular sweeps(3.4) and (3.5)

� use given number of colors B and local block sizes bi

This algorithm produces a block-decomposed system that constructs the ILU problem for
parallel execution of the forward and backward sweeps. Compared to the original multi-coloring
scheme (applied to A instead of |A|p+1) further couplings are maintained by �ll-in elements



36 PARALLEL LINEAR ALGEBRA, SOLVERS AND PRECONDITIONERS

(outside of diagonal blocks) and additional colors are used. But in practical applications, the
number of colors is typically much lower than the one obtained by the level-scheduling algorithm.

3.6.8.1 Building Phase Complexity

As in many algorithms for fast incomplete factorization (see [13, 65, 81, 116]), we also split
the process by performing an algebraic phase and a numerical factorization. However, in the
proposed power(q)-pattern enhanced multi-colored ILU decomposition scheme, the factorization
corresponds only to the building of the sparsity pattern of the matrix |A|q. To perform this step
in parallel is simpler than to perform the algebraic phase of the ILU(p) factorization. Details for
sparse matrix-matrix multiplication algorithms can be found in [13, 14].

After the new matrix structure is determined, the numerical factorization is performed. For
the standard schemes and for the power(q)-pattern method, this procedure is the same. This
process has linear complexity with respect to the number of non-zero entries produced in the
algebraic phase.

In previous work for symmetric problems [65, 81], it has been shown that the complexity of
the process which produces the new structure is linear with respect to the number of non-zero
entries in the factorized system. In the power(q)-pattern method, the production of the new
sparse matrix is also linear with respect to the number of unknowns � for the sparse matrix-
matrix multiplication we follow [14]. Furthermore, [65, 81] show that the complexity is not
optimal for non-symmetric matrices. This is not the case in the power(q)-pattern method � the
complexity of the non-symmetric and the symmetric case is based only on the sparse matrix-
matrix multiplication (which is linear with respect to the new non-zero elements).

3.6.8.2 Pivoting

Another di�erence when comparing the original ILU algorithm to the power(q)-pattern method
is the permutation of the matrix before the factorization, which is based on the topology of the
graph and not on the actual values.

One of the drawbacks of the ILU decomposition is the possible breakdown of the procedure
when pivoting is not applied [114]. For some matrix types (e.g. diagonally dominant matrices),
a proper processing of the decomposition is ensured without pivoting. Point-wise pivoting is
not possible for the proposed power(q)-pattern enhanced multi-colored ILU(p, q) scheme because
this destroys the block-diagonal structure of the factorization. In the power(q)-pattern method,
we can apply a permutation based on the multi-coloring decomposition of the factorization �
we are free to order the sub-blocks in the matrix as we want. The blocks could be selected by
introducing a norm over the sub-blocks.

3.6.8.3 Cholesky Decomposition

The proposed power(q)-pattern method can also be applied for obtaining the symmetric Cholesky
decomposition described in [114]. The sparsity pattern is produced in the same manner, only
the factorization process has to be adapted for the symmetric case. We need to solve Mz = r,
where M := LLT and thus we can re-write the substitutions as follows

xi = D−1
Li (ri −

i−1∑
j=1

Li,jxj) for i = 1, . . . , B, (3.6)

zi = (DT
Li)
−1(xi −

B−i∑
j=1

LTi,jzi+j) for i = B, . . . , 1. (3.7)

Here, the factorized matrix has the same structure as in Figure 3.3 but we work only with the
lower-triangular part of it.
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3.6.8.4 Another Viewpoint of Sparsity Pattern

Algorithm 7 can be seen as control of a pattern similar to the pattern growth of the approximation
to the inverse matrix based on matrix-valued Chebyshev polynomials (2.23). In the power(q)-
pattern method, the produced structure after the factorization is a subset of the |A|p+1, see
Proposition 3.6.1. The approximate inverse Chebyshev polynomial grows in a similar way, namely
the pattern can be expressed by

∑p+1
i=1 A

i which can be deduced from (2.22).

3.6.9 Increasing Parallelism by Drop-o� Techniques

We can increase the degree of parallelism by deleting selected elements on designated places of
the obtained factorization matrices Lp and Up. We address two techniques � one for the level
scheduling algorithm, and another one for the power(q)-pattern enhanced multi-colored ILU(p,q)
method. Of course, deletion of a large number of elements should be handled carefully because
it comes at the expense of preconditioning e�ciency and the convergence of the iterative solver
is typically harmed.

Level-scheduling The elements to be deleted can be selected within a given radius from the
main diagonal of a prede�ned matrix structure (e.g. given by multi-coloring permutation applied
to the original input matrix). In this case we can de�ne a threshold value so that all elements
below this threshold are to be deleted. As an observation, this technique increases the level of
parallelism only a little but the e�ciency of the preconditioner is decreased in most of the cases.

Power(q)-pattern The number of colors in the power(q)-pattern enhanced ILU(p,q) method
can be arti�cially decreased by choosing a smaller exponent q < p + 1 for determining the
upper bound of the sparsity pattern. With multi-coloring based on |A|q with q < p+ 1 and the
modi�ed ILU(p) applied, �ll-ins into the diagonal blocks are possible. These �ll-in elements are
selected for deletion. The e�ect of the drop-o� strategy on the number of iterations for the CG
solver and the non-zero pattern of the factorized matrix for some sample matrices is presented in
Section 5.3.3. Note, that the number of SpMV grows quadratically with respect to the number
of colors obtained for the forward and backward steps (of course, the size of the matrices gets
smaller). Therefore, the choice q = p+1 is no longer suitable for large p. For GPU computations,
there is a considerable overhead for invoking a huge number of kernels (e.g. for matrix-vector
operations) and thus the number of operations should be kept low, see Chapter 5.

3.6.10 Comparison of Power(q)-pattern and Level-scheduling Method

Building step Both of the algorithms work in a di�erent way. The level-scheduling algorithm
is applied after the factorization process as an analyzing step of the elimination dependency
while the power(q)-pattern enhanced ILU(p, q) method builds the factorization structure in a
particular way before performing the factorization step.

Degree of Parallelism The power(q)-pattern enhanced ILU(p, q) method is based on a multi-
coloring decomposition of the structure of the matrix |A|q. For all q ≥ 0, this matrix represents
a form of topological connectivity for a di�erential operator and a discretization scheme. This
decomposition is independent of the problem size, i.e. the connectivity pattern is not a function
of the grid size. However, the level-scheduling algorithm relies on the elimination process of
the triangular system which is a function of the problem size. Thus, we can conclude that
by increasing the size of the problem the level-scheduling method keeps decreasing the level of
parallelism while the power(q)-pattern enhanced ILU(p, q) method keeps it constant. A numerical
example underlining this observation is considered in Section 5.3.6 and 5.4.6.
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Permutation As pointed out, in general, after the factorization the non-zero patterns of the
lower and the upper triangular matrices can be di�erent. This requires extra work for the level-
scheduling algorithm. The level-scheduling solver has either to perform irregular access over a
special index set which describes the dependency (this produces an overhead) or to permute the
vectors twice (which is expensive). On the other hand, the power(q)-pattern enhanced ILU(p, q)
method requires only one single permutation which can be performed as a pre-processing step.

Pivoting In the case of level-scheduling scheme, to avoid breakdown of the factorization due to
zero or close to zero elements, the user can apply elements pivoting before the factorization pro-
cess while in the power(q)-pattern enhanced ILU(p, q) method, the re-ordering have to performed
only on the decomposed-color blocks.

3.7 Approximate Inverse Preconditioners

As an explicit type of preconditioner, the approximate inverse requires only a matrix-vector mul-
tiplication in order to solve the preconditioning step. In this respect this kind of preconditioner
is naturally parallel.

3.8 Other Parallel Preconditioning Techniques

3.8.1 Support-tree/Vaidya Preconditioners

Support-tree/Vaidya preconditioners provide parallel solving phase of the preconditioning equa-
tion [23, 25, 26, 27, 28]. However they are limited to diagonally dominant symmetric matrices.
Our goal is to provide more generic techniques. Nevertheless, we believe that for some sym-
metric and diagonally dominant matrices these preconditioners can provide e�cient and parallel
schemes suitable for the multi-core and many-core platforms.

3.8.2 Schur Complement Preconditioners

In contrast to the block Jacobi/additive Schwarz preconditioners, the Schur complement handles
also the couplings with the other sub-blocks of the problem. The size of the skeleton-matrix (the
matrix providing the couplings of the sub-blocks) grows with the number of sub-blocks. This
leads to an unbalanced level of parallelism. Thus, on homogeneous parallel devices this algorithm
does not provide uniform load to all compute units. However, heterogeneous platforms could
bene�t from this scheme if the skeleton-system can be e�ciently solved on them, which results
in a problem-speci�c solution procedure.

3.8.3 Hierarchical Matrix Preconditioners

Preconditioners based on the approximate inverse with hierarchical matrices as well as standard
approximate inverse preconditioners can be applied e�ciently in parallel, see [17, 32, 55]. The
LU-decomposed preconditioners with hierarchical matrices are processed with triangular solvers,
which cannot be executed in parallel and thus are not suited for parallel devices.

3.8.4 Tridiagonal Preconditioners

Parallel algorithms for solving tridiagonal systems based on cyclic reduction and recursive dou-
bling are presented in [48]. These parallel solvers have logarithmic complexity in comparison
to their sequential versions which have linear complexity. In the general case of solving non-
tridiagonal systems, we can use a tridiagonal approximation to the matrix as a preconditioner.
Thus, we can consider it as a part of the splitting preconditioner (e.g. Jacobi and Gauss-Seidel).
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But as such, this scheme has a limited impact as preconditioner. However, [48] showed that the
line-wise smoother has a good smoothing properties for locally structured matrices in the context
of multi-grid solvers.

3.8.5 Iterative Schemes as (Non-)Constant Preconditioners

It is not common practice to use standard iterative solvers (e.g. Gauss-Seidel iterations) as pre-
conditioners � this is mainly because although we decrease the number of iterations of the outer
solver, the total computation time typically grows. However, there are some cases when the inner
solver (the preconditioning solver) is fast but cannot provide high accuracy. Thus, it can be used
as an acceleration technique � examples for that are multi-grid methods, Chebyshev-iteration
and low precision solvers combined with a defect correction step. In many cases, due to the
large number of parameters, the multi-grid solver can be used less tuned as a preconditioner. An
implementation of a multi-grid solver in a BiCGStab can be found in [48]. If the spectrum of the
matirx A is known, then a Chebyshev-iteration can be used as an acceleration scheme. In some
cases, it is possible to represent the matrix in a low precision format (which is typically faster to
compute) and via defect correction scheme to use the lower precision system as a preconditioner.
The main problem here is to determine when it is possible to transfer the problem into a lower
precision representation. Related results on GPU devices can be found in [6, 7, 8, 110].
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Chapter 4

Local Multi-Platform Linear Algebra
Toolbox in HiFlow3

In this chapter, we present our concept and implementation of the multi-platform linear algebra
toolbox for sparse iterative solvers. We give a brief introduction to the current microprocessor
technologies. We make an overview of the memory access model and the key object methods
that help us to build e�cient preconditioners and solvers for various platforms. We also explain
how this design helps us to maintain a single source code program.

4.1 Emerging Multi-core and Many-core Devices

In this section, we give a brief overview of the current microprocessor technologies focusing
on Central Processing Units (CPUs) and Graphical Processing Units (GPUs). In addition, we
provide a basic information about the programming models and languages speci�cations for these
devices.

4.1.1 Central Processing Unit

The CPU is capable to perform not only general purpose operations (e.g. reading/writing from
a hard disk, accessing an ethernet device, etc) but also �oating-point operations. Modern CPU
devices contain several cores (typically 2 to 12) which share di�erent levels of cache. Several
processors can be combined on a single motherboard that has a common address space. The
memory system with respect to the organization can be uniform, called Uniform Memory Access
(UMA), or non-uniform, called Non-uniform Memory Access (NUMA). In the �rst case, the
memory is uniformly accessible from all CPUs. In the second case, each CPU has an attached
memory which can also be accessed from the other CPUs. This results in di�erent bandwidth
and latency when accessing local or remote memory.

One of the most popular programming models for programming multi-core devices is the fork-
join approach. With this technique, a loop-based section can be accelerated by splitting the work
into several partial loops and performing them in parallel. For a shared memory system, the
most common programming language is Open Multi-Processing (OpenMP) [106]. Based on it,
we can declare a parallel section where the compiler takes care of the proper spawn and control
of the threads. OpenMP is in contrast to the Pthreads [68], where the programmer is responsible
for launching and controlling the threads.

4.1.2 Graphics Processing Unit

Accelerator boards have been used for a long time to speed up the computation of many scienti�c
applications. In the last few years, GPU devices are also making an impact in this sector.
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Originally, for graphics visualization the GPUs were designed to perform a large amount of
integer operations in parallel. But now GPU devices are capable to perform integers and �oat-
point (single and double precision) operations. Thus, these devices have been transformed to a
General Purpose platforms (GP-GPU). They are highly-parallel (containing hundreds of cores)
and designed to work with stream programming models. In the NVIDIA cards, each processing
unit consists of eight cores [100]. All threads in this processing unit can access small and fast
memory called shared-memory. This memory is manual, i.e. the programmer is responsible for
copying data from the global memory to the shared-memory in order to use it. Additionally,
NVIDIA GPUs also provide texture memory which can be used as a read-only cache. This
memory is very small � only few KBytes which is in contrast to the CPUs where caches are of
order of MBytes.

The GPUs are based on stream programming model since they are highly-parallel devices
without explicit communication among the compute units. These architecture and programming
model are very di�erent from the well-established CPU models using sequential or fork-join
parallel techniques. The stream model is based on data-parallelism and does not provide global
synchronizations or communication mechanisms in the threads. However, some languages (as
CUDA [100] and OpenCL [78]), provide locally barrier mechanism which works for a group of
threads. The most remarkable feature of this model is that it is naturally parallel.

4.1.3 Upcoming Technologies

The next generation of microprocessor technology is hard to predict. However, it is reasonable to
generalize that processors designed for high-performance computing tend to have large amount
of cores and small local memory [9]. This can be seen from the announced devices as Intel MIC
[72] and Intel SCC [74].

In the future of parallel programming models, there remain many open questions about mem-
ory transaction, locality and recursive calls, but one thing is certain � the models have to be
scalable. Following the work of [96], we believe that future programming models will include
some form of stream base models with extensions for speci�c hardware architectures.

4.2 HiFlow3

HiFlow3 is a multi-purpose �nite element package for solving wide range of problems modeled
by PDEs, see [4, 64]. It is based on the mesh, Degree of Freedom/FEM (DOF/FEM) and Linear
Algebra Toolbox (LAToolbox) modules. The software stack is written in C++ and it provides
modular techniques which give high �exibility. In order to solve large scale problems e�ciently,
the software stack has been designed to be highly-parallel. Special focus is the hardware-aware
computation of the solvers in HiFlow3. The LAToolbox module handles the basic linear algebra
operations and o�ers linear solvers and preconditioners. It is implemented as a two-level library.
The global level is an MPI-layer which handles the distribution of the data among the nodes and
performs cross-node computations. The local level (local multi-platform LAToolbox) takes care
of the on-node routines, o�ering an interface independent of the speci�c platform. It supports
di�erent types of parallel platforms and handles di�erent programming models for using them.
In this section we present its concepts, structure and implementation aspects.

4.3 Goal and Design

The goal of the local multi-platform Linear Algebra Toolbox (lmpLAToolbox) is to provide a
complete set of generic and portable routines and/or interfaces to them for di�erent parallel
platforms.
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The core of the module are two classes - vectors and matrices. The vector object contains
the vector data and provides all vector routines/interfaces (e.g. vector update, scaling, rotation,
scalar product, etc). Similarly, the matrix object contains the matrix data in sparse format and it
provides all matrix routines (matrix-vector multiplication, matrix-matrix multiplication, scaling
functions and etc).

4.3.1 Abstraction

The main concept for this library is based on abstraction. As in the object-oriented principle,
each vector/matrix object can be manipulated only via its interface. This interface contains
all the necessary vector-vector, matrix-vector and matrix-matrix operations. The solvers and
preconditioners are built using only the interface with these objects and so it is abstracted from
any particular platform or implementation. Every platform can be added by just contributing
the speci�c backend and providing all matrix and vector routines via the de�ned interface.

The implementation of this abstraction is to ensure portability of the solver over the vari-
ety of di�erent parallel platforms and parallel languages. The solvers are independent of any
particular implementation, platform or format representation. Even more, the matrix format
is irrelevant of the solving of the preconditioning phase. This is possible due to the way in
which the preconditioning phase is performed, see Section 3.4. In contrast to that, typically, a
special matrix format (e.g. CSR) is necessary for the forward and backward substitutions in the
LU-based preconditioners, see [73, 99, 114].

4.3.2 New Hardware/Languages and Development Cycles

The driving force for developing this library is the ability to use it and maintain it over the next
generations of parallel many-core devices. Our experience shows that the development cycle of
a complex and sophisticated numerical scheme and its implementation is much longer than the
production cycle of parallel microprocessors. If not designed properly, the implementation of a
numerical solver will only run e�ciently and be fully utilized on speci�c hardware. By trying
to perform our algorithm in parallel on a suitable system, we face also a variety of di�erent
paradigms and languages for programming these hardware.

Therefore, our aim is to provide a generic, portable and �exible framework for performing
preconditioned sparse iterative linear solvers with a good e�ciency and scalability.

4.4 Structure of lmpLAToolbox

In Figure 4.1 the structure of the hierarchy in the lmpLAToolbox is presented. Each matrix/vec-
tor class has its base class, followed by a platform-management class which takes care of the mem-
ory allocation, placement and access for all the available platforms. The platform-management
class (called data management level) inherits its interface from the base class. It is responsi-
ble for the data transfers among the di�erent backends (e.g. CPU-GPU and GPU-CPU com-
munication). Each particular and platform-speci�c implementation is inherited from the data
management class. The base class for each vector and matrix object provides complete interface
for all routines and operations. Typically, the lmpLAToolbox is used only by the interface of
the pointers to the base classes. Detailed information can be found in [4, 57], an example of a
preconditioned CG solver is presented in Appendix A. In this way we do not have to specify any
particular platform � the decision for the platform and implementation can be taken at run-time.

Via the base class interface, each matrix or vector object can perform one of the following:

• Execute vector/matrix operations with itself or objects on the same platform (not neces-
sarily with the same implementation).
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Figure 4.1: The local multi-platform linear algebra toolbox (lmpLAToolbox)

• Clone itself, e.g. create an object based on the same platform and implementation.

• Copy its data (matrix/vector) to a similar or di�erent object on a di�erent platform and/or
implementation.

• Use advanced data techniques such as vector splitting, vector concatenating, or data ex-
traction based on irregular patterns.

• Call routines for pre-processing steps such as I/O to �les, incomplete LU factorization,
graph analysis, permutation and assembling routines on the CPU classes.

The current version of the library is based on (but not limited to) the CSR matrix format,
see [15, 114]. This format has been chosen because of the easy access in the pre-processing
steps (e.g. graph analyzing and decomposition routines) and because of its good performance
behavior for general sparse matrices. The symmetric matrices are stored and handled as in the
general non-symmetric case. The library supports also zero size vectors and matrices (i.e. empty
vectors/matrices) which are mainly used in the preconditioners.

4.4.1 Memory Access

By using only pointers to the base class and working only with its interface, the user has no raw
access to the data of the objects. Direct access to the platform data can be obtained by the
platform speci�c classes. Thus we need to make an explicit declaration of a particular type of a
vector or a matrix.

For periodic irregular memory accesses (e.g. exchange of the ghost values, see Section 4.6),
the library provides a special index set in the vector classes. With this index set, the user can
specify a particular set of values (non-contiguous in memory) of the vector and then by a single
function the values can be extracted in a CPU bu�er. This technique provides special bu�ering
mechanisms which is very powerful for devices attached via high-latency bus (e.g. GPU devices
on PCI bus), see [57]. An example is consider later in Chapter 5

Operations such as assembling of the sti�ness matrix and the right-hand side (see (2.10) and
(2.11)) can be done in the CPU-based classes via the global interface.

4.4.2 Di�erent Backends

The lmpLAToolbox can be seen as an interface to speci�c backends. The major task of the
library is to take care of the memory management between di�erent platform. Furthermore,
it provides implementations of the vector-vector and sparse matrix-vector routines for several
platforms. The rest of the functions are interface to libraries (e.g. ATLAS [10], CUBLAS [101],
etc).
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4.4.2.1 CPU

This is the largest backend with respect to functionality. Here, we provide a sequential version
and an OpenMP parallel implementation of the major part of the BLAS routines. This backend
has extra functions which are designed for pre-processing steps: I/O to �les, ILU factorization,
graph analysis (e.g. multi-coloring, level-scheduling, (reverse) Cuthill-McKee ordering [38]) and
permutation routines. The CPU-backend also provides assembling routines for building sparse
matrices and vectors. Furthermore, the library provides interface to the ATLAS/MKL library,
see [10, 73].

4.4.2.2 GPU/NVIDIA

The NVIDIA GPU backed is based on the CUDA programming language, see [100]. The vector
routines in the lmpLAToolbox are executed via the CUBLAS library (see [101]) and the sparse
matrix-vector routines are implemented accordingly to [16, 19]. The backend provides tuning
features like speci�c device allocation, texture caching and block sizes.

4.4.2.3 OpenCL

With the OpenCL (see [78]) backend we target a larger variety of parallel platforms � current
CPU/GPU platforms and future systems compatible with a stream based model. However, for
many platforms the library provides platform-speci�c optimized routines for better performance
� reduction based routines are implemented in di�erent ways for ATI GPUs, NVIDIA GPUs and
Intel/AMD CPUs.

4.4.2.4 Others

As mentioned before, the library is open for further extensions. Currently, for in-house use, we
have developed a multi-precision backend based on the GNU MP library [47].

4.5 Portable Linear Solvers and Preconditioners

Due to the �exibility of the library and the way it can be used, we can build full-parallel schemes
(platform-independent) or hybrid-parallel schemes (with partially platform speci�c routines).

4.5.1 Full-parallel Schemes

The full-parallel solvers provided by the library are multi-grid, CG and BiCGStab. An example
of a CG solver is presented in Appendix A, see [57]. However, the developer is free to develop
his/her own full-parallel algorithms. The preconditioning step is one of the most frequently
executed routines. In order to provide good scalability, the library handles all the precondi-
tioners (i.e. additive, multiplicative based on level-scheduling or power(q)-pattern method, and
approximate inverse) in a full-parallel manner. The library supports classical additive methods
such as Jacobi, (symmetric) Gauss-Seidel, (symmetric) SOR based on multi-coloring decompo-
sition; multiplicative methods such as incomplete LU decomposition based on level-scheduling
or power(q)-pattern method; approximate inverse � FSAI method. For these preconditioners,
the solving phases are considered in Section 3.4. As an example, in Algorithm 9 we present
pseudo-code of the parallel sweeps for multi-colored symmetric Gauss-Seidel preconditioners.
Benchmarks are presented in Chapter 5.
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Algorithm 9 LU-sweeps for solving Mz = r for symmetric Gauss-Seidel

Split and copy vector r into zi i = 1, ..., B, where B = numcolor or numlevels

Forward step zi := D−1
i (zi −

i−1∑
j=1

Li,jzj) for i = 1, . . . , B

Diagonal step zi := Dizi for i = 1, . . . , B

Backward step zi := D−1
i (zi −

B−i∑
j=1

Ri,jzi+j) for i = 1, . . . , B

Concatenate vector zi into z

4.5.2 Hybrid-parallel Schemes

The library also allows us to develop hybrid-parallel schemes � a typical example of this is the
implementation of the GMRES solver. All the vector-vector and matrix-vector routines can be
executed in parallel. But due to the computation of the Hessenberg matrix the platform performs
all of the sequential steps on the CPU, see [58, 114]. Numerical experiments and benchmarks
are considered in Chapter 5.

4.6 lmpLAToolbox on Heterogeneous HPC Clusters

The LAToolbox in HiFlow3 is a two-level library � a global MPI-layer which handles computation
and communication over the nodes, and a local layer which performs the actual vector or matrix
routines (lmpLAToolbox). The LAToolbox in HiFlow3 is an example, of the way the local
multi-platform toolbox can be used in a global environment context. In this case, the global
layer manages the global scatter and gather operations � reduction-based routines and sparse
matrix-vector multiplications, see [4, 57].

A typical domain distribution is presented in Figure 4.2. To perform the SpMV on the
global level, we need to perform a local SpMV and to add the contributing couplings from the
neighboring domains. In this example, the process P0 owns the interior nodes (nodes locally for
this process) and it needs to obtain the ghost nodes (nodes which do not belong to this process)
from the other processes (P1, P2 and P3). In the �gure, we denote the interior of the blocks
(diagonal elements) with green. With blue, violet and red colors are denoted the ghost layers
(o�-diagonal elements) which need to be exchanged during the SpMV.

P0

P1

P2

P3

Figure 4.2: Example of a domain partitioning of 4 blocks � with green we denote the DOF of
process P0 and the remaining DOF represent the inter-process couplings for process P0

The algebraic procedure for computing the multiplication can be split into two parts � com-
putation of the diagonal block and computation of the contributions from the o�-diagonal parts,
see Figure 4.3. To minimize the computation time, we overlap the communication step with the
computation of the diagonal block, see Algorithm 10. As we have discussed above, the lmpLA-
Toolbox provides special global functions for extracting these values disregarding the platform
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Figure 4.3: Distributed matrix-vector multiplication

Algorithm 10 Distributed matrix vector multiplication y = Ax

Start asynchronous communication � exchanging ghost values;
yint = Adiag xint;
Synchronize communication;
yint = yint +Aoffdiag xghost;

choice. Thus, we can even combine di�erent backends on a cluster. Performance benchmarks
are presented in Chapter 5, details can also be found in [4, 58, 57].
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Chapter 5

Numerical Experiments and
Performance Analysis

In this chapter, we give a qualitative performance analysis of parallel linear solvers and pre-
conditioners on a variety of problems. First, we consider the Poisson and convection-di�usion
problems. For the Poisson problem we present performance results for the preconditioned CG
method and for the multi-grid solver on a 2D L-shaped domain with a locally re�ned grid. The
convection-di�usion equation is solved with preconditioned GMRES. We present results that
demonstrate the impact of the physical dimensions (2D, 3D) and choice of the �nite element
spaces (linear, quadratic) on the multi-coloring decomposition. Furthermore, after factorization,
we investigate the sparsity patterns for the level-scheduling and power(q)-pattern method. We
show the execution behavior of the preconditioned solvers applied to di�erent matrix problems.
These tests show the strength of the power(q)-pattern method and the ability to use it as an
out-of-the-box scheme. For the preconditioned solvers we present the impact on the number of
iterations as well as on the total computational time on multi-core CPU and GPU devices.

5.1 Problems Description

5.1.1 Poisson Equation

The Poisson equation is a second order elliptic PDE of the form

−∆u = f in Ω,
u = uD on ∂Ω,

(5.1)

where Ω ⊆ Rd is a domain, d = 1, 2, 3 and ∆ is the Laplace operator.

For a physical interpretation of this equation we refer to the potential theory [121]. As an
example, we can consider u as a function which represents the electrostatic potential �eld. The
�eld is induced by a charge distribution of a density function f .

We solve the Poisson problem with homogeneous Dirichlet boundary conditions uD = 0 and
prescribe the right hand side f = 8π2 cos(2πx) cos(2πy). In this experiment Ω is a 2D L-shaped
domain. Due to the steep gradient of the solution close to the re-entrant corner, we use locally
re�ned meshes in order to obtain a proper resolution. A plot of the solution and the used mesh
is presented in Figure 5.1. To underline the necessity we present a plot of the gradient of the
solution with a globally re�ned mesh and with a locally re�ned mesh. Clearly, with the same
amount of unknowns we can represent the solution of the problem with higher accuracy only with
a locally re�ned mesh, see Figure 5.2. The mesh for the 2D L-shaped domain is obtained by
re�ning the quadrilateral elements close to the edge where we expect to obtain a steep gradient
of the solution. The resulting statically adapted grid for this 2D L-shaped domain contains
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Figure 5.1: Locally re�ned L-shaped domain (left) and the corresponding solution of the Poisson
problem (right)

Figure 5.2: Zoomed-in plots of the gradient of the Poisson solution on a uniform mesh with
3,149,825 DOF (left) and on a locally re�ned mesh with 3,211,425 DOF (right) � our �nest
multi-grid mesh with level 6

Figure 5.3: Zoomed-in grids based on a uniform mesh with 3,201 DOF (left) and a locally re�ned
mesh with 3,266 DOF (right) of the L-shaped domain around the re-entrant corner � our coarsest
multi-grid mesh with level 1

quadrilateral and triangular cells. By introducing these triangular cells, we avoid the hanging
nodes that occur when we apply a local re�nement, see Figure 5.3.

We solve the problem by means of FEM based on P1 (2.12) and Q1 (2.13) elements. The
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coarsest mesh contains 3,266 degrees of freedom. By applying six global re�nements we obtain
our �nest mesh resulting in 3,211,425 degrees of freedom. Table 5.1 presents the characteristics
of the L-shaped domain with respect to the number of cells, degrees of freedom and discretization
steps.

# Level #Cells #DOF hmax hmin

1 3,177 3,266 0.015625 0.000488
2 12,708 12,795 0.0078125 0.000244
3 50,832 50,645 0.00390625 0.000122
4 203,328 201,513 0.001953125 0.0000610
5 813,312 803,921 0.000976563 0.0000305
6 3,253,248 3,211,425 0.000488281 0.00001525

Table 5.1: Characteristics of the six re�nement levels of the locally re�ned L-shaped domain

5.1.2 Convection-di�usion Equation

As another model problem, we use the convection-di�usion equation. It typically describes
slow di�usion and fast transport processes: the distribution of the temperature in compressible
�ows, the concentration of pollutants in �uids, and the momentum relation in the Navier-Stokes
equations are modeled by means of convection-di�usion processes. In many scenarios, the con-
vection part dominates the di�usion part. Consequently, smoothing properties of the second
order Laplacian-like di�usion operator are obfuscated. In the stationary case, neglecting reac-
tion terms and assuming constant coe�cients (b, ε), the considered two and three dimensional
(d = 2, 3) convection-di�usion equation is elliptic and reads

−ε∆u+ b · ∇u = f in Ω,
u = uD on ∂Ω.

(5.2)

Here, Ω ⊆ Rd is a bounded domain and b = (K1, . . . ,Kd) represents the directions of the
transport and the information �ow. For small di�usion coe�cients, i.e. ‖b‖ � ε, the solution
typically shows layers at the boundary of the domain, see [111].

We solve (5.2) numerically by means of FEM. We choose a characteristic mesh size h which
results in a number of mesh points of order O(h−d). In order to prevent numerical oscillations,
the stability constraint

h ≤ C ε

‖b‖

for a given constant C needs to be imposed [111]. In these tests, we use parameters K1 = K2

(= K3) = 120 and ε = 1.0 and we impose zero Dirichlet boundary conditions, i.e. uD = 0.
For our numerical experiments, we consider exact solutions given by

u(x, y) = x
eK1x − eK1

eK1
sin(πy), (x, y) ∈ Ω := [0, 1]2, (5.3)

u(x, y, z) = x
eK1x − eK1

eK1
sin(πy) sin(πz), (x, y, z) ∈ Ω := [0, 1]3, (5.4)

with right-hand sides prescribed by inserting these solutions into (5.2). The solutions are plotted
in Figure 5.4. The boundary layer formed by the di�erence in the exponents close to x = 1.0
can be seen in both of the �gures.
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Figure 5.4: Solutions of the convection-di�usion problem given in (5.3) and (5.4) in the 2D (left)
and 3D case (right)

Name Description of the problem #rows #non-zeroes #colors #block-SpMV
in ILU(0,1)

ecology2 Animal/gene movement 999,999 4,995,991 2 2

s3dkq4m2 Cylindrical shells 90,449 4,820,891 24 552

g3_circuit Circuit simulation 1,585,478 7,660,826 4 12

Table 5.2: Description and properties of the considered test matrices

5.1.3 Linear System Problems Based on Matrix Collection

The matrix test suite for performance evaluation is based on three real-valued symmetric and
positive de�nite matrices from three di�erent application areas. The ecology2 matrix is derived
from a landscape ecology problem based on electrical network theory for modeling of a 2D ani-
mal/gene movement �ow [125]. The s3dkq4m2 matrix is obtained from a �nite element analysis
of cylindrical shells on a uniform quadrilateral mesh [95]. The g3_circuit matrix results from a
circuit simulation problem [126]. Table 5.2 lists the properties of the test matrices. It shows the
number of rows, columns and colors when the multi-coloring method is applied to the original
matrix. In the last column, the number of sparse matrix-vector operations with respect to the
block decomposition for the multi-colored ILU(0,1) preconditioner is given. For the g3_circuit
matrix the decomposition into colors (by applying the multi-coloring permutation to the original
matrix) is imbalanced � we get 689,390, 789,436, 106,502 and 150 entries per di�erent color.
For the s3dkq4m2 and ecology2 matrix the block distributions have balanced sizes. The av-
erage number of non-zero elements per row is 4.9, 53.29 and 4.83 for ecology2, s3dkq4m2 and
g3_circuit respectively.

In order to present the sparsity pattern behavior after the ILU factorization process, we use
two small matrices. The symmetric and positive de�nite nos5 matrix of size 468-by-468 and
5,172 non-zero elements describes a �nite element approximation of beams with one free and one
�xed end [86]. The symmetric and positive de�nite gr3030 matrix is derived by a �nite di�erence
discretization of a Laplace problem. The problem has dimension 900-by-900 with 7,744 non-zero
entries [91]. The original sparsity patterns are shown in Figure 5.5 with nos5 on the left and
gr3030 on the right.
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Figure 5.5: Sparsity patterns of the nos5 matrix of size 468-by-468 with 5,172 non-zero elements
(left) and the gr3030 matrix of size 900-by-900 with 7,744 non-zero elements (right)

5.2 Solution Procedure

5.2.1 Conjugate Gradient Solver

To obtain the solution of the Poisson problem (5.1) and the problems based on the symmetric
and positive de�nite matrices de�ned in Section 5.1.3, we use the CG method. The solver is
fully implemented in parallel without platform-speci�c or sequential parts, see Chapter 4. We
use zero initial values and relative stopping criterion of 10−6 for the residual. For all of the tests
in the matrix collection we set the components of the right-hand side to one.

5.2.2 Generalized Minimal Residual Solver

For the convection-di�usion problem (5.2) we use a GMRES solver. Except the computation of
the Hessenberg matrix which is done strictly on the CPU device, all of the vector-vector and
matrix-vector routines are fully executed in parallel. To control the memory usage, we use a
restarted GMRES with the size of the Kyrlov subspace 30, see [114]. We prescribe a relative or
an absolute stopping criteria for the residual of 10−19 and 10−11 respectively.

5.2.3 Multi-grid Solver

We consider matrix-based geometric multi-grid methods [117]. In contrast to the stencil-based
geometric multi-grid methods, all di�erential operators, smoothers and inter-grid transfer opera-
tors are not expressed by �xed stencils on equidistant grids but have the full �exibility of sparse
matrix representations. This approach gives �exibility with respect to complex geometries and
non-uniform grids resulting from local mesh re�nements and space-dependent coe�cients in the
underlying PDE. Moreover, as implemented in the LAToolbox in HiFlow3, the solvers can be
built on standard building blocks contained in numerical libraries.

All routines of the multi-grid solver are performed in parallel, including the solution of the
coarse system which is solved with the CG method. For the inter-grid transfer operations we use
the full-weighted restrictions and the bi-linear interpolations based on the topology information of
the underlying grid. The preconditioned defect correction scheme (2.20) combined with di�erent
preconditioning matrices is used as a smoother. The di�erential operator, as well as the inter-grid
transfer operators, are built as sparse matrices and are applied using a parallel SpMV. Thus, we
assemble all of the matrices in the pre-processing step of the solver.
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5.2.4 Preconditioners

5.2.4.1 Additive Preconditioners

For the additive preconditioners we use the multi-coloring decomposition algorithm to obtain
parallelism. To accelerate the Jacobi preconditioner and to avoid matrix indexing, we explicitly
extract the diagonal of the matrix and create a vector out of it. Thus, we can apply the Jacobi
preconditioner by a component-wise vector-vector multiplication.

5.2.4.2 Multiplicative Preconditioners

For the multiplicative preconditioners we use ILU decompositions. To perform the forward and
backward substitutions in parallel, we use the level-scheduling method (see Section 3.6.7) and
the power(q)-pattern method (see Section 3.6.8). In general, the permutations obtained by the
level-scheduling algorithm are di�erent for the L and for the U matrix. Typically, more elements
are obtained in the L part of the matrix. However, for all the symmetric matrices in our test
suite they are either the same or NNZ(L) ⊇ NNZ(U) and we can use a permutation based
only on L. Thus, in our test cases, for both level-scheduling and power(q)-pattern method we
apply the permutation before performing the iterative solver.

Even for the symmetric and positive de�nite matrices we use a LU and not (incomplete)
Cholesky decomposition. The reason for doing this is that we need to perform the block-sweeps
(3.6) and (3.7). This involves a multiplication with the transposed sub-matrices LTi,j . Due to the
sparse data format, this is an expensive parallel operation. Thus, we need to store the transposed
matrices in addition which lead to the same memory requirements as for the LU decomposition.

5.2.4.3 Approximate Inverse Preconditioners

By explicitly building the inverse of the preconditioning matrix, we need to apply only a parallel
SpMV operation in the preconditioning solution phase. We use the FSAI algorithm to compute
the matrix, see Section 2.5.3. As in the pattern control of the Chebyshev polynomial precon-
ditioners (see (2.23) and (2.22)), we build our sparsity pattern in a similar way. With FSAIq
we denote the produced matrix built with its prescribed sparsity pattern of |A|q. Due to the
expensive parallel multiplication of the transposed matrix, we keep both the lower-triangular
matrix and its transposed one, see formula (2.26).

5.3 Behavior of the Parallel Linear Solvers

In this section, we present the behavior of the preconditioned linear solvers with respect to their
performance e�ciency in terms of number of iterations. For the parallel additive, multiplica-
tive and approximate inverse preconditioners we present their acceleration factors in terms of
reduction of the iteration counts. Furthermore, we show the sparsity patterns and degree of
parallelism for the level-scheduling and the power(q)-pattern methods.

5.3.1 Impact on Multi-coloring Decomposition

We investigate the impact of the dimension d and the choice of the �nite element space on
the multi-coloring decomposition used in the additive and ILU(0,1) preconditioners. For this
we study the convection-di�usion equation (5.2) and apply standard �nite element discretiza-
tion based on Q1 or Q2 Lagrangian elements [52, 30]. This leads to linear systems with a
non-symmetric matrices in which the transport terms are related to the non-symmetric contri-
butions. The condition numbers of the discretized problems depend on several parameters such
as mesh characteristics and �nite element spaces, and it increases polynomially in h−2 [111]. The
used number of unknowns for discretization by means of Q1 and Q2 elements in two and three
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dimensions and the corresponding number of non-zero elements in the sparse system matrices
are presented in Table 5.3.

Q1 elements Q2 elements

#Unknowns #Non-zeroes #Colors #Unknowns #Non-zeroes #Colors

2D 10252 9 · 106 5 5132 16 · 106 11

3D 1293 57 · 106 13 653 135 · 106 35

Table 5.3: Number of used degrees of freedom and number of non-zero elements for the discretized
convection-di�usion equation in 2D and 3D

Figure 5.6: Non-zero pattern of the system matrices for the 2D discretization with multi-coloring
permutation of the convection-di�usion equation based on Q1 (left) and Q2 (right) elements

The number of colors in a matrix obtained by �nite element discretizations depends on the
di�erential operator, the �nite element test and trial functions (linear, quadratic or higher order),
and the dimensions of the problem. The use of higher order elements leads to higher connectivity
in the sparse matrix. Therefore, we observe an increased number of colors for the Q2 elements
in comparison to the Q1 elements. A similar observation can be made for three-dimensional
problems, see [58]. The structures of the matrices after re-ordering based on the multi-coloring
decomposition for Q1 and Q2 elements in the two-dimensional case are depicted in Figure 5.6.
The number of colors for Q1 �nite elements is 5 and for Q2 elements is 11. In the three-
dimensional case we �nd 13 colors for Q1 elements and 35 colors for Q2 elements, see Figure 5.7.

In Figure 5.8 we present the number of iterations for solving the convection-di�usion problem
in two and three-dimensions with linear and quadratic �nite elements. For preconditioning
we use multi-colored Gauss-Seidel and ILU(0,1), and for the linear system we use GMRES.
Furthermore, we investigate the performance of the block Jacobi-type preconditioner built on
these two schemes.

5.3.2 Enhanced Parallel ILU(p)-based Preconditioners

Table 5.4 summarizes the number of iterations needed to achieve the prescribed error tolerance
for the CG solver applied to the three test matrices, see [62]. The acceleration factor in terms
of reduced number of iterations (#its), i.e #its(no precond)/#its(precond), goes up to 5.4 for
the ecology2 matrix, 554 for the s3dkq4m2 matrix and 33 for the g3_circuit matrix. However,
these numbers do not re�ect the additional work and time consumed by the preconditioning step,
i.e. the solution of the block-triangular systems. Moreover, Table 5.4 details the number of colors
in the multi-colored SGS and ILU(0,1) scheme, in the power(q)-pattern enhanced multi-colored
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Figure 5.7: Non-zero pattern of the system matrices for the 3D discretization with multi-coloring
permutation of the convection-di�usion equation based on Q1 (left) and Q2 (right) elements
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Figure 5.8: Number of iterations for solving the 2D/3D convection-di�usion problem based on
Q1 and Q2 �nite elements (left), and acceleration factors representing the ratio of the number
of iterations of the non-preconditioned and of the preconditioned solver (right)

ILU(p,p+1) scheme, and in the drop-o� version ILU(p,q) with p = q = 3. In comparison to these
numbers, the number of levels in the level-scheduling algorithm applied to the original matrix is
2,593 for ecology2, 2,388 for s3dkq4m2, and 1,998 for g3_circuit.

5.3.3 E�ect on Sparsity Pattern for Enhanced Parallel ILU(p)-based Precon-
ditioners

In this section, we consider the impact of matrix re-ordering techniques on the structure and
sparsity pattern of the system matrix, see [62]. The matrix decomposition into blocks with a
lower bound on the block size is a necessary building block for �ne-grained parallel methods. The
number of elements per block determines the degree of parallelism while the number of blocks
in the matrix decompositions is a measure for function call overheads (see the performance tests
in Section 5.4.4 and Section 5.4.5).

By using small test matrices, we investigate how the multi-coloring, the level-scheduling and
the power(q)-pattern enhanced multi-colored ILU(p,q) method determine the number of blocks
(i.e. the number of colors) for the parallel execution and the sparsity pattern of the system
matrix. In case of the ILU decomposition, the factorized matrices are also analyzed. Furthermore,
we examine the impact of the choice of p and q in the power(q)-pattern enhanced ILU(p, q)
decomposition with and without drop-o� strategies. In this section, small test matrices are
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No
precond SGS ILU(0,1) ILU(1,2) ILU(2,3) ILU(3,4) ILU(3,3)

ecology2 # its 5,391 2,783 2,855 1,815 1,308 997 1,277
acc. fact. 1.0 1.93 1.88 2.90 4.12 5.40 4.22
# colors 2 2 7 8 19 8

g3_circuit #its 12,760 1,328 1,242 747 497 386 397
acc. fact. 1.0 9.6 10.2 17.0 25.6 33.0 32.1
# colors 4 4 10 17 35 17

s3dkq4m2 #its 535,056 12,728 3,918 2,203 1,600 965 6,086
acc. fact. 1.0 42.0 136.5 242.8 334.4 554.4 87.9
# colors 24 24 56 96 150 96

Table 5.4: Number of iterations of the preconditioned CG solver, acceleration factors with respect
to reduced iteration count, and number of colors for the three test matrices
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Figure 5.9: Number of CG iterations without preconditioner and with level-scheduling for SGS
and ILU(p) preconditioners for p = 0, 1, 2, 3 for the nos5 matrix (left) and the gr3030 matrix
(right)

chosen for a proper visualization of the matrix patterns in spy plots. Note that smaller matrices,
such as the considered in this section, are not an appropriate input for �ne-grained parallel
preconditioners since they do not provide the necessary degree of parallelism due to their size.
Larger matrices are considered later in this chapter.

Here, we consider the preconditioned CG as an iterative Krylov subspace-type solver. We
set the right-hand side to one and use zero initial values. As shown in Figure 5.9 (left), for the
nos5 matrix more than 400 iterations are needed to achieve a relative residual smaller than 10−6.
With the multi-colored SGS preconditioner and the level-scheduling based ILU preconditioner
with level-p �ll-ins for p = 0, 1, 2, 3 the iteration count can be reduced to a factor 71. The ILU(p)
e�ciency with respect to the iteration count increases with p. A similar observation is made for
the gr3030 matrix in Figure 5.9 (right). The preconditioners decrease the number of iterations,
ILU(3) has an acceleration factor of 4.7.

In Figure 5.10, the improvements of the power(q)-pattern enhanced multi-colored ILU(p,q)
preconditioners (with and without drop-o�) with respect to the CG iteration count are presented.
We observe that the ILU(p,p + 1) strategy without drop-o� gives the best results in terms of
reduction of the iteration count. These results also improve when increasing p. For the results
with drop-o�, i.e. with q < p+ 1, the e�ciency is slightly worse.

The sparsity patterns of |A|q, q = 1, 2, 3, 4, for both matrices are illustrated in Figure 5.11
and Figure 5.12.
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Figure 5.10: Number of CG iterations without preconditioner and with multi-colored SGS and
power(q)-pattern enhanced multi-colored ILU(p,q) preconditioners for p = 0, 1, 2, 3 with and
without drop-o� for the nos5 matrix (left) and the gr3030 matrix (right)

When level-scheduling is applied to the factorized matrices Lp and Up of the ILU(p) decompo-
sition of the nos5 matrix, we obtain 39 levels for p = 0, 136 levels for p = 1, 312 levels for p = 2
and 403 levels for p = 3. Consequently, each block contains a very low number of elements and
in many cases only one element. The necessary degree of parallelism is not given in this scenario.
For the nos5 matrix, the patterns obtained by applying level-scheduling re-numbering to the
ILU(p)-factorized matrices Lp and Up (more speci�c Lp + Up in a single matrix structure) are
shown in Figure 5.13. When the same level-scheduling re-ordering πp corresponding to ILU(p)
is applied to the original system matrix A, the patterns depicted in Figure 5.14 are observed.
After re-numbering, this new structure of A is used within the parallel matrix-vector operations
in the parallel CG solver. These �gures show the way the locality is a�ected by the re-ordering
of the nodes.

Now we apply level-scheduling re-ordering to the ILU(p) preconditioner for the gr3030 matrix
and obtain 87 levels for p = 0, 116 levels for p = 1, 145 levels for p = 2, and 174 levels for p = 3.
The structure of the factorized matrices Lp and Up of gr3030 with the level-scheduling re-ordering
πp applied is shown in Figure 5.15. In this scenario, again the necessary degree of parallelism
cannot be obtained by level-scheduling. When the level-scheduling re-ordering πp corresponding
to ILU(p) is applied to the original matrix A, the patterns depicted in Figure 5.16 are observed.

We can obtain a higher degree of parallelism using the power(q)-pattern method based on
the |A|q matrix. For the nos5 matrix and q = 1, 2, 3, 4 we observe 9, 33, 84 and 157 colors,
respectively. The corresponding multi-coloring permutation is denoted by πq. The matrix pat-
terns πq|A|qπ−1

q (not shown here) are an upper bound for the level-q �ll-ins for the ILU(q, q+ 1)
decomposition for q = 0, 1, 2, 3. The sparsity patterns of the permuted linear systems πqAπ

−1
q are

shown in Figure 5.17. These matrices are the starting points for the incomplete factorizations.
In this setting, π1Aπ

−1
1 is a superset for the ILU(0,1) decomposition, see upper left �gure in

Figure 5.18.

For the power(q)-pattern enhanced multi-colored ILU(p,q) preconditioner, Figure 5.18 details
the structure of the factorized matrices Lp,q and Up,q with A = Lp,qUp,q + Rp,q for the nos5

matrix. The two upper sub-�gures show the factorized multi-colored ILU(p) decomposition with
p = 0 and p = 1 with permutation based only on the original matrix A. The resulting matrix in
the �rst �gure is equal to the original ILU(0,1) decomposition. The matrices with more diagonal
entries (i.e. matrices which require drop-o� technique) are shown in the second �gure. The �rst
�gure in the second row presents ILU(1,2), the factorization of �rst order without drop-o�s. The
second �gure in the second row shows a drop-o� strategy for p = 2 and q = 1 using only 9 colors.
Results for the ILU(2,q) factorization are shown in the last row of Figure 5.18 for q = 2 and q = 3
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Figure 5.11: Sparsity patterns of the power |A|q of gr3030 for q = 1, 2, 3, 4

Figure 5.12: Sparsity patterns of the power |A|q of nos5 for q = 1, 2, 3, 4
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Figure 5.13: nos5: Level-scheduling re-ordering πp applied to the factorized matrices Lp and Up
(combined in a single matrix structure) given by the ILU(p) decomposition with level-p �ll-ins

Figure 5.14: nos5: Level-scheduling re-ordering πp corresponding to ILU(p) applied to the orig-
inal matrix A
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Figure 5.15: gr3030: Level-scheduling re-ordering πp applied to the factorized matrices Lp and
Up (combined in a single matrix structure) given by the ILU(p) decomposition with level-p �ll-ins

Figure 5.16: gr3030: Level-scheduling re-ordering πp corresponding to ILU(p) applied to the
original matrix A
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Figure 5.17: nos5: Sparsity patterns of the permuted linear system πqAπ
−1
q with multi-coloring

permutation πq obtained from the analysis of |A|q for q = 1, 2, 3, 4 with 9, 33, 84, and 157 colors

resulting in 84 and 157 colors, where the latter case is without extra �ll-ins into the diagonal
blocks. Decomposition patterns for ILU(3,q) for the nos5 matrix are depicted in Figure 5.19 for
q = 1, 2, 3, 4. In this example, by applying the multi-coloring decomposition for q = 1, 2, 3, 4 we
obtain 9, 33, 84 and 157 blocks, respectively.

An upper bound for the sparsity pattern for the ILU decomposition is derived by the power(q)-
pattern method based on the structure of |A|q. The sparsity pattern of the multi-coloring per-
muted system matrix, i.e. πqAπ

−1
q , for the gr3030 matrix is depicted in Figure 5.20. Here again,

πq is obtained from a multi-color analysis of |A|q. We �nd 4, 9, 16 and 25 colors for q = 1, 2, 3, 4.
For the ILU(p,q) method, Figure 5.21 details the structure of the factorized matrices for the

gr3030 matrix. The upper sub-�gures show the multi-colored factorized decomposition for p = 0
and p = 1 with q = 1 and 4 colors. The left �gure in the second row shows the ILU(1,2)
factorization, the right �gure in the middle row represents the drop-o� strategy for ILU(2,1)
with only 4 colors. The �gures in the lower row present ILU(2,2) with drop-o� and ILU(2,3)
without drop-o�. Finally, factorization matrices for the ILU(3,q) for q = 1, 2, 3, 4 are presented
in Figure 5.22. For the gr3030 matrix, we obtain 4, 9, 16 and 25 blocks after the multi-colored
decomposition applied with q = 1, 2, 3, 4.

Note that in the �gures representing the sparsity patterns with drop-o� techniques for q ≤ p,
we present the full patterns produced after the factorization, i.e. we do not enforce deletion of
the elements after the factorization phase.

5.3.4 Approximate Inverse Preconditioners

Here, we present the impact of the FSAI preconditioner on the three test matrix problems.
Table 5.5 shows the number of iterations needed for solving the test systems ecology2, s3dkq4m2
and g3_circuit with the preconditioned CG method. Furthermore, in this table we give the



5.3. Behavior of the Parallel Linear Solvers 63

Figure 5.18: nos5: Sparsity patterns for the power(q)-pattern enhanced multi-colored ILU(p,q)
decomposition with and without drop-o�; �rst row: ILU(0,1) and ILU(1,1); second row: ILU(1,2)
and ILU(2,1); last row: ILU(2,2) and ILU(2,3)



64 NUMERICAL EXPERIMENTS AND PERFORMANCE ANALYSIS

Figure 5.19: nos5: Sparsity patterns for the power(q)-pattern enhanced multi-colored ILU with
and without drop-o�; upper row ILU(3,1) and ILU(3,2); lower row: ILU(3,3) and ILU(3,4)

Figure 5.20: gr3030: Sparsity patterns of the permuted linear system πqAπ
−1
q with multi-coloring

permutation πq obtained from the analysis of |A|q for q = 1, 2, 3, 4 with 4, 9, 16, and 25 colors
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Figure 5.21: gr3030: Sparsity patterns for the power(q)-pattern enhanced multi-colored ILU(p,q)
decomposition with and without drop-o�; �rst row: ILU(0,1) and ILU(1,1); second row: ILU(1,2)
and ILU(2,1); last row: ILU(2,2) and ILU(2,3)
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Figure 5.22: gr3030: Sparsity patterns for the power(q)-pattern enhanced ILU with and without
drop-o�; upper row ILU(3,1) and ILU(3,2); lower row ILU(3,3) and ILU(3,4)

number of non-zeroes of the preconditioned FSAI matrices L + LT . To accelerate the Jacobi
preconditioner, we explicitly extract the diagonal of the matrix and create a new vector out
of it. Thus, we can apply the Jacobi preconditioner by performing only one component-wise
vector-vector multiplication and because of that we consider the Jacobi preconditioner as an
approximate inverse scheme.

No
precond Jacobi FSAI1 FSAI2 FSAI3

ecology2 # its 5,391 5,566 2,963 2,096 1,607
acc. fact. 1.0 0.96 1.1 2.57 3.35
# NNZ 999,999 5,995,990 13,979,974 25,943,958

g3_circuit #its 12,760 2,726 1,309 877 648
acc. fact. 1.0 4.6 9.74 14.5 19.96
# NNZ 1,585,478 9,246,304 22,852,612 48,079,052

s3dkq4m2 #its 535,056 36,219 3,777 2,240 1,625
acc. fact. 1.0 14.77 141.6 238.8 329.2
# NNZ 90,449 4,911,340 13,373,002 25,908,490

Table 5.5: Number of iterations of the preconditioned CG solver, acceleration factors with respect
to reduced iteration count, and non-zeroes entries of the approximate inverse matrices

5.3.5 Matrix-Based Multi-grid Method and Preconditioned CG

In this section, we study the properties of the parallel multi-grid smoothers based on di�erent
parallel preconditioning schemes. We investigate the smoothing properties of multi-colored ad-
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ditive, power(q)-pattern and FSAI methods. To demonstrate these properties, we consider the
Poisson problem (5.1) on a locally re�ned mesh of level 2 with 12,795 degrees of freedom, see
Table 5.1 and Figure 5.23 (left).

Figure 5.23: Distribution of the degrees of freedom on the L-shaped domain (left); Initial error
distribution based on randomly generated initial values (right)

Figure 5.23 (right) shows the error of random initial values. In terms of reduction of the high
frequency components, we see that the e�ect of the Jacobi smoothing, as shown in Figure 5.24,
is worse than the Gauss-Seidel smoothing, presented in Figure 5.25, which itself is worse than
the SGS smoother, presented in Figure 5.26.

Figure 5.24: Damped error after 1 (left) and 3 (right) relaxed-Jacobi (ω = 0.8) smoothing steps

More smoothing properties for ILU(0,1), ILU(1,1) and ILU(1,2) are demonstrated in Fig-
ures 5.27, 5.28 and 5.29. With the FSAI smoothers, higher order oscillations are still observed
after the initial smoothing step as can be seen in Figures 5.30, 5.31 and 5.32.

With respect to the performance, we use a larger problem size which results in 3, 211, 425
degrees of freedom. We perform several tests with di�erent con�gurations for the pre- and post-
smoothing steps. We determine the number of multi-grid cycles required to achieve a relative
residual less than 10−6. In Table 5.6 the iteration counts for the V-cycle based multi-grid are
shown. As we can see, the standard smoothers such as Jacobi and Gauss-Seidel do not provide
the best performance. Better results are obtained with the power(q)-pattern method and with
the approximate inverse based on the FSAI algorithm. Note that the iteration counts in this
table do not re�ect the total amount of work. From a theoretical point of view, a Gauss-Seidel
smoothing step is half as costly as a SGS step and ILU(0,1) is cheaper than ILU(1,1) which is
cheaper than ILU(1,2). For the multi-grid solver, ν1 + ν2 is the number of smoothing steps on
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Figure 5.25: Damped error after 1 (left) and 3 (right) multi-colored Gauss-Seidel smoothing steps

Figure 5.26: Damped error after 1 (left) and 3 (right) multi-colored SGS smoothing steps

Figure 5.27: Damped error after 1 (left) and 3 (right) power(q)-pattern ILU(0,1) smoothing steps

each level and should be kept low in order to reduce the total amount of work (and hence to
reduce the solver time), see Section 2.4.3.

Furthermore, in Table 5.7 we present the number of iterations of the CG solver for various
preconditioners.
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Figure 5.28: Damped error after 1 (left) and 3 (right) power(q)-pattern ILU(1,1) smoothing steps

Figure 5.29: Damped error after 1 (left) and 3 (right) power(q)-pattern ILU(1,2) smoothing steps

Figure 5.30: Damped error after 1 (left) and 3 (right) FSAI1 smoothing steps

5.3.6 Parallelism of Level-Scheduling and Power(q)-pattern Method

As described in Section 3.6.10, the degree of parallelism of the level-scheduling method is obtained
from the structure of the matrix after the factorization process. In contrast, the power(q)-pattern
method is based on the multi-coloring decomposition of the matrix |A|q which is given by the
topological connection of the sparsity structure. Thus, using the power(q)-pattern method for
a �xed problem (i.e. a problem with given di�erential operator, discretization scheme, geometry
and boundary condition) we obtain a certain degree of parallelism, which is independent of
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Figure 5.31: Damped error after 1 (left) and 3 (right) FSAI2 smoothing steps

Figure 5.32: Damped error after 1 (left) and 3 (right) FSAI3 smoothing steps

the number of unknowns (i.e. of the problem size). However, the degree of parallelism of the
level-scheduling method decreases when we increase the problem size.

To demonstrate these aspects, we consider the 2D Poisson equation (5.1) on a square domain
discretized with Q1 �nite elements. The sti�ness matrix is based on a lexicographical ordering
and as a preconditioner we use ILU factorization without �ll-ins. Furthermore, we discretize the
problem on 200-by-200; 500-by-500 and 1, 000-by-1, 000 grids which results in sti�ness matrices
with sizes 40, 000; 250, 000 and 1, 000, 000. Thus, with the power(q)-pattern method we obtain
only 2 colors in all of the problems, while with the level-scheduling method we obtain 399, 999
and 1, 999 levels for the di�erent problem sizes.

In general, it is not possible to compare the quality of the ILU factorization based on the
level-scheduling and the power(q)-pattern method. The resulting operators in these cases are
di�erent which leads to di�erent iteration numbers for the solution procedure. In Appendix B,
we present several test matrices in order to make a comparison. We observe that the power(q)-
pattern method requires more iterations than the level-scheduling algorithm based on the original
ordering and factorization. However, combined with a much higher degree of parallelism, the
solvers perform faster on all of the parallel system when using the power(q)-pattern method, see
Appendix D.

5.4 Performance Analysis

Up to now, we have considered only the e�ciency of the parallel preconditioned linear solvers
in terms of number of iterations. In this section, we study the performance behavior of the
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(ν1, ν2) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2)

r-Jacobi 64 32 21 16 71 34 22 17 13 38 24 18

GS 30 14 10 8 35 16 10 8 7 20 12 9

SGS 23 13 9 8 28 14 10 8 7 17 11 9

ILU(0,1) 18 11 8 6 25 11 8 7 6 15 8 7

ILU(1,1) 18 10 7 6 23 11 8 7 6 14 8 7

ILU(1,2) 10 6 5 5 12 7 5 5 5 9 6 5

FSAI1 17 9 7 6 22 10 7 6 6 14 8 7

FSAI2 14 7 6 5 15 8 6 5 5 10 6 6

FSAI3 9 6 5 5 12 6 5 5 5 8 6 5

(ν1, ν2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4) (4,0) (4,1) (4,2) (4,3) (4,4)

r-Jacobi 14 12 27 19 15 12 11 22 17 13 11 10

GS 7 7 15 10 8 7 6 12 9 8 7 7

SGS 7 7 13 9 8 7 6 11 9 7 7 6

ILU(0,1) 6 6 11 7 6 6 6 9 7 6 6 5

ILU(1,1) 6 5 10 7 6 6 5 9 6 6 5 5

ILU(1,2) 5 5 8 6 5 5 5 7 6 5 5 5

FSAI1 6 6 11 8 6 6 6 10 7 6 6 6

FSAI2 5 5 8 6 6 5 5 8 6 5 5 5

FSAI3 5 5 8 6 5 5 5 7 5 5 5 4

Table 5.6: Number of multi-grid V-cycles for di�erent smoothers; ν1 and ν2 are the numbers of
pre- and post-smoothing steps, ω = 0.8 is the relaxation parameter for the Jacobi scheme

No precond Jacobi SGS ILU(0,1) ILU(1,1) ILU(1,2) FSAI1 FSAI2
# iterations 5,650 4,167 2,323 2,451 2,066 1,387 2,198 1,493

Table 5.7: Number of iterations for solving the Poisson problem on the L-shaped domain with
the preconditioned CG solver

preconditioned solvers on multi-core CPU and GPU devices in terms of execution time and
speed up factors.

5.4.1 Performance Model

As shown in Section 2.6, the e�ective performance upper bound in terms of Flop/sec is given by

Peff ≤ min
{
P,
fB

Sw

}
,

where S is 4 or 8 bytes for single precision or double precision data respectively, B (in Byte/sec)
is the maximal bandwidth between memory and cores, P is the peak performance of the system
in terms of Flop/sec and f is the number of �oating point operations for executing the speci�c
routine, see Table 2.1.

It is interesting to note that even if the computing device does not provide fully pipelined
single/double precision support or if its peak performance is not very high, for most hardware
setups the ratio fB/Sw for the basic vector-vector and sparse matrix-vector routines is far below
the peak performance P of the machine. Thus, any algorithm based on these routines is more
dependent of the bandwidth performance than of the actually �oating-point performance.
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(ν1, ν2) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2) (1,3) (1,4) (2,0) (2,1) (2,2)

r-Jacobi 56 28 19 15 59 29 19 15 12 32 20 15

GS 25 13 9 7 28 13 9 7 6 15 10 8

SGS 23 12 9 7 25 13 9 7 6 14 9 7

ILU(0,1) 19 11 8 6 21 11 8 6 5 12 8 6

ILU(1,1) 18 10 8 6 20 11 8 6 6 12 8 7

ILU(1,2) 10 6 5 4 11 7 5 4 4 7 5 4

FSAI1 18 9 6 5 19 10 7 5 5 10 7 6

FSAI2 14 7 5 4 15 8 5 4 4 8 6 5

FSAI3 9 5 4 4 10 6 4 4 4 6 5 4

(ν1, ν2) (2,3) (2,4) (3,0) (3,1) (3,2) (3,3) (3,4) (4,0) (4,1) (4,2) (4,3) (4,4)

r-Jacobi 12 10 22 16 13 11 9 17 13 11 9 8

GS 6 6 10 8 7 6 5 9 7 6 5 5

SGS 6 6 10 8 7 6 5 8 7 6 6 5

ILU(0,1) 5 5 8 7 6 5 4 7 6 5 5 4

ILU(1,1) 6 5 9 7 6 5 5 7 6 5 5 4

ILU(1,2) 4 4 6 5 4 4 4 5 4 4 4 4

FSAI1 5 5 8 6 5 5 4 7 5 5 5 4

FSAI2 4 4 6 5 4 4 4 6 4 4 4 4

FSAI3 4 4 5 4 4 4 3 5 4 4 4 3

Table 5.8: Number of multi-grid W-cycles for di�erent smoothers; ν1 and ν2 are the numbers of
pre- and post-smoothing steps, ω = 0.8 is the relaxation parameter for the Jacobi scheme

5.4.2 Hardware Con�guration

Our performance benchmarks are based on a CPU-GPU con�guration with a dual-socket Intel
Xeon (E5450) quad-core platform equipped with an NVIDIA Tesla S1070 system which provides
two GPUs. On this system we run 64-bit Ubuntu Linux 10.04 with kernel 2.6.32-33. We use gcc
4.3.4 compiler and NVIDIA CUDA compiler version 2.3. The memory capacities of the CPU and
the GPU platforms are 16 GBytes and 2× 4 GBytes, respectively. The two CPUs are connected
to the memory via UMA memory system. Each core has 32 KBytes of L1 cache and two cores
share 6 MBytes of cache. This leads to 12 MBytes per CPU and thus 24 MBytes in total.

With a single core of the CPU we can utilize 2.62 GByte/s of the total bandwidth. Using all
the eight cores with the UMA architecture, we can obtain 6.14 GByte/s. Thus, comparing the
sequential version with the OpenMP version of the linear solver on the same CPU con�guration,
we expect speed up factors around 2.34 (=6.14/2.62). For small size problems, we observe
a larger speed up factor due to cache-e�ects when using multiple cores and aggregating their
caches. However, for very large size problems, all the data has to be streamed in and out of
the core and thus we cannot exceed this ratio. Performance envelopes for more advanced model
based on instruction pipelines, fused routines and Single Instruction Multiple Data (SIMD) can
be found in [39]. Matrix-vector multiplication performance on CPU systems are considered in
[132].

The bandwidth for performing the vector update routines on the GPU device is about 83.3
GByte/s. However, this is a rough estimation � for small vectors and matrices, the reduction
based routines (e.g. SpMV and scalar product) perform faster on cache-memory based systems
due to better handling of the temporary data and results. For di�erent sparsity patterns, SpMV
routines in CSR format typically perform around 1/4 to 1/15 of the peak bandwidth performance
[5, 19].
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The NVIDIA S1070 GPU has a texture memory which can be used e�ciently for read-only
caching. The SpMV can bene�t from this cache mechanism by keeping some of the elements of
the vector locally, see [19]. However, for matrices in CSR format this speed up is only about
6-12%. For small matrices we observe a performance decrease due to the extra time for binding
and unbinding memory bu�ers to the texture memory.

The performance ratio of the GPU and the CPU bandwidth based on the stream benchmarks
is 13.56(= 83.3/6.14). However, in practice this value is lower � even for large data sets the CG
algorithm executed on all the eight cores of the CPU is about 2 to 5 times slower than its GPU
version. This is mainly attributed to the good caching e�ects of the CPU � in the CG solver,
after updating the residual vector or after executing the matrix-vector multiplication, most of
the data is still kept in the cache and the scalar product of these vectors is computed fast, see
Algorithm 1.

All experiments and benchmarks are performed with double precision � on both the CPU and
GPU device.

5.4.3 Poisson Problem � Multi-Grid and CG Solver

The best run times for solving the Poisson problem on the locally re�ned 2D L-shaped domain
with V and W-cycle multi-grid are presented in Figure 5.33. The run time of the multi-grid
solver is equal to the time for traversing the grids and solving the coarsest system plus the time
for performing the pre- and post-smoothing steps. Thus, the compute time is a function of
the quality of the smoothers and their execution time. Details on the execution of the multi-
grid solver based on di�erent pre- and post-processing steps can be found in [59]. The best
run times show that the multi-grid solver based on W-cycle is 2 to 3 times slower than the
one based on V-cycle, which is in contrast to the number of iterations. This can be explained
by the fact that the W-cycle multi-grid performs most of the operations on the coarser grids.
As previously mentioned, GPU platforms are not suitable for operations on small amounts of
data. A larger number of SpMV routines calls for small matrices causes a signi�cant overhead
of the GPU. However, this does not re�ect the speed up factors on the CPU. On the other
hand, the performance of the multi-grid V-cycle scales very well on the CPU and the GPU, see
Figure 5.34. The best results are obtained with the ILU(1,2) and ILU(0,1) smoothers for V-cycle
based multi-grid solver on the GPU .
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Figure 5.33: Run times for the multi-grid V-cycle (left) and W-cycle (right) for the Poisson
problem on the 2D L-shaped domain

The run times for the CG are presented in Figure 5.35 (left) and the parallel speed up factors
in Figure 5.35 (right). However, due to the large number of iterations, the CG is 50 to 75 times
slower than the V-cycle based multi-grid solver.
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Figure 5.34: Parallel speed ups of the multi-grid V-cycle (left) and W-cycle (right) for the Poisson
problem on the 2D L-shaped domain
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Figure 5.35: Run time performance and parallel speed up factors of the preconditioned CG solver
for the Poisson problem on the 2D L-shaped domain

The sti�ness matrix is not built using a lexicographical order but based on two loops � an
iteration loop over the �nite element cells and a loop over the degrees of freedom, for additional
details see [4]. This is the default enumeration for the degrees of freedom in HiFlow3. However,
this ordering technique does not improve the performance on the stream based devices like GPUs
� combined with less e�ciency of this scheme, we see poor speed ups for the FSAI preconditioners
based on |A|1, |A|2 and |A|3. On the other hand, the CPU manages to cache most of the memory
accesses and hence we see good speed ups with the OpenMP backend. The performance pro�les
for the GPU are di�erent for the multi-coloring based preconditioners where the unknowns are
clustered in groups with non-adjacent neighbors and therefore the matrix operations are better
then on the CPU backend.

5.4.4 Convection-Di�usion Problem � GMRES Solver

The e�ect of the preconditioning for the GMRES method is presented in Figure 5.8. The �gure
depicts the necessary number of iterations needed to achieve a prescribed error tolerance for the
GMRES method. We �nd out that all the four preconditioners under consideration � multi-
colored Gauss-Seidel, multi-colored ILU decomposition with �ll-level zero, two blocks for the
block-Jacobi with block-level multi-colored Gauss-Seidel (BJ-GS), and two blocks for the block-
Jacobi with block-level multi-colored ILU (BJ-ILU) � decrease the number of necessary iterations.
Figure 5.36 presents the run times for the preconditioned GMRES solver in the two-dimensional
(left) and the three-dimensional case (right). Each �gure contains performance results for the
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Figure 5.36: Run times for solving the 2D (left) and the 3D (right) convection-di�usion problem
with Q1 and Q2 �nite elements

single CPU core, eight CPU cores, single GPU and dual GPU con�guration. The best results in
terms of speed ups are observed for the multi-colored ILU preconditioner running simultaneously
on two GPUs. Figure 5.37 depicts the speed ups due to the parallel execution on multiple cores
and on the single/dual GPU(s), respectively.
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Figure 5.37: Speed up factors based on the parallel execution of the (non-)preconditioned GM-
RES solver on the single/eight-core CPU and on the single/dual GPU(s) platform

We use sequential routines for the single core tests and OpenMP parallel routines with explicit
thread pinning on the eight-core CPU con�guration. On the GPU con�guration we use CUBLAS
routines for the BLAS1 vector operations and scalar CSR SpMV kernels for the SpMV. For the
dual GPU con�guration we use two MPI processes for accessing two separate memory spaces
on the GPUs. For the 2D problem, texture caching on the GPU increases the performance for
both Q1 and Q2 elements. Since for the multi-colored forward and backward steps the number
of SpMV grows quadratically with respect to the colors, the call overhead of SpMV kernels gets
more pronounced. In the 3D case with Q1 elements (13 colors), texture caching still improves
the performance but for Q2 elements (35 colors) there is no bene�t of using it due to the large
amount of SpMV in the forward/backward sweeps. The preconditioned system for the 3D case
with Q2 elements exceeds the memory capacity of the GPU device.
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5.4.5 Linear System Problems Based on Matrix Collection � CG Solver

In this section, we investigate and present the e�ciency and the scalability of several �ne-grained
parallel preconditioners in terms of solver times, parallel speed ups, and acceleration factors due
to preconditioning (for a �xed platform and implementation). In particular, we show how the
power(q)-pattern enhanced multi-colored ILU(p,q) preconditioner behaves for di�erent values of
p and q, where q = p + 1 represents the normal scenario and q < p + 1 represents the drop-
o� technique with a reduced number of colors. In this case, the non-diagonal elements in the
diagonal blocks are deleted, see [62]. We also show performance pro�les for other preconditioners
such as multi-colored SGS, Jacobi and FSAI.
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Figure 5.38: ecology2 matrix: Performance benchmarks on the single/eight-core CPU and on
the GPU. Solver time for the multi-colored SGS and the power(q)-pattern enhanced ILU(p,q)
(left), Jacobi and FSAI algorithms based on |A|1, |A|2 and |A|3 (right)

 0

 2

 4

 6

 8

 10

 12

CPUseq CPUOpenMP GPU

S
pe

ed
 u

p

ecology2 - parallel speed up

None
SGS

ILU(0,1)
ILU(1,2)
ILU(2,3)
ILU(3,4)
ILU(3,3)

 0

 2

 4

 6

 8

 10

 12

CPUseq CPUOpenMP GPU

S
pe

ed
 u

p

ecology2 - parallel speed up

None
Jacobi
FSAI1
FSAI2
FSAI3

Figure 5.39: ecology2 matrix: Parallel speed ups for various preconditioned CG solvers on the
CPU OpenMP and the GPU platform

Figure 5.38 details the performance of the preconditioner for the ecology2 problem. The per-
formance is achieved with and without a preconditioner to reach the prescribed error tolerance.
We consider implicit preconditioners such as the multi-colored SGS preconditioner with two col-
ors, the multi-colored ILU(0,1) decomposition with two colors, and the power(q)-pattern method
enhanced multi-colored ILU(p,q) method with level-p �ll-ins for p = 1, 2, 3, see Figure 5.38 (left).
The matrix exponent q (with q = p+1 or q < p+1) for determining the sparsity pattern is given
in the notation ILU(p,q). For q < p+1, all �ll-in elements within the diagonal blocks are deleted.
The �gure shows the corresponding solver times including the preconditioning step (triangular
sweeps) but not the preprocessing step (LU factorization, multi-coloring or power(q)-pattern
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Figure 5.40: ecology2 matrix: Acceleration factors for the preconditioning phase in the CG
solver on the single/eight-core CPU and the GPU platform

determination). Furthermore, we consider explicit preconditioners such as Jacobi and the FSAI
algorithm based on the sparsity patterns of |A|q (denoted with FSAIq), see Figure 5.38 (right).
The �gures depict solver times for the sequential solution running on a single core, the OpenMP
parallel solution running on eight-core, and the single GPU version with texture caching for the
non-preconditioned solver and without texture caching for the preconditioned one.

In Figure 5.39 the associated speed ups for the ecology2 matrix are presented. The �gure
shows the parallel speed ups for the eight core OpenMP parallel version and the data-parallel
GPU version. The GPU version is, by a factor of 3 to 4, faster than the OpenMP parallel version
on the eight CPU cores. Figure 5.40 shows the overall acceleration of the preconditioned solver
over the non-preconditioned version with a �xed hardware con�guration and implementation.

For this test problem, the preconditioner on the GPU accelerates the solver by a factor of
up to 1.7 for the ILU(2,3). In some cases, there is almost no acceleration by preconditioning
due to the additional work and minimal bene�ts from reduced iteration count. The drop-o�
technique for ILU(3,3) reduces the number of colors from 19 to 8, slightly increases the number
of iterations but gives comparable execution times for the preconditioned solver. Larger sparsity
patterns for the FSAI preconditioners (q = 2, 3) do not perform well on the GPU due to less
caching e�ciency which results in bandwidth degradation in contrast to the CPU performance.
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Figure 5.41: g3_circuit matrix: Performance benchmarks on the single/eight-core CPU and on
the GPU. Solver time for the multi-colored SGS and the power(q)-pattern enhanced ILU(p,q)
(left), Jacobi and FSAI algorithms based on |A|1, |A|2 and |A|3 (right)

In Figure 5.41 the performance of the preconditioner for the g3_circuit matrix is shown.
The �gure shows the number of iterations with and without preconditioner. Between 4 and 25
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Figure 5.42: g3_circuit matrix: Parallel speed ups for various preconditioned CG solvers on
the CPU OpenMP and the GPU platform
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Figure 5.43: g3_circuit matrix: Acceleration factor of the preconditioning phase in the CG
solver on the single/eight-core CPU and on the GPU platform

colors provides the multi-coloring decomposition for this problem. The multi-colored SGS and
the multi-colored ILU(0,1) decompositions have 4 colors, whereas the power(q)-pattern method
enhanced multi-colored ILU(3,4) has 35 colors. All the preconditioners show a signi�cant decrease
of the iteration count. In Figure 5.42 we �nd parallel speed ups between 2 and 3 for the eight
core OpenMP parallel version and 8 to 12 for the data-parallel GPU version. Again, the GPU
version is by a factor of 3 to 5 faster than the OpenMP parallel version on eight CPU cores.
Figure 5.43 shows the acceleration factor of the preconditioner with respect to the time on a �xed
hardware con�guration and implementation. The total acceleration factor is between 4 and 9
for this test problem. Acceleration and parallel speed ups are observed for all presented implicit
preconditioner con�gurations. The drop-o� technique for ILU(3,3) reduces the number of colors
from 35 to 17. It gives the best results with respect to the solver time and better acceleration
factors. The explicit preconditioners show good scalability on the CPU, however on the GPU
the larger sparsity patterns show again decreased performance.

In general, small matrices (like 3dkq4m2) are better suited for the cache-oriented CPUs because
sub-blocks or parts of the matrix and solution vectors can be kept in the cache and no further
access to the main memory is necessary. Figure 5.44 and Figure 5.45 depict performance data
for the s3dkq4m2 matrix. Table 5.4 and Table 5.5 show that the number of iterations without
preconditioner is massive but can be decreased considerably by preconditioning. Furthermore,
we can see that the best results in terms of reduction of iterations are achieved for the ILU(3,4)
scheme with 150 colors. But for this matrix, the best parallel solver times are obtained by the
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Figure 5.44: s3dkq4m2 matrix: Performance benchmarks on the single/eight-core CPU and on
the GPU. Solver time for the multi-colored symmetric SGS and the power(q)-pattern enhanced
ILU(p,q) (left), Jacobi and FSAI algorithms based on |A|1, |A|2 and |A|3 (right)
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Figure 5.45: s3dkq4m2matrix: Zoomed-in performance benchmarks plots on the single/eight-core
CPU and on the GPU, the non-preconditioned solver time is omitted. Solver time for the multi-
colored SGS and the power(q)-pattern enhanced ILU(p,q) (left), Jacobi and FSAI algorithms
based on |A|1, |A|2 and |A|3 (right)
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Figure 5.46: s3dkq4m2 matrix: Parallel speed ups for various preconditioned CG solvers on the
CPU OpenMP and the GPU platform

FSAI1 preconditioner, see Figure 5.44 and Figure 5.45. For the power(q)-pattern method the
drop-o� technique reduces the number of colors from 134 to 96 for p = 3 but has no positive
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Figure 5.47: s3dkq4m2 matrix: Acceleration factors for the preconditioning phase in the CG
solver on the single/eight-core CPU and on the GPU platform

e�ect with respect to the performance e�ciency. For the same preconditioner, the solver times
are improved by the parallel OpenMP and GPU versions only for p = 0, 1, 2, with best results
for p = 0. In Figure 5.46 is shown that for the power(q)-pattern method the OpenMP parallel
speed up is not much more than two and gets worse when increasing p. In contrast to that the
approximate inverse preconditioners scale well on all platforms. But the performance decreases
with increasing the number of �ll-in entries of the inverse preconditioner. The di�erence here
are the forward and backward substitutions which require a large number of SpMV operations
and thus this leads to a large overhead on the CPU and on the GPU. This is not the case for the
approximate inverse which requires only one SpMV operation. For the implicit preconditioners,
the maximal speed up on the GPU is around three and about 50% higher than the eight core
OpenMP parallel speed up. Similar observations are made for the implicit preconditioners. In
the parallel case, the acceleration factors from preconditioning are still immense, see Figure 5.47.
Compared to the sequential case, the implicit preconditioner does not decrease much of its
e�ciency. For ILU(0,1) the acceleration factor is more than 60 on the GPU. However, for
increasing p, results on the GPU and the parallel OpenMP version get worse while they get
better in the sequential CPU case, because the sub-matrices contain only very few elements. For
this test problem, the drop-o� technique with a reduced number of colors in ILU(3,3) gives poor
results. On the other hand, the inverse preconditioners provide the same acceleration pro�le on
both platforms.

5.4.6 Comparison of Level-scheduling and Power(q)-pattern Method

To compare the performance of the level-scheduling and the power(q)-pattern method we follow
[98]. We test the preconditioned CG and BiCGStab solvers using the power(q)-pattern method
in lmpLAToolbox (see Sections 4), the level-scheduling in CUSPARSE library [102] and the
Intel MKL library [73], and we compare the obtained results. Since the implementation of the
preconditioning solvers is di�erent, this gives us only a rough estimate of the performance run
times. In 9 of 11 cases the lmpLAToolbox CPU version (power(q)-pattern method) is faster than
the MKL-based solver, and in 10 of 11 it performs better than the CUSPARSE solver on the
GPU. Details of the comparison can be seen in Appendix D.

5.4.7 Poisson Problem � CG Solver on GPU Cluster

In this last section, we demonstrate the scalability of the lmpLAToolbox on a heterogeneous
cluster equipped with GPU devices. The simulations are performed on the TinyGPU cluster at
the Regionales Rechenzentrum Erlangen (RRZE), Germany. The GPU cluster contains 8 nodes
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with two Xeon 5500 CPUs. The system's interconnect is an In�niband fabric with 20 Gbit/s
bandwidth per link and direction. The network connectivity consists of a small 24-port DDR
switch and it is used to provide full non-blocking communication. Each of the nodes include two
NVIDIA Tesla M1060 GPU boards attached via two 16-lane PCIe bus connections (16 GPUs
in total). All GPU boards are equipped with 4 GBytes GDDR3 memory and the computing
capability of the GPU devices is 1.3.

For the scaling test we use a 3D Poisson equation on the unit cube with a Q1 �nite element
discretization. The local sub-matrices and sub-vectors are associated with the MPI processes
on the nodes of the cluster, see Section 4.6. The total number of degrees of freedom in all
con�gurations is 2.1 million. To solve the linear system, we use the non-preconditioned CG
method with a relative stopping criterion of 10−14 for the residual and zero initial values. To
reach this stopping criterion, the CG solver without preconditioning needs 510 iterations for all
decomposition scenarios.
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Figure 5.48: CPU and single/double GPU performance on an 8-node cluster; strong scalability
test (left) and speed up factors (right) for the CG method applied to the 3D Poisson problem
with 2.1 million DOF for three cluster con�gurations

Figure 5.48 (left) depicts the total run time for the CG solver with respect to the number of
used nodes (1 to 8) in the GPU-accelerated cluster. It details the results for the sequential CPU
version, the con�guration with a single GPU per node and with two GPUs per node. The single
GPU con�guration runs approximately twice as fast as the CPU-only con�guration. The dual
GPU case gives a speed up of an additional factor of approximately two. To utilize both GPUs of
a node we assign two processes to each node. Due to an optimized geometric partitioning of the
mesh we ensure that the communication during the solution procedure is kept at a minimum,
see [4, 57]. As described in Section 4, irregular accesses of data bu�ers for the ghost DOF
within the SpMV is pre-processed on the CPU and sent in bulk chunks over the PCIe bus. Due
to the advanced data handling technique, the performance ratio of the single GPU per node
con�guration and the dual GPU per node con�guration (i.e. 8 nodes, 16 GPUs) is approximately
1.9.

The speed up for the strong scalability test for all three con�gurations is presented in Figure
5.48 (right). On eight nodes the speed up with respect to a single node is very close to the
optimal value of eight.
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Chapter 6

Summary and Further Work

Multi-core and many-core devices provide high performance capability. In order to exploit this
potential many numerical algorithms and schemes need to be adapted. The algorithms and their
implementations need to have �ne-grained parallelism in order to fully utilize the modern parallel
devices.

The main focus of this work was to build e�cient parallel iterative solvers for large and sparse
linear systems for multi-core and many-core devices. We have shown that after an adaption of
the numerical schemes with respect to the �ne-grained parallelism we are able to harness the
potential of modern parallel platforms. We have demonstrated that Krylov subspace methods
and multi-grid methods combined with highly parallel preconditioners and smoothers lead to
e�cient utilization of these new technologies. This work provides the next step in the �eld of
iterative solvers for many-core systems in terms of new numerical algorithms with �ne-grained
parallelism.

We started with an introduction to the basics of the FEM for linear elliptic PDEs, presented
in Chapter 2. We continued with remarks on linear solvers and we focused on iterative solvers
including simple iteration schemes, Krylov subspaces solvers and geometric multi-grid methods.
We emphasized the importance of proper preconditioning/smoothing techniques and gave a brief
overview of the existing schemes. We concluded this chapter with remarks on the algorithmic
complexity and computational intensity.

In Chapter 3, we showed the way the basic routines can be executed in parallel and we made
remarks on the accuracy and the consistency of the results. We proceeded by presenting our
concept for full-parallel and hybrid-parallel solvers on multi-core and many-core devices. The
main focus in this chapter was on the parallel preconditioners � here, we demonstrated how to
apply additive, multiplicative and approximate inverse preconditioners in parallel. For LU-based
preconditioners we proposed a block-wise form of the forward and backward substitutions. It is
based on vector/matrix operations and therefore can be performed in parallel. Here, we reviewed
two techniques � multi-coloring and level-scheduling re-ordering algorithms. We proposed a
novel method, called the power(q)-pattern method, for controlling the sparsity pattern of the
ILU decomposition with �ll-ins based on levels. We proved that this algorithm can be used to
produce a new matrix structure with diagonal blocks containing only diagonal entries. With
this approach we obtained a higher degree of parallelism in comparison with the level-scheduling
algorithm. At the end of this chapter we presented remarks on other parallel preconditioning
schemes.

We progressed with a software design of a library for sparse linear solvers which was presented
in Chapter 4. In this section, we gave a description of the LAToolbox in the HiFlow3 project.
We elaborated our concept for developing a multi-platform linear algebra toolbox library. Using
the proposed model for memory accesses and key object methods, we were able to build solvers
and preconditioners for various backends while maintaining a single source code.

In the last part (Chapter 5 and Appendices B, C, D) we conducted numerical experiments
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and we provided benchmarks, evaluation and performance analysis over various hardware and
linear systems. In this section, we considered Krylov space solvers (CG, BiCGStab, GMRES)
and matrix-based geometric multi-grid methods (V and W-cycles) combined with di�erent pre-
conditioners and smoothers. We demonstrated the power and the e�ciency of the parallel pre-
conditioners in terms of acceleration factors � reduction of the computational time by deploying
a preconditioning phase. Furthermore, we showed the speed ups when performing the solvers on
various parallel systems.

In this thesis, we have focused on �ne-grained parallel techniques for performing additive,
multiplicative and approximate inverse proconditioners and on their embedding in iterative linear
solvers. As next steps, we need to adapt and explore other preconditioning schemes and solvers
such as support-tree based preconditioners and algebraic multi-grid methods. Furthermore, we
need to focus on the pre-processing and on the post-processing steps of the solvers and of the
preconditioners. In particular, by providing a parallel implementation of the building phase
for the preconditioning equation we will have better insights of the overall performance of the
preconditioned parallel solvers.



Appendix A

Source Code Examples for
Preconditioned CG

Here we present a source code for preconditioned CG solver based on the local multi-platform
linear algebra toolbox.

Listing A.1: CG solver implementation on local multi-platform linear algebra toolbox (lmpLA-
Toolbox)

1 // Precondi t ioned CG
2 template <typename ValueType>
3 void cg ( lVector<ValueType> ∗x , lVector<ValueType> ∗b ,
4 lMatrix<ValueType> ∗matrix ,
5 ValueType eps , int max_iter ,
6 lP r e cond i t i one r <ValueType> ∗ lPrecond )
7 {
8 int i t e r ;
9 lVector<ValueType> ∗p , ∗q , ∗ r , ∗z ;

10 ValueType rho , rho_old , alpha , beta , start_norm , r_norm ;
11
12 x−>pr in t ( ) ;
13 b−>pr in t ( ) ;
14 matrix−>pr in t ( ) ;
15
16 p = x−>CloneWithoutContent ( ) ;
17 q = x−>CloneWithoutContent ( ) ;
18 r = x−>CloneWithoutContent ( ) ;
19 z = x−>CloneWithoutContent ( ) ;
20
21 rho = static_cast<ValueType> ( 0 . 0 ) ;
22
23 matrix−>VectorMult (∗x , r ) ;
24 r−>ScaleAdd ( static_cast<ValueType> (−1.0) , ∗b ) ; ; // r = b − Ax
25
26 rho_old = rho ;
27
28 lPrecond−>Apply lPrecond i t i oner (∗ r , z ) ;
29 rho = r−>Dot (∗ z ) ;
30
31 lPrecond−>pr in t ( ) ;
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32
33 start_norm = r−>Nrm2( ) ;
34
35 for ( i t e r =0; i t e r <max_iter ; ++i t e r ) {
36
37 lPrecond−>Apply lPrecond i t i oner (∗ r , z ) ;
38
39 rho_old = rho ;
40 rho = r−>Dot (∗ z ) ;
41 beta = rho/rho_old ;
42
43 i f ( i t e r == 0)
44 beta = static_cast<ValueType> ( 0 . 0 ) ;
45
46
47 p−>ScaleAdd ( beta , ∗z ) ; //p=be ta ∗p + z
48 matrix−>VectorMult (∗p , q ) ;
49 alpha = rho / (p−>Dot (∗q ) ) ;
50 x−>Axpy(∗p , alpha ) ;
51 r−>Axpy(∗q , ( static_cast<ValueType> (−1.0))∗ alpha ) ;
52
53 r_norm = r−>Nrm2( ) ;
54
55 i f ( ( r_norm <= eps∗ start_norm ) | |
56 ( r_norm <= ABS_EPS) )
57 break ;
58
59 }
60
61 std : : cout << " i t e r a t i o n s="
62 << i t e r << " ;  L2 r e s="
63 << r−>Nrm2( )
64 << std : : endl << std : : endl ;
65
66 delete p ;
67 delete q ;
68 delete r ;
69 delete z ;
70
71 }



Appendix B

Complimentary SPD Matrix Tests

In this appendix we present a qualitative comparison between several preconditioning schemes
on real, symmetric and positive de�nite matrices. For the tests, we use preconditioned CG solver
with a zero initial value and a right-hand side equal to one. For the stopping criterion we use
relative and absolute stopping factors equal to 10−6 or 10−16. All of the tests are performed
in double precision. In Table B.1, B.2 B.3 the number of iterations and the level of parallelism
(e. g. number of colors and number of levels for LU-sweeps), as well as the number of non-zeroes
for approximate inverse matrix based on FSAI algorithm, NNZ = NNZ(L) +NNZ(LT ) are
shown. With 'no conv' we denote the inability of the solver to �nish in 100,000 iterations.

gr3030 bcsstk06 bcsstk13 bcsstk14 bcsstk15 mhd3200b nos1

[86] [82] [83] [84] [85] [128] [87]

No Precond # iter 33 3990 342923 14012 22016 305293 2107

SGS # iter 24 183 548 196 213 17 230
# colors 4 15 41 25 19 6 2

ILU(0,1) # iter 23 175 14795 98 1124 10 142
# colors 4 15 41 25 19 6 2

ILU(1,2) # iter 16 85 2184 42 160 5 86
# colors 9 35 137 65 77 10 6

ILU(2,3) # iter 12 50 222 26 71 4 50
# colors 16 59 321 122 168 14 8

ILU(3,4) # iter 10 19 59 20 46 3 37
# colors 26 91 589 192 270 18 10

ILU(3,3) # iter 11 44 73 19 51 4 64
# colors 16 59 321 122 168 14 8

ILU(0) # iter 16 43 no conv 250 544 2 9183
# levels 88 88 577 392 365 798 79

ILU(1) # iter 11 20 159 31 75 0 0
# levels 117 146 10000 582 844 798 157

ILU(2) # iter 8 15 113 20 55 0 0
# levels 146 202 1370 797 1254 798 157

ILU(3) # iter 7 10 51 16 41 0 0
# levels 175 256 1749 962 1649 798 157

Table B.1: Qualitative comparison between several parallel preconditioners for seven test matri-
ces � level-scheduling and power(q)-pattern method
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88 COMPLIMENTARY SPD MATRIX TESTS

gr3030 bcsstk06 bcsstk13 bcsstk14 bcsstk15 mhd3200b nos1

[86] [82] [83] [84] [85] [128] [87]

Jacobi # iter 33 409 1449 409 575 36 450

FSAI1 # iter 25 159 515 95 220 10 252
NNZ 8644 8280 85886 65260 121764 21516 1254

FSAI2 # iter 17 99 260 55 133 6 129
NNZ 21636 24080 398776 197460 531636 37344 2182

FSAI3 # iter 13 83 122 39 92 4 85
NNZ 40104 44250 954444 380234 1129186 53096 2942

Table B.2: Qualitative comparison between several parallel preconditioners for seven test matri-
ces � Jacobi and FSAI algorithm

mesh3e1 s1rmt3m1 nos2 nos3 nos4 nos5 nos6 nos7

[127] [94] [88] [89] [90] [91] [92] [93]

No Precond # iter 17 6722 36466 229 75 427 1001 3375

SGS # iter 7 293 2967 83 33 114 47 43
# colors 5 24 2 10 4 9 2 2

ILU(0,1) # iter 6 262 1617 80 31 99 46 40
# colors 5 24 2 10 4 9 2 2

ILU(1,2) # iter 4 156 864 49 18 30 25 25
# colors 11 54 6 18 13 33 7 12

ILU(2,3) # iter 3 107 486 36 15 18 21 17
# colors 20 96 8 32 18 84 8 21

ILU(3,4) # iter 2 79 360 26 11 9 17 14
# colors 30 153 10 50 31 157 18 41

ILU(3,3) # iter 3 86 660 29 12 11 22 15
# colors 20 96 8 32 18 84 8 21

ILU(0) # iter 4 179 no conv 43 19 40 27 25
# levels 71 355 319 132 32 40 44 25

ILU(1) # iter 2 83 0 29 12 22 18 19
# levels 72 532 637 178 43 137 73 49

ILU(2) # iter 1 49 0 22 7 13 16 15
# levels 102 709 637 224 70 313 102 89

ILU(3) # iter 1 32 0 18 6 6 12 11
# levels 102 886 637 270 79 404 131 145

Jacobi # iter 13 842 5805 203 67 234 94 87

FSAI1 # iter 8 302 2897 95 37 117 47 42
NNZ 1666 223140 5094 16804 694 5640 3930 5346

FSAI2 # iter 5 197 1347 63 25 57 32 30
NNZ 3710 584524 8902 43824 1902 27390 8856 15660

FSAI3 # iter 3 145 874 46 19 34 25 23
NNZ 6582 1099738 12062 80832 3412 69562 15900 34768

Table B.3: Qualitative comparison between several parallel preconditioners for eight test matrices
� level-scheduling and power(q)-pattern method; Jacobi and FSAI algorithm



Appendix C

Complimentary Performance Tests on
Intel i7-2600 and NVIDIA GTX580

In this appendix we present benchmark performance tests on a single-socket Intel i7-2600 quad-
core system (with Hyper-Threading) which is accelerated by an NVIDIA GeForce GTX 580 device
with memory capacity of the CPU system and GPU device is 16GB and 3GB respectively. Due
to the Hyper-Threading on the CPU, we run the OpenMP tests with eight threads. Note that
some of the problems are not �tting into the 3GB memory of the GPU and bars are left blank.

C.1 Poisson Problem - Multi-grid and CG Solver

Here we present the solution times for multi-grid solver and CG solver (see Section 5.2.3,5.3.5
and Section 5.4.3).
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Figure C.1: Run time for the multi-grid V-cycle (left) and W-cycle (right) for the Poisson problem
on the 2D L-shaped domain
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Figure C.2: Parallel speed ups of the multi-grid V-cycle (left) and W-cycle (right) for the Poisson
problem on the 2D L-shaped domain
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Figure C.3: Run time performance and parallel speed up factors of the preconditioned CG solver
for the Poisson problem on the 2D L-shaped domain
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C.2 Matrix Collection Problems - CG Solver

Here we present the performance pro�le for three matrices (see Section 5.1.3) based on various
preconditioned CG (see Section 5.2).
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Figure C.4: ecology2 matrix: Number of iterations for solving the linear system with the
preconditioned CG solver based on various preconditioning schemes
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Figure C.5: ecology2 matrix: Performance benchmarks on the single/four-core CPU and on
the GPU. Solver time for the multi-colored SGS and the power(q)-pattern enhanced ILU(p,q)
(left), Jacobi and FSAI algorithms based on |A|1, |A|2 and |A|3 (right)
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Figure C.6: ecology2 matrix: Parallel speed ups for various preconditioned CG solvers on the
CPU OpenMP and the GPU platform
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Figure C.7: ecology2 matrix: Acceleration factors for the preconditioning phase in the CG
solver on the single/four-core CPU and on the GPU platform
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Figure C.8: g3_circuit matrix: Number of iterations for solving the linear system with the
preconditioned CG solver based on various preconditioning schemes



C.2. Matrix Collection Problems - CG Solver 93

 0

 50

 100

 150

 200

 250

 300

 350

 400

CPUseq CPUOpenMP GPU

T
im

e 
[s

ec
]

G3 circuit - time for solving the linear system

None
SGS

ILU(0,1)
ILU(1,2)
ILU(2,3)
ILU(3,4)
ILU(3,3)

 0

 50

 100

 150

 200

 250

 300

 350

 400

CPUseq CPUOpenMP GPU

T
im

e 
[s

ec
]

G3 circuit - time for solving the linear system

None
Jacobi
FSAI1
FSAI2
FSAI3

Figure C.9: g3_circuit matrix: Performance benchmarks on the single/four-core CPU and on
the GPU. Solver time for the -colored SGS and the power(q)-pattern enhanced ILU(p,q) (left),
Jacobi and FSAI algorithms based on |A|1, |A|2 and |A|3 (right)
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Figure C.10: g3_circuit matrix: Parallel speed ups for various preconditioned CG solvers on
the CPU OpenMP and the GPU platform

 0

 5

 10

 15

 20

CPUseq CPUOpenMP GPU

A
cc

el
er

at
io

n

G3 circuit - preconditioning acceleration

None
SGS

ILU(0,1)
ILU(1,2)
ILU(2,3)
ILU(3,4)
ILU(3,3)

 0

 5

 10

 15

 20

CPUseq CPUOpenMP GPU

A
cc

el
er

at
io

n

G3 circuit - preconditioning acceleration

None
Jacobi
FSAI1
FSAI2
FSAI3

Figure C.11: g3_circuit matrix: Acceleration factors for the preconditioning phase in the CG
solver on the single/four-core CPU and on the GPU platform
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Figure C.12: s3dkq4m2 matrix: Number of iterations for solving the linear system with the
preconditioned CG solver based on various preconditioning schemes
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Figure C.13: s3dkq4m2 matrix: Performance benchmarks on the single/four-core CPU and on
the GPU. Solver time for the multi-colored SGS and the power(q)-pattern enhanced ILU(p,q)
(left), Jacobi and FSAI algorithms based on |A|1, |A|2 and |A|3 (right)
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Figure C.14: s3dkq4m2matrix: Zoomed-in performance benchmarks plots on the single/four-core
CPU and on the GPU, the non-preconditioned solver time is omitted. Solver time for the multi-
colored SGS and the power(q)-pattern enhanced ILU(p,q) (left), Jacobi and FSAI algorithms
based on |A|1, |A|2 and |A|3 (right)
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Figure C.15: s3dkq4m2 matrix: Parallel speed ups for various preconditioned CG solvers on the
CPU OpenMP and on the GPU platform
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Figure C.16: s3dkq4m2 matrix: Acceleration factors for the preconditioning phase in the CG
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Appendix D

Performance Comparison of
Level-scheduling and Power(q)-pattern
Method

In order to do a comparison of the level-scheduling and the power(q)-pattern method, we follow
the work of [98]. For the numerical experiments we use a zero initial value and a right-hand side
b = Ae, where e is a vector �lled with ones. For the solving phase we apply CG and BiCGStab
solvers with a relative stopping criterion of 10−7. The comparison is based on the most scalable
version (i.e. ILU(0)) of the CUSPARSE against the MKL and the equivalent to the power(q)-
pattern method � ILU(0,1). The selected matrices are presented in Table D.1, they are obtained
from the University of Florida Sparse Matrix Collection [129].

Matrix Size NNZ spd

1 o�shore 259,789 4,242,673 yes
2 af_shell3 504,855 17,562,051 yes
3 parabolic_fem 525,825 3,674,625 yes
4 apache2 715,176 4,817,870 yes
5 ecology2 999,999 4,995,991 yes
6 thermal2 1,228,045 8,580,313 yes
7 G3_circuit 1,585,478 7,660,826 yes
8 FEM_3D_thermal2 147,900 3,489,300 no
9 ASIC_320ks 321,671 1,316,085 no
10 cage13 445,315 7,479,343 no
11 atmosmodd 1,270,432 8,814,880 no

Table D.1: Symmetric and non-symmetric test matrices

The comparison gives only a rough estimation of the performance pro�le, presented in Ta-
ble D.2. One of the reasons is that we measure the total time for execution of the CG method
(see cg function in Appendix A), including some memory allocation inside the function. This
changes the performance pro�le for very small iteration numbers as for matrix 1, 8, 9 and 10.
Second, the lmpLAToolbox SpMV function is not as e�cient as the MKL nor the CUSPARSE
routine. Third, the lmpLAToolbox LU-based preconditioning solver is based on explicit SpMV
multiplication for each block (see Chapter 3), however this is not for the CUSPARSE routine,
see [98]. In other words, the implementation of the level-scheduling and the power(q)-pattern
method are di�erent, thus the comparison of the two methods are not very fair.

The power(q)-pattern method runs on an Intel Core i7 920 CPU which is clocked at 2.67
GHz, the data is presented in Table D.2 as numhpc0327. For the MKL benchmarks, an Intel
Core i7 950 CPU clocked at 3.07GHz has been used. Both CPUs are based on the same core
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matrix time [sec] ILU(0) ILU(0,1) ILU(0) ILU(0,1) ILU(0,1)
#iter MKL numhpc0327 CUSPARSE GTX580 S1070

1 time 0.72 0.47 1.52 0.36 0.55
#iter 25 32 25 32 32

2 time 38.5 49.1 33.9 37.2 41.5
#iter 569 939 571 938 939

3 time 39.2 19.2 6.91 5.80 12.6
#iter 1099 1134 1099 1133 1134

4 time 35.0 29.5 12.8 10.2 22.1
#iter 713 1580 713 1579 1580

5 time 107 60.6 55.3 16.6 38
#iter 1746 2889 1746 2888 2889

6 time 155 85.2 54.4 23.9 49
#iter 1656 1748 1656 1747 1748

7 time 20.2 15.5 8.61 3.1 7.1
#iter 183 338 183 338 338

8 time 0.13 0.17 0.52 0.17 0.23
#iter 9 10 9 10 10

9 time 0.27 0.12 0.12 0.06 0.19
#iter 6 5 6 5 5

10 time 0.28 0.17 0.15 0.11 0.17
#iter 2.5 2 2.5 2 2

11 time 12.5 0.9 9.3 2.8 6.8
#iter 76.5 125 79.5 120 135

Table D.2: Comparison of the ILU(0) with level-scheduling and the power(q)-pattern method
for ILU(0,1)

architecture, known as Bloom�eld. Apart from the higher clock rate, the CPUs are identical,
which also includes the QPI bandwidth as well as the integrated memory controller.

The NVIDIA GTX580 with its GF110 chip consists of 512 Shader Processors (SPs). The core
is clocked with 772 MHz, while the shader units are clocked at 1544 MHz. Its 3 GBytes GDDR5
memory is clocked at 1002 MHz, connected via a 384 bit bus width. This leads to a theoretical
memory bandwidth of 192.4 GByte/sec. The Tesla S1070 system consists of four GPU devices,
for this test we use only a single card. The cards are build on GT200 chips with 240 shader
processors working on clock frequency of 602 MHz while the shaders operate at 1296 MHz. The
device has access to a 4 GBytes GDDR3 memory, clocked at 800 MHz which is connected by a
512 bit interface. This results in a theoretical bandwidth of 102 GByte/sec. The GPU used for
the CUSPARSE benchmarks, a NVIDIA C2050 (ECC on), is based on the Fermi chip GF100.
It consists of 448 SPs with a core clock of 575 MHz and a shader clock of 1150 MHz. The 384
bit width bus interface connects 3072 MB of GDDR5 memory with the GPU. With the memory
clock operating at 1500 MHz, a theoretical memory bandwidth of 144 GBytes is given.
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