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Preface

This work deals with several aspects of inverse scattering for chiral mate-
rials: A (chiral) body is situated in vacuum and illuminated by an elec-
tromagnetic wave. This wave is scattered. The direct scattering problem
is to compute the scattered wave for a given incident wave and a given
chiral object. The inverse problem is to determine the scatterer – the
chiral object – from information about the scattered field.

Chiral material is optically active: the polarization is rotated when
linearly–polarized plane waves pass through. It is possible to construct
metamaterials which exhibit chirality for microwave frequencies.

The behavior of electromagnetic waves in chiral material is modeled by
Maxwell’s equations and the Drude–Born–Fedorov constitutive relations.
We generalize the methods used for non–magnetic achiral (non–chiral) ma-
terials to treat the direct problem – existence and uniqueness – and apply
the Factorization method for the reconstruction of the scatterer (inverse
problem). This method delivers a necessary and sufficient condition to
decide wether or not a point belongs to the scatterer.

Scattering from a bounded obstacle is studied in detail: both the direct
and the inverse problem. The special case of scattering from a homo-
geneous chiral sphere is done analytically. Scattering by chiral cylinder
is used to motivate the Factorization method for the vector Helmholtz
equation. Numerical examples serve as proof of concept and illustrate the
theoretical results. Finally, scattering from periodic chiral structures is
another possible application of the generalized Factorization method.

This work would not exist without the support of my colleagues at
the department of mathematics of the Karlsruhe Institute of Technology.
First of all, I want to thank my advisor Prof. Dr. Andreas Kirsch for



ii

encouraging me to write this thesis and for valuable discussions during the
recent years. I also thank PD Dr. Frank Hettlich for being co–examiner of
this thesis and for his support and helpful remarks. I would like to thank
all my former and present colleagues for their help and for providing a
friendly working atmosphere. In particular, I am much obliged to PD Dr.
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CHAPTER I

Introduction

1. Chirality

The word chiral comes from the greek word for hand. This describes
quite well what chirality is about: handedness. In geometry, a figure
is chiral if it cannot be mapped to its mirror image by rotations and
translations alone. Typical examples are the human hands, snail shells
and spirals and helices in general.

In chemistry, chirality usually refers to crystalline structures and mole-
cules. The two possible configurations of a chiral molecule are called
enantiomers. They are mirror images of each other. Figure I.1 shows
the two enantiomers of a generic amino acid. It has a tetrahedral structure
with a carbon atom at the center and four different vertices.

Material which exhibits no chirality is called achiral.

Figure I.1: The two enantiomers of a generic amino acid.
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Optical activity

Chiral material is optically active: Left– and right–circularly polarized
waves propagate with different phase velocities. As a result of the right–
or left– handedness of the microstructure of such materials one can observe
two phenomena when linearly–polarized plane waves travel through: Cir-
cular dichroism refers to different absorption of left– and right–circularly
polarized waves inside the medium. Optical rotatory dispersion describes
the rotation of polarization of the transmitted wave.

The optical activity was discovered at the beginning of the 19th cen-
tury. The French physicist François Arago [5] observed quartz chrystals
and Jean-Baptiste Biot studied light passing through liquid solutions of
tartaric acid and of sugar. Louis Pasteur found out that optical activity
comes from dissymmetric arrangement of atoms in the crystalline struc-
ture or in the molecules [32]: The structures have non–superimposable
mirror images and are therefore handed or chiral.

Many organic molecules exhibit chirality at optical frequencies. But
chiral material must neither have a molecular origin nor is it restricted to
this frequency range. Since chirality originates from the geometric prop-
erty of mirror–asymmetry in the microstructure, it is possible to construct
materials which are effectively chiral in sub-optical and high microwave
frequencies. This may be macromolecular helical polymers embedded in
non–chiral host media [38] or for example microminiature copper helices
embedded in light–weight foam as in experiments studied by Lindman in
1920 [29].

According to Ammari and Nédélec [4] these artificial chiral materials
attract the attention of research in the fields of scattering, waveguide
propagation, antennas and microwave devices. Rojas [36] mentions the
construction of conducting bodies coated with chiral materials to control
their scattering properties using the additional degree of freedom given
by a chirality parameter β (to be introduced in what follows).

Constitutive relations

The propagation of electromagnetic waves can be modeled by Maxwell’s
equations. In the time harmonic case with frequency ω, the electric field E,
the electric induction D, the magnetic field H and the magnetic induction
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B satisfy the equations

curlH = −iωD,
curlE = iωB,

divD = 0,

divB = 0.

Waves travelling in vacuum are adequately described by the constitutive
relations

D = ε0E and B = µ0H

where the constants ε0 and µ0 are the permittivity and the magnetic
permeability in vacuum. The constitutive relations in material media can
be summarized as

D = ε0E + P and B = µ0H +M

with polarization P and magnetization M , respectively.
For non–magnetic dielectric media Lakhtakia [26] names several con-

tributions to P such as electronic, atomic or ionic and orientational po-
larization. They come from charge separation, displacement of atoms or
ions and dipole alignments, respectively. They can be summarized as P
being proportional to E with some real proportionality factor. In this
case D = εE. Lakhtakia calls ε the dielectric constant. We will refer to ε
as absolute permittivity. If an applied electric field induces a conduction
current density the ohmic losses are modeled by complex valued ε.

In case of magnetic media we cannot ignore magnetic dipole moments.
This is modelled by M being proportional to H . Hence, B = µH with
permeability µ. Again, ohmic losses are incorporated by allowing complex
values for µ.

Considerations by Drude, Born and Fedorov led to the constitutive
relations for isotropic chirality: the Drude–Born–Fedorov equations:

D = ε
(
E + β curlE

)
,

B = µ
(
H + β curlH

)

with complex valued permittivity ε, magnetic permeability µ and chiral-
ity β. Here, chirality is modeled by adding a proportional dependence
on curlE to the polarization P and on curlH to the magnetization M ,
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Condon, Charney
D = εCE − χ∂H/∂t
B = µCH + χ∂E/∂t

Tellegen, Chambers, Unz, Krowne
D = εTE + ζH
B = µTE − ζE

Post, Jaggard
D = εPE + iξB
B = µP (H − iξE)

Table I.1: Alternative characterizations of chirality. See Lakhtakia [26].

respectively. In his chapter about “naturally active matter” in [18] Drude
argues how the curl comes into play.

Different characterizations of chirality exist. But in the time harmonic
case it can be shown that they are equivalent to the one above. In Table
I.1 we just cite the equations from [26] and refer to the references therein.

2. Previous results and aim of the work

This work deals with inverse electromagnetic scattering problems for
bounded inhomogeneous chiral obstacles in 3D. The obstacle is illumi-
nated by an incident field. We measure the scattered field, or more pre-
cisely, the far field and use this information to reconstruct the location
and the shape of the scatterer. Here, we generalize the Factorization
method developed by Kirsch [24] and applied to many types of inverse
problems: acoustic and electromagnetic scattering for bounded obstacles,
half spaces, wave guides, periodic media and electrical impedance tomo-
graphy to find inclusions and for geological applications – just to name
some examples. Starting point of this work is the Factorization method
for Maxwell’s equations and non–magnetic achiral materials – chapter 5
in [24]. The main tool – a theorem about range identity – is taken from
Lechleiter [27] which is independent of interior transmission eigenvalues.

Direct problem In the case of homogeneous media Stratis et al. [6] use
left– and right–handed fields which satisfy the achiral Maxwell equations
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for different wave numbers. They employ boundary integral equation
methods to solve the direct (transmission) problem. The far field operator
and scattering relations are studied in [7]. Rojas [36] studies the case
of a chiral body attached to a perfectly electric conducting body and
deduces line integrals involving the free space and chiral media Green’s
functions. In the case of inhomogeneous media in 3D Rojas [35] works with
integral equations which are obtained with the help of the free space dyadic
Green’s function. Cessenat [12] proposes a variational formulation using
the Calderon operator, which reduces the problem to one on a bounded
domain.

We also give a variational formulation for the direct (transmission) prob-
lem motivated by a second order differential equation for one of the both
fields, the electric or magnetic. We use potential solutions to particular
source problems for Maxwell’s equations to deduce an equivalent integro–
differential equation and show existence und uniqueness.

Inverse problem Inverse scattering problems arise in medical imaging
and non–destructive testing. There is not the inverse problem but many
different problems can be tackled such as reconstruction of the support of
the scatterer or the determination of material parameters. What kind of
measurements are provided? Far field data for one single incident field or
for all possible plane waves. Is the frequency fixed or is data for different
frequencies available? Which a priori information is given? These ques-
tions influence uniqueness results. All inverse problems have in common
to be ill–posed in the sense of Hadamard [19]: Even if one proofs exis-
tence and uniqueness the solution will not depend continuously on the
data. Numerically, this fact is discouraging and challenging at the same
time. Regularization schemes have to be applied and plausible a priori
information has to be used for reconstruction algorithms.

Colton [13] divides the traditional approaches for the solution of inverse
scattering problems into two families: non–linear optimization schemes
and weak scattering approximation methods such as the Born approxi-
mation.

Bao and Peĳun [8] use multi–frequency scattering data and treat the in-
verse medium problem with an recursive linearization on the wave number
and start with the Born approximation as initial guess. Dorn et al. [17]
describe an iterative method for the reconstruction of the conductivity
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distribution in the soil. This method can be seen as a non–linear gen-
eralization of reconstruction techniques in x–ray tomography. Level set

methods work with an implicit representation of the unknown object and
use an “evolution parameter”. These methods allow to change the number
of connectivity components during the reconstruction process. This has
been done for homogeneous, isotropic, non–magnetic media in [34]. The
disadvantages of non–linear optimization schemes are long reconstruction
times and the necessity of an accurate initial guess.

Weak scattering approximation methods require a priori information
whether the scatterer is impenetrable and in that case what kind of bound-
ary condition holds. Furthermore they are not applicable in cases where
the assumption of “weak scattering” is not appropriate.

A method which overcomes these difficulties is the Linear sampling

method (LSM). The advantages are low computational effort, simple im-
plementation and very little a priori information [13]. But it is a quali-
tative method in the sense that – in case of inhomogeneous scattering –
one can only reconstruct the support but not the parameters of the scat-
terer. LSM is based on solving a linear integral equation and then using
the equation’s solution as an indicator function for the determination of
the support of the scattering object. For more details we refer to [11]
and the references therein. Another sampling method is the No response

test proposed by Potthast and Sini [33] for the reconstruction of perfectly
conducting polyhedral objects with a few incident waves. These sampling
methods provide sufficient but in general not necessary conditions. The
Factorization method developed by Kirsch [24] provides a necessary and
sufficient criterion for the characteristic function of the scatterer’s support.

For the inverse scattering problem in chiral media we generalize the
Factorization method by combining results for scattering problems of the
following kind:

curl(ε−1 curlu)− k2u = curl f

and
curl2 u− k2µu = g

with compactly supported sources g and f , wave number k, inhomo-
geneities ε and µ and the scattered field u.

The chapters II and III – the direct and the inverse problem – represent
the main part of this work. In chapter IV we study the scattering from
spherical chiral obstacles and give series representations for the occuring
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fields and the far field operator. Furthermore, we study the scattering by
an infinite chiral cylinder which leads to the Factorization method for the
vector Helmholtz equation in chapter V. These results are mainly a corol-
lary of the chapters II and III since the same techniques and arguments
are used. Numerical experiments for the far field pattern and shape re-
construction complete this chapter. The final part consists of the chapters
VI and VII where we present some ideas for the Factorization method for
periodic chiral structures and give a summary and conclusions.





CHAPTER II

Direct transmission problem

This chapter deals with the direct problem: Given an incident wave and a
chiral object with known material functions compute the scattered field.

We introduce the time harmonic case for Maxwell’s equations and estab-
lish the constitutive relations in vacuum and in chiral media. We discuss
different forms of the equations we will deal with depending on the partic-
ular situation: Two first order equations expressing the curl of the electric
field E by the magnetic field H and its curl and vice versa. Or expressing
curlE and curlH by E and H . In this chapter we mainly use one second
order equation for H or E, respectively.

The transmission problem is motivated and explained. We describe the
setting of our problem: the chiral object, material parameters and the
electromagnetic fields which appear. We use a second order differential
equation for H and deduce transmission conditions on the boundary of
the chiral object. In this context we can call it a magnetic transmission
problem. As we consider the whole space we complete the formulation
by introducing the notion of a radiating solution. This handles the be-
haviour of the fields at infinity. All this is done classically to motivate a
variational formulation. Of course, the curl–operator in a weak sense and
appropriate function spaces have to be defined. Later on, we need to talk
of a solution (E,H) of the transmission problem. We briefly formulate an
electric transmission problem and show equivalence of both, the magnetic
and the electric transmission problem.

Prior to the solvability study we give an alternative formulation of our
transmission problem as an integro–differential equation and show equiva-
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lence to justify the approach. Certain vector potentials are used. They are
solutions to different kinds of source problems for the free space Maxwell’s
equations.

We use the integro–differential equation to study existence and unique-
ness by interpreting it as an operator equation. The appearing operator is
the sum of a coercive and a compact one. Fredholm’s alternative gives us
existence provided uniqueness holds. Thus, we show an uniqueness result
for complex permittivity and one for smooth real valued parameters. Fi-
nally, we come back to the electric transmission problem and restate the
main theorems.

1. Maxwell’s equations and constitutive relations

In the absence of electric and magnetic currents and charges electromag-
netic waves can be described in terms of the electric field E , the electric
induction D, the magnetic field H and the magnetic induction B. We
treat the time harmonic case; that is,

E(x, t) = Re (E(x)e−iωt), D(x, t) = Re (D(x)e−iωt),

H(x, t) = Re (H(x)e−iωt), B(x, t) = Re (B(x)e−iωt).

with frequency ω and x = (x1, x2, x3)⊤ ∈ R3. Then the fields E,D,H and
B satisfy Maxwell’s equations in the following form

curlH = −iωD, (2.1)

curlE = iωB, (2.2)

divD = 0,

divB = 0.

Depending on the medium in which the waves propagate we have to add
constitutive relations. We consider propagation in vacuum and chiral
bodies. In vacuum we simply have

D = ε0E and B = µ0H

where the constants ε0 and µ0 are the permittivity and the magentic
permeability in vacuum. This gives:

curlH = −iωε0E and curlE = iωµ0H. (2.3)
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Introduce the wave number k := ω
√
ε0µ0 and normalize all fields: Sub-

stitute E, D by E/
√
ε0, D/

√
ε0 and H , B by H/

√
µ0, B/

√
µ0. Then

Maxwell’s equations in vacuum read

curlH = −ikE and curlE = ikH.

We look at isotropic chiral media. In this case the constitutive relations
(Drude–Born–Fedorov) are given by

D = ε
(
E + β curlE

)
and B = µ

(
H + β curlH

)
(2.4)

where the relative permittivity ε, the relative magnetic permeability µ and
the chirality β are time independent complex valued (scalar) functions.
These functions are constant for homogeneous materials. For β = 0 we
recognize the achiral case.

In the next section, we use a second order differential equation for H to
formulate the transmission problem. Therefore we first eliminate the fields
B and D. Combining Maxwell’s equations (2.1), (2.2) and the constitutive
relations (2.4) we get

curlH = −ikε
(
E + β curlE

)
, (2.5)

curlE = ikµ
(
H + β curlH

)
(2.6)

For 1 − k2εµβ2 6= 0, we can express curlE and curlH by E and H with
the aid of equations (2.5) and (2.6):

curlH = −i kε

1− k2εµβ2

︸ ︷︷ ︸
:=a1

E +
k2εµβ

1− k2εµβ2

︸ ︷︷ ︸
:=a2

H,

curlE = i
kµ

1− k2εµβ2

︸ ︷︷ ︸
:=a3

H +
k2εµβ

1− k2εµβ2

︸ ︷︷ ︸
:=a4

E.

(2.7)

Note that a2 = a4. Furthermore, we are able to eliminate the electric field
E by dividing (2.5) by ε (for ε 6= 0) and applying the curl–Operator.

1
ε curlH = −ikE + k2µβH + k2µβ2 curlH,

curl
[

1
ε curlH

]
= k2µH + k2µβ curlH

+ curl
[
k2µβH

]
+ curl

[
k2β2µ curlH

]
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and finally

curl
[(

1
ε − k2µβ2

)
curlH

]
− k2

[
curl(µβH) + µβ curlH

]
− k2µH = 0.

By the same procedure, we can eliminate the magnetic field H and get a
second order equation for E,

curl
[(

1
µ − k2εβ2

)
curlE

]
− k2

[
curl(εβE) + εβ curlE

]
− k2εE = 0.

2. Variational formulation

We want to study the scattering of electromagnetic waves by a bounded
isotropic chiral object in vacuum. When an incoming wave hits the object
we can observe two phenomena. On the one hand the wave penetrates into
the object. On the other hand it is scattered. How is this modeled? In the
exterior, Maxwell’s equations (2.3) describe the behavior of electromag-
netic waves. In the interior we have the chiral version of these equations.
For each of both domains we could formulate a partial differential equa-
tion. They are linked by transmission conditions on the boundary. That
is why we consider a transmission problem. The direct problem consists in
computing the effect – the scattered field – of an incoming wave provided
the knowledge of the object – its shape and position – and the material;
that is, the parameters ε, µ and β.

Motivated by the fact that we can eliminate one of the fields E or H , we
express the transmission problem with a second order partial differential
equation for E or H . We will show that both formulations lead to the
same solution.

These second order equations – stated at the end of the preceding sec-
tion – are symmetric in E and H when we interchange ε and µ. We
formulate the two versions both classically and variationally. The classi-
cal formulation serves as motivation for the variational form.

We begin with the setting sketched in Figure II.1. A bounded chiral
body characterized by the functions ε, µ and β is situated in vacuum and
illuminated by an electromagnetic wave (Ei, Hi) causing a scattered field
(Es, Hs). The total fields E and H are superpositions of the incident and
the scattered fields,

E = Ei + Es and H = Hi +Hs.
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Ei, Hi
Es, Hs

ε(x), µ(x), β(x)
ε ≡ µ ≡ 1, β ≡ 0 Ω

Figure II.1: Direct problem setting.

More precisely, let Ω ⊂ R3 be a bounded domain with boundary Γ ∈ C2.
The functions ε, µ, β ∈ C1(R3 r Γ) are such that ε ≡ 1 µ ≡ 1 and β ≡ 0
in R3 r Ω. We assume that ε 6= 0 and µ 6= 0 and introduce the contrasts
qµ := µ− 1 and qε := 1− 1

ε .

2.1 Magnetic transmission problem

We start with the total field. As we have seen in the previous section,
after elimination of E the governing equation for the total field H is

curl
[(

1
ε − k2µβ2

)
curlH

]
−k2

[
curl(µβH)+µβ curlH

]
−k2µH = 0 (2.8)

in R3 r Γ. By the definition of the parameter functions ε, µ and β this
equation represents the free space Maxwell’s equations in the exterior of
Ω and the chiral equations in the interior.

As incident field Hi we take an analytic solution of Maxwell’s equations
in vacuum,

curl2 Hi − k2Hi = 0 in R
3. (2.9)

Subtraction of the equation for the incident field (2.9) from the one for the
total field (2.8) yields the equation for the scattered field Hs = H −Hi,

curl
[(

1
ε − k2µβ2

)
curlHs

]
− k2

[
curl(µβHs) + µβ curlHs

]
− k2µHs

= curl
[
(qε + k2µβ2) curlHi

]
+ k2

[
curl(µβHi) + µβ curlHi

]
+ k2qµH

i

(2.10)

in R3 r Γ where the contrasts qµ = µ− 1 and qε = 1− 1
ε .
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The next step is to specify the transmission conditions. ν = ν(x) de-
notes the unit normal vector in x ∈ Γ = ∂Ω directed to the exterior of
Ω. In the sequel all equations involving tangential vectors shall hold on
Γ. We use the notation F+ and F− for the limit from the exterior and
interior, respectively, for a vector field or function F .

The tangential components of E and H are continuous on interfaces, in
other words,

ν ×H+ = ν ×H− and ν × E+ = ν × E− on Γ. (2.11)

This leads to transmission conditions on the boundary Γ of Ω. The next
example illustrates the determination of the transmission conditions.

Example II.1 (Transmission conditions in achiral case). In achi-
ral non-magnetic media (β ≡ 0, µ ≡ 1) Maxwell’s equations (2.5), (2.6)
read

curlH = −ikεE and curlE = ikH in R
3

r Γ.

The assumptions on ε are as above: ε ≡ 1 in R3 r Ω. We can write
the continuity conditions (2.11) in terms of H with the aid of Maxwell’s
equations. E− = − 1

ikε−
curlH− and E+ = − 1

ik curlH+:

ν ×H+ = ν ×H− and ν × curlH+ = 1
ε−ν × curlH−.

These are the transmission conditions for the total field. Those for the
scattered field Hs = H−Hi are obtained by subtraction. ν×Hi+ = ν×Hi−
and ν × curlHi = ν × curlHi+ = ν × curlHi− yield

ν ×Hs+ = ν ×Hs−
and

1
ε−ν × curlHs− − ν × curlHs+ = ν ×

(
1− 1

ε−

)
curlHi.

Now, we deduce the transmission conditions for the chiral case. The
limits of E which appear in the continuity conditions (2.11) can be ex-
pressed in terms of H by the chiral equations (2.5) and (2.6). For the
limit from the exterior β = 0 and ε = 1. Thus E+ = i

k curlH+ and
E− = i

(
1
kε − kµβ2

)
− curlH− − ik(µβ)−H−:

ν ×H+ = ν ×H−,
ν × curlH+ = ν ×

(
1
ε − k2µβ2

)
− curlH− − ν × k2(µβ)−H−.
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The second condition can be rewritten

ν × curlH+ =
(

1
ε − k2µβ2

)
− ν × curlH− − k2(µβ)−ν ×H−.

Again we get the transmission conditions in terms of the scattered field
Hs = H −Hi by subtraction:

ν ×Hs+ = ν ×Hs−

and

(
1
ε − k2µβ2

)
− ν × curlHs− − k2(µβ)− ν ×Hs− − ν × curlHs+

=
(
qε + k2µβ2

)
− ν × curlHi + k2(µβ)− ν ×Hi. (2.12)

This looks rather complex. But in the development of a variational formu-
lation we will recognize these expressions. They appear in the boundary
integral when we integrate by parts.

Variational formulation

Let 1/ε|Ω, ε|Ω, 1/µ|Ω, µ|Ω, β|Ω ∈ L∞(Ω). Formally, by multiplying equa-
tion (2.10) with a test function and using integration by parts we deduce
a variational formulation for Hs. We will show the procedure in more
detail and introduce for abbreviation:

M s :=
(

1
ε − k2µβ2

)
curlHs − k2µβHs,

ms := k2µβ curlHs + k2µHs,

M i :=
(
qε + k2µβ2

)
curlHi + k2µβHi,

mi := k2qµH
i + k2µβ curlHi.

Note that M i and mi vanish in R3 r Ω. Then the transmission condition
(2.12) is simply

ν ×M s− − ν ×M s+ = ν ×M i− on Γ

and the scattering equation (2.10) reads

curlM s −ms = curlM i +mi.
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On both sides of this equation we form the scalar product with a test
function ψ ∈ C∞0 (B,C3) for an arbitrary ball B ⊃ Ω. Integration over B
yields

∫∫

B

curlM s · ψ −ms · ψ dx =

∫∫

Ω

curlM i · ψ +mi · ψ dx .

We split the region of integration on the left–hand side into Br Ω and Ω
and apply Green’s Theorem in the form
∫∫

D

curl v · w − v · curlw dx =

∫

∂D

ν · (v × w) ds =

∫

∂D

(ν × v) · w ds

with D = B r Ω and D = Ω, respectively; that is,
∫∫

BrΩ

M s · curlψ −ms · ψ dx+

∫∫

Ω

M s · curlψ −ms · ψ dx

−
∫

Γ

(ν ×M s+) · ψ ds+

∫

Γ

(ν ×M s−) · ψ ds

=

∫∫

Ω

M i · curlψ +mi · ψ dx+

∫

Γ

(ν ×M i) · ψ ds.

The boundary integrals vanish because of the transmission condition. This
gives

∫∫

R3

M s · curlψ −ms · ψ dx =

∫∫

Ω

M i · curlψ +mi · ψ dx

for all ψ with compact support. Plugging in the expressions for M s, ms,
M i and mi we state the variational form of the scattering equation:
∫∫

R3

(
1
ε − k2µβ2

)
curlHs · curlψ − k2µHs · ψ dx

−k2

∫∫

Ω

µβ
[
Hs · curlψ + curlHs · ψ] dx

=

∫∫

Ω

(qε + k2µβ2) curlHi · curlψ + k2qµH
i · ψ dx

+k2

∫∫

Ω

µβ
[
Hi · curlψ + curlHi · ψ

]
dx

(2.13)

for all ψ with compact support. We specify the function spaces for Hs, Hi

and ψ later when we formulate the weak transmission problem properly.
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2.2 Electric transmission problem

The first section shows that the second order equations for E and H
coincide when we interchange ε and µ. Analogously to the magnetic case,
we can formulate the transmission problem for the electric field. We briefly
give the results. Here again the incident field Ei is an analytic solution
to Maxwell’s equations in vacuum

curl2 Ei − k2Ei = 0 in R
3

and the equation for the scattered field Es = E − Ei reads

curl
[(

1
µ − k2εβ2

)
curlEs

]
− k2

[
curl(εβEs) + εβ curlEs

]
− k2εEs

= curl
[
(pµ + k2εβ2) curlEi

]
+ k2

[
curl(εβEi) + εβ curlEi

]
+ k2pεE

i

in R3rΓ where the contrasts pε := ε−1 and pµ := 1− 1
µ . The transmission

conditions are
ν × Es+ = ν × Es−

and
(

1
µ − k2εβ2

)
−
ν × curlEs− − k2(εβ)− ν × Es− − ν × curlEs+

=
(
pµ + k2εβ2

)
− ν × curlEi + k2(εβ)− ν × Ei

on Γ. Again ν denotes the unit normal vector on Γ directed into the
exterior of Ω.

Variational formulation

Let 1/ε|Ω, ε|Ω, 1/µ|Ω, µ|Ω, β|Ω ∈ L∞(Ω). Again, we deduce a variational
form of the scattering equation by multiplication with a test function and
integrating by parts,
∫∫

R3

(
1
µ − k2εβ2

)
curlEs · curlψ − k2εEs · ψ dx

−k2

∫∫

Ω

εβ
[
Es · curlψ + curlEs · ψ] dx

=

∫∫

Ω

(pµ + k2εβ2) curlEi · curlψ + k2pεE
i · ψ dx

+k2

∫∫

Ω

εβ
[
Ei · curlψ + curlEi · ψ

]
dx

(2.14)
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for all ψ with compact support. So far, we stated two variational equations
for our scattering problem. We have to specify the space in which to solve
them. The first of the following definitions explains in which sense the
derivatives have to be understood. We are interested in outgoing solutions.
The second definition gives the notion of this property.

As in McLean [30] for any measurable subset D ⊂ R3 with strictly
positive measure the function space L2(D) is defined for scalar valued
functions in the usual way, equipped with the norm

‖u‖
L2(D)

:=

(∫∫

D

|u(x)|2 dx

)1/2

.

Here and throughout this text | · | denotes the absolute value if the argu-
ment is scalar and | · | denotes the euclidean norm if the argument is a
vector.

Definition II.2 (Weak curl). Let D ⊂ R3 a bounded domain.

(a) L2(D,C3) :=
{
v = (v1, v2, v3)⊤

∣∣ v : D → C3, vj ∈ L2(B), j=1, 2, 3
}

(b) A function v ∈ L2(D,C3) possesses a L2–curl if there exists a func-
tion w ∈ L2(D,C3) s.t.

∫∫

D

w · ψ − v · curlψ dx = 0 for all ψ ∈ C∞0 (D,C3).

We denote the space of these functions by H(curl, D).

(c) Hloc(curl,R3) :=
{
v : R3 → C3

∣∣∀balls B ⊂ R3 : v|B ∈ H(curl, B)
}

(d) The test function space

{
ψ : R

3 → C
3
∣∣∃ball B ⊂ R

3 : supp ψ ⊂ B,ψ|B ∈ H(curl, B)
}

is denoted by Hc(curl,R3).

Notation: For functions v in part (b) we use the notation curl v := w.

Definition II.3 (Radiating solution). A solution (Es, Hs) to Max-
well’s equations in R

3
r Ω is called radiating if it satisfies one of the

Silver–Müller radiation conditions

Es(x)× x̂+Hs(x) = O(|x|−2) as |x| → ∞ (2.15)
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or
Hs(x)× x̂− Es(x) = O(|x|−2) as |x| → ∞

uniformly with respect to x̂ = x/|x| where x ∈ R3.

Here, | · | is the euclidean norm. As we will work with one of the fields
we give equivalent expressions using the field and its curl.

Proposition II.4. A solution U to the Maxwell equations in the form

curl2 U − k2U = 0

is radiating if, and only if, U satisfies one of the two conditions:

curlU × x̂− ikU = O(|x|−2) as |x| → ∞

or
ikU × x̂+ curlU = O(|x|−2) as |x| → ∞

uniformly with respect to x̂ = x/|x| where x ∈ R3.

For a proof we multiply (2.15) with −ik and use curlHs = −ikEs. This
yields the first condition of the proposition.

In the next sections we study the solvability concentrating on one of
the two formulations – namely the one for H . But for the uniqueness
result and the preliminary sections for the Factorization method we will
work with both, the electric and the magnetic field and talk of a solution
(Es, Hs) to the transmission problem. To justify this approach the next
lemma shows: Given a solution Hs to the magnetic transmission problem
we can determine the corresponding electric field and vice versa.

Lemma II.5 (Equivalence of variational formulations). The two
variational formulations are equivalent in the following sense.

(a) Let Hi be the incident field. If Hs ∈ Hloc(curl,R3) is a radiating
solution of (2.13) for all ψ ∈ Hc(curl,R3) then Es ∈ Hloc(curl,R3)
defined by

−ikEs :=
(

1
ε − k2µβ2

)
curlHs − k2µβHs

−(qε + k2µβ2) curlHi − k2µβHi
(2.16)

is a radiating solution of (2.14) for all ψ ∈ Hc(curl,R3) with

−ikEi := curlHi. (2.17)
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(b) Let Ei be the incident field. If Es ∈ Hloc(curl,R3) is a radiating
solution of (2.14) for all ψ ∈ Hc(curl,R3) then Hs ∈ Hloc(curl,R3)
defined by

ikHs :=
(

1
µ − k2εβ2

)
curlEs − k2εβEs

−(pµ + k2εβ2) curlEi − k2εβEi

is a radiating solution of (2.13) for all ψ ∈ Hc(curl,R3) with

ikHi := curlEi.

Proof. (a) By the definition of Es equation (2.13) shows that curlEs exists
locally in the weak sense and

−ik curlEs = k2µ(β curlHs +Hs) + k2µβ curlHi + k2qµH
i (2.18)

in the weak sense. For x /∈ Ω we have −ikEs = curlHs and

−ik curlEs = k2Hs ⇔ curlEs = ikHs.

We immediately check that with Hs also Es is radiating, cf. Proposition
II.4. Using the total fields H = Hs + Hi and E = Es + Ei equations
(2.16)–(2.18) yield

−ik
(

E
curlE

)
=

(
1−k2εµβ2

ε −k2µβ
k2µβ k2µ

)(
curlH
H

)
. (2.19)

The determinant of the coefficient matrix is

det = k2µ

ε
(1− k2εµβ2) + k4µ2β

2
= k2µ

ε
∈ L∞(Ω)

and the inverse matrix is given by
(

ε εβ

−εβ 1−k2εµβ2

k2µ

)
=

1

k2

(
k2ε k2εβ

−k2εβ 1−k2εµβ2

µ

)
.

We multiply equation (2.19) with the inverse matrix:

(
curlH
H

)
= − i

k

(
k2ε k2εβ

−k2εβ 1−k2εµβ2

µ

)(
E

curlE

)
.
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Plugging this into the definition of the weak curl,
∫∫

R3

H · curlψ − curlH · ψ dx = 0 for all ψ ∈ C∞0 (R3,C3),

and using again E = Es + Ei with curl2 Ei − k2Ei = 0 yields equation
(2.14)

A similar computation shows part (b).

The aim of this chapter is to show existence and uniqueness of the direct
transmission problem. We finish this section with an exact formulation
of that magnetic transmission problem which we want to solve. It is a
generalization of the magnetic transmission problem (2.13) in two aspects:

• In the derivation of the variational formulation we see that the sup-
port of the right–hand side of the scattering equation lies in Ω. We
can interpret this as a source and allow more general sources (g, h).

• The (real) wave number k2 = ω2ε0µ0 > 0 appears in several terms of
equation (2.13). When we analyze the transmission problem in the
following sections we have to allow complex values as well at some
positions. That is the reason why we introduce the complex valued
parameter κ which replaces the wave number where it is necessary.
(κ will have the values k or ik.)

Introduce the notation Π := {κ ∈ C : κ 6= 0,Reκ ≥ 0, Imκ ≥ 0}.
Assumption II.6 (Material parameters). Let Ω ⊂ R

3 a bounded
Lipschitz domain. We allow complex permittivity ε and complex perme-
ability µ but assume real chirality β. More precisely, 1/ε, µ ∈ L∞(R3,C)
and β ∈ L∞(R3,R) such that ε ≡ 1, µ ≡ 1 and β ≡ 0 in R3 r Ω.

Problem 1 (Weak magnetic transmission problem). Let k > 0
and κ ∈ Π. Given g, h ∈ L2(Ω,C3). Under the Assumption II.6 determine
v ∈ Hloc(curl,R3) such that v is radiating and satisfies

∫∫

R3

(
1
ε − k2µβ2

)
curl v · curlψ − κ2µv · ψ dx

−
∫∫

Ω

µβ
[
k2v · curlψ + κ2 curl v · ψ

]
dx

=

∫∫

Ω

κ2g · ψ + h · curlψ dx

(2.20)
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for all ψ ∈ Hc(curl,R3).

Additionally, we formulate the weak electric transmission problem. In
this case we need not to generalize the problem for complex wave numbers.

Assumption II.7 (Material parameters). Let Ω ⊂ R3 a bounded
Lipschitz domain. We allow complex permittivity ε and complex perme-
ability µ but assume real chirality β. More precisely, ε, 1/µ ∈ L∞(R3,C)
and β ∈ L∞(R3,R) such that ε ≡ 1, µ ≡ 1 and β ≡ 0 in R3 r Ω.

Problem 2 (Weak electric transmission problem). Let k > 0.
Given sources g, h ∈ L2(Ω,C3). Under the Assumption II.7 determine
v ∈ Hloc(curl,R3) such that v is radiating and satisfies

∫∫

R3

(
1
µ − k2εβ2

)
curl v · curlψ − k2εv · ψ dx

−k2

∫∫

Ω

εβ
[
v · curlψ + curl v · ψ

]
dx

=

∫∫

Ω

k2g · ψ + h · curlψ dx

(2.21)

for all ψ ∈ Hc(curl,R3).

3. Integro–differential equation

We give an alternative formulation for the above generalized transmission
problem: an integro–differential equation (IDE). The aim is the appli-
cation of Fredholm’s alternative. For that reason we introduce certain
vector potentials which lead to an integro–differential equation and show
equivalence.

The fundamental solution to the scalar Helmholtz equation plays an
important role. It will be the kernel function of our vector potentials.

Definition II.8 (Fundamental solution). For κ ∈ Π the fundamen-
tal solution Φκ of the scalar Helmholtz equation in R3

∆u+ κ2u = 0
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is defined by

Φκ(x, y) :=
exp(iκ|x− y|)

4π|x− y| , x 6= y.

The next lemma is from [21] and provides the basic vector potentials to
solve Maxwell’s equations.

Lemma II.9. Let κ ∈ Π.

(a) For f ∈ L2(Ω,C3) the vector field

u(x) = curl

∫∫

Ω

f(y)Φκ(x, y) dy , x ∈ R
3 ,

defines a function in Hloc(curl,R3) satisfying curl2 u− κ2u = curl f
in the variational sense; that is,

∫∫

R3

curlu · curlψ − κ2 u · ψ dx =

∫∫

Ω

f · curlψ dx

for all ψ ∈ Hc(curl,R3). Furthermore, u is radiating and the re-
striction u|Ω of u to Ω defines a bounded operator from L2(Ω,C3)
into H(curl,Ω).

(b) For f ∈ L2(Ω,C3) the vector field

u(x) = (κ2 +∇div )

∫∫

Ω

f(y)Φκ(x, y) dy , x ∈ R
3 ,

defines a function in Hloc(curl,R3) satisfying curl2 u − κ2u = κ2f
in the variational sense; that is,

∫∫

R3

curlu · curlψ − κ2 u · ψ dx = κ2

∫∫

Ω

f · ψ dx

for all ψ ∈ Hc(curl,R3). Furthermore, u is radiating and the re-
striction u|Ω of u to Ω defines a bounded operator from L2(Ω,C3)
into H(curl,Ω).
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We develop an IDE from the above lemma. Therefore we reformulate
the transmission problem (2.20) such that the variational form of the free
space Maxwell’s equations appears on the left–hand side.

∫∫

R3

curl v · curlψ − κ2v · ψ dx

= κ2

∫∫

Ω

[
qµv + µβ curl v + g

]
· ψ dx

+

∫∫

Ω

[
(qε + k2µβ2) curl v + k2µβv + h

]
· curlψ dx

for all ψ ∈ Hc(curl,R3). We recognize the equations from the previous
lemma with f = (qε+k

2µβ2) curl v+k2µβv+h and f = qµv+µβ curl v+g,
respectively. Note that supp f ⊂ Ω in both cases. Adapting the potentials
in the previous lemma gives an IDE for v.

v(x) = (κ2 +∇div )

∫∫

Ω

[
qµv + µβ curl v + g

]
Φκ(x, ·) dy

+ curl

∫∫

Ω

[
(qε + k2µβ2) curl v + k2µβv + h

]
Φκ(x, ·) dy

(2.22)

for x ∈ Ω. We abbreviate
∫∫

Ω ϕΦκ(x, ·) dy :=
∫∫

Ω ϕ(y)Φκ(x, y) dy. We
have to show that solving this integro–differential equation is equivalent
to the transmission problem.

Theorem II.10 (Equivalence). (a) Let v ∈ Hloc(curl,R3) be a ra-
diating solution of (2.20). Then v|Ω ∈ H(curl,Ω) solves (2.22).

(b) Let v ∈ H(curl,Ω) be a solution of (2.22). Then v can be extended
by the right–hand side to a radiating solution of (2.20).

Proof. In this proof all partial differential equations have to be understood
in the weak sense.

(a) Define v1 and v2 by

v1(x) := (κ2 +∇div )

∫∫

Ω

[
qµv + µβ curl v + g

]
Φκ(x, ·) dy,

v2(x) := curl

∫∫

Ω

[
(qε + k2µβ2) curl v + k2µβv + h

]
Φκ(x, ·) dy
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for x ∈ R3. Since v ∈ Hloc(curl,R3) is a weak solution of the transmission
problem, the functions

qµv + µβ curl v + g and (qε + k2µβ2) curl v + k2µβv + h

are square integrable on Ω and, by Lemma II.9, v1 and v2 are radiating
solutions in Hloc(curl,R3) of

curl2 v1 − κ2v1 = κ2
[
qµv + µβ curl v + g

]

and
curl2 v2 − κ2v2 = curl

[
(qε + k2µβ2) curl v + k2µβv + h

]
,

respectively. Therefore,

curl2(v1 + v2)− κ2(v1 + v2)

= κ2
[
qµv + µβ curl v + g

]
+ curl

[
(qε + k2µβ2) curl v + k2µβv + h

]

= curl2 v − κ2v

in R3. Both, v1 + v2 and v are radiating solutions. The difference w,
w = v − v1 − v2, is radiating and solves curl2 w − κ2w = 0 in R3. We
conclude that w ≡ 0 and therefore v = v1 +v2 and satisfies the IDE (2.22).

(b) Let v ∈ H(curl,Ω) be a solution of (2.22). We extend v by the right–
hand side to a function ṽ over R3. Then ṽ|Ω = v and ṽ ∈ Hloc(curl,R3)
is a radiating solution of

curl2 ṽ − κ2ṽ = κ2
[
qµv + µβ curl v + g

]

+ curl
[
(qε + k2µβ2) curl v + k2µβv + h

]

by Lemma II.9. On Ω we have ṽ = v so we can write

curl2 ṽ − κ2ṽ = κ2
[
qµṽ + µβ curl ṽ + g

]

+ curl
[
(qε + k2µβ2) curl ṽ + k2µβṽ + h

]

whence ṽ is a radiating solution of (2.20).

This theorem allows us to concentrate on the IDE when studying sol-
vability. In a similar way we can develop an IDE for the electric trans-
misssion problem:



26 Direct transmission problem

Corollary II.11. The equivalent integro–differential equation to the
electric transmission problem (Problem 2) reads

v(x) = (k2 +∇div )

∫∫

Ω

[
pεv + εβ curl v + g

]
Φk(x, ·) dy

+ curl

∫∫

Ω

[
(pµ + k2εβ2) curl v + k2εβv + h

]
Φk(x, ·) dy

for x ∈ Ω.

4. Solvability

Our goal is to solve the magnetic transmission problem (Problem 1) for
κ = k > 0. In the previous section we developed an equivalent formula-
tion, namely the integro–differential equation (2.22); that is,

v(x) = (k2 +∇div )

∫∫

Ω

[
qµv + µβ curl v + g

]
Φk(x, ·) dy

+ curl

∫∫

Ω

[
(qε + k2µβ2) curl v + k2µβv + h

]
Φk(x, ·) dy.

Having Fredholm’s alternative in mind we interpret this equation with ap-
propriately defined operators in order to study existence and uniqueness.
In the first part we reformulate the IDE as an operator equation

(I −AkTA −BkTB) v = f

with right–hand side f and show that I − AkTA − BkTB is a compact
perturbation of an isomorphism. Here again k denotes the wave number.

The second part contains two uniqueness results: one for complex ma-
terial parameters and one for smooth parameter functions. On account
of completeness the last subsection deals with our electric transmission
problem (2.14).

4.1 Existence

As mentioned in the introductory part to this section we define two oper-
ators Aκ, Bκ which are essentially the vector potentials from Lemma II.9
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and two auxiliary operators TA, TB which adapt the vector potentials to
our IDE. The function f consists of those terms which do not depend on
v.

Definition II.12. Let k > 0 and κ ∈ Π. Define the linear operators
Aκ, Bκ : L2(Ω,C3)→ H(curl,Ω) and TA, TB : H(curl,Ω)→ L2(Ω,C3) by

(Aκu)(x) := (κ2 +∇div )

∫∫

Ω

u(y) Φκ(x, y) dy,

(Bκu)(x) := curl

∫∫

Ω

u(y) Φκ(x, y) dy

for x ∈ Ω,

TAv := qµv + µβ curl v , TBv := (qε + k2µβ2) curl v + k2µβv

and the function

f(x) := (k2 +∇div )

∫∫

Ω

g(y) Φk(x, y) dy + curl

∫∫

Ω

h(y) Φk(x, y) dy

for x ∈ Ω.

With these operators the above equation (2.22) simply reads

(I −AkTA −BkTB) v = f.

In what follows we show that this operator equation is the sum of a
bounded isomorphism and a compact operator. We use the operators
Aik and Bik for k > 0 to split up the equation:

(I − AikTA −BikTB) v + (Aik −Ak)TAv + (Bik −Bk)TBv = f.

We show that the first part on the left–hand side corresponds to a varia-
tional equation for v which admits a unique solution by the Lax–Milgram
lemma. The second part represents compact operators.

The next two preliminary lemmata deliver a norm equivalence result
and the basic type of compact operators we are using: integral operators
with weakly singular kernel functions.

Lemma II.13. Let Ω ⊂ R3 be a bounded domain and g ∈ L∞(Ω).
For v = (v1, v2) ∈ L2(Ω,C3)2 the two norms ‖ · ‖

L2(Ω,C3)2
and ‖ · ‖

g
with
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‖v‖2
L2(Ω,C3)2

= ‖v1‖2
L2(Ω,C3)

+ ‖v2‖2
L2(Ω,C3)

and ‖ · ‖g defined by

‖v‖2g := ‖v1 + gv2‖2
L2(Ω,C3)

+ ‖v2‖2
L2(Ω,C3)

are equivalent.

Proof. We use the inequality a2 + b2 ≤ (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0.

‖v1 + gv2‖2 ≤
(
‖v1‖+ ‖g‖L∞‖v2‖

)2

≤ 2
(
‖v1‖2 + ‖g‖2L∞‖v2‖2

)

≤ 2 max{1, ‖g‖2L∞}
(
‖v1‖2 + ‖v2‖2

)

‖v1‖2 + ‖v2‖2 ≤
(
‖v1‖+ ‖v2‖

)2
=
(
‖v1 + g v2 − g v2‖+ ‖v2‖

)2

≤
(
‖v1 + g v2‖+ ‖g v2‖+ ‖v2‖

)2

≤ 2
[
‖v1 + g v2‖2 +

(
1 + ‖g‖L∞

)2‖v2‖2
]

≤ 2
(
1 + ‖g‖L∞

)2(‖v1 + g v2‖2 + ‖v2‖2
)

Definition II.14 (Volume potential). Let d = 2 or d = 3 and let
Ω ⊂ Rd a bounded domain. Define the volume potential for a kernel
function G : Ω× Ω→ C by

V [G] : L2(Ω)→ L2(Ω) , (V [G]ϕ)(x) :=

∫∫

Ω

ϕ(y)G(x, y) dy.

The kernel G is called weakly singular of order α if there exist
positive constants M and α ∈ [0, d) such that G is continuous for all
x, y ∈ Ω with x 6= y and

|G(x, y)| ≤M |x− y|−α.

Note that on the left–hand side | · | is the absolute value of a complex
number and on the right–hand side | · | denotes the euclidian norm on R

d.

Lemma II.15. Let d = 2 or d = 3. Let G be a weakly singular kernel of
order α < d/2. Then the volume potential V [G] defines a compact linear
operator from L2(Ω) into L2(Ω).
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We sketch the proof: As in the proof of Theorem 2.21 in Kress [25] it
is possible to show the compactness of the integral operator V [G] from
(C(Ω), ‖ · ‖L2(Ω)) into (C(Ω), ‖ · ‖L2(Ω)). In a second step one applies the
following functional analysis result. For a normed space (X, ‖ · ‖) denote
the completion by X̃ . Given two normed spaces X,Y and a compact
operator A : X → Y . Then the unique operator Ã : X̃ → Ỹ such that
Ax = Ãx for x ∈ X and ‖A‖ = ‖Ã‖ is also compact. We conclude that
V [G] is compact from L2(Ω) into L2(Ω).

The conditions under which we show the main theorem are rather stan-
dard and assure the coercivness of the sesquilinear form which appears in
the proof when applying the Lax–Milgram lemma.

Assumption II.16. Let k > 0 the wave number and β real-valued.
Additionally to Assumption II.6, assume that there exist positive constants
c1, c2 and c3 ∈ [0, 1) such that

Reµ ≥ c1 , Re
1

ε
≥ c2 and k2β2 |ε|2|µ|2

Re εReµ
≤ c3 on Ω.

The first two conditions mean that the appearing material parameters
shall be bounded away from zero. The third condition is symmetric in µ
and ε and depends on the wave number k2 as well. It is fullfilled when
k2β2 is small enough or even β = 0 (achiral case).

Theorem II.17. Let Assumption II.16 be fullfilled. Then:

(a) The operators TA, TB are bounded from H(curl,Ω) into L2(Ω,C3).

(b) The operators Ak − Aik and Bk − Bik are compact from L2(Ω,C3)
into H(curl,Ω).

(c) The operator I−AikTA−BikTB is boundedly invertible in H(curl,Ω).

Proof. (a) TAv = qµv + µβ curl v. Straight forward estimation yields

‖TAv‖
L2

= ‖qµv + µβ curl v‖
L2
≤ ‖qµ‖

L∞
‖v‖

L2
+ ‖µβ‖

L∞
‖curl v‖

L2

≤ max{‖qµ‖
L∞

, ‖µβ‖
L∞
} ‖v‖

H(curl,Ω)
.

The analog holds for TBv = (qε + k2µβ2) curl v + k2µβv.
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(b) We show compactness of Ak −Aik:
(
(Ak −Aik)u

)
(x) =k2

∫∫

Ω

u(y) Φk(x, y) dy + k2

∫∫

Ω

u(y) Φik(x, y) dy

+∇div

∫∫

Ω

u(y)
(
Φk(x, y)− Φik(x, y)

)
dy.

The first two integrals represent three–dimensional vectors of volume po-
tentials and define a function in H2(Ω,C3) (cf. [15]). H2(Ω,C3) is com-
pactly embedded in H1(Ω,C3). Hence, the first two integrals represent a
compact operator from L2(Ω,C3) into H1(Ω,C3) which implies compact-
ness from L2(Ω,C3) into H(curl,Ω).

For the third term we get

∇div

∫∫

Ω

u
(
Φk(x, ·)− Φik(x, ·)

)
dy =

∫∫

Ω

∇2
x

(
Φk(x, ·)− Φik(x, ·)

)
u dy

=




∑3
j=1

(
V [ ∂
∂x1∂xj

(Φk − Φik)]uj
)
(x)∑3

j=1

(
V [ ∂
∂x2∂xj

(Φk − Φik)]uj
)
(x)∑3

j=1

(
V [ ∂
∂x3∂xj

(Φk − Φik)]uj
)
(x)


 .

We look at the second derivatives of the kernel in more detail. Using the
expansion

exp(z) = 1 + z +
z2

2!
+
z3

3!
+ . . .

we see that

(Φk − Φik)(x, y) =
eik|x−y|

4π|x− y| −
e−k|x−y|

4π|x− y|
= 1

4π

(
(i + 1)k − k2|x− y|+ 1

6 (1− i)k3|x− y|2 + . . .
)

= k
4π (i + 1)− k2

4π |x− y|+ |x− y|2R(|x− y|)

where the power series R(z) =
∑∞
j=0 rjz

j with constant coefficients rj ,
j ∈ N0. We compute the gradient

∇x
[
(Φk − Φik)(x, y)

]
=− k2

4π

x− y
|x− y|

+
[
2R(|x− y|) + |x− y|R′(|x − y|)

]
(x− y).
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The second derivative is given by the (3× 3)-matrix

∇2
x

[
(Φk − Φik)(x, y)

]

=− k2

4π|x− y|I +
k2

4π|x− y|3 (x− y)(x− y)⊤

+
[
2R(|x− y|) + |x− y|R′(|x− y|)

]
I

+
[
2R′(|x− y|) +R′(|x − y|)

] 1

|x− y| (x− y)(x− y)⊤

+R′′(|x− y|)(x− y)(x− y)⊤.

Hence, the second derivatives of Φk − Φik are weakly singular of order
1 which gives compactness of Ak − Aik as operator from L2 into L2.
Since, curl(∇div (. . .)) = 0 we also have compactness from L2(Ω,C3) into
H(curl,Ω). Hence, Ak − Aik is compact as operator from L2(Ω,C3) into
H(curl,Ω).
The compactness of Bk −Bik follows analogously: Bk −Bik represents a
three–dimensional vector of volume potentials with kernel function which
is weakly singular of order 0 (cf. ∇x|x− y|). Furthermore, curl(Bk−Bik)
represents a three–dimensional vector of volume potentials with kernel
function which is weakly singular of order 1 (compare ∇2

x|x − y|). We
conclude that Bk −Bik is compact from L2 into H(curl,Ω).

(c) For any f ∈ H(curl,Ω) consider the equation

v −AikTAv −BikTBv = f.

Taking w = v− f we get w−AikTAw−BikTBw = AikTAf +BikTBf , or
explicitely,

w(x) = (−k2 +∇div )

∫∫

Ω

[
qµ(w + f) + µβ curl(w + f)

]
Φik(x, ·) dy

+ curl

∫∫

Ω

[
(qε + k2µβ2) curl(w + f) + k2µβ(w + f)

]
Φik(x, ·) dy

for x ∈ Ω. This equation has the form of (2.22) with κ = ik and the
functions g and h (in the IDE) are given by

g := qµf + µβ curl f and h := (qε + k2µβ2) curl f + k2µβf.
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Hence, by Theorem II.10, w can be extended to a radiating solution of
the problem

∫∫

R3

[
(1
ε − k2µβ2) curlw − k2µβw

]
· curlψ + k2µ

[
β curlw + w

]
· ψ dx

=

∫∫

Ω

−k2g · ψ + h · curlψ dx (2.23)

for all ψ ∈ Hc(curl,R3) (with the functions g and h as above). By def-
inition, w = AikTAv + BikTBv. From this form and the definition of
Φik we conclude that w decays exponentially as |x| tends to infinity. So
w ∈ H(curl,R3) and the variational equation holds for all ψ ∈ H(curl,R3).
In order to apply the Lax–Milgram lemma we define a sesqui–linear form
on H(curl,R3)×H(curl,R3) and a conjugate–linear form on H(curl,R3).

a(w,ψ) :=

∫∫

R3

(1
ε − k2µβ2) curlw · curlψ dx+ k2

∫∫

R3

µw · ψ dx

+ k2

∫∫

R3

µβ(curlw · ψ − w · curlψ) dx,

b(ψ) :=

∫∫

Ω

h · curlψ − k2g · ψ dx.

a and b are obviously bounded.

|a(w,ψ)| ≤
(∥∥1
ε

∥∥
L∞

+ k2
∥∥µβ2

∥∥
L∞

)
‖curlw‖

L2
‖curlψ‖

L2

+k2 ‖µβ‖
L∞

(‖curlw‖
L2
‖ψ‖

L2
+ ‖w‖

L2
‖curlψ‖

L2
)

+k2 ‖µ‖
L∞
‖w‖

L2
‖ψ‖

L2

≤ C
(
‖curlw‖

L2
+ ‖w‖

L2

)(
‖curlψ‖

L2
+ ‖ψ‖

L2

)

≤ 2C ‖w‖
H(curl R3)

‖ψ‖
H(curl R3)

|b(ψ)| ≤
√

2 max
{
‖h‖

L2
, k2 ‖g‖

L2

}
‖ψ‖

H(curl,Ω)

Here we used the inequality x + y ≤
√

2
√
x2 + y2 for x, y ≥ 0. We show
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coercivity of a:

a(w,w) =

∫∫

R3

[
1
ε | curlw|2 − k2µβ2| curlw|2 + k2µ|w|2

+k2µβ(curlw · w − w · curlw)
]
dx

=

∫∫

R3

[
1
ε | curlw|2 − k2µβ2| curlw|2 + k2µ|w|2

−2ik2µβ Im (w · curlw)
]
dx

We take the real part of this equation and make use of the binomial
|x+ iy|2 = |x|2 + 2Im (xy) + |y|2. (Recall that β is real valued.)

Re a(w,w) =

=

∫∫

R3

[
Re
(

1
ε

)
| curlw|2 − k2Re (µ)β2| curlw|2+

+ k2Re (µ)
(
|w|2 + 2 Imµ

Reµβ Im (w · curlw)
)]

dx

=

∫∫

R3

[ (
Re ε
|ε|2 − k2β2 |µ|2

Reµ

)
| curlw|2+

+ k2Re (µ)
∣∣w + i Imµ

Re µβ curlw
∣∣2
]
dx

≥ c2(1 − c3) ‖curlw‖2
L2

+ k2c1

∥∥w + i Imµ
Reµβ curlw

∥∥2

L2

≥ min(c2(1− c3), k2c1)
(
‖curlw‖2

L2
+
∥∥w + i Imµ

Reµβ curlw
∥∥2

L2

)

=: min(c2(1− c3), k2c1) ‖w‖2
β

where ‖·‖
β

is an equivalent norm to ‖·‖
H(curl,R3)

by Lemma II.13 with

v1 = w, v2 = curlw and g = iβ Imµ/Reµ. Now we go back to our initial
equation

(I −AikTA −BikTB)v = f.

For given f ∈ H(curl,Ω) we determine the (unique) solution w of (2.23)
and define v := w|Ω + f . Then v − f = AikTAv +BikTBv.

With this theorem all conditions for the Fredholm alternative are sat-
isfied. We can formulate the existence result in the next corollary.
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Corollary II.18. For every (g, h) ∈ L2(Ω,C3)×L2(Ω,C3) there exists
a unique radiating solution v ∈ Hloc(curl,R3) of (2.20) provided the ho-
mogeneous problem admits only the trivial solution. In that case, for any
compact set B ⊃ Ω there exists a constant C > 0 such that

‖v‖
H(curl,B)

≤ C ‖(g, h)‖
L2(Ω)2

for all (g, h) ∈ L2(Ω,C3)2.

The estimate of v by the source (g, h) means that the solutions depends
continously on the data and yields – in combination with the following
uniqueness results – the well–posedness of the direct transmission problem.

We adapt the assumptions in II.16 and give the existence result for the
electric transmission problem in a second corollary to the above theorem:

Assumption II.19. Let k > 0 the wave number and β real-valued.
Additionally to Assumption II.7 assume that there exist positive constants
c1, c2 and c3 ∈ [0, 1) such that

Re ε ≥ c1 , Re
1

µ
≥ c2 and k2β2 |ε|2|µ|2

Re εReµ
≤ c3 on Ω.

Corollary II.20. Let Assumption II.19 be fullfilled. Then, for every
source (g, h) ∈ L2(Ω,C3) × L2(Ω,C3) there exists a radiating solution
v ∈ Hloc(curl,R3) of (2.21) provided uniqueness holds. A similar estimate
for v holds.

4.2 Uniqueness

Our existence results rely on the assumption that the homogeneous prob-
lem admits only the trivial solution. We give two uniqueness results.

Theorem II.21 (Absorbing media). We assume, additionally to As-
sumption II.16, that Im ε > 0 and Imµ ≥ 0 a.e. in Ω. Then the homo-
geneous magnetic transmission problem (2.20) has at most one solution
(this means: uniqueness holds).

Proof. Assume that v is a solution of the homogeneous magnetic trans-
mission problem namely Problem 1 for κ = k and v solves (2.20) for g = 0
and h = 0. Set ψ = φv in (2.20) where φ ∈ C∞0 (R3) is some mollifier with
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φ(x) = 1 for |x| ≤ R and φ(x) = 0 for |x| ≥ 2R. R is chosen such that
|x| < R for all x ∈ Ω. Then by Green’s formula

0 =

∫∫

|x|<R

[
(1
ε − k2µβ2) curl v − k2µβv

]
· curl v − k2µ[β curl v + v] · v dx

+

∫∫

R<|x|<2R

curl v · curl(φv)− k2v · φv dx (2.24)

=

∫∫

|x|<R
1
ε | curl v|2 − k2µ|β curl v + v|2 dx−

∫

|x|=R
(curl v × ν) · v ds.

Taking the imaginary part and using Im ε > 0 and Imµ ≥ 0 yields

Im

∫

|x|=R
(curl v × ν) · v ds ≤ 0.

From this we estimate
∫

|x|=R

∣∣ curl v(x) × x
|x| − ikv(x)

∣∣2ds(x)

=

∫

|x|=R
| curl v|2 + k2|v|2 ds− 2k Im

∫

|x|=R
(curl v × ν) · v ds

≥
∫

|x|=R
| curl v|2 + k2|v|2 ds.

As in the proof of Theorem 5.5 in [24] we conclude that v vanishes outside
of Ω. Now, equation (2.24) reads

∫∫

Ω

1
ε | curl v|2 − k2µ|β curl v + v|2 dx = 0.

Taking the imaginary part yields curl v = 0 in Ω and thus β curl v+ v = 0
whence v = 0 in Ω.

Corollary II.22. Additionally to Assumption II.19, let Imµ > 0 and
Im ε ≥ 0 a.e. in Ω. Then the homoegeneous electric transmission problem
(2.21) has at most one solution.

Theorem II.23 (Smooth media). Let Assumptions II.16 and II.19 be
satisfied. Additionally, let ε, µ, β ∈ C2(R3) and assume that k2εµβ2 6= 1 in
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R3. Then both, the homogeneous magnetic and the homogeneous electric
transmission problem (2.20) and (2.21), respectively, have at most one
solution.

Proof. This proof follows Ammari and Nédélec [4] and the main argument
is the unique continuation principle in Colton and Kress [15]. Assume that
v solves the homogeneous magnetic transmission problem for κ = k; that
is, v is radiating and solves (2.20) with g = h = 0. As in the proof of the
previous theorem we conclude that v vanishes outside of Ω. Define the
function w by

−ikw :=
(

1
ε − k2µβ2

)
curl v − k2µβv.

By the weak formulation of the homogeneous problem: w ∈ Hloc(curl,R3).
Then by Lemma II.5 w is a radiating solution of the homogeneous electric
transmission problem and we have

−ik curlw = k2µβ curl v + k2µv.

From the last two equations we can deduce the system (2.7) from the first
section for H = v and E = w; that is,

curl v =
k2εµβ

1− k2εµβ2
v − ik ε

1− k2εµβ2
w,

curlw = ik
µ

1− k2εµβ2
v +

k2εµβ

1− k2εµβ2
w.

Now, we proceed as in Ammari and Nédélec [4]. From this system we
calculate curl2 v, curl2 w, div v and divw. Then we use the vector iden-
tity ∆ = ∇div − curl2 and apply the unique continuation principle from
Colton and Kress [15] in the version of Lemma 4.15 in Monk [31]: Abbre-
viate

M = (mjl)j,l=1,2 :=
1

1− k2εµβ2

(
k2εµβ −ikε
ikµ k2εµβ

)
∈ C2(R3,C2×2).

Note that detM = −k2εµ 6= 0. Then the above equations read

(
curl v
curlw

)
= M

(
v
w

)
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Taking the divergence yields

0 = div

(
M

(
v
w

))
;

that is,

0 = div
(
m11v +m12w

)
,

0 = div
(
m21v +m22w

)
.

From the last two equations we conclude

(
div v
divw

)
= − 1

detM
M−1(∇M) ·

(
v
w

)
;

that is,

div v =
1

k2εµ

(
m22∇m11 −m12∇m21

)
· v

+
1

k2εµ

(
m22∇m12 −m12∇m22

)
· w,

divw =
1

k2εµ

(
−m21∇m11 +m11∇m21

)
· v

+
1

k2εµ

(
−m21∇m12 +m22∇m22

)
· w.

Since v vanishes in the exterior of Ω, also w vanishes in the exterior of Ω
and the traces ν×v and ν×w also vanish on ∂B for any ballB ⊃ Ω. Hence,
for any ball B ⊃ Ω: curl v ∈ L2(B,C3), div v ∈ L2(B) and ν × v = 0 on
∂B. We conclude that v ∈ H1(B,C3). The same holds for w. Compute

(
curl2 v
curl2 w

)
= (∇M)×

(
v
w

)
+M

(
curl v
curlw

)
;

that is,

curl v = ∇m11 × v +∇m12 × w +m11 curl v +m12 curlw,

curlw = ∇m21 × v +∇m22 × w +m21 curl v +m22 curlw.
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Finally, with ∆ = ∇div − curl2,

(
∆v
∆w

)
= −∇

(
1

detM
M−1(∇M)

(
v
w

))
− (∇M)×

(
v
w

)
+M

(
curl v
curlw

)

and ∆v, ∆w exist in L2. It is possible to deduce estimates of the form

|∆vj | ≤ c
3∑

l=1

|vj |+ |wj |+ |∇vj |+ |∇wj |,

|∆wj | ≤ c
3∑

l=1

|vj |+ |wj |+ |∇vj |+ |∇wj |

for j = 1, 2, 3 almost everywhere in B and we can apply the unique con-
tinuation principle Lemma 4.15 in [31] which yields that v (and w) vanish
in B ⊃ Ω.

The same argumentation holds for the homogeneous electric transmis-
sion problem.

This ends our study of the direct transmission problem and we are well
prepared to attack the inverse problem: the localization of the scatterer.



CHAPTER III

Factorization Method

In this chapter we solve the inverse problem: Given the solution of the
direct problem or, more precisely, given the far field data, determine the
scatterer Ω.

The first section has preliminary character. In order to formulate the
inverse problem we introduce the notion of the far field pattern which
characterizes the asymptotic behavior of solutions to the transmission
problem. Here the Stratton–Chu representation formulae are our main
tool. They describe solutions to Maxwells equations for homogeneous
media by boundary integrals. Then we can formulate the inverse problem
properly and define the far field operator F to study it. We prove the
reciprocity relation: the point of observation can be interchanged with
the point observed. This allows us to give an explicite expression for the
adjoint operator of F . Furthermore we show a useful relation between F
and F∗.

After the definition of the far field operator and the study of some
properties we deduce the eponymous factorization of F ,

F = H∗T H.
For this purpose two operators are defined. A Herglotz operatorH maps a
tangential field representing polarization vectors to an incident field. The
image of its adjoint is a far field pattern. The middle operator T makes
sure that the result of the factorization is indeed F . The second section
ends with a modified factorization for the case of non–absorbing media.

The main effort of the Factorization method is the study of the mid-
dle operator T . Depending on the chiral material we can show different



40 Factorization Method

properties such as positivity and coercivity of the imaginary part or the
existence of a decomposition into a coercive and a compact part. Due to
the factorization we can derive spectral properties of F . In the case of
non–absorbing media we distinguish between positive and negative con-
trasts.

In the last section we explain the general concept of the Factorization
method; that is, how to represent the characteristic function of the scat-
terer. A special function φz is defined which is contained in the range of
H∗ if, and only if, z ∈ Ω. Finally we need a link between the range of H∗
and F . This can be found in abtract functional analysis theorems from
[24] and [27]. We verify their assumptions by collecting the results of this
chapter. This completes the Factorization method.

1. Far field pattern and far field operator

In the previous chapter we discussed the magnetic transmission problem.
But we have seen that we can easily compute the electric field from the
magnetic field which is the solution to the transmission problem. So in this
section we can talk of a solution (Es, Hs) to the transmission problem. We
derive the asymptotic behavior of the solution at infinity from that of the
fundamental solution Φk with the aid of the Stratton–Chu representation
formulae. Once we know the far field patterns we choose special incident
fields determined by tangential fields representing polarization vectors and
define the far field operator mapping the tangential field to the resulting
far field pattern. Important properties of the far field operator and its
adjoint are discussed then. In the proofs we use the reciprocity principle.

We begin with the asymptotic behavior of the fundamental solution and
its derivatives. The formulae are taken from the proofs of Theorems 2.5
and 6.8 in Colton and Kress [15].

Lemma III.1 (Asymptotic behavior of Φk). Let Ω be a bounded
domain with boundary Γ.

(a) The fundamental solution Φk has the asymptotic form

Φk(x, y) =
eik|x|

4π|x|

{
e−ik x̂·y +O

(
1

|x|

)}
, |x| → ∞
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uniformly in all directions x̂ := x/|x| for all y ∈ Γ.

(b) For any constant vector a ∈ C3 the derivatives of (aΦk) have the
asymptotic form

curlx aΦk(x, y) = ik
eik|x|

4π|x|

{
e−ik x̂·y(x̂× a) +O

(
1

|x|

)}
,

curlx curlx aΦk(x, y) = k2 e
ik|x|

4π|x|

{
e−ik x̂·y(x̂× a× x̂) +O

(
1

|x|

)}

as |x| → ∞ uniformly for all y ∈ Γ.

We continue with the well known Stratton–Chu formulae. They de-
scribe the solution of Maxwell’s equations on a domain by their traces.
They are taken from Colton and Kress [15]. The proofs for the weak
version can be found in the book of Monk [31]. Monk also shows that
the traces are well defined: Given a bounded Lipschitz domain D with
unit outward normal ν the mapping v 7→ ν × v|∂D for v ∈ (C∞(D))3 can
be extended by continuity to a continuous linear map from H(curl, D)
into H−1/2(∂D)3. We refer to Theorem 3.29 in [31]. We start with the
Stratton–Chu formula on a bounded domain.

Lemma III.2 (Interior Stratton–Chu). Assume the bounded Lip-
schitz domain Ω. Let ν denote the unit normal vector to the boundary Γ
of Ω directed to the exterior of Ω. Let E,H ∈ H(curl,Ω) be a solution to
Maxwell’s equations in Ω

curlH = −ikE and curlE = ikH. (3.1)

Then we have the Stratton–Chu formulae

− curl

∫

Γ

(ν × E)(y) Φk(x, y) ds(y)

+
1

ik
curl2

∫

Γ

(ν ×H)(y) Φk(x, y) ds(y) =

{
E(x), x ∈ Ω,

0, x ∈ R3 r Ω,
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and

− curl

∫

Γ

(ν ×H)(y) Φk(x, y) ds(y)

− 1

ik
curl2

∫

Γ

(ν × E)(y) Φk(x, y) ds(y) =

{
H(x), x ∈ Ω,

0, x ∈ R3 r Ω.

Monk argues by interior regularity results that E(x) and H(x) – the
evalutaion of E and H at a point x ∈ Ω – make sense. Furthermore,
the boundary integrals have to be understood in the sense of the duality
pairing between H−1/2(Γ) and H1/2(Γ). For the derivation of the far field
pattern a representation formula for the exterior of bounded domains is
needed:

Lemma III.3 (Exterior Stratton–Chu). Assume the bounded Lip-
schitz domain Ω whose complement is connected. Let ν denote the unit
normal vector to the boundary Γ of Ω directed to the exterior of Ω. Let
Es, Hs ∈ Hloc(curl,R3 rΩ) be a radiating solution to Maxwell’s equations
in R3 r Ω

curlHs = −ikEs and curlEs = ikHs.

Then we have the Stratton–Chu formulae

curl

∫

Γ

(ν × Es)(y) Φk(x, y) ds(y)

− 1

ik
curl2

∫

Γ

(ν ×Hs)(y) Φk(x, y) ds(y) =

{
Es(x), x ∈ R3 r Ω,

0, x ∈ Ω,
(3.2)

and

curl

∫

Γ

(ν ×Hs)(y) Φk(x, y) ds(y)

+
1

ik
curl2

∫

Γ

(ν × Es)(y) Φk(x, y) ds(y) =

{
Hs(x), x ∈ R3 r Ω,

0, x ∈ Ω.
(3.3)

By the formulae (3.2) and (3.3) the dependency of the fields Es and Hs

on x is expressed by the fundamental solution. In order to determine their
asymptotic behavior we only need to know their tangential traces and the
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asymptotic behavior of Φk given in Lemma III.1. We adapt Theorem 6.8
in Colton and Kress [15] for the case of functions in Hloc(curl,R3):

Theorem III.4 (Far field pattern). Every (weak) radiating solution
Es, Hs to the transmission problem (2.13), (2.14) for the scatterer Ω with
boundary Γ has the asymptotic form

Es(x) =
eik|x|

4π|x|

{
E∞(x̂) +O

(
1

|x|

)}
, |x| → ∞,

Hs(x) =
eik|x|

4π|x|

{
H∞(x̂) +O

(
1

|x|

)}
, |x| → ∞

uniformly in all directions x̂ = x/|x|. The functions E∞ and H∞ de-
fined on the unit sphere S2are called electric and magnetic far field
pattern, respectively, and satisfy

E∞(x̂) = ik x̂×
∫

Γ

(ν × Es)(y) e−ik x̂·y ds(y)

+ ik x̂×
∫

Γ

(ν ×Hs)(y) e−ik x̂·y ds(y)× x̂,

H∞(x̂) = ik x̂×
∫

Γ

(ν ×Hs)(y) e−ik x̂·y ds(y)

− ik x̂×
∫

Γ

(ν × Es)(y) e−ik x̂·y ds(y)× x̂
(3.4)

for x̂ ∈ S
2.

Remark III.5. From this theorem we observe that the far field patterns
are analytic functions and tangential fields: They satisfy E∞(x̂) · x̂ = 0
and H∞(x̂) · x̂ = 0, respectively, for all x̂ ∈ S2. Furthermore, we easily
see that, for x̂ ∈ S2,

E∞(x̂) = H∞(x̂)× x̂ and H∞(x̂) = −E∞(x̂)× x̂.

In order to define the far field operator we need to specify what kind of
incident fields cause the scattered and the far fields. As incident fields we
consider plane waves of the form

Hi(x; d, p) := p eik d·x , Ei(x; d, p) = −(d× p)eik d·x
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where the vectors d ∈ S2 and p ∈ C3 are the direction of incidence and
polarization vector, respectively. They are chosen such that d · p = 0 to
assure that Hi and Ei are divergence free. The far field patterns H∞ and
E∞ of the scattered fields Hs and Es depend on d and p as well and we
will use the notation H∞(x̂; d, p) and E∞(x̂; d, p), respectively.

Now we are able to formulate the inverse problem. We recall the direct
one. Given an incident wave and a chiral object with known material
functions compute the scattered field. If we know the scattered field we
can easily compute the corresponding far field. The inverse problem is to
determine the scatterer for given far field data. More precisely:

Problem 3 (Inverse problem). Given the wave number k > 0 and
the data H∞(x̂; d, p, ) (far field pattern) for all x̂, d ∈ S2 and p ∈ C3 with
p · d = 0 localize the scatterer Ω.

For the study of the inverse problem we have to express it in mathematic
terms; that is, we define an operator which maps a family of polarization
vectors p(d) characterizing the incident field to the far field pattern. Both,
the family of polarization vectors and the far field pattern are tangential
fields on the unit sphere.

Definition III.6 (Far field operator). We denote the subspace of
tangential fields by L2

t (S2) ⊂ L2(S2,C3); that is,

L2
t (S2) :=

{
v ∈ L2(S2,C3) : v(x̂) · x̂ = 0, x̂ ∈ S

2
}
.

The far field operator F : L2
t (S2)→ L2

t (S2) is defined by

(Fp)(x̂) :=

∫

S2

H∞
(
x̂; d, p(d)

)
ds(d) for x̂ ∈ S

2.

Remark III.7. (a) For tangential fields p ∈ L2
t (S2) we have the iden-

tity
d× p(d)× d = p(d) (d · d)︸ ︷︷ ︸

=1

−d
(
p(d) · d

)
︸ ︷︷ ︸

=0

= p(d).

(b) The far field pattern H∞(· ; d, p) depends linearly on the polarization
vector p. It is continuous as a function of d. See the proof of
Theorem 6.32 in [15].

(c) Therefore, F is a linear integral operator with a continuous kernel.
So F is compact. Furthermore, Fp is the far field pattern which
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corresponds to the incident field (Hip, E
i
p) with

Hip(x) =

∫

S2

Hi
(
x; d, p(d)

)
ds(d) , Eip(x) =

∫

S2

Ei
(
x; d, p(d)

)
ds(d)

for x ∈ R3.

In the sequel we study the properties of the far field operator and its
adjoint.

The adjoint far field operator

The next theorem helps us to characterize the adjoint operator of F . It
describes the following reciprocity phenomenon:

We illuminate an object by a plane wave in direction d ∈ S2 with
polarization p and p · d = 0. That means the incident field vectors are
parallel to p and their length and sign changes in direction d. For the
measurement we choose a second pair of vectors (x̂, q) ∈ S2 × C3 with
q · x̂ = 0. We measure the far field which comes from direction x̂ and just
look at the polarization q; that is, we are interested in that part of the far
field vectors which is parallel to q. We get the same measurements when
we illuminate the object with a plane wave in direction x̂ and polarization
q and measure these parts of the far field coming from direction d which
are parallel to p.

Theorem III.8 (Reciprocity principle). Assume that k2εµβ2 6= 1.
Then, for all x̂, d ∈ S2 and p, q ∈ C3 with p · d = 0 and q · x̂ = 0 the
reciprocity relation

q · H∞(−x̂; d, p) = p ·H∞(−d; x̂, q)

holds.

Proof. We abbreviate:

Ei1(y) := Ei(y; d, p), Es1(y) := Es(y; d, p),

Ei2(y) := Ei(y; x̂, q), Es2(y) := Es(y; x̂, q),

Hi1(y) := Hi(y; d, p), Hs1(y) := Hs(y; d, p),

Hi2(y) := Hi(y; x̂, q), Hs2(y) := Hs(y; x̂, q).
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Application of Green’s theorem (cf. Theorem 3.31 in Monk [31])
∫∫

D

curl v · w − v · curlw dx =

∫

∂D

ν · (v × w) ds

to Ei and Hi in Ω yields
∫

Γ

(ν × Ei1) ·Hi2 + (ν ×Hi1) · Ei2 ds

=

∫∫

Ω

curl Ei1 ·Hi2 − Ei1 · curl Hi2 + curl Hi1 · Ei2 −Hi1 · curl Ei2 dx

=

∫∫

Ω

ikHi1 ·Hi2 + ikEi1 · Ei2 − ikEi1 · Ei2 − ikHi1 ·Hi2 dx

= 0.

by Maxwell’s equations (3.1). Analogously, application of Green’s theorem
(the traces and the boundary integral are well defined – see Monk [31]) in
the exterior of Ω, we obtain for Es and Hs:

∫

Γ

(ν × Es1) ·Hs2 + (ν ×Hs1) · Es2 ds = 0.

Now, by the representation of the far field pattern (3.4),

q ·H∞(−x̂; d, p)

= ik
(
q · (−x̂)

)
×
∫

Γ

(ν ×Hs1)(y) e−ik(−x̂)·y ds(y)

− ik
(
q · (−x̂)

)
×
∫

Γ

(ν × Es1)(y) e−ik(−x̂)·y ds(y)× (−x̂)

=− ik
∫

Γ

(ν ×Hs1)(y) ·
(
(−x̂)× q

)
eik x̂·y ds(y)

− ik
∫

Γ

(ν × Es1)(y) · q eik x̂·y ds(y)

=− ik
∫

Γ

(ν ×Hs1) · Ei2 + (ν × Es1) ·Hi2 ds.

Analogously:

p · H∞(−d; x̂, q) = −ik
∫

Γ

(ν ×Hs2) · Ei1 + (ν × Es2) ·Hi1 ds.
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Thus, combination of the last four equations and application of Green’s
theorem yield

1

ik

[
q · H∞(−x̂; d, p)− p ·H∞(−d; x̂, q)

]

=

∫

Γ

(ν ×H2) · E1 + (ν × E2) · H1 ds

=

∫∫

Ω

curl H2 · E1 −H2 · curl E1 + curl E2 ·H1 − E2 · curl H1 dx.

As 1 − k2εµβ2 6= 0, we can express curl Ej and curl Hj by Ej and Hj
(j = 1, 2) with the aid of equations (2.7).

curl Hj = −ia1Ej + a2Hj , curl Ej = ia3Hj + a4Ej , j = 1, 2.

We plug this into the last integral:

∫∫

Ω

−ia1E2 · E1 + a2H2 · E1 − ia3H2 ·H1 − a4H2 · E1 dx

+

∫∫

Ω

ia3H2 · H1 + a4E2 ·H1 + ia1E2 · E1 − a2E2 · H1 dx

=

∫∫

Ω

(a2 − a4)(H2 · E1 − E2 ·H1) dx = 0 (3.5)

because a2 = a4. This proves the reciprocity relation.

Due to the reciprocity principle we can give a rather explicit form for
the adjoint of the far field operator.

Corollary III.9 (Adjoint of F). The adjoint F∗ : L2
t (S2) → L2

t (S2)
of the far field operator F is given by

(F∗h)(θ) =

∫

S2

H∞
(
− θ ; d, h(−d)

)
ds(d) for θ ∈ S

2.

Proof.

(
Fp, h

)
L2

t (S2)
=

∫

S2

∫

S2

H∞
(
θ; d, p(d)

)
· h(θ) ds(d) ds(θ)

=

∫

S2

∫

S2

p(d) · H∞
(
− d;−θ, h(θ)

)
ds(θ) ds(d)

=
(
p,F∗h

)
L2

t (S2)
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where F∗h(θ) =
∫

S2 H∞
(
− θ; d, h(−d)

)
ds(d).

The next theorem introduces the scattering operator S and collects
some relations betweens F , F∗ and S. It is adapted from Theorem 5.7
in [24]. Our proof uses the same arguments, but is formulated with the
electric and magnetic field.

Recall equations (2.7)

curlH = −ia1E + a2H and curlE = ia3H + a4E

and note that a2 = a4. Introduce the matrix

A :=

(
Im a1 −iIm a2

iIm a2 Im a3

)
.

For the next theorem we assume that A is positive semidefinite. In chapter
V similar matrices and assumptions occur. Compare Proposition V.19 for
possible values of ε, µ and β such that A is positive semidefinite.

Theorem III.10 (F/F∗–Relation). Assume that (Aξ) · ξ ≥ 0 on Ω
for all ξ ∈ C2. Then there exists a non–negative compact self-adjoint
operator R : L2

t (S2)→ L2
t (S2) such that:

(a) The following relation holds:

F − F∗ =
ik

8π2
F∗F + 2iR.

(b) The scattering operator S := I + ik
8π2F is sub-unitary and has the

form

S∗S = I − k

4π2
R.

R vanishes for real–valued parameters. In that case S is unitary and F is
normal.

Proof. (a) Let r > 0 such that B := B(0, r) ⊃ Ω and Ωr = B r Ω. For
two tangential fields g, h ∈ L2

t (S2) consider the incident fields

Hig =

∫

S2

Hi
(
· ; d, g(d)

)
ds(d) , Hih =

∫

S2

Hi
(
· ; d, h(d)

)
ds(d)
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and the corresponding pairs of solutions (Eg, Hg) and (Eh, Hh). Then by
Green’s theorem

ik

∫

∂B

[
Hg × Eh − Eg ×Hh

]
· ν ds

= ik

∫∫

Ω

curlHg · Eh −Hg · curlEh − curlEg ·Hh + Eg · curlHh dx

+ ik

∫∫

Ωr

curlHg ·Eh −Hg · curlEh − curlEg ·Hh + Eg · curlHh dx.

The integral over Ωr vanishes because (Ej , Hj) (j = 1, 2) satisfy Maxwell’s
equations in free space (3.1). Each total field is the sum of an incident
and a scattered field. So we split the integral on the l.h.s. into four parts:

I1 := ik

∫

∂B

[
Hig × Eih − Eig ×Hih

]
· ν ds ,

I2 := ik

∫

∂B

[
Hsg × Esh − Esg ×Hsh

]
· ν ds ,

I3 := ik

∫

∂B

[
Hig × Esh − Eig ×Hsh

]
· ν ds ,

I4 := ik

∫

∂B

[
Hsg × Eih − Esg ×Hih

]
· ν ds .

I1 = 0 by Green’s theorem and Maxwell’s equations. By the Silver–Müller
radiation condition (2.15) Es(x)×x̂ = −Hs(x)+O(|x|−2) and by Theorem
III.4 Hs(x) = 1

4π|x|e
ik|x|H∞(x̂) +O(|x|−2). Hence,

Es(x)× x̂ = − eik|x|4π|x|H
∞(x̂) +O(|x|−2)

and

ik
(
Hsg (x) · Esh(x)× x̂+Hsh(x) ·Esg(x)× x̂

)

= − 2ik

16π2|x|H
∞
g (x̂) ·H∞h (x̂) +O(|x|−3).

I2 = ik

∫

∂B

Hsg(x) · Esh(x) × x̂+Hsh(x) · Esg(x) × x̂ds(x)

−→ − ik

8π2

∫

S2

H∞g ·H∞h ds = − ik

8π2
(Fg,Fh)L2(S2) (r →∞).
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Furthermore, I3 converges to −(g,Fh)L2 and I4 to (Fg, h)L2 . We show
this for I3 combining the representation formula of the far field pattern
(3.4) and the explicit integral form of the incident (Herglotz) waves. Note,
that the following identity holds for p ∈ L2

t (S2):

p(θ) = θ × p(θ)× θ , θ ∈ S
2.

I3 = ik

∫

∂B

∫

S2

g(θ)eikx·θ ds(θ) · Esh(x) × x̂ds(x)

+ ik

∫

∂B

∫

S2

θ × g(θ)eikx×θ ds(θ) ·Hsh(x) × x̂ds(x)

=

∫

S2

g(θ) ·
[
ik θ ×

∫

∂B

x̂×Hsh(x)eikx·θ ds(x)
]
ds(θ)

+

∫

S2

g(θ) ·
[
− ikθ ×

∫

∂B

x̂× Esh(x)eikx·θ ds(x) × θ
]
ds(θ)

(3.4)
= − (g,Fh)L2(S2).

Analogously for I4. One integral is left, the one over Ω: Again, as in the
proof of the reciprocity principle, we use equations (2.7).

ik

∫∫

Ω

curlHg ·Eh −Hg · curlEh − curlEg ·Hh + Eg · curlHh dx

= ik

∫∫

Ω

2Im a1Eg ·Eh+ 2Ima3Hg ·Hh+ 2iIma2

(
Hg ·Eh − Eg ·Hh

)
dx.

Introduce the solution operator L : L2
t (S2) → H(curl,Ω) × H(curl,Ω),

g 7→ (Eg|Ω, Hg|Ω) and recall the matrix function

A =

(
Im a1 −iIm a2

iIm a2 Im a3

)
.

Then the operator R is given by Rg = kL∗(ALg). By assumption, A is
positive semidefinite, whence R is non–negative. F is compact. Then also
F∗ is compact and therefore R is compact as 2iR = F − F∗ − ik

8π2F∗F .
A is self-adjoint whence R is it.

(b) This assertion is the same as part (c) in Theorem 5.7 in [24] and
the proof is also the same.
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2. Factorization of the far field operator

For the remaining part of this chapter we assume that the transmission
problem is uniquely solvable. Our assumptions for the following sections
in detail:

Assumption III.11. Let Ω ⊂ R3 be a bounded Lipschitz domain such
that the complement R3 r Ω is connected. Let k > 0 be the wave number
and ε, µ ∈ L∞(Ω,C) and β ∈ L∞(Ω,R) real–valued. We extend ε and µ
by one and β by zero outside of Ω. We assume:

(a) 1/ε ∈ L∞(Ω,C).

(b) Im ε ≥ 0 and Imµ ≥ 0 on Ω.

(c) For all (g, h) ∈ L2(Ω,C3)×L2(Ω,C3) there exists a unique radiating
solution of the transmission problem (2.20) for κ = k.

We recall the main equations and notations of the transmission problem.
Define an incident field wi with the aid of a tangential field p ∈ L2

t (S2) by

wi(y) :=

∫

S2

p(d)eik d·yds(d) , y ∈ R
3.

wi represents an analytic solution of Maxwell’s equations (2.9) in vacuum.
Look for a weak radiating solution w ∈ Hloc(curl,R3) (we write w instead
of ws) of

∫∫

R3

(
1
ε − k2µβ2

)
curlw · curlψ − k2µw · ψ dx

−k2

∫∫

Ω

µβ
[
w · curlψ + curlw · ψ] dx

=

∫∫

Ω

(qε + k2µβ2) curlwi · curlψ + k2qµw
i · ψ dx

+k2

∫∫

Ω

µβ
[
wi · curlψ + curlwi · ψ

]
dx

for all ψ ∈ Hc(curl,R3). The tangential field p determines the incident
field wi. The far field operator F maps p to the far field w∞ of the
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scattered field w caused by wi,

Fp = w∞.

In the following, we deduce a factorization of F ; that is, F = H∗T H. We
begin with the operator H which is some kind of Herglotz operator and
maps a tangential field on S2 to an L2 function in Ω.
Notation: L2(Ω,C3)2 := L2(Ω,C3)× L2(Ω,C3)

Definition III.12 (Herglotz operator). Let k > 0. Define two linear
operators Hj : L2

t (S2)→ L2(Ω,C3) (j = 1, 2) by

(H1p)(y) :=

∫

S2

p(d)eik d·y ds(d) and H2p := curl
[
H1p

]

for p ∈ L2
t (S2) and y ∈ Ω. Then the Herglotz operator is defined by

H : L2
t (S2)→ L2(Ω,C3)2,

Hp = (H1p,H2p)
⊤.

Remark III.13. H is a bounded operator and injective: Hp = 0 im-
plies

∫
S2 p(d)eikd·x ds(d) = 0 and this implies p ≡ 0, see Colton and Kress

[15].

We introduce the data–to–pattern operator G which maps the
“source” f = (f1, f2) to the far field pattern,

Gf := v∞.

where v∞ is the far field pattern of the radiating solution of

∫∫

R3

[(
1
ε − k2µβ2

)
curl v−k2µβv

]
· curlψ − k2

[
µβ curl v +µv

]
· ψ dx

=

∫∫

Ω

k2 [qµf1 + µβf2] · ψ +
[
(qε + k2µβ2)f2 + k2µβf1

]
· curlψ dx

(3.6)

for all ψ ∈ Hc(curl,R3). The auxiliary scattering equation (3.6) is just
designed such that Fp = GHp. If we have a look at our goal, namely the
product F = H∗T H, we need the adjoint operator of H and show that
G = H∗T for an operator T to be specified. In the next proposition we
compute the adjoint operators of H1 and H2.
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Proposition III.14 (Adjoint Herglotz operator). The adjoint op-
erators H∗1,H∗2 : L2(Ω,C3)→ L2

t (S2) of H1 and H2 are given by

(H∗1ϕ)(d) = d×
∫∫

Ω

ϕ(y) e−ik d·ydy × d

(H∗2ϕ)(d) = ik d×
∫∫

Ω

ϕ(y) e−ik d·ydy

for d ∈ S
2. Thus the adjoint H∗ : L2(Ω,C3)2 → L2

t (S2) is given by

H∗ϕ = H∗1ϕ1 +H∗2ϕ2

for ϕ = (ϕ1, ϕ2) ∈ L2(Ω,C3)2.

Proof. We start with H1. By Remark III.7 p(d) = d × p(d) × d and
therefore

(H1p, ϕ)L2(Ω,C3) =

∫∫

Ω

∫

S2

(
d× p(d)× d

)
eik d·yds(d) · ϕ(y) dy

=

∫

S2

∫∫

Ω

(
d× p(d)× d

)
· ϕ(y) eik d·ydy ds(d)

=

∫

S2

p(d) · d×
∫∫

Ω

ϕ(y)e−ik d·y dy × d ds(d)

= (p,H∗1ϕ)L2
t (S2)

where (H∗1ϕ)(d) = d×
∫∫

Ω ϕ(y)e−ik d·y dy × d.

For H2 we compute curl
∫

S2 p(d)eik d·y ds(d) = ik d×
∫

S2 p(d)eik d·y ds(d)
and

(H2p, ϕ)L2(Ω,C3) =

∫∫

Ω

curl

∫

S2

p(d) eik d·y ds(d) · ϕ(y) dy

=

∫

S2

∫∫

Ω

ik
(
d× p(d)

)
· ϕ(y) eik d·y dy ds(d)

=

∫

S2

p(d) · (ik d)×
∫∫

Ω

ϕ(y) e−ik d·y dy ds(d)

= (p,H∗2ϕ)L2
t (S2)
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where (H∗2ϕ)(d) = ik d×
∫∫

Ω
ϕ(y) e−ik d·y dy. Finally,

(
Hp, ϕ

)
L2(Ω,C3)2 =

(
H1p, ϕ1

)
L2(Ω,C3)

+
(
H2p, ϕ2

)
L2(Ω,C3)

=
(
p,H∗1ϕ1

)
L2

t (S2)
+
(
p,H∗2ϕ2

)
L2

t (S2)
.

Thus, H∗(ϕ1, ϕ2) = H∗1ϕ1 +H∗2ϕ2.

What is the image of H∗? It should be a far field pattern. We extend
Lemma II.9 and calculate the far field patterns related to the solutions in
form of potentials.

Proposition III.15. Let k > 0. For f1, f2 ∈ L2(Ω,C3)

u(x) := (k2 +∇div )

∫∫

Ω

f1(y)Φk(x, y) dy + curl

∫∫

Ω

f2(y)Φk(x, y) dy

for x ∈ R
3 defines a radiating solution of

curl2 u− k2u = k2f1 + curl f2

in the weak sense and the far field pattern is given by

u∞(x̂) = k2x̂×
∫∫

Ω

f1(y)e−ikx̂·y dy × x̂+ ik x̂×
∫∫

Ω

f2(y)e−ikx̂·ydy

for x̂ ∈ S2.

Proof. Lemma II.9 gives the first assertion. Plugging in the assymptotic
behavior of Φk (Lemma III.1) yields the far field pattern u∞. Here we use

(k2 +∇div )

∫∫

Ω

f1(y)Φk(x, y) d(y)

= (k2 + curl2 +∆)

∫∫

Ω

f1(y)Φk(x, y) d(y)

= curl2
∫∫

Ω

f1(y)Φk(x, y) d(y),

since

(∆ + k2)

∫∫

Ω

f1(y)Φk(x, y) d(y) = 0

in R3 r Ω.
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Writing down the expression for H∗ϕ

H∗(ϕ1, ϕ2)(d) = d×
∫∫

Ω

ϕ1(y) e−ik d·y dy × d

+ik d×
∫∫

Ω

ϕ2(y) e−ik d·y dy

(3.7)

we observe that the image H∗ϕ of ϕ is the far field pattern u∞ of

u(x) = (k2 +∇x div x)

∫∫

Ω

1

k2
ϕ1(y) Φk(x, y) dy

+ curl

∫∫

Ω

ϕ2(y) Φk(x, y) dy

which is the weak radiating solution of

curl2 u− k2u = ϕ1 + curlϕ2

by the previous proposition. How do we have to choose the source ϕ so
that the far field pattern u∞ is the same as v∞ = Gf? The scattering
equation for v (3.6) can be written as

∫∫

R3

curl v · curlψ − k2 v · ψ dx

=

∫∫

Ω

k2 [qµw1 + µβw2] · ψ dx

+

∫∫

Ω

[
(qε + k2µβ2)w2 + k2µβw1

]
· curlψ dx

(3.8)

with
w1 := f1 + v and w2 = f2 + curl v.

Then v∞ is given by

v∞(x̂) = k2 x̂×
∫∫

Ω

[qµw1 + µβw2] eikx̂·(·) dy × x̂

+ik x̂×
∫∫

Ω

[
(qε + k2µβ2)w2 + k2µβw1

]
eikx̂·(·) dy.

Comparing this expression to the image of H∗ (3.7) suggests to choose
ϕ = T f as follows:
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Definition III.16 (Middle operator). Let v be the radiating solu-
tion of the transmission problem (3.6). Define the linear operator T by
T : L2(Ω,C3)2 → L2(Ω,C3)2,

T (f1, f2) :=

(
k2qµ k2µβ
k2µβ qε + k2µβ2

)(
f1 + v

f2 + curl v

)
.

Remark III.17. (a) The matrix–vector–multiplication is non–stan-
dard: The vector (f1 +v, f2 +curl v)⊤ has six entries but the matrix
is a (2× 2)–matrix. We use the notation to abbreviate

(
k2qµ k2µβ
k2µβ qε + k2µβ2

)(
f1 + v

f2 + curl v

)

:=

(
k2qµ(f1 + v) + k2µβ(f2 + curl v)

k2µβ(f1 + v) + (qε + k2µβ2)(f2 + curl v)

)
.

(b) Denote the matrix function in the definition above by Q = Q(x)
having in mind that the matrix represents the constrast. Then
T (f) = Qw with w = (w1, w2)⊤ = (f1 + v, f2 + curl v)⊤.

(c) T is (bounded and) injective: T (f) = 0 implies w1 ≡ 0 ≡ w2 in Ω
and equation (3.8) yields curl2 v−k2v = 0 in R3. By the uniqueness
assumption v ≡ 0 and then also f = (f1, f2) ≡ 0.

The definition of the operator T finishes the factorization of F : Using
the notation ψ̂ := (ψ, curlψ)⊤ for functions ψ with well defined curl,
u satisfies∫∫

R3

curlu · curlψ − k2u · ψ dx =

∫∫

Ω

(Qw) · ψ̂ dx

=

∫∫

R3

curl v · curlψ − k2v · ψ dx

where v is the unique (by assumption) radiating solution of (3.6). Here
again, our notation allows to express the integral over Ω in an elegant
way:

∫∫

Ω

(Qw) · ψ̂ dx =

∫∫

Ω

[
k2qµ(f1 + v) + k2µβ(f2 + curl v)

]
· ψ dx

+

∫∫

Ω

[
(qε + k2µβ2)(f2 + curl v) + k2µβ(f1 + v)

]
· curlψ dx.
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L2
t (S2) L2

t (S2)

///

L2(Ω,C3)2 L2(Ω,C3)2

F

H

T

H∗

Figure III.1: Factorization of F

Hence, u = v and G(f1, f2) = H∗T (f1, f2). Finally F = GH = H∗T H.
Figure III.1 illustrates the factorization showing the occuring function
spaces and the operators between them.

2.1 Modified factorization

We modify the factorization of F for the case of non–absorbing media.
For the remaining part of this section we assume that the matrix Q is
real–valued and (symmetric) positive definite.

If we have a look at the factorization we observe that T is only applied
to the range of H. The functions in R(H) admit more regularity than
L2 functions. Furthermore, when studying the middle operator on posi-
tivity and coercivity in the case of real valued material functions the inner
product

(
T (f), f

)
L2 =

(
Q

(
f1 + v

f2 + curl v

)
,

(
f1

f2

))
=

((
f1 + v

f2 + curl v

)
,

(
f1

f2

))

L2
Q

can be interpreted as an inner product of an weighted L2–space to be
defined. Recall that Q is symmetric positive definite. These two facts
suggest to define T on a function space X which makes use of the reg-
ularity and the weight Q. We define a vector version of the space X
introduced by Kirsch in [20].

Definition III.18. Given the matrix function Q ∈ L∞(Ω,R2×2) such
that Q(x) is symmetric positve definite for almost all x ∈ Ω. Define

(a) L2
Q(Ω) :=

{
f ∈ L2(Ω,C3)2 :

∫∫
Ω

(Qf) · f dx <∞
}



58 Factorization Method

with inner product

(f, g)L2
Q

=

∫∫

Ω

(
Q(x)f(x)

)
· g(x) dx.

(b) H0(curl,Ω) :=
{
v ∈ H(curl,Ω) : ν × v = 0

}
,

(c) H00(curl2,Ω) :=
{
v ∈ H0(curl,Ω) : curl v ∈ H0(curl v)

}
,

(d) X :=



f ∈ L

2
Q(Ω) :

∫∫
Ω f · (curl2 w − k2w) dx = 0

f.a. w ∈ H00(curl2,Ω)×H00(curl2,Ω)

with (curl2 w − k2w) ∈ L2
Q−1(Ω)



 .

In part (c), curl2 w = (curl2 w1, curl2 w2)⊤ for w = (w1, w2)⊤ with
wj ∈ H00(curl2,Ω), j = 1, 2. As in the scalar case our function space
X is a closed subspace of L2

Q(Ω) and contains the range of H. Indeed,

Hf ∈ L2(Ω,C3)2 implies Hf ∈ L2
Q(Ω). Furthermore, by the definition

of H we see that Hf is an analytic solution to Maxwell’s equations in Ω.
Hence, by Green’s theorem,

∫∫
Ω

(Hf) · (curl2 w − k2w) dx vanishes for all
w ∈ H00(curl,Ω)×H00(curl,Ω).

We now deduce a modified factorization of F which we will use in
the case of non–absorbing media: We consider the Herglotz operator as
an operator H : L2

t (S2) → L2
Q(Ω) and denote its adjoint by H† with

H† : L2
Q(Ω)→ L2

t (S2) and compute:

(Hp, ϕ)L2
Q

(Ω) = (QHp, ϕ)L2(Ω,C3)2 = (Hp,Qϕ)L2(Ω,C3)2

=
(
p,H∗(Qϕ)

)
L2

t (S2)
.

Hence, H† is given by ϕ 7→ H∗(Qϕ) for ϕ ∈ L2
Q(Ω) and the factorization

is
F = H†Q−1T H = H†T̃ H

with T̃ : L2
Q(Ω) → L2

Q(Ω), f 7→ (f1 + v, f2 + curl v)⊤ where v is the
radiating solution of the transmission problem (3.6). The inverse matrix
Q−1 exists for almost all x ∈ Ω since Q is symmetric positive definite.
At this point, we introduce the orthogonal projector P : L2

Q(Ω) →֒ X . It
is a well known result from functional analysis that the null space of the
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Figure III.2: Modified factorization of F

adjoint operator A∗ is the orthogonal complement of the range of A. In
our case:

N (H†) = R(H)⊥ ⊃ X⊥

For ϕ ∈ L2
Q(Ω): ϕ = Pϕ + (I − P)ϕ =: ϕX + ϕX⊥ with ϕX ∈ X and

ϕX⊥ ∈ X⊥ ⊂ N (H†). Then

H†ϕ = H†ϕX .

Hence, H† = H†P . As mentionend above, T̃ is applied to functions in
R(H) ⊂ X . We redefine H : L2

t (S2)→ X and T̃ : X → L2
Q(Ω). Then the

adjoint Herglotz operator is defined on X and we have the factorization

F = H†P T̃ H.

Figure III.2 shows a diagram of the new situation.

3. Properties of the middle operator

In this section we collect important properties of the operators T and
T̃ , which appear in the factorization F = H∗T H and F = H†PT̃ H,
respectively. Due to this we can apply abstract theorems from functional
analysis to characterize the range of H∗ and H† by F . Then we are able
to give a criterion for the localization of Ω depending on the range of the
far field operator.

We start with the case of absorbing media; the parameter functions
have non–vanishing imaginary parts. In this case ImT := (T − T ∗)/(2i)
is coercive. In the second part we study the real valued case.
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3.1 Absorbing media

Theorem III.19 (Properties of T ). Let Assumption III.11 be satis-
fied. Then

(a) Im
(
T (f), f

)
≥ 0 for f ∈ L2(Ω,C3)2.

(b) Assume that there exist constants γε, γµ such that Im qε ≥ γε and
Im qµ ≥ γµ a.e. in Ω. Then Im T is coercive on R(H); that is,
there exists a constant γ > 0 such that

Im
(
T (f), f

)
≥ γ‖f‖2L2

for all f ∈ R(H).

Proof. The properties are shown analogously to the non–magnetic achiral
case in [24]. For f ∈ L2(Ω,C3)2, and a solution v of (3.6) T (f) = Qw
with

Q =

(
k2qµ k2µβ
k2µβ qε + k2µβ2

)

and w = (w1, w2)⊤ where w1 = f1 + v and w2 = f2 + curl v. Remember
that (3.6) is equivalent to (3.8); that is,

∫∫

R3

curl v · curlψ − k2 v · ψ dx =

∫∫

Ω

(Qw) · ψ̂ dx.

We compute

(
T (f), f

)
L2(Ω,C3)2 =

(
Qw, (w − v̂)

)
L2(Ω,C3)2

=

∫∫

Ω

qε|w2|2 + k2
[
µβ2|w2|2 + 2µβRe (w1 · w2) + qµ|w1|2

]
dx

−
∫∫

Ω

(Qw) · v̂ dx.

We first look at the last integral. We chooseR > 0 such that Ω is contained
in the ball with radius R. We set ψ = φv in (3.8) where φ ∈ C∞(R3) is a
cutoff function with φ ≡ 1 for |x| ≤ R and φ ≡ 0 for |x| ≥ 2R (compare
Figure III.3). This yields:
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2R2R RR 0

1
φ

Ω

Figure III.3: Cutoff function φ

∫∫

Ω

(Qw) · v̂ dx

=

∫∫

|x|<R
| curl v|2 − k2|v|2 dx+

∫∫

R<|x|<2R

curl v · curl(vφ)− k2|v|2φdx

=

∫∫

|x|<R
| curl v|2 − k2|v|2 dx+

∫

|x|=R
(x̂× curl v) · v ds

by Green’s Theorem. Taking the imaginary part yields

Im
(
T (f), f

)
L2(Ω,C3)2

= Im

∫∫

Ω

qε|w2|2 + k2
[
µβ2|w2|2 + 2µβRe (w1 · w2) + qµ|w1|2

]
dx

− Im

∫

|x|=R

(
x̂× curl v(x)

)
· v(x) ds(x).

From the radiation condition

lim
|x|→∞

|x|
(

curl v(x) × x̂− ik v(x)
)

= 0

and the far field expansion we conclude the limit

lim
R→∞

∫

|x|=R

(
x̂× curl v(x)

)
· v(x) ds(x) = − ik

(4π)2

∫

S2

|v∞|2 ds.

Finally, using the binomial |a + b|2 = |a|2 + 2Re (a · b) + |b|2 for vectors
a, b ∈ C

3 and the fact that Imµ = Im qµ we derive

Im
(
T (f), f

)
=

∫∫

Ω

Im qε|w2|2+k2Im qµ |βw2 + w1|2dx+
k

(4π)2

∫

S2

|v∞|2 ds.
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(a) From the above formula for Im (T f, f) we see that Im (T f, f) ≥ 0
if the imaginary parts of the contrasts are non–negative. But that is the
case, as Im qµ = Imµ ≥ 0 and Im qε = Im ε/|ε|2 ≥ 0 by our Assumption
III.11.

(b) If there exists no such γ one can find a sequence {f j} ⊂ L2(Ω,C3)2

s.t. ‖f j‖ = 1 and Im (T f j, f j) → 0. For each f j there is a correspond-

ing vj and also wj = (w
(j)
1 , w

(j)
2 ). The above formula shows that with

Im (T f j, f j) → 0 also wj2 → 0 and βwj2 + wj1 → 0, so also wj1 → 0.
By the unique solvability vj converges to 0 in H(curl,Ω). And therefore

f j1 = wj1 − vj and f j2 = wj2 − curl vj converge to 0 in L2(Ω,C3) which is a
contradiction to ‖f j‖ = 1.

Corollary III.20. Let Assumption III.11 be satisfied. Then the opera-
tor ImF := (F −F∗)/(2i) is self–adjoint, compact and positive. Further-
more, in the case of part (b); that is, Im T coercive (in the sense of the
previous theorem), ImF is injective. In that case there exists a complete
orthonormal eigensystem {λj , ψj}j∈N with positive eigenvalues λj and

(ImF)p =
∑

j∈N

λj(p, ψj)ψj .

Proof. By definition ImF is self–adjoint. F is compact, thus also ImF .
By the factorization for any p ∈ L2

t (S2)

(
(ImF)p, p

)
=
(
H∗(Im T )Hp, p

)
=
(
(Im T )Hp,Hp

)
= Im (T Hp,Hp) ≥ 0

by part (a), whence the positivity. Given p ∈ L2
t (S2) such that ImFp = 0

we have by part (b)

0 =
(
(ImF)p, p

)
=
(
(Im T )Hp,Hp

)
≥ γ‖Hp‖2.

Hence Hp = 0. Since H is injective, this implies that p = 0. The spectral
theorem for compact self–adjoint operators yields the existence of the
eigensystem and the series representation.

3.2 Non–absorbing media

In this subsection we consider the case of real valued parameter functions
ε, µ and β characterizing the chiral material. The main assumption of the
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previous theorem was an estimation for the contrasts qε, qµ of the form
Im q ≥ γ. We were able to prove coercivity of Im T . Furthermore, by
the fact that Im qµ = Imµ we could exploit the concept of completing the
square. These two items prevent us from using the same approach in the
real valued case.

We choose an alternative approach and use the modified factorization

F = H†P T̃ H

with operators H : L2
t (S2) → X , T̃ : X → L2

Q(Ω) and P : L2
Q(Ω) →֒ X .

For the definition of the function space X we refer to III.18.

We will show that T̃ is the sum of a coercive operator T0 and a compact
one: T0 is coercive on X and T̃ −T0 is compact from X into L2

Q(Ω). Then
also PT0 is coercive on X and P(T − T0) is compact from X into X .

We can treat two cases: Firstly ε, µ > 1 then the contrasts qε and qµ
are positive and secondly 0 < ε, µ < 1. Then the contrasts are negative.

Positive contrasts

Recall the symmetric matrix function Q = Q(x),

Q =

(
k2qµ k2µβ
k2µβ qε + k2µβ2

)
.

By our assumptions on the parameter functions, Q has compact support
in Ω. We have to make some smoothness assumptions on Q and follow
[20]. Alternatively, Lechleiter treats the achiral Maxwell’s equations in
[27] with constrasts in µ and ε and uses integrability assumptions on the
contrasts.

Notation: For sufficiently smooth Q = (qjl)j,l=1,2 define the matrix

∇Q := (∇qjl)j,l=1,2.

The following product rule holds for ψ = (ψ1, ψ2) ∈ H1(Ω,C)×H1(Ω,C):

∇(Qψ) = (∇Q)ψ +Q∇ψ
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where ∇ψ := (∇ψ1,∇ψ2)⊤. Indeed:

∇(Qψ) = ∇
(
q11ψ1 + q12ψ2

q21ψ1 + q22ψ2

)
=

(
∇q11ψ1 + q11∇ψ1 +∇q12ψ2 + q12∇ψ2

∇q21ψ1 + q21∇ψ1 +∇q22ψ2 + q22∇ψ2

)

=

(
∇q11 ∇q12

∇q21 ∇q22

)(
ψ1

ψ2

)
+

(
q11 q12

q21 q22

)(
∇ψ1

∇ψ2

)
.

Here again, the matrix–vector–products in the second line are non–stan-
dard.

Assumption III.21. Let Ω ⊂ R3 be a bounded Lipschitz domain such
that the complement R3 r Ω is connected. Let k > 0 be the wave number
and ε, µ ∈ L∞(Ω,R) and β ∈ L∞(Ω,R) real valued. We extend ε and µ
by one and β by zero outside of Ω. We assume:

(a) Q is (symmetric) positive definite.

(b) Q ∈ C(R3,R2×2), Q|Ω ∈ C1(Ω,R2×2), Q−1/2(∇Q) ∈ Lα(Ω,R6×2)
for some α > 3.

(c) For all (g, h) ∈ L2(Ω,C3)×L2(Ω,C3) there exists a unique radiating
solution of the transmission problem (2.20) for κ = k.

(d) There exists a constant c > 0 such that 1
ε − 2k2µβ2 ≥ c a.e. in Ω.

Q−1/2 =: (q̃jl)j,l=1,2 is well defined and

Q−1/2(∇Q) =

(
q̃11 q̃12

q̃21 q̃22

)(
∇q11 ∇q12

∇q21 ∇q22

)

:=

(
q̃11∇q11 + q̃12∇q21 q̃11∇q12 + q̃12∇q22

q̃21∇q11 + q̃22∇q21 q̃21∇q12 + q̃22∇q22

)
.

Under which conditions is Q positive definite? We compute

ξ⊤Qξ = k2qµ|ξ1|2 + 2k2µβRe (ξ1ξ2) + k2µβ2|ξ2|2 + qε|ξ2|2

= k2qµ

∣∣∣ξ1 +
(

1− µβqµ
)
ξ2

∣∣∣
2

+ qε

(
1− k2 µβ2

qεqµ

)
|ξ2|2.

Q is positive definite if qµ > 0, qε > 0 and 1 − k2µβ2/(qεqµ) > 0. The
last inequality can be interpreted as a restriction for k2β2: this quantity
should be sufficiently small. The same applies to part (d). Furthermore,
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the fractions µβqµ and µβ
2

qεqµ
may not be singular on the boundary: Therefore

β and β2 must decay at least as fast as qµ and qεqµ, respectively.

Before we study the middle operator we give a vector version of the
auxiliary lemma 5.3 in [20]:

Lemma III.22. Assume that Q satisfies part (a) and (b) of the above
Assumption III.21. Let ψ = (ψ1, ψ2)⊤ ∈ H1(Ω)×H1(Ω). Then

(a) Q−1/2(∇Q)ψ ∈ L2(Ω,C3)× L2(Ω,C3) and

(b) ∇(Qψ) ∈ H00(curl2,Ω)×H00(curl2,Ω).

The proof of the lemma is just the vector version of the scalar case.
The vector Q−1/2(∇Q)ψ consists of terms which satisfy the assumptions
of Lemma 5.3 in [20]. For part (b) we apply Lemma 5.3 to both compo-
nents of ∇(Qψ).

For vector functions ψ with well–defined curl define the vector

ψ̂ :=

(
ψ

curlψ

)
.

Recall the definition of T̃ : X → L2
Q(Ω):

T̃ f =

(
f1 + v

f2 + curl v

)
= f + v̂

where v ∈ Hloc(curl,R3) is the radiating solution of (3.6) namely

∫∫

R3

[(
1
ε − k2µβ2

)
curl v − k2µβv

]
· curlψ − k2

[
µβ curl v + µv

]
· ψ dx

=

∫∫

Ω

(Qf) · ψ̂ dx.

Let v0 be the solution of a slightly different equation

∫∫

R3

[(
1
ε − k2µβ2

)
curl v0 − k2µβv0

]
·curlψ−k2

[
µβ curl v0−µv0

]
·ψ dx

=

∫∫

Ω

(Qf) · ψ̂ dx (3.9)
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and define T0 : X → L2
Q(Ω) by

T0f = f + v̂0. (3.10)

Then T̃ f = T0f + (T̃ − T0)f and (T̃ − T0)f = v̂ − v̂0.
As a first step, we give an existence and uniqueness result for v0 and

show that the mapping f 7→ v0 is compact in L2(Ω,C3) – due to our
smoothness assumptions on Q.

Proposition III.23. Let Assumption III.21 be satisfied.

(a) The variational equation (3.9) for v0 is uniquely solvable.

(b) The mapping f 7→ v0|Ω is compact from X into L2
Q(Ω).

Proof. (a) This proof is very similar to the proof of part (c) of the corre-
sponding Theorem II.17. As in the proof of Theorem II.10, the variational
problem for v0 is equivalent to the IDE by Lemma II.9

v0(x) = (−k2 +∇div )

∫∫

Ω

[
qµv0 − µβ curl v0 − g

]
Φik(x, ·) dy

+ curl

∫∫

Ω

[
(qε + k2µβ2) curl v0 + k2µβv0 + h

]
Φik(x, ·) dy

(3.11)

where

k2g = (Qf)1 = k2qµf1 + k2µβf2

and

h = (Qf)2 = (qε + k2µβ2)f2 + k2µβf1.

From this we see that v0(x) decays exponentially as |x| → ∞. Thus we
define a sesqui–linear form on H(curl,R3)×H(curl,R3) and a conjugate–
linear form on H(curl,R3).

a(w,ψ) :=

∫∫

R3

(
1
ε − k2µβ2

)
curlw · curlψ dx

+ k2

∫∫

R3

µw · ψ − µβw · curlψ − µβ curlw · ψ dx,

b(ψ) :=

∫∫

Ω

k2g · ψ + h · curlψ dx.
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a and b are obviously bounded. We show coercivity of a.

a(w,w) =

∫∫

R3

(
1
ε − 2k2µβ2

)
curlw · curlw + k2µβ2 curlw · curlw dx

+ k2

∫∫

R3

µw · w − µβw · curlw − µβ curlw · w dx

=

∫∫

R3

(
1
ε − 2k2µβ2

)
| curlw|2 + k2µ|β curlw − w|2 dx

≥ min{c, 1} ‖w‖2
β

where ‖w‖2β := ‖curlw‖2
L2(R3,C3)

+ ‖β curlw + w‖2
L2(R3,C3)

is an equivalent

norm to ‖·‖
H(curl,R3)

. The application of the Lax–Milgram lemma finishes

the proof.
(b) We prove this assertion in three steps: Let the sequence (fn)n ⊂ X

converge weakly to zero in L2
Q(Ω) and let (vn0 )n the corresponding se-

quence of solutions. The solution operator is bounded. Hence, for any ball
B ⊂ R3 with Ω ⊂ B the sequence (vn0 )n converges weakly in H(curl, B)
and from (3.11) we conlude that vn0 is smooth in the exterior of Ω and
converges uniformly to zero on the boundary ∂B.

We need the space of functions with well defined divergence: Let D a
Lipschitz domain. A function v ∈ L2(D,C3) admits a weak divergence if
there exists a function w ∈ L2(D) such that

∫∫

D

v · ∇ψ + wψ dx = 0

for all ψ ∈ C∞0 (D). We write div v := w and denote the space of such
functions by H( div , D).

(i) Show that µvn0 ∈ H( div , B) for any ball B ⊃ Ω.

(ii) Determine qn ∈ H1(B) such that ∂q
n

∂ν = ν · vn0 on ∂B and conclude
that ‖qn‖

H1(B)
→ 0.

(iii) Conclude that ṽn = vn0 −∇qn converges strongly.

(i) Let the ball B ⊃ Ω. For any test function ψ = ∇ϕ with ϕ ∈ H1
0 (B)

equation (3.9) yields:

k2

∫∫

B

µvn0 · ∇ϕdx = k2

∫∫

Ω

µβ curl vn0 · ∇ϕdx+

∫∫

Ω

(Qfn) · ∇̂ϕ dx
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µβ ∈ C1(Ω) by our assumptions on Q. Hence µβ curl vn0 ∈ H( div ,Ω)
since div curl vn0 = 0. Using the divergence theorem we rewrite the first
integral on the right hand side:
∫∫

Ω

µβ curl vn0 ·∇ϕdx

= −
∫∫

Ω

∇(µβ) · curl vn0 ϕdx+

∫

∂Ω

µβ (ν · curl vn0 )ϕds

= −
∫∫

Ω

∇(µβ) · curl vn0 ϕdx

For functions in H( div ,Ω) the normal trace is well defined in the distri-
butional sense. The boundary integral vanishes because µβ = 0 on the
boundary ∂Ω. The second integral on the right hand side is treated as in
the proof of Theorem 5.2 in Kirsch [20]:
∫∫

Ω

(Qfn) · ∇̂ϕdx = −
∫∫

Ω

(
(∇Q)fn

)
·
(
ϕ

0

)
dx+

∫∫

Ω

∇
(
Q

(
ϕ

0

))
· fn dx

︸ ︷︷ ︸
(⋆)

= −
∫∫

Ω

(
(∇Q)fn

)
·
(
ϕ

0

)
dx.

With the aid of Lemma III.22 we conclude that the intgral (⋆) vanishes
as in the proof of Theorem 5.2 in [20]. Plugging these results into the
variational equation yields

k2

∫∫

B

µvn0 · ∇ϕdx = −
∫∫

Ω

[
k2∇(µβ) · curl vn0 + ((∇Q)fn)1

]
ϕdx

for all ϕ ∈ H1
0 (B). Hence, µvn0 ∈ H( div , B).

(ii) Now we determine qn ∈ H1(B) such that
∫∫

B

µ∇qn · ∇ϕ+ qnϕ dx =

∫

∂B

ν · vn0 ϕ ds

for all ϕ ∈ H1(B). This Neumann problem is uniquely solvable and

‖qn‖2
H1(B)

≤
∫∫

B

µ|∇qn|2 + |qn|2 dx =

∫

∂B

ν · vn0 qn ds

≤ c ‖vn0 ‖C(∂B)
‖qn‖

H1(B)
,
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since µ > 1. Hence, ‖qn‖
H1(B)

≤ c ‖vn0 ‖C(∂B)
→ 0 (n→∞).

(iii) Define ṽn := vn0 − ∇qn. Then we have: ṽn and curl ṽn converge
weakly to zero in L2(B,C3) and µṽn ∈ H( div , B) and ν · ṽn = 0. By
Weber [39] ṽn converges stongly to zero and therefore vn0 also converges
strongly since ‖∇qn‖L2 → 0.

Part (b) can also be proven for the orginial scattering problem (3.6).
We formulate this result as corollary.

Corollary III.24. The mapping f 7→ v|Ω where v is the radiating so-
lution of (3.6) is compact from X into L2

Q(Ω).

The next theorem proves coercivity of T0 and that the operator T̃ − T0

is compact. The difference u := v − v0 solves

∫∫

R3

[(
1
ε − k2µβ2

)
curlu− k2µβu

]
· curlψ − k2

[
µβ curlu+ µu

]
· ψ dx

= 2k2

∫∫

R3

µv0 · ψ dx. (3.12)

Theorem III.25. Let Assumption III.21 be satisfied and assume that
1− k2εµβ2 6= 0 a.e.

(a) The operator T0 is self–adjoint and coercive on X; that is, there
exists a constant c > 0 such that

(T0f, f)L2
Q
≥ c‖f‖2L2

Q
for all f ∈ X.

(b) The operator T̃ − T0 is compact from X into L2
Q(Ω).

Proof. (a) (i) T0 is self–adjoint. Let g, h ∈ X and let vg, vh the corre-
sponding solution of the variational problem (3.9) for g and h, respectively.
Then

(T0g, h)L2
Q

= (g, h)L2
Q

+ (Qv̂g, h)L2 .

Recall that the matrix Q is self–adjoint. It is left to consider the second
term which gives the right–hand side of the variational equation (3.9)
Analogously,

(g, T0h)L2
Q

= (g, h)L2
Q

+ (g,Qv̂h)L2 .
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But as equation (3.9) is symmetric in ψ and v0 both expressions are equal:
(Qv̂g, h)L2 = (g,Qv̂h)L2 . Hence T0 is self–adjoint.

(ii) T0 is coercive: Let f ∈ X and v0 the solution of (3.9). (Recall that
v0 decays exponentially.)

(T0f, f)L2
Q

=(f, f)L2
Q

+

∫∫

Ω

(Qf) · v̂0 dx

=(f, f)L2
Q

+

∫∫

R3

(
1
ε − 2k2µβ2

)
| curl v0|2 + k2µ|β curl v0 + v0|2 dx

≥‖f‖2L2
Q
.

(b) (i) The mapping f 7→ u|Ω with u = v − v0 is compact from X into
L2
Q(Ω) by Proposition III.23 and Corollary III.24.
(ii) Show that the mapping f 7→ curlu|Ω is compact: Let B1, B2 two

balls with B1 ⊃ B2 ⊃ Ω. Let (fn)n be a sequence in X converging
weakly to zero. Then the corresponding solution (un)n converges to zero in
L2
Q(Ω). For n ∈ N choose ψn := φun in equation (3.12) where φ ∈ C∞0 (R3)

is a cutoff function with φ ≡ 1 in B2 and φ ≡ 0 in R3 rB1. Then (3.12)
reads

∫∫

B2

(
1
ε−k2µβ2

)
| curlun|2−k2µβ(un ·curlun+curlun ·un)−k2µ|un|2 dx

= −
∫∫

B1rB2

curlun · curl(φun)− k2un · (φun) dx

+ 2k2

∫∫

B1

µvn0 · φun dx

⇐⇒
∫∫

B2

(
1
ε − k2µβ2

) ∣∣∣∣curlun − k2µεβ

1− k2µεβ2
un
∣∣∣∣
2

− k2µ

1− k2µεβ2
|un|2 dx

= −
∫∫

B1rB2

curlun · curl(φun)− k2un · (φun) dx

+ 2k2

∫∫

B1

µvn0 · φun dx.
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We proceed with an application of Green’s formula to the first term on
the right–hand side:

−
∫∫

B1rB2

curl un · curl(φun)− k2un · (φun) dx

= −
∫∫

B1rB2

(curl2−k2)un · (φun) dx+

∫

∂B2

(ν × un) · curlun ds

= −
∫∫

B1rB2

2k2vn0 · (φun) dx+

∫

∂B2

(ν × un) · curlun ds.

Thus

∫∫

B2

(
1
ε − k2µβ2

) ∣∣∣∣curlun − k2µεβ

1− k2µεβ2
un
∣∣∣∣
2

− k2µ

1− k2µεβ2
|un|2 dx

= 2k2

∫∫

B2

µvn0 · (φun) dx+

∫

∂B2

(ν × un) · curlun ds.

Then we estimate the right–hand side: There exists a constant C > 0
such that

|r.h.s.| ≤ C‖vn0 ‖‖un‖+

∣∣∣∣
∫

∂B2

(ν × un) · curlun ds

∣∣∣∣
n→∞−→ 0.

This yields

∫∫

B2

(
1
ε − k2µβ2

) ∣∣∣∣curlun − k2µεβ

1− k2µεβ2
un
∣∣∣∣
2

− k2µ

1− k2µεβ2
|un|2 dx→ 0,

whence ‖ curlun‖ → 0.

Negative contrasts

In the case of negative constrasts the matrix −Q is symmetric positive
definite. We have to work in the space L2

−Q(Ω) with inner product

(ψ, φ)L2
−Q

= −(Qψ, φ)L2 .

The middle operator T̃ is then given by

T̃ f = −(f + v̂).
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Here again for f ∈ X , v ∈ Hloc(curl,R3) is the radiating solution of (3.6)
namely

∫∫

R3

[(
1
ε − k2µβ2

)
curl v − k2µβv

]
· curlψ − k2

[
µβ curl v + µv

]
· ψ dx

=

∫∫

Ω

(Qf) · ψ̂ dx .

Assumption III.26. Let Ω ⊂ R3 be a bounded Lipschitz domain such
that the complement R3 r Ω is connected. Let k > 0 be the wave number
and ε, µ ∈ L∞(Ω,R) and β ∈ L∞(Ω,R) real valued. We extend ε and µ
by one and β by zero outside of Ω. We assume:

(a) −Q satisfies part (a) and (b) of Assumption III.21.

(b) For all (g, h) ∈ L2(Ω,C3)×L2(Ω,C3) there exists a unique radiating
solution of the transmission problem (2.20) for κ = k.

(c) There exists a constant c > 0 such that 1
ε − k2(µ2 + µ)β2 ≥ c a.e.

in Ω.

Q is negative definite if qµ < 0, qε < 0 and 1−k2µβ2/(qεqµ) > 0. Again
part (c) means that k2β2 has to be sufficiently small.

Let v0 be the solution of the slightly different equation

∫∫

R3

[(
1
ε − k2µβ2

)
curl v0 − k2µβv0

]
· curlψ − k2

[
µβ curl v0 − v0

]
· ψ dx

∫∫

Ω

(Qf) · ψ̂ dx. (3.13)

Note, that (3.13) differs from the equation for v0 in the case of positive
contrasts (cf. (3.9)). Define T0 : X → L2

−Q(Ω) by

T0f = −(f + v̂0). (3.14)

Then T̃ f = T0f + (T̃ − T0)f and (T̃ − T0)f = v̂0 − v̂.

Proposition III.27. Let Assumption III.26 be satisfied.

(a) The variational equation (3.13) for v0 is uniquely solvable.
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(b) The mapping f 7→ v0|Ω is compact from X into L2
−Q(Ω).

Proof. (a) The proof is similar to the one for positive contrasts III.23. We
only show coercivity of the bilinear form

a(w,ψ) :=

∫∫

R3

(
1
ε − k2µβ2

)
curlw · curlψ dx

+ k2

∫∫

R3

w · ψ − µβw · curlψ − µβ curlw · ψ dx.

a(w,w) =

=

∫∫

R3

(
1
ε − k2(µ2 + µ)β2

)
curlw · curlw + k2µβ2 curlw · curlw dx

+ k2

∫∫

R3

w · w − µβw · curlw − µβ curlw · w dx

=

∫∫

R3

(
1
ε − k2(µ2 + µ)β2

)
| curlw|2 + k2|µβ curlw − w|2 dx

≥min{c, 1} ‖w‖2
µβ
.

(b) Similar to the proof of Proposition III.23 we can determine a solution
qn ∈ H1(B) of the Neumann problem

∫∫

B

∇qn · ∇ϕ+ qn ϕ dx =

∫

∂B

(ν · vn0 )ϕds

for all ϕ ∈ H1(B). Then vn|Ω−∇qn satisfies the conditions for the strong
convergence by Weber [39] and also ‖∇qn‖

L2
→ 0.

As in the case of positive constrasts we show coercivity of T0 (or −T0

in fact) and compactness of T̃ −T0. Here, the difference u := v0− v solves

∫∫

R3

[(
1
ε − k2µβ2

)
curlu− k2µβu

]
· curlψ − k2

[
µβ curlu+ µu

]
· ψ dx

= −k2

∫∫

R3

(µ+ 1)v0 · ψ dx (3.15)
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Theorem III.28. Let Assumption III.26 be satisfied and assume that
1− k2εµβ2 6= 0 a.e.

(a) The operator T0 is self–adjoint and −T0 is coercive on X; that is,
there exists a constant c > 0 such that

−(T0f, f)L2
−Q
≥ c‖f‖2L2

−Q
for all f ∈ X.

(b) The operator T̃ − T0 is compact from X into L2
−Q(Ω).

Proof. (a) (i) Analogous to the case of positive contrasts T0 is self–adjoint.
Note that here again the variational equation (3.13) is symmetric in v0

and ψ.
(ii) −T0 is coercive. First we rewrite equation (3.13): Define the func-

tion w := f + v̂0 on Ω. Then (3.13) can be written as
∫∫

R3

curl v0 · curlψ + k2µv0 · ψ dx =

∫∫

Ω

(Qw) · ψ̂ dx.

With f = w − v̂0 we have

−(T0f, f)L2
−Q

= −(−w,w − v̂0)L2
−Q

= (w,w)L2
−Q

+ (Qw, v̂0)L2

= ‖w‖2L2
−Q

+

∫∫

R3

| curl v0|2 + k2µ|v0|2 dx

≥ ‖w‖2L2
−Q
.

(b) The proof of this part analogous to the case of positive contrasts.

Figure III.4 shows the different cases for real valued material functions:
In the two cases where qεqµ > 0 we can prove coercivity under additional
assumptions. The remaining two cases – here qεqµ < 0 – are indefinite in
the sense that we can not prove coercivity.

4. Localization of the scatterer

We want to localize the chiral body; that is, for a given point z ∈ R
3 we

have to decide whether or not it belongs to Ω. We will provide such a
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replacemen

1− k2µβ2

qµqε
> 0

1− k2µβ2

qµqε
> 0indefinite

indefinite

µ

ε
0 1

1

qµ > 0

qµ < 0

qε < 0 qε > 0

Figure III.4: Real–valued case

decision making possibility by checking whether or not a certain function
φz depending on z is in the range of H∗. We start with an integral
representation of the exponential function θ 7→ e−ik θ·z taken from [24].

Lemma III.29. For z ∈ Ω there exists ϕ̃ ∈ L2(Ω) such that

e−ik d·z =

∫∫

Ω

ϕ̃(y) e−ik d·y dy for d ∈ S
2.

We adapt this result to our problem. We look for a function φz which
can be written as H∗ϕ for some ϕ ∈ L2(Ω,C3)2.

Theorem III.30. For any z ∈ R3 and fixed p ∈ C3 r {0} define the
tangential field φz ∈ L2

t (S2) by

φz(d) :=
{

(d× p× d) + ik (d× p)
}
e−ik d·z , d ∈ S

2. (3.16)

Then z ∈ Ω if, and only if, φz ∈ R(H∗).

Proof. By the lemma: For z ∈ Ω there exists ϕ̃ s.t.

e−ik d·z =

∫∫

Ω

ϕ̃(y) e−ik d·y dy
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We conclude φz = H∗1ϕ1 +H∗2ϕ2 with ϕj = pϕ̃.
We continue as in the proof of Theorem 4.3 in [20]. Let z ∈ R3 r Ω

and assume, on the contrary, that there exists ϕ ∈ L2(Ω,C3)2 such that
φz = H∗ϕ. Then w∞ = H∗ϕ is the far field pattern of the radiating weak
solution to curl2 w − k2w = ϕ1 + curlϕ2 in Ω and curl2 w − k2w = 0 in
R3 r Ω. φz is the far field pattern of 1

k2 curl2[pΦk(· , z)] + curl[pΦk(· , z)].
From φz = H∗ϕ = w∞ we conclude that

w ≡ 1

k2
curl2[pΦk(·, z)] + curl[pΦk(·, z)] on R

3
r (Ω ∪ {z})

by Rellich’s Lemma and analytic continuation. But the right–hand side
1
k2 curl2[pΦk(· , z)]+curl[pΦk(· , z)] has a singularity in z, but w is analytic

outisde of Ω. This a contradiction.

In the inverse problem the far field data is given; that is, the far field
operator F . So we need to characterize the range of H∗ by the range
of F or rather by information that can be extracted from F . Here the
factorization in combination with the properties of the middle operator
T gives the main result. We start with absorbing media. The material
functions ε and µ have non-vanishing imaginary parts.

Theorem III.31 (Absorbing media). Let Assumption III.11 be sat-
isfied and assume that there exist constants γε, γµ > 0 such that Im qε ≥ γε
and Im qµ ≥ γµ a.e. in Ω. Define φz by (3.16) for z ∈ R3. Then z ∈ Ω
if, and only if, φz ∈ R

(
(ImF)1/2

)
.

Proof. The imaginary part of an operator A – ImA = 1
2i(A − A∗) – is

self–adjoint. By the factorization of F the imaginary part ImF admits
the factorization ImF = H∗(Im T )H. ImF is compact because H is
compact. Furthermore

(
(Im T )f, f

)
L2 = Im (T f, f)L2 and therefore Im T

is coercive on R(H) by Theorem III.19. Then, by Corollary 1.22 in [24]
the ranges of H∗ and (ImF)1/2 coincide and Theorem III.30 finishes the
proof.

The following conclusions are standard for the Factorization method.
From Corollary III.20 we know that ImF admits a complete eigensytsem
{λj , ψj}j∈N with positive eigenvalues λj . Thus the operator (ImF)(1/2)

has the eigensystem {
√
λj , ψj}j∈N and φz is an element of R

(
(ImF)1/2

)
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if there exists a p ∈ L2
t (S2) such that φz =

∑
j∈N

√
λj(p, ψj)ψj . Then p

is formally given by

p =
∑

j∈N

(φz , ψj)√
λj

ψj

and p ∈ L2
t (S2) if, and only if,

∑

j∈N

|(φz , ψj)|2
λj

<∞.

Or equivalently

z ∈ Ω⇐⇒W (z) :=


∑

j∈N

|(φz , ψj)|2
λj



−1

> 0.

Now we can give an explicite term for the characteristic function of Ω,

χΩ := sgnW.

In the non–absorbing case we use the modified factorization F = H†PT̃ H
and apply the range identity result from [28], which has been generalized
slightly by Sandfort in his PhD thesis [37]:

Theorem III.32. Let X,Y Hilbert spaces, B : Y → Y , H : Y → X
and A : X → X linear bounded operators with

B = H∗AH.

Assume that

(a) H is compact and injective.

(b) For some α ∈ [0, 2π) the operator Re (eiαA) has the form C+K with
an coercive and a compact operator C,K : X → X, respectively.

(c) ImA is non–negative on X.

(d) A is injective.

Then the operator B# := |Re (eiαB)|+ ImB is positive and the ranges of

H∗ : X → Y and B1/2
# : Y → Y coincide.
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Theorem III.33 (Non–absorbing case). Let k > 0 the wavenumber.
Let the scattering obstacle Ω and the material parameters – summarized
in the matrix Q – fullfill Asumption III.21 or III.26. For z ∈ R3 define φz
by (3.16). Then z ∈ Ω if, and only if, φz ∈ R(F1/2

# ) where the operator
F# := |ReF|+ ImF .

Proof. For the case of positive contrasts. We verify the assumptions of
Theorem III.32 for X defined in III.18, A = PT̃ and H = H. The work is
all done we just cite the results from the previous section. H is an integral
operator with smooth kernel function, hence compact. H is injective and
PT̃ inherits the properties of T̃ : For f ∈ X :

(T̃ f, f) = (PT̃ f, f) +
(
(I − P)T̃ f, f

)
= (PT̃ f, f)

since the image of I − P is orthogonal to X ∋ f . We can decompose
Re T̃ = Re T0 + Re (T̃ − T0) with T0 defined in (3.10). There exists a
constant c > 0 such that Re (T0f, f) ≥ c‖f‖2 for f ∈ X by part (a) of

Theorem III.25. Furthermore, we have shown the compactness of T̃ − T0

in part (b). As in the proof for the properties of T in the absorbing case
(Theorem III.19), we compute:

Im (T̃ f, f) =
k

(4π)2

∫

S2

|v∞|2 ds ≥ 0

where v∞ is the far field pattern of the solution to the variational equation
(3.6). Injectivity of T and therefore of T̃ has been discussed in Remark
III.17. The case of negative constrasts is proved analogously. In this case
we use T0 defined in (3.14).

F# is compact, self–adjoint and injective. Hence, the spectral theo-
rem for compact self–adjoint operators yields the existence of a complete
eigensystem {λj , ψj}j∈N with strictly positive eigenvalues λj . Thus

F1/2
# p =

∑

j∈N

√
λj(p, ψj)ψj

and we can deduce the characteristic function of the scatterer Ω as in the
case of absorbing media.
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The (F∗F)1/4–method

By Theorem III.10 we know that the far field operator F is normal in
the case of non–absorbing media. Furthermore, the scattering operator
S = I + ik

8π2F is unitary. We want to apply the range identity result in
Theorem 1.23 from Kirsch [24]. The assumptions for this theorem are:

• T̃ = T0 +K with T0 self–adjoint and coercive on R(H), K compact,

• I + irF unitary for some r > 0,

• Im (T̃ f, f) 6= 0 for all f ∈ R(H),

• F injective.

The first two assumptions have already been chequed. So we study under
which conditions the third assumption holds: We already know that

Im (T̃ f, f) =
k

(4π)2

∫

S2

|v∞|2 ds

where v∞ is the far field pattern of the solution to the variational equation
(3.6), namely

∫∫

R3

[(
1
ε − k2µβ2

)
curl v−k2µβv

]
· curlψ − k2

[
µβ curl v +µv

]
· ψ dx

=

∫∫

Ω

(Qf) · ψ̂ dx.

for all ψ ∈ Hc(curl,R3). Hence, Im (T̃ f, f) = 0 if, and only if, v∞ vanishes
which implies that v ≡ 0 in R3 r Ω. Then (3.6) reads

∫∫

Ω

[(
1
ε − k2µβ2

)
curl v−k2µβv

]
· curlψ − k2

[
µβ curl v +µv

]
· ψ dx

=

∫∫

Ω

(Qf) · ψ̂ dx.

for all ψ ∈ H(curl,Ω). We conclude that v ∈ H(curl,Ω) with ν × v = 0
on Γ = ∂Ω and denote by H0(curl,Ω) the space of functions in H(curl,Ω)
with vanishing trace. This is an interior transmission eigenvalue problem
for the parameter k:
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Problem 4 (Interior transmission eigenvalue problem). Given
k > 0. Determine v ∈ H0(curl,Ω) and f ∈ L2

Q(Ω) such that

∫∫

Ω

[(
1
ε − k2µβ2

)
curl v−k2µβv

]
· curlψ − k2

[
µβ curl v +µv

]
· ψ dx

=

∫∫

Ω

(Qf) · ψ̂ dx.

for all ψ ∈ H(curl,Ω) and

∫∫

Ω

f · (curl2 w − k2w) dx = 0

for all w ∈ H00(curl2,Ω)×H00(curl2,Ω) with (curl2 w− k2w) ∈ L2
Q−1 (Ω).

We call k an interior transmission eigenvalue if Problem 4 has a
non–trivial solution (v, f) ∈ H0(curl,Ω)× L2

Q(Ω) for k.

We conclude that Im (T̃ f, f) 6= 0 if k is not an interior transmission
eigenvalue. Furthermore, F is injective if k is not an interior transmission
eigenvalue: Fp = 0 implies w ≡ 0 outside of Ω where w ∈ Hloc(curl,R3)
is the radiating solution of

∫∫

R3

(
1
ε − k2µβ2

)
curlw · curlψ − k2µw · ψ dx

−k2

∫∫

Ω

µβ
[
w · curlψ + curlw · ψ] dx

=

∫∫

Ω

(qε + k2µβ2) curlwi · curlψ + k2qµw
i · ψ dx

+k2

∫∫

Ω

µβ
[
wi · curlψ + curlwi · ψ

]
dx

for all ψ ∈ Hc(curl,R3) with wi(y) = (H1p)(y) =
∫

S2 p(d)eikd·y ds(d)
(compare beginning of section 2 in this chapter). Since w ≡ 0 outside
of Ω we conclude that w ∈ H0(curl,Ω) and with f = (wi, curlwi)⊤ we
have a solution to Problem 4. It is the trivial solution because k is not
an interior transmission eigenvalue. In particular, wi = H1p = 0 which
implies p = 0.

Finally, we are able to state the following
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Theorem III.34 ((F∗F)1/4–method). Assume that the wave number
k > 0 is not an interior transmission eigenvalue. Let the scattering obsta-
cle Ω and the material parameters fullfill Asumption III.21 or III.26. For
z ∈ R3 define φz by (3.16). Then z ∈ Ω if, and only if, φz ∈ R((F∗F)1/4).

In this case F is compact, normal and injective. The spectral theorem
for compact normal operators yields the existence of a complete eigensys-
tem {λj , ψj}j∈N with complex eigenvalues λj ∈ Cr{0} and corresponding
normalized eigenfunctions ψj ∈ L2

t (S2). Again, we derive a criterion to
determine the scatterer Ω:

z ∈ Ω⇐⇒


∑

j∈N

|(φz , ψj)|2
|λj |



−1

> 0.





CHAPTER IV

Scattering by a chiral sphere

In spherical coordinates it is possible to give series expansions for solutions
of spherical transmission problems. We study the scattering by a homo-
geneous chiral ball. All material parameters are real valued. Berketis and
Athanasiadis [9] study a similar problem: scattering by perfectly conduct-
ing sphere situated in a chiral medium.

In the first section we solve the direct transmission problem. First we
recall the main steps for the deduction of vector spherical harmonics. We
just give the results and refer to Colton and Kress [15]. Together with the
spherical Bessel and Hankel functions they constitute the basic solutions
to Maxwell’s equations: the vector wave functions. Then we treat the
achiral problem: Starting with the series representation of an incident
field we give series expansions for the scattered field and the far field
pattern depending on the coefficients of the incident field. For the chiral
transmission problem we use Bohren’s decomposition [16]: The electric
and magnetic field are decomposed into a sum of Beltrami fields, which
satisfy the achiral Maxwell equations for different wave numbers. Thus,
we can directly apply the achiral results to the chiral case.

The second section is devoted to the far field operator. In the spherical
case we can express F explicitly and compute the eigenvalues und eigen-
functions – again, for the achiral and the chiral case. In [24] we find this
kind of computation for sound soft scattering. In [20] a spherical achiral
transmission problem is considered. With the aid of the eigensystem we
can evaluate the series which is used for the characteristic function of the
scatterer in Theorem III.34 and determine the scatterer explicitely.



84 Scattering by a chiral sphere

1. Spherical transmission problems

The first part is a brief summary of the sections 2.3, 2.4 and 6.5 in [15].

1.1 Spherical vector wave functions

We are looking for solutions of Maxwell’s equations in spherical coordi-
nates. It is possible to construct such solutions — spherical vector wave
functions — from solutions of the Helmholtz equation. In spherical coor-
dinates (ρ, θ, ϕ) with

x = (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ)⊤ ∈ R
3,

where ρ ≥ 0, θ ∈ [0, π], ϕ ∈ [0, 2π], the Helmholtz equation takes the form

1

ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

ρ2 sin2 θ

∂2u

∂ϕ2
+ k2u = 0.

Separation of variables

u(ρ, θ, ϕ) = u1(ρ)u2(θ, ϕ)

leads to spherical harmonics and spherical Bessel functions. The spherical
harmonics are given by

Y mn (θ, ϕ) :=

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!P

|m|
n (cos θ)eimϕ

for m = −n, . . . , n and n = 0, 1, 2, . . . Here, Pmn denotes the associated
Legendre polynomial

Pmn (t) := (1 − t2)m/2
dmPn(t)

dtm
, m = 0, . . . , n,

which solves the associated Legendre differential equation

(1− t2)f ′′(t)− 2tf ′(t) +

{
n(n+ 1)− m2

1− t2
}
f(t) = 0.
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Pn is the Legendre polynomial which satisfies the Legendre differential
equation

(1− t2)P ′′n (t)− 2tP ′n(t) + n(n+ 1)Pn(t) = 0 n = 0, 1, 2, . . .

The radial part of the Helmholtz equation is given by the spherical Bessel
differential equation

t2f ′′(t) + 2tf ′(t) +
[
t2 − n(n+ 1)

]
f(t) = 0

which is satisfied by spherical Bessel and Neumann functions jn and yn,
respectively, for n = 0, 1, 2, . . .

jn(t) :=
∞∑

p=0

(−1)ptn+2p

2pp!1 · 3 · · · (2n+ 2p+ 1)
,

yn(t) := − (2n)!

2nn!

∞∑

p=0

(−1)pt2p−n−1

2pp!(−2n+ 1)(−2n+ 3) · · · (−2n+ 2p− 1)
.

Linear combination gives the spherical Hankel function of the first kind

hn = h
(1)
n with

hn := jn + i yn , n = 0, 1, 2, . . .

Finally, the following functions are solutions of the Helmholtz equation in
spherical coordinates: For n ∈ N0 and −n ≤ m ≤ n

umn (x) = jn(k|x|)Y mn (x̂)

is an entire solution to the Helmholtz equation and

vmn (x) = hn(k|x|)Y mn (x̂)

is a radiating solution to the Helmholtz equation in R3 r {0}.
We use these to construct such solutions for Maxwell’s equations

curlE = ikH and curlH = −ikE.

For n ∈ N0 and −n ≤ m ≤ n the functions

Mmn (x) :=
1√

n(n+ 1)
curl

[
xumn (x)

]
,

1

ik
curlMmn (x)
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are an entire solution to Maxwell’s equations and

Nmn (x) :=
1√

n(n+ 1)
curl

[
x vmn (x)

]
,

1

ik
curlNmn (x)

are a radiating solution to Maxwell’s equations in R3 r {0}.
Define the vector spherical harmonics Umn and V mn for n = 0, 1, 2, . . .

and m = −n, . . . , n by

Umn (x̂) :=
1√

n(n+ 1)
GradY mn (x̂) , V mn (x̂) := x̂× Umn (x̂) for x̂ ∈ S

2

with the surface gradient Grad. Umn and V mn are tangential fields on the
unit sphere. Hence,

Mmn (x) = −jn(k|x|)V mn (x̂),

Nmn (x) = −hn(k|x|)V mn (x̂)

and

curlMmn (x) =
1

|x|
[
jn(k|x|) + k|x|j′n(k|x|)

]
Umn (x̂),

curlNmn (x) =
1

|x|
[
hn(k|x|) + k|x|h′n(k|x|)

]
Umn (x̂).

The tangential traces are given by

x̂×Mmn (x) = jn(k|x|)Umn (x̂), (4.1)

x̂×Nmn (x) = hn(k|x|)Umn (x̂) (4.2)

and

x̂× curlMmn (x) =
1

|x|
[
jn(k|x|) + k|x|j′n(k|x|)

]
V mn (x̂), (4.3)

x̂× curlNmn (x) =
1

|x|
[
hn(k|x|) + k|x|h′n(k|x|)

]
V mn (x̂) (4.4)

Finally, we have the following representation for the far field pattern: Let
Hs be a radiating solution to Maxwell’s equations given as series

Hs =
∑

amn N
m
n + bmn

1
ik curlNmn .
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The far field pattern is given by

H∞ =
4π

k

∑ 1

in+1

[
bmn U

m
n − amn V mn

]

and satisfies

Hs(x) =
eik|x|

4π|x|H
∞(x̂) +O(|x|−2) , |x| → ∞.

Here and throughout this chapter, we abbreviate

∑
smn :=

∞∑

n=0

n∑

m=−n
smn .

1.2 Spherical Maxwell transmission problem

We start with the setting of the transmission problem. The penetrable
scattering obstacle is a ball B = B(0, 1) with radius 1 located at the
origin. In the exterior there is vacuum. The ball consists of constant
lossless material with ε 6= ε0 or µ 6= µ0. The wavenumber is given by

{
k = ω

√
ε0µ0, in B

c
,

κ = ω
√
εµ, in B.

The ball is illuminated by an incident field Hi which is a solution of
Maxwell’s equations in the exterior of B.

curl2 Hi − k2Hi = 0 in B
c

The total field H inside the ball satisfies Maxwell’s equations for the
wavenumber κ,

curl2 H − κ2H = 0 in B.

The scattered field Hs in the exterior of B satisfies Maxwell’s equations
for the wavenumber k and the Silver–Müller radiation condition.

curl2 Hs − k2Hs = 0 in B
c
, radiating.
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On the boundary {|x| = 1} the transmission conditions are given by the
continuity of the tangential traces (x̂ ∈ S2):

x̂×Hi(x̂) + x̂×Hs(x̂) = x̂×H(x̂), (4.5)

1

k
x̂× curlHi(x̂) +

1

k
x̂× curlHs(x̂) =

1

κ
x̂× curlH(x̂). (4.6)

In this setting we can expand the field in series of vector wave functions,

Hi(x) =
∑

αmnM
m
n (x, k) + βmn

1

ik
curlMmn (x, k) in B

c
,

Hs(x) =
∑

cmn N
m
n (x, k) + dmn

1

ik
curlNmn (x, k) in B

c
,

H(x) =
∑

amnM
m
n (x, κ) + bmn

1

iκ
curlMmn (x, κ) in B

and deduce systems of linear equations to determine the coefficients amn , c
m
n

and bmn , d
m
n for n ∈ N0 and m = −n, . . . , n. We compute the tangential

traces of the series with the aid of the tangential traces for the vector wave
functions (4.1)–(4.4).

x̂×Hi(x̂) =
∑

αmn jn(k)Umn (x̂) +
1

ik
βmn
[
jn(k) + kj′n(k)

]
V mn (x̂),

x̂×Hs(x̂) =
∑

cmn hn(k)Umn (x̂) +
1

ik
dmn
[
hn(k) + kh′n(k)

]
V mn (x̂),

x̂×H(x̂) =
∑

amn jn(κ)Umn (x̂) +
1

iκ
bmn
[
jn(κ) + κj′n(κ)

]
V mn (x̂)

and

1

k
x̂× curlHi(x̂) =

∑
αmn

1

k

[
jn(k) + kj′n(k)

]
V mn (x̂) + βmn

1

i
jn(k)Umn (x̂),

1

k
x̂× curlHs(x̂) =

∑
cmn

1

k

[
hn(k) + kh′n(k)

]
V mn (x̂) + dmn

1

i
hn(k)Umn (x̂),

1

κ
x̂× curlH(x̂) =

∑
amn

1

κ

[
jn(κ) + κj′n(κ)

]
V mn (x̂) + bmn

1

i
jn(κ)Umn (x̂).

Plugging this into the transmission conditions (4.5),(4.6) yields

cmn hn(k) + αmn jn(k)
!
= amn jn(κ),

dmn
1

ik

[
hn(k) + kh′n(k)

]
+ βmn

1

ik

[
jn(k) + kj′n(k)

] !
= bmn

1

iκ

[
jn(κ) + κj′n(κ)

]



1 Spherical transmission problems 89

and

cmn
1

k

[
hn(k) + kh′n(k)

]
+ αmn

1

k

[
jn(k) + kj′n(k)

] !
= amn

1

κ

[
jn(κ) + κj′n(κ)

]
,

dmn
1

i
hn(k) + βmn

1

i
jn(k)

!
= bmn

1

i
jn(κ)

for n ∈ N0 and m = −n, . . . , n. The two resulting linear systems can be
summarized as

(
jn(κ) −hn(k)

1
κjn(κ) + j′n(κ) − 1

khn(k)− h′n(k)

)(
amn bmn
cmn dmn

)

=

(
jn(k)

1
k jn(k) + j′n(k)

)(
αmn βmn

)

with determinant

detn(κ) =
(1

κ
− 1

k

)
hn(k)jn(κ) + hn(k)j′n(κ)− h′n(k)jn(κ)

and inverse
1

detn(κ)

(
− 1
khn(k)− h′n(k) hn(k)

− 1
κjn(κ)− j′n(κ) jn(κ)

)
.

Hence, the solutions are given by

(
amn bmn
cmn dmn

)
= − 1

detn(κ)

(
i
k2

Re detn(κ)

)
(
αmn βmn

)

Proposition IV.1. detn(κ) 6= 0.

Proof. Assume to the contrary detn(κ) = 0; that is,

detn(κ) =
( 1

κ
− 1

k

)
hn(k)jn(κ) + hn(k)j′n(κ)− h′n(k)jn(κ)

=
( 1

κ
− 1

k

)
jn(k)jn(κ) + jn(k)j′n(κ)− j′n(k)jn(κ)

+ i

[( 1

κ
− 1

k

)
yn(k)jn(κ) + yn(k)j′n(κ)− y′n(k)jn(κ)

]

!
=0
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=⇒
( 1

κ
− 1

k

)
+
j′n(κ)

jn(κ)
=
j′n(k)

jn(k)
and

( 1

κ
− 1

k

)
+
j′n(κ)

jn(κ)
=
y′n(k)

yn(k)

=⇒ 0 =! y′n(k)jn(k)− j′n(k)yn(k) = 1/k2 (Wronskian)
Contradiction!

Summary

Given the incident field

Hi(x) =
∑

αmnM
m
n (x, k) + βmn

1

ik
curlMmn (x, k),

the total field inside the scatterer B is given by

H(x) = − i

k2

∑ 1

detn(κ)

[
αmnM

m
n (x, κ) +

1

iκ
βmn curlMmn (x, κ)

]

and the (radiating) scattered field outside the scatterer is given by

Hs(x) = −
∑ Re detn(κ)

detn(κ)

[
αmn N

m
n (x, k) +

1

ik
βmn curlNmn (x, k)

]
.

The far field pattern is given by

H∞(x̂) =
4π

k

∑ 1

in+1

Re detn(κ)

detn(κ)

[
αmn V

m
n (x̂)− βmn Umn (x̂)

]
.

We apply these results to Beltrami fields which appear in our chiral trans-
mission problem.

1.3 Spherical chiral transmission problem

The setting is similar to the one in the previous subsection. But now,
the medium inside the ball is (homogeneous, lossless and) chiral. More
precisely, let the permittivity, permeability and chirality be defined by

ε =

{
ε0 in B

c
,

εB in B,
µ =

{
µ0 in B

c
,

µB in B,
β =

{
0 in B

c
,

βB in B.
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with real constants εB, µB, βB. Define the wave number by
{
k := ω

√
ε0µ0 in B

c
,

κ := ω
√
εBµB in B.

Then the chiral Maxwell’s equations read (confere Stratis et al. [6])

curl2 U − 2
κ2

1− κ2β2
β curlU − κ2

1− κ2β2
U = 0 in B

for U = E or U = H and the fields appearing in our transmission problem
satisfy the following equations:

curl2 U i − k2U i = 0 in B
c
,

curl2 Us − k2Us = 0 in B
c
, radiating,

curl2 U − 2
κ2

1− κ2β2
β curlU − κ2

1− κ2β2
U = 0 in B

for U = E or U = H .
For homogeneous materials it is possible to decompose the electric and

magnetic field and use the results from the achiral transmission problem.
Compare Athanasiadis, Martin and Stratis [6]. It is Bohren’s decomposi-
tion [16]. Define κL, κR by

κL :=

{
κ

1−κβ in B,

k in B
c and κR :=

{
κ

1+κβ in B,

k in B
c
.

Then:

κLκR =
κ2

1− κ2β2
in B.

Define: QL := E + iH and QR := E − iH . Then QL, QR are Beltrami
fields; that is,

curlQL = κLQL and curlQR = −κRQR

and they satisfy the achiral Maxwell equations for the wave number κL
and κR, respectively:

curl2 QL − κL2QL = 0 and curl2 QR − κR2QR = 0.
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Thus, we can apply the result of the previous subsection to the fields QL
and QR and deduce series representations for the fields E and H since

E =
1

2
(QL +QR) and H =

1

2i
(QL −QR).

We start with the incident fields Hi and Ei:

Hi(x) =
∑

αmnM
m
n (x, k) + βmn

1

ik
curlMmn (x, k),

Ei(x) = − 1

ik
curlHi(x) =

∑
βmn M

m
n (x, k)− αmn

1

ik
curlMmn (x, k).

We introduce the incident fields QiL := Ei + iHi and QiR := Ei − iHi:

QiL(x) =
∑

(βmn + iαmn )Mmn (x, k)− (αmn − iβmn )
1

ik
curlMmn (x, k),

QiR(x) =
∑

(βmn − iαmn )Mmn (x, k)− (αmn + iβmn )
1

ik
curlMmn (x, k).

The total fields QL, QR indside B are given by

QL(x) =− i

k2

∑ 1

detn(κL)
(βmn + iαmn )Mmn (x, κL)

− 1

iκL detn(κL)
(αmn − iβmn ) curlMmn (x, κL),

QR(x) =− i

k2

∑ 1

detn(κR)
(βmn − iαmn )Mmn (x, κR)

− 1

iκR detn(κR)
(αmn + iβmn ) curlMmn (x, κR)

and the total fields E and H can be computed by E(x) = 1
2 (QL + QR)

and H(x) = 1
2i (QL −QR). At this point we can see that the fields E and

H admit an expansion in terms of the vector wave functions for the wave
numbers κL and κR.
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The scattered fields QsL, Q
s
R have the series expansions

QsL(x) =−
∑ Re detn(κL)

detn(κL)
(βmn + iαmn )Nmn (x, k)

− Re detn(κL)

ik detn(κL)
(αmn − iβmn ) curlNmn (x, k),

QsR(x) =−
∑ Re detn(κR)

detn(κR)
(βmn − iαmn )Nmn (x, k)

− Re detn(κR)

ik detn(κR)
(αmn + iβmn ) curlNmn (x, k).

That is,

QsL(x) =−
∑

cL(βmn + iαmn )Nmn (x, k) − cL
ik

(αmn − iβmn ) curlNmn (x, k),

QsR(x) =−
∑

cR(βmn − iαmn )Nmn (x, k)− cR
ik

(αmn + iβmn ) curlNmn (x, k)

where we abbreviate cL := Re detn(κL)
detn(κL) and cR := Re detn(κR)

detn(κR) . Hence, the

series expansions for the electric and magnetic field read

Es(x) =− 1

2

∑[
(cL + cR)βmn + (cL − cR)iαmn

]
Nmn (x, k)

− 1

ik

[
(cL + cR)αmn − (cL − cR)iβmn

]
curlNmn (x, k),

Hs(x) =− 1

2i

∑[
(cL − cR)βmn + (cL + cR)iαmn

]
Nmn (x, k)

− 1

ik

[
(cL − cR)αmn − (cL + cR)iβmn

]
curlNmn (x, k).

Finally, the far field patterns are given by

Q∞L (x̂) =
4π

k

∑ cL
in+1

[
(βmn + iαmn )V mn (x̂) + (αmn − iβmn )Umn (x̂)

]
,

Q∞R (x̂) =
4π

k

∑ cR
in+1

[
(βmn − iαmn )V mn (x̂) + (αmn + iβmn )Umn (x̂)

]
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and

E∞(x̂) =
4π

2k

∑ cL
in+1

[
(βmn + iαmn )V mn (x̂) + (αmn − iβmn )Umn (x̂)

]

+
cR
in+1

[
(βmn − iαmn )V mn (x̂) + (αmn + iβmn )Umn (x̂)

]
,

H∞(x̂) =
4π

2ik

∑ cL
in+1

[
(βmn + iαmn )V mn (x̂) + (αmn − iβmn )Umn (x̂)

]

− cR
in+1

[
(βmn − iαmn )V mn (x̂) + (αmn + iβmn )Umn (x̂)

]
.

2. The far fiel operator

In this section we develop an explicit form of the far field operator F for
the spherical case.

The setting is the same as in the previous subsection. The scattering
obstacle is a ball B = B(0, 1) filled with homogeneous chiral material
situated in vacuum. We already deduced a series representation of the far
field pattern H∞ for a given incident field Hi.

F gives a superposition of the far field patterns H∞(x̂; d, p) induced by
plane waves Hi(x) = p eik d·x. We start with the series expansion of plane
waves. Once we know these coefficients the representation of the far field
pattern found in the previous section directly yields the explicit form of
F . Again we treat the achiral and the chiral case.

2.1 Series expansion of a plane wave

At first, we have to expand a plane wave into a series of the vector wave
functions Mmn and curlMmn ; that is, we must determine the coefficients
amn and bmn in the series

peik d·x =

=
∑

amnM
m
n (x, k) + bmn

1
ik curlMmn (x, k)

=
∑

amn (−1)jn(k|x|)V mn (x̂) + bmn
1
ik

[
1
|x|jn(k|x|) + kj′n(k|x|)

]
Umn (x̂)
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with

−amn jn(k|x|) =

∫

S2

eik|x| ŷ·d(d× p× d) · V mn (ŷ) ds(ŷ),

1
ik b
m
n

[
1
|x|jn(k|x|) + kj′n(k|x|)

]
=

∫

S2

eik|x| ŷ·d(d× p× d) · Umn (ŷ) ds(ŷ)

where we used p = d× p× d since p · d = 0 and |d| = 1.
In what follows, we compute the Fourier coefficients on the right hand

side. More precisely, we compute the complex conjugate:
∫

S2

e−ik|x|ŷ·d(d× p× d) · V mn (ŷ) ds(ŷ),

∫

S2

e−ik|x|ŷ·d(d× p× d) · Umn (ŷ) ds(ŷ)

Here we recognize the far field pattern of curl2[pΦk(z, |x|ŷ)] with respect
to z = |z|d. We work with the Stratton–Chu formulae applied on a ball
of radius R. Therefore we introduce the operators C1 and C2 defined for
tangential vector fields ϕ:

(C1ϕ)(x) := curl

∫

|x|=R
ϕ(y) Φk(x, y) ds(y),

(C2ϕ)(x) := curl curl

∫

|x|=R
ϕ(y) Φk(x, y) ds(y).

Then the Stratton–Chu formulae III.2 and III.3 read

−C1(ν × E) + 1
ik C2(ν ×H) =

{
E in B(0, R),

0 in B(0, R)
c
,

−C1(ν ×H)− 1
ik C2(ν × E) =

{
H in B(0, R),

0 in B(0, R)
c
,

C1(ν × Es)− 1
ik C2(ν ×Hs) =

{
Es in B(0, R)

c
,

0 in B(0, R),

C1(ν ×Hs) + 1
ik C2(ν × Es) =

{
Hs in B(0, R)

c
,

0 in B(0, R).
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We apply the interior Stratton–Chu formulae to Mmn , 1
ik curlMmn and the

exterior formulae to Nmn , 1
ik curlNmn for x ∈ B(0, R)

c
.

1
k2 C2(ν × curlMmn ) + C1(ν ×Mmn ) = 0,

1
k2 C2(ν × curlNmn ) + C1(ν ×Nmn ) = Nmn ,

C2(ν ×Mmn ) + C1(ν × curlMmn ) = 0,

C2(ν ×Nmn ) + C1(ν × curlNmn ) = curlNmn .

That is, using the expressions for the tangential traces (4.1)–(4.4) found in
the preliminary subsection and abbreviating jn = jn(kR), hn = hn(kR),
yn = yn(kR), . . .

1

k2
C2

[
( 1
Rjn + kj′n)V

m
n

]
+ C1[jnU

m
n ] = 0,

1

k2
C2

[
( 1
Rhn + kh′n)V

m
n

]
+ C1[hnU

m
n ] = Nmn ,

C1

[
( 1
Rjn + kj′n)V

m
n

]
+ C2[jnU

m
n ] = 0,

C1

[
( 1
Rhn + kh′n)V

m
n

]
+ C2[hnU

m
n ] = curlNmn .

Using hn = jn + iyn we conclude

1

k2
C2

[
( 1
R jn + kj′n)V mn

]
+ C1[jnU

m
n ] = 0,

i

k2
C2

[
( 1
Ryn + ky′n)V

m
n

]
+ iC1[ynU

m
n ] = Nmn ,

C1

[
( 1
R jn + kj′n)V mn

]
+ C2[jnU

m
n ] = 0,

iC1

[
( 1
Ryn + ky′n)V

m
n

]
+ iC2[ynU

m
n ] = curlNmn .

Multiplication of the first equation with iyn = iyn(kR), the second one
with jn and subtraction yields, using the Wronskian jny

′
n − j′nyn = 1

k2R2 ,

i

k3R2
C2[V mn ] = jnN

m
n .

A similar computation for the third and forth equation yields

i

kR2
C2[Umn ] = −[ 1

Rjn + kj′n] curlNmn .
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From the last two equations we conclude for a vector p ∈ C3:

∫

S2

curl2y
[
pΦ(x,Rŷ)

]
· Umn (ŷ) ds(ŷ)

= ik
[

1
Rjn(kR) + kj′n(kR)

]
p · curlNmn (x),

∫

S2

curl2y
[
pΦ(x,Rŷ)

]
· V mn (ŷ) ds(ŷ) = −ik3jn(kR)p ·Nmn (x)

or

∫

S2

curl2y
[
pΦ(x,Rŷ)

]
· Umn (ŷ) ds(ŷ)

= ik
[

1
Rjn(kR) + kj′n(kR)

][
1
|x|hn(k|x|) + kh′n(k|x|)

]
p · Umn (x̂) (4.7)

and

∫

S2

curl2y
[
pΦ(x,Rŷ)

]
· V mn (ŷ) ds(ŷ) = ik3jn(kR)hn(k|x|)p · Vmn (x̂)

(4.8)

The terms depending on x and |x|, respectively, have the following asymp-
totic behaviour:

curl2y
[
pΦ(x,Rŷ)

]
=

k2

4π|x|e
ik|x|(x̂× p× x̂)e−ikR x̂·ŷ +O(|x|−2),

hn(k|x|) =
1

in+1k|x|e
ik|x| +O(|x|−2),

h′n(k|x|) =
1

ink|x|e
ik|x| +O(|x|−2).

Hence, letting |x| → ∞ in equations (4.7) and (4.8) yields

∫

S2

e−ikR x̂·ŷ(x̂× p× x̂) · Umn (ŷ) ds(ŷ)

=
i

k

4π

in
[

1
Rjn(kR) + kj′n(kR)

]
p · Umn (x̂),

∫

S2

e−ikR x̂·ŷ(x̂ × p× x̂) · V mn (ŷ) ds(ŷ) =
4π

in
jn(kR) p · V mn (x̂).
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Now we can go back to the expansion of a plane wave:

peik d·x =
∑

amnM
m
n (x, k) + bmn

1
ik curlMmn (x, k)

with

−amn jn(k|x|) =

∫

S2

eik|x| ŷ·d(d× p× d) · V mn (ŷ) ds(ŷ),

1
ik b
m
n

[
1
|x|jn(k|x|) + kj′n(k|x|)

]
=

∫

S2

eik|x| ŷ·d(d× p× d) · Umn (ŷ) ds(ŷ).

We compute
∫

S2

eik|x| ŷ·d(d× p× d) · V mn (ŷ) ds(ŷ)

=

∫

S2

e−ik|x| ŷ·d(d× p× d) · V mn (ŷ) ds(ŷ)

=
4π

in
jn(k|x|) p · V mn (d)

and
∫

S2

eik|x| ŷ·d(d× p× d) · Umn (ŷ) ds(ŷ)

=

∫

S2

e−ik|x| ŷ·d(d× p× d) · Umn (ŷ) ds(ŷ)

=
i

k

4π

in
[

1
|x|jn(k|x|) + kj′n(k|x|)

]
p · Umn (d).

Hence

amn = −4πin p · V mn (d),

bmn = 4πin p · Umn (d).

Finally,

p eikx·d = 4π
∑

in
[

1
ikp · Umn (d) curlMmn (x)− p · V mn (d)Mmn (x)

]
.

As corollary we find the series expansion of the plane wave of the form
(d× p)eik d·x = 1

ik curl[p eik d·x], namely

(d× p)eikx·d =
∑

amnM
m
n (x, k) + bmn

1
ik curlMmn (x, k)
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with

amn = −4πin p · Umn (d),

bmn = −4πin p · Vmn (d).

2.2 Achiral case

For the inverse problem we consider plane waves as incident fields:
Hi(x, d, p) = p eik x·d. We computed the series expansion of such a plane
wave with direction of incidence d and polarization p,

Hi(x; d, p) = 4π
∑ in

ik
p · Umn (d) curlMmn (x, k)− inp · V mn (d)Mmn (x, k).

The incident field is scattered by a sphere B(0, 1) with wave number κ
in the interior and k in the exterior. The corresponding far field pattern
H∞(x̂; d, p) of the scattered field caused by Hi is given by the series

(4π)2i

k

∑ Re detn(κ)

detn(κ)

[
p · V mn (d)V mn (x̂) + p · Umn (d)Umn (x̂)

]
.

Recall the definition of the far field operator:

F : L2
t (S

2)→ L2
t (S

2) , p 7→
∫

S2

H∞
(
x̂; θ, p(θ)

)
ds(θ).

Then

Fp =
(4π)2i

k

∑ Re detn(κ)

detn(κ)

[
pmn V

m
n + qmn U

m
n

]

where the Fourier coefficients

pmn :=

∫

S2

p(θ) · V mn (θ) ds(θ) and qmn :=

∫

S2

p(θ) · Umn (θ) ds(θ)

and the tangential field p ∈ L2
t (S2) has the expansion

p =
∑

pmn V
m
n + qmn U

m
n .

Finally, we can determine an eigensystem of F . In the achiral case the
eigenvalues of F are given by

λn =
(4π)2

k

Re detn(κ)

detn(κ)
, n = 0, 1, 2, . . .
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They have the multiplicity 2n+ 1 and the vector spherical harmonics Umn
and V mn are the eigenfunctions. Now, we can compute the series

∑

n∈N

n∑

m=−n

|(φz , Umn )L2
t (S2)|2

|λn|
+
∑

n∈N

n∑

m=−n

|(φz , V mn )L2
t (S2)|2

|λn|
(4.9)

which appears in Theorem III.34. For z ∈ R3, we choose

φz(x̂) := −ik
[
(x̂ × z × x̂) + (x̂× z)

]
e−ikx̂·z.

Then φz = Gradx̂
[
e−ikx̂·z

]
+ x̂×Gradx̂

[
e−ikx̂·z

]
and we already know the

series representation of e−ikx̂·z from the Jacobi–Anger expansion, namely

e−ikx̂·z = 4π
∑

(−i)njn(k|z|)Y mn (ẑ)Y mn (x̂).

Hence, φz has the series expansion

φz(x̂) = 4π
∑

(−i)njn(k|z|)Y mn (ẑ)
[

GradY mn (x̂) + x̂×GradY mn (x̂)
]
.

Recall the definition of Umn (x̂) = 1/
√
n(n+ 1) GradY mn (x̂) and Vmn (x̂) =

x̂× Umn (x̂). The Fourier coefficients of φz are given by

(φz , U
m
n )L2

t (S2) = (φz , V
m
n )L2

t (S2) = 4π(−i)njn(k|z|)Y mn (ẑ).

As in the scalar case (compare section 1.5 in Kirsch [24])

n∑

m=−n
|(φz , Umn )L2

t (S2)|2 = 4π(2n+ 1)
(k|z|)2n

[(2n+ 1)!!]2
(1 +O(1/n))

and

n∑

m=−n
|(φz , V mn )L2

t (S2)|2 = 4π(2n+ 1)
(k|z|)2n

[(2n+ 1)!!]2
(1 +O(1/n)).

Here p!! := 1 · 3 · 5 · · · p for any odd number p. We continue with the
asymptotic behavior of the eigenvalues

λn =
(4π)2i

k

Re detn(κ)

detn(κ)
=

(4π)2i

k
· jn(k)

hn(k)
·
(

1
κ − 1

k

)
+
j′n(κ)
jn(κ) −

j′n(k)
jn(k)(

1
κ − 1

k

)
+
j′n(κ)
jn(κ) −

h′n(k)
hn(k)

.
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jn, hn, j
′
n and h′n have the following asymptotic behavior:

jn(t) =
tn

(2n+ 1)!!

(
1 +O( 1

n )
)
, j′n(t) =

ntn−1

(2n+ 1)!!

(
1 +O( 1

n )
)
,

hn(t) =
(2n− 1)!!

itn+1
(1 +O( 1

n )
)
, h′n(t) = − (n+ 1)(2n− 1)!!

itn+2

(
1 +O( 1

n )
)
.

Plugging this into 1/λn yields

1

λn
=

(2n+ 1)!!(2n− 1)!!

(4π)2k2n
·
(

1
κ − 1

k

)
+ n
κ + n+1

k(
1
κ − 1

k

)
+ n
κ − nk

(
1 +O( 1

n )
)
.

The second fraction on the right can be simplified and we get
(

1
κ − 1

k

)
+ n
κ + n+1

k(
1
κ − 1

k

)
+ n
κ − nk

= 1− κ

(n+ 1)(k − κ)
.

Hence,
1

λn
=

(2n+ 1)!!(2n− 1)!!

(4π)2k2n

(
1 +O(1/n)

)

and

n∑

m=−n

|(φz , Umn )L2
t (S2)|2

|λn|
=

n∑

m=−n

|(φz , V mn )L2
t (S2)|2

|λn|
=
|z|2n
4π

(
1 +O(1/n)).

We conclude that the series (4.9) converges if, and only if, |z| < 1; that
is, z is inside the ball B(0, 1).

2.3 Chiral case

In the chiral case we find an explicit form for F in a similar way: Given
the tangential field p ∈ L2

t (S
2): p =

∑
pmn U

m
n + qmn V

m
n with

pmn =

∫

S2

p(θ) · Umn (θ) ds(θ) and qmn =

∫

S2

p(θ) · V mn (θ) ds(θ)

we note that

p =
∑

pmn U
m
n + qmn V

m
n

=
1

2

∑
(pmn − iqmn )(Umn + iVmn ) + (pmn + iqmn )(Umn − iV mn ).
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In the chiral case two constants κL = κ
1−κβ and κR = κ

1+κβ appeared as
some kind of wave number for the fields QL and QR. We computed the
far field pattern to be

H∞(x̂) =
4π

2ik

∑ cL
in+1

[
(βmn + iαmn )V mn (x̂) + (αmn − iβmn )Umn (x̂)

]

− cR
in+1

[
(βmn − iαmn )V mn (x̂) + (αmn + iβmn )Umn (x̂)

]

with coefficients αmn = −4πinp · V mn (d), βmn = 4πinp · Umn (d) and the

constants cL = Re detn(κL)
detn(κL) , cR = Re detn(κR)

detn(κR) . As in the achiral case, we

conclude

Fp =
(4π)2i

2k

∑
cL(pmn − iqmn )(Umn + iV mn )− cR(pmn + iqmn )(Umn − iV mn ).

We observe that Umn + iV mn , m = −n, . . . , n, are eigenfunctions for the
eigenvalue

λn =
(4π)2i

k

Re detn(κL)

detn(κL)

and Umn − iV mn , m = −n, . . . , n, are eigenfunctions for the eigenvalue

λn = − (4π)2i

k

Re detn(κR)

detn(κR)

for n ∈ N0. Again the eigenvalues have multiplicity 2n+1. The evaluation
of the series

∑

j∈N

|(φz , ψj)L2
t (S2)|2

|λj |

for the characteristic function of the scatterer is completely analogous to
the achiral case. We skip the computation at this point.



CHAPTER V

Factorization Method for the

vector Helmholtz equation

This chapter can be seen as an application of the results from chapters
II and III. The equations and operators look different but the concepts
and the arguments of the proofs are the same. That is why we present
this chapter not as detailed as the other two. Nevertheless, we treat the
subject rigorously.

Scattering by an infinite chiral cylinder leads to a scattering problem
for the vector Helmholtz equation, comparable with problems that lead
to the scalar Helmholtz equation for TE– or TM–modes. The first section
describes the setting and deduces the vector Helmholtz equation which is
studied in sections 2 and 3. Here, we apply the methods already used for
scattering by a bounded obstacle: We formulate a variational equation,
deduce an equivalent integro–differential equation and show existence und
uniqueness. The Factorization method is adapted for the inverse problem.
In section 4 we study conditions for the material parameters ε, µ and β
such that the rather abstract assumptions for solvability and the Factor-
ization method are fullfilled. Finally, we present numerical experiments
concerning plots of the far field pattern and the reconstruction of the
cylinder.
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x1

x2

x3

p2
p1

dD

Hi(x) = (α1p1 + α2p2)eik d·x

Z = D × R

Figure V.1: Direct problem setting.

1. Motivation: Scattering by a chiral cylinder

In this chapter we study the scattering by an infinite chiral cylinder Z
along the x3-axis. We choose incident fields which are orthogonal to the
cylinder; that is, the vector d – direction of incidence – lies in the (x1, x2)-
plane. Given a bounded domain D ⊂ R2 then Z is simply D×R. Figure
V.1 shows the cylinder and the vectors characterizing the incident field
Hi (and Ei): the direction of incidence d and two linear independent
polarization vectors p1, p2 in the plane which is orthogonal to d. The
polarization of Hi is a linear combination of the basis vectors p1, p2.

The cylinder Z is characterized by the electric permittivity ε, the mag-
netic permeability µ and the chirality β in the following way. We assume
that ε, µ and β do not depend on x3. ε, µ, β : R

2 → C with ε ≡ ε0, µ ≡ µ0

and β ≡ 0 in R2 rD.
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Total field

We start with Maxwell’s equations (2.5), (2.6); that is,

curlH = −ikε
(
E + β curlE

)
, (5.1)

curlE = ikµ
(
H + β curlH

)
(5.2)

with the wave number k2 = ω2ε0µ0 and the relative paramters ε and µ.
Since the direction of incidence is orthogonal to Z the incident field does
not depend on x3 either. Hence, the whole system is invariant along x3

and the x3-derivatives vanish. This yields:

∂H3

∂x2
= −ikε

(
E1 + β

∂E3

∂x2

)
, (5.3)

−∂H3

∂x1
= −ikε

(
E2 − β

∂E3

∂x1

)
, (5.4)

∂H2

∂x1
− ∂H1

∂x2
= −ikε

(
E3 + β

(
∂E2

∂x1
− ∂E1

∂x2

))
(5.5)

and

∂E3

∂x2
= ikµ

(
H1 + β

∂H3

∂x2

)
, (5.6)

−∂E3

∂x1
= ikµ

(
H2 − β

∂H3

∂x1

)
, (5.7)

∂E2

∂x1
− ∂E1

∂x2
= ikµ

(
H3 + β

(
∂H2

∂x1
− ∂H1

∂x2

))
. (5.8)

We can reduce this system of six equations to two coupled equations for
the components E3 and H3: We differentiate (5.3) with respect to x2 and
(5.4) with respect to x1. Subtraction yields

∂E2

∂x1
− ∂E1

∂x2
=

∂

∂x1

(
β
∂E3

∂x1

)
+

∂

∂x2

(
β
∂E3

∂x2

)

− ∂

∂x1

(
i

kε

∂H3

∂x1

)
− ∂

∂x2

(
i

kε

∂H3

∂x2

)

= div
(
β∇E3

)
− i

k
div

(
1

ε
∇H3

)
.
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Analogously, we deduce from (5.6) and (5.7)

∂H2

∂x1
− ∂H1

∂x2
=

∂

∂x1

(
β
∂H3

∂x1

)
+

∂

∂x2

(
β
∂H3

∂x2

)

+
∂

∂x1

(
i

kµ

∂E3

∂x1

)
+

∂

∂x2

(
i

kµ

∂E3

∂x2

)

= div
(
β∇H3

)
+
i

k
div

(
1

µ
∇E3

)
.

Here the differential operators are ∇ = ( ∂∂x1
, ∂∂x2

)⊤ and div v = ∇ · v.
(The derivatives with respect to x3 vanish anyway.) Plugging these two
expressions into (5.5) and (5.8) yields

div
(
β∇H3

)
+ i
k div

(
1
µ∇E3

)

= −ikεE3 − ikεβ
[

div
(
β∇E3

)
− ik div

(
1
ε∇H3

)]
(5.9)

and

div
(
β∇E3

)
− ik div

(
1
ε∇H3

)

= ikµH3 + ikµβ
[

div
(
β∇H3

)
+ i
k div

(
1
µ∇E3

)]
. (5.10)

We multiply equation (5.10) by ikεβ and subtract equation (5.9) from it:

(1 − k2εµβ2)
[

div
(
β∇H3

)
+ i
k div

(
1
µ∇E3

)]
+ ikεE3 − k2εµβH3 = 0.

Analogously we multiply (5.9) by ikµβ and add it to (5.10):

(1 − k2εµβ2)
[

div
(
β∇E3

)
− ik div

(
1
ε∇H3

)]
− ikµH3 − k2εµβE3 = 0.

After multiplication with −ik and ik, respectively, the last two equations
can be written as system:

div

[( 1
µ −ikβ
ikβ 1

ε

)(
∇E3

∇H3

)]

+ k2 1

1− k2εµβ2

(
ε ikεµβ

−ikεµβ µ

)(
E3

H3

)
= 0. (5.11)
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Here div is applied to each component. Note that – more precisely – the
first matrix is the (4× 4)–matrix




1
µ 0 −ikβ 0

0 1
µ 0 −ikβ

ikβ 0 1
ε 0

0 ikβ 0 1
ε


 .

We will use the following notation: Given a (4× 4)–matrix A of the form

A =




a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22


 , (5.12)

Ã denotes the corresponding (2× 2)–matrix

Ã =

(
a11 a12

a21 a22

)
.

Introducing v := (E3, H3)⊤ the system (5.11) has the form

div (A∇v) + k2Bv = 0

where A : R2 → C4×4 of the form (5.12) and B : R2 → C2×2 are matrix
functions with A ≡ I4 andB ≡ I2 in R2rD. I = In denotes the n×n–unit
matrix. (We will skip the index.) v : R2 → C2 and ∇v := (∇v1,∇v2)⊤

and for w = (w1, w2)⊤ with two functions w1, w2 : R2 → C2 define divw :
= ( divw1, divw2)⊤.

Incident field

As incident fields we choose plane waves orthogonal to Z. Hence, with
polarization vector p and direction of incidence d with p·d = 0 (divergence
free fields)

Hi(x) = peikd·x and Ei(x) = −(d× p) eikd·x (5.13)

where d = (d1, d2, 0)⊤ and |d| = 1. We only need the third components Hi3
and Ei3 and show that they are independent of each other: Given r, s ∈ C
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let Hi3(x) = reikd·x and Ei3(x) = −seikd·x. Then for p ∈ C3 defined by
p := (−d2s, d1s, r)

⊤ we have p · d = 0 and the representation (5.13) holds.
Furthermore vi := (Ei3, H

i
3)⊤ solves the vector Helmholtz equation

∆vi + k2vi = 0 in R
2.

Scattered field

The total field v is the sum of the incident and the scattered field,

v = vs + vi

where vi is a solution of the vector Helmholtz equation. Hence, the scat-
tered field vs solves

div (A∇vs) + k2Bvs = div
[
(I −A)∇vi]− k2(B − I)vi (5.14)

in R2. Note that the right–hand side of this equations can be interpreted
as source div f −k2g with functions f, g whose support is contained in D.

Transmission conditions

Now we deduce the transmission conditions. The third component of the
unit normal vector of Z vanishes: ν = (ν1, ν2, 0)⊤. From ν×E+ = ν×E−
on interfaces we deduce




ν2E3+

−ν1E3+

ν1E2+ − ν2E1+


 =




ν2E3−
−ν1E3−

ν1E2− − ν2E1−


 .

Since |ν| = 1 the first two equations yield E3+ = E3− and analogously
H3+ = H3− or – in terms of vs –

vs+ = vs− on ∂D. (5.15)

In order to deduce the transmission condition for the normal derivatives
we easily compute the third component of ν × curlE:

(ν × curlE)3 = −∂E3

∂x1
ν1 −

∂E3

∂x2
ν2 = −∂E3

∂ν
.
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We rewrite equations (5.1), (5.2)

ikH = 1
µ curlE − ikβ curlH,

−ikE = 1
ε curlH + ikβ curlE

and using ν × E+ = ν × E− and ν ×H+ = ν ×H− again yields

ν × curlE+ = 1
µ−
ν × curlE− − ikβ−ν × curlH−,

ν × curlH+ = 1
ε−
ν × curlH− + ikβ−ν × curlE−

on ∂D. We take only the third component of each equation and get the
transmission condition

(
∂E3

∂ν +
∂H3

∂ν +

)
=

(
1
µ−

−ikβ−
ikβ−

1
ε−

)(
∂E3

∂ν −
∂H3

∂ν −

)
on ∂D.

In terms of vs with ∂v∂ν = (∂v1

∂ν ,
∂v2

∂ν )⊤ this condition reads

Ã−
∂vs

∂ν − −
∂vs

∂ν +
= (I − Ã−)∂v

i

∂ν on ∂D. (5.16)

Radiation condition

Finally, since we are interested in outgoing waves each component of vs

shall satisfy the Sommerfeld radiation condition in R2; that is,

∂vsj
∂r
− ikvsj = O(r−3/2) , for r = |x| → ∞ , j = 1, 2

uniformly with respect to x̂ = x/|x| ∈ S1. S1 denotes the unit circle.
Functions which satisfy this radiation condition will again be called ra-
diating.

2. Direct transmission problem

We state the direct problem variationally and start with the divergence
theorem which fits to our case. Let D ⊂ R

2 be bounded with boundary
of class C2. Given sufficiently smooth functions v1, v2, ψ1, ψ2 : D → C
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and A : D → C4×4 of the form (5.12) we have the following form of the
divergence theorem for v = (v1, v2)⊤, ψ = (ψ1, ψ2)⊤:

∫∫

D

div
(
A∇v

)
· ψ dx = −

∫∫

D

(
A∇v

)
· ∇ψ dx+

∫

∂D

(
Ã
∂v

∂ν

)
· ψ ds

where ∇v = (∇v1,∇v2)⊤, the analog for ∇ψ, ∂v∂ν = (∂v1

∂ν ,
∂v2

∂ν )⊤ and div

is applied to each component. Indeed, with Ã = (ajl)j,l=1,2

∫∫

D

div (a11∇v1 + a12∇v2)ψ1 + div (a21∇v1 + a22∇v2)ψ2 dx

=−
∫∫

D

(a11∇v1 + a12∇v2) · ∇ψ1 + (a21∇v1 + a22∇v2) · ∇ψ2 dx

+

∫

∂D

(a11
∂v1

∂ν + a12
∂v2

∂ν )ψ1 + (a21
∂v1

∂ν + a22
∂v2

∂ν )ψ2 ds.

by the (scalar) divergence theorem.

Variational formulation

We derive a variational formulation of the transmission problem found in
the introductory part of this chapter. First recall the problem: Given a
bounded domain D ⊂ R2 and an incident field vi = (vi1, v

i
2)⊤ determine

a solution vs = (vs1, v
s
2)⊤ of the scattering equation (5.14) which satisfies

the transmission conditions (5.15) and (5.16) on the boundary ∂D and
the Sommerfeld radiation condition; that is,

div (A∇vs) + k2Bvs = div
[
(I −A)∇vi]− k2(B − I)vi in R

2,

vs+ = vs− on ∂D,

Ã−
∂vs

∂ν − −
∂vs

∂ν +
= (I − Ã−)∂v

i

∂ν on ∂D

and
∂vsj
∂r
− ikvsj = O(r−3/2) for r = |x| → ∞, j = 1, 2

uniformly with respect to x̂ = x/|x| ∈ S1. The matrix functions A,B are
such that A ≡ I and B ≡ I in R2 rD.

After scalar multiplication of the partial differential equation with a
test function ψ = (ψ1, ψ2)⊤ with compact support we integrate over R2.
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By the above divergence theorem – taking into account the transmission
conditions – this yields the variational equation

∫∫

R2

(
A∇vs

)
· ∇ψ − k2(Bvs) · ψ dx

=

∫∫

D

k2
(
(B − I)vi

)
· ψ +

(
(I −A)∇vi

)
· ∇ψ dx

for all ψ with compact support. As in the second chapter we generalize
the transmission problem and allow square integrable source functions
g ∈ L2(D,C2), h ∈ L2(D,C4). First we introduce the function spaces we
will use.

Definition V.1. Let D ⊂ R2 a domain.

(a) H1(D,C2) :=
{
v = (v1, v2)⊤ : D → C2

∣∣vj ∈ H1(D), j = 1, 2
}

Define ∇v := (∇v1,∇v2)⊤.

(b) H1
loc(R

2,C2) :=
{
v : R

2 → C
2
∣∣∀ balls B ⊂ R

2 : v|B ∈ H1(B,C2)}
(c) The test function space

{
ψ : R

2 → C
2
∣∣∃ ball B ⊂ R

2 : suppψ ⊂ B,ψ|B ∈ H1(B,C2)
}

is denoted by H1
c (R2,C2).

(d) For w = (w1, w2)⊤ with w1, w2 ∈ H1(D,C2) define

divw := ( divw1, divw2)⊤.

Assumption V.2 (Material parameters). Let D ⊂ R2 be a bounded
Lipschitz domain. We assume that the complex matrix functions A and B
– A ∈ L∞(R2,C4×4), B ∈ L∞(R2,C2×2) – are such that A has the form
(5.12), A ≡ I and B ≡ I in R

2
rD.

Problem 5 (Weak transmission problem for vector Helmholtz
equation). Let k ∈ Π and Assumption V.2 be satisfied. Given the source
terms g ∈ L2(D,C2) and h ∈ L2(D,C4) determine v ∈ H1

loc(R
2,C2) such

that v is radiating and satisfies
∫∫

R2

(
A∇v

)
· ∇ψ − k2(Bv) · ψ dx =

∫∫

D

k2g · ψ + h · ∇ψ dx (5.17)

for all ψ ∈ H1
c (R2,C2).
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Recall that Π = {z ∈ C : z 6= 0,Re (z) ≥ 0, Im (z) ≥ 0}. To study
solvability we deduce an equivalent integro–differential equation. In this
case we need the fundamental solution to the scalar Helmholtz equation
in R2. See section 3.10 in Colton and Kress [14]. We use the symbol Φκ
again.

Definition V.3 (Fundamental solution). For κ ∈ Π the fundamen-
tal solution Φκ to the scalar Helmholtz equation in R2

∆u+ κ2u = 0

is defined by

Φκ(x, y) := i
4H

(1)
0 (κ|x− y|) for x 6= y

where H
(1)
0 denotes the Hankel function of the first kind of order zero.

Remark V.4. It is well known that Φκ has a singularity at x = y of
the form log(κ|x− y|) (see Abramovitz and Stegun [1]). Furthermore, by

the asymptotic behavior of H
(1)
0 the fundamental solution Φk satisfies the

(two dimensional) Sommerfeld radiation condition.

We proceed with a lemma which provides the vector potentials leading
to our IDE.

Lemma V.5. Let κ ∈ Π.

(a) For g ∈ L2(D,C2) the vector field

u(x) =

∫∫

D

g(y)Φκ(x, y) dy , x ∈ R
2 ,

defines a function in H1
loc(R

2,C2) which is a weak solution of the
vector Helmholtz equation ∆u + κ2u = −g; that is,

∫∫

R2

∇u · ∇ψ − κ2u · ψ dx =

∫∫

D

g · ψ dx

for all ψ ∈ H1
c (R2,C2). Furthermore u is radiating and the restric-

tion u|D of u to D defines a bounded operator from L2(D,C2) into
H2(D,C2) := H2(D)×H2(D).
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(b) For h1, h2 ∈ L2(D,C2) the vector field u = (u1, u2)⊤ with

uj(x) = − div

∫∫

D

hj(y)Φκ(x, y) dy , j = 1, 2,

for x ∈ R2, defines a function in H1
loc(R

2,C2) which is a weak solu-
tion of the Helmholtz equation ∆u+ κ2u = divh; that is,

∫∫

R2

∇uj · ∇ψ − κ2uj · ψ dx =

∫∫

D

hj · ∇ψ dx , j = 1, 2,

for all ψ ∈ H1
c (R2,C2). Furthermore u is radiating and the restric-

tion u|D of u to D defines a bounded operator from L2(D,C4) into
H1(D,C2).

Proof. We use part (a) from Lemma 2.2 in Kirsch [21]. More precisely
we need the two dimensional version whose proof will be absolutely anal-
ogous. Each component represents a two dimensional scalar Riesz poten-
tial, whence part (a).

Part (b) is just the vector version of the scalar case discussed in Lem-
mata 2.1 and 2.2 in Kirsch [23]. Here again we use a two dimensional
version.

Now we can reformulate the scattering equation (5.17) of the weak
transmission problem
∫∫

R2

∇v · ∇ψ − k2v · ψ dx =

∫∫

D

k2
[
Qv + g

]
· ψ +

[
P∇v + h

]
· ∇ψ dx

where the contrasts P := I − A and Q := B − I. Using our vector po-
tentials from the above lemma v satisfies the following integro–differential
equation

v(x) = k2

∫∫

D

[
Q(y)v(y) + g(y)

]
Φk(x, y) dy

− div

∫∫

D

[
P (y)∇v(y) + h(y)

]
Φk(x, y) dy

(5.18)

for x ∈ D.

Theorem V.6 (Equivalence). (a) Let v ∈ H1
loc(R2,C2) be a radi-

ating solution of (5.17). Then v|D ∈ H1(D,C2) solves (5.18).
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(b) Let v ∈ H1(D,C2) be a solution of (5.18). Then v can be extended
by the right–hand side to a radiating solution of (5.17).

Proof. The same arguments used in the proof of Theorem II.10 give the
equivalence in this case again.

By this equivalence result, in order to study solvability of the weak
transmission problem we can analysize the IDE. With appropriately de-
fined operators we interpret the IDE as an operator equation:

Definition V.7. Let k > 0. For κ ∈ Π define the linear bounded op-
erators Aκ : H1(D,C2) → H1(D,C2) and Bκ : H1(D,C2) → H1(D,C2)
by

(Aκv)(x) := div

∫∫

D

P (y)∇v(y)Φκ(x, y) dy,

(Bκv)(x) := k2

∫∫

D

Q(y)v(y)Φκ(x, y) dy

for x ∈ D and the function

f(x) = k2

∫∫

D

g(y) Φk(x, y) dy − div

∫∫

D

h(y) Φk(x, y) dy

for x ∈ D. With these operators the IDE reads

(I +Ak − Bk) v = f.

Assumption V.8. Let k > 0 the wave number. Additionally to As-
sumption V.2, assume that there exist positive constants c1, c2 and an
angle φ ∈ [0, 2π) such that Ã = Ã(x) and B = B(x) satisfy

Re
[
eiφ(Ãξ) · ξ

]
≥ c1|ξ|2 and Re

[
eiφ(Bξ) · ξ

]
≥ c2|ξ|2

on D for almost all ξ ∈ C2.

Theorem V.9. Let Assumption V.8 be satisfied. Then:

(a) The operators Ak −Ai and Bk −Bi are compact.

(b) The operator I +Ai −Bi is boundedly invertible in H1(D,C2).
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Proof. (a) The operator Bκ is compact since Bκv ∈ H2(D,C2) (Colton
and Kress [15]) and the embedding from H2 into H1 is compact (see
Adams [2]).

(Akv −Aiv)(x) =

∫∫

D

P (y)v(y) · ∇x(Φk − Φi)(x, y) dy.

Recall the remark to the definition of Φκ. The singularity is of the form
log(κ|x − y|). Hence ∇xΦκ has a singularity of the form x−y

|x−y|2 and the

difference ∇x(Φk−Φi) is smooth and Ak−Ai represents a volume poten-
tial with a smooth kernel function. It is weakly singular of order 0 and
therefore compact (compare Lemma II.15).

(b) For any f ∈ H1(D,C2) consider the equation (I + Ai − Bi)u = f .
As in the proof of Theorem II.17 we look at the difference v := u − f .
v solves (I+Ai−Bi)v = Bif−Aif which (by Theorem V.6) is equivalent
to

∫∫

R2

(A∇v) · ∇ψ + (Bv) · ψ dx =

∫∫

D

(P∇f) · ψ + k2(Qf) · ψ dx

for all ψ ∈ H1
c (R2,C2). Obviously, the left–hand side defines a bounded

and coercive sesqui–linear form on H1(R2,C2) (note the exponential decay
by the IDE) and the right–hand side defines a bounded conjugate–linear
form on H1(R2,C2). Hence, by the Lax–Milgram lemma there exists a
unique solution for every f ∈ H1(D,C2). Then u := v|D + f solves our
initial equation.

We proceed with an uniqueness result for the homogeneous problem
and apply Fredholm’s alternative.

Assumption V.10. Additionally to Assumption V.8 assume that

Im [(Ãξ) · ξ] ≤ 0 and Im [(Bξ) · ξ] ≥ 0 (5.19)

on D for almost all ξ ∈ C2 and let one of the following conditions be
satisfied:

(a) Im [(Bξ) · ξ] > 0 on D for almost all ξ ∈ C
2,

(b) A ∈ C1(R2,C4×4) and B ∈ C1(R2,C2×2).
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Theorem V.11 (Uniqueness). Under Assumption V.10 the homoge-
neous transmission problem — Problem 5 with g ≡ 0 and h ≡ 0 — has at
most one solution.

Proof. Assume that v is a solution of the homogeneous transmission prob-
lem and set ψ = φv in (5.17) where φ ∈ C∞(R2) is some mollifier with
φ(x) = 1 for |x| ≤ R and φ(x) = 0 for |x| ≥ 2R. R is chosen such that
|x| < R for all x ∈ D. Then, by Greens formula

0 =

∫∫

|x|<R
(A∇v) · ∇v − k2(Bv) · v dx

+

∫∫

R<|x|<2R

(A∇v) · ∇(φv)− k2(Bv) · (φv) dx (5.20)

=

∫∫

|x|<R
(A∇v) · ∇v − k2(Bv) · v dx−

∫

|x|=R

∂v

∂ν
· v ds.

By the assumptions (5.19), taking the imaginary part of the last equation
yields

Im

∫

|x|=R

∂v

∂ν
· v ds ≤ 0.

We follow Kirsch [22] to show that v vanishes outside of D: Using the
binomial |x− iy|2 = |x|2 + |y|2 − 2Im (x y) we estimate

∫

|x|=R
| ∂v∂ν − ikv|2 ds =

∫

|x|=R
| ∂v∂ν |2 + |v|2 ds− 2kIm

∫

|x|=R
∂v
∂ν · v ds

≥
∫

|x|=R
| ∂v∂ν |2 + |v|2 ds.

The Sommerfeld radiation condition yields that

lim
R→∞

∫

|x|=R
|v|2 ds = 0

and Rellich’s lemma implies that v vanishes in the exterior of D. See
Lemma 3.14 and section 3.10 in Colton and Kress [14].

In case that A and B are smooth we can apply the unique continuation
principle (see Lemma 8.5 in Colton and Kress [15]). This yields that v
also vanishes in D.
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In case that (a) from Assumption V.10 is satisfied equation (5.20) now
reads ∫∫

D

(A∇v) · ∇v − k2(Bv) · v dx = 0.

Taking the imaginary part yields

0 < Im

∫∫

D

k2(Bv) · v dx = Im

∫∫

D

(A∇v) · ∇v dx ≤ 0

by Assumption V.10. Hence v = 0 in D.

Corollary V.12. Let Assumption V.10 be satisfied. For every source
(g, h) ∈ L2(D,C2) × L2(D,C4) there exists a unique radiating solution
v ∈ H1

loc(R2,C2) of (5.17). Furthermore, for any compact set B ⊃ D
there exists a constant C > 0 such that

‖v‖
H1(B,C2)

≤ C ‖(g, h)‖
L2(D,C2)×L2(D,C4)

for all (g, h) ∈ L2(D,C2)× L2(D,C4).

3. Factorization Method

In this section we assume that the direct transmission problem is uniquely
solvable. It is well known (see Cakoni and Colton [10]) that radiating
solutions to the Helmholtz equation admit a far field pattern. In our case

v(x) =
eik|x|√
|x|

{
v∞(x̂) +O

(
1

|x|

)}
, |x| → ∞,

uniformly in all directions x̂ := x/|x| ∈ S1. Here, the far field pattern
v∞ = (v∞1 , v∞2 )⊤ is given by

v∞j (x̂) =
eiπ/4√

8πk

∫

∂D

vj(y)
∂e−ikx̂·y

∂ν(y)
− ∂vj
∂ν

(y)e−ikx̂·y ds(y) , j = 1, 2,

for x̂ ∈ S1. As incident fields vi = (vi1, v
i
2)⊤ we choose plane waves of the

form vi(x) = peikd·x with direction of incidence d ∈ S1 and polarization
vector p ∈ C2. Denote by v∞(x̂; d, p) the far field pattern resulting from a
plane wave with direction of incidence d and polarization p. Now we can
formulate the inverse problem:
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Problem 6 (Inverse problem). Given the wave number k > 0 and
the far field patterns v∞(x̂; d, p) for all x̂, d ∈ S1 and p ∈ C2 determine
the shape of the scattering obstacle D.

v∞(· ; d, p) depends linearly on p. Hence, we define the linear far field
operator F : L2(S1,C2)→ L2(S1,C2) by

(Fp)(x̂) :=

∫

S1

v∞
(
x̂; d, p(d)

)
ds(d) , x̂ ∈ S

1.

Fp is the far field pattern which corresponds to the incident field

vip(x) =

∫

S1

p(d)eikd·x ds(d) , x ∈ R
2.

Furthermore, define the Herglotz operator H from L2(S1,C2) into
L2(D,C2)× L2(D,C4) with Hp = (H1p,H2p)

⊤ by

(H1p)(y) :=

∫

S1

p(d)eikd·y ds(d)

and

(H2p)(y) := grad

∫

S1

p(d)eikd·y ds(d)

for y ∈ D. More precisely, with p = (p1, p2)⊤ ∈ L2(S1,C2)

(H2p)(y) =

(
grad

∫

S1

p1(d)eikd·y ds(d), grad

∫

S1

p2(d)eikd·y ds(d)

)⊤
.

The adjoint operator H∗ : L2(D,C2) × L2(D,C4) → L2(S1,C2) is given
by H∗ϕ = H∗1ϕ1 +H∗2ϕ2 for ϕ = (ϕ1, ϕ2)⊤ with

(H∗1ϕ1)(d) =

∫∫

D

ϕ1(y)e−ikd·y dy

and

(H∗2ϕ2)(d) = −ik d ·
∫∫

D

ϕ2(y)e−ikd·y dy.

More precisely, with ϕ2 = (ϕ1
2, ϕ

2
2, ϕ

3
2, ϕ

4
2)⊤ ∈ L2(D,C4)

(H∗2ϕ2)(d) = −ik




d ·
∫∫
D

(
ϕ1

2(y)
ϕ2

2(y)

)
e−ikd·y dy

d ·
∫∫
D

(
ϕ3

2(y)
ϕ4

2(y)

)
e−ikd·y dy


 .
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Using the far field pattern of Φk we see that H∗ϕ = w∞/γ where the

constant γ := eiπ/4
√

8πk
and

w(x) =

∫∫

D

ϕ1(y) Φk(x, y) dy − div

∫∫

D

ϕ2(y) Φk(x, y) dy

is a radiating solution of

∫∫

R2

∇w · ∇ψ − k2w · ψ dx =

∫∫

D

ϕ1 · ψ + ϕ2 · ∇ψ dx

for all ψ ∈ H1
c (R2,C2). Introduce the data–to–pattern operator

G : L2(D,C2)×L2(D,C4)→ L2(S1,C2), f 7→ v∞ where v is the radiating
solution of
∫∫

R2

(A∇v) ·∇ψ−k2(Bv) ·ψ dx =

∫∫

D

k2(Qf1) ·ψ+ (Pf2) ·∇ψ dx (5.21)

for all ψ ∈ H1
c (R2,C2) which is equivalent to

∫∫

R2

∇v · ∇ψ − k2v · ψ dx =

∫∫

D

k2(Qw1) · ψ + (Pw2) · ∇ψ dx (5.22)

for all ψ ∈ H1
c (R2,C2) with w1 := f1 + v and w2 := f2 + ∇v. Then

F = GH. Choose ϕ = T f with

T f =

(
k2Q(f1 + v)
P (f2 +∇v)

)

where v is the radiating solution of (5.21). Then Gf = γH∗T f and we
have the factorization

F = γH∗T H.

Remark V.13. Note that T is injective. Indeed, if T f = 0 then w1 = 0
and w2 = 0 and – by equation (5.22) – v is a radiating solution of the
Helmholtz equation in R2. The unique solution is v ≡ 0. Hence, f also
vanishes.

We continue with a characterization of D by the range of H∗.
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L2(S1,C2) L2(S1,C2)

///

L2(D,C2)× L2(D,C4) L2(D,C2)× L2(D,C4)

γ−1F

H

T

H∗

Figure V.2: Factorization of F .

Theorem V.14. For any z ∈ R3 and fixed p1 ∈ C2 and p2 ∈ C4 define
φz ∈ L2(S1,C2) by

φz(d) := {p1 − ik d · p2}e−ik d·z , d ∈ S
1. (5.23)

Then z ∈ D if, and only if, φz ∈ R(H∗).
Here again, with p2 = (p1

2, p
2
2, p

3
2, p

4
2)⊤ ∈ C4 we define

d · p2 :=




d ·
(
p1

2

p2
2

)

d ·
(
p3

2

p4
2

)


 ∈ C

2.

Proof. Let z ∈ D. We apply Lemma III.29 with q = 1. Analogously to
Theorem III.30 there exist ϕ1, ϕ2 ∈ L2(D) such that φz = H∗(p1ϕ1, p2ϕ2).

Theorem V.15 (Absorbing media). Assume that there exist two
positive constants cP and cQ such that the contrasts P̃ = P̃ (x), Q = Q(x)
satisfy

Im
[
(P̃ ξ) · ξ

]
≥ cP |ξ|2 and Im

[
(Qξ) · ξ

]
≥ cQ|ξ|2

on D for almost all ξ ∈ C2. Then:

(a) The operator Im T = 1
2i (T −T ∗) is coercive on R(H); that is, there

exists a positive constant c such that

Im (T f, f) ≥ c‖f‖2 for all f ∈ R(H).
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(b) The ranges of Im (γ−1F)1/2 and H∗ coincide.

Proof. As in the proof of Theorem III.19 we deduce an expression for
(Tf, f) involving the far field pattern of v. Abbreviating w1 = f1 + v and
w2 = f2 +∇v we have T f = (k2Qw1, Pw2)⊤. v solves equation (5.22). In
this equation, we choose as test function ψ = φ v with the cutoff function
φ used in the proof of III.19. Then,

(T f, f)L2 =

((
k2Qw1

Pw2

)
,

(
w1 − v
w2 −∇v

))

L2

=

∫∫

D

k2(Qw1) · w1 + (Pw2) · w2 dx

−
∫∫

D

k2(Qw1) · v + (Pw2) · ∇v dx

=

∫∫

D

k2(Qw1) · w1 + (Pw2) · w2 dx

−
∫∫

|x|<R
|∇v|2 − k2|v|2 dx+

∫

|x|=R

∂v

∂ν
v ds.

From the Sommerfeld radiation condition and the far field expansion we
conclude that

lim
R→∞

∫

|x|=R

∂v

∂ν
v ds = ik

∫

S1

|v∞|2 ds.

Hence, letting R tend to infinity:

Im (T f, f) =

∫∫

D

k2Im
[
(Qw1) · w1

]
+ Im

[
(Pw2) · w2

]
dx+ k

∫

S1

|v∞|2 ds

The coercivity of Im T follows with the arguments used in part (b) of the
proof III.19.

Corollary V.16. ImF admits a complete eigensystem {λj , ψj}j∈N with
positive eigenvalues λj . For z ∈ R2 define φz by (5.23). Then z ∈ D if,
and only if, φz ∈ R

(
(ImF)1/2

)
. Or equivalently,

z ∈ D ⇐⇒ W (z) :=


∑

j∈N

|(φz , ψj)|2
λj



−1

> 0
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For the general case we need to decompose the middle operator T as
sum of a coercive and a compact one. Therefore, define T0 by

T0f :=

(
k2Q(f1 + v0)
P (f2 +∇v0)

)

where v0 is the radiating solution of
∫∫

R2

(A∇v0) ·∇ψ+ (Bv0) ·ψ dx =

∫∫

D

k2(Qf1) ·ψ+ (Pf2) ·∇ψ dx (5.24)

for all ψ ∈ H1
c (R2,C2). Under Assumption V.8 this equation is uniquely

solvable and using the IDE we see that v0 decays exponentially. With this
operator we decompose the middle operator as T = T0 + (T − T0) and
show in part (b) and (c) of the following theorem that T0 is coercive and
that the difference is compact.

Theorem V.17 (General case). Assume that

Im
[
(P̃ ξ) · ξ

]
≥ 0 and Im

[
(Qξ) · ξ

]
≥ 0

on D for almost all ξ ∈ C2. Furthermore, assume that there exist two
positive constants cP , cQ and an angle φ ∈ [0, 2π) such that

Re
[
eiφ(P̃ ξ) · ξ

]
≥ cP |ξ|2 and Re

[
eiφ(Qξ) · ξ

]
≥ cQ|ξ|2

on D for almost all ξ ∈ C2 and

Re
[
eiφ(Ãξ) · ξ

]
≥ 0 and Re

[
eiφ(Bξ) · ξ

]
≥ 0

on D for almost all ξ ∈ C
2. Define the operator F# by

F# := |Re (γ−1eiφF)|+ Im (γ−1F).

Then:

(a) Im T is non–negative; that is, for all f ∈ L2(D,C2) × L2(D,C4):
Im (T f, f) ≥ 0.

(b) T0 is coercive; that is, there exists a constant c > 0 such that

Re (eiφT0f, f) ≥ c‖f‖2 for all f ∈ R(H).
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(c) The operator T − T0 is compact from L2(D,C2) × L2(D,C4) into
itself.

(d) F# is injective and the ranges of F1/2
# and H∗ conincide.

Proof. (a) From the previous theorem we already know that

Im (T f, f) =

∫∫

D

k2Im
[
(Qw1) ·w1

]
+ Im

[
(Pw2) ·w2

]
dx+ k

∫

S1

|v∞|2 ds.

Hence, under the positivity assumptions for the imaginary parts of the
contrasts P and Q: Im (T f, f) ≥ 0.

(b) Using ψ = v0 in (5.24) (note that v0 decays exponentially) we
deduce

(T0f, f) =

=

∫∫

D

k2(Qf1) · f1 + (Pf2) · f2 dx+

∫∫

D

k2(Qf1) · v0 + (Pf2) · ∇v0 dx

=

∫∫

D

k2(Qf1) · f1 + (Pf2) · f2 dx+

∫∫

R2

(A∇v0) · ∇v0 + k2(Bv0) · v0 dx.

Hence,

Re (eiφT0f, f) ≥
∫∫

D

k2Re
[
eiφ(Qf1) · f1

]
+ Re

[
eiφ(Pf2) · f2

]
dx

≥ min{k2cQ, cP }
{
‖f1‖2

L2(D,C2)
+ ‖f2‖2

L2(D,C4)

}
.

(c) (T − T0)f = (k2Q(v − v0), P (∇v − ∇v0))⊤ and the difference
w := v − v0 is a radiating solution of

∫∫

R2

(A∇w) · ∇ψ − k2(Bw) · ψ dx = (k2 + 1)

∫∫

R2

(Bv0) · ψ dx (5.25)

for all ψ ∈ H1
c (R2,C2). Since v, v0 ∈ H1

loc(R2,C2): w|D ∈ H1(D,C2)
which is compactly embedded in L2(D,C2). Hence the first component
of T − T0 is compact. To show compactness of the second component we
repeat the procedure from the proof of part (b) of Theorem III.25. Start-
ing with a sequence (fn)n ⊂ L2(D,C2)×L2(D,C4) converging weakly to
zero, the unique solvability of our transmission problem yields that the
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corresponding sequences of solutions (vn)n, (v
n
0 )n converge weakly to zero

in H1(K,C2) for any ball K. Then they converge in the norm of L2 to
zero (by compact embedding). Let wn = vn − vn0 . We choose two balls
K1,K2 with K1 ⊃ K2 ⊃ D and ψn := φwn in equation (5.25) where
φ ∈ C∞ is a cutoff function with φ ≡ 1 in K2 and φ ≡ 0 in R

3
rK1. Then

(5.25) reads

∫∫

K2

(A∇wn) · ∇wn − k2(Bwn) · wn dx =

−
∫∫

K1rK2

∇wn · ∇(φwn)− k2wn · (φwn) dx+ (k2 + 1)

∫∫

K1

(Bvn0 ) · (φwn) dx

=

∫

∂K2

∂wn

∂ν
· wn ds+ (k2 + 1)

∫∫

K2

(Bvn0 ) · (φwn) dx

by Green’s Theorem (since ∆wn+k2wn = 0 in R2rD). Now we estimate:

|r.h.s.| ≤
∣∣∣∣
∫

∂K2

∂wn

∂ν
· wn ds

∣∣∣∣+ C‖vn0 ‖‖wn‖
n→∞−→ 0.

Hence,
∫∫

K2

(A∇wn) · ∇wn − k2(Bwn) · wn dx
n→∞−→ 0

which implies ‖∇wn‖ → 0 as n→∞.

(d) This assertion is an application of the range identity result in The-
orem III.32.

Corollary V.18. F# admits a complete eigensystem {λj , ψj}j∈N with
positive eigenvalues λj. For z ∈ R2 define φz by (5.23). Then z ∈ D if,

and only if, φz ∈ R
(
F1/2

#

)
. Or equivalently,

z ∈ D ⇐⇒ W (z) :=


∑

j∈N

|(φz , ψj)|2
λj



−1

> 0.
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DP
exist. Re

[
eiφ(Ãx) · x

]
≥ cA|x|2 , Re

[
eiφ(Bx) · x

]
≥ cB|x|2

uniq. Im
[
(Ãx) · x

]
≤ 0 , Im

[
(Bx) · x

]
≥ (>)0

IP
absorb. Im

[
(P̃ x) · x

]
≥ cP |x|2 , Im

[
(Qx) · x

]
≥ cQ|x|2

general Re
[
eiφ(P̃ x) · x

]
≥ cP |x|2 , Re

[
eiφ(Qx) · x

]
≥ cQ|x|2

Im
[
(P̃ x) · x

]
≥ 0 , Im

[
(Qx) · x

]
≥ 0

Table V.1: Overview: Assumptions on the matrices and the contrasts.

4. Application: Scattering by a chiral cylinder

In the first section we developed a transmission problem modeling the
scattering by a chiral cylinder. We found the vector Helmholtz equation

div (A∇v) + k2Bv = 0

for v = (v1, v2)⊤. The direct and inverse problem were treated in sections
2 and 3. Now, we apply the general results. The matrices are given by

A =




1
µ 0 −ikβ 0

0 1
µ 0 −ikβ

ikβ 0 1
ε 0

0 ikβ 0 1
ε




and

B =
1

1− k2εµβ2

(
ε ikεµβ

−ikεµβ µ

)
=

(
ε
ϑ

i
kβ ( 1
ϑ − 1)

− ikβ ( 1
ϑ − 1) µ

ϑ

)
.

where we introduced ϑ := 1− k2εµβ2.
In what follows, we analyze the conditions for the material parameters

ε, µ and β such that the matrices A and B and the contrasts P = I − A
and Q = B − I satisfy the assumptions used in the previous sections.
Table V.1 recalls the main assumptions. Given a matrix M ∈ C

2×2 of the
form

M =

(
a ib
−ib c

)
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with complex numbers a, b, c ∈ C the following can be easily computed
for x = (x1, x2)⊤ ∈ C2:

(Mx) · x = a|x1|2 + 2b Im (x1x2) + c|x2|2,
Re [(Mx) · x] = Re a

∣∣x1 + iRe b
Re ax2

∣∣2 + Re c
(

1− (Re b)2

Re aRe c

)
|x2|2, (5.26)

Im [(Mx) · x] = Im a
∣∣x1 + i Im b

Im ax2

∣∣2 + Im c
(

1− (Im b)2

Im a Im c

)
|x2|2. (5.27)

We give an example of possible values for ε, µ and β such that the as-
sumptions on Ã, B and P̃ , Q are satisfied:

Proposition V.19 (Direct problem). Given the wave number k > 0.
Assume that there exist radii 0<r1<1<r2 and angles 0 < ϕ2 < φ < π/4
such that

ε, µ ∈
{
reiϕ : r ∈ [r1, r2], ϕ ∈ [0, ϕ2]

}

almost everywhere. For a sufficiently small positive constant λ such that

k2β2 ≤ λ

almost everywhere, there exist positive constants cA, cB such that the co-
ercivity conditions

Re
[
e−iφ(Ãx) · x

]
≥ cA|x|2 and Re

[
e−iφ(Bx) · x

]
≥ cB|x|2

are fullfilled and, furthermore,

Im
[
(Ãx) · x

]
≤ 0 and Im

[
(Bx) · x

]
≥ 0.

Proof. (i) From (5.26) we conclude that

Re (Ãx) · x = Re 1
µ

∣∣∣x1 − i kβ
Re (µ−1)x2

∣∣∣
2

+ Re 1
ε

(
1− k2β2

Re (µ−1)Re (ε−1)

)
|x2|2.

By our assumptions the reciprocals 1/µ and 1/ε are contained in the
following set of complex numbers

{
reiϕ : r ∈ [r−1

2 , r−1
1 ], ϕ ∈ [−ϕ2, 0]

}

and −ϕ2 > −φ > −π/4. The numbers of this set have strictly positive
real parts and this is still valid after rotation by the angle −φ. Finally

k2β2 cos2(φ)

Re (e−iφµ−1)Re (e−iφε−1)
= O(k2β2).
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Therefore, there exists a constant λ such that

1− k2β2 cos2(φ)

Re (e−iφµ−1)Re (e−iφε−1)
> 0

for k2β2 < λ.
(ii) Define the contrast q1 := 1/ϑ− 1. From (5.26) we conclude that

Re (Bx) · x =

= Re
ε

ϑ

∣∣∣∣x1 + i
Re q1

kβRe εϑ
x2

∣∣∣∣
2

+ Re
µ

ϑ

(
1− (Re q1)2

k2β2Re εϑ Re µϑ

)
|x2|2.

We restrict k2β2 by a positive constant λ such that

k2β2 ≤ λ < r−2
2 .

By our assumptions on ε and µ we compute:

εµ ∈
{
reiϕ : r ∈ [r2

1 , r
2
2 ], ϕ ∈ [0, 2ϕ2]

}
,

1− k2β2εµ ∈
{

1 + reiϕ : r ∈ (0, λr2
2 ] ⊂ (0, 1), ϕ ∈ [−π,−π + 2ϕ2]

}
,

1

1− k2β2εµ
∈
{
z ∈ C : Re (z) > 1/2, Im z ≥ 0, |z| ≤ (1 − λr2

2)−1
}
.

We conclude that the values of ε
1−k2β2εµ and µ

1−k2β2εµ are contained in

the set
{
reiϕ : r ∈ [r1/2, r2(1−λr2

2)−1], ϕ ∈ [0, π/2 +φ)
}

. After rotation
by the angle −φ the numbers of this set have strictly positive real parts.
As in the first case we see that

Re (e−iφq1)2

k2β2Re (e−iφ εϑ )Re (e−iφ µϑ )
= O(k2β2)

and by the same argument we can restrict k2β2 such that

1− Re (e−iφq1)2

k2β2Re (e−iφ εϑ )Re (e−iφ µϑ )
> 0.

Now we study the uniqueness conditions:
(iii) From (5.27) we deduce

Im (Ãx) · x = Im 1
µ |x1|2 + Im 1

ε |x2|2.
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Hence, Im (Ãx) · x ≤ 0 since Im ε, Imµ ≥ 0 by our assumptions.
(iv) From (5.27) we deduce

Im (Bx) · x =

= Im
ε

ϑ

∣∣∣∣x1 + i
Im q1

kβ Im ε
ϑ

x2

∣∣∣∣
2

+ Im
µ

ϑ

(
1− (Im q1)2

k2β2Im ε
ϑ Im µ

ϑ

)
|x2|2.

We have already seen that Im (ε/ϑ), Im (µ/ϑ) ≥ 0. Again

(Im q1)2

k2β2Im ε
ϑ Im µ

ϑ

= O(k2β2)

and we can restrict k2β2 such that

1− (Im q1)2

k2β2Im ε
ϑ Im µ

ϑ

> 0.

Proposition V.20 (Absorbing media). Let the wave number k > 0
be given. Assume that

ε, µ ∈
{
reiφ : r ∈ [r1, r2], ϕ ∈ [ϕ1, ϕ2]

}

a. e. with radii 0 < r1 < 1 < r2 and angles 0 < ϕ1 < ϕ2 < φ < π/4.
For a sufficiently small positive constant λ such that k2β2 < λ almost
everywhere there exist positive constants cP , cQ such that the contrasts
satisfy

Im
[
(P̃ x) · x

]
≥ cP |x|2 and Im

[
(Qx) · x

]
≥ cQ|x|2.

Proof. (i) From (5.27) we deduce

Im (P̃ x) · x = Imµ
|µ|2 |x1|2 + Im ε

|ε|2 |x2|2.

Hence, P̃ satisfies the above condition if there exists a constant cP such
that Imµ ≥ cP |µ|2. We compute

Imµ ≥ cP |µ|2 ⇐⇒
(
Imµ− 1

2cP

)2
+
(
Reµ

)2 ≤ 1
4c2
P

.
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The values of µ must be contained in a circle with radius 1/(2cP ) and
center i/(2cP ). The circle is getting bigger with smaller values of cP and
its boundary always contains the origin. Therefore, it is possible to choose
cP sufficiently small such that the set {reiϕ : r ∈ [r1, r2], ϕ ∈ [ϕ1, ϕ2]} is
contained in the circle. Analogously for ε.

(ii) Recall q1 = 1/ϑ − 1 and define the contrasts qε := ε/ϑ − 1 and
qµ := µ/ϑ− 1. From (5.27) we compute

Im (Qx) · x =

= Im qε

∣∣∣∣x1 + i
Im q1

kβ Im qε
x2

∣∣∣∣
2

+ Im qµ

(
1− (Im q1)2

k2β2Im qε Im qµ

)
|x2|2.

First we note that Im qε = Im ε
ϑ and Im qµ = Im µ

ϑ . Under the assump-
tions in Proposition V.19 we have seen that Im ε

ϑ , Im
µ
ϑ ≥ 0. We easily

check that the imaginary parts are bounded away from zero if we start
with strictly positive imaginary parts of ε and µ. Finally,

(Im q1)2

k2β2Im qε Im qµ
= O(k2β2)

and we can restrict k2β2 such that

1− (Im q1)2

k2β2Im qε Im qµ
> 0

In the same manner we can show the following proposition for the case
of general media. We state without proof:

Proposition V.21 (General media). Given the wavenumber k > 0.
Assume that

ε, µ ∈
{
reiϕ : r ∈ [r1, r2], ϕ ∈ [0, ϕ2]

}

almost everywhere with radii 1 < r1 < r2 and angles 0 < ϕ2 < φ < π/4.
For a sufficiently small positive constant λ such that k2β2 < λ almost
everywhere there exist positive constants cP , cQ such that the contrasts
satisfy

Re
[
e−iφ(P̃ x) · x

]
≥ cP |x|2 and Re

[
e−iφ(Qx) · x

]
≥ cQ|x|2

and, furthermore,

Im
[
(P̃ x) · x

]
≥ 0 and Im

[
(Qx) · x

]
≥ 0.
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5. Numerical Experiments

5.1 Visualization of the far field pattern

For reasons of simplicity we consider the achiral non–magnetic case in this
subsection. In that case our model of the vector Helmholtz equation is
redundant and it is sufficient to look at the scalar Helmholtz equation.

∆u+ κ2u = 0.

Given a bounded scattering obstacle D ⊂ R2, κ is defined such that
κ = k = ω

√
ε0µ0 in the exterior of Ω. We illuminate D by a plane wave.

The far field pattern of the scattered field us is given by

u∞(x̂) =
eiπ/4√

8πk

∫

∂D

us(y)
∂e−ikx̂·y

∂ν(y)
− ∂us

∂ν
(y)e−ikx̂·y ds(y). (5.28)

Solving the direct problem

In order to generate data we solve the direct problem numerically by
finite elements. The computational domain is a circle with radius 2:
B := B(0, 2). We use a variational formulation of the Helmholtz equa-
tion which we derive as follows. Given the free space wave number k and
a constrast q with supp q ⊂ B. For an incident field ui determine fields
us and u satisfying

∆ui + k2ui = 0 in B
c
,

∆us + k2us = 0 in B
c
, radiating,

∆u+ k2(1 + q)u = 0 in B, (5.29)

∂us

∂ν + ∂ui

∂ν = ∂u
∂ν on ∂B,

us + ui = u on ∂B.

Introduce the Dirichlet–Neumann operator Λ: λ→ ∂v
∂ν where v solves the

exterior Dirichlet problem for the Helmholtz equation

∆v + k2v = 0 in B
c
, radiating,

v = λ on ∂B.
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In this case Λ admits a series representation which can be used for a
numerical implementation. We multiply equation (5.29) with a test func-
tion ψ and integrate over B. Using integration by parts, the transmission
conditions and the Dirichlet–Neumann operator we derive

∫∫

B

∇u · ∇ψ − k2(1 + q)uψ dx−
∫

∂B

Λuψ ds =

∫

∂B

f iψ ds (5.30)

with f i := ∂ui

∂ν − Λui. We use standard finite elements to determine
numerical solutions. The scattered field is obtained by subtracting the
incident field ui.

Computation of the far field pattern

The scatterer is represented by the contrast q and its support. We solve
the direct problem for a finite set of plane waves uij(x) = eik dj·x with

vectors dj = (cos θj , sin θj)
⊤ where θj = 2πj/n, j = 1 . . . n. For every

solution uj of the variational equation we evaluate the integral (5.28) for
us = usj := uj − uij for unit vectors x̂l = (cosφl, sin φl)

⊤, φl = 2πl/n,
l = 1, . . . , n. We rather integrate over {|x| = 2} than the boundary of
the scatterer. The result is a matrix representing the far field pattern
evaluated at the points (φl, θk) for k, l = 1, . . . , n.

Reciprocity and symmetry

We denote by u∞(x̂, d) the far field pattern u∞(x̂) induced by the incident
field ui(x) = eik d·x with direction of incidence d = (cos θ, sin θ)⊤ for an
angle θ ∈ [0, 2π]. The well known reciprocity relation holds:

u∞(x̂, d) = u∞(−d,−x̂) , x̂, d ∈ S
1.

Here, x̂ ∈ S
1 can be represented as x̂ = (cosφ, sin φ)⊤ with an angle

φ ∈ [0, 2π]. Then −x̂ = (cos(φ + π), sin(φ + π))⊤. We identify the unit
vectors x̂ and d with φ and θ, respectively, and denote by u∞(φ, θ) the
far field pattern u∞(x̂, d). Then the reciprocity relation reads

u∞(φ, θ) = u∞(θ + π, φ+ π) , φ, θ ∈ [0, 2π]. (5.31)

We interprete the far field pattern as a (2π, 2π)–periodic function on R
2.

The geometric meaning of the reciprocity relations is a symmetry with
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respect to the line {θ = φ + π}. We verifiy this by shifting the far field
pattern and define:

ũ∞(φ, θ) := u∞(φ, θ + π) for φ, θ ∈ [−π, π].

Now we can show that ũ∞ is symmetric; that is, ũ∞(φ, θ) = ũ∞(θ, φ):

ũ∞(φ, θ) = u∞(φ, θ+π)
(5.31)

= u∞(θ+2π, φ+π) = u∞(θ, φ+π) = ũ∞(θ, φ).

This proves the symmetry property of u∞.

Rotation

What happens to u∞ if the scatterer is rotated around the origin by an
angle ϕ ∈ [0, 2π]. An observation which was made at a point (φ, θ) can
be seen at the point (φ + ϕ, θ + ϕ) after the rotation. Obviously u∞ is
shifted by

√
2ϕ along the line {φ = θ}, more precisely:

u∞ϕ (φ, θ) = u∞0 (φ− ϕ, θ − ϕ) (5.32)

where u∞0 and u∞ϕ are the far field patterns of the obstacle in the original
and rotated position, respectively. Figure V.3 shows the shifting of the
far field pattern of a kite, which is rotated.

From (5.32), we immediately see the well known property of sperical
centered scattering obstacles: From every point they look the same. In
this case u∞ϕ = u∞0 for every ϕ ∈ [0, 2π]. Hence, the far field pattern
consists of lines parallel to {φ = θ}.

Furthermore, for a regular centered polygon with n edges we have
u∞ϕ = u∞0 for ϕ = 2πk/n, k = 0, . . . , n. Hence, we can identify a cer-
tain pattern, which is repeated n times within the square [0, 2π]× [0, 2π].
Figure V.4 shows the far field patterns of a rectangle, a hexagon, an oc-
togon and a circle.

Mirroring

Given an object which is symmetric with respect to {x2 = 0}. The corre-
sponding far field pattern doesn’t change after mirroring. We can imagine
the far field pattern as a result of measurements which are made as fol-
lows. An emitting and recieving device are moved on a circle around
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Figure V.3: Re (u∞) for a kite rotated by 0, π/2, π and 3π/2.
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Figure V.4: Re (u∞) for centered polygons with 4, 6 and 8 vertices and a circle.
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Figure V.5: Re (u∞) for a kite and a rectangle mirrored at x2 = 0.

the obstacle. In general, the sense of rotation – positive or negative –
has an influence on the measurements. But in the symmetric case the
measurements are the same wether they are taken by positive or negative
rotation. This means: u∞(φ, θ) = u∞(2π−φ, 2π− θ) for all φ, θ ∈ [0, 2π].
Geometrically we can rotate the far field pattern by π and it is congruent
to the original one. The plots in the left column of Figure V.3 show this
symmetry.

As consequence, for general obstacles the far field pattern u∞m of the
mirrored obstacle is given by

u∞m (φ, θ) = u∞(2π − φ, 2π − θ) for φ, θ ∈ [0, 2π].

Figure V.5 shows the far field patterns for a kite and a rectangle, mirrored
at {x2 = 0}.

Translation

In this paragraph we study the transformation of u∞ under translation.
Therefore, let D be the scattering obstacle and Dτ := D + τ the shifted
obstacle with translation vector τ ∈ R

2. We illuminate D with a plane
wave ui(x) = eik d·x with direction of incidence d. This causes a scattered
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field us(·, d) and we can compute the far field pattern u∞ by

u∞(x̂, d) =

∫

∂D

us(y, d)
∂e−ik x̂·y

∂ν(y)
− ∂us(y, d)

∂ν(y)
eik x̂·y ds(y).

Now, we introduce the shifted incident field

uiτ (x) = ui(x− τ) = ui(x)e−ik τ ·d

and illuminate Dτ by uiτ . The induced scattered field usτ (·, d) is the shifted
version of us and satisfies

usτ (x, d) = us(x − τ, d).

For the computation of the far field pattern caused by Dτ we have to use
the incident field ui = uiτe

ik τ ·d. By linearity, the scattered field vs(·, d)
caused by ui is given by

vs(x, d) = eik τ ·dusτ (x, d) = eik τ ·dus(x− τ, d).

Now, we can compute the far field pattern v∞:

v∞(x̂, d) =

∫

∂Dτ

vs(y, d)
∂e−ik x̂·y

∂ν(y)
− ∂vs(y, d)

∂ν(y)
e−ik x̂·y ds(y)

= eikτ ·d
∫

∂Dτ

us(y − τ, d)
∂e−ik x̂·y

∂ν(y)
− ∂us(y − τ, d)

∂ν(y)
eik x̂·y ds(y)

= eik τ ·d
∫

∂D

us(y, d)
∂e−ik x̂·(y+τ)

∂ν(y)
− ∂us(y, d)

∂ν(y)
e−ik x̂·(y+τ) ds(y)

= eik (d−x̂)·τu∞(x̂, d).

This formula shows that the shifted obstacle can be distinguished from
the original one by the phase shift of the far field patterns. Figure V.7
shows – up to numerical inaccuracy: |v∞| = |u∞|. Figure V.6 shows the
transformation of the far field pattern when a centered circle is moved
into the direction (1, 0)⊤.

5.2 Reconstruction of the scatterer

In this case we solve the full vector Helmholtz equation with the material
parameters ε, µ and β. The variational equation is a more general vector
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Figure V.6: arg(u∞) for a centered circle shifted to the right.
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Figure V.7: |u∞| for a centered circle shifted to the right.
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version of (5.30). With the contrasts P and Q the variational formulation
reads
∫∫

B

(
(I −P )∇u

)
·ψ− k2

(
(I +Q)u

)
·ψ dx−

∫

∂B

(Λu) ·ψ ds =

∫

∂B

f i ·ψ ds

where f i := ∂ui

∂ν − Λui. Here, u, ui and ψ are 2D–vectors, P and Q are
(4 × 4)– and (2 × 2)–matrices, respectively, whose support is contained
in B(0, 3/2). The gradient, the normal derivative and the Dirichlet–
Neumann operator are applied componentwise.

In order to compute the far field operator we need to solve the direct
problem for Herglotz wave functions of the form

ui(x) =

∫

S1

p(d)eik d·x ds(d) , x ∈ R
2,

with density p ∈ L2(S1,C2). For fixed n ∈ N we use a (4n+2)-dimensional
subspace of L2(S1,C2) by choosing the basis functions

B :=

{
b eimθ : b ∈

{(
1
0

)
,

(
0
1

)}
,m = −n, . . . , n, θ ∈ [0, 2π]

}
.

We solve the direct problem for a finite set of Herglotz wave functions uip
defined by

uip(x) =

∫

S1

p(d)eik d·x ds(d) , p ∈ B.

We evaluate the integral (5.28) on the circle ∂B(0, 3/2) to compute the far
field pattern u∞p . The scattering obstacle(s) is(are) situated somewhere
inside this circle. Furthermore, we compute the Fourier coefficients αpq in
the representation

u∞p (x̂) =
∑

q∈B
αpqq(x̂) , x̂ ∈ S

1.

The resulting matrix Fn := (αpq)q,p∈B is an approximation of the far field
operator F . We determine an eigensystem {(λl, ψl), l = 1, . . . 4n + 2} of
|ReFn|+ ImFn and implement the test function φz . Finally, we evaluate
the function

W (z) =




4n+2∑

j=1

|(φz , ψj)|2
λj



−1
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shape ε µ β

R1 rectangle 1 0.01 + i 0.01

K1 kite 0.1 1 0

K2 kite 0.1 1 + i 0

Table V.2: Scatterers used for the experiments.
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Figure V.8: Setting and grid for numerical experiments. B(0, 2) computational
domain, ∂B(0, 3/2) computation of far field pattern, scatterers: rectangle and
kite.

on a mesh of points z in B. Figure V.8 shows the setting and the grid
for our numerical experiments. Two scatterers – a rectangle and a kite
– are considered. In Table V.2 we describe the scatterers and their ma-
terial parameters used for the experiments. The computational domain
is B(0, 2) and the far field pattern is computed on ∂B(0, 3/2). Further-
more we use different eigensystems (ES): ES1 refers to the eigensystem of
F# and ES2 to the eigensystem of ImF . In all reconstruction we use a
(102× 102)-matrix to approximate F .

In the following we show some results. We start with the rectangle R1

which admits chirality and a high (and complex valued) contrast in µ. Fig-
ure V.9 shows a good reconstruction with the eigensystem of ImF which
works also with little noise. The localization of the scatterer improves for
larger values of the wave number k. (Figure V.10). Figure V.11 shows
that the reconstruction is more precise when using the eigensystem of
ImF (ES2). Furthermore, with 5% noise the obstacle can still be located
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Figure V.9: R1, ES2 without noise (left) and 1% noise (right).
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Figure V.10: K1, ES1 for wave number k = 2 (left) and k = 6 (right).

quite well. Finally, we show what our implementation computes without
scatterer. Figure V.12 shows the magnitudes which are in the range of
10−3 and 10−5, respectively. We expect that this is due to approximation
error of the numerical scheme.
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Figure V.11: K2, ES1 without noise (upper left), K2, ES2 without (upper right)
and with noise: 1% (lower left), 5% (lower right).
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Figure V.12: Inverse scattering without scatterer: ES1 (left), ES2 (right).



CHAPTER VI

Outlook: Periodic chiral media

This chapter forms – together with following – the final part of this work.
Without going into details and without proofs we like to show, how to
apply the results for scattering from bounded obstacles to the Factoriza-
tion method for periodic chiral media. We start with the Factorization
method for non–magnetic achiral periodic media.

We consider the scattering of electromagnetic waves from a biperiodic
chiral structure Ω′ ⊂ R3, which is periodic in the x1- and x2-direction
and has finite extension in the x3-direction. Without loss if generality
we assume that Ω′ is Λ-periodic with Λ = (2π, 2π, 0)⊤. The material
parameters ε, µ and β are also Λ-periodic and ε ≡ µ ≡ 1 in R3 r Ω′

and β ≡ 0 in R3 r Ω′. We introduce the unit cell D := (−π, π)2 × R

and Ω := Ω′ ∩ D. An incident field irradiates Ω′. In this setting we
are interested in quasi–periodic solutions to the scattering problem. The
inverse problem is to reconstruct Ω from near field measurements. Figure
VI.1 shows the setting.

Due to the periodicity it is sufficient to solve the problem in the unit
cell D. Sandfort [37] applies the Factorization method to this problem
for achiral non–magnetic materials. He shows that it is possible to apply
the methods and techniques used for the case of scattering by bounded
obstacles. We can consider his results as a kind of generalization – from
bounded obstacles to biperiodic structures. Combining his results and
the generalization to chiral media found in chapters II and III yields the
Factorization method for chiral biperiodic structures.

In the sequel we briefly state the main equations and operators for the
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Figure VI.1: Setting for the scattering from peridioc structures.

periodic chiral case. We don’t use the same notation but refer to the
PhD thesis [37] for all technical details concerning for example regularity
assumptions for Ω′ and Ω, the Sobolev spaces for quasi–periodic functions
with L2–curl, traces, Green’s formula, the quasi–periodic Green’s tensor
for Maxwell’s equations, the Rayleigh expansion (as radiation condition
for outgoing waves), . . .

Weak formulation of the transmission problem

Let k > 0. Given g, h ∈ L2(Ω,C3) determine α-quasi-periodic, radiating
solution uα ∈ Hα,loc(curl, D) such that

∫∫

D

[(
1
ε − k2µβ2

)
curluα − k2µβ uα

]
· curlψ−α dx

− k2

∫∫

D

[
µβ curluα + µuα

]
· ψ−α dx =

∫∫

Ω

g · ψ−α + h · curlψ−α dx

for all (−α)-quasi-periodic test functions ψ−α ∈ H−α,c(curl, D) (with
compact support).
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Existence and Uniqueness

Sandfort uses the α-quasi-periodic Green’s tensor Gα,k for the Maxwell
operator curl2−k2id to define the volume potential: For h ∈ L2(Ω,C3)
define wα ∈ Hα,loc(curl, D) by

wα := curl

∫∫

Ω

G−α,k(x, y)h(y) d(y)

which is radiating and solves
∫∫

D

curlwα · curlψ−α − k2wα · ψ−α dx =

∫∫

Ω

g · curlψ−α dx

for all ψ−α ∈ H−α,c(curl, D). As in the case of bounded scattering we need
a second volume potential: For g ∈ L2(Ω,C3) define vα ∈ Hα,loc(curl, D)
by

vα :=

∫∫

Ω

G−α,k(x, y)g(y) dy

which is radiating and solves
∫∫

D

curlwα · curlψ−α − k2wα · ψ−α dx =

∫∫

Ω

g · ψ−α dx

With these volume potentials one can derive an integro–differential equa-
tion, reformulate it with appropriate operators and use the Fredholm the-
ory. At least for absorbing media all theorems and proofs are analogous
and will end up with the following

Theorem VI.1. Assume that

(a) ε, µ, β ∈ L∞(D), Im β = 0 s.t. ε ≡ µ ≡ 1, β ≡ 0 in D \ Ω,

(b) Re µ ≥ c1, Re (1/ε) ≥ c2, k2β2 |ε|2|µ|2
Re εRe µ ≤ c3 < 1 a.e.,

(c) Im ε > 0 and Im µ ≥ 0 a.e. in Ω.

For every (g, h) ∈ L2(Ω,C3)2 there exists a unique radiating solution
vα ∈ Hα,loc(curl, D) of the weak transmission problem. For any compact
set B with D ⊃ B ⊃ Ω there exists C > 0 such that

‖vα‖Hα(curl,B) ≤ C‖(g, h)‖L2(Ω,C3)2 f.a. (g, h) ∈ L2(Ω,C3)2.
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For non–absorbing bounded obstacles we used the unique continuation
principle. This cannot be done in the periodic case. Ammari and Bao [3]
show existence and uniqueness for the real–valued case for all but possibly
a discrete set of frequencies.

Reconstruction of the scatterer

We consider α-quasi-periodic incident fields which originate from magnetic
dipoles on the surface Γ. For a vector moment function ϕ ∈ L2(Γ,C3)
define

uiα(x) =

∫

Γ

G−α,k(y, x)ϕ(y) ds(y) , x ∈ D r Γ.

uiα generates the scattered field

uα(x) =

∫

Γ

usα(x, y)ϕ(y) ds(y) , x ∈ D,

where usα(·, y) is the scattering response of a magnetic dipole at y ∈ Γ.

Inverse problem Given the wave number k > 0 and all scattered fields
uα on Γ for all moment functions ϕ ∈ L2(Γ,C3) determine Ω.

The treatment of the inverse problem for absorbing media is analogous
to chapter 3. Define the near field operator N : L2(Γ,C3)→ L2(Γ,C3) by

(Nϕ)(x) :=

∫

Γ

usα(y, x)ϕ(y) ds(y) , x ∈ Γ,

and show the factoriation
N = H∗T H.

Here H : L2(Γ,C3)→ L2(Ω,C3)2, Hϕ = (H1ϕ,H2ϕ)⊤ with

(H1ϕ)(x) :=

∫

Γ

G−α,k(y, x)ϕ(y) ds(y) , H2ϕ = curlH1ϕ

for x ∈ Γ and the adjoint operator H∗ : L2(Ω,C3)2 → L2(Γ,C3) is given
by H∗g = H∗1g1 +H∗2g2 with

(H∗1g1)(x) =

∫∫

Ω

G
α,k(x, y)g1(y) dy , x ∈ Γ,
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and

(H∗2g2)(x) = curl

∫∫

Ω

G
α,k(x, y)g2(y) dy , x ∈ Γ.

H∗g = wα|Γ where wα is weak radiating solution of

curl2 wα − k2wα = g1 + curl g2.

Furthermore, H∗ characterizes Ω: For z ∈ D and fixed p ∈ C3 r{0} define
φz(x) = k2Gα(z, y)p. Then z ∈ Ω if, and only if φz ∈ R(H∗). Finally, the
middle operator T : L2(Ω,C3)→ L2(Ω,C3)2 is given by

T f :=

(
k2qµ k2µβ
k2µβ qε + k2µβ2

)(
f1 + vα

f2 + curl vα

)

with the constrast qε = 1−ε−1 and qµ = µ−1. vα is the α-quasi-periodic,
radiating weak solution of

∫∫

D

[(
1
ε − k2µβ2

)
curl vα − k2µβvα

]
· curlψ−α dx

− k2

∫∫

D

[
µβ curl vα +µvα

]
· ψ−α dx

=

∫∫

Ω

k2 [qµf1 + µβf2] ·ψ−α+
[
(qε + k2µβ2)f2 + k2µβf1

]
· curlψ−α dx

for all ψ−α ∈ H−α,c(curl, D) with compact support. The proof of the
properties of T are analogous to the case of bounded obstacles and one
can finally show

Theorem VI.2 (Absorbing Media). Assume that there exist con-
stants cε, cµ > 0 such that

Im qµ ≥ cµ and Im qε ≥ cε a.e. in Ω.

Then

(a) Im (T f, f) ≥ 0 for f ∈ L2(Ω,C3)2.

(b) There exists c > 0 such that Im (T f, f) ≥ c‖f‖2 for f ∈ R(H).

(c) The ranges of (ImN )1/2 and H∗ coincide.
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For a point z ∈ D we conlude:

z ∈ Ω⇐⇒ φz ∈ R
(
(ImN )1/2

)

where φz is defined as above.



CHAPTER VII

Conclusions

This work deals with several aspects of inverse scattering for chiral ma-
terials. Scattering from a bounded obstacle is studied in detail: both
the direct and the inverse problem. The special case of scattering from a
homogeneous chiral sphere is done analytically. Scattering by chiral cylin-
der is used to motivate the factorization method for the vector Helmholtz
equation. Numerical examples serve as proof of concept and illustrate the
theoretical results. Finally, scattering from periodic chiral structures is
another possible application of the generalized factorization method.

In the literature many results of existence and uniqueness for the direct
transmission problem or related problems can be found. Nevertheless, we
generalized the method Kirsch proposed and adapted the integro differen-
tial equation approach. The key to success was to allow only real valued
chirality parameter β. Then the volume potential solutions could be mod-
ified appropriatly. The assumptions on the parameters ε, µ and β turned
out to coincide with those for the achiral case. Additional assumptions
were always of the form: k2β2 sufficiently small, which is common in the
chiral literature.

We generalized the Factorization method for the treatment of the in-
verse problem. Therefore we introduced the Herglotz operator with two
components and in consequence the middle operator could be written as
matrix–vector–multiplication. In the case of absorbing media, with the
technique of completing the square we could show important properties
of the middle operator T in a quite straight forward manner. The real
valued case is more complicated since H(curl,Ω) is not compactly embed-
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ded in L2(Ω,C3). Therefore additional smoothness assumptions on the
parameters are requested and a Helmholtz decomposition is used.

For the scattering by a homogeneous chiral sphere we could exploit two
concepts. Firstly, Bohren’s decompostion into Beltrami fields – QR =
E + iH and QL = E − iH with wave numbers κL and κR – and secondly,
series expansions. We were able to compute explicitely the scattered field
and the far field pattern. Furthermore, we computed the eigensystem of
the far field operator explicitly. The achiral eigenfunctions are the vector
spherical harmonics Umn and V mn . The chiral eigenfunctions are the linear
combinations Umn + iVmn and Umn − iVmn . The corresponding eigenvalues
depend on κL and κR, respectively.

Scattering by an infinite chiral cylinder leads to the vector Helmholtz
equation for E3 and H3 with perturbations in the div∇–term and the
k2–term. Here we applied the Factorization method by combining results
for the Helmholtz equation with only one perturbation. This chapter can
be seen as application, since the methods and arguments in the proofs
were already presented in chapters II and III. Nevertheless, the compact
embedding of H1(Ω) into L2(Ω) made the proofs more simple. With stan-
dard finite elements we could generate far field measurements for testing
an implementation of the Factorization method. The implementation is
quite simple and the reconstructions show that the method works. The
results depend on the contrasts, the wave number and the noise. Unfortu-
nately, we could only work with our simulated measurements. Addition-
ally, plots of far field patterns complemented the theory and illustrated
what kind of information the far field pattern contains: the reciprocity
relation causes symmetry and certain properties of the scatterer can be
explained by symmetry arguments.

Finally, we are convinced that the generalization from achiral to chiral
media can be done analogously for biperiodic structures. We formulated
these ideas as outlook and gave the main steps without proof.

Future work includes the question how to weaken the assumptions for
non–absorbing materials and numerical experiments with real data and
numerical schemes for the 3D Maxwell’s equations. Other types of ob-
stacles could be of interest, for example objects with chiral coatings. A
rigorous proof of the Factorization method for chiral periodic structures
would be a good starting point to investigate scattering from chiral meta-
materials. In contrast to the reconstruction of the scatterer, it would be
interesting how the additional degree of freedom β influences the possibil-
ities for cloaking.
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