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Zusammenfassung

Umformprozesse, wie Ausbauchen, Streckformen und Tiefziehen, sind für die

Herstellung von Bauteilen für den Automobilbau sowie Blechbauteilen im

Allgemeinen äußerst wichtig. In dieser Arbeit wird ein ferritischer rostfreier Stahl

(DC04) auf der Meso- und Makroskala numerisch untersucht. Im ersten Schritt

werden Mikrokompressionsversuche und makroskopische Zugversuche genutzt, um

die Materialparameter des Stahls unter Verwendung eines geometrisch nichtlinearen

Einkristall- und Polykristallmodels zu bestimmen. Zweidimensionale Daten aus

Messungen mittels Elektronenrückstrahlbeugung (EBSD) werden durch finite

Elemente diskretisiert und homogenen Verschiebungsrandbedingungen unterworfen,

um im zweiten Schritt lokale Simulationen des Kornverbunds durchzuführen. Im

dritten Schritt wird ein zweiskaliges Taylormodell an den Integrationspunkten der

finiten Elemente angewendet, um einen Tiefziehprozess unter Berücksichtigung

experimenteller Texturdaten zu simulieren. Die gemessene kristallographische

Textur wird dafür mit einer Texturkomponentenmethode reduziert, um in das

Polykristallmodell Eingang zu finden. Abschließend wird die Grenzformänderung

basierend auf dem zuvor genannten Zweiskalenmodell unter Anwendung zweier

klassischer Lokalisierungskriterien für verschiedene Belastungspfade analysiert.
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Summary

Metal forming processes such as bulge and stretch forming as well as deep drawing

are required for the manufacturing of automotive parts and steel sheet panels. In this

thesis, a ferritic stainless steel (DC04) is investigated numerically on the meso and the

macro scale. In a first step, micro-pillar compression and macro tensile tests are used

to estimate the material parameters using large strain single crystal and polycrystal

plasticity models. Two-dimensional electron backscatter diffraction (EBSD) data are

discretized by finite elements and subjected to homogeneous displacement boundary

conditions for grain scale simulations in the second step. In the third step, a two-scale

Taylor type model is applied at the integration points of the finite elements to simulate

a deep drawing process based on the experimental crystallographic texture data.

The texture data required for the specification of the two-scale polycrystal model are

determined via a texture component method. Finally, a formability prediction based on

the aforementioned two-scale model is analyzed by applying two classical localization

criteria for different strain paths.
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Chapter 1

Introduction

Introduction. Most of the metals used in industrial processes are polycrystalline

materials. They are aggregates of approximately single crystals in grains with different

crystal orientations. The anisotropic plasticity of polycrystalline materials is mainly

caused by non-uniform distributions of crystal orientations (Bunge, 1982, 1987, 1993;

Böhlke, 2000). Therefore, the analysis of the crystallographic texture, i.e. preferred

crystal orientations, plays an important role in the large strain plasticity theory.

Crystallographic texture data allow for the characterization and prediction of the

anisotropic plasticity in heterogeneous materials by using statistical models. Some

representative studies of different polycrystalline materials with focus on the texture

evolution are given, e.g., by Asaro and Needleman (1985); Mathur and Dawson (1989);

Bronkhorst et al. (1992); Raabe (1995); Böhlke (2000); Böhlke et al. (2005, 2007); Roters

et al. (2010).

Ferritic stainless steels are currently of important interest since they are widely used

in automotive systems due to their formability and high corrosion resistance. In

the vehicle construction, they could offer a prospective alternative to the austenitic

stainless steel grades. The study of microscopic and macroscopic material behavior

(Gumbsch, 2003, 2005; Helm et al., 2011) is a key to the successful application of

these steels in the modern structural design. Therefore, in close cooperation with

other research projects within Research Area A, the main purpose of the thesis is

to understand the relation between microstructural properties and the macroscopic

behavior of a ferritic stainless steel. As material model, the steel DC04 is considered. A

numerical homogenization method will be applied in conjunction with the large strain

crystal plasticity law and experimental texture data to account for the microscale

information in macroscopic finite element simulations.

The aforementioned crystal plasticity model will be identified based on different

experimental data. To validate the model, locally resolved simulations of the

polycrystalline DC04 steel sample in a tensile specimen have been carried out. The
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Introduction

experimentally observed local grain reorientations in the polycrystalline sample will

be predicted and evaluated at different deformation states. Furthermore, the validated

constitutive model will be applied at the integration points of finite elements in a deep

drawing simulation. The macroscopic anisotropic material response is evaluated and

compared to the experimental data. Finally, the same micro-macro model will be used

for a prediction of diffuse necking for different strain paths.

The thesis is organized as follows:

Chapter 2 describes the constitutive equations of the finite elastoviscoplasticity

theory on the grain scale. The continuum mechanical description is established via

the large deformation context of non-linear solid mechanics. In order to perform

numerical simulations, the constitutive models are integrated in time by means

of the implicit Euler integration scheme. A Taylor type polycrystal model is used

for the homogenization of the mechanical response. The Taylor model provides a

reasonable qualitative approximation of the crystallographic texture evolution in

many single-phase cubic materials.

In Chapter 3 the crystallite orientation distribution function (CODF) is used

to characterize statistically the crystal orientations. In particular, mathematical

approaches are discussed which allow for a low-dimensional description of

crystallographic textures based on texture components. Two different techniques

are applied to the crystallographic texture data of a heat treated DC04 steel. The

experimental texture data via EBSD measurements have been provided by Project A6.

Chapter 4 aims to estimate the material parameters in the large strain crystal plasticity

model by using uniaxial tensile tests and the crystallographic texture based on

experimental EBSD data of a heat treated DC04 steel. The single crystal orientations

extracted from 2D EBSD data of the DC04 steel are used. Computational tensile

stress-strain curves of tensile tests are compared with experimental results for

different tensile directions in the sheet plane to estimate the material parameters.

The tensile test data are provided by Project A6 and the Institute of Forming

Technology and Lightweight Construction (IUL, Technical University of Dortmund).

In addition, the simulation of micro-pillar compression tests is applied to estimate the

aforementioned material parameters in a different way. These numerical results are

compared to the experimental compression tests for load-displacement, load-time,

displacement-time and stress-stretch curves. The experimental micro-pillar test data

are provided by Project A6.

Chapter 5 aims to validate the material model for the DC04 steel by performing a

full field FE simulation based on 2D EBSD data under a macroscopic tensile load.

The EBSD data set is discretized by finite elements and is subjected to homogeneous

displacement boundary conditions approximately describing a large strain uniaxial

tensile test. The simulated lattice orientation fields are compared to experimental
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Introduction

measurements of the specimen after the tensile test at different deformation levels.

The texture data for different deformation states are provided by Project A6.

Chapter 6 concentrates on the FE simulation of a deep drawing process similar

to industrial metal forming operations. Such a process is simulated by applying

the aforementioned two-scale Taylor type model at the integration points of the

finite elements. The initial crystallographic texture is reduced by applying a texture

component method to the EBSD data. By applying the micro-macro transition method,

the earing profile is predicted and compared to experimental data provided by the

Institute for Metal Forming Technology (IFU, University of Stuttgart).

Chapter 7 analyzes two methods to determine the diffuse necking of the rolled DC04

steel sheet for different strain paths. Two classical localization criteria are applied to

predict forming limit diagrams (FLDs). The material behaviour at the microscopic

level is described based on the aforementioned polycrystal plasticity model. The

texture data of heat treated DC04 steel are again assigned to the integration points

of finite elements. The computed FLD is compared to experimental results. The

experimental data are provided by the Institute for Metal Forming Technology (IFU,

University of Stuttgart).

Chapter 8 summarizes the results. Possible topics of future research are outlined.

Notation. Throughout the text, a 2nd-order tensor and a 4th-order tensor are

A = Aijei ⊗ ej and A = Aijklei ⊗ ej ⊗ ek ⊗ el, respectively, where {ei} represents

an orthonormal basis of the three-dimensional Euclidean space. The symmetric

and the skew part of a 2nd-order tensor A are denoted by sym(A) and skw(A).

Symmetric and traceless tensors are designated by a prime, e.g., A′. The set of

proper orthogonal 2nd-order tensors is specified by SO(3). The scalar product, the

dyadic product and the Frobenius norm are denoted by A · B = tr(ATB) =

tr(ABT), A ⊗ B and ‖A‖ = (A ·A)1/2, respectively. Here, tr(·) represents the

trace of a 2nd-order tensor. I = ei ⊗ ei denotes the 2nd-order identity tensor. In

addition, IS = 1

2
(δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el denotes the 4th-order identity tensor

on symmetric 2nd-order tensors. A linear mapping of 2nd-order tensors is written

as A = C[B]. The Rayleigh products of the 2nd-order tensor A and a 2nd-order

tensor C = Cijei ⊗ ej and a 4th-order tensor C = Cijklei ⊗ ej ⊗ ek ⊗ el are given by

A⋆C = Cij(Aei)⊗ (Aei) and A⋆C = Cijkl(Aei)⊗ (Aej)⊗ (Aek)⊗ (Ael), respectively.

In the following, a list of symbols frequently used in this thesis is given.
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List of Frequently Used Symbols

Name Symbol

Young’s modulus E

Crystallite orientation distribution function f

Shear modulus G

Bulk modulus K

Strain rate sensitivity m

Plastic strain ratio r

Volume in the reference placement V

Reference shear rate γ̇0

Slip rate of the slip system α γ̇α

Poisson ratio ν

Drag stress σD

Flow stress σF

Critical resolved shear stress τC

Initial critical resolved shear stress τC
0

Asymptotic resolved shear stress τCV 0

Shear stress of the slip system α τα

Volume fraction of a crystal or a grain β vβ

Hardening modulus Θ0

Slip direction of the slip system α dα

Orthonormal basis {ei}

Lattice vector {gi}
Deformation gradient F

Velocity gradient L

Slip plane normal of the slip system α nα

Kirchhoff stress tensor τ

Right Cauchy-Green tensor C

Green strain tensor E

2nd-order identity tensor I

Flow rule k̃

Schmid tensor of the slip system α Mα

Proper orthogonal tensor describing a crystal orientation Q

Proper orthogonal part of the deformation gradient R

Mandel stress tensor T e

4th-order stiffness tensor C

4th-order symmetric identity tensor on 2nd-order tensors I
S
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Name Symbol

Set of 2nd-order tensors Lin

Set of invertible 2nd-order tensors Inv

Set of symmetric 2nd-order tensors Sym

Set of symmetric and positive definite 2nd-order tensors Psym

Set of skew-symmetric 2nd-order tensors Skw

Set of all symmetric transformations S

Set of all real number R

Material gradient operator Grad

Spatial gradient operator grad

Full set of equivalent planes {hkl}
Full set of equivalent directions 〈uvw〉
Set of slip systems {hkl}〈uvw〉
Dyadic product (·)⊗ (·)
Quantity with respect to the undistorted configuration (̃·)
Homogenized, i.e., effective quantity (̄·)
Material time derivative (·)·
Frobenius norm ‖·‖
Tensor components and products

Kronecker symbol: δij (I)ij
1

2
(δikδjl + δilδkj) (I)ijkl

Aijbj (Ab)i

AijBjk (AB)ik

AijklBklmn (AB)ijmn

aibi a · b
AijBij A ·B
AijklBijkl A · B
aibj (a⊗ b)ij

AijBkl (A⊗B)ijkl

CijklAkl (C[A])ij

ǫijknk (ǫ[n])ij
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Chapter 2

Constitutive Models for Single Crystals

and Polycrystals

2.1 Large Strain Single Crystal Plasticity Material Model

Elastic law. In this section, an elastoviscoplastic single crystal constitutive model in the

large strain crystal plasticity theory is introduced. Conceptually, the model is based

upon the assumptions of small elastic strains and finite plastic strains and rotations.

Plastic deformation is assumed to be the result of distinct slip mechanisms on specific

crystallographic planes. The theory was developed in works of Asaro and Needleman

(1985); Bronkhorst et al. (1992).

Figure 2.1: The deformation gradient F maps a material point X in the reference

configuration Ω0 to X̄ in the intermediate configuration Ω̄ by F p, and to x in the spatial

configuration Ω by F e.

The deformation gradient can be decomposed multiplicatively into an elastic part F e

12



Constitutive Models for Single Crystals and Polycrystals

and a plastic part F p, as shown in Fig. 2.1 (Lee, 1969; Asaro and Rice, 1977)

F = F eF p. (2.1)

The plastic deformation F p is the plastic contribution from crystallographic slips.

The elastic deformation F e accounts for the lattice distortion, which is inherently

elastic. As the elastic strains are assumed to be small, a linearized relation between

a conjugate pair of stress and strain measures is applicable for the description of the

elastic behavior. Here, the elastic law is assumed to be given by

τ = F eC̃[Ee]F
T
e . (2.2)

The Kirchhoff stress tensor is given by τ = det(F )σ, with σ being the Cauchy stress

tensor. Green’s strain tensor is defined by

Ee = (Ce − I)/2, (2.3)

with I being the 2nd-order unit tensor and the right (elastic) Cauchy-Green tensor

Ce = F T
eF e. (2.4)

The reference stiffness tensor C̃ with respect to the orthonormal basis Bα, is given by

C̃ = C̃αβBα ⊗Bβ =





















C1111 C1122 C1122 0 0 0

C1111 C1122 0 0 0

C1111 0 0 0

2C1212 0 0

sym. 2C1212 0

2C1212





















Bα ⊗Bβ. (2.5)

The components C̃αβ are defined by C̃αβ = Bα ·C̃[Bβ]. The following orthonormal base

tensors Bα are used

B1 = e1 ⊗ e1

B2 = e2 ⊗ e2

B3 = e3 ⊗ e3

B4 =

√
2

2
(e2 ⊗ e3 + e3 ⊗ e2) (2.6)

B5 =

√
2

2
(e1 ⊗ e3 + e3 ⊗ e1)

B6 =

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1).

Due to the cubic material under consideration, the stiffness tensor C̃ has three

independent elastic constants and 9 planes of symmetry, see, e.g., Böhlke (2000).
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Constitutive Models for Single Crystals and Polycrystals

Flow rule and hardening law. A rate-dependent flow rule specifies the time evolution

of the plastic part F p of F

Ḟ pF
−1

p =
∑

α

γ̇αM̃α, γ̇α = γ̇0sgn(τα)
∣

∣

∣

τα
τC

∣

∣

∣

m

, (2.7)

where the exponent m quantifies the strain-rate sensitivity of the material, γ̇0 is a

reference rate, and M̃α the Schmid tensor. τC denotes the critical resolved shear stress.

A rate-dependent Kocks-Mecking hardening model (Kocks and Mecking, 2003; Böhlke

et al., 2005)

τ̇C(τα, τ
C) = Θ0

(

1− τC

τCV (τα, τC)

)

γ̇
(

τα, τ
C
)

(2.8)

is used, where the critical Voce stress is specified by

τCV
(

τα, τ
C
)

= τCV 0

∣

∣

∣

∣

∣

γ̇
(

τα, τ
C
)

γ̇0

∣

∣

∣

∣

∣

1

n

. (2.9)

with the asymptotic critical resolved shear stress τCV 0
and the initial hardening modulus

Θ0. The rate of the accumulated plastic slip is computed by

γ̇ =
∑

α

∣

∣γ̇α(τα, τ
C)
∣

∣ . (2.10)

The resolved shear stress is defined by

τα = T ′
e · M̃α, (2.11)

where

T e = CeS
2PK
e (2.12)

denotes the Mandel stress tensor. The second Piola-Kirchhoff in the undistorted state is

given by S2PK
e = JF−1

e τF−T

e . J = det(F e) is the determinant of F e. The Schmid or slip

system tensors are rank-one tensors, which are defined in terms of the slip direction d̃α

and slip plane normal ñα in the undistorted configuration

M̃α = d̃α ⊗ ñα. (2.13)

The initial conditions for the ordinary differential equation are

F e(0) = Q(t = 0) ∈ SO(3) and the initial critical resolved shear stress τC(0) = τC
0

.

Considering a cubic symmetry, the crystal orientation is given by a proper orthogonal

tensor Q(t) = gi(t)⊗ ei, where the vectors gi and ei denote the orthonormal lattice

vectors and the fixed orthonormal basis, respectively. The initial orientation of the

single crystal Q(t = 0) = gi(0)⊗ ei is defined in terms of the orthonormal lattice

vectors gi(0) at the time t = 0. The definition of the crystal orientation characterized

by Q is discussed further in the next chapter.
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Constitutive Models for Single Crystals and Polycrystals

Slip mechanisms in BCC metals. Gambin (2001) states that {110}, {112} and

{123} families of slip systems contain the crystallographic slip planes for inelastic

deformations of BCC materials. Different BCC slip planes commonly share the main

diagonal direction 〈111〉 (Fig. 2.2). The slip systems d̃α ⊗ ñα are specified from Tables

2.1–2.3 with respect to the orthonormal basis ei for the three different types of BCC

slip systems. The combination of a slip plane and a slip direction forms a slip system

M̃α = d̃α ⊗ ñα . The slip systems are divided into 4 families, each family possessing

a common slip direction. Their directions are: [1, 1, 1], [−1, 1, 1], [1,−1, 1] and [1, 1,−1].

Hence, twelve slip systems belong to each direction. The slip plane normals, ñα, of slip

systems of each family lie on the plane which is perpendicular to the corresponding

slip direction.

In the work of Yalcinkaya et al. (2008), intrinsic characteristics of BCC crystals are

revealed by using a proper parameter identification method. The authors applied

a BCC crystal plasticity model to perform uniaxial tension simulations at the

material point level for different types of BCC single crystals and compare these

with experiments. The results indicate that {110} and {112} planes are identified as

intrinsic slip systems of BCC crystals, but not the {123} plane. Therefore, in this thesis

the attention is focused on a combination of {110}〈111〉 and {112}〈111〉 slip system

families. There are two slip directions in each of these slip planes along the main

diagonals of the cube (see Fig. 2.2). In total, there are 24 slip systems, see Tables 2.1

and 2.2.

Figure 2.2: BCC slip systems.

2.2 Polycrystal Model

The crystallographic texture of polycrystalline materials is known to be of significant

importance for the sheet metal behaviour. If the crystallographic texture is taken into

account at the integration point level, Taylor type polycrystal models are numerically

15



Constitutive Models for Single Crystals and Polycrystals

α 1 2 3 4 5 6√
2[ñα

i ] [1,−1, 0] [1,−1, 0] [1, 0,−1] [1, 0,−1] [0, 1,−1] [0, 1,−1]√
3[d̃αi ] [1, 1, 1] [1, 1,−1] [1, 1, 1] [1,−1, 1] [1, 1, 1] [−1, 1, 1]

α 7 8 9 10 11 12√
2[ñα

i ] [1, 1, 0] [1, 1, 0] [1, 0, 1] [1, 0, 1] [0, 1, 1] [0, 1, 1]√
3[d̃αi ] [−1, 1, 1] [1,−1, 1] [−1, 1, 1] [1, 1,−1] [1,−1, 1] [1, 1,−1]

Table 2.1: 12 BCC slip systems of {110}〈111〉 (Paquin et al., 2001).

α 1 2 3 4 5 6√
6[ñα

i ] [1, 1, 2] [−1, 1, 2] [1,−1, 2] [1, 1,−2] [1, 2, 1] [−1, 2, 1]√
3[d̃αi ] [1, 1,−1] [1,−1, 1] [−1, 1, 1] [1, 1, 1] [1,−1, 1] [1, 1,−1]

α 7 8 9 10 11 12√
6[ñα

i ] [1,−2, 1] [1, 2,−1] [2, 1, 1] [−2, 1, 1] [2,−1, 1] [2, 1,−1]√
3[d̃αi ] [1, 1, 1] [−1, 1, 1] [−1, 1, 1] [1, 1, 1] [1, 1,−1] [1,−1, 1]

Table 2.2: 12 BCC slip systems of {112}〈111〉 (Yalcinkaya et al., 2008).

α 1 2 3 4 5 6√
14[ñα

i ] [1, 2, 3] [−1, 2, 3] [1,−2, 3] [1, 2,−3] [1, 3, 2] [−1, 3, 2]√
3[d̃αi ] [1, 1,−1] [1,−1, 1] [−1, 1, 1] [1, 1, 1] [1,−1, 1] [1, 1,−1]

α 7 8 9 10 11 12√
14[ñα

i ] [1,−3, 2] [1, 3,−2] [2, 1, 3] [−2, 1, 3] [2,−1, 3] [2, 1,−3]√
3[d̃αi ] [1, 1, 1] [−1, 1, 1] [1, 1,−1] [1,−1, 1] [−1, 1, 1] [1, 1, 1]

α 13 14 15 16 17 18√
14[ñα

i ] [2, 3, 1] [−2, 3, 1] [2,−3, 1] [2, 3,−1] [3, 1, 2] [−3, 1, 2]√
3[d̃αi ] [1,−1, 1] [1, 1,−1] [1, 1, 1] [−1, 1, 1] [−1, 1, 1] [1, 1, 1]

α 19 20 21 22 23 24√
14[ñα

i ] [3,−1, 2] [3, 1,−2] [3, 2, 1] [−3, 2, 1] [3,−2, 1] [3, 2,−1]√
3[d̃αi ] [1, 1,−1] [1,−1, 1] [−1, 1, 1] [1, 1, 1] [1, 1,−1] [1,−1, 1]

Table 2.3: 24 BCC slip systems of {123}〈111〉 (Nemat-Nasser, 2002).
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the most effective two-scale models. Taylor models, (Taylor, 1938; Van Houtte, 1988;

Mathur and Dawson, 1989; Raabe, 1995; Miehe et al., 1999; Böhlke et al., 2006, 2007;

Raabe et al., 2007; Jöchen and Böhlke, 2010), assume a homogeneous deformation field

through the microstructure of the polycrystal. The trivial localization assumption of a

homogeneous deformation field can be formulated as follows

L = L̄, (2.14)

where L and L̄ are mesoscopic and macroscopic velocity gradients, respectively. The

resulting macroscopic deformation gradient is equal to the volume average of the

microscopic deformation gradient

F̄ =
1

V

∫

V

F dV (2.15)

with respect to the reference configuration. The effective Kirchhoff stress tensor

is computed as the volume average of crystal stress with respect to the current

configuration

τ̄ =
1

V

∫

V

τ dV =
1

v

∫

v

σ dv =
M
∑

β

νβτ β, (2.16)

where νβ is the volume fraction of the grain β and τ β is the corresponding Kirchhoff

stress tensor. M is the total number of grains in the discretized crystallographic texture.
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Chapter 3

The Crystallite Orientation

Distribution Function (CODF)

3.1 Basic Properties of the CODF

In this section, an effective method is introduced for the selection of representative

grain orientations based on texture data. The orientation distribution must reproduce

the overall crystallographic texture of the experimental DC04 steel material in a

statistical as well as mechanical sense. Such technique has been recently studied and

applied for several important applications, see, e.g., Kanetake et al. (1985); Mathur and

Dawson (1989); Miehe et al. (1999); Paquin et al. (2001); Nemat-Nasser (2002); Dawson

et al. (2004); Habraken (2004); Böhlke et al. (2005, 2006); Raabe et al. (2007); Phan et al.

(2011c).

The crystal orientation distribution function (CODF) represents the crystallographic

texture by a volume fraction description of crystal orientations. Mathematically, it

represents the volume fraction of crystals with orientation Q, i.e.

dV

V
= f(Q)dQ. (3.1)

For a random texture f(Q) ≡ 1 holds. The orientation of a single crystal (see Fig.

3.1) in a polycrystalline structure can be uniquely determined by the specification of

the rotation Q ∈ Orth which maps the sample fixed basis vectors ei onto the lattice

vectors gi by gi = Qei. According to Bunge’s convention (Bunge, 1982), firstly the

crystal coordinate system is rotated about the g
3
-axis via the angle φ1, then about the

g
1
-axis in its new orientation via the angle Φ and, finally, about the g

3
-axis in its new

orientation via the angle φ2. In particular, the rotation Q is commonly parameterized

by a triple of Euler angles φ1,Φ, φ2 and is described through a 3× 3 orthogonal matrix
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Figure 3.1: Definition of a crystal orientation by three Euler angles: (a) initial state, (b)

angle φ1, (c) angle Φ, and (d) angle φ2.

given by

Qij =







cosφ1 −sinφ1 0

sinφ1 cosφ1 0

0 0 1













1 0 0

0 cosΦ −sinΦ

0 sinΦ cosΦ













cosφ2 −sinφ2 0

sinφ2 cosφ2 0

0 0 1






(3.2)

=







cosφ1cosφ2 − sinφ1cosΦsinφ2 −cosφ1sinφ2 − sinφ1cosΦcosφ2 sinΦsinφ1

sinφ1cosφ2 + cosφ1cosΦsinφ2 −sinφ1sinφ2 + cosφ1cosΦcosφ2 −sinΦcosφ1

sinΦsinφ2 sinΦcosφ2 cosΦ






.(3.3)

The properties of the rotational matrices can be found in detail in Morawiec (2004). The

infinitesimal volume element dQ on the orientation space SO(3) is given by

dQ =
1

8π2
sin(Φ)dφ1dφ2dΦ. (3.4)
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Figure 3.2: Experimental set-up for EBSD measurements (provided by Project A6).

3.2 Experimental Identification of the CODF based on

Electron Backscatter Diffraction Data (EBSD)

In recent years, the EBSD technique (Fig. 3.2) has become an increasingly popular

characterization technique. EBSD has been employed as an important technique for the

quantitative characterization of different microstructural properties such as the grain

size, the grain boundary structure, and the orientation distribution (see, e.g., Maitland

(2004); Maitland and Sitzman (2006); Schwartz et al. (2009)). The main objective of

the technique is to obtain space resolved crystallographic information by a Scanning

Electron Microscope (SEM).

Figure 3.3: EBSD microstructural image of DC04 steel before tensile test (experiment

by Project A6).

For every point analyzed on a sample, the position, the phase, the orientation and some

data quality information are stored. The stored data set is a database of measurements

produced by scanning the beam in a regular grid over the sample. The data format

is shown in Table 3.1 for the tensile experiment performed by Project A6. Each row
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Phase X Y Euler1 Euler2 Euler3 MAD BC BS Bands Error Index

1 0 0 31.850 50.647 51.302 0.6995 100 157 8 0 0.0000

1 1.3 0 31.902 50.507 51.458 0.5294 99 150 8 0 0.0000

1 2.6 0 32.094 50.351 51.110 0.7732 98 151 8 0 0.0000
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

1 24.7 0 351.28 46.522 67.917 0.9090 101 152 8 0 0.0000

0 26 0 0.0000 0.0000 0.0000 0.0000 99 184 0 3 1.0000

1 27.3 0 351.13 46.380 67.323 0.5893 108 179 8 0 0.0000
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

1 230.1 191.1 51.971 14.733 18.106 0.4829 102 87 8 0 0.0000

1 231.4 191.1 51.950 14.549 18.531 0.6734 106 91 8 0 0.0000

1 232.7 191.1 51.149 14.898 18.912 0.7215 99 93 8 0 0.0000

Table 3.1: The EBSD data set of the tensile experiment before tensile test including

22641 rows and 12 columns (experiment by Project A6).

is a measurement point in the map and each column is one of the several measured

parameters. The parameters are explained shortly as follows.

In the first column, each match unit contains the information necessary to model the

EBSD pattern produced by the expected phase in the sample. The best fit between

each match unit and the experimental EBSD pattern determines the phase and the

orientation of the point on the sample under the beam. The phase values 1 indicate the

expected phases of ferrite while the phase values 0 correspond to measurement errors.

The second and third column are the X- and Y-position of the measurement points.

Their dimensional unit is µm. The orientation is recorded by using the aforementioned

Euler angle convention. Three Euler angles (in degrees), shown schematically in Fig.

3.1, are used to describe the crystallographic orientation of the crystals in relation to

a reference coordinate system. The mean angular deviation (MAD) is given in degree

in the fourth column and specifies the averaged angular misfit between detected and

simulated Kikuchi bands. Furthermore, some additional features in the experimental

database could be taken into account. For example, the band contrast (BC) is a quality

factor of EBSD pattern obtained from the Hough transform that describes the average

intensity of the Kikuchi bands with respect to the overall intensity. Band slope (BS) is an

image quality factor derived from the Hough transform that describes the maximum

intensity gradient at the margins of the Kikuchi bands. The values of both BC and BS

are scaled to a byte range from 0 to 255, i.e. from low to high contrast for BC and from
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Figure 3.4: EBSD microstructural images of DC04 steel after tensile test (experiment

by Project A6): (left) Image of the rough surface and (right) grains with different

orientations.

low to high maximum contrast difference for BS; the higher the value of BS, the sharper

the band (Maitland and Sitzman, 2006). These scales of BC or BS are mapped to a gray

scale from black to white. In Fig. 3.3, an orientation map of the polycrystal structure

before tensile test is shown. Different colors indicate individual crystal orientations.

Fig. 3.4 (left) shows a roughening surface based on the band contrast (BC) and band

slope (BS). Additionally, a related orientation map of the experimental tensile test for

20% elongation is shown in Fig. 3.4 (right) in order to identify glide bands in different

grains.

3.2.1 Cold Formed and Heat Treated Specimens

The specimen of DC04 steel has been investigated for the cold formed and the heat

treated process by using the aforementioned EBSD technique within Project A6 to

obtain a corresponding database and to simultaneously identify a two-dimensional

grain structure. The heat treated process often implies the development of a new

microstructure and the formation of a new crystallographic texture. A new structure

of grain boundaries and a new microstructure at the micro scale are formed during

the heat treated process. Furthermore, the crystal orientations of new grains can

be different from those in the deformed microstructure. Some detailed descriptions

of these phenomena can be found in Cotterill and Mould (1976); Wilbrandt (1985).

An experimental texture database related to the heat treated process is considered

and shown in Table 3.2. The total number of rows and columns are 192266 and 12,

respectively. MTEX, a Matlab toolbox recently developed by Hielscher (2010), is used

for the quantitative analysis of experimental textures. MTEX allows to import the

EBSD database under different data formats and to obtain a two-dimensional grain

structure with corresponding crystal orientations. The heat treated EBSD database

shown in Table 3.2, has been imported into the MTEX toolbox to identify the
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Phase X Y Euler1 Euler2 Euler3 MAD BC BS Bands Error Index

0 0 0 0.0000 0.0000 0.0000 0.0000 89 153 0 3 1.0000

1 2 0 57.574 9.9495 30.985 0.2763 89 253 7 0 0.0000

1 4 0 58.866 10.229 29.698 0.3906 93 242 7 0 0.0000
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

1 926 468 246.20 43.831 44.345 0.3089 118 238 7 0 0.0000

1 928 468 246.12 43.781 44.340 0.4902 118 238 7 0 0.0000

1 930 468 246.15 43.786 44.487 0.4097 116 241 7 0 0.0000
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

1 998 764 329.37 41.729 34.829 0.4954 102 255 7 0 0.0000

1 1000 764 329.34 41.658 34.866 0.5155 98 249 7 0 0.0000

1 1002 764 329.40 41.797 34.753 0.4293 107 255 7 0 0.0000

Table 3.2: File format of the EBSD data set of the heat treated DC04 steel sample

(experiment by Project A6).

grains and their boundaries. The imported data could be corrected according to

the MAD values, the grain size or the specimen alignment. For the detection of

grains, MTEX offers a fully automatic procedure to identify all different grains in

the EBSD database. In MTEX, this algorithm can be applied to two-dimensional

or three-dimensional measurements. The main steps are the determination of the

misorientation between neighbouring measurement points, followed by a cluster

analysis, where the neighbouring measurement points are grouped into sets with

a misorientation lower than a given threshold (Morawiec, 2003) defined orthogonal

mapping. In order to identify a grain from the EBSD measurement, it is necessary

to determine its grain boundary and the average orientation inside the grain. These

identifications can be handled by the open-source texture toolbox MTEX in terms

of the misorientation over the set of all measurement points inside a grain. The

misorientation ∆Q calculated from orientations Q of the neighbourhood grains, for

example, the misorientation ∆Q
12

between grain 1, Q
1
, and grain 2, Q

2
, is given by

∆Q
12

= Q−1

1
Q

2
. (3.5)

The heat treated EBSD microstructure and the clustered heat treated EBSD

microstructure are shown in Fig. 3.5. In the raw database, the total number of

measurement points is 192266. The size of this heat treated EBSD microstructure

is 1002×764 µm. The area of a measurement point is 4 µm2. The number of the

erroneous measurement points is 4151, approximately 2.15% of the area fraction.
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After the clustering process in MTEX, grain boundaries have been identified and the

total number of the identified grains has been found to be 2554. An output database

is shown in Table 3.3, including three Euler angles of clustered grains and their

corresponding pixels.

Grain Euler1 Euler2 Euler3 Pixels

1 83.32 47.374 23.528 3

2 117.36 47.152 37.653 4

3 -92.53 38.297 82.924 1

4 25.048 127.55 158.2 1

5 -15.257 46.542 37.09 6
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

2550 0.74703 14.359 11.114 71

2551 -113.42 43.691 47.862 443

2552 -151.99 44.525 71.867 7

2553 -157.13 42.302 62.368 21

2554 -30.854 41.545 34.8 72

Table 3.3: The data set for identification of grains in the clustered heat treated specimen

of DC04 steel.

It has been found that there are approximately 2554 grains. For the time-consuming

numerical finite element computations, the number of grains needs to be reduced,

simultaneously representing the crystallographic texture data accurately. Here, two

important characteristics for the graphical representation of the texture data are

to be evaluated. The first is the pole figure which is used to plot a set of

poles for corresponding grain orientations based on stereographic projections in 3D

space. The second is the aforementioned CODF. A reduced crystallographic texture

including only 200 grains with the largest volume fractions is used for the numerical

homogenization. The {111}, {100} and {110} pole figures and the CODF of 2554 grains

and 200 grains, respectively, are represented in Fig. 3.6 and Fig. 3.7. In Figure 3.6, the

CODFs are determined based on the kernel distribution of von Mises Fisher in the

MTEX algorithm. It can be seen that the pole figures and the CODF of 2554 and 200

grains, respectively, are approximately similar.

In the following, considering the case of a cubic crystal symmetry, an orthotropic

orientation data set is obtained by rotating counterclockwise the grain orientation data

set 180 degrees in turn about the orthonormal axes in the lattice system. The orthogonal
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(a) Raw EBSD data set. (b) Clustered EBSD data set.

(c) Color coding by

inverse pole figure.

Figure 3.5: Microstructural EBSD images of the heat treated DC04 steel.

rotations characterized by three orthogonal matrices with respect to the orthonormal

crystal lattice vectors {gi} (i = 1 . . . 3) are given by

R1 (180
◦) =







1 0 0

0 −1 0

0 0 −1






, (3.6)

R2 (180
◦) =







−1 0 0

0 1 0

0 0 −1






, (3.7)

R3 (180
◦) =







−1 0 0

0 −1 0

0 0 1






. (3.8)

Each multiplication of an orthogonal rotation matrix Ri (i = 1 . . . 3) and each grain

orientation Q, given by RiQ (i = 1 . . . 3), generates an additional grain orientation.

This means that the orthotropic orientation data set is four times larger than the initial

set. Therefore, the orthotropic orientation data sets of the raw data (2554 grains) and

the reduced data (200 grains) consist of 10216 and 800 orientations, respectively. The

{111}, {100} and {110} pole figures and the CODF of the orthotropic orientation data

sets are shown in Figures 3.8 and 3.9. It can be observed that there is no significant

difference between the original and reduced data sets.
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Figure 3.6: Comparison between pole figures of 2554 grains (above) and 200 grains

(below).

3.2.2 EBSD Measurement for Subsequent Tensile Deformations

In this subsection, an experimental tensile specimen of heat treated DC04 steel by

Project A6 is discussed. The specimen geometry is w = 5 mm width, L0 = 15 mm gauge

length and t = 1 mm thickness. From such specimen, a tiny sample was cut by laser

rays with the same thickness. Through the EBSD technique in the scanning electron

microscope, an initial raw database of such a sample is obtained and shown in Table

3.4. The EBSD sample database is then imported into the MTEX toolbox to identify

the corresponding microstructure. Figure 3.10 shows an EBSD sample microstructure

considered at the initial state. A strain rate of 10−3 s−1 is applied to the tensile

specimen in loading direction. During the tensile test, several EBSD databases have

been determined experimentally and, thereby, the evolution of the crystallographic

texture is measured at different elongation states (5%, 10%, 15%, 20%).

By using the MTEX toolbox, these raw EBSD databases are imported to obtain

two-dimensional images of grain structures. Two microstructural images of both the

raw EBSD data and the clustered EBSD data are shown in Fig. 3.11a and 3.11b,

respectively, for the initial state of the sample. The grains consisting only of one

pixel are eliminated in the clustering process of the MTEX toolbox. A clustered EBSD
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Figure 3.7: Crystallite orientation distribution function: (above) 2554 grains and

(below) 200 grains.
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Figure 3.8: Comparison between pole figures of 2554 grains (above), 200 grains (below)

additionally assuming orthotropic sample symmetry.

database consists of identified grains and corresponding point sets (Table 3.5). The

first and second column are the X- and Y-position of the measurement points in µm.

Three Euler angles are given by the third, fourth and fifth column, respectively in

degree. The sixth column indicates the grain to which the measurement points belong.

The order numbering of grains and the identification of 574 grains are shown in Fig.

3.12 at the initial state. Additionally, two-dimensional images of the raw EBSD data

at different strain states (5%, 10%, 15% and 20%) are shown in Fig. 3.13. Based on the

inverse pole figure (Figure 3.11c), each color indicates the lattice orientation in each

grain at different states.

Some conclusive descriptions of the raw EBSD data are summarized. In the raw EBSD

database of the initial state, the total number of columns and rows is 7 and 105000,

respectively. After neglecting measurement errors, in such an EBSD database remain

103671 rows (or the number of pixels) and 7 columns. The number of measurement

errors is 1329 pixels, i.e. approximately 1.26% of the area fraction. The map size of the

raw grain structure in Fig. 3.11a is 349 × 299 µm. The area of one measurement point

is 1 µm2. For the subsequent strain states, the measurement errors correspond to area

fractions of 3.6%, 8.5%, 9.4% and 18.5%, respectively.
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Figure 3.9: Crystallite orientation distribution function: (above) 2554 grains, (below)

200 grains additionally assuming orthotropic sample symmetry.
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Figure 3.10: Raw EBSD microstructural image of a heterogeneous sample cut parallel

to rolling direction from a DC04 steel specimen at the initial state.

(a) Raw EBSD data set. (b) Clustered EBSD data set.

(c) Color coding by

inverse pole figure.

Figure 3.11: Microstructural images at the initial state.
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Phase X Y Euler1 Euler2 Euler3 MAD

1 0 0 184.51 22.500 16.151 0.4142

1 1 0 184.81 22.407 16.002 0.1691

1 2 0 184.99 22.424 15.822 0.2642

1 3 0 184.82 22.371 16.024 0.2763

1 4 0 184.84 22.457 15.944 0.1761
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 34 166 202.47 48.141 56.847 0.5488

1 35 166 202.00 47.884 57.172 0.3646

1 36 166 202.65 48.037 56.935 0.5320
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 347 299 202.91 40.299 63.507 0.4714

1 348 299 202.76 40.259 63.498 0.2761

1 349 299 203.03 40.184 63.403 0.5137

Table 3.4: File format of the raw EBSD data set of the experimental sample at the initial

state including 105000 rows and 7 columns (experiment by Project A6).

3.3 Identification of Texture Components based on EBSD

Data

A general technique to significantly reduce the number of crystal orientations is

presented in this section. In several studies (see, e.g., Nakamachi et al. (2001); Zhao

et al. (2001); Xie and Nakamachi (2002); Raabe et al. (2002); Böhlke et al. (2006); Gao

et al. (2006)), special techniques have been developed to determine the number of

texture components based on experimental data.

Nakamachi et al. (2001); Xie and Nakamachi (2002) investigated three kinds of

BCC steel sheets, mild steel, dual phase steel and high strength steel. Their crystal

orientations were obtained by X-ray diffraction. The crystal orientations were assigned

into a FE-model by using the orientation probability assignment method. One FE

integration point corresponds to one orientation, which can reorientate individually

during the deformation. This method emphasized that if sufficient numbers of FE

integration points are used to represent real textures of the sheet metals, it can

automatically identify the initial and evolutionary plastic anisotropy. However, the
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X Y Euler1 Euler2 Euler3 Grain

0 0 -175.23 22.552 16.012 60

1 0 -175.23 22.552 16.012 60

2 0 -175.23 22.552 16.012 60
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

9 0 -1.5371 34.919 41.736 129

10 0 -1.5371 34.919 41.736 129

11 0 -1.5371 34.919 41.736 129
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

59 0 -12.043 33.24 17.91 148

60 0 -12.043 33.24 17.91 148

61 0 -12.043 33.24 17.91 148
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

347 299 -157.02 40.197 63.434 574

348 299 -157.02 40.197 63.434 574

349 299 -157.02 40.197 63.434 574

Table 3.5: The clustered EBSD data set (without erroneous measurement points) of the

experimental sample at the initial state, including 103671 rows and 6 columns.

main drawback of the approach is the extensive calculation time.

Therefore, a general way to reduce the degrees of freedom of crystal plasticity

FE-models is the use of texture components, introduced by Zhao et al. (2001); Raabe

et al. (2002); Böhlke et al. (2006); Schulze et al. (2009) based on the basic researches of

Bunge (1993) and Helming (1996).

Instead of using large sets of discrete grain orientations, Zhao et al. (2001); Raabe et al.

(2002) used small sets of discrete texture components. Only a few texture components

are required to represent the complete texture. The approach constitutes a significant

improvement with respect to the computation time. In addition, Raabe et al. (2002)

suggested another approach using the crystal orientations by scattering around the

mean orientations of the texture components in order to take into account the scattering

of the crystallites around the ideal components. However, if the texture components

32



The Crystallite Orientation Distribution Function (CODF)
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Figure 3.12: Identification and numbering of 574 grains in the microstructural image of

clustered data set at the initial state.

were modeled in such suggested way, the prediction of the plastic anisotropy is

significantly overestimated.

In contrast, Böhlke et al. (2005) presented an approach allowing for significant

reduction of the number of crystal orientations. The approach takes into account

the half-width of the texture components which are described by Mises-Fischer

distributions during the computation of the stresses. Another approach by Böhlke et al.

(2006) suggested to model the gray texture by an isotropic texture component given by

the isotropic plasticity model and a related volume fraction. The approach gave good

results, but the evolution of the volume fraction of the isotropic texture component is

difficult to model.

In the work of Schulze et al. (2009), the Taylor assumption is combined with a
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rate-independent pencil glide deformation model on the micro-scale. By a combination

of a texture approximation procedure and a conventional parameter identification

scheme, a low-dimensional description of the texture is obtained. The hardening on

the micro-scale is described by a phenomenological hardening law. Nevertheless, the

limitation is figured out that a small group of crystals with volume fractions is used,

which are not equally distributed. This issue can lead to an overestimation of the

influence of certain crystals on the overall behavior. Generally, FE computations based

on polycrystal models are numerically too expensive if the applied crystallographic

texture is approximated by several thousand discrete crystal orientations at the

integration points. Additionally, the polycrystal models based on a small number

of discrete crystal orientations have the disadvantage that the anisotropy may be

significantly overestimated. This section aims to apply an effective method, see, e.g.

Gao et al. (2006), Jöchen and Böhlke (2011), to create a low-dimensional description for

the arbitrary texture.

Conceptionally, if the grain orientation is known in the form of a rotational matrix

Q, the angle of rotation ω and the corresponding normalized vector n specifying the

rotational axis can be determined. The angle of rotation is computed by

cos(ω) =
tr(Q)− 1

2
, (3.9)

and the normalized vector is given by

n =
(Q23 −Q32)e1 + (Q31 −Q13)e2 + (Q12 −Q21)e3
√

(Q23 −Q32)2 + (Q31 −Q13)2 + (Q12 −Q21)2
. (3.10)

The orientation space or Euler space is conventionally limited:

Q : [KA → KB] or Q−1 = QT : [KB → KA] (3.11)

Space G : 0 ≤ φ1, φ2 ≤ 2π; 0 ≤ Φ ≤ π

(Q = {φ1,Φ, φ2}); in Bunge’s Euler angles.

Considering the cubic crystal symmetry, there are 24 different ways in which a crystal

could be arranged using proper rotational symmetry operators. Therefore, there are 24

crystallographically equivalent solutions for an orientation (Randle, 2000; Cho et al.,

2005). In this case of a triclinic lattice, a family including 24 rotations with respect to 24

triples (φ1,Φ, φ2) is given by Humbert et al. (1992); Bradley and Cracknell (1972), and

summarized in Appendix A. Due to the crystal symmetry, only a triple is taken into

account in the reduced Euler space named the fundamental zone (FZ) and described

by Gao et al. (2006) (see Fig. 3.14).
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The limits of the cubic fundamental zone are given by

φ1 ∈ [0, 2π) (3.12)

Φ ∈ [f(φ2), π/2] (3.13)

φ2 ∈ [0, π/4) (3.14)

f(φ2) = arccos





cos(φ2)
√

1 + cos(φ2)
2



 . (3.15)

As explained in the work of Gao et al. (2006) and extended in an algorithm by Jöchen

and Böhlke (2011), the cubic fundamental zone is partitioned by a discrete number of

boxes Bi (i = 1 . . . N ). The volume fraction of one box can be defined as follows

V (Bi) =
1

8π2N

∫∫∫

FZ

sin(Φ)dφ1dΦdφ2, for 1 ≤ i ≤ N. (3.16)

In this mathematical technique, Euler angle ranges are subdivided in the fundamental

zone, by I,J and K subdivisions, respectively. The product N = IJK is the total

number of boxes in the fundamental zone. By using the reduction algorithm, the

scheme for the aforementioned heat treated EBSD data set of DC04 steel specimen

(Table 3.3), including 2554 grains, is reduced to 216 boxes, shown in Fig. 3.15, where

the φ1−range is divided into 24 subdivisions (I = 24) and the Φ− and the φ2−range

are each divided into 3 subdivisions (J = K = 3). Finally, the total number of

texture components remains 212, since four boxes are empty and do not contain any

orientation data. In order to verify the texture component data set, their pole figures

should be compared to the ones of the original (2554 grains) and reduced (200 grains)

orientation data sets. A comparison of pole figures with respect to these different

grain orientation data sets is shown in Fig. 3.16. All pole figures are evaluated by the

Matlab toolbox MTEX. It can be noticed that the difference between pole figures is

not significant. In addition, the orthotropic data set of the texture component data is

obtained by using the aforementioned symetrization technique in Section 3.2.1.

As observed in Fig. 3.17, the pole figures of the orthotropic texture component data

set (848 texture components) are quite similar to the ones of the orthotropic raw

orientation data set (2554 × 4 grains) and the orthotropic reduced orientation data set

(200× 4 grains).
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(a) 5% elongation. (b) 10% elongation.

(c) 15% elongation. (d) 20% elongation.

Figure 3.13: Microstructural images of raw EBSD data sets (experiment by Project A6,

GRK1483) at different states.
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Figure 3.14: The cubic fundamental zone in the conventional Euler space (Gao et al.,

2006).

Figure 3.15: Reduced heat treated data set using K = 3, represented by the fundamental

zone partitioned by 216 boxes in 3D space, the unit of Euler angles [radian].
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Figure 3.16: Comparison between pole figures of (a) 2554 grains, (b) 200 grains and (c)

212 texture components.
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Figure 3.17: Comparison between pole figures of (a) 2554 grains, (b) 200 grains, (c) 212

texture components additionally assuming orthotropic sample symmetry.
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Chapter 4

Estimation of Material Parameters

4.1 Estimation of Material Parameters based on Tensile

Test Experiments

4.1.1 Experimental Data of Tensile Tests

This section aims to identify the material parameters used in the micromechanical

model of DC04 steel based on uniaxial tensile tests. A specimen is cut from a

heat treated sheet metal of a DC04 steel at different angles to the rolling direction

(RD). Two different uniaxial tensile experiment series are used to investigate the

macroscopic stress-strain relation. The two series of experiments have been performed

by IAM-WBM (Project A6) and the Institute of Forming Technology and Lightweight

Construction (IUL, Technical University of Dortmund).

In the experiments of Project A6, the initial thickness of the specimen is t0 = 1 mm with

L0 = 15 mm gauge length and w0 = 5 mm width. Three tensile data sets are identified

for specimens oriented at 0
◦

, 45
◦

and 90
◦

to RD. These experiments contain information

of the displacements and the forces over time. The nominal stress is calculated by

σ0 = F/A0, where F is the force and A0 = t0w0 is the initial area of the cross section.

The engineering strain is given by ε = L(t)/L(0)− 1 = ∆L(t)/L(0). Fig. 4.1 shows the

nominal stress versus the engineering strain for differently oriented specimens.

In the experimental data of IUL (Dortmund), several data sets are identified for

specimens oriented at 0
◦

, 15
◦

, 30
◦

, 45
◦

, 60
◦

, 75
◦

and 90
◦

to the RD. The initial thickness

of the specimen varies in the range t0 = 1.16− 1.2 mm with a gauge length L0 = 80 mm

and the range w0 = 19.81 − 19.92 mm. Fig. 4.2 shows the tensile nominal stress versus

the engineering strain for the differently oriented specimens. The tests were conducted

at the constant velocity of 0.0025 s−1.
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Figure 4.1: (left) Tensile specimen at different angles to RD and (right) experimental

stress-strain curves for different angles to RD (experiment by Project A6) - 0
◦

, 45
◦

, 90
◦

to RD.

4.1.2 FE Modeling and Simulation of Tensile Tests

A finite element model for modeling the tensile tests is created by ABAQUS and the

Taylor type polycrystal model is applied at the integration points of the finite element.

The mechanical constitutive law discussed in Chapter 2 is implemented numerically by

a user defined subroutine UMAT (Manuals of SIMULIA, see, Abaqus/CAE (2009) and

Böhlke et al. (2005)). The orthotropic orientation data set (800 grains) of the heat treated

DC04 steel is used in the Taylor type polycrystal model as initial grain orientation

distribution. The {110}〈111〉 and {112}〈111〉, i.e. 24 slip systems α = 1 . . . 24 are used.

In Figure 4.3, the finite element model is shown. It represents a representative element

for the macroscopically homogeneous material. Stresses and strains are computed at

the eight integration points within the FE-model. The length, the width and the area

are 1 mm, 1 mm and 1 mm2, respectively. The initial time increment is 10−6 s and the

maximum time increment is 1 s. The total time in the simulations is 200 s corresponding

to the final displacement of ux = 0.2. As a result, the applied strain rate is 10−3 s−1. Note

that each rotation of the initial orientation data set about the normal direction e3 (ND)

with angle θ corresponds to the oriented specimen. The rotation matrix Θ representing
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Figure 4.2: Uniaxial tensile stress-strain curves for specimen oriented at different angles

to RD (experiment by IUL, Technical University of Dortmund): (a) 0
◦

, (b) 15
◦

, (c) 30
◦

,

(d) 45
◦

, (e) 60
◦

, (f) 75
◦

, (g) 90
◦

.

42



Estimation of Material Parameters

the rotation about e3, can be expressed as follows

Θ(θ) =







cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






. (4.1)

Each tensile simulation for a fixed angle θ is performed for the symmetrized orientation

set. The nominal stress is computed by σ0 = F/A0, where F is the sum of computed

forces at nodes along the tensile direction during deformation.

Figure 4.3: FE-model of the uniaxial tensile test with one finite element.

In this work, a set of material parameters needs to be estimated by comparing

simulation results to experimental data. This will be done based on stress-strain curves

and the least square fitting method. The elastic constants of DC04 steel used in tensile

test simulations are given by Sudook and Ward (2007) (Table 4.1). The other material

parameters, i.e., the reference slip rate γ̇0, the strain-rate sensitivity parameter m, the

initial critical resolved shear stress τC
0

, the asymptotic critical resolved shear stress

τCV 0
, and the initial hardening modulus Θ0 are estimated based on the experimental

stress-strain curves and are also given in Table 4.1. The values of the initial and

asymptotic critical resolved shear stresses are estimated in the first step via the Taylor

factor M ∼= 3 (see, e.g., U. F. Kocks (2000)) between the microscopic shear stress and

the macroscopic nominal stress

τC
0
∼= σmacro

0

M

∣

∣

∣

∣

θ=0
◦

, τCV 0
∼= σmacro

∞

M

∣

∣

∣

∣

θ=0
◦

, (4.2)

where the macroscopic nominal stresses σmacro
0

and σmacro
∞ can be estimated from the

experimental tensile curves. These two microscopic shear stresses and the hardening
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C1111[GPa] C1122[GPa] C1212[GPa]

231.5 135.0 116.0

Elastic constants of DC04 steel (Sudook and Ward, 2007).

m[−] γ̇0[s
−1] n[−]

20 0.001 5

Material parameters in flow rule.

τC
0
[MPa] τCV 0

[MPa] Θ0[MPa]

73 133 860

Modeled hardening parameters.

Table 4.1: Set of material parameters based on the experimental tensile tests of Project

A6.

modulus Θ0 are then adjusted to fit to the experimental curves for all different angles

θ. The least square method is applied in order to determine the optimal parameters.

The error is defined by

E2 =

√

√

√

√

1

n

n
∑

i=1

d2i =

√

√

√

√

1

n

n
∑

i=1

|P exp
i − P num

i |, (4.3)

where n is the number of data points. di is the distance between the experimental data

point P exp
i and simulated data point P num

i with respect to the same strain. Table 4.1

shows the set of optimal material parameters based on the minimization of E2 for all

tensile directions simultaneously. The corresponding stress-strain curves are shown

in Fig. 4.4. By using this optimal set, the comparison between the numerical and

experimental results for the oriented specimen at different angles to RD is depicted

in Fig. 4.5.

At IUL (TU Dortmund), for each tensile direction three tensile experiments have been

performed. A mean stress-strain curve is obtained based on these three experimental

curves. At a fixed angle to RD, the numerical stress-strain curve is compared to the

corresponding mean curve based on the minimization of the aforementioned error

mean E2. The range of strain 0−0.2 is considered to estimate the optimal set of material

parameters. In Fig. 4.6, computed nominal stress-strain curves are compared to the

experimental curves. The set of material parameters determined again by a least square

method is shown in Table 4.2.

In the following investigation, a mean parameter set is used which estimates the

stress-strain behavior of the given experimental data (see Table 4.3).
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Figure 4.4: Curves of tensile test experiments given by Project A6 (left) and simulations

with {110}〈111〉+ {112}〈111〉 slip systems (right).
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Figure 4.5: Numerically determined stress-strain curves with the optimal set of

material parameters in comparison to experimental stress-strain curves (Project A6)

for different angles to RD - (a) 0
◦

, (b) 90
◦

, (c) 45
◦

.
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Figure 4.6: Numerically determined stress-strain curves in comparison to experimental

data of IUL (TU Dortmund) for different angles to RD - (a) 0
◦

, (b) 15
◦

, (c) 30
◦

, (d) 45
◦

,

(e) 60
◦

, (f) 75
◦

, (g) 90
◦

.
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τC
0
[MPa] τCV 0

[MPa] Θ0[MPa]

61 127 650

Table 4.2: Modeled hardening parameters based on the experimental tensile tests of

IUL (Dortmund).

τC
0
[MPa] τCV 0

[MPa] Θ0[MPa]

67± 6 130± 3 755± 105

Table 4.3: A mean set of hardening parameters.

4.2 Estimation of Material Parameters based on

Micro-pillar Experiments

4.2.1 Micro-pillar Compression Tests

Recently, a new approach has been introduced, based on a combination of Focused

Ion Beam (FIB) machining and a simple extension of the nano-indentation technique

(Uchic et al., 2004) to study the fundamental mechanical properties of materials. With

FIB-milling, micro-pillars are carved out in the surface of a substrate material for the

preparation of specimens. A modified nano-indentation system, fitted with a flat-end

diamond indenter, is used to carry out the micro-compression tests, afterwards. The

information of the load-displacement data are continuously recorded during the

experiment as in a regular nano-indentation. Various micro-pillar compression tests

were performed by Ni (Uchic et al., 2004; El-Awady et al., 2009), Au (Volkert and

Lilleodden, 2006), Cu (Raabe et al., 2007; Kiener et al., 2009; Akarapu et al., 2010),

Mo (Bei et al., 2007), Al (Senger et al., 2008), and Zr (Yang et al., 2009) single crystal

micro-pillars of different diameters in the range of microns. The results of these

experiments revealed a strong size-dependence on small-scale plasticity.

Raabe et al. (2007) and Kiener et al. (2009) performed crystal plasticity finite element

simulations of cylindrical Cu single crystal compression tests (Fig. 4.8) and evaluated

them with respect to the role of the initial crystal orientation, deformation-induced

orientation changes, sample geometry (diameter-to-length ratio) and Coulomb friction

of micro-pillar compression tests. It has been shown that there is no significant

difference between rectangular and cylindrical sample geometry, that samples with

larger values for the diameter-to-length ratio revealed higher orientation and shape

stability during the compression, that non-zero friction conditions reduce shape

instability regardless of the initial crystallographic orientation of the compressed
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(a)

(b) (c)

Figure 4.7: Mechanical behavior for pure Ni micro-samples having a 〈134〉-orientation,

(a) stress-strain curves for micro-samples having different diameters, as well as the

stress-strain curve for a bulk single crystal, (b) a scanning electron micrograph (SEM)

image of a micro-sample tested to 4 strains, and (c) a SEM image of a micro-sample

after testing (Uchic et al., 2004).

specimen. Moreover, Senger et al. (2008) and Akarapu et al. (2010) investigated the

deformation of micro-pillars including dislocation dynamics under compression with

constrained loading axis using a discrete dislocation approach. Their technique can

provide a rigorous explanation of non-uniform deformations of small scale specimens.

4.2.2 Experimental Micro-pillar Compression Tests performed in

Project A6

Micro-pillar compression samples were prepared by using a FIB micro-compression

testing method in the Project A6. The mechanical tests are performed by a stiff flat

punch indenter under the force rate of Ḟ = 10−4 mNs−1. Two micro-pillar samples
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Figure 4.8: (a) Some differently sized Cu samples fabricated into a bulk single crystal,

(b) two Cu samples with a thick TiN coating on top, (c) a cylindrical Cu pillar

fabricated, and (d) a Cu specimen on top of an etched needle (Kiener et al., 2009).

with different geometry are shown in Figs. 4.9-4.10. Each micro-pillar column has

an individual crystal orientation which is given in Table 4.4. In the micro-pillar

compression test, the experimental load and displacement data are obtained over time.

Column φ1[
◦] Φ[◦] φ2[

◦]

1 80.05 34.79 41.12

2 79.29 34.48 42.29

Table 4.4: Micro-pillar orientations (experiment by Project A6).

4.2.3 FE Modeling and Simulation of Micro-pillar Tests

This section describes crystal plasticity FE simulations of the micro-pillar experiments.

The aim is to estimate the material parameters of the crystal plasticity model.

The single crystal plasticity model described above is applied for the micro-pillar

compression simulations. In these micro-pillar simulations, the pillars were modeled

as column with perfectly rectangular cross-section placed on a bulk material (Fig. 4.11).

The bulk material has the same crystal orientation and same material properties as the

micro-pillar itself. Due to the non-constant height in each experimental micro-pillar

column, the initial height in the FE micro-pillar model is the mean height of two
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Figure 4.9: Geometry of micro-pillar column 1 (experiment by Project A6).

Figure 4.10: Geometry of micro-pillar column 2 (experiment by Project A6).
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X Y

Z

Figure 4.11: Mechanical boundary conditions of micro-pillar test and FE mesh of

micropillar and underlying material.

Figure 4.12: The von-Mises stress field [MPa] in deformed configuration of micro-pillar

column 1 under different viewpoints.
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Figure 4.13: The von-Mises stress field [MPa] in deformed configuration of micro-pillar

column 2 under different viewpoints.

Figure 4.14: Plastic strain rate (PENER [s−1]) of column 1 at two different steps: the end

of compression step (left) and the end of creep step (right).
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Figure 4.15: Plastic strain rate (PENER [s−1]) of column 2 at two different steps: the end

of compression step (left) and the end of creep step (right).

observed heights in the experiment. The mean height of column 1 and column 2 is

9.05±0.08 µm and 11.935±0.105 µm, respectively. The loading is subjected to the pillar

by means of a rigid punch with a force rate Ḟ = 10−4 mNs−1. The Coulomb coefficient

is set equal to 0.01 for the contact between punch and micro-pillar surface. The

displacement at the bottom plane of the base material is assumed to be zero. All other

surfaces are stress free. The FE mesh consists of 9301 elements and 5723 nodes (Column

1) and 9001 elements and 5558 nodes (Column 2). Two three-dimensional element

types C3D6 and C3D8 are used in FE meshes. During the numerical simulation, the

BCC slip systems {110} + {112}〈111〉 are taken into account. The elastic constants of

the ferritic steel DC04 used in the FE simulations are given in Table 4.1. The material

parameters used in the flow rule are also given in Table 4.1.

Both FE-simulations for the two micro-pillar compression tests are performed in three

main steps. In the first step, the micro-pillar is compressed by a punch force under

the punch velocity of Ḟ = 10−4 mNs−1 (called the compression step). The total time in

this step is 74 s for column 1 and 98 s for column 2, respectively. In the second step,

the punch force is kept constant over a period of time depending on each micro-pillar

compression test (creep step). This time period is 13 s for column 1 and 15 s for column

2, respectively. In the third step, the compressive force is removed from the surface of

the column (unloading step). The total time is 80 s for column 1 and 95 s for column

2, respectively. The simulated results of the stress distribution and the micro-pillar

geometry after the unloading step are shown in Fig. 4.12 and 4.13. The plastic strain

rate at the different aforementioned main steps for two columns is shown in Fig. 4.14

and 4.15.
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4.2.4 Estimation of Material Parameters
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Figure 4.16: Comparison of the numerical and experimental load-displacement curves

for micro-pillar column 1 (left) and micro-pillar column 2 (right).
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Figure 4.17: Comparison of the numerical and experimental displacement-time curves

for micro-pillar column 1 (left) and micro-pillar column 2 (right).

The flow material parameters consisting of the initial critical resolved shear stress

τC
0

, the asymptotic critical resolved shear stress τCV 0
, and the hardening modulus Θ0

are estimated based on the FE micro-pillar simulations. The estimation is performed

again by using a least square optimization procedure based on the experimental

load-displacement (Fig. 4.16), the displacement-time (Fig. 4.17), and the load-time (Fig.

4.18) curves. The displacement u is extracted from the displacement of the sample

surface which has contact with the punch surface during the micro-pillar simulation. In

the creep step, the displacement of column 1 is in good agreement with the experiment,

as shown in Fig. 4.16 (left). However, the displacement of column 2 is larger than

the observed experiment, as shown in Fig. 4.16 (right). In Fig. 4.19, the computed

stress-stretch curves of column 1 and column 2 are compared to the experimental
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Figure 4.18: Comparison of the numerical and experimental load-time curves for

micro-pillar column 1 (left) and micro-pillar column 2 (right).
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Figure 4.19: Comparison of the numerical and experimental stress-stretch curves for

micro-pillar column 1 (left) and micro-pillar column 2 (right).

τC
0
[MPa] τCV 0

[MPa] Θ0[MPa]

20 160 6000

Table 4.5: Estimated material parameters based on the experimental micro-pillar

compression tests of Project A6.
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curves. The stretch is defined by λ = H/H0 = (H0 − u)/H0, where H0 is the initial

height of the micro-pillar column, and H is the height of the micro-pillar column

after deformation. It can be seen that the experimental curves are reproduced by the

simulations. The set of material parameters is given in Table 4.5.
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Chapter 5

Simulation of the Deformation

Behavior on the Grain Scale

5.1 FE-Modeling and Full Field Simulation for EBSD

Data

Figure 5.1: (left) Microstructure of heat treated DC04 steel at the initial state obtained

from the clustering process by MTEX toolbox and (right) complete grains constructed

by the Simpleware software.

In this section, the microstructural image of the tensile specimen at the initial state, as

shown in Figure 5.1 (left) (Section 3.2.2, Chapter 3), is used as input data for performing

crystal plasticity simulations on the grain scale. The sample picture is imported into a

commercial software Simpleware to construct a 2D FE-model as shown in Figure 5.1
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Figure 5.2: FE-mesh of the microstructure at the initial state.

Figure 5.3: (left) Location of 3 selected local grains in the microstructural image and

(right) enlargement of 3 local grains: #296, #345 and #357.
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(right). Simpleware offers two important options for processing and meshing two- or

three-dimensional image data. The first one is ScanIP, which is the platform for the

image processing and the second one, is ScanFE which is a fully integrated meshing

module for the conversion of masks (or grains) to 2D or 3D finite element meshes. The

type of elements used in the FE mesh are linear and quadratic hexahedral elements.

Details of the software can be found in Simpleware (2000–2011). After the processing

steps in ScanIP, a FE output data containing the set of nodes, the set of hexahedral

elements, and the set of tetrahedral elements is obtained. The data can be exported in

the ABAQUS format (Fig. 5.2). Different colors indicate different crystal orientations

of the grains. The white region around the grains was assumed to show an ideal

behavior according to the von Mises plasticity model. The plastic properties with

Young’s modulus (E = 200 GPa) and Poisson’s ratio (ν = 0.3) are assigned to the ideal

von Mises plastic region. For the plastic behavior, the flow parameters σF0 = 180 MPa,

σF∞ = 303 MPa, describing the linear hardening, are estimated from the experimental

tensile stress-strain curve for 0◦ to the rolling direction (Fig. 4.1).
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Figure 5.4: Initial grain orientations in the 3D (left) and 2D fundamental zone φ2 − Φ

(right).

Note that the color distribution of grains in Fig. 5.1 (right) is not equal to the one

in Fig. 5.1 (left) due to the different conventions of colours between the Simpleware

software and ABAQUS/CAE. In order to uniquely define the evolution of 45 grains

during the FE simulation, initial Euler angles of these grains are transformed into

the cubic fundamental zone as aforementioned in Section 3.3. The fundamental zone

is described in Fig. 5.4. In Fig. 5.5, the initial Euler angles of 45 grains transformed

in the fundamental zone are shown. Fig. 5.3 shows the location of 3 local grains

in the experimental microstructure. The initial Euler angles of these grains are

explicitly shown in the FE simulation (Fig. 5.6). The simulation is carried out by

using the implicit Euler scheme for time integration and the user subroutine UMAT
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(a) (b)

(c)

Figure 5.5: Initial Euler angle distribution [◦] in the FE simulation: (a) angle φ1, (b) angle

Φ and (c) angle φ2 in the fundamental zone.

defining the constitutive law of the crystals introduced in Chapter 2. The material

parameters shown in Table 4.3, are used for performing the grain scale simulation.

For the slip mechanism, the grain scale simulation is based on using the combination

of {110}〈111〉 + {112}〈111〉 slip systems. Homogeneous displacement boundary

conditions at the outer boundary of the RD-TD plane are applied. The strain in the

normal direction (ND) is assumed to be zero. Furthermore, a plane strain state is

assumed. The boundary conditions are defined by the ABAQUS subroutine DISP. The

displacement vector and the displacement gradient are given by

u(X, t) = x−X (5.1)

and

H = Grad (u(X, t)) , (5.2)

respectively, where X is the reference position of the material points and x = χκ(X, t)

is the current position at time t. The displacement gradient H can be given in terms of
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(a) (b)

(c)

Figure 5.6: Initial Euler angles [◦] of 3 local grains in the FE simulation: (a) angle φ1, (b)

angle Φ and (c) angle φ2 in the fundamental zone.

the deformation gradient F

H = Grad (u(X, t)) = Grad (x)− I = F − I (5.3)

Assuming the constant velocity gradient for plane strain compression is given by

L = ε̇0







−1√
2

0 0

0 1√
2

0

0 0 0






ei ⊗ ej. (5.4)

The deformation gradient is given by the exponential form,

F (t) = exp(Lt)F (0), (5.5)

with F (0) = I . The constant strain rate is set to ε̇0 = 10−3 [s−1]. The special form of the

velocity gradient implies a displacement in the X-Y plane in the reference configuration
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(a) (b)

(c) (d)

Figure 5.7: Distribution of critical resolved shear stress [MPa] of the grain structure at

the different states: (a) 5%, (b) 10%, (c) 15% and (d) 20% elongation.

and a constant volume during the simulation. From Eq. 5.2, the displacement on the

boundary is obtained

u(X, t) = HX = HF−1x. (5.6)

By combining this equation with Eq. 5.3, the prescribed displacement is defined in the

subroutine DISP at the time t in terms of the deformation gradient in Eq. 5.5, so that

the displacement becomes

u(X, t) = (I − F−1)x. (5.7)

The total time in FE-simulation is 260 s corresponding to 20% elongation. The FE results

are evaluated at different total times such as 65 s, 130 s and 195 s corresponding to 5%,

10% and 15% elongation, respectively. The field of critical resolved shear stress τc is

depicted in Fig. 5.7 at the aforementioned different states of the FE simulation. These

results show a strongly inhomogeneous field caused by the evolution of individual

grain orientations in the microstructure during deformation.
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Figure 5.8: Plastic slip on 12 slip systems {110}〈111〉 at 20% elongation, the unit is [s−1].
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Figure 5.9: Plastic slip of 12 slip systems {112}〈111〉 at 20% elongation, the unit is [s−1].
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In addition, the plastic slip of each slip system α (α = 1 . . . 24) in BCC slip systems

{110}+ {112}〈111〉 is computed by integrating the slip rate γ̇α over the time during the

grain scale simulation. The plastic slip is described as follows

γα =

∫ t

0

|γ̇α|dt. (5.8)

Figs. 5.8-5.9 represent the plastic slip in 24 slip systems at 20% elongation. It can be

seen that the grain-structure shows a very heterogeneous state of slip.

5.2 Comparison between Grain Scale Simulations and

Experiments

(a) (b)

(c) (d)

Figure 5.10: Microstructural images of local grains at different states.

In this section, a comparison between the numerical results and the experimental data

is performed for three local grains. Numerical results at different tensile strains are
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compared to the corresponding experimental results. In order to obtain Euler angles

and the reorientation in the three grains (Fig. 5.10), post processing steps have to be

carried out. Firstly, the measured grain data set at each different state of deformation

is transformed into the fundamental zone. Secondly, each triple of Euler angles of

the measurement points is extracted at different states of deformation. A comparison

of Euler angles between the experiment and the FE simulation is shown in Figs.

5.11-5.14. The evolution of Euler angles in the numerical simulation is quite close to

the experimental findings.

In the third step, the reorientation of each measurement point is computed for each

state of deformation. The formula to compute the angle of reorientation is given by

ω =

∣

∣

∣

∣

arccos

(

tr(QQT

0
)− 1

2

)∣

∣

∣

∣

, (5.9)

where Q
0

represents the crystal orientation at the initial state of deformation and Q

the orientation of the same point at different states of deformation. Both Q
0

and Q

are parameterized by Euler angles lying in the same fundamental zone. During the

simulation, Q is extracted by the polar decomposition F e = ReU e, where Re = Q is

the elastic rotation and U e is the elastic stretch tensor. The computed reorientation

is the minimum relative orientation distance between the initial and actual crystal

orientation. By comparing the colour distribution representing the values in the

legend (Fig. 5.15), the reorientations in the numerical simulations agree well with the

experimental results. In addition, the computed reorientations of local grains #345 and

#296 are in good agreement with the experiment. However, the computed reorientation

of local grain the #357 is lower than in the experiment. This can probably be explained

by neglecting the three-dimensional grain structure due to the lack of data.
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Figure 5.11: Comparison of Euler angles [◦] between the experiment (left) and

numerical results (right) at the state of 5% elongation: (a)–(b) angle φ1, (c)–(d) angle

Φ, (e)–(f) angle φ2.
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Figure 5.12: Comparison of Euler angles [◦] between the experiment (left) and

numerical results (right) at the state of 10% elongation: (a)–(b) angle φ1, (c)–(d) angle

Φ, (e)–(f) angle φ2.
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Figure 5.13: Comparison of Euler angles [◦] between the experiment (left) and

numerical results (right) at the state of 15% elongation: (a)–(b) angle φ1, (c)–(d) angle

Φ, (e)–(f) angle φ2.
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Figure 5.14: Comparison of Euler angles [◦] between the experiment (left) and

numerical results (right) at the state of 20% elongation: (a)–(b) angle φ1, (c)–(d) angle

Φ, (e)–(f) angle φ2.
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Figure 5.15: Comparison of reorientation [◦] between the experiment (left) and

numerical results (right) at different states: (a)–(b) 5%, (c)–(d) 10%, (e)–(f) 15%, (g)–(h)

20% elongation.
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Chapter 6

Application of the Polycrystal Model

for Metal Forming Operation

6.1 Deep Drawing Experiment at IFU

Figure 6.1: Experimental deep drawing tool set-up and some products (IFU, Stuttgart).

In manufacturing engineering, the experimental rig shown in Fig. 6.1, is one of the

widely used equipment to produce cup shaped components. Cup drawing is not

only an important metal forming process but also serves as a basic test for the

sheet metal formability and for modeling the anisotropic behavior of metal. Due to

the recent developments of the powerful computer hardware, much attention has

been given to the computer simulation for sheet metal forming. Simultaneously, the

three-dimensional sheet metal forming analysis technique has reached an early stage

of maturity that allowed for the industrial use based on the development of the

three-dimensional simulation software.

There are several basic and extended studies on constitutive laws in FE codes to model
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(a) (b)

Figure 6.2: (a) Illustration of two important regions in the deep drawing process and

(b) the characteristics of earing profile in a quarter of the drawn cup.

rigid-viscoplastic, elasto-viscoplastic and elastoplastic anisotropic behaviour of metals

at the macroscopic level, see, e.g. Taylor (1938); Dawson et al. (2004); Kanetake et al.

(1985); Mathur and Dawson (1989); Lege et al. (1989); Miehe et al. (1999); Dawson et al.

(2004); Habraken (2004); Delannay et al. (2005); Böhlke et al. (2006, 2007); Ahn et al.

(2009); Schulze et al. (2009). During the deep drawing process, two important regions

of the can shown in Fig. 6.2a are considered to include the flange where most of the

deformation occurs and the wall that supports the force being necessary to cause the

deformation in the flange. In the case of the blank diameter being too large, the force

in the wall can exceed its strength and, therefore, possibly cause a failure (Hosford

and Caddell, 2007). The peaks (highest positions) and the valleys of a drawn cup are

illustrated in Fig. 6.2b.

In this chapter, the estimated material parameters in Chapter 4 are applied for the

two-scale Taylor type model to perform FE simulations of a deep drawing process

(Phan et al., 2010, 2011a). The orientation data sets, explained in Chapter 3, are assigned

to the FE-model at the integration points. By applying this method, the earing profile

of a sheet metal is predicted and compared to the experimental results provided by the

Institute of Forming Technology (IFU, University of Stuttgart).

Three experiments are carried out at IFU (Fig. 6.4). The experimental set-up is given

as follows: the blank holder force was 98 kN (mass of 10 T); punch diameter: 100 mm;

punch profile radius: 10 mm; die opening diameter: 104 mm; die profile radius: 10 mm;

sheet diameter: 180 mm, illustrated in Fig. 6.3 (left). The sheet thickness is 1.2 mm. The

measured Coulomb coefficient µ was found in the range 0.08−0.12 taking into account

the experimental oil lubrication. The measured earing profiles are depicted in Fig. 6.3

(right).
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Figure 6.3: (left) Tool geometry and set-up for deep drawing process and (right)

earing profiles obtained from deep drawing process in experiments (IFU, University

of Stuttgart).

6.2 FE-Modeling and Simulation of Deep Drawing

In this section, a FE-model of a deep drawing process using ABAQUS standard

(Abaqus/CAE, 2009) is considered. Due to the orthotropic sample symmetry of the

orientation data set and the symmetry of the experimental tool set-up, only a quarter

of the DC04 steel sheet is modeled in a three-dimensional deep drawing process. Figs.

6.5 show the FE-model of the deep drawing process for a quarter of the sheet metal.

The number of elements is 253 in this FE-model. The element types C3D8H and C3D6H

are used in two partitioned regions of the DC04 steel sheet, illustrated in Fig. 6.6. At

the initial state, the quarter of the sheet is fixed between the upper die and lower die.

A ring is inserted between the dies and lies on the lower die. The ring thickness, 1 mm,

is smaller than the sheet thickness. The objective of the ring is to avoid contact of the

dies causing numerical problems. The punch displacement is approximately set to 70

mm similar to the experimental data.

6.2.1 Deep Drawing Simulation for a Single Crystal

The first FE simulation concentrates on a single crystalline sheet with the standard

orientation within the material. The form of ears are different for each selected single

crystal orientation. Two different single crystal orientations illustrated in Fig. 6.7 are

taken into account in this section. The first single crystal orientation, [100]-orientation,
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: The deformed cups of 3 experiments: (a)-(b) Experiment 1, (c)-(d)

Experiment 2, (e)-(f) Experiment 3 (experiment by IFU (University of Stuttgart)).
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Figure 6.5: FE deep drawing simulation set-up of a sheet quarter.

(c)

Figure 6.6: Configuration of the finite element mesh using 253 three-dimensional

elements in the sheet quarter.
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Figure 6.7: Orientations of two examined single crystal orientations.

is specified by the orthogonal tensor defined as follows

Qij =







1 0 0

0 1 0

0 0 1






. (6.1)

This means that no rotation exists between the sample coordinate system ei and the

crystal coordinate system gi. The second single crystal orientation is obtained by

rotating the crystal 60
◦

around the [111]-direction. The orthogonal tensor is specified

by

Qij =
1

3







2 −1 2

2 2 −1

−1 2 2






. (6.2)

The large strain single crystal plasticity model is applied at the integration points of

the ABAQUS FE-model and accounts for plastic deformation by a combination of BCC

slip system families {110}〈111〉 + {112}〈111〉. The slip plane normal ñα and the slip

direction d̃α of the coupled BCC slip system are accounted for in the model by the

Schmid tensors M̃α = d̃α ⊗ ñα (α = 1 . . . 24). The FE simulation of the deep drawing

process is described in two main steps. In the first step, the quarter of sheet is pressed

by a holder force. The sheet is pushed down subsequently into the lower die by the

punch in the second step. Due to numerical problems, a low Coulomb coefficient of

0.05 is assumed in the numerical FE simulations of the aforementioned single crystal

orientations. Figs. 6.8-6.9 show the results of the plastic strain rate and the form of

ears in the sheet quarter for two different single crystal orientations. It can be seen that

the earing profiles of two single crystal orientations are different. This shows that the

deformation behavior of the polycrystalline sheet will be strongly influenced by the

underlying single crystal orientations.
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Figure 6.8: Numerical results obtained by using the standard crystal [100]-orientation:

(left) plastic strain rate, PENER [s−1] and (right) earing profile of the sheet quarter in

rolling direction.
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Figure 6.9: Numerical results obtained by using the single crystal orientation rotated

60
◦

about [111]-direction: (left) plastic strain rate, PENER [s−1] and (right) earing profile

of the sheet quarter in rolling direction.
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6.2.2 Deep Drawing Simulation with Crystal Orientations extracted

from EBSD Texture Data

(a) (b)

(c)

Figure 6.10: Numerical results obtained by using the orthotropic orientation data set of

200 original grains, (a) plastic strain rate [s−1], (b) accumulated plastic slip [−], and (c)

plastic strain [−].

In order to study the crystallographic texture effects in the deep drawing simulation,

the reduced orthotropic orientation data set of the heat treated DC04 steel is taken

into account. The reduced orientation data set consisting of 200 grains, is extracted

from the original orientation data set with 2554 grains (see Section 3.2.1, Chapter

3). The orthotropic orientation data of this reduced data, consisting of 800 (200 × 4

symmetry operations) single crystal orientations, is assigned to the integration points

of the FE-model and proves to be sufficient to simulate the effect of the polycrystalline

earing. During the numerical simulation, the accumulated plastic slip γ is computed

by the sum of all slip rates γ̇α (α = 1 . . . 24) over time

γ =

∫ t

0

∑

α

|γ̇α|dt. (6.3)

The simulated results of the plastic strain rate, the accumulated plastic slip and plastic

strain are shown in Fig. 6.10. The evolution of von Mises stress at different deformation
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(a) (b)

(c) (d)

Figure 6.11: Evolution of von Mises stress [MPa] in deep drawing simulation by using

the orthotropic orientation data of 200 original grains: (a) Compression step by holder

force, (b)-(d) different deformation states.

states is represented in Fig. 6.11. A comparison between experimental earing profiles

and numerical earing profiles is shown in Fig. 6.12. The predicted number of ears

agrees well with the experimental result. A satisfactory agreement of the predicted cup

deformation with the experimental result cannot be found for the friction coefficient

in the measured range 0.08 − 0.12. Nevertheless, the magnitude of the calculated

earing height agrees better to the experiment when the friction coefficient is decreased.

The effect of the friction coefficients on the earing is significant for the specific range

µ = 0 − 0.06 selected here. It can be seen that the numerical earing profile is in good

agreement to the experiment for the friction coefficient approximately µ = 0.04.

6.2.3 Deep Drawing Simulation with Texture Components

In this section, the low dimensional texture representation by the texture components,

discussed in Section 3.3 (Chapter 3), is used to simulate the deep drawing process

of the polycrystalline DC04 steel sheet. The influence of the dimensionality reduction

of the orientation input data is verified by comparing the computed earing profile

to the experimental results. The original heat treated orientation data including
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Figure 6.12: Comparison of earing profiles between experimental data and numerical

results by using the orthotropic orientation data of 200 original grains for different

friction coefficients µ; Mean value of experiments (©), standard deviation is indicated

by the error bar I.

2554 grains is reduced to 212 texture components in the fundamental zone. The

orthotropic orientation data set, 848 (212 × 4 symmetry operations) single crystal

orientations, is assigned to the integration points of the FE-models. Fig. 6.13 represents

numerical results of the plastic strain rate, the accumulated plastic slip, and the

accumulated plastic strain. Fig. 6.15 shows the evolution of the von Mises stress at

different deformation states. The comparison between experimental earing profiles

and numerical earing profiles for different friction coefficients is shown in Fig. 6.14.

The magnitude of the numerical earing is quite similar to the one obtained from the

aforementioned simulation using 800 single crystal orientations. The results show that

the number of ears obtained in the numerical results and experimental results are in

good agreement when considering a full sheet metal of DC04 steel.
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(a) (b)

(c)

Figure 6.13: Numerical results obtained by using the orthotropic orientation data set

of 212 texture components, (a) plastic strain rate [s−1], (b) accumulated plastic slip [−]

and (c) accumulated plastic strain [−].
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Figure 6.14: Comparison of earing profiles between experimental data and numerical

results by using the orthotropic orientation data of 212 texture components for different

friction coefficients µ; Mean value of experiments (©), standard deviation is indicated

by the error bar I.
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(a) (b)

(c) (d)

Figure 6.15: Evolution of von Mises stress [MPa] in deep drawing simulation by using

the orthotropic orientation data of 212 texture components: (a) Compression step by

holder force, (b)-(d) different deformation states.
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Chapter 7

Texture-based Modeling of Strain

Localization

7.1 Finite Element Approximation and Localization

Criteria

In order to evaluate the formability of sheet metals, the prediction of forming limit

diagrams (FLDs) is considered in the following. As proposed and investigated by

several authors (Marniciak and Kuczynski, 1967; Janssens et al., 2001; Viatkina et al.,

2005; Lang et al., 2005; Uthaisangsuk et al., 2007; Aretz, 2007; Verleysena et al., 2011;

Volk and Hora, 2011), forming limit curves can be used to predict the localization

behavior of metals in industrial manufacturing processes. For a given sheet material,

the FLD is the curve representing the strains with localization in strain space using the

major strain ε1 and the minor strain ε2. Maximum values of ε1 and ε2 are determined

by measuring principal strains at a failure state. As defined and illustrated in Fig. 7.1

(see, e.g., Keeler and Backofen (1963); Goodwin (1968) and Viatkina et al. (2005)), the

FLDs separate the strain space in the safe and unsafe domains.

Hill (1952) proposed an analytical method by taking into account the strain instability

of an initially homogeneous sheet metal. The zero extension criterion in the bifurcation

analysis was developed to investigate the deep drawing range. Storen and Rice (1975)

extended Hill’s stability analysis in order to predict the onset of localized necking in

thin sheets under biaxial stretching. Furthermore, the perturbation analyzes of Benallal

and Tvergaard (1995) and Benallal et al. (2001) can be used to predict the localization

behavior of rate-dependent materials phenomena. By Aretz (2007, 2010), the diffuse

and localized necking models according to Hill (1952); Marniciak and Kuczynski (1967)

are investigated within the framework of rigid-plastic and elastic-plastic constitutive

models using various yield functions for plastic anisotropic material. These formability
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models have been applied to different orthotropic sheet metals in order to predict FLDs

of different types of aluminium alloys.

In this section, the prediction of FLD for a heat treated DC04 steel is performed by using

a micromechanical model. Strain instabilities are analyzed based on FE simulations

with real texture data. The heat treated texture data of the DC04 steel is used, e.g.,

an orthotropic texture data set composed of 800 grains (200 grains with orthotropic

symmetry). The Taylor type polycrystal model is used for the scale transition. Crystal

orientations of the orthotropic texture data are assigned to each integration point of

the FE mesh (Phan et al., 2011b). The numerical FLD is compared to the experimental

result provided by IFU (Stuttgart).

Figure 7.1: Forming limit diagrams (Keeler and Backofen, 1963; Goodwin, 1968;

Viatkina et al., 2005).

One finite element model is used to determine the forming limit curve of the heat

treated DC04 steel. A plane stress state is assumed. Two criteria are considered in the

localization analysis to determine the FLD (see, e.g., Chapter 5, Marniciak et al. (2002)).

In the positive minor strain region (ε2 > 0) of the FLD, the criterion based on the

maximum stress power per unit volume is applied. This criterion corresponds to the

maximum force criterion by Hill (1952). In the negative minor strain region (ε2 < 0),

a criterion based on the maximum tension T (membrane stress) is applied. During

the proportional loading paths, the following relation between the principal values of

Hencky strain tensor εH = lnU is assumed with ρ ∈ [−1

2
, 1]

εH
2
= ρεH

1
. (7.1)

The uniaxial tension, plane strain compression, and biaxial tension are represented by

the values ρ = −1/2, 0 and 1, respectively.
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The Hencky strain tensor is given by

εH =







lnU11 0 0

0 ρlnU22 0

0 0 −(ρ+ 1)lnU33






=







lnU 0 0

0 ρlnU 0

0 0 −(ρ+ 1)lnU






. (7.2)

The ρ-values of −1/2, 0, and 1 correspond to tension, plane strain compression and

biaxial tension. These different strain paths are illustrated in Fig. 7.2. The reference

stretch rate is defined by

U̇0 =

√
3

2

ε̇V
√

ρ2 + ρ+ 1
. (7.3)

The time-dependent stretch in Eq. 7.2 is computed by

U = U11 = 1 + U̇0 (ρ) t. (7.4)

ε̇V is set equal to 10−3 s−1.
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Figure 7.2: Interpretation of different strain paths depending on ρ.

The maximum principal force criterion (Hill, 1952) can be formulated as follows

P = T 1PK
22

A0 → Maximum, (7.5)

where the initial cross-sectional area A0 and the component T 1PK
22

= σ22/F22 of the first

Piola-Kirchhoff stress tensor are used. The tensor T 1PK is related to the Cauchy stress

σ and the deformation gradient F , by T 1PK = JσF−T, where J = det (F ).

The maximum principal tension T criterion can be formulated as follows

T = σ22h → Maximum, (7.6)

where h (t) is the current sheet thickness.
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Figure 7.3: Localization analysis based on two criteria: (left) Criterion 1: Maximum

principal force P and (right) Criterion 2: Maximum principal tension T .

7.2 Comparison between FE Simulations and

Experiments

The FLD is determined by applying a Taylor type polycrystal model based on

orthotropic heat treated texture data. The FE-model uses C3D8 type elements. The

heat treated texture is taken into account as a natural microstructure imperfection

in real metal. Fig. 7.3 represents stereographic pole figures of the orthotropic

texture distribution given by 800 grains. The material parameters used for numerical

calculations are given in Table 4.3 and correspond to the material parameters that have

been identified based on tensile tests.

In order to analyze the initiation of deformation localization during proportional strain

paths, different simulations are performed with strain ratios ρ ∈ [−1/2, 1]. By rotating

the orthotropic texture 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦, 90◦ about the normal

direction (ND), 10 computed forming limit curves are obtained for each strain path.

Each simulation of the rotated texture will give a FLD calculated for a fixed strain

ratio ρ. All calculated simulations approximately reach an equivalent strain of 50%.

Fig. 7.4 displays all forming limit curves calculated of different rotated texture data in

the εH
1
− εH

2
. The FLD is obtained by representing the Hencky principal strain given by

Eq. 7.2 corresponding to the maximum principal load P in the positive minor in-plane

strain region (Criterion 1), and the maximum principal tension T in the negative minor

in-plane strain region (Criterion 2). The lowest localization point for fixed ρ is shown

in Fig. 7.5. By comparing the numerical results to the experimental mean FLD shown

in Fig. 7.6, the critical strains are strongly underestimated. It can be seen that the

numerical results agree better with experimental results in the negative minor strain

region εH
2

∈ [−0.1, 0]. However, the computed results in the positive minor strain

region show a qualitatively different behavior than the experimental one. The FLD
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Figure 7.4: Forming limit curves calculated for DC04 steel with orthotropic texture data
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result obtained from the analysis of applied simple localization criteria corresponds to

a conservative estimation of diffuse necking.
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Figure 7.5: Predicted lowest bound of FLD (•) for DC04 steel.
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Figure 7.6: Forming limit diagrams for the heat treated DC04 steel (experiment by IFU,

Stuttgart), Experimental FLD 1 (•), Experimental FLD 2 (•), Experimental FLD 3 (•)

and Experimental mean FLD (•).
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Chapter 8

Summary

Several numerical results using a large strain single- and polycrystalline plasticity

material model for a heat treated DC04 steel, based on micromechanical constitutive

equations, have been presented in this thesis. The micromechanical model proved to

be efficient and prospectively applicable in general in order to model the mesoscopic

and the macroscopic mechanical behavior. The homogenization procedure yields a

micro-macro transition from the microscopic level to the macroscopic level. This

transition was implemented by means of user-defined subroutines in the commercial

FE software package ABAQUS together with an implicit time integration procedure for

the constitutive behavior of single crystals. This thesis illustrates how the real texture

information can be incorporated into a continuum mechanical modeling.

The material parameters of the DC04 steel were identified for a large strain BCC

crystal plasticity model based on experimental tensile tests. The material model was

verified via full field FE simulations on the grain scale with real EBSD data for

estimating the heterogeneity of the strain field and the reorientations of grains in a

tensile test. The computed local grain reorientations were compared to experimental

data at different states of elongation. By applying the Taylor type polycrystal model at

the integration points, FE deep drawing simulations were performed based on real

texture data. The computed earing profiles of these simulations were compared to

the experimental data. The formability limit was analyzed for different strain paths

based on the aforementioned polycrystal model accounting for the texture data of the

heat treated DC04 steel at the integration points. The criterion delivers information

about the onset of diffuse necking in the sheet metal. All simulations are based on

the extended Kocks-Mecking hardening law, see e.g. (Böhlke et al., 2005), with a

combination of two slip system families, {110}〈111〉 + {112}〈111〉 and show a good

agreement with the experimental results.

The macroscopic material behaviour in tensile tests has been used to determine

an optimal set of material parameters in the micromechanical model using the
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reduced texture data of the heat treated DC04 steel. The single crystal orientations

extracted from the 2D EBSD data of this steel have been used in the two-scale

tensile test simulations. A comparison of the crystal plasticity FE simulation with

the experimental tensile test for the uniaxial stress-strain curves has been presented.

For that, experimental tensile tests of Project A6 and IUL (TU Dortmund) have

been used. The material model parameters were identified alternatively based on

uniaxial micro-pillar compression tests performed with single crystal columns of heat

treated DC04 steel. Single crystal plasticity FE simulations of micro-pillar compression

tests have been performed for a supposed non-zero Coulomb coefficient. These

simulations were compared with experimental compression tests for stress-stretch and

load-displacement curves to estimate the underlying material parameters. However,

the material parameters determined by means of the pillar test cannot be used for

the simulation of metal forming operation since the parameters reflect size effects on

the microscale which are not relevant on the macroscale. For example, the hardening

modulus is much too large if it is determined based on pillar simulations.

A verification of the material model has been carried out. Based on EBSD data, the

grain-structure was modeled by a FE-model. The FE mesh has been imported into the

ABAQUS/CAE software for the performance of the grain scale simulation. This FE

simulation has been used for the identified DC04 steel material micro-parameters and

two families of the BCC slip systems were assumed to possibly act simultaneously,

namely {110}〈111〉+ {112}〈111〉. In addition, a procedure for mapping the initial grain

orientations into the fundamental zone has been implemented. The micromechanical

behavior was analyzed in terms of the evolution of grain orientations. The grain

orientations and reorientations are compared to the experiment for a group of

grains. The numerical results of local grain reorientations seem to underestimate

the heterogeneity compared to the experimental results. This issue can be probably

explained by the neglect of the three-dimensional microstructure and interaction of the

beneath microstructure in the 2D grain scale simulation. The influence of 3D interaction

needs to be further investigated in further studies.

In the third step, a direct implementation of the Taylor-type polycrystal plasticity

model at the integration points of finite elements in a deep drawing process is used

to model the texture evolution and anisotropy in metal forming. The numerical results

are validated by comparing numerical and experimental earing profiles. In particular,

the crystallographic texture components being a reduced set of EBSD data is shown

to be a prospectively efficient technique to predict anisotropic plasticity phenomena

of textured polycrystalline materials in the metal forming operation. The numerical

result proved that the earing profile and the effective height of a drawn cup can be

predicted using a two-scale approach incorporating crystallographic texture data from

experiments.
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Summary

In the last step, a potential method to predict the FLD during sheet metal forming has

been shown. The formability limit prediction has been presented for different strain

paths using real texture data in Taylor-type simulations. In general, a satisfactory

agreement of the FLD with the experimental data has not been found. The strain

localization is strongly underestimated compared to the experimental data. However,

it should be noted that the experimental data by IFU represent failure strains which

correspond to strains that are much larger than the strains at diffuse necking. The FLD

result obtained by the suggested scheme corresponds to a conservative estimation of

diffuse necking.

92



Appendix

Appendix

Rotational Symmetry Group of Cubic Lattice

Euler angles Rotational matrices Euler angles Rotational matrices

φ1,Φ, φ2 φ1,Φ, φ2

0, 0, 0







+1 0 0

0 +1 +1

0 0 +1






0, π

2
, 0







+1 0 0

0 0 −1

0 +1 0







0, π, 0







+1 0 0

0 −1 0

0 0 −1







π
2
, π
2
, 3π

2







0 0 +1

0 +1 0

−1 0 0







π, π, 0







−1 0 0

0 +1 0

0 0 −1







π
2
, 0, 0







0 −1 0

+1 0 0

0 0 +1







π, 0, 0







−1 0 0

0 −1 0

0 0 +1






π, π

2
, π







+1 0 0

0 0 +1

0 −1 0







π
2
, π
2
, 0







0 0 +1

+1 0 0

0 +1 0







3π
2
, π
2
, π
2







0 0 +1

0 +1 0

+1 0 0







3π
2
, π
2
, π







0 0 −1

+1 0 0

0 −1 0







3π
2
, 0, 0







0 +1 0

0 0 −1

−1 0 0







Table 1: 24 elements of the rotational symmetry group of the cubic lattice (Part 1)
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Table 2: 24 elements of the rotational symmetry group of the cubic lattice (Part 2)
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