
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Problem Analysis
Today’s webpages contain embedded objects
(DOM-tree/page requisites)
These may recursively embed objects

Embedded css file may embed images
Objects are typically spread across multiple domains

Static images, scripts, advertisements on different domains
20 most popular Alexa Top 500 pages: 443 domain names

Fetching requires the following sequential steps per domain
Domain name resolution 1 round-trip
TCP connection setup 1 round-trip
Get “index.html” file 1 round-trip
Get page requisites (mult. connections, keep-alive, pipelining)

Interpretation of DOM-tree is done in the client browser
Hinders parallelization (e.g., “index.html” needs to be interpreted 
to convey embedded contents)
Aggravates high-latency problem (stop-and-wait behavior)
Leads to poor bandwidth utilization
Causes a large fraction of the total delay

Initial part of an HTTP GET request with a RTT of 300ms

Wormhole
Konrad Miller <miller@kit.edu>

System Architecture Group
Am Fasanengarten 5
76131 Karlsruhe/Germany
http://os.ibds.kit.edu

An Active HTTP-Tunnel for High-Latency Networks

Motivation
High-latency networks (UMTS, VPN, TOR) have recently become very
popular due to mobility, privacy, and anonymity considerations.
Browsing the www over high-latency networks is frustrating as the
underlying protocols are not designed to work well in such a scenario.

Network: Campus DSL UMTS TOR
Average RTT: 12 ms 27 ms 326 ms 1228 ms

Evaluation
Implementation with C++/Qt4
Measurement with vanilla Mozilla Firefox and tcpdump
Link traffic shaping with tc (netem, htb)

Initial Results
Latency is reduced greatly

Wormhole-Cache significantly reduces re-transfers of redundant
data

Future Work/Next Steps
Thorough evaluation (e.g., scalability of Wormhole exit)
Compare different scenarios

No proxy, local proxy, remote proxy
Cold, warm, hot caches; different caching parameters
Compression on and off
Different latencies/data rates

Proposed Solution
Active HTTP-Tunnel

Wormhole entry at high-latency, low-bandwidth link
Wormhole exit at low-latency, high-bandwidth link

Wormhole entry acts as a web proxy for the browser
Passes browser queries through the tunnel
Serializes all traffic through a single TCP connection
Keeps connection alive between requests

Wormhole exit fetches and parses objects
Resolves all domain names
Returns object data to Wormhole entry
Piggybacks a list of page requisites that will be pushed 
subsequently

Wormhole entry can hold back future requests for announced 
contents until the data arrives unsolicitedly

Server push vs. client cache
Wormhole exit is unaware of browser cache’s state
Redundant data is pushed to the Wormhole entry
Wormhole implements a self synchronizing cache to mitigate 
this effect

Entry caches received objects
Exit has knowledge of entry’s cache contents
Object hash is saved on exit-side instead of full object
Only an index into the cache needs to be transferred for a 
cache-hit

Cache No Proxy Wormhole Ratio
TX: cold 190.4 Kib 48.5 Kib 0.25
RX: cold 1089.1 Kib 1049.3 Kib 0.96
TX: hot 49.2 Kib 21.7 Kib 0.44
RX: hot 148.0 Kib 196.8 Kib 1.33


	Wormhole

