
Pre-virtualization: soft layering for virtual machines

Joshua LeVasseur† Volkmar Uhlig§† Yaowei Yang† Matthew Chapman‡¶

Peter Chubb‡¶ Ben Leslie‡¶ Gernot Heiser‡¶

†University of Karlsruhe, Germany §IBM T. J. Watson Research Center, NY
‡National ICT Australia ¶University of New South Wales, Australia

Abstract

Despite its current popularity, para-virtualization has an
enormous cost. Its deviation from the platform architecture
abandons many of the benefits of traditional virtualization:
stable and well-defined platform interfaces, hypervisor neu-
trality, operating system neutrality, and upgrade neutral-
ity — in sum, modularity. Additionally, para-virtualization
has a significant engineering cost. These limitations are
accepted as inevitable for significantly better performance,
and for the ability to provide virtualization-like behavior on
non-virtualizable hardware such as x86.

Virtualization and its modularity solve many systems
problems, and when combined with the performance of
para-virtualization become even more compelling. We show
how to achieve both together. We still modify the guest
operating system, but according to a set of design princi-
ples that avoids lock-in, which we call soft layering. Ad-
ditionally, our approach is highly automated and thus re-
duces the implementation and maintenance burden of para-
virtualization, which is especially useful for enabling obso-
leted operating systems. We demonstrate soft layering on
x86 and Itanium: we can load a single Linux binary on a
variety of hypervisors (and thus substitute virtual machine
environments and their enhancements), while achieving es-
sentially the same performance as para-virtualization with
less effort.

1. Introduction

Although many hypervisor implementers strive to build
high-performance virtual machine (VM) environments, the
constraints for supporting commodity operating systems are
enormous and force costly optimizations (e.g., VMware’s
runtime binary translation [1]). Many have proposed to
modify the operating system (OS) for co-design with the
hypervisor, i.e., para-virtualization [27], to improve perfor-
mance and correctness; the possibilities seem unlimited, but

the cost has been the emergence of many para-virtualization
projects with incompatible and irreconcilable architectures,
yet overlapping maintenance efforts for modifications to the
guest OSes, and customer lock-in. By using specialized
interfaces rather than the neutral machine interface, para-
virtualization discards the modularity of traditional virtual
machines. Modularity via the neutral machine interface is
a key ingredient of virtualization’s benefits. It enables a
guest OS to run on hypervisors with substantially different
architectures, to achieve runtime hypervisor upgrades, and
the vital capability of VMs to run obsoleted OSes along-
side modern OSes. Modularity permits OS enhancements
written outside the OS’s kernel community to be added in
layers [6], remaining independent of fast-paced changes of
kernel internals. Modularity supports proliferation of hy-
pervisors, and stackable enhancements via recursive virtual
machine construction.

We show how to add modularity to para-virtualization,
achieving high performance and many of the features of
traditional virtualization. Our solution relies on constrain-
ing para-virtualization’s modifications according to several
principles, which we call soft layering. As originally pro-
posed for layered network protocols [7], soft layering em-
braces co-design of neighboring software layers, but with
some conditions:

1. it must be possible to degrade to a neutral interface, by
ignoring the co-design enhancements (thus permitting
execution on raw hardware and hypervisors that lack
support for the soft layering);

2. the interface must flexibly adapt to the algorithms that
competitors may provide (thus supporting arbitrary hy-
pervisor interfaces without pre-arrangement).

Additionally, we use tools to apply the soft layer to a guest
kernel (with substantial automation) to easily support obso-
leted kernels.
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1.1. Layering

Software layering promotes module simplification, al-
though the resulting abstractions introduce inefficiencies
due to the lack of transparency into the lower layers’ im-
plementation details [21]; e.g., the abstractions may prevent
the upper layer from using mechanisms that the implemen-
tation has, but which are hidden behind the abstractions; or
the abstractions may present the idea of infinite resources to
the upper layer, when the opposite is the case.

Virtual machines have a problem with transparency, par-
ticularly since the guest OSes are oblivious to the inter-
nals of the layers below, and because their downcalls use
hardware mechanisms (privileged instructions) rather than
software mechanisms (function calls). Many virtualization
projects have increased the transparency between the guest
OS and the virtual machine by modifying the guest OS to
directly interact with the internals of the layers below, and
to use efficient downcalls. These modifications introduce a
dependency between the guest OS and its lower layer, of-
ten breaking the modularity achieved by virtualization: the
guest OS may no longer execute on raw hardware, within
other virtual machine environments, or permit nested VMs.

1.2. Soft layering

To achieve modularity, soft layering mostly honors strict
layering, but permits the hypervisor to inject efficient down-
calls and virtualization logic into the protection domain of
the guest kernel (see Figure 1). This is similar to the tech-
nique used by VMware’s binary translation [1], but we ad-
ditionally prepare the guest kernel to help achieve the per-
formance of para-virtualization.

Soft layering forbids changes to the guest OS that would
interfere with correct execution on the original platform in-
terface (bare metal), it discourages changes that substan-
tially favor one hypervisor over others, and it discourages
changes that penalize the performance of the neutral plat-
form interface. The decision to activate a soft layer happens
at runtime when the hypervisor loads a guest kernel.

To achieve our performance goals we increase trans-
parency to the hypervisor’s internal abstractions, but with-
out violating the second criterion of soft layering — that the
interface must flexibly adapt to the algorithms provided by
competitors. Via the virtualization logic that we inject into
the guest kernel’s protection domain, we map the operating
system’s use of the platform interface to the hypervisor’s
efficient primitives. This achieves the same effect as para-
virtualization — the guest kernel operates with increased
transparency — but the approach to increasing transparency
differs. Some of para-virtualization’s structural changes fall
outside the scope of the platform interface, thus requiring
the soft layer to extend beyond the platform interface too.

Yet some of co-design’s traditional structural changes, such
as high-performance network and disk drivers, are unneces-
sary in our approach, since they can be handled by mapping
the device register accesses of standard device drivers to ef-
ficient hypervisor abstractions.

In this paper we describe our soft layering approach,
which we call pre-virtualization. We present reference im-
plementations for several hypervisors on two architectures,
and show that they offer modularity while sustaining the
performance of para-virtualization.

2. Architecture

Many projects have improved the transparency of vir-
tual machine layering via co-design of the hypervisor and
OS (i.e., para-virtualization), and have introduced special-
ized interfaces [3,4,9,11,12,14–16,19,20,27] to solve their
problems. These interfaces improved both performance and
correctness.

Para-virtualization has three categories of interfaces be-
tween the hypervisor and guest OS, and we offer soft-layer
alternatives for each:

Instruction-level modifications apply at the interface be-
tween the virtual machine and the guest kernel, without ex-
tending their reach too far into the guest kernel’s code.

Structural modifications add efficient mappings between
high-level abstractions in the guest kernel and hypervisor
interfaces. These modifications are very intrusive to the
guest kernel, and require specific knowledge of the guest
kernel’s internal abstractions. They are common for adding
efficient networking and disk support. Many projects adjust
the virtual address space of the guest kernel to permit coex-
istence of a hypervisor, guest kernel, and guest application
within a single address space.

Behavioral modifications change the algorithms of the
guest OS, or introduce parameters to the algorithms, which
improve performance when running in the virtualization en-
vironment. These modifications focus on the guest kernel,
and do not rely on specialized interfaces in the hypervisor,
and thus work on raw hardware too.

Our soft layering approach addresses para-
virtualization’s instruction-level and structural enhance-
ments with different solutions. Para-virtualization’s
behavioral modifications are a natural form of soft layering:
they avoid interference with OS and hypervisor neutrality,
and may achieve self activation — for example, the kernel
can detect that certain operations require far more cycles
to execute, and thus it changes behavior to match the more
expensive operations [28].



Figure 1. Comparison of virtualization strategies (left to right): (a) native execution — no virtual
machine; (b) traditional virtualization — hypervisor uses neutral interface; (c) para-virtualization —
hypervisor presents a changed API; (d) soft layering — the VAM maps the neutral interface to a
para-virtualizing hypervisor API (thin lines indicate an interface without privilege change).

2.1. Instruction level

The performance of virtual machines relies on us-
ing bare-metal execution for the innocuous instructions,
while introducing expensive emulation only for the infre-
quently executed virtualization-sensitive instructions [23].
The emulation traditionally is activated upon traps on
the virtualization-sensitive instructions, which is an ex-
pensive approach on today’s super-pipelined processors.
Para-virtualization boosts performance by rewriting the
source code to map virtualization-sensitive instructions into
higher-level abstractions. For our approach to have per-
formance comparable to para-virtualization, we must also
map low-level instructions into higher-level abstractions,
but while obeying the criteria of soft layering.

To satisfy the criterion of soft layering that the guest
OS should execute directly on raw hardware, we leave
the virtualization-sensitive instructions in their original lo-
cations. Instead, we pad each virtualization-sensitive in-
struction with a sequence of no-op instructions,1 and an-
notate their locations to permit a hypervisor to rewrite
the virtualization-sensitive instructions at runtime (see Fig-
ure 2). The rewriting process decodes the original instruc-
tions to determine intent and the locations of the instruc-
tions’ parameters, and writes higher-performance down-
calls over the scratch space provided by the no-op padding.

To map the low-level operations of individual instruc-
tions to the higher-level abstractions of the hypervisor, we
collocate a mapping module within the address space of the
guest kernel. The mapping module provides a virtual CPU
and device models. The rewritten instructions directly ac-

1Instructions with an architecturally defined relationship to their suc-
ceeding instruction must be preceded by their no-op padding, e.g., x86’s
sti instruction.

Figure 2. Example of assembler preparation
for a sensitive x86 instruction — it adds
scratch space via nop instructions, and adds
assembler directives to record the location of
the instruction.

cess the mapping module via function calls or memory ref-
erences. The mapping module defers interaction with the
hypervisor until necessary by batching state changes, thus
imitating the behavior of para-virtualization, and the hyper-
visor authorizes activity that could subvert security (note
that a misbehaving guest could corrupt the mapping mod-
ule). We term the mapping module the virtualization-assist
module (VAM). A VAM is specific to a hypervisor, and neu-
tral to the guest OS since its exported interface is that of
the raw hardware platform. Thus a hypervisor need imple-
ment only a single mapping module for use by any confor-
mant guest OS kernel. Additionally, since the binding to
the VAM takes place at runtime, the guest OS kernel can
execute on a variety of hypervisors, and a running guest
OS can migrate between hypervisors (all of which are es-
pecially useful across hypervisor upgrades).

Furthermore, for the easy use of soft layering, we apply



the instruction-level changes automatically at the assembler
stage [12]. Thus we avoid many manual changes to the
guest OS’s source code, which reduces the man-power cost
of para-virtualization’s high performance. This automatic
step permits us to package most of the soft layer as a con-
ceptual module independent of the guest kernel — they are
combined at compile time.

A variety of memory objects are also virtualization-
sensitive, such as memory-mapped device registers and
x86’s page tables. When instructions access these ob-
jects, we reclassify them from innocuous to virtualization-
sensitive instructions. We apply the soft-layering technique
to these instructions, but only in contexts where they ac-
cess these memory objects. To distinguish between memory
types, we use another automated tool that applies data-type
analysis to the guest kernel’s source code; if the guest ker-
nel lacks unique data types for the memory objects, then we
manually apply the instruction no-op padding and annota-
tions via C language macros or compiler primitives.

2.2. Structural

While the instruction-level interface conforms to a stan-
dard that the processor manufacturer defines, the structural
changes of para-virtualization are open-ended and have no
standard. This lack of a standard is an attraction, for it en-
ables custom solutions that reflect the expertise of the de-
velopers for their problem domains. Structural changes are
compatible with the criteria of soft layering — soft layering
only demands that the structural changes obey an interface
convention. Potentially the structural changes are specific
to a hypervisor or a guest kernel, and when they conform
to soft layering then all others can ignore these structural
changes (or others can later add support for them).

Our reference implementation adds function-call over-
loads to the guest kernel that we can rewrite to invoke meth-
ods in the VAM. Additionally, we support loadable kernel
modules that link against the VAM as well as link against
the guest kernel, which permits the runtime addition of new
hypervisor-aware functionality.

2.3. The VAM

The VAM includes comprehensive virtualization code
for mapping the activity of the guest kernel into the high-
level abstractions of the hypervisor. This is especially use-
ful for repurposing general-purpose kernels as hypervisors
(such as Linux on Linux, or Linux on the L4 microker-
nel [15, 18]). The VAM controls access to hypercalls, and
intercepts the upcalls from the hypervisor to the guest ker-
nel (for fault and interrupt emulation).

The hypervisor links together the guest OS and the VAM
at load time by rewriting the virtualization-sensitive instruc-

tions and by hooking the function overloads. Where we re-
place the original, indivisible instructions of the guest ker-
nel with emulation sequences of many instructions, we must
respect their indivisibility in regards to faults and interrupts.
The guest kernel could malfunction if exposed to VAM state
in an interrupt frame, and so we also treat function over-
loads as indivisible operations. In either case the emula-
tion could be long running, or with unpredictable latency,
which is the nature of virtualization.2 To avoid reentrance,
we structure the VAM as an event processor: the guest ker-
nel requests a service, and the VAM returns to the guest
kernel only after completing the service; or it may roll back
or forward to handle a mid-flight interruption. The guest
kernel is unaware of the emulation code’s activity, just as in
normal thread switching a thread is unaware of its preemp-
tion.

2.4. Device emulation

Soft layering is unique for virtualizing real, standard de-
vices with high performance; all other virtualization ap-
proaches depend on special device drivers for performance,
which inherently tie the guest OS to a particular hypervisor.
We follow the neutral platform API to provide the modular-
ity of strict layering.

Device drivers issue frequent device register accesses,
notorious for performance bottlenecks when emulated via
traps [25]. We instead run the device model within the
VAM, and convert these device register accesses into effi-
cient downcalls via instruction-level soft layering. At run-
time we rewrite the instructions to invoke the VAM. The
VAM models the device, and batches state changes to min-
imize interaction with the hypervisor.

3. Implementation

We implemented a reference pre-virtualization environ-
ment according to the soft layering principles described in
the prior sections, for x86 and Itanium. We describe the
automation, the VAM, and a pre-virtualized network de-
vice model, all as used on x86. We describe implemen-
tations for two families of x86 hypervisors that have very
different APIs, the L4 microkernel and the Xen hypervisor,
to demonstrate the versatility of virtualizing at the neutral
platform API. Our Itanium implementation supports three
hypervisors, also with very different APIs: Xen/ia64 [24],
vNUMA [5], and Linux. For the guest kernel, we used sev-
eral versions of Linux 2.6 and 2.4 for x86, and Linux 2.6 on
Itanium.

2The guest kernel is a sequential process concerned about forward
progress but not the rate of forward progress [10].



3.1. Guest preparation

Soft layering involves modifications to the guest kernel,
and we have different techniques for applying the modifi-
cations to sensitive instructions, sensitive memory instruc-
tions, and structural changes.

Sensitive instructions: To add soft layering for
virtualization-sensitive instructions to a kernel, we
parse and transform the assembler code (whether compiler
generated or hand written). We wrote an assembler parser
and transformer using ANTLR [22]; it builds an abstract
syntax tree, walks and transforms the tree, and then emits
new assembler code.

Sensitive memory instructions: An automated solution
for pre-virtualizing the memory instructions must disam-
biguate the sensitive from the innocuous. We implemented
a data-type analysis engine that processes the guest ker-
nel’s high-level source to determine the sensitive memory
operations based on data type. For example, Linux ac-
cesses a page table entry (PTE) via a pte t * data type.
Our implementation uses a gcc-compatible parser written
in ANTLR, and redefines the assignment operator based on
data type (similar to C++ operator overloading).

Structural: Our primary structural modification allocates
a hole within the virtual address space of Linux for the VAM
and hypervisor. The hole’s size is currently a compile-time
constant. If the hole is very large, e.g., for running Linux on
Linux, then we relink the Linux kernel to a lower address to
provide sufficient room for the hole.

To support the L4 microkernel with decent performance,
we added other function-call overloads. These overloads
permit us to control how Linux accesses user memory from
the kernel’s address space, and permit us to efficiently map
Linux threads to L4 threads.

3.2. Runtime environment

We divide the VAM into two parts: a front-end that em-
ulates the platform interface, and a back-end that interfaces
with the hypervisor. The rewritten sensitive instructions of
the guest kernel interact with the front-end, and their side
effects propagate to the back-end, and eventually to the hy-
pervisor. Upcalls from the hypervisor (e.g., interrupt noti-
fications) interact with the back-end, and propagate to the
front-end.

Xen/x86 hypervisor back-end: The x86 Xen API resem-
bles the hardware API, even using the hardware iret in-
struction to transition from kernel to user. Still, the VAM

intercepts all privileged-instructions and upcalls to enforce
the integrity of the virtualization. Interrupts, exceptions,
and x86 traps are delivered to the VAM, which updates
the virtual CPU state machine and then transitions to the
guest kernel’s handler. The VAM intercepts transitions to
user-mode, updates the virtual CPU, and then completes the
transition. We optimistically assume a system call for each
kernel entry, and thus avoid virtualization overhead on the
system call path, permitting direct activation of the guest
kernel’s system call handler.

Xen’s API for constructing page mappings uses the guest
OS’s page tables as the actual x86 hardware page tables.
The VAM virtualizes these hardware page tables for the
guest OS, and thus intercepts accesses to the page tables.
This is the most complicated aspect of the API, because
Xen prohibits writable mappings to the page tables; the
VAM tracks the guest’s page usage, and transparently write-
protects mappings to page tables. Xen 3 changed this part
of the API from Xen 2, yet our VAM permits our Linux
binaries to execute on both Xen 2 and Xen 3.

L4 microkernel back-end: The L4 API is a set of
portable microkernel abstractions, and is thus high-level.
The API is very different from Xen’s x86-specific API, yet
soft layering supports both, and we use the same x86 front-
end for both.

For performance reasons, we associate one L4 address
space with each guest address space. We switch the L4
address spaces upon privilege changes (such as at iret).
The VAM can update the shadow L4 space optimistically or
lazily, since it has TLB semantics.

Network device emulation: We implemented a device
model for the DP83820 gigabit network card, for we pre-
dicted that its features would support high-speed batching
between the guest and the hypervisor. The DP83820 device
interface supports packet batching in producer-consumer
rings, and packets are guaranteed to be pinned in memory
for the DMA operation, supporting zero-copy sending in a
VM environment.

We split the DP83820 model into a front-end and a back-
end. The front-end models the device registers, applies
heuristics to determine when to transmit packets, and man-
ages the DP83820 producer-consumer rings. The back-end
sends and receives packets via the networking API of the
hypervisor.

We implemented a back-end for the L4 environment.
The back-end forms the network client in the L4 device
driver reuse environment [17].



4. Evaluation

We assessed the performance and engineering costs
of our implementation, and compare to high-performance
para-virtualization projects that use the same hypervisors.
We also compare the performance of our pre-virtualized bi-
naries running on raw hardware to the performance of native
binaries running on raw hardware.

On x86, the hypervisors are the L4Ka::Pistachio micro-
kernel and the Xen 2.0.2 hypervisor. The para-virtualized
OSes are L4Ka::Linux 2.6.9, XenoLinux 2.6.9, and Xeno-
Linux 2.4.28.

On Itanium, the hypervisors are Xen/ia64, vNUMA, and
Linux 2.6.14. The para-virtualized OS is XenoLinux 2.6.12.

4.1. Performance

We perform a comparative performance analysis, using
the guest OS running natively on raw hardware as the base-
line. The comparative performance analysis requires sim-
ilar configurations across benchmarks. Since the baseline
ran a single OS on the hardware, with direct device access,
we generally used a similar configuration for the hypervisor
environments: a single guest OS ran on the hypervisor, and
had direct device access.

The benchmark setups used identical configurations as
much as possible, to ensure that any performance differ-
ences were the result of the techniques of virtualization. We
compiled Linux with minimal feature sets, and configured
the x86 systems to use a 100Hz timer, and the XT-PIC (our
APIC model is incomplete). Additionally, on x86 we used
the slow legacy int system call invocation, as required by
some virtualization environments. On Itanium, there was no
problem using the epc fast system call mechanism, which
is the default when using a recent kernel and C library.

The x86 test machine was a 2.8GHz Pentium 4, con-
strained to 256MB of RAM, and ran Debian 3.1 from the
local SATA disk. The Itanium test machine was a 1.5Ghz
Itanium 2, constrained to 768MB of RAM, running a recent
snapshot of Debian ‘sid’ from the local SCSI disk.

Most performance numbers are reported with an approx-
imate 95% confidence interval, calculated using Student’s t
distribution with 9 degrees of freedom (i.e., 10 independent
benchmark runs).

4.1.1. Linux kernel build

We used a Linux kernel build as a macro benchmark. Each
kernel build started from a freshly unpacked archive of the
source code, to normalize the buffer cache.

Table 1 shows the results for both Linux 2.6 and 2.4.
The baseline for comparison is native Linux running on
raw hardware (native, raw). Also of interest is comparing

Time CPU O/H
System [s] util [%]
Linux 2.6.9 x86
native, raw 209.2 98.4%
NOPs, raw 209.5 98.5% 0.15%
XenoLinux 218.8 97.8% 4.61%
Xen VAM 220.6 98.8% 5.48%
L4Ka::Linux 235.9 97.9% 12.8%
L4 VAM 239.6 98.7% 14.6%
Linux 2.4.28 x86
native, raw 206.4 98.9%
NOPs, raw 206.6 98.9% 0.11%
XenoLinux 215.6 98.6% 4.45%
Xen VAM 219.5 98.9% 6.38%
Linux 2.6.12 Itanium
native, raw 434.7 99.6%
NOPs, raw 435.4 99.5% 0.16%
XenoLinux 452.1 99.5% 4.00%
Xen VAM 448.7 99.5% 3.22%
vNUMA VAM 449.1 99.4% 3.31%
Linux 2.6.14 Itanium
native, raw 435.1 99.5%
Linux VAM 635.0 98.4% 45.94%

Table 1. Linux kernel build benchmark. The
“O/H” column is the performance penalty rel-
ative to the native baseline for the respective
kernel version. Data for x86 have a 95% con-
fidence interval of no more than ± 0.43%.

pre-virtualized Linux (Xen VAM) to para-virtualized Linux
(XenoLinux), and comparing a pre-virtualized binary on
raw hardware (NOPS, raw) to the native Linux binary run-
ning on raw hardware.

The performance degradation for the Xen VAM is due
to more page-table hypercalls. The performance degrada-
tion of the L4 VAM is due to fewer structural modifications
compared to L4Ka::Linux. On raw hardware, performance
differences between the annotated and padded binaries were
statistically insignificant.

4.1.2. Netperf

We used the Netperf send and receive network benchmarks
to stress the I/O subsystems. Our benchmark transferred
a gigabyte of data at standard Ethernet packet size, with
256kB socket buffers.

Table 2 shows the send performance and Table 3 the
receive performance for Netperf. In general, the perfor-
mance of the pre-virtualized setups matched that of the
para-virtualized setups. Our L4 system provides event
counters which allow us to monitor kernel events such as
interrupts, protection domain crossings, and traps caused



Xput CPU cyc/B
System [Mb/s] util
Linux 2.6.9 x86
native, raw 867.5 27.1% 6.68
NOPs, raw 867.7 27.3% 6.73
XenoLinux 867.6 33.8% 8.32
Xen VAM 866.7 34.0% 8.37
L4Ka::Linux 775.7 34.5% 9.50
L4 VAM 866.5 30.2% 7.45
Linux 2.4.28 x86
native, raw 779.4 39.3% 10.76
NOPs, raw 779.4 39.4% 10.81
XenoLinux 778.8 44.1% 12.10
Xen VAM 779.0 44.4% 12.17

Table 2. Netperf send performance of various
systems. The column “cyc/B” represents
the number of non-idle cycles necessary to
transfer a byte of data, and is a single figure
of merit to help compare between cases of
different throughput. Data have a 95% confi-
dence interval of no more than ± 0.25%.

by guest OSes. Using those we found the event-counter
signature of the para-virtualized Linux on L4 to be nearly
identical to that of the pre-virtualized Linux on L4.

4.1.3. Network device model

We also used Netperf to evaluate the virtualized DP83820
network device model. A virtualized driver, by definition,
has indirect access to the hardware. The actual hardware
was an Intel 82540, driven by a device driver reuse environ-
ment [17] based on the L4 microkernel. In this configura-
tion, the Netperf VM sent network requests to a second VM
that had direct access to the network hardware. The second
VM used the Linux e1000 gigabit driver to control the hard-
ware, and communicated via L4 IPC with the Netperf VM,
to convert the DP83820 device requests into requests for the
Intel 82540.

In the baseline case, the Netperf VM used a custom
Linux network driver to communicate with the VM con-
trolling the Intel 82540.

Table 4 shows the Netperf send and receive results. Per-
formance is similar, although the pre-virtualized device
model required slightly less CPU resource, confirming that
it is possible to match the performance of a customized
virtual driver, by rewriting fine-grained device register ac-
cesses into efficient downcalls. The number of device reg-
ister accesses during Netperf receive was 551k (around
48k/s), and during Netperf send was 1.2M (around 116k/s).

Xput CPU cyc/B
System [Mb/s] util
Linux 2.6.9 x86
native, raw 780.4 33.8% 9.24
NOPs, raw 780.2 33.5% 9.17
XenoLinux 780.7 41.3% 11.29
Xen VAM 780.0 42.5% 11.65
L4Ka::Linux 780.1 35.7% 9.77
L4 VAM 779.8 37.3% 10.22
Linux 2.4.28 x86
native, raw 772.1 33.5% 9.26
NOPs, raw 771.7 33.7% 9.33
XenoLinux 771.8 41.8% 11.58
Xen VAM 771.3 41.2% 11.41

Table 3. Netperf receive performance of var-
ious systems. Throughput numbers have a
95% confidence interval of ± 0.12%, while the
remaining have a 95% confidence interval of
no more than ± 1.09%.

Xput CPU cyc/B
System [Mb/s] util
Send
L4Ka::Linux 772.4 51.4% 14.21
L4 VAM 771.4 49.1% 13.59
Receive
L4Ka::Linux 707.5 60.3% 18.21
L4 VAM 707.1 59.8% 18.06

Table 4. Netperf send and receive perfor-
mance of device driver reuse systems.

4.2. Engineering effort

The implementation effort is in the same order of mag-
nitude as para-virtualization for a single kernel version, but
the VAM is reusable across many guest operating systems
and their many versions. Table 5 shows a breakdown of
lines of source code for the individual x86 VAMs and shared
code for each platform.

The DP83820 network device model is 1055 source lines
of code, compared to 958 SLOC for the custom virtual net-
work driver. They are very similar in structure since the
DP83820 uses producer-consumer rings; they primarily dif-
fer in their interfaces to the guest OS.

In contrast, in Xen [3], the authors report that they modi-
fied and added 1441 sources lines to Linux and 4620 source
lines to Windows XP. In L4Linux [15], the authors report
that they modified and added 6500 source lines to Linux
2.0. Our para-virtualized Linux 2.6 port to L4, with a focus



Type Headers Source
Common 686 746
Device 745 1621
x86 front-end 840 4464
L4 back-end 640 3730
Xen back-end 679 2753

Table 5. The breakdown of lines of source
code for the x86 VAMs, counted by SLOC-
count.

on small changes, still required about 3000 modified lines
of code [17].

5. Related work

Co-design of a hypervisor and an OS has existed since
the dawn of VMs [8, 13]. Several microkernel projects
have used it with high-level changes to the guest ker-
nels [14,15]. Recent hypervisor projects have called it para-
virtualization [3, 20, 27].

Some VM projects have added strict virtualization to ar-
chitectures without such support. Eiraku and Shinjo [12]
offer a mode that prefixes every sensitive x86 instruction
with a trapping instruction. vBlades [20] and Denali [27]
substitute alternative, trappable instructions for the sensi-
tive instructions.

All major processor vendors support virtualization ex-
tensions in their processor lines, yet performance benefit
comes from executing virtualization logic within the guest
kernel [1]. Soft layering permits sophisticated state ma-
chines to execute within the domain of the guest OS, es-
pecially for devices (which are unaddressed by the exten-
sions). The hardware extensions can transform general
purpose OSes into full-featured hypervisors, creating even
more demand for the modularity of soft layering.

Customization of software for alternative interfaces is a
widely used technique, e.g. PowerPC Linux uses a func-
tion vector that encapsulates and abstracts the machine in-
terface. This manually introduced indirection allows run-
ning the same kernel binary on bare hardware and on IBM’s
commercial hypervisor.

User-Mode Linux (UMLinux) uses para-virtualization,
but packages the virtualization code into a ROM, and modi-
fies the Linux kernel to invoke entry points within the ROM
in place of the sensitive instructions [16]. Additionally,
UMLinux changes several of Linux’s device drivers to in-
voke ROM entry points, rather than to write to device regis-
ters; thus each device register access has the cost of a func-
tion call, rather than the cost of a virtualization trap.

VMware’s proposal [2, 26] for a virtual machine inter-
face (VMI) shares many of our goals. The first version

used a ROM invoked by function calls as in the UMLinux
project, but designed for dynamic linking at load time with
emulation code specific to the hypervisor (including di-
rect execution on hardware). After the first VMI version
became public, we started contributing to its design, and
VMware evolved it into an implementation of soft layering
with no-op instruction padding and function entry points
in the ROM. VMI deviates from the base instruction set
more than our reference implementation. It provides addi-
tional semantic information with some of the instructions.
It lacks a device solution. VMI is aimed at manual appli-
cation to the kernel source code. The Linux community
has reduced the scope of VMI, creating a new interface
called paravirt ops (to which we also participated).
paravirt ops requires all hypervisor mapping modules
to be available at Linux compile time (which discards the
modularity benefits of virtualization, such as upgrading the
hypervisor to a new interface). Yet VMI can be one of those
mapping modules, thus permitting the advantages of soft
layering for Linux.

6. Conclusion

We presented the soft layering approach to hypervisor-
OS co-design, which provides the modularity of traditional
virtualization, while achieving nearly the same performance
as established para-virtualization approaches. Soft layering
offers a set of design principles to guide the modifications
to an OS, with a goal to support efficient execution on a va-
riety of hypervisors. The principles: (1) permit fallback to
the neutral platform interface, and (2) adapt at runtime to the
interfaces that competitors may provide. Our reference im-
plementation, called pre-virtualization, also reduces the ef-
fort of para-virtualization via automation. We demonstrated
the feasibility of pre-virtualization by supporting a variety
of very dissimilar hypervisors with the same approach and
infrastructure.
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