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In the present doctoral thesis the development of a quantitative phase-field model
for modeling phase transitions in multi-component sytems is presented. The work is
categorized into four main sub-divisions listed as,

∙ Exemplary applications of the phase-field method in modeling solidification

∙ Modifications to an existing phase-field model

∙ Asymptotics

∙ Validation

To start with, investigations are performed with the aim of modeling some essential
features in the process of solidification using the phase-field model of H.Garcke and
B.Nestler and others [79], for dendritic growth, binary eutectic, peritectic and ternary
eutectic systems. Apart from being of scientific importance, aiding in the understanding
of the physics of solidification in various phenomena, the studies lay a foundation of basic
knowledge required for the development of a quantitative phase-field model, highlighting
the challenges to be overcome in the development of an effective model. Following, is the
general overview of the overall work performed.

1.1. Exemplary applications of the phase-field method in
solidification

Two studies of interest are presented: (I) Growth in the (Fe-C) peritectic system, of
𝛿 (ferrite(pro-peritectic phase)) and the 𝛾 (austenite(peritectic phase)) [19]. The free
energy of the phases were modeled using the ideal solution model such that the liquidus
and solidus slopes along with the concentrations of the respective phases at the peritectic
temperature fit to the actual phase diagram. The model parameters related to the
interface width and surface excesses were adjusted to derive the surface energy of the
different interfaces presented in literature or the intended value to be set in the simulations.
Although the surface energies of the solid-liquid interfaces are known quite accurately,
the solid-solid surface energies 𝜎̃𝛼𝛿 are unknown. In this study a range for the solid-solid
surface energies is derived on the basis of the occurence of the engulfing morphology(pro-
peritectic phase engulfing the peritectic phase above the peritectic temperature, and
vice-versa below the peritectic temperature.) It is noticed that the solid-solid surface
energies, strongly influence this growth morphology at given supersaturations, enabling
the isolation of such a range in the solid-solid surface energies. In addition, critical
nuclei are numerically calculated through the solution of the Euler-Lagrange equations
comprising of the stationary phase-field and the concentration equations. Through this,
the homogeneous barrier to nucleation is computed for the nucleation of the 𝛿 and 𝛾
phases in the liquid at various compositions. As the Fe- concentration increases, it
becomes more favorable to nucleate both phases. Simulations of nucleation events are
performed with stochastic noise coupled with dendritic growth of the pro-peritectic
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phase and the sites of nucleations in the non-uniform concentration field, confirm to the
predictions derived from the calculations of the barrier to nucleation.

(II) The second example used for the investigation of solidification is the study of
ternary eutectics [20]. In particular, special attention is devoted to configurations during
thin-film growth. In contrast to binary eutectics where the only possibility is 𝛼𝛽 . . ., there
exists a number of possibilities for the growth patterns of ternary eutectics in thin-film
growth, eg 𝛼𝛽𝛾 . . . 𝛼𝛽𝛼𝛾 . . .. A theoretical study is performed of the Jackson-Hunt type
for the various configurations, resulting in expressions of the undercooling as functions
of lamellae spacing for given velocities. Corresponding comparisons were made with
simulations for a symmetric ternary eutectic system modeled using ideal free energies.
Good aggreement was achieved between the simulations and theory in the prediction
of the spacings at minimum undercooling and the undercoolings themselves. For large
spacings, the lamellae exhibit oscillatory instabilities. The symmetry elements present
in the different configurations match those of the underlying symmetry elements of
the configuration. Some of these symmetries match those found previously for binary
eutectics. Although some of the symmetry modes are pertinent with respect to the
specially constructed, symmetric phase diagram, their occurence in real alloys cannot
be ruled out without an examination. An additional instability that was found for
configurations other than the simplest configuration 𝛼𝛽𝛾, is that below a particular
lamella spacing, the lamella are unstable towards elimination. The critical spacing
below which this instability occurs, can be well explained on the basis of the theoretical
calculations. Furthermore, simulations of directional solidification of bulk samples in
three dimensions is also performed. Two types of morphologies were isolated depending
on the concentration and the symmetry of the phase diagram. For the symmetric phase
diagram at the eutectic temperature, a hexagonal pattern was achieved in the cross-
sectional view, starting from a random configuration. For a slightly asymmetric phase
diagram a semi-regular brick structure is obtained which is also observed in experiments.
While this does not cover all the possibilities, it certainly presents an outlook into the
variety of structures.

1.2. Model modification

On the basis of these two studies, there were two conclusions with respect to the
applicability of the model for the case of phase transformation in real alloys. With
regards to the length scale that can be simulated, it was noticed that there exists
considerable limitations to the grid resolution that can be used, and in most cases
this presents a significant computational overhead. It has been well established in
literature, that when the free energies are interpolated in the form used in the WBM
type models[134], there exists an additional length-scale coming from the variation of
the grand potential excess across the interface [15, 55, 77, 114]. For systems, in which
this term becomes largely dominant, the surface energy and the interface thickness loose
their independence (surface energy and interface thickness are usually, two independent
parameters in simulations). This limits, the interface widths to smaller values, and hence
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the domains that can be simulated. Consequently, this results in a limitation in the
physical sense, because the processing conditions that can be simulated with such an
approach gets narrower. Additionally, one must pre-calculate the contribution of the
chemical free energy excess to the surface energy, in order to choose the right simulation
parameters. On a more technical note, it is also diffcult to perform the thin-interface
asymptotic analysis (described later) for such a model, because, the equilibrium properties
scale with the interface thickness. This challenge motivates a change in the modeling
idealogy with the following aims,

∙ Construction of a model with efficient flexibility in choosing the right parameters,

∙ Easy applicability and extendability to any alloy system,

∙ Performing of thin-interface asymptotics with universally applicable results.

In literature, there exists two types of modeling idealogies for deriving a phase-field
model, where the equilibrium properties such as the surface energies are independent of
the free energies of the respective phases. In the first type, the functional argument is just
the concentration field [30], while in the other [55], the arguments are the concentration
fields corresponding to respective phases in the system, eg: 𝑐𝛼, 𝑐𝛽 etc. In the case
where a single concentration field is used, the free energy contribution is decomposed
into enthalpic and entropic contributions which are interpolated independently, such
that at equilibrium there is no contribution from the free energies to the equilibrium
phase-field profile, wheras for the case where different concentration fields are used for
the respective phases, the concentration at a given point is written as an interpolation
of the individual phase concentrations, and the equation is closed with the condition
of equilibrium chemical potential among the phases, or alternatively a known partition
relation among the phase concentrations which enables the determination of the phase
concentrations. These are then utilized in the determination of the driving force for phase
transformation. The common basis for both idealogies however, is that the driving force
for phase transformation is the difference of the grand potentials of the phases, at the
same chemical potential. Through this construction, it is evident that at equilibrium,
there exists no terms arising from the chemical system, which contribute to the solution
of the equilibrium phase-field profile, implying that the equilibrium properties such as
the interfacial energies can be fixed independently of the free energy of the respective
phases.

With this motivation a new model is derived, starting from a grand potential functional
instead of the free energy functional (previous models) with the thermodynamic variable
as the chemical potential instead of the concentration field. It is shown that, with this
modification it is possible to get rid of the excess contribution to the interface and the
length scale related to the interface thickness, is then independent of the chemical system
one is simulating. This provides for significant flexibility in the applicability of the model
for different alloy systems. This work bears co-incidental resemblance to the work by
M.Plapp [91]
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1.3. Asymptotics
In performing quantitative simulations, it is essential to acquire knowledge of the mapping
of the model to the respective free boundary problem one is attempting to solve. To
achieve this, we require to perform an asymptotic analysis. In this context, there are two
limits, namely: the sharp interface limit (interface thicknesses tending to zero) and the
thin-interface limit (interface thickness, remains finite, but small in comparison to the
diffusion length). While the sharp-interface limit is relevant when the simulations are
performed with very small interface thicknesses, the more technically relevant one is the
thin-interface limit, since this allows one to retrieve the same free boundary problem but
with length and time scales that are computationally accesible.
One of the key parameters, to fix in phase-field simulations, is the relaxation constant 𝜏
which relates to the relaxation of the interface. In most, mesoscopic simulations however,
one is interested, only in the diffusion controlled growth regime. This implies, that
the phase boundaries relax infinitely fast when imposed with a change in the coupled
concentration field. This is achievable in the framework of a time dependent free boundary
problem in the thin-interface limit previously derived by Karma [48]. The principal
result states, if one derives, the expression for the interface kinetic coefficient, in the
thin-interface limit, there exist parameters such that vanishing interface kinetics can be
achieved. Whereas, in literature we derive that, this has been performed for the case of
the double-well type potentials, in the present work, the thin interface limit is extended
for the case of double-obstacle potentials.

While this limit makes effective use of thicker interfaces, there are some assosciated
problems. With the use of thicker interfaces, there exist certain corrections one must
include in the asymptotics to simulate the right free boundary problem [6]. These have
been elaborately evaluated for both solutal and thermal problems, but for normally used
double well potentials. The principal result in the analysis concludes that among the
three thin-interface defects, two of them: surface diffusion and interface stretching are
simultaneously absent, if odd-interpolation polynomials are used for interpolation of the
diffusion constants of the phases and the free energies. However, such a choice makes it
impossible to get rid of the third interface defect which is solute trapping. Solute trapping
is a chemical potential jump at the interface resulting from asymmetric diffusivities of
the two phases. Present models use a non-variational approach of using an anti-trapping
current [46], to remove this jump at the interface. This has however been derived only
for potentials of the smooth well type. In this analysis, the correpsonding expressions for
the thin-interface kinetic coefficient and the expression for the anti-trapping current are
derived for the the case of the double obstacle potential. Following is the summary of
the goals achieved [18]:

∙ Development of a model based on grand potential functional

∙ Removal of additional limiting length scale resulting from variation of grand chemical
potential excess at the interface

∙ Equilibrium properties such as surface tension are independent of the chemical free
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energy of the system

∙ Thin-interface asymptotics for the case the double obstacle potential

∙ Derivation of the kinetic coefficient in the thin-interface limit

∙ Derivation of the anti-trapping current for the double obstacle potential and a
multi-component system, with vanishing diffusivity in the solid

1.4. Validation of the model
The model and its modifications are tested for real alloy systems. First, is the investigation
of dendritic growth in the Al-Cu system. Comparisons are made with the analytical
dendritic growth theories (LGK) and good aggreement is achieved. Among binary and
ternary eutectics, the asymptotics and the model are tested with respect to theorectical
expressions derived for coupled growth derived previously. In addition, the model is
applied for the case of the Al-Cu-Ag alloy for the modeling of three-phase eutectic growth.
A generalized route for the construction of free energy data, utilizing the essential
information from databases, is constructed. Using this, some preliminary morphologies in
2D are presented at growth conditions relevant in directional solidification experiments.
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2.1. Introduction

In the past decades, the phase field method has become an important tool to describe
microstructure evolution during phase transformations. In particular, considerable
advancements have been made in the field of modeling phase evolution in multi-component
systems. The areas of application though initially limited to solidification have spread to
many a phenomena, involving solid-state diffusion, deformation behavior, heat treatment,
re-crystallization, grain boundary pre-melting, grain coarsening etc. The phase-field
approach’s popularity is due to the elegance with which it treats moving boundary
problems earlier in the regime of sharp interface methods. The interface representing
the boundary between two mobile phases is replaced with a smoothly varying function
called a phase-field, whose change represents phase evolution. This approach obviates the
necessity to track the interface and hence makes large scale simulations of microstructure
evolution involving complicated geometrical changes computationally tractable. The
application of the phase-field method starts with the creation of the functional which
includes the material properties involving both the surface properties of the interfaces
in the system and the thermodynamic energy of the bulk phases in the system. A
variational derivative of this functional with respect to any of the changing phase-field
variables, gives us the driving force for the change. Depending on whether we are treating
a pure component or multi-component system this driving force is a function of just the
temperature or includes the compositions of the different components in the system also
as variables. The source of thermodynamics of the bulk phases, are derived in a number
of ways, starting from ad-hoc methods to creation of simpler thermodynamic models or
the direct use of the well known Calphad databases.

This review is an attempt to gauge the applications of the phase field method in
simulating the processing situations involving multi-component materials. Such a review
would however be incomplete without a prior mention of the sequence of developments
in the phase field method which has made such applications possible. In the following,
we list some of these landmark developments and try to put them in context of the final
goals that were achieved.

2.1.1. Model evolution

The phase field method originated as a branch of continuum theory and various instances
have appeared in literature [14, 35, 39], while the first formulation of phase field equations
to describe solidification can be found in the works by Langer [63] which were in turn
based on the Model C of Halerpin, Hohenberg [39]. Similar independent models on pure
metals were proposed by Collins and Levine [65], building up to the first large scale
simulations of dendritic growth from pure melts which were performed by Kobayashi [61].
In these earlier works, the free energy formulations are ad-hoc, and motivation for the
formulation of thermodynamically consistent models led to evolution equations being
derived from a single Lyaponov type entropy functional, ensuring local maximization
of entropy, [88, 124, 129] for two phase binary alloy systems. Later similar consistent
models incorporating a generic formulation for treating multi-phase, multi-component
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models were proposed by Nestler and co-workers[33, 79]. However, the first multi-phase
models are found in an earlier work by Steinbach et al. [108], where the free-energy
formulation is ad-hoc.

Following the investigations of Caginalp and co-workers, [13] to relate the phase-field
evolution equations to the sharp interface free-boundary problem along with the analysis
of the attempts at quantitative comparison by Wang and Sekerka [123] and Wheeler et
al., [136], makes it quite clear, that the parameters such as the kinetic coefficient and the
capillary length derived from the sharp interface limit (the interface width going to zero)
leads to quite stringent restrictions on the interface width for quantitative simulations,
which in turn presents immense challenges on the computational side. Accompanying this
problem, is the simulation of structures at the small interface kinetics limit, i.e., growth
structures at low undercooling. In a time dependent free boundary problems (TDFBP),
apparently it is evident that if one goes by the sharp interface limit, the kinetic coefficient
will remain finite and hence, only simulations with interface kinetics can be performed.
Solutions to this were extended by Karma [48] through the concept of Thin interface
limit where the interface width remains non-zero, but much smaller compared to the
mesoscopic diffusion length of the problem, which is the most relevant for the problems
with a Stefan boundary condition. Although, the study is for pure metals where the
phase evolution equations is coupled with the temperature field, later it is extended
to the case of binary alloys, with constant partition coefficient and diffusivity through
combined work with Losert and co-workers [72]. While this particular formulation is
for a particular choice free energy density, a general procedure for the mapping of any
phase-field model to its sharp interface limit is described in the investigation by Provatas
et al. [28].

Dendritic solidification in the whole range of undercoolings still remains a challenge.
It has been established that if the thin-interface correction is properly incorporated most
phase-field models irrespective of their thermodynamic consistency, converge identically
with similar computational costs for a given range of undercoolings. This range is
identified as region where the interface peclet number (ratio of the interface width and
the diffusion length) is small [59]. The convergence of a given phase-field model depends
on the particular formulation, however, all phase-field models deviate from the intended
sharp free boundary problem for higher interface peclet numbers. Since, at a given
undercooling and strength of anisotropy, the velocity is fixed, the only degree of freedom
that remains for adjusting the interface peclet number is the reduction of the interface
width. This proves to be computationally expensive for large undercoolings (small
diffusion length). For lower undercoolings larger interface widths can be used, but larger
simulation domains are necessary which require efficient computational algorithms. To
this end, adaptive mesh methodologies [94] and random-walker algorithms [92] prove
quite helpful.

In the application of the phase field method, the WBM (Wheeler, Boettinger, Mc-
Fadden) model [134] and the related formulation of free energy densities became quite
popular. Kim [56] however, showed the existence of a potential excess, arising from the
variation of the grand chemical potential across the interface at equilibrium, which is
also previously illustrated in the works of WBM. The novelty is, that they show how
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this excess from the particular formulation of the free energy restricts the choice of the
interface width for a given surface tension. Since the resolution of the interface is related
to the domain that can be simulated (in a regular grid structure), this presents serious
challenges to the computations that can be performed. Tiaden etal. [114] propose a
solution to this problem by adopting different concentration fields for the solid and the
liquid, connected to each other through a partition coefficient, which is a function of
velocity. This is also thermodynamically consistent for dilute binary alloys. Kim and
co-workers [56] provide an extension by also considering the concentration at a point to be
a mixture of concentrations of the solid and liquid phases, but the individual compositions
are corresponding to the parallel tangent construction between the free energy curves of
the respective phases in contact. Both methods relax the restriction placed on the choice
of interfaced widths. Models following similar lines as Kim, have also been proposed
by Cha et al. [16]. Later, some more related variational and non-variational methods
of getting around this problem were formulated by Plapp et al. [31, 32] for two phase
eutectic solidification, without the use of separate concentration fields for the solid and
the liquid.

The second problem is related to the choice of thicker interfaces which leads to the
modification of the Stefan condition. The aggregate of modifications to the Stefan
boundary condition due to the choice of a finite interface thickness came to be called Thin
Interface defects and a rigorous mathematical description of each of these defects are
found in investigations by Almgren and Mcfadden, [6, 75] for pure melts with asymmetric
diffusivities for the transport of heat, while similar effects are also shown to exist in
alloys [46]. The thin interface defects discussed in these studies are three in number. Of
them, the defect of solute trapping was earlier discussed in the work by Kim and Ahmad,
[1, 55]. In real materials the diffusivity of the solid is much lower compared to that in the
liquid, which is different from the assumptions by Losert et al. [72]. The asymmetry in
diffusion constants causes the asymptotic limits of the chemical potentials at the interface,
resulting on the liquid and solid side of the interface, to be different. This difference is a
function of velocity and the width of the interface, causing a chemical potential jump
at the interface also called solute trapping. Although this is a phenomena seen to occur
in materials science during rapid solidification, the difficulty arises from the fact that
the magnitude of the solute trapping effect scales with the interface widths, which being
chosen orders of magnitude higher for the phase field simulations, than that in a real
material, gives rise to significant solute trapping at velocities where it would be negligible
in a real alloy. The second, known as the surface diffusion resulting from the mismatch
of the fluxes on the solid and liquid sides of the interface, and the third is interface
stretching that results because for a solid growing with a convex interface into the liquid,
the source of the solute on the solid side is over a smaller area compared to that on
the liquid side because of the curvature of the interface, over a finite thickness. The
physical interpretations of the defects are elaborated in the explanations on quantitative
modeling by [30]. It is illustrated, that the solution to the problems, is related to the
appropriate choice of interpolation polynomials. However, due to the restriction of the
number of interpolation polynomials, it is generally agreed that all three effects cannot
be simultaneously taken care of, while maintaining reasonable bounds of computational
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efficiency. Presently there exists no phase-field model which removes all three effects using
a variational formulation. Therefore, while the problems of surface diffusion and interface
stretching can be corrected through the use of suitable interpolation polynomials, the
problem of solute trapping is removed using a non-variational formulation as suggested by
Karma et al. [30, 46], by using an anti-trapping current which is a current of solute from
the solid to the liquid. Another solution, to limit the thin interface defects, is proposed
by Kim et al. [57], where they decouple the solute and the phase-fields, since the problem
of solute trapping arises because of the variation of the solute field over a larger diffuse
area than the interface. The diffusion field for the solute is limited to suppress the thin
interface effects. However, in practice it is found that in calculations, one needs to use a
diffuse length of the solute field slightly larger than the grid size Δ𝑥, which makes the
solute trapping effect still appreciable. Later, the earlier phase-field model of Kim et al.
[56] was extended to multi-component systems,[54], with the additional removal of the
thin interface defects using an anti-trapping current formulation. Provatas et al. [84]
present an extension of the model of Eschebaria et al. [30] to treat multi-phase binary
alloys.
The complete problem of microstructure evolution in material science normally involves
the coupling of the thermal and solute fields. This coupling is however a challenge in
simulations, as the heat and solute diffusion operate on different time scales with the
thermal diffusion being much faster. Phase field modelling of this coupled phenomena was
first performed by Boettinger and Warren [11], where they ignore the spatial variation of
the temperature field, and the temperature field is computed from heat balance equation
between the imposed heat extraction rate and the released latent heat. It was found
later that this is valid only for low undercooling [71] where the authors compare the
temperature fields computed by exactly solving the diffusion equations for the internal
energy, and those from average heat balance equation coupled with the isothermal model.
The model proposed however, has thin interface effects, which are absent in a later
model proposed by Ramirez and Beckermann [99]. The diffusive time scales for heat and
mass transfer are comparable during rapid solidification of alloys and hence the problem
becomes more tractable. The thermal and solute-field coupling in rapid solidification
problems are treated in the works by Conti et al. [21, 22].

Along with the massive developments to make quantitative simulations of real materials
feasible, model adaptations to treat other phenomena, like nucleation were proposed by
Granazy et al. [37, 115, 131] in solid-liquid transitions, while in solid state precipitation,
similar models were formulated by Simmons and co-workers [106].
It has long been the aim of the phase field community to treat real materials and the
significant step towards this, comes through the use of free energy of the different phases,
directly from the proven and tested CALPHAD databases. The first attempts are found
in the model adaptations proposed by [15, 36, 96]. In recent works, the usage of the
CALPHAD databases, and its direct coupling to phase-field solvers has become more
frequent and has spread to a variety of applications, which will be highlighted as we take
an overview in the later sections.

In the following sections, we present the various applications of the phase field models.
In the first section, we list the studies using idealized model systems constructed for
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studying the physics of a particular solidification process, followed by applications where
real thermodynamic databases were used for the simulations in various processes and
concluding with an outlook for the application of the phase field method to different
phenomena and resolving of other research issues.

2.2. Phase-field applied to problem of solidification
Solidification is the phenomena most extensively studied using the phase-field method.
The types of solidification reactions range from pure metal solidification, eutectic (liquid
on solidifying giving rise to one or more solids), peritectic (liquid on reaction with a solid
gives another solid) and monotectic solidification (liquid on solidification gives a solid
and another liquid). Each of these types have been explored by the phase-field method.
In this section, we list down the studies where the central point is to understand the
physics accompanying the evolution process. Most investigations in this section involve
the use of free energy densities which are created in an ad-hoc manner or are generated
through simpler thermodynamic models which do not influence the final inferences.

2.2.1. Dendritic solidification
Dendritic solidification is ubiquitous in materials science and has long intrigued materials
scientists and physicists, as to what are the parameters and conditions, which lead to this
instability. Although a lot of understanding has been gained about the physics of this
effect, simulations or experiments are necessary to characterize the materials response to
processing conditions. In this regard the phase-field simulations come to be of much use.

Beginning with the first large scale simulation of thermal snow flake dendrites by
Kobayashi [61], parallel attempts at quantitative comparisons were made by Wheeler et
al. [136], where the morphology of dendrite tip is compared to needle crystal solutions
proposed by Ivantsov for pure Ni dendrites. Along with this, investigation of the operating
state of the dendrite tip and matching with the marginal stability criterion and the
micro-solvabilty theories is also carried out. The first simulations of solutal dendrites
in a Ni-Cu system are found in the studies of Warren and Boettinger [130] who employ
a thermodynamic consistent model for the investigation. Fig. 2.1 shows an illustrative
phase-field simulation of a three dimensional (3D) Al-Cu dendrite. The thin interface limit
for crystallization of pure materials [48, 50] earlier proposed by Karma for pure metals
and later extended along with Losert and co-workers [72] for a binary alloy (Succinonitrile-
Coumarin), is used for studying the range of wavelengths for the formation of stable
singlets, doublets, and unstable transient patterns on perturbation of a planar interface.
These works illustrate that one can choose an interface width in the mesoscale range and
still perform phase-field simulations independent of interface kinetics. Thus, quantitative
simulations become theoretically possible also in the range of low undercooling. These
studies demonstrated the usefulness of the method, however, quantitative applications
to real materials are only possible with the introduction of the anti-trapping current
[46] along with solution to the other thin interface defects that arise due to asymmetric
diffusivities in the phases [6]. Parallel to these developments, the phase field method
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Figure 2.1.: 3D Al-Cu dendrite simulated using a thermodynamically consistant phase-field
method, with four fold cubic anisotropy. Secondary arms are initiated through
noise. An ideal solution model was assumed for the liquid and solid free energies.

has been applied to different areas of materials research, such as solidification of bulk
metallic glasses, where it is used for studying dendritic to globular transitions in ternary
Ni60Cu40−𝑥Cr𝑥 [25]. A morphology map, showing the change in the microstructure
from dendritic to globular morphology, as a function of the Cr concentration is derived.
Concentration profiles, measured in experiments and computed in phase field simulations
during solidification of multi-component metallic glass composites, are compared and
good agreement is found in the works by Huang et al. [43] and Nestler et al. [78]. The
phase-field method is also used in the simulation of dendritic solidification in industrial
alloys, where higher order Redlich-Kister polynomials are used by Wang [121] for the
description of the free energies of the hexagonal 𝛼−𝑀𝑔 phase and the melts in the AZ91D
Mg rich Al-Mg alloy. Both thermal and solute fields are solved and a 3D hexagonal
anisotropy in the kinetic coefficient and the surface energy, reproducing stacking of 2D
hexagonal plates is proposed.

2.2.2. Eutectic solidification

Eutectic alloys are useful for their low melting properties and also for their mechanical
properties given the structure is uniform at the finest scale. Hence, a study of these
alloys to gain an understanding of the relation between the processing conditions and
the final microstructure is useful for material scientists. It is also an interesting topic for
physicists because of the number of possible pattern formations. The first phase field
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model, enabling the treatment of the transformation of a liquid to two solid phases was
proposed by Karma, [45]. The model uses the concentration field as an order parameter
to distinguish between the solids, similar to the works of Cahn [14], while a second order
parameter is used, in order to distinguish the solid and the liquid phases. The free
energy surface is created in such a manner that the solid free energy contains two minima
symmetrically placed with respect to the eutectic composition and corresponding to the
two solid phases in the system. A directional solidification set up is created, by setting a
temperature gradient in the growth direction and the equations are solved in the moving
box frame, which is set at an imposed velocity. Comparisons of the angle at the triple
point are found to be in good agreement with the predictions derived out of the Young’s
condition in the sharp free boundary problem. The results of the average interface
undercooling and the minimum undercooling spacing match well to the predictions of the
classical Jackson-Hunt Theory. Similar models, with extensions allowing the free energy
density of the solid phases to differ in their form are proposed by Wheeler et al. [135].

Athough stable coupled growth is commonly observed during eutectic solidification,
they also exhibit certain instabilities during growth of thin and bulk samples. In this
context, phase-field models provide a great means to study the instabilities in the growth
patterns of eutectics which is a big development over the boundary integral method,
which is unable to treat catastrophic changes, like lamella elimination or termination.
Stability of 2D eutectic patterns to lamellae elimination is investigated by Akamatsu and
co-workers [4, 5]. Measurements of the average undercooling of the growth interface from
directional solidification experiments of eutectic Carbontetrabromide-Carbonhexachloride
organic alloy in thin film morphology agree well to calculations from simulations. The
studies reveal that configurations of lamellae with average spacing below the minimum
undercooling spacing can also be observed both in experiments and simulations. This is
however in contradiction to the result which is obtained, if we combine the analysis of
Langer [62] with Cahn’s earlier hypothesis, which states that the growth of the lamellae
is always normal to the local solidification front. Langer uses Cahn’s hypothesis in his
stability analysis of lamellar growth, for small amplitude long wavelength perturbations in
the spacing of large arrays of lamellae. The outcome of the analysis is that configurations
with spacings smaller than the minimum undercooling spacing are unstable and will
eventually die out. Akamatsu and co-workers reason this anomaly in their work by
relaxing Cahn’s growth condition of the local growth velocity being normal to the
interface and put forth a stability analysis, which provides reasoning for the observation.

The presence of a third impurity component in a binary alloy is known to destabilize
a planar two phase eutectic front giving rise to colonies. Plapp and Karma [93], study
this effect of colony formation using the phase field method and obtain qualititative
comparison with their previous stability studies. In the simulations, they show the
breakdown of a solidification front comprising of two solids into two phase cells. There
was however, no steady state envelope found and the structure exhibited tip splitting
and cell elimination events until the very end. It is worthwhile to note that even in these
studies of colonies, Cahn’s hypothesis of growth remaining normal to the solidification
front is weakly violated and the authors believe that this has effects on the stability
properties of the eutectic front.
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The lamellar eutectic growth regime has been shown to exist in a finite range of
spacings around the minimum undercooling spacing. Beyond a threshold spacing, the
patterns bifurcate to different oscillatory patterns 1-𝜆-O and 2-𝜆-O along with tilted
states, and also with mixed instability modes. While the pure oscillatory modes and the
tilted states were studied by Karma and Sarkissan using a boundary integral method
[51] experimental observations of mixed modes in the presence of capillary anisotropy
are found in the works of Ginibre et al. [34]. The first simulations with a multi-phase,
multi-component field model by Nestler et al. [81], illustrate different oscillatory patterns
in 2D, while illustrations of the 1-𝜆-O and 2-𝜆-O modes are shown in Fig. 2.2. The N

(a) (b)

Figure 2.2.: Illustrative 1-𝜆-O (a), and 2-𝜆-O modes seen in binary eutectics.

order parameter approach is an elegant one for treating such multi-phase problems. A
systematic investigation of these instabilities using the phase field method is performed
by Kim et al.[58] and a morphology map is presented based on the composition and the
spacing, while continuing works in 3D showing the possibility of a zig-zag instability are
found in investigation by Plapp and co-workers [87, 90]. These morphologies are also
seen in experiments [2]. More recently structures showing shape morphology transition
from rods to lamellar structures, depending on the composition of the liquid are found in
simulations of 3D directional solidification performed by Parisi et al. [86]. In directional
solidification of a eutectic alloy the microstructure that the system chooses is a function
of the composition in the liquid, among other things. In 3D a number of structures can
be found ranging from rods, to lamellae, in-between structures, with a mixture of two,
and also defect structures such as elongated rods are possible.

2.2.3. Peritectic solidification

Peritectic solidification is an important topic to understand because of the important
materials in industry derived through this process. Most of the materials are for magnetic
and superconducting applications, while a number of them also are useful for high strength
applications, for instance certain super alloys like 𝐴𝑙3𝑁𝑖. A number of microstructures
have been found to exist during peritectic solidification. Among them, include the
engulfing microstructure, in which the peritectic phase grows over the pro-peritectic phase
in the form of spherical nuclei, or infinite plate. These structures have been first studied
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by Tiaden et al. [114] in a Fe-C alloy and then later by Nestler and Wheeler, [81]. In
these studies, the nucleation events of the peritectic phase are explicitly put, and the
question of nucleation sites is unclear. In a recent study [19], an attempt has been made
to resolve this question. Along with this a prediction has also been made on the lower
bound of the solid-solid surface tension for which the engulfing microstructure is found
to exist.

Researchers have long been trying to understand the phenomena of the formation of
different microstructures such as the island growth, banded structures, and coupled growth,
and although theories have been proposed on the mechanisms leading to the formation
of these structures, no quantitative predictions have been possible. The stability of these
morphologies, namely the island and banded structures is examined using the phase-field
model in the work of Lo et al. [69]. The study reveals that the formation of island and
banded structures occurs in the hypo-peritectic region in the absence of convection, which
also corresponds well to existing theories. Below a concentration limit of the solute and
when the lateral size is below a critical value, island structures were found to be stable
else banded structures in 2D are found to evolve.

Coupled growth is another interesting phenomena found in experiments, which has
been studied using a phase field model [26]. The authors find that coupled growth occurs
for select range of parameters and they present a morphology map showing the regime
of coupled growth as a function of the concentration of the liquid, and the G/V ratio
(Thermal Gradient G, Velocity V). In isothermal solidification coupled growth is always
preceded by the formation of islands giving way to 1-𝜆-O oscillations, followed by quasi-
steady coupled growth. In non-isothermal situations (with a temperature gradient), for a
given concentration in the liquid, a range of spacings 𝜆𝑚𝑖𝑛 < 𝜆 < 𝜆𝑚𝑎𝑥 exist, between
which coupled growth is achieved. Outside this range, the structure exhibits oscillatory
instabilities. The striking observation is that, coupled growth structures are also found
in regimes where 𝜕𝑇

𝜕𝜆
is less than zero (Where T is the undercooling). According to

Cahn-Jackson-Hunt theories, coupled growth will be unstable in the region where the
undercooling reduces with increase in lamella spacing. However, as is also found in the
case of eutectic coupled growth, the gradients in spacing can also be relaxed through
lateral motion of the tri-junction points in the presence of a thermal gradient and the
growth envelope is not strictly normal to the local interface shape. The authors believe
that the same mechanism is also qualitatively responsible for the observation of coupled
growth in peritectic solidification i.e. the presence of a temperature gradient provides a
stabilizing force which counteracts the force, causing the engulfing of a lamella.

2.2.4. Monotectic solidification

Monotectic alloys are characterized by the monotectic reaction at a fixed temperature
where a liquid on solidifying gives another liquid and a solid. The phase diagrams of
these systems, have the property that towards one side of the invariant point, (hyper
monotectic region), there exists a miscibility gap in the liquid. Phase separating liquids
are detrimental and hence production technologies are normally designed such as to avoid
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this process. The alloys are however useful in applications such as self-lubrication. To
control the phase separation and the solidification microstructure, one needs to have a
proper understanding of the evolution kinetics and the processing parameters affecting a
given morphology. Since the process of monotectic solidification involves the interaction
of two fluids of differing concentration, a number of physical phenomena resulting from
the coupling of the fluid properties with the diffusion and capillary effects influence the
final microstructure. The first phase field method used for studying this reaction is by
Nestler et al. [82]. Two models are proposed, differing in the freedom to choose the
temperature ranges that can be treated. One of the models, treats the free energy of
the liquid such that it is non-convex for a given concentration range, hence requires an
energy term proportional to the gradient in the concentration fields in the functional, to
stabilize evolution when concentration of the liquid is inside the spinodal decomposition
regime (phase-separation region). This is computationally more expensive because the
concentration evolution requires the solution of a bi-harmonic operator in contrast to the
laplacian in case of linear diffusion. The second model decomposes a single free energy
density for the liquid, into two parts, each of which is convex. This formulation is more
suited for the problem of solidification, while it is not suitable for treating the phenomena
of phase decomposition.

The model also includes terms to treat the marangoni effect. This is formulated
by treating the complete capillarity tensor for application in the flow-field evolution
equations. This includes the effect of the concentration gradients on the surface energy at
the interface between fluids, and the resulting flow, due to a gradient in this term. Good
qualitative comparisons are made with experiments in the directional solidification setup.

Later works by Tegze et al. [112] investigate all the diffusion and hydrodynamic effects
affecting the droplet distribution sizes in the Al-Bi alloy, using a regular solution model
for describing the free energy of the phase separating liquid. Figure 2.3 shows exemplary
phase seperation of pure liquid into two separate liquids at two different compositions.

2.2.5. Nucleation

The understanding of the phenomena of nucleation is critical to having a control on the
length scale of microstructure. The process of nucleation being a stochastic event can be
treated in the deterministic framework of the phase-field method, through two methods:
incorporation of noise, mimicking the thermal and concentration fluctuations in the
system or explicitly depending on a criterion of nucleation derived from the functional.
The phase-field method provides an excellent method for deriving the properties of the
nucleus. The nucleus in this framework, refers to the phase-field profile which satisfies
the Euler-Lagrange Equation under the constraint of constant chemical potential [37].
The resulting phase profile is an extremum of the free energy functional. The grand
chemical potential excess with respect to the initial liquid calculated using this profile,
is the barrier to nucleation. Such a theory has been postulated for both homogeneous
and heterogeneous nucleation [131]. These calculations have been verified also with
atomistic calculations. Additionally, variation of quantities such as the Tolman length
(difference between the radius of the equi-molar surface and the radius of the surface
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(a) (b)

Figure 2.3.: Phase seperation at two different compositions of the liquid in a model Fe-Sn alloy.
In (a) the simulation is performed at the monotectic composition while in (b) a
hyper-monotectic composition is employed.(Work along with co-worker Wang Fei)

tension) predicted by the atomistic calculations, have been qualitatively reproduced in
the simulations [109, 115]. Large scale simulations with concurrent nucleation events
have also been performed for systems like Ni-Cu [95] and technically relevant alloys
such as the Al-Ti, where transition from Columnar to Equi-axed morphologies (CET) is
simulated. An exemplary structure obtained by incorporating noise in the simulation
domain is shown in Figure 2.4.

Figure 2.4.: Nucleation structures obtained in a model Al-Cu alloy at two different composition
in the liquid. While a uniformly chaotic structure is obtained at the eutectic
composition in (a), a more regular structure is obtained at a off-eutectic composition
in (b).
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2.2.6. Solid-State

In this subsection we look at phenomena occurring during solid-state transformations,
investigated using the phase-field method. In the survey, we are going to concentrate
especially on a topic which has been of extensive research interest over the last 15 years
namely the processing of Ni-based super alloys.

Super Alloys

The term superalloy was first used to refer to the group of alloys for use in turbine
superchargers and aircraft turbine engines that require high performance at elevated
temperatures. Presently, the application of such alloys has extended also to land-based gas
turbines, rocket engines chemical and petroleum plants. A characteristic feature of these
applications, is that the energy efficiency goes up with temperature. Understandably,
the need arises to maximize the temperature of application. Typically, the intended
temperature of use is up to 90% of the melting temperatures. At such high temperatures
and applied stresses, failure mechanisms such as creep, hot corrosion etc. operate.
This implies, that a material suited for such application needs to be resistant to such
mechanisms of failure for extended exposure to such conditions. It has been found that
alloys of elements in the Group VIII of the periodic table namely Fe, Ni, Cr, Co are
particularly suited for this purpose. The alloys also involve smaller additions of carbide
formers such as the W, Mo, Ta, Ti, and Al. In all, we can classify the set of super alloys
into three classes namely, Ni-, Fe- and Co- based alloys.

One of the principal mechanisms of creep is grain boundary sliding. Thus, it is desirable
to have them processed as single crystals (i.e. with no grain boundaries). With the
invention of the efficient directional solidification techniques it is now possible to process
them as single crystals, with the desired grain selectors. The quality of the alloy however,
is related to the processing conditions and the purity with respect to undesired elements
in the alloy. So one direction of research is to increase the purity of these alloys resulting
as a process of solidification.

Research is also underway to get an understanding of the mechanisms of creep and
deformation in such alloys to better predict the performance of the microstructure at
elevated temperatures and stresses. This would help in engineering materials with required
hardness and strength at these temperatures. There are two hardening mechanisms that
are pertinent in such alloys, one is solid-solution strengthening, achieved with alloying
additions and the other precipitation hardening. Solid-solution strengthening deals with
the toughness, induced by the stresses due to the additional alloying elements because of
the size differences between the solute and the solvent atoms. These internal stresses
interact with the dislocations and act as barrier to their movement. However, this
is relevant for low temperature ductility and toughness. The strengthening at higher
temperatures occurs through precipitation hardening. The precipitates interact with the
dislocations and pin them, preventing cross slip. One of the ways of strengthening in
polycrystalline super alloys is the use of carbide forming elements which form carbides
of the same crystal structure as the matrix and segregate to the grain boundary and
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pin them. The other type of precipitates are coherent and close chemical compatibility
with the matrix. A unique phenomena associated with these precipitates is the increase
of yield stress with temperature also called the yield stress anomaly. This is related
to the locking of dislocations in Anti Phase Boundaries (APB’s) (interfaces between
possible ordered variants of different orientations), which lie on non-slip planes in most
super alloys. This is a motivation to study the formation of such boundaries and their
interaction with dislocations.

The strength of the alloy is related to the size of the precipitates hence research is also
focussed, on getting an understanding of the coarsening kinetics of the microstructure as
a function of the temperature, the alloying additions and the processing conditions such
as the ageing temperature.

Given the number of experiments required and the high cost for the processing of these
alloys, an optimization of the processing conditions through an extensive experimental
study looks daunting. However, with simulations the task looks achievable, and promising.
In this respect, the phase-field method through its evolution over the years has become a
potent tool for the treatment of this problem. In the past decade, an alloy which has
been particularly treated is the Ni-Al based super alloys, which are extensively used
for turbine blades. In addition, it also suits the framework of the phase-field method,
since thermodynamic databases of this alloy are available from CALPHAD along with
information for mobilities from DICTRA databases.

In Nickel based superalloys, the microstructure is made of a disordered fcc matrix
called the 𝛾 phase and an ordered 𝛾

′ precipitate phase. The 𝛾
′ phase has the L12 cubic

structure which is coherent and of high chemical compatibility with the matrix. The
𝛾

′ phase is the principal phase responsible for precipitation hardening, and hence has
received a lot of attention over the years. The L12 variants are four in number and hence
in a binary Ni-Al system, the system can be defined using a concentration field and
three long range order parameters. In earlier works by Khachaturyan et al. [126] the
formation of squared precipitates is already achieved in simulations, however a major
drawback is that the matrix phase and the precipitates are treated iso-structurally i.e.
the four variants do not have an energy barrier between them. While this is true for
certain precipitates for instance 𝛿

′ precipitate in Al-Li alloys and the matrix, this is not
the case of for the 𝛾

′ precipitate. As a result of the simulations performed by various
authors [8, 103, 125], the conclusion is that the treatment of this energy of the anti
phase boundaries is necessary for retrieving the anomalous decrease in coarsening rate at
higher volume fractions which is also seen in experiments. The authors define two terms
in-phase and out-of-phase, implying the case when two variants of the same type are
next to each other and the other case when they are not respectively. The out-of-phase
particles on coalescence form Anti-Phase Boundaries (APB’s) which are for the case of
Ni- alloys, twice the energy of the interface between a variant with the matrix. This
being the case, two out-of-phase particles will never coalesce forming an APB when both
are in equilibrium with the matrix.

There are two coarsening mechanisms in such alloys, one is through a diffusive process
called the Ostwald ripening, where the smaller particles reject atoms and shrink, while the
larger particles absorb and grow. While this mechanism of interface energy minimization
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is present in all alloys it is of a longer time scale, than a second mechanism which
occurs through displacive-coalescence mechanism. The displacive-coalescence mechanism
however, occurs only if two precipitates next to each other are in-phase. With increase
in number of particles, the probability of two particles being in-phase is very small and
hence most of them are out-of-phase. Hence, with increasing volume fraction of particles
the coarsening rate is reduced. Additionally, split microstructures seen in experiments
can also be explained with this mechanism, where the coalescence of in-phase particles to
minimize energy is the driving force for the formation of such patterns [8]. Incidentally,
there appears to be no reason to believe that the coalescence should occur above some
critical size of precipitates as previously believed, as such a mechanism of coalescence of
in-phase particles is able to explain all observed experimental microstructures. A detailed
study of the coarsening kinetics in the different regimes of volume fractions and particle
sizes is also performed by Vaithyanathan and Chen [117].

Under conditions of stress and high temperature, the precipitates align themselves
parallel to the stress direction in the case of tensile loading and normal to the direction
of tensile loading, for the case of compressive loads. This phenomena is called rafting or
alternatively, directional coarsening. In experiments, the interrupted stripes of precipitates
are observed and here again it has been verified in simulations [125, 127] that incorporation
of APB interface energies in simulations is necessary to observe discontinuous aligned set
of precipitates, instead of continuous stripes. The former is also seen in experiments.

It is clear that the degrees of freedom of such a system, are the interfacial energies, the
bulk free energies and the lattice mismatch. In the last decade the emphasis has been to
give more quantitative meaning to simulation results. In this direction the linking of the
simulations to CALPHAD databases has been useful. The databases provide free energies
using the sub-lattice models. A four sublattice model is used for the case of treating the
variants. The site fraction in the CALPHAD databases can be used interchangeably as
the order parameter in the phase-field setup. This gives us a continuous free energy in the
order parameter/site fraction and the composition space. The first attempts of linking
the databases are able to retrieve, the time evolution of the precipitate morphologies,
from spherical at small sizes which occurs as a result of minimization of the surface
energy, while as the precipitate becomes large the particles change the shape to cubical
which occurs via minimization of the bulk elastic energies [141]. The elastic misfit strain
energies are in all these studies treated as some derivative of the Vegard’s law. The
only degree of freedom remaining, is then the interfacial energies. While this quantity
is difficult to get experimentally, models such as the Cluster Variation Models (CVM)
have been used to get an idea of the composition profiles, phase boundaries and interface
energies [119]. The results of such calculations have been able to give predictions which
agree well with experiments. With the growth of CALPHAD and DICTRA databases in
recent years, simulations of new generation Ni- based super alloys is becoming possible.
Concentration profiles, occurring during heat treatment and temperature processing in
multi-component Ni- base super alloys are calculated by some groups [60, 120, 132, 140],
giving good agreement with experimental measurements. For the case of non-isothermal
treatments such as heat treatment one would need to incorporate new precipitated nuclei
as the temperature is reduced. To achieve this, Langevin noise is used by Simmons et



22 2. Literature review: Phase-field modeling of multi-component systems

al. [107] and an interesting analysis of the process of aging during heat treatment is
also performed by Wen et al. [133]. Exemplary structures during aging and ripening are
simulated for the alloy Fe-Cu and are shown in Figure 2.5. While in our discussion we

(a) (b)

Figure 2.5.: Aging in a Fe-Cu alloy. In (a) is the starting condition, while (b) shows the state
after some particles have co-agulated and some have ripened.(Work along with
co-worker (Rajdip Mukherjee))

have stated applications of the phase-field method only for Ni-based alloys, some similar
studies have also been performed for the case of other super alloys such Ti-Al-V [17].

The phenomenon of precipitation is not only interesting in super alloys, but some
common alloys like Fe-C. However, precipitation is not always useful like in the case of
Widmanst𝑎̈tten ferrite which grow as needles. Knowledge of the conditions which result in
these microstructures and their control, are important for steel alloy design. Phase-field
modelling is applied for studying such structures [70] using CALPHAD databases for the
free energy of the bulk phases.

2.2.7. Other fields of application

Metal forming is an important process in any processing chain. A control of the grain
structure during high temperature forming decides the resultant strength of the material.
During forming at elevated temperatures one of the most important processes which occur
is re-crystallization. Most of the last decade this process has been modelled using the
combination of the crystal plasticity method for treating the stresses and strains during
deformation and re-crystallization is solved using the Cellular Automaton Method [97, 98]
which describes specific rules of transformation for a grain, depending on the stored
energy of a grain and the surrounding grains. While a number of theories have been put
forth for describing the initialization of re-crystallization namely the misorientation or
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the energy stored in the grains, the actual criterion is still unclear. The process of growth
after nucleation can however be well accounted for. Grain growth being a capillary
force driven problem, is better suited for treatment by diffuse-interface methods such as
the phase-field method. The application of this method is however still in its in early
stages with first attempts by Takaki and co-workers [110, 111]. They treat both static
and dynamic re-crystallization. In the treatment of static re-crystallization [111], the
stresses are computed from the crystal plasticity method, which are used to determine
the sub-grain structure. The diameter of the sub-grain structure is calculated from the
balance of the stored energy and that required for the creation of a new grain boundary.
In the case of dynamic re-crystallization [110] dislocation density varies with time and the
authors describe the evolution of the dislocation density as a function of the strain. The
driving force is a function of stored energy in the form of dislocations and the criterion
for nucleation of a new re-crystallized grain is derived using a bubble model described in
the paper, which gives the critical density of dislocations required for the nucleation of
the new grain. M.Wang and co-workers [122] simulate re-crystallization in a magnesium
alloy AZ31 using the Gibbs free energy from CALPHAD databases. The authors solve
the coupled problem of diffusion and re-crystallization.

Beyond the main streams of developments in solidification and solid-state transfor-
mations, the linking of phase-field models with thermodynamic and kinetic databases
emerged as a powerful hybrid method also in other fields of applications. We briefly
report on research work in liquid-liquid phase systems and grain boundary premelting.

A phase-field simulation study in [12] is devoted to investigate the dynamics and
morphologies of spinodal decomposition of two immiscible liquids. The alloy of con-
sideration is the binary system Bi-Zn, which contains a typical miscibility gap in the
phase diagram. Different morphologies of the phase separation process are found at
different regions of the phase diagram i.e. at different temperatures and concentrations.
Furthermore, the authors describe a strong dependence of the microstructure on the
formulation of the Gibbs energy, by comparing two different formulations determined
by the CALPHAD method at the same temperature and concentration condition. A
problem seen during continuous casting, namely hot cracking, is known to originate at the
grain boundaries because of liquid films at grain boundaries. This phenomenon is called
grain boundary pre-melting. The wetting occurs below the solidification temperature and
cracks as a result of these pre-melted areas. A control of the temperature and parameters
affecting the process is quite useful for avoiding material wastage. The classification of
grain boundary pre-melting transitions in Cu-Ag solid solutions has been the focus of
phase-field simulations in [76]. A multiphase-field model has been composed, with three
phase-field parameters to distinguish two grain states in the presence of a liquid phase.
Depending on the grain boundary energy, the temperature and the grain composition, a
variety of pre-melting evolutions has been observed including (i) dry grain boundaries,
(ii) completely wetted grain boundaries with pre-melted layers of diverging thickness, (iii)
grain boundaries with discontinuities of the pre-melted layer thickness and (iv) metastable
grain boundary states above the solidus line indicating the possibility of superheating
(respectively supersaturation). The pre-melting behaviour is related to the disjoining
potential combined with thermodynamic properties of the bulk phases.
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2.3. Outlook
Despite the tremendous effort and rapid development in a broad range of multicom-
ponent modelling applications, there still remains a comprehensive demand for further
understanding of the physical mechanisms behind structure formation, involving the
intensive investigation of the influences of external fields and processing conditions on
the mechanical properties of materials used in technical applications. The existence
of just a ternary component, e.g. in eutectic systems gives rise to a large diversity of
new morphologies and illustrates the complexity amongst the regularity of nature. The
computational study, particularly in 3D, holds a great potential for new insights into
the physics of these materials. In combination with phase changes and solute diffusion
of multiple components, another important challenge for future research will be the
investigation of the effect of coupled fields such as fluid flow, stress and strain and plastic
deformation. In all multicomponent modelling applications, the configuration of data
sets and processing conditions will play a key role, essentially requiring the advancement
of multi-scale and hybrid modelling techniques. The large amount of field variables to be
solved as well as the desired large-scale 3D simulation domains will increasingly ask for
employing modern computing methods including intelligent algorithms, parallelization
on high performance computing architectures as well as optimized numerical solution
approaches such as multi-grid and homogenization.



3. Growth morphologies in peritectic
solidification of Fe-C: A phase-field study
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3.1. Introduction

The peritectic reaction 𝐿(liquid) + 𝛿 (ferrite) → 𝛾 (austenite) in Fe-C system occurs
during the solidification of low carbon steels. A peritectic transformation (solid-solid
transformation) and peritectic reaction is also observed in many other systems like Fe-Ni,
Cu-Sn, Ni-Al, Ti-Al. The peritectic reaction in Fe-C is characterized by an appearance of
the peritectic 𝛾-phase that separates the liquid 𝐿 and the properitectic 𝛿-phase, followed
by growth of 𝛾-phase due to 𝐿 → 𝛾 and 𝛿 → 𝛾 transformations. Shibata et al. [105]
experimentally observed the peritectic microstructure formations in the Fe-C system.
They also formulated a mechanism for the peritectic reaction and transformation, based
on the analysis of the kinetics of the phase changes. Various growth models have been
proposed by others, to explain the peritectic reaction and transformation in different
solidification morphologies [89].

In the past two decades, phase-field simulations have become a powerful tool to describe
growth morphologies during complex phase transformations. The methodology has been
used to model eutectic, peritectic and monotectic reactions, [81, 82]. In particular, the
peritectic solidification of Fe-C was simulated using a multi phase-field approach [113],
where the phase field equations were derived from a free energy functional and carbon
diffusion equation was formulated on the basis of a separate solute diffusion model. A
multi phase-field model was also used to numerically simulate the peritectic reaction
by Lee et al. [64]. In previous work [81], a phase-field approach was formulated for
both, binary eutectic and peritectic alloy systems. The model incorporated the free
energies corresponding to a specific type or region of a phase diagram, which can be
described through an ideal solution formulation. Due to the great similarity with respect
to the free energies of the phases and accordingly with respect to the construction of the
phase diagram, a unique formulation of a phase-field model was derived, capturing the
solidification process in eutectic and peritectic systems, by setting up suitable values for
the latent heats and melting temperatures. The approach was successfully applied to
computations of various eutectic and peritectic growth structures, related to model alloy
systems. Directional solidification of peritectic alloys, without morphological instability
was studied using the phase-field method by Plapp et al. [69]. The investigation also
involved a study on nucleation and its effect on pattern formation. Phenomena of coupled
growth and banded growth structures were also discussed in [47, 68]. Numerical studies
on heterogeneous nucleation of the peritectic phase in the ternary system Nd-Fe-B were
performed by Emmerich et al. [29] to examine the morphological effects on nucleation in
2D.

In this chapter, we investigate different 2D and 3D growth morphologies during
peritectic growth in the Fe-C system using a multi-phase, multi-component phase-field
model. We also investigate the effect of surface energies and evolving concentration
domains on nucleation and growth behavior. In the next section, we give all the
mathematical functions and dynamical equations of the phase-field model and explain
how the parameters are calibrated. Section 3 is devoted to the discussion of three broad
classes of growth morphologies of the peritectic reaction, containing a study of the
evolution characteristics of each class, depending on the initial composition in the liquid
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and solid-solid surface energies. Further, it is shown how the surface energy affects the
nucleation behavior, in particular of the peritectic phase. Finally we draw conclusions
about the range of the solid-solid surface energies and present an outlook for future work.

Model Description

A thermodynamically consistent phase-field model is used for the present study of the
peritectic reaction in the Fe-C system. The equations are derived from an entropy
functional as follows

𝒮 (𝑒, 𝑐, 𝜑) =
∫︁

Ω

(︂
𝑠 (𝑒, 𝑐, 𝜑) −

(︂
𝜀𝑎 (𝜑, ∇𝜑) + 1

𝜀
𝑤 (𝜑)

)︂)︂
𝑑Ω, (3.1)

where 𝑒 is the internal energy of the system, 𝑐 = (𝑐𝑖)𝐾
𝑖=1 is a vector of concentration

variables belonging to the 𝐾 − 1 dimensional plane, 𝐾 being the number of components
in the system and 𝜑 = (𝜑𝛼)𝑁

𝛼=1is a vector of phase-field variables that lies in the 𝑁 − 1
dimensional plane, 𝑁 being the number of phases in the system. 𝜑 and 𝑐 fulfil the
constraints

𝐾∑︁
𝑖=1

𝑐𝑖 = 1 and
𝑁∑︁

𝛼=1
𝜑𝛼 = 1. (3.2)

𝜀 is the small length scale parameter related to the interface width. 𝑠 (𝑒, 𝑐, 𝜑) is the bulk
entropy density, 𝑎 (𝜑, ∇𝜑) is the gradient entropy density and 𝑤 (𝜑) describes the surface
entropy potential of the system for pure capillary force driven problems.

We use an obstacle type potential for 𝑤 (𝜑) of the form,

𝑤 (𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16
𝜋2

𝑁,𝑁∑︁
𝛼,𝛽=1
(𝛼<𝛽)

𝛾𝛼𝛽𝜑𝛼𝜑𝛽 +
𝑁,𝑁,𝑁∑︁
𝛼,𝛽,𝛿=1
(𝛼<𝛽<𝛿)

𝛾𝛼𝛽𝛿𝜑𝛼𝜑𝛽𝜑𝛿, if 𝜑 ∈
∑︀

∞, elsewhere

where
∑︀

= {𝜑 |
∑︀𝑁

𝛼=1 𝜑𝛼 = 1 and 𝜑𝛼 ≥ 0},
𝛾𝛼𝛽 is the surface entropy density and 𝛾𝛼𝛽𝛿 is a term added to maintain the solution

at an 𝛼𝛽 interface strictly along the two phase interface.
The gradient entropy density 𝑎 (𝜑, ∇𝜑) can be written as,

𝑎 (𝜑, ∇𝜑) =
𝑁,𝑁∑︁

𝛼,𝛽=1
(𝛼<𝛽)

𝛾𝛼𝛽 [𝑎𝑐 (𝑞𝛼𝛽)]2 |𝑞𝛼𝛽|2,

where 𝑞𝛼𝛽 = (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼) is a normal vector to the 𝛼𝛽 interface. 𝑎𝑐 (𝑞𝛼𝛽) describes
the form of the surface energy anisotropy of the evolving phase boundary. For applications
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to solidification in Fe-C, we use a smooth cubic anisotropy modelled by the expression,

𝑎𝑐 (𝑞𝛼𝛽) = 1 ∓ 𝛿𝛼𝛽

(︃
3 − 4 |𝑞𝛼𝛽|44

|𝑞𝛼𝛽|4

)︃
,

where |𝑞𝛼𝛽|44=
∑︀𝑑

𝑖 (𝑞𝛼𝛽)4
𝑖 and |𝑞𝛼𝛽|4=

[︁∑︀𝑑
𝑖=1(𝑞𝛼𝛽)2

𝑖

]︁2
, 𝑑 being the number of dimensions.

𝛿𝛼𝛽 is the strength of the anisotropy. Evolution equations for 𝑐 and 𝜑 are derived from
the entropy functional through conservation laws and phenomenological maximization of
entropy, respectively [33, 79]. For an isothermal reaction, the evolution equations for the
phase-field variables read:

𝜔𝜀𝜕𝑡𝜑𝛼 = 𝜀 (∇ · 𝑎,∇𝜑𝛼 (𝜑, ∇𝜑) − 𝑎,𝜑𝛼 (𝜑, ∇𝜑)) − 1
𝜀

𝑤,𝜑𝛼 (𝜑) − 𝑓,𝜑𝛼 (𝑇, 𝑐, 𝜑)
𝑇

+ Ξ𝛼 − Λ,

(3.3)

where Λ is the Lagrange parameter to maintain the constraint in Eqn. (3.2), 𝜔 is a factor
related to the relaxation time constant and Ξ𝛼 is the noise in the evolution equation
for the 𝛼 phase. The formulation contains the notation 𝜕𝑡𝜑𝛼 = 𝜕𝜑𝛼/𝜕𝑡 for the partial
derivative of the phase-field variable in time. Further, 𝑎,∇𝜑𝛼 , 𝑎,𝜑𝛼 , 𝑤,𝜑𝛼 and 𝑓,𝜑𝛼 indicate
the derivatives of the respective entropy density with respect to ∇𝜑𝛼 and 𝜑𝛼. The noise
function Ξ𝛼 is such that its amplitude is non-zero only in the liquid and smoothly goes
to zero in the bulk solid. The noise amplitude distribution is uniform.

The function 𝑓(𝑇, 𝑐, 𝜑) in Eqn.(3.3) describes the Gibbs free energy as a summation
of all bulk free energy contributions 𝑓𝛼(𝑇, 𝑐) from the phases in the system. For the
present investigation, we assume an isothermal condition of the system and use a non-
dimensionalized form of the free energies 𝑓𝛼 with 𝑅𝑇𝑝/𝑣𝑚 as the energy density scale,
where 𝑇𝑝 is the peritectic temperature, 𝑅 is the gas constant and 𝑣𝑚 is the molar volume.
For simplicity sake, we consider the molar volumes of all the components in all the phases
to be equal. We use an ideal solution formulation,

𝑓(𝑇, 𝑐, 𝜑) =
𝐾∑︁

𝑖=1

(︃
𝑁∑︁

𝛼=1
𝑐𝑖𝐿

𝛼
𝑖

(𝑇 − 𝑇 𝛼
𝑖 )

𝑇 𝛼
𝑖

ℎ𝛼 (𝜑)
)︃

+ 𝑇 (𝑐𝑖𝑙𝑜𝑔 (𝑐𝑖))

with,

𝑓𝛼(𝑇, 𝑐) =
𝐾∑︁

𝑖=1
𝑐𝑖𝐿

𝛼
𝑖

(𝑇 − 𝑇 𝛼
𝑖 )

𝑇 𝛼
𝑖

+ 𝑇 (𝑐𝑖𝑙𝑜𝑔 (𝑐𝑖))

𝑓𝑙(𝑇, 𝑐) = 𝑇
𝐾∑︁

𝑖=1
(𝑐𝑖𝑙𝑜𝑔 (𝑐𝑖)) .

𝑓𝛼(𝑇, 𝑐) is the free energy of the 𝛼 solid phase. The terms 𝐿𝛼
𝑖 and 𝑇 𝛼

𝑖 are the latent
heats and the melting temperatures respectively of the 𝑖𝑡ℎ component in the 𝛼 phase.
We choose the liquid as the reference state and hence 𝐿𝛼

𝑖 = 0 where 𝛼 is the index for
the liquid phase in the vector 𝜑. The function ℎ𝛼(𝜑) interpolates the free energy of the
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𝛼 phase and we choose it to be of the form ℎ𝛼 (𝜑) = 𝜑2
𝛼 (3 − 2𝜑𝛼) in the present analysis.

In general, other interpolation functions could also be formulated and used which involve
other components of the 𝜑 vector. The isothermal non-dimensionalized temperature of
the system is denoted by 𝑇 , the scale for the temperature being 𝑇𝑝.

The evolution equations for the concentration fields are derived from Eqn. (3.1) and
give,

𝜕𝑡𝑐𝑖 = ∇ ·

⎛⎝ 𝐾∑︁
𝑗=1

𝑀𝑖𝑗 (𝑐, 𝜑) ∇
(︃

1
𝑇

𝜕𝑓(𝑇, 𝑐, 𝜑)
𝜕𝑐𝑗

)︃⎞⎠
The formulation 𝐿𝑖𝑗(𝑐, 𝜑) is capable to describe self and interdiffusion in multicomponent
systems. We use the form,

𝑀𝑖𝑗(𝑐, 𝜑) = 𝐷𝑖(𝜑)𝑐𝑖 (𝛿𝑖𝑗 − 𝑐𝑗) .

The diffusion coefficient is formulated as a linear interpolation across the phases 𝐷𝑖(𝜑) =∑︀𝑁
𝛼=1 𝐷𝛼

𝑖 𝜑𝛼, where 𝐷𝛼
𝑖 is the non-dimensionalized diffusivity of the 𝑖𝑡ℎ component in

the 𝛼 phase. We use 𝐷𝑙 = 𝐷𝑙
𝑖 to denote the diffusivity of the components Fe and C in

the liquid phase as the reference, where 𝑙 denotes the liquid phase. The capillary length
𝑑0 = 𝜎/ (𝑅𝑇/𝑣𝑚) with the surface energy 𝜎, is chosen as the length scale and 𝑑2

0/𝐷𝑙 is
the time scale for the simulations.

In the following sections we limit our discussion to 𝑁 = 3 phases and 𝐾 = 2 components;
𝜑 = (𝜑𝛿, 𝜑𝛾 , 𝜑𝑙) and 𝑐 = (𝑐𝐹 𝑒, 𝑐𝐶). The concentration space is one-dimensional and
without loss of generality, we define the Fe concentration or 𝑐𝐹 𝑒 as the independent
concentration variable/field.

Parameters related to the Fe-C phase diagram

The parameters, latent heats and melting temperatures of the free energy 𝑓(𝑇, 𝑐, 𝜑)
required to fit the phase diagram of the Fe-C system in the vicinity of the peritectic
temperature are listed in the following two (2 × 2) matrices.

𝐿𝛼
𝑖 :=

⎛⎜⎝ 𝐹𝑒 𝐶
𝛾 0.76382 4.80548
𝛿 0.84156 4.80548

⎞⎟⎠

𝑇 𝛼
𝑖 :=

⎛⎜⎝ 𝐹𝑒 𝐶
𝛾 1.02193 0.81242
𝛿 1.0244 0.73635

⎞⎟⎠
The parameters are determined such that the compositions of the solid and liquid phases
at the peritectic temperature as well as the slope of the 𝛾-liquidus close to the peritectic
temperature are accurately reproduced. The phase diagram containing the solidus and
liquidus lines, their stable and metastable extensions are displayed in Fig. 3.1.
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Figure 3.1.: Phase diagram of the Fe-C system close to the peritectic reaction showing stable
(solid lines) and metastable solidus and liquidus lines (dashed-lines). The tie-lines
at the temperature 𝑇 = 1.0 and 0.97 denote the temperature 𝑇𝑝 of the peritectic
reaction and the temperature at which the system is undercooled and at which the
simulations were performed respectively.

Surface energy calculations

The surface energies 𝜎̃𝛿𝑙 and 𝜎̃𝛾𝑙 of the 𝛿-ferrite/liquid and of the 𝛾-austenite/liquid
phase boundaries are known to be equal. We use the surface energies in the length
scale of the non-dimensionalization. However, there is an excess contribution from the
chemical free energies which needs to be included, if the interface between the two
phases does not strictly evolve along the co-existence line. We calibrate the surface
entropy densities 𝛾𝛿𝑙 and 𝛾𝛾𝑙 such that the final non-dimensional values of the surface
energies are 𝜎̃𝛿𝑙 = 𝜎̃𝛾𝑙 = 1.0. The excess chemical free energy is calculated using the
following procedure. Each solid phase is allowed to equilibrate with the liquid forming a
planar interface, by setting the temperature of the system at the peritectic point and the
compositions of the solid and the liquid phases as the equilibrium compositions. The
surface energy excess is calculated including the excess of the grand chemical potential
𝑓 (𝑇, 𝑐, 𝜑) − 𝜇𝐹 𝑒𝑐𝐹 𝑒 of the final equilibrated structure with respect to that of any of the
bulk phases. Since we set the bulk compositions at the values from the liquidus and
solidus lines of the phase diagram, the grand chemical potential of the phases at these
compositions are equal. The surface energy excess is given by the relation,

𝜎̃𝛼𝑙 =
∫︁

𝑋

(︁
𝑇𝑝𝜀𝑎 (𝜑, ∇𝜑) + 𝑇𝑝

𝜀
𝑤 (𝜑) + ΔΨ(𝑇, 𝑐, 𝜑)

)︁
𝑑𝑋

with,

ΔΨ(𝑇, 𝑐, 𝜑) = 𝑓 (𝑇𝑝, 𝑐, 𝜑) − 𝑓𝑙 − 𝜇𝐹 𝑒(𝑇𝑝)
(︁
𝑐𝐹 𝑒 − 𝑐𝑙

𝐹 𝑒

)︁
,
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where 𝜇𝐹 𝑒 (𝑇𝑝) = 𝜕𝑓 (𝑇, 𝑐, 𝜑)
𝜕𝑐𝐹 𝑒

is the equilibrium chemical potential that is established
during the equilibration of the planar interface between the phases. The partial derivative
are taken respecting the constraint of the concentration fields Eqn. (3.2). 𝑐𝐹 𝑒 is the
concentration profile that stabilizes between the phases, where stabilization implies that,
both the concentration and phase-field profiles are stationary. 𝑐𝑙

𝐹 𝑒 is the concentration of
Fe in the bulk liquid. The surface energies of the solid-solid interfaces are also calculated
in a similar manner, the equilibration being done between the two solid phases. Since
the grand chemical potential of all the three phases 𝛾, 𝛿, 𝑙 is the same at the peritectic
temperature, the liquid can be used as the reference to calculate the surface energy
excess.

3.2. Results and Discussion

The evolution equations for the phase-field and concentration variables are numerically
discretized using an explicit forward in time, finite difference scheme. The resulting
discrete set of equations is solved applying a parallel solver depending on the MPI (message
parsing interface) standard. For this, the domain is decomposed in one dimension in
equal parts for each node used for the simulation. Due to the fact that the phase-field
equation is only solved in the diffuse interface between two phase fields, the calculation
time of each node can be different. To optimize time and resources, a dynamics domain
decomposition algorithm is used for the redistribution of layers during runtime depending
on the calculation time of each node. In the present work we consider three types of
growth morphologies:

(i) engulfing of the properitectic 𝛿-phase by the peritectic 𝛾-phase

(ii) primary dendritic growth with nucleation events and

(iii) growth of the 𝛾-phase along a plate substrate.

Table 3.1 summarizes the parameters used for simulating the described morphologies.

Table 3.1.: Numerical parameters used for the phase-field simulations. 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 denote the
domain dimensions, Δ𝑋 denotes the grid spacing, Δ𝑡, the time step width, and 𝜀
the interface width.

Parameters Dendrite-
2D

Dendrite-3D Engulf-
2D

Engulf-3D Plate-
2D

Fig.3.6 Fig. 3.7 Fig. 3.2 Fig. 3.5 Fig. 3.9
𝑁𝑥×𝑁𝑦×𝑁𝑧 1000×1000 500×500×500 500×500 500×500×500 200×500
Δ𝑋 10 20 10 10 1
Δ𝑡 7.5 2.5 5 5 0.08
𝜀 80 80 80 80 8
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3.2.1. (i) Engulfing of the pro-peritectic phase by the peritectic phase

A growth morphology observed in the Fe-C system is the engulfing microstructure.
Controlled by diffusion in the liquid, the peritectic 𝛾-phase grows over the properitectic
𝛿-phase until complete engulfment. The subsequent process is a phase transformation
(𝛿 → 𝛾) taking place on a longer time scale, as it is solely driven by diffusion in the
solid. The phase transition kinetics is dependent on the value of the solid-solid surface
energies and the concentration of the liquid from which the two solids, the 𝛾- and 𝛿-phase,
are evolving. While the solid-liquid surface energies are known fairly accurately for
the 𝛾- and the 𝛿-phases, the solid-solid surface energy 𝜎̃𝛾𝛿 is unknown. The phase-field
simulations are employed to locate the range of 𝜎̃𝛾𝛿 and to investigate the effect of the
concentration in the liquid on the engulfing behavior of the 𝛾-phase. The parametric study
is conducted at a non-dimensionalized temperature T = 0.97 with a non-dimensional
diffusivity 𝐷𝑙

𝐹 𝑒 = 1.0 in the liquid and 𝐷𝑠
𝐹 𝑒 = 0.01 in the solid. Fig. 3.2 shows the

volume change (in 2D: height in non-growth direction is 1) of the peritectic 𝛾-phase in
time for three different initial Fe concentrations of the liquid, 𝑐𝑙

𝐹 𝑒 = 0.95, 0.96 and 0.97.
The points on the graph are plotted until the properitectic 𝛿-phase is totally engulfed
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Figure 3.2.: Growth of the peritectic 𝛾-phase during engulfment, for different concentrations
𝑐𝑙

𝐹 𝑒 of the liquid phase and for a constant surface energy 𝜎̃𝛾𝛿 = 0.33

by the peritectic 𝛾-phase. The volume of the 𝛾-phase at a particular time, increases for
higher values of 𝑐𝑙

𝐹 𝑒. Investigations for different values of the solid-solid surface energy
𝜎̃𝛾𝛿, revealed reduction in the rate of engulfment of the 𝛿-phase with increase in the
solid-solid surface energy, for a particular value of 𝑐𝑙

𝐹 𝑒. Fig. 3.3 displays the comparison
between the rate of volume change 𝜕𝑉/𝜕𝑡 of the peritectic and properitectic phase, as
a function of time, for the liquid concentrations 𝑐𝑙

𝐹 𝑒 = 0.95 and 𝑐𝑙
𝐹 𝑒 = 0.97 and for the

surface energy 𝜎̃𝛾𝛿 = 0.33. We see two different types of behaviour at the two levels of
super-saturation. At the lower supersaturation Fig. 3.3a, there is an initial decrease
in the shrinking rate of the 𝛿-phase along with a corresponding decrease in the rate of
growth of the 𝛾-phase. This behaviour ends with the attainment of the minimum in the
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Figure 3.3.: Rate of volume change of the peritectic and properitectic phases with time for a
constant surface energy 𝜎̃𝛾𝛿 = 0.33 and for two different liquid concentrations (a)
𝑐𝑙

𝐹 𝑒 = 0.95 and (b) 𝑐𝑙
𝐹 𝑒 = 0.97.

reduction rate of the 𝛿-phase beyond which, there is increase in the solidification rate of
the 𝛾-phase. We note that the behaviour of the rates of evolution of the solid phases are
always of opposite nature, which implies, that the solute transfer at the small-scale, from
one solid to the other through the liquid as the transport medium, is the principal growth
limiting process, rather than the long range diffusion in the liquid. This is because,
individually, each phase is set above the critical size, beyond which growth occurs in the
liquid. When set in a coupled configuration, the growth rate of the 𝛾-phase is higher,
resulting from the larger super-saturation of this phase, as is evident from the phase
diagram. This causes the region local to the 𝛿-phase to become enriched in C, which
reduces the effective super-saturation for the 𝛿-phase and causes it to shrink. Thus,
the 𝛿- phase acts as a sink of C atoms by melting. To understand the growth process
in full detail, one would need to construct the free boundary problem for the present
configuration and study the analytical solutions, which is not in the scope of the present
chapter. Simulations, however give a reasonable insight into the growth dynamics. At this
concentration, the point of engulfment of the 𝛿-phase coincides with the disappearance
of the phase. This also shows that, at this value of surface tension, the concentration of
the liquid 𝑐𝑙

𝐹 𝑒 = 0.95 is the minimum requirement to observe this microstructure. Also,
we notice the rate of change of the 𝛾-phase to reduce, after the point of engulfment,
from which we can again infer, that the small scale diffusion near the triple point, is the
prominent growth mode for the 𝛾-phase, during the process of engulfment. At the higher
super-saturation corresponding to the concentration, 𝑐𝑙

𝐹 𝑒 = 0.97, Fig. 3.3b, we have three
growth regimes possible. In the region (I), before the engulfment of the 𝛿-phase we again
notice opposite nature of change of the growth rates for the solid phases, as we did for
the case of the lower super-saturation. After engulfment (region II), the reduction rate
of the 𝛿-phase approximately becomes a constant, while the evolution rate of the 𝛾-phase
shifts to a linear curve of reduced slope. Comparing the growth dynamics in (region
II) with the evolution characteristics after the disappearance of the 𝛿-phase (region III),
shows that the long range diffusion in the liquid is the principal growth mechanism after
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the engulfment, as the there is little change in the slope of the variation in the evolution
rate. Based on the parametric studies evaluating the influence of 𝑐𝑙

𝐹 𝑒 on the engulfing
morphology, we analysed the effect of the surface energy 𝜎̃𝛾𝛿. Fig. 3.4 compares the
dynamics of the phase transformations for the different surface energies 𝜎̃𝛾𝛿 = 0.33, 0.36,
0.39, 0.42 and 0.45. The points are plotted until one of the 𝛾- or 𝛿-phases disappears.
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Figure 3.4.: Volume change of the peritectic 𝛾-phase in time, illustrating the influence of the
surface energy 𝜎̃𝛾𝛿 on the type of morphology and on the growth rate for two
different concentrations (a) 𝑐𝑙

𝐹 𝑒 = 0.95 and (b) 𝑐𝑙
𝐹 𝑒 = 0.97

(Please read the legends in the graphs 𝜎 as 𝜎̃)

For the liquid concentration at 𝑐𝑙
𝐹 𝑒 = 0.95 (Fig. 3.4a), the peritectic 𝛾-phase engulfs the

properitectic phase for 𝜎̃𝛾𝛿 = 0.33, while for other values of surface energies, the contrary
happens. Setting 𝑐𝑙

𝐹 𝑒=0.97 (Fig. 3.4b), the 𝛿-phase becomes completely embedded for all
values of 𝜎̃𝛾𝛿. Moving towards higher values of 𝜎̃𝛾𝛿 leads to lesser volume of the engulfed
𝛿-phase. To conclude: The observation of engulfing morphologies at this temperature
and concentration requires surface energies 𝜎̃𝛾𝛿 in the considered range. The volume
of the 𝛾-phase increases to much larger values if the liquid concentration changes from
𝑐𝑙

𝐹 𝑒 = 0.95 to higher values, as in Fig. 3.4b. Engulfing microstructures were also obtained
in 3D, as exemplarily shown in Fig. 3.5, for simulation data set at a non-dimensional
temperature 𝑇 = 0.97, 𝑐𝑙

𝐹 𝑒 = 0.96 and 𝜎̃𝛾𝛿 = 0.39.

3.2.2. (ii) Primary dendritic growth with nucleation events

The peritectic reaction and growth of 𝛾-phase on the periphery of a 𝛿-phase dendrite
was investigated by simulations previously in [113]. However, the location of first
nucleation and subsequent growth of 𝛾-phase has not been the object of consideration so
far. We address this issue and perform 2D and 3D phase-field simulations, to determine
heterogeneous nucleation sites and solidifying microstructures, depending on the surface
energies 𝜎̃𝛾𝛿. As illustrated in Fig. 3.6a, heterogeneous nucleation events of the 𝛾-phase
on top of the dendritic tips occurs for 𝜎̃𝛾𝛿 = 0.39, along with homogeneous nucleation
in the undercooled liquid for the chosen super-saturation. For higher surface energy
𝜎̃𝛾𝛿 = 0.778, no heterogeneous nucleation on the dendritic surface can be observed, Fig.
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(a) (b)

Figure 3.5.: Simulation of the process of properitectic phase engulfment in 3D at (a) an early
stage and (b) a late stage of the peritectic reaction.

(a) (b)

Figure 3.6.: Phase-field simulations of nucleation in the peritectic Fe-C system for two different
surface energies 𝜎̃𝛾𝛿 = 0.39 and 𝜎̃𝛾𝛿 = 0.778 in comparison. (a) For the lower
value of the solid-solid surface energy, heterogeneous nucleation can be seen at the
dendrite tips, (b) For the higher value, the nuclei are purely formed homogeneously
in the liquid. Color coding; Red: 𝛾- phase, Blue: 𝛿-phase, Green: Liquid
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3.6b. Under these conditions, the two solid phases only nucleate homogeneously in the
liquid. According to Eqn. 3.3, nucleation is effected through uniform noise in the liquid,
similar to the formulation of Granazy et al. [95, 131]. The first nucleation event occurs
at the place in the domain, where the required critical fluctuation for nucleation is the
smallest. The closer 𝑐𝑙

𝐹 𝑒 approaches the value of the solidus, the smaller is the magnitude
of the critical fluctuation, because the driving force for solidification increases. It follows
from classical nucleation theory that the free energy size of the critical fluctuation varies
inversely to the supersaturation: which increases as we move towards the solidus. It
is important however, to note that the driving force is the difference of the bulk free
energies of the transforming phases. In the case of phase-field simulations however, we
have the possibility of critical nuclei being sub-solid i.e. consisting of only the interface.
At concentrations near the solidus line the critical nuclei become smaller following the
increase in supersaturation. They loose their bulk properties and importantly because of
lesser volume have a small barrier to nucleation. Close to the properitectic dendrite, the
concentration is enriched in C (deficient in Fe), compared to the concentration in the
liquid far away from the interface. The concentration around the dendrite is further away
from the solidus of the 𝛾-phase and hence, the critical fluctuation to nucleate the 𝛾-phase
is larger than away from the dendrite. As a result the nucleation events occur in the liquid
phase at a distance from the dendrite. The simulation results for the higher value of the
surface energy 𝜎̃𝛾𝛿 agrees with the drawn explanation. Heterogeneous nucleation becomes
a possibility as 𝜎̃𝛾𝛿 is reduced. The heterogeneous nucleation appears at the dendrite
tip, where the concentration of the liquid is poorer in C compared to the concave part of
the dendrite. A similar nucleation behaviour can be observed in a 3D simulation of an
evolving 𝛿-dendrite with a cubic crystal symmetry followed by nucleation of the 𝛾-phase,
(Fig. 3.7a and 3.7b). The 𝛾-phase nucleates on the edges and tips of the dendrite, whereas
no nucleation is observed in the concave regions of higher C concentration, compared to
the tips and edges. The reasoning is the same as in the 2D simulations discussed above.
Fig. 3.7a shows an evolving dendrite with four fold weak cubic anisotropy. In addition to
the images in Fig. 3.7a and Fig. 3.7b highlighting the regions occupied by the 𝛿- and
𝛾-phases, Fig. 3.7c is the Fe concentration, mapped on the iso-surface at 𝜑𝛿 = 0.5 of the
properitectic dendrite. Comparing Fig. 3.7b and Fig. 3.7c, accentuates the point, that
the nucleation occurs at places where the barrier to nucleation is the lowest. For the
chosen parameter set and noise amplitude, no homogeneous nucleation occurs.

We would like to point out that, we do not expect spurious effects like the stabilization
of meta-stable phases due to the reduction in the height of the surface potential for
the interface thickness that we choose. This is because our driving forces are of very
low magnitude in the simulations. Fig. 3.8a and Fig. 3.8b make this point clear. We
calculated the critical phase field profiles of the solid phases in equilibrium with the
liquid at various super-saturations, by solving the Euler-Lagrange equations 𝛿𝑆

𝛿𝜑
= 0 and

𝛿𝑆

𝛿𝑐
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 as in [95, 131]. From this, we calculated the barrier to homogeneous

nucleation Δ𝐺* as the excess grand chemical potential and inclusive of all the surface
excesses, Fig. 3.8b, and the radius of the critical nucleus Fig. 3.8a, which corresponds to
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(a) (b)

(c)

Figure 3.7.: Phase-field simulation of a dendritic microstructure with four-fold surface energy
anisotropy: (a) final shape of the properitectic phase, (b) heterogeneous nucleation
at the edges and tips of the dendrite and (c) concentration of Fe at the dendritic
surface for the same time step as in (b).
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Figure 3.8.: Calculation of the radius of the critical profiles for homogeneous nucleation at
T=0.97 in a) and barrier to nucleation in b).
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the size of a sharp interface solid, which equals the volume of the critical nucleus of the
particular phase. We see that, at the concentration of 𝑐𝑙

𝐹 𝑒 = 0.97 we have the critical
radius to be 80 times the capillary length, which shows that the effect of the driving
forces becomes comparable to the capillary forces due to the surface energy at these
sizes. Although we have considered solid-liquid equilibrium, we expect, the solid-solid
transformation energies to be of the same order or smaller, because of the similarity of
the solid-liquid equilibrium among the 𝛿- and 𝛾-phases. To be able to simulate large
microstructures then, within manageable number of grid points, it is necessary to choose
the interface widths of the order we have chosen and as is also customary in the phase
field method, to use interface widths of the order of the smallest principal length scale
that one is trying to resolve. However, one must take care, that the model used for this
study, does not contain the thin interface corrections, [46], requisite in large interface
simulations for quantitative results, and hence our kinetics will be off by some order. In
light of this, the results, only qualitatively show the influence of the surface energy and
super-saturation on the kinetics of transformation. However, since we were able to treat
our surface excesses correctly, our thermodynamic predictions regarding nucleation sites
and range of surface energies are reliable.

3.2.3. (iii) Growth of the peritectic phase along a plate substrate
During the peritectic reaction 𝐿 + 𝛿 → 𝛾, the triple junction formed by the three
phases drives the phase transitions. A well-known morphology is the propagation of the
peritectic 𝛾-phase on top of the substrate, consisting of properitectic 𝛿-phase, Fig. 3.9.
The process is liquid-diffusion controlled. The concentration of the liquid is chosen such

Figure 3.9.: The peritectic 𝛾-solid growth on top of a properitectic 𝛿-substrate. The dynamics
of dissolution is driven by diffusion of solute in the liquid phase.

that the 𝛿-phase is in equilibrium at a non-dimensionalized temperature of 0.97. The
large substrate of the properitectic phase ensures that curvature undercooling of the
solid-liquid interface is negligible.

3.3. Conclusion
We use a phase-field model to investigate the evolution of different growth morphologies
during the peritectic reaction in the Fe-C system through 2D and 3D simulations.
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Predictions of the solid-solid surface energies 𝜎̃𝛾𝛿 are made based on comparisons between
experimental observations, previous simulations and the current work. We discuss the
effect of 𝜎̃𝛾𝛿 on nucleation behavior. We find heterogeneous nucleation on a primary
dendrite, strongly depending on the solid-solid surface energy. Based on our study, we
propose that the value for 𝜎̃𝛾𝛿 should lie in a range causing the two solids, the 𝛾- and
𝛿-phase, to form low contact angles < 26∘ (illustration in Fig. 3.10). Furthermore, we

Figure 3.10.: Illustration of the angle that the surface tangent at the 𝑙 − 𝛿 interface close to the
triple junction, makes with the horizontal (original substrate).

observe heterogeneous nucleation becoming a possibility for such values of 𝜎̃𝛾𝛿. The main
emphasis of our present work is to understand the role of 𝜎̃𝛾𝛿 on the growth morphologies
and on nucleation sites. Hence other forms of free energy such as from thermodynamic
databases, e.g. CALPHAD, were not used in order to simplify the analysis. Future work
would involve a more rigorous treatment of nucleation behavior to predict nucleation
sites on evolving substrates and composition domains based on a careful study of critical
nuclei.
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4.1. Introduction

Eutectic alloys are of major industrial importance because of their low melting points
and their interesting mechanical properties. They are also interesting for physicists
because of their ability to form a large variety of complex patterns, which makes eutectic
solidification an excellent model system for the study of numerous nonlinear phenomena.

In a binary eutectic alloy, two distinct solid phases co-exist with the liquid at the
eutectic point characterized by the eutectic temperature 𝑇E and the eutectic concentration
𝐶E. If the global sample concentration is close to the eutectic concentration, solidification
generally results in composite patterns: alternating lamellae of the two solids, or rods
of one solid immersed in a matrix of the other, grow simultaneously from the liquid.
The fundamental understanding of this pattern-formation process was established by
Jackson and Hunt (JH) [44]. They calculated approximate solutions for spatially periodic
lamellae and rods that grow at constant velocity 𝑣, and established that the average
front undercooling, that is, the difference between the average front temperature and the
eutectic temperature, follows the relation

Δ𝑇 = 𝐾1𝑣𝜆 + 𝐾2
𝜆

, (4.1)

where 𝜆 is the width of one lamella pair (or the distance between two rod centers), 𝑣 is
the velocity of the solidification front, and 𝐾1 and 𝐾2 are constants whose value depends
on the volume fractions of the two solid phases and various materials parameters [44].
The two contributions in Eq. (4.1) arise from the redistribution of solute by diffusion
through the liquid and the curvature of the solid-liquid interfaces, respectively.

The front undercooling is minimal for a characteristic spacing

𝜆𝐽𝐻 =
√︃

𝐾2
𝐾1𝑣

. (4.2)

The spacings found in experiments in massive samples are usually distributed in a
narrow range around 𝜆𝐽𝐻 [116]. However, other spacings can be reached in directional
solidification experiments by imposing a solidification velocity that varies with time. In
this way, the stability of steady-state growth can be probed [34]. In agreement with
theoretical expections [73], steady-state growth is stable over a range of spacings that
is limited by the occurrence of dynamic instabilities. For low spacings, a large-scale
lamella (or rod) elimination instability is observed [5]. For high spacings, the type of
instability that can be observed depends on the sample geometry. For thin samples,
various oscillatory instabilities and a tilt instability can occur, depending on the alloy
phase diagram and the sample concentration. Beyond the onset of these instabilities,
stable tilted patterns as well as oscillatory limit cycles can be observed in both experiments
and simulations [34, 51]. For massive samples, a zig-zag instability occurs for lamellar
eutectics [2, 85], whereas rods exhibit a shape instability [86].

In summary, pattern formation in binary eutectics is fairly well understood. However,
most materials of practical importance have more than two components. Therefore,
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eutectic solidification in multicomponent alloys has received increasing attention in recent
years. A particularly interesting situation arises in alloy systems that exhibit a ternary
eutectic point, at which four phases (three solids and the liquid) coexist. At such a
quadruple point, three binary “eutectic valleys”, that is, monovariant lines of three-phase
coexistence, meet. The existence of three solid phases implies that there is a far greater
variety of possible structures, even in thin samples. Indeed, for two solids 𝛼 and 𝛽,
an array 𝛼𝛽𝛼𝛽 . . . is the only possibility for a composite pattern in a thin sample; the
only remaining degree of freedom is the spacing. With an additional 𝛾 solid, an infinite
number of distinct periodic cycles with different sequences of phases are possible. The
simplest cycles are 𝛼𝛽𝛾𝛼𝛽𝛾 . . . and 𝛼𝛽𝛼𝛾𝛼𝛽𝛼𝛾 . . . and permutations. Clearly, cycles
of arbitrary length, and even non-periodic configurations are possible. An interesting
question is then which configurations, if any, will be favored.

In preliminary works, the occurrence of lamellar structures has been reported in
experiments in massive samples [9, 23, 42, 52, 74, 102, 104]. The spatio-temporal evolution
in ternary eutectic systems was observed in thin samples (quasi-2D experiments) in both
metallic [101] and organic systems [139]. In both cases, the simultaneous growth of three
distinct solid phases from the liquid with a (𝛼𝛽𝛼𝛾), (named ABAC in Ref. [139]) stacking
was observed. Measurements in both cases revealed that 𝜆2𝑣 was approximately constant,
in agreement with the JH scaling of Eq. (4.2).

On the theoretical side, models that extend the JH analysis from binary to ternary
eutectics for three different growth morphologies (rods and hexagon, lamellar, and semi-
regular brick structures) were proposed by Himemiya et al. [41]. The relation between
front undercooling and spacing is still of the form given by Eq. (4.1), with constants
𝐾1 and 𝐾2 that depend on the morphology. The differences between the minimal
undercoolings for different morphologies were found to be small. No direct comparison
to experiments was given.

Finally, ternary eutectic growth has also been investigated by phase-field methods in
Refs. [7, 40], who have studied different stacking sequences formed by 𝛼 = Ag2Al, 𝛽 =
(𝛼 Al) and 𝛾 = Al2Cu in the ternary system Al-Cu-Ag, while transients in the ternary
eutectic solidification of a transparent In-Bi-Sn alloy were studied both by phase field
modeling and experiments [101].

The purpose of the present chapter is to carry out a more systematic investigation of
lamellar ternary eutectic growth. The main questions we wish to address are (i) can an
extension of the JH theory adequately describe the properties of ternary lamellar arrays
and reveal the differences between cycles of different stacking sequences, and (ii) what are
the instabilities that can occur in such patterns. To answer these questions, we develop
a generalization of the JH theory to ternary eutectics which is capable of describing
the front undercoolings of periodic lamellar arrays with arbitrary stacking sequence. Its
predictions are systematically compared to phase-field simulations. We use a generic
thermodynamically consistent phase-field model [33, 79]. While this model is known to
exhibit several thin-interface effects which limit its accuracy [6, 30, 46, 48, 55], we show
here that we can obtain a very satisfying agreement between theory and simulations
if the solid-liquid interfacial free energy is evaluated numerically. In particular, the
minimum-undercooling spacings are accurately reproduced for all stacking sequences that
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we have simulated.
The model is then used to systematically investigate the instabilities of lamellar arrays,

in particular for large spacings. We find that, as for binary eutectics, the symmetry
elements of the steady-state array determine the possible instability modes. Whereas
the calculation of a complete stability diagram is not feasible due to the large number of
independent parameters, we find and characterize several new instability modes. Besides
these oscillatory modes that are direct analogs of the ones observed in binary eutectics,
we also find a new type of instability which occurs at small spacings: cycles in which
the same phase appears more than once can undergo an instability during which one of
these lamellae is eliminated; the system therefore transits to a different (simpler) cycle.
Furthermore, we also find that the occurrence of this type of instability can be well
predicted by our generalized JH theory.

The remainder of the chapter is organized as follows. In Sec. 4.2, we develop the
generalized JH theory for ternary eutectics and calculate the undercooling-spacing
relationships for several simple cycles. In Sec. 4.3, the phase-field model is outlined and
its parameters are related to the ones of the theory. Sec. 4.4 presents the simulation
results concerning both steady-state growth and its instabilities. In Sec. 4.5, we briefly
discuss questions related to pattern selection and present some preliminary simulations
in three dimensions. Sec. 4.6 concludes the chapter.

4.2. Theory
We consider a ternary alloy system consisting of components 𝐴, 𝐵 and 𝐶, which can form
three solid phases 𝛼, 𝛽, and 𝛾 upon solidification from the liquid 𝑙. The concentrations
of the components (in molar fractions) are denoted by 𝑐𝐴, 𝑐𝐵 and 𝑐𝐶 and fulfill the
constraint

𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶 = 1. (4.3)

This obviously implies that there are only two independent concentration fields.
As is customary, isothermal sections of the ternary phase diagram can be conveniently

displayed in the Gibbs simplex. We are interested in alloy systems that exhibit a ternary
eutectic point: four-phase coexistence between three solids and the liquid. The isothermal
cross-section at the ternary eutectic temperature is displayed in Figure 4.1, here for the
particular example of a completely symmetric phase diagram.

The concentration of the liquid is located in the center of the simplex (𝑐𝐴 = 𝑐𝐵 = 𝑐𝐶 =
1/3), and the three solid phases are located at the corners of the eutectic tie triangle. For
higher temperatures, no four-phase coexistence is possible, but each pair of solid phases
can coexist with the liquid (three-phase coexistence). Each of these three-phase equilibria
is a eutectic, and the loci of the liquid concentrations at three-phase coexistence as a
function of temperature form three “eutectic valleys” that meet at the ternary eutectic
point. On each of the sides of the simplex (with the temperature as additional axis), a
binary eutectic phase diagram is found.

The key point for the following analysis is the temperature of solid-liquid interfaces,
which depends on the liquid concentration, the interface curvature, and the interface
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Figure 4.1.: Projection of the ternary phase diagram for a model symmetric ternary eutectic
system on the Gibbs simplex. The triangle at the center is the tie-triangle at
the eutectic temperature where four phases 𝛼, 𝛽, 𝛾, and 𝑙 are in equilibrium. The
diagram also contains the information on three-phase equilibria. The liquidus lines
corresponding to each of these equilibria (“eutectic valleys”) are shown by dotted
lines which meet at the center of the simplex, which is also the concentration of
the liquid at which all the three solid phases and the liquid are at equilibrium.

velocity. The dependence on the concentration is described by the liquidus surface,
which is a two-dimensional surface over the Gibbs simplex. This surface can hence
be characterized by two independent liquidus slopes at each point. For each phase 𝜈
(𝜈 = 𝛼, 𝛽, 𝛾), we choose the two liquidus slopes with respect to the minority components.
Thus, for the 𝛼 phase, the interface temperature is given by the generalized Gibbs-
Thomson relation,

𝑇 𝛼
int − 𝑇E = 𝑚𝛼

𝐵(𝑐𝐵 − 𝑐𝐸
𝐵) + 𝑚𝛼

𝐶(𝑐𝐶 − 𝑐𝐸
𝐶) − Γ𝛼𝜅 − 𝑣𝑛

𝜇𝛼
int

, (4.4)

where 𝑐𝐵 and 𝑐𝐶 are the concentrations in the liquid adjacent to the interface, 𝑐𝐸
𝐵 and 𝑐𝐸

𝐶

their values at the ternary eutectic point, and 𝑚𝛼
𝐵 = 𝑑𝑇𝛼

𝑑𝑐𝐵

⃒⃒⃒
𝑐𝐶=const

and 𝑚𝛼
𝐶 = 𝑑𝑇𝛼

𝑑𝑐𝐶

⃒⃒⃒
𝑐𝐵=const

the liquidus slopes taken at the ternary eutectic point. Furthermore, Γ𝛼 = 𝜎̃𝛼𝑙𝑇E/𝐿𝛼

is the Gibbs-Thomson coefficient, with 𝜎̃𝛼𝑙 the solid-liquid surface tension and 𝐿𝛼 the
latent heat of fusion per unit volume, and 𝜇𝛼

int is the mobility of the 𝛼-liquid interface.
For the typical (slow) growth velocities that can be attained in directional solidification
experiments, the last term, which represents the kinetic undercooling of the interface, is
very small. It will therefore be neglected in the following. The expression for the other
solid phases are obtained by cyclic permutation of the indices.

In the spirit of the original Jackson-Hunt analysis, for the calculation of the diffusion
field in the liquid, the concentration differences between solid and liquid phases are
assumed to be constant and equal to their values at the ternary eutectic point. Since we
are interested in ternary coupled growth, which will take place at temperatures close to
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𝑇𝐸 , this should be a good approximation. Thus, we define

Δ𝑐𝜈
𝑗 = 𝑐𝑙

𝑗 − 𝑐𝜈
𝑗 with 𝑗 = 𝐴, 𝐵, 𝐶 and 𝜈 = 𝛼, 𝛽, 𝛾.

In this approximation, the Stefan condition at a 𝜈-𝑙 interface, which expresses mass
conservation upon solidification, reads

𝜕𝑛𝑐𝑗 = −𝑣𝑛

𝐷
Δ𝑐𝜈

𝑗 , (4.5)

where 𝜕𝑛𝑐𝑗 denotes the partial derivative of 𝑐𝑗 in the direction normal to the interface,
𝑣𝑛 is the normal velocity of the interface (positive for a growing solid), and 𝐷 is the
chemical diffusion coefficient, for simplicity assumed to be equal for all the components.

We consider a general periodic lamellar array with 𝑀 repeating units consisting of
phases (𝜈0, 𝜈1, 𝜈2, . . . , 𝜈𝑀−1) where each 𝜈𝑖 represents the name of one solid phase (𝛼, 𝛽, 𝛾)
in the sequence, with a repeat distance (lamellar spacing) 𝜆. The width of the 𝑗-th single
solid phase region is (𝑥𝑗 − 𝑥𝑗−1) 𝜆, with 𝑥0 = 0 and 𝑥𝑀 = 1, and the sum of all the
widths corresponding to any given phase is its volume fraction 𝜂𝜈 . The eutectic front is
assumed to grow in the 𝑧 direction with a constant velocity 𝑣.

Figure 4.2.: Two examples for periodic lamellar arrays with 𝑀 = 3 and 𝑀 = 4 units.

4.2.1. Concentration fields

First, we consider the diffusion fields of the components 𝐴, 𝐵, 𝐶 ahead of a growing
eutectic front. For the calculation of the concentration fields, the front is supposed to be
planar, as in the sketches of Figure 4.2. We make the following Fourier series expansion
for 𝑐𝐴 and 𝑐𝐵

𝑐𝑋 =
∞∑︁

𝑛=−∞
𝑋𝑛𝑒𝑖𝑘𝑛𝑥−𝑞𝑛𝑧 + 𝑐∞

𝑋 , 𝑋 = 𝐴, 𝐵. (4.6)
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The third concentration 𝑐𝐶 follows from the constraint of Eq. (4.3). In Eq. (4.6),
𝑘𝑛 = 2𝜋𝑛/𝜆 are wave numbers and 𝑞𝑛 can be determined from the solutions of the
stationary diffusion equation

𝑣𝜕𝑧𝑐𝑋 + 𝐷∇2𝑐𝑋 = 0,

which yields

𝑞𝑛 = 𝑣

2𝐷
+

√︃
𝑘2

𝑛 +
(︂

𝑣

2𝐷

)︂2
.

For all the modes 𝑛 ≠ 0, we thus have 𝑞𝑛 ≃ |𝑘𝑛| for small Peclet number Pe = 𝜆/ℓ ≪ 1
with ℓ = 2𝐷/𝑣𝑛, which will always be the case for slow growth. The mode 𝑛 = 0 describes
the concentration boundary layer which is present at off-eutectic concentrations, and
which has a characteristic length scale of ℓ. To determine the coefficients 𝑋𝑛 in the above
Fourier series, we assume the eutectic front to be at the 𝑧 = 0 position. Using the Stefan
condition in Eq. (4.5) and taking the derivative of 𝑐𝑋 with respect to the 𝑧-coordinate

𝜕𝑧𝑐𝑋 |𝑧=0 =
∞∑︁

𝑛=−∞
−𝑞𝑛𝑋𝑛𝑒𝑖𝑘𝑛𝑥,

integration across one lamella period 𝜆 of arbitrary partitioning of phases gives

𝑞𝑛𝑋𝑛𝛿𝑛𝑚𝜆 = 2
ℓ

𝑀−1∑︁
𝑗=0

∫︁ 𝑥𝑗+1𝜆

𝑥𝑗𝜆
𝑒−𝑖𝑘𝑚𝑥Δ𝑐

𝜈𝑗

𝑋 𝑑𝑥, (4.7)

so that the coefficients 𝑋𝑛, 𝑛 ∈ IN in the series ansatz, Eq. (4.6) follow

𝑋𝑛 = 4
ℓ𝑞𝑛𝜆𝑘𝑛

𝑀−1∑︁
𝑗=0

Δ𝑐
𝜈𝑗

𝑋 𝑒−𝑖𝑘𝑛𝜆(𝑥𝑗+1+𝑥𝑗)/2 sin(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2). (4.8)

Applying symmetry arguments for the sinus and cosinus functions, we can formulate real
combinations of these coefficients if we additionally take the negative summation indices
into account. We obtain

𝑋𝑛 + 𝑋−𝑛 = 8
ℓ𝑞𝑛𝜆𝑘𝑛

𝑀−1∑︁
𝑗=0

Δ𝑐
𝜈𝑗

𝑋 cos(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2) sin(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2),

𝑖(𝑋𝑛 − 𝑋−𝑛) = 8
ℓ𝑞𝑛𝜆𝑘𝑛

𝑀−1∑︁
𝑗=0

Δ𝑐
𝜈𝑗

𝑋 sin(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2) sin(𝑘𝑛𝜆(𝑥𝑗+1 − 𝑥𝑗)/2).

Herewith, Eq. (4.6) reads:

𝑐𝑋 = 𝑐∞
𝑋 + 𝑋0 +

𝑀−1∑︁
𝑗=0

∞∑︁
𝑛=1

8
ℓ𝑞𝑛𝜆𝑘𝑛

cos(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2) sin(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2) cos(𝑘𝑛𝑥)
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+
𝑀−1∑︁
𝑗=0

∞∑︁
𝑛=1

8
ℓ𝑞𝑛𝜆𝑘𝑛

sin(𝑘𝑛𝜆(𝑥𝑗+1 + 𝑥𝑗)/2) sin(𝑘𝑛𝜆(𝑥𝑗+1 − 𝑥𝑗)/2) sin(𝑘𝑛𝑥).

The general expression for the mean concentration ⟨𝑐𝑋⟩𝑚 ahead of the 𝑚-th phase of the
phase sequence can be calculated to yield

⟨𝑐𝑋⟩𝑚 = 1
(𝑥𝑚+1 − 𝑥𝑚)𝜆

∫︁ 𝑥𝑚+1𝜆

𝑥𝑚𝜆
𝑐𝑋𝑑𝑥

= 𝑐∞
𝑋 + 𝑋0 + 1

𝑥𝑚+1 − 𝑥𝑚

∞∑︁
𝑛=1

𝑀−1∑︁
𝑗=0

{︁ 16
𝜆2𝑘2

𝑛ℓ𝑞𝑛
Δ𝑐

𝜈𝑗

𝑋 sin[𝜋𝑛(𝑥𝑚+1 − 𝑥𝑚)] ×

× sin[𝜋𝑛(𝑥𝑗+1 − 𝑥𝑗)] cos[𝜋𝑛(𝑥𝑚+1 + 𝑥𝑚 − 𝑥𝑗+1 − 𝑥𝑗)]
}︁

. (4.9)

For a repetitive appearance of a phase 𝜈 in the phase sequence, the mean concentration
of component 𝑋 ahead of this phase follows by taking the weighted average of all the
lamellae of phase 𝜈,

⟨𝑐𝑋⟩𝜈 =
∑︀𝑀−1

𝑚=0 ⟨𝑐𝑋⟩𝑚(𝑥𝑚+1 − 𝑥𝑚)𝛿𝜈𝑚𝜈∑︀𝑀−1
𝑚=0 (𝑥𝑚+1 − 𝑥𝑚)𝛿𝜈𝑚𝜈

with 𝛿𝜈𝑚𝜈 =
{︃

0 for 𝜈 = 𝜈𝑚

1 for 𝜈 ̸= 𝜈𝑚.

4.2.2. Average front temperature

The average front temperature is now found by taking the average of the Gibbs-Thomson
equation along the front, separately for each phase (𝛼, 𝛽 and 𝛾):

Δ𝑇𝜈 = 𝑇𝐸 − 𝑇𝜈 = −𝑚𝜈
𝐵(⟨𝑐𝐵⟩𝜈 − 𝑐𝐸

𝐵) − 𝑚𝜈
𝐶(⟨𝑐𝐶⟩𝜈 − 𝑐𝐸

𝐶) + Γ𝜈⟨𝜅⟩𝜈 , (4.10)

for 𝜈 = 𝛼, 𝛽, 𝛾. Here, ⟨𝜅⟩𝜈 is the average curvature of the solid-liquid interface which can
be evaluated by exact geometric relations to be

⟨𝜅⟩𝜈 =
∑︀𝑀−1

𝑚=0 ⟨𝜅⟩𝑚(𝑥𝑚+1 − 𝑥𝑚)𝛿𝜈𝑚𝜈∑︀𝑀−1
𝑚=0 (𝑥𝑚+1 − 𝑥𝑚)𝛿𝜈𝑚𝜈

and
⟨𝜅⟩𝑚 =

sin 𝜃𝜈𝑚𝜈𝑚+1 + sin 𝜃𝜈𝑚𝜈𝑚−1

(𝑥𝑚+1 − 𝑥𝑚)𝜆 .

Here, 𝜃𝜈𝑚𝜈𝑚−1 are the contact angles that are obtained by applying Young’s law at the
trijunction points. More precisely, 𝜃𝜈𝑚𝜈𝑚+1 is the angle, at the triple point (identified by
the intersection of the two solid-liquid interfaces and the solid-solid one), between the
tangent to the 𝜈𝑚 − 𝑙 interface and the horizontal (the 𝑥 direction). For a triple point
with the phases 𝜈𝑚, 𝜈𝑚+1 and liquid, the two contact angles 𝜃𝜈𝑚𝜈𝑚+1 , 𝜃𝜈𝑚+1𝜈𝑚 satisfy the
following relations, obtained from Young’s law,

𝜎̃𝜈𝑚+1𝑙

cos(𝜃𝜈𝑚𝜈𝑚+1) = 𝜎̃𝜈𝑚𝑙

cos(𝜃𝜈𝑚+1𝜈𝑚) =
𝜎̃𝜈𝑚𝜈𝑚+1

sin(𝜃𝜈𝑚𝜈𝑚+1 + 𝜃𝜈𝑚+1𝜈𝑚) .
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Note that, in general, 𝜃𝜈𝑚𝜈𝑚+1 ̸= 𝜃𝜈𝑚+1𝜈𝑚 .
A short digression is in order to motivate the closure of our system of equations.

Although we have not given the explicit expressions, the coefficients 𝐴0 and 𝐵0 can be
simply calculated by using Eq.(4.7) with 𝑛 = 0. However, to carry out this calculation,
the width of each lamella has to be given. If these widths are chosen consistent with the
lever rule, that is, the cumulated lamellar width of phase 𝜈 corresponds to the nominal
volume fraction of phase 𝜈 for the given sample concentration 𝑐∞

𝐴 , 𝑐∞
𝐵 , and 𝑐∞

𝐶 , the use
of Eq.(4.7) yields 𝑋0 = 𝑐𝐸

𝑋 − 𝑐∞
𝑋 (𝑋 = 𝐴, 𝐵, 𝐶). However, this result is incorrect: the

concentrations of the solids are not equal to the equilibrium concentrations at the eutectic
temperature because solidification takes place at a temperature below 𝑇E. Therefore,
the true volume fractions depend on the solidification conditions. Their determination
would require a self-consistent calculation which is exceedingly difficult. Therefore, we
will take the same path as Jackson and Hunt in their original paper [44]: we will assume
that the volume fractions of the three phases are fixed by the lever rule at the eutectic
temperature, but we will treat the amplitudes of the two boundary layers, 𝐴0 and 𝐵0, as
unknowns. As in Ref. [44], one can expect that the difference to the true solution is of
order Pe and therefore small for slow solidification.

With this assumption, the equations developed above can now be used in two ways.
For isothermal solidification, the temperatures of all interfaces must be equal to the
externally set temperature, and the three equations Δ𝑇𝜈 = Δ𝑇 for 𝜈 = 𝛼, 𝛽, 𝛾, can
be used to determine the three unknowns 𝐴0, 𝐵0 and the velocity 𝑣 of the solid-liquid
front. All of these quantities will be a function of the lamellar spacing 𝜆. In directional
solidification, the growth velocity in steady state is fixed and equal to the speed with
which the sample is pulled from a hot to a cold region. The third unknown is now the
total front undercooling. In the classic Jackson-Hunt theory for binary eutectics, the
system of equations is closed by the hypothesis that the average undercoolings of the two
phases are equal. This is only an approximation which is quite accurate for eutectics
with comparable volume fractions of the two solids, but becomes increasingly inaccurate
when the volume fractions are asymmetric [51]. We will use the same approximation for
the ternary case here, and set Δ𝑇𝛼 = Δ𝑇𝛽 = Δ𝑇𝛾 = Δ𝑇 . This then leads to expressions
for Δ𝑇 as a function of the growth speed 𝑣 and the lamellar spacing 𝜆.

4.2.3. Examples

Binary systems

As a benchmark for both our calculations and simulations, we consider binary eutectic
systems with components 𝐴 and 𝐵 and with three phases: 𝛼, 𝛽, and liquid.

Setting 𝑥0 = 0, 𝑥1 = 𝜂𝛼, 𝑥2 = 1, and applying Eq. (4.9) gives

⟨𝑐𝑋⟩𝛼 = 𝑐∞
𝑋 + 𝑋0 + 1

𝜂𝛼

∞∑︁
𝑛=1

{︁ 16
𝜆2𝑘2

𝑛ℓ𝑞𝑛

(︁
Δ𝑐𝛼

𝑋 − Δ𝑐𝛽
𝑋

)︁
sin2(𝜋𝑛𝜂𝛼)

}︁
(4.11)

∼= 𝑐∞
𝑋 + 𝑋0 + 2𝜆

𝜂𝛼ℓ
𝒫(𝜂𝛼)Δ𝑐𝑋 and (4.12)
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Figure 4.3.: Sketch of a lamellar structure in a binary eutectic system with period length
𝑀 = 2. 𝜈𝑖 denotes a phase in the sequence (𝛼𝛽).

⟨𝑐𝑋⟩𝛽 = 𝑐∞
𝑋 + 𝑋0 − 2𝜆

(1 − 𝜂𝛼)ℓ𝒫(1 − 𝜂𝛼)Δ𝑐𝑋 (4.13)

with 𝑘𝑛 = 2𝜋𝑛/𝜆, 𝑞𝑛 ≈ 𝑘𝑛, 𝜆/ℓ ≪ 1, Δ𝑐𝑋 = Δ𝑐𝛼
𝑋 − Δ𝑐𝛽

𝑋 , and the dimensionless function

𝒫(𝜂) =
∞∑︁

𝑛=1

1
(𝜋𝑛)3 sin2(𝜋𝑛𝜂) (4.14)

which has the properties 𝒫(𝜂) = 𝒫(1 − 𝜂) = 𝒫(𝜂 − 1).
Furthermore, Eq. (4.10) together with ℓ = 2𝐷/𝑣 leads to

Δ𝑇𝛼 = −𝑚𝛼
𝐵𝐵0 − 𝜆𝑣

𝜂𝛼𝐷
𝒫(𝜂𝛼)𝑚𝛼

𝐵Δ𝑐𝐵 + Γ𝛼⟨𝜅⟩𝛼,

Δ𝑇𝛽 = −𝑚𝛽
𝐴𝐴0 − 𝜆𝑣

𝜂𝛽𝐷
𝒫(𝜂𝛽)𝑚𝛽

𝐴Δ𝑐𝐴 + Γ𝛽⟨𝜅⟩𝛽,

where ⟨𝜅⟩𝛼 = 2 sin 𝜃𝛼𝛽/(𝜂𝛼𝜆) and ⟨𝜅⟩𝛽 = 2 sin 𝜃𝛽𝛼/(𝜂𝛽𝜆). In addition, for a binary alloy
𝐵0 = −𝐴0. The unknown 𝐴0 and the global front undercooling are determined using the
assumption of equal interface undercoolings, Δ𝑇𝛼 = Δ𝑇𝛽. The result is identical to the
one of the Jackson-Hunt analysis.

Ternary Systems

Next, we study ternary systems with three components (𝐴, 𝐵, 𝐶) and four phases (𝛼, 𝛽, 𝛾
and liquid). We start with the configuration (𝛼𝛽𝛾𝛼𝛽𝛾 . . .), sketched in Figure 4.4.

We set 𝑥0 = 0, 𝑥1 = 𝜂𝛼, 𝑥2 = 𝜂𝛼 + 𝜂𝛽 = 1 − 𝜂𝛾 and 𝑥3 = 1 and apply Eq. (4.9). This
yields

⟨𝑐𝑋⟩𝛼 = 𝑐∞
𝑋 + 𝑋0 + 2𝜆

𝜂𝛼ℓ

(︁
𝒫(𝜂𝛼)Δ𝑐𝛼

𝑋 + 𝒬(𝜂𝛼, 𝜂𝛽)Δ𝑐𝛽
𝑋 + 𝒬(𝜂𝛼, 𝜂𝛾)Δ𝑐𝛾

𝑋

)︁
(4.15)
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Figure 4.4.: Sketch of a ternary stacking order (𝛼𝛽𝛾) with period length 𝑀 = 3.

⟨𝑐𝑋⟩𝛽 = 𝑐∞
𝑋 + 𝑋0 + 2𝜆

𝜂𝛽ℓ

(︁
𝒬(𝜂𝛽, 𝜂𝛼)Δ𝑐𝛼

𝑋 + 𝒫(𝜂𝛽)Δ𝑐𝛽
𝑋 + 𝒬(𝜂𝛽, 𝜂𝛾)Δ𝑐𝛾

𝑋

)︁
(4.16)

⟨𝑐𝑋⟩𝛾 = 𝑐∞
𝑋 + 𝑋0 + 2𝜆

𝜂𝛾ℓ

(︁
𝒬(𝜂𝛾 , 𝜂𝛼)Δ𝑐𝛼

𝑋 + 𝒬(𝜂𝛾 , 𝜂𝛽)Δ𝑐𝛽
𝑋 + 𝒫(𝜂𝛾)Δ𝑐𝛾

𝑋

)︁
. (4.17)

Here, we have used 𝑋 = 𝐴, 𝐵, 𝐶 and 𝒫 is the function defined in Eq. (4.14), and

𝒬(𝜂𝜈𝑖 , 𝜂𝜈𝑗 ) =
∞∑︁

𝑛=1

1
(𝜋𝑛)3 sin(𝜋𝑛𝜂𝜈𝑖) sin(𝜋𝑛𝜂𝜈𝑗 ) cos[𝜋𝑛(𝜂𝜈𝑖 + 𝜂𝜈𝑗 )]

𝒫(𝜂𝜈𝑖) and 𝒬(𝜂𝜈𝑖 , 𝜂𝜈𝑗 ) fulfill the properties 𝒫(𝜂𝜈𝑖) = −𝒬(𝜂𝜈𝑖 , −𝜂𝜈𝑖) and 𝒬(𝜂𝜈𝑖 , 𝜂𝜈𝑗 ) =
𝒬(𝜂𝜈𝑗 , 𝜂𝜈𝑖).

For simplicity, we now consider a completely symmetric ternary eutectic configuration:
a completely symmetric ternary phase diagram (that is, any two phases can be exchanged
without changing the phase diagram) and equal phase fractions 𝜂𝛼 = 𝜂𝛽 = 𝜂𝛾 = 1

3 , which
implies 𝑐∞

𝑋 = 𝑐𝐸
𝑋 . As a consequence, 𝑋0 = 0, and Eq. (4.15—4.17) simplifies to

⟨𝑐𝐴⟩𝛼 − 𝑐𝐸
𝐴 = 2𝜆

𝜂𝛼ℓ
𝒫(𝜂𝛼)(Δ𝑐𝛼

𝐴 − Δ𝑐𝛽
𝐴)

⟨𝑐𝐵⟩𝛼 − 𝑐𝐸
𝐵 = 𝜆𝒫(𝜂𝛼)

𝜂𝛼ℓ

(︁
Δ𝑐𝛼

𝐵 − Δ𝑐𝛽
𝐵

)︁
⟨𝑐𝐶⟩𝛼 − 𝑐𝐸

𝐶 = 𝜆𝒫(𝜂𝛼)
𝜂𝛼ℓ

(︁
Δ𝑐𝛼

𝐶 − Δ𝑐𝛾
𝐶

)︁
,

for the three components. Since, in this case, all phases have the same undercooling
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by symmetry, the front undercooling is simply given by

Δ𝑇 = − 2𝜆𝑣

𝜂𝛼𝐷
𝒫(𝜂𝛼)𝑚𝛼

𝐵Δ𝑐𝐵 + Γ𝛼⟨𝜅⟩𝛼

where ⟨𝜅⟩𝛼 = 2
𝜂𝛼𝜆(sin 𝜃𝛼𝛽 + sin 𝜃𝛼𝛾). The terms Δ𝑐𝛼

𝐵 − Δ𝑐𝛽
𝐵 and Δ𝑐𝛼

𝐶 − Δ𝑐𝛾
𝐶 are identical.

For convenience, we write the preceding equation using the term we already use for the
binaries namely Δ𝑐𝐵 = Δ𝑐𝛼

𝐵 − Δ𝑐𝛽
𝐵.

Next, we discuss again a ternary eutectic alloy with three components and four phases,
but now for the phase cycle (𝛼𝛽𝛼𝛾𝛼𝛽 . . .). Furthermore, we suppose that the two lamellae

Figure 4.5.: Schematic drawing of a ternary eutectic system with a configuration (𝛼𝛽𝛼𝛾𝛼𝛽 . . .)
of periodic length 𝑀 = 4.

of the 𝛼 phase have equal width 𝜆𝜂𝛼/2. The average concentrations ⟨𝑐𝑋⟩𝑚 are deduced
from the general expression in Eq. 4.9 and read

⟨𝑐𝑋⟩𝛼 = 𝑐∞
𝑋 + 𝑋0 + 2𝜆

𝜂𝛼

2 ℓ

(︁
𝒮(𝜂𝛼, 𝜂𝛽)Δ𝑐𝛼

𝑋 + 𝒬(𝜂𝛼

2 , 𝜂𝛽)Δ𝑐𝛽
𝑋 + 𝒬(𝜂𝛼

2 , 𝜂𝛾)Δ𝑐𝛾
𝑋

)︁
⟨𝑐𝑋⟩𝛽 = 𝑐∞

𝑋 + 𝑋0 + 2𝜆

𝜂𝛽ℓ

(︁
2𝒬(𝜂𝛽, 𝜂𝛼

2 )Δ𝑐𝛼
𝑋 + 𝒫(𝜂𝛽)Δ𝑐𝛽

𝑋 + ℛ(𝜂𝛽, 𝜂𝛾)Δ𝑐𝛾
𝑋

)︁
⟨𝑐𝑋⟩𝛾 = 𝑐∞

𝑋 + 𝑋0 + 2𝜆

𝜂𝛾ℓ

(︁
2𝒬(𝜂𝛾 , 𝜂𝛼

2 )Δ𝑐𝛼
𝑋 + ℛ(𝜂𝛾 , 𝜂𝛽)Δ𝑐𝛽

𝑋 + 𝒫(𝜂𝛾)Δ𝑐𝛾
𝑋

)︁
,

where 𝑋 = 𝐴, 𝐵, 𝐶. Furthermore, we have introduced the short notations

ℛ(𝜂𝜈𝑖 , 𝜂𝜈𝑗 ) =
∞∑︁

𝑛=1

1
(𝜋𝑛)3 sin(𝜋𝑛𝜂𝜈𝑖) sin(𝜋𝑛𝜂𝜈𝑗 ) cos(𝜋𝑛)

𝒮(𝜂𝜈𝑖 , 𝜂𝜈𝑗 ) =
∞∑︁

𝑛=1

1
(𝜋𝑛)3 sin2(𝜋𝑛𝜂𝜈𝑖/2){1 + cos(𝜋𝑛) cos[𝜋𝑛(𝜂𝜈𝑗 − 𝜂𝜈𝑖)]}.

From the general formulation of the Gibbs-Thomson equation in Eq. (4.10), we determine
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the undercoolings,

Δ𝑇𝛼 = −𝑚𝛼
𝐵

(︂
𝐵0 + 4𝜆

𝜂𝛼ℓ

(︁
𝒮(𝜂𝛼, 𝜂𝛽)Δ𝑐𝛼

𝐵 + 𝒬(𝜂𝛼

2 , 𝜂𝛽)Δ𝑐𝛽
𝐵 + 𝒬(𝜂𝛼

2 , 𝜂𝛾)Δ𝑐𝛾
𝐵

)︁)︂
+ −𝑚𝛼

𝐶

(︂
𝐶0 + 4𝜆

𝜂𝛼ℓ

(︁
𝒮(𝜂𝛼, 𝜂𝛽)Δ𝑐𝛼

𝐶 + 𝒬(𝜂𝛼

2 , 𝜂𝛽)Δ𝑐𝛽
𝐶 + 𝒬(𝜂𝛼

2 , 𝜂𝛾)Δ𝑐𝛾
𝐶

)︁)︂
+ Γ𝛼

2 (sin 𝜃𝛼𝛽 + sin 𝜃𝛼𝛾)
𝜂𝛼𝜆

(4.18)

Δ𝑇𝛽 = −𝑚𝛽
𝐴

(︃
𝐴0 + 2𝜆

𝜂𝛽ℓ

(︁
2𝒬(𝜂𝛽, 𝜂𝛼

2 )Δ𝑐𝛼
𝐴 + 𝒫(𝜂𝛽)Δ𝑐𝛽

𝐴 + ℛ(𝜂𝛽, 𝜂𝛾)Δ𝑐𝛾
𝐴

)︁)︃

+ −𝑚𝛽
𝐶

(︃
𝐶0 + 2𝜆

𝜂𝛽ℓ

(︁
2𝒬(𝜂𝛽, 𝜂𝛼

2 )Δ𝑐𝛼
𝐶 + 𝒫(𝜂𝛽)Δ𝑐𝛽

𝐶 + ℛ(𝜂𝛽, 𝜂𝛾)Δ𝑐𝛾
𝐶

)︁)︃

+ Γ𝛽
2 sin 𝜃𝛽𝛼

𝜂𝛽𝜆

Δ𝑇𝛾 = −𝑚𝛾
𝐴

(︃
𝐴0 + 2𝜆

𝜂𝛾ℓ

(︁
2𝒬(𝜂𝛾 , 𝜂𝛼

2 )Δ𝑐𝛼
𝐴 + ℛ(𝜂𝛾 , 𝜂𝛽)Δ𝑐𝛽

𝐴 + 𝒫(𝜂𝛾)Δ𝑐𝛾
𝐴

)︁)︃

+ −𝑚𝛾
𝐵

(︃
𝐵0 + 2𝜆

𝜂𝛾ℓ

(︁
2𝒬(𝜂𝛾 , 𝜂𝛼

2 )Δ𝑐𝛼
𝐵 + ℛ(𝜂𝛾 , 𝜂𝛽)Δ𝑐𝛽

𝐵 + 𝒫(𝜂𝛾)Δ𝑐𝛾
𝐵

)︁)︃

+ Γ𝛾
2 sin 𝜃𝛾𝛼

𝜂𝛾𝜆
.

For a symmetric phase diagram (all slopes equal, 𝑚𝜈𝑖
𝑋 = 𝑚) one can show using the

assumption of equal undercooling of all phases that an expression for the global interface
undercooling can be derived as Δ𝑇 = 1/3(Δ𝑇𝛼 + Δ𝑇𝛽 + Δ𝑇𝛾) by elimination of the
constants 𝐴0, 𝐵0 and 𝐶0 using the relation (𝐴0 + 𝐵0 + 𝐶0) = 0.

4.2.4. Discussion

A point which merits closer attention is the question which of all the possible steady-state
configurations exhibits the lowest undercooling. Whereas the general idea that a eutectic
system will always select the state of lowest undercooling is wrong (see Sec. 4.5 below),
an information about this point constitutes nevertheless a useful starting point. Whereas
the general solution to this problem is non-trivial, in the following we present some
partial insights.

Let us, for the sake of discussion, first compute the average total curvature undercooling
Δ𝑇𝜅 of an arbitrary arrangement. Consider a configuration of period M having 𝑀𝑎

lamella of the 𝛼 phase, 𝑀𝑏 lamella of the 𝛽 phase, and 𝑀𝑐 lamella of the 𝛾 phase, where
the integers 𝑀𝑎, 𝑀𝑏, and 𝑀𝑐 add up to M. In a system where all the solid-liquid and
solid-solid surface tensions are identical, the total average curvature undercooling Δ𝑇 𝜈

𝜅
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of each phase 𝜈 is,

Δ𝑇 𝛼
𝜅 = Γ𝛼

2 sin 𝜃

𝜆

𝑀𝑎

𝜂𝛼

Δ𝑇 𝛽
𝜅 = Γ𝛽

2 sin 𝜃

𝜆

𝑀𝑏

𝜂𝛽

Δ𝑇 𝛾
𝜅 = Γ𝛾

2 sin 𝜃

𝜆

𝑀𝑐

𝜂𝛾
.

It is remarkable that the average curvature undercooling is independent of the individual
widths of each lamella, but depends only on the total volume fraction and the number of
lamellae of the specific phase. Furthermore, it is quite clear from the above examples that
the final expression for the global average interface undercooling can always be written
in the same form as Eq. (4.1). The second term of this expression (that is, the one
proportional to 1/𝜆) can be computed for the case where all Gibbs-Thomson coefficients
and liquidus slopes are equal, and reads

𝐾2
𝜆

= Δ𝑇 𝛼
𝜅 + Δ𝑇 𝛽

𝜅 + Δ𝑇 𝛾
𝜅

3

= Γ2 sin 𝜃

3𝜆

(︃
𝑀𝑎

𝜂𝛼
+ 𝑀𝑏

𝜂𝛽
+ 𝑀𝑐

𝜂𝛾

)︃
. (4.19)

For the special case of a completely symmetric phase diagram and a sample at the eutectic
composition, Eqn.(4.19) yields

𝐾2
𝜆

= Γ2 sin 𝜃

𝜆
(𝑀𝑎 + 𝑀𝑏 + 𝑀𝑐) ,

where we have used the fact that 𝜂𝛼 = 𝜂𝛽 = 𝜂𝛾 = 1/3. Using, 𝑀𝑎 + 𝑀𝑏 + 𝑀𝑐 = 𝑀 ,
𝐾2
𝜆

= Γ 2 sin 𝜃

(𝜆/ 𝑀) . Thus, we see that the magnitude of this term per unit lamella in an
arrangement is the same for all the possible arrangements, irrespective of the individual
widths of the lamella and the relative positions of the lamellae in a configuration. Moreover,
we see that for a general off-eutectic composition, choosing the number of lamellae in the
ratio 𝜂𝛼 : 𝜂𝛽 : 𝜂𝛾 renders the average curvature undercoolings of all the three phases equal.
This condition is, however, relevant only for the special case of identical solid-solid and
solid-liquid surface tensions and equal liquidus slopes of the phases. For the case when
the solid-liquid and solid-solid surface tensions are unequal, the curvature undercooling
is no longer independent of the arrangement of the lamella in the configuration. Hence,
the problem of determining the minimum undercooling configuration is complex and no
general expression regarding the number, position and widths of lamellae can be derived.

Another point is worth mentioning. Under the assumption that the volume fractions
of the solid phases are fixed by the lever rule, the width of the three lamellae in the
𝛼𝛽𝛾 cycle is uniquely fixed by the alloy concentration. However, for the 𝛼𝛽𝛼𝛾 cycle,
and more generally for any cycle with 𝑀 > 3, this is not the case any more because
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there have to be at least two lamellae of the same phase in the cycle. Whereas the
cumulated width of these lamellae is fixed by the global concentration, the width of each
individual lamella is not. For example, in the 𝛼𝛽𝛼𝛾 cycle at the eutectic concentration
𝑐∞

𝐴 = 𝑐∞
𝐵 = 𝑐∞

𝐶 = 1/3, all the configurations (𝜉, 1/3, 1/3 − 𝜉, 1/3) for 0 < 𝜉 < 1/3 are
admissible, where the notation ( · , · , . . .) is a shorthand for the list of the lamella widths
𝑥𝑛+1 − 𝑥𝑛. The number 𝜉 is an internal degree of freedom that can be freely chosen by
the system. With our method, the global front undercooling can be calculated for any
value of 𝜉. For the 𝛼𝛽𝛼𝛾 cycle, we found that the configuration with equal widths of
the 𝛼 phases (𝜉 = 1/6) was the one with the minimum average front undercooling. This
gives a strong indication that this value is stable, and that perturbations of 𝜉 around
this value should decay with time. Hence, the analytic expressions given above for the
𝛼𝛽𝛼𝛾 cycle, which are for 𝜉 = 1/6, should be the relevant ones.

4.3. Phase-field model

4.3.1. Model

A thermodynamically consistent phase-field model is used for the present study [33, 79].
The equations are derived from an entropy functional of the form

𝒮 (𝑒, 𝑐, 𝜑) =
∫︁

Ω

(︂
𝑠 (𝑒, 𝑐, 𝜑) −

(︂
𝜀𝑎 (𝜑, ∇𝜑) + 1

𝜀
𝑤 (𝜑)

)︂)︂
𝑑Ω, (4.20)

where 𝑒 is the internal energy density, 𝑐 = (𝑐𝑖)𝐾
𝑖=1 is a vector of concentration variables,

𝐾 being the number of components, and 𝜑 = (𝜑𝛼)𝑁
𝛼=1 is a vector of phase-field variables,

𝑁 being the number of phases present in the system. 𝜑 and 𝑐 fulfill the constraints

𝐾∑︁
𝑖=1

𝑐𝑖 = 1 and
𝑁∑︁

𝛼=1
𝜑𝛼 = 1, (4.21)

so that these vectors always lie in 𝐾 − 1- and 𝑁 − 1-dimensional planes, respectively.
Moreover, 𝜀 is the small length scale parameter related to the interface width, 𝑠 (𝑒, 𝑐, 𝜑)
is the bulk entropy density, 𝑎 (𝜑, ∇𝜑) is the gradient entropy density and 𝑤 (𝜑) describes
the surface entropy potential of the system for pure capillary-force-driven problems.

We use a multi-obstacle potential for 𝑤 (𝜑) of the form

𝑤 (𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16
𝜋2

𝑁,𝑁∑︁
𝛼,𝛽=1
(𝛼<𝛽)

𝜎𝛼𝛽𝜑𝛼𝜑𝛽 +
𝑁,𝑁,𝑁∑︁

𝛼,𝛽,𝛾=1
(𝛼<𝛽<𝛾)

𝜎𝛼𝛽𝛾𝜑𝛼𝜑𝛽𝜑𝛾 , if 𝜑 ∈
∑︀

∞, elsewhere

(4.22)

where
∑︀

= {𝜑 |
∑︀𝑁

𝛼=1 𝜑𝛼 = 1 and 𝜑𝛼 ≥ 0}, 𝜎𝛼𝛽 is the surface entropy density and 𝜎𝛼𝛽𝛾

is a term added to reduce the presence of unwanted third or higher order phase at a
binary interface (see below for details).
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The gradient entropy density 𝑎 (𝜑, ∇𝜑) can be written as

𝑎 (𝜑, ∇𝜑) =
𝑁,𝑁∑︁

𝛼,𝛽=1
(𝛼<𝛽)

𝜎𝛼𝛽 [𝑎𝑐 (𝑞𝛼𝛽)]2 |𝑞𝛼𝛽|2,

where 𝑞𝛼𝛽 = (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼) is a vector normal to the 𝛼𝛽 interface. The function
𝑎𝑐 (𝑞𝛼𝛽) describes the form of the anisotropy of the evolving phase boundary. For
the present study, we assume isotropic interfaces, and hence 𝑎𝑐 (𝑞𝛼𝛽) = 1. Evolution
equations for 𝑐 and 𝜑 are derived from the entropy functional through conservation
laws and phenomenological maximization of entropy, respectively [33, 79]. A linearized
temperature field with positive gradient 𝐺 in the growth direction (𝑧 axis) is imposed
and moved forward with a velocity 𝑣,

𝑇 = 𝑇0 + 𝐺(𝑧 − 𝑣𝑡) (4.23)

where 𝑇0 is the temperature at 𝑧 = 0 at time 𝑡 = 0. The evolution equations for the
phase-field variables read

𝜔𝜀𝜕𝑡𝜑𝛼 = 𝜀 (∇ · 𝑎,∇𝜑𝛼 (𝜑, ∇𝜑) − 𝑎,𝜑𝛼 (𝜑, ∇𝜑)) − 1
𝜀

𝑤,𝜑𝛼 (𝜑) − 𝑓,𝜑𝛼 (𝑇, 𝑐, 𝜑)
𝑇

− Λ,

(4.24)

where Λ is the Lagrange multiplier which maintains the constraint of Eq. (4.21) for
𝜑, and the constant 𝜔 is the relaxation time of the phase fields. Furthermore, 𝑎,∇𝜑𝛼 ,
𝑎,𝜑𝛼 , 𝑤,𝜑𝛼 and 𝑓,𝜑𝛼 indicate the derivatives of the respective entropy densities with
respect to ∇𝜑𝛼 and 𝜑𝛼. The function 𝑓(𝑇, 𝑐, 𝜑) in Eq. (4.24) describes the free energy
density, and is related to the entropy density 𝑠(𝑇, 𝑐, 𝜑), through the relation 𝑓(𝑇, 𝑐, 𝜑) =
𝑒(𝑇, 𝑐, 𝜑) − 𝑇𝑠(𝑇, 𝑐, 𝜑), where 𝑒(𝑇, 𝑐, 𝜑) is the internal energy density. The free energy
density is given by the summation over all bulk free energy contributions 𝑓𝛼(𝑇, 𝑐) of the
individual phases in the system. We use an ideal solution model,

𝑓(𝑇, 𝑐, 𝜑) =
𝐾∑︁

𝑖=1

(︃
𝑇𝑐𝑖 ln 𝑐𝑖 +

𝑁∑︁
𝛼=1

𝑐𝑖𝐿
𝛼
𝑖

(𝑇 − 𝑇 𝛼
𝑖 )

𝑇 𝛼
𝑖

ℎ𝛼 (𝜑)
)︃

, (4.25)

where

𝑓𝛼(𝑇, 𝑐) =
𝐾∑︁

𝑖=1

(︃
𝑇𝑐𝑖 ln 𝑐𝑖 + 𝑐𝑖𝐿

𝛼
𝑖

(𝑇 − 𝑇 𝛼
𝑖 )

𝑇 𝛼
𝑖

)︃
(4.26)

is the free energy density of the 𝛼 solid phase, and

𝑓𝑙(𝑇, 𝑐) = 𝑇
𝐾∑︁

𝑖=1
(𝑐𝑖 ln (𝑐𝑖)) (4.27)
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is the one of the liquid. The parameters 𝐿𝛼
𝑖 and 𝑇 𝛼

𝑖 denote the latent heats and the
melting temperatures of the 𝑖𝑡ℎ component in the 𝛼 phase, respectively. We choose the
liquid as the reference state, and hence 𝐿𝑙

𝑖 = 0.
The function ℎ𝛼(𝜑) is a weight function which we choose to be of the form ℎ𝛼 (𝜑) =

𝜑2
𝛼 (3 − 2𝜑𝛼). Thus, 𝑓 = 𝑓𝛼 for 𝜑𝛼 = 1. Other interpolation functions involving other

components of the 𝜑 vector could also be used, but here we restrict ourselves to this
simple choice.

The evolution equations for the concentration fields are derived from Eq. (4.20),

𝜕𝑡𝑐𝑖 = −∇ ·

⎛⎝𝑀𝑖0(𝑐, 𝜑)∇ 1
𝑇

+
𝐾∑︁

𝑗=1
𝑀𝑖𝑗 (𝑐, 𝜑) ∇

(︃
1
𝑇

𝜕𝑓(𝑇, 𝑐, 𝜑)
𝜕𝑐𝑗

)︃⎞⎠ .

By a convenient choice of the mobilities 𝑀𝑖𝑗 (𝑐, 𝜑), self- and interdiffusion in multicompo-
nent systems (including off-diagonal terms of the diffusion matrix) can be modelled. Here,
however, we limit ourselves to a diagonal diffusion matrix with all individual diffusivities
being equal, which can be achieved by choosing

𝑀𝑖𝑗(𝑐, 𝜑) = 𝐷𝑖(𝜑)𝑐𝑖 (𝛿𝑖𝑗 − 𝑐𝑗)

𝑀𝑖0(𝑐, 𝜑) = 𝑀0𝑖(𝑐, 𝜑) = −
𝑁∑︁

𝛼=1

𝐾∑︁
𝑗=1

𝑀𝑗𝑖ℎ𝛼 (𝜑) 𝐿𝛼
𝑖 .

The terms 𝑀𝑖0(𝑐, 𝜑) = 𝑀0𝑖(𝑐, 𝜑) are the mobilities for the concentration current of
the component 𝑖 due to a temperature gradient. The diffusion coefficient is taken as
a linear interpolation between the phases, 𝐷𝑖(𝜑) =

∑︀𝑁
𝛼=1 𝐷𝛼

𝑖 𝜑𝛼, where 𝐷𝛼
𝑖 is the non-

dimensionalized diffusion coefficient of the 𝑖𝑡ℎ component in the 𝛼 phase, using the liquid
diffusivity 𝐷𝑙 as the reference, where the diffusivities of all the components in the liquid
phase are assumed to be equal. In the simulations we assume zero diffusivity in the
solid, and take the effective diffusivity to be 𝐷𝑖(𝜑) = 𝐷𝑙𝜑𝑙. The quantity 𝑑* = 𝜎/ (𝑅/𝑣𝑚)
is used as the reference length scale in the simulations, where the molar volume 𝑣𝑚 is
assumed to be independent of the concentration. Here, 𝜎 is one of the surface entropy
density parameters introduced in Eq. (4.22), and the surface entropies of all the phases
are assumed to be equal. The reference time scale is chosen to be 𝑡* = 𝑑*2/𝐷𝑙. The
temperature scale is the eutectic temperature corresponding to the three phase stability
regions at the three edges of the concentration simplex and is denoted by 𝑇 * while the
energy scale is given by 𝑅𝑇 */𝑣𝑚.

4.3.2. Relation to sharp-interface theory

In order to compare our phase-field simulations to the theory outlined in Sec. 2, we need
to relate the parameters of the phase-field model to the quantities needed as input for
the theory. For some, this is straightforward. For example, all the parameters of the
phase diagram (liquidus slopes, coexistence temperatures etc.) can be deduced from
the free energy densities of Eqs. (4.25)–(4.27) in the standard way. For others, the
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correspondence is less immediate. In the following, we will discuss in some detail two
quantities that are crucial for the theory: the surface free energies and the latent heats,
both needed to calculate the Gibbs-Thomson coefficients in Eq. (4.4).

The surface free energy 𝜎̃𝛼𝛽 is defined as the interface excess of the thermodynamic
potential density that is equal in two coexisting phases. For alloys, this is not the free
energy, but the grand potential. Indeed, the equilibrium between two phases is given by
𝐾 conditions for 𝐾 components: 𝐾 − 1 chemical potentials (because of the constraint
of Eq. (4.3), only 𝐾 − 1 chemical potentials are independent) as well as 𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖,

which is the grand potential, have to be equal in both phases. This is the mathematical
expression of the common tangent construction for binary alloys and the common tangent
plane construction for ternary alloys.

The grand potential excess has several contributions. Since 𝑓 = 𝑒 − 𝑇𝑠, we need
to consider the entropy excess. Both the gradient term in the phase fields and the
potential 𝑤(𝜑) present in the entropy functional give a contribution inside the interface.
If, along an 𝛼𝛽 interface, all the other phase fields remain exactly equal to zero, then this
contribution can be calculated analytically. However, this is generally not the case: in the
interface, the phase fields 𝜑𝜈 , 𝜈 ≠ 𝛼, 𝛽 can be different from zero, which corresponds to
an “adsorption” of the other phases. Since the grand potential excess has to be calculated
along the equilibrium profile of the fields, the presence of extra phases modifies the value
of 𝜎̃𝛼𝛽 . The three-phase terms proportional to 𝜎𝛼𝛽𝛾 have been included in the potential
function to reduce (or even eliminate) the additional phases. However, the total removal
of these phases requires to choose high values of 𝜎𝛼𝛽𝛾 . Such high values (>10 times the
binary constant 𝜎𝛼𝛽) cause the interface to become steeper near the regions of triple
points and lines in 2D and 3D, respectively, which is a natural consequence of the fact
that the higher order term affects only the points inside the phase-field simplex where
three phases are present. The thinning of the interfaces leads to undesirable lattice
pinning, which could only be circumvented by a finer discretization. This, however, would
lead to a large increase of the computation times. Therefore, if computations are to
remain feasible, we have to accept the presence of additional phases in the interfaces.

Furthermore, there is also a contribution due to the chemical part of the free energy
functional. This contribution, identified for the first time in Ref. [58], arises from the fact
that the concentrations inside the interface (which are fixed by the condition of constant
chemical potentials) do not, in general, follow the common tangent plane, as illustrated
schematically in Figure 4.6.

Therefore, there is a contribution to the surface free energy which is given by the
following expressions. For binary eutectic systems (𝑁 = 3 phases, 𝜑 = (𝜑𝛼, 𝜑𝛽, 𝜑𝑙);
𝐾 = 2 components 𝑐 = (𝑐𝐴, 𝑐𝐵)), the vector 𝑐 is one-dimensional and we define the
concentration (𝑐𝐴) to be the independent field 𝑐 = (𝑐𝐴, 1 − 𝑐𝐴). Then, we have

ΔΨ (𝑇, 𝑐, 𝜑) = 𝑓 (𝑇, 𝑐, 𝜑) − 𝑓𝑙 − 𝜇𝐴(𝑇 )
(︁
𝑐𝐴 − 𝑐𝑙

𝐴

)︁
,

where 𝜇𝐴 (𝑇 ) = 𝜕𝑓 (𝑇, 𝑐, 𝜑)
𝑐𝐴

is the chemical potential of component A. For ternary eutectic
systems (𝑁 = 4 phases, 𝜑 = (𝜑𝛼, 𝜑𝛽, 𝜑𝛾 , 𝜑𝑙); 𝐾 = 3 components, 𝑐 = (𝑐𝐴, 𝑐𝐵, 𝑐𝐶)), the
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Figure 4.6.: Illustration of the existence of an excess interface energy contribution from the
chemical free energy. Upper panel: the concentration inside the interfacial region
does not necessarily follow the common tangent line. Here, the two convex curves
are the free energy densities of the individual phases in contact, the straight line
is the common tangent, and the thick non-monotonous line is the concentration
along a cut through the interface. Lower panel: the grand chemical potential in
the interface differs from the one obtained by a weighted sum of the bulk phase
free energies, where the weighting coefficients are the interpolating functions of the
order parameters.
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vector 𝑐 is two-dimensional and with the concentrations of 𝐴, 𝐵 as the independent
concentration fields, we get 𝑐 = (𝑐𝐴, 𝑐𝐵, 1 − 𝑐𝐴 − 𝑐𝐵) and the chemical free energy excess
becomes,

ΔΨ (𝑇, 𝑐, 𝜑) = 𝑓 (𝑇, 𝑐, 𝜑) − 𝑓𝑙 − (𝜇𝐴(𝑇 ))
(︁
𝑐𝐴 − 𝑐𝑙

𝐴

)︁
− (𝜇𝐵 (𝑇 ))

(︁
𝑐𝐵 − 𝑐𝑙

𝐵

)︁
.

The entire surface excess can thus be written as the following

̃︀𝜎𝛼𝑙 =
∫︁

𝑥

(︁
𝑇𝜀𝑎 (𝜑, ∇𝜑) + 𝑇

𝜀
𝑤 (𝜑) + ΔΨ (𝑇, 𝑐, 𝜑)

)︁
𝑑𝑥

where 𝑥 is the coordinate normal to the interface, and the integral is taken along the
equilibrium profile 𝜑(𝑥), 𝑐(𝑥). This integral cannot be calculated analytically. Therefore,
we determine the surface free energy numerically. To this end, we perform one-dimensional
simulations to determine the equilibrium profiles of concentration and phase fields, and
insert the solution into the above formula to calculate 𝜎̃. For these simulations, the known
bulk values of the concentration fields are used as boundary conditions. To accurately
calculate the surface excesses, it is important to include the contribution of the adsorbed
phases. For this, the above calculations are performed by letting a small amount of
these phases equilibrate at the interface of the major phases. Since the adsorbed phases
equilibrate with very different concentrations compared to that of the bulk phases, the
domain is chosen large enough such that the chemical potential change of the bulk phases
during equilibration is kept negligibly low.

Another important quantity which is required as an input in the theoretical expressions
is the latent heat of fusion 𝐿𝛼 of the 𝛼 phase. We follow the thermodynamic definition
for the latent heat of transformation 𝐿𝛼,

𝐿𝛼 = 𝑇𝐸 (𝑠𝑙 − 𝑠𝛼) ,

with 𝑠 = −
(︂

𝜕𝑓 (𝑇, 𝑐, 𝜑)
𝜕𝑇

)︂

and in particular 𝑠𝑙 =
𝐾∑︁

𝑖=1
𝑐𝑙

𝑖𝑙𝑛
(︁
𝑐𝑙

𝑖

)︁

and 𝑠𝛼 =
𝐾∑︁

𝑖=1
𝑐𝛼

𝑖

𝐿𝛼
𝑖

𝑇 𝛼
𝑖

+ 𝑐𝛼
𝑖 𝑙𝑛 (𝑐𝛼

𝑖 ) ,

where the concentrations of the phases are taken from the phase diagram at the eutectic
temperature.

Finally, let us give a few comments on the interface mobility 𝜇int that appears in
Eq. (4.4). In early works [13], it was shown that an expression for this mobility in
terms of the phase-field parameters can be easily derived in the sharp-interface limit in
which the interface thickness tends to zero. Later on, Karma and Rappel [48] proposed
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the thin-interface limit, in which the interface width remains finite, but much smaller
than the mesoscopic diffusion length of the problem. This limit relaxes some of the
stringent requirements of the sharp-interface method for the achievement of quantitative
simulations. Additionally, this method introduces a correction term to the original
expression for the interface mobility, which makes it possible to carry out simulations in
the vanishing interface kinetics (infinite interface mobility) regime.

Clearly, such modifications of the interface kinetics are also present in our model,
where they arise both from the presence of adsorbed phases in the interface and from
the structure of the concentration profile through the interface. Furthermore, it is well
known that solute trapping also occurs in phase-field models of the type used here [1].
Since the interface profile can only be evaluated numerically, and since several phase-field
and concentration variables need to be taken into account, it is not possible to evaluate
quantitatively the contribution of these effects to the interface mobility. However, this lack
of knowledge does not decisively impair the present study since we are mainly interested in
undercooling versus spacing curves at a fixed interface velocity. At constant velocity, the
absolute value of the interface undercooling contains an unknown contribution from the
interface kinetics, but the relative comparison between steady states of different spacings
remains meaningful. In addition, even though our simulation parameters correspond to
higher growth velocities than typical experiments, it will be seen below that the value of
the kinetic undercooling in our simulations is small. This indicates once more that our
comparisons remain consistent.

4.4. Simulation results

In this section, we compare data extracted from phase-field simulations with the theory
developed in Sec.4.2, for the case of coupled growth of the solid phases in directional
solidification. The simulation setup is sketched in Figure 4.7. Periodic boundary condi-
tions are used in the transverse direction, while no-flux boundary conditions are used
in the growth direction. The box width in the transverse direction directly controls the
spacing 𝜆. The box length in the growth direction is chosen several times larger than the
diffusion length. The diffusivity in the solid is assumed to be zero. A non-dimensional
temperature gradient, G is imposed in the growth direction and moved with a velocity 𝑣,
such that the temperature field is given by Eq. (4.23).

The outline of this section is as follows: first, we will briefly sketch how we extract the
front undercooling from the simulation data. Then, this procedure will be validated by
comparisons of the results to analytically known solutions as well as to data for binary
alloys, for which well-established benchmark results exist. We start the presentation
of our results on ternary eutectics by a detailed discussion of the two simplest possible
cycles, 𝛼𝛽𝛾 and 𝛼𝛽𝛼𝛾. We compare the data for undercooling as a function of spacing
to our analytical predictions and determine the relevant instabilities that limit the range
of stable spacings. Finally, we also discuss the behavior of more complicated cycles, for
sequences up to length 𝑀 = 6.
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Figure 4.7.: Simulation setup for the phase-field simulations of binary and ternary eutectic
systems. We impose a temperature gradient 𝐺 along the 𝑧 direction and move it
with a fixed velocity. The average interface position follows the isotherms at steady
state in case of stable lamellar coupled growth.

4.4.1. Data extraction

At steady state, the interface velocity matches the velocity of the isotherms. The
undercooling of the solid-liquid interface is extracted at this stage by the following
procedure. First, a vertical line of grid points is scanned until the interface is located.
Then, the precise position of the interface is determined as the position of the level line
𝜑𝛼 = 𝜑𝛽 for an 𝛼𝛽-interface (and in an analogous way for all the other interfaces). This
is done by calculating the intersection of the phase-field profiles of the corresponding
phases, which are extrapolated to subgrid accuracy by polynomial fits. In the presence
of adsorbed phases at the interface, the two major phases along the scan line are used for
determining the interface point. The major phases are determined from the maximum
values that a particular order parameter assumes along the scan line. The temperature
at a calculated interface point is then given by Eq. (4.23).

In order to test both our data extraction methods and our calculations of the surface
tensions, we have performed the following consistency check. For an alloy with a symmetric
phase diagram at the eutectic concentration, a lamellar front has an equilibrium position
when a small temperature gradient (𝐺 = 0.001) is applied to the system at zero growth
speed. Since the concentration in the liquid is uniform for a motionless front, according
to the Gibbs-Thomson relation the interface shapes should just be arcs of circles. This
was indeed the case in our simulations, and the fit of the interface shapes with circles
has allowed us to obtain the interface curvature and the contact angles with very good
precision. The extraction of the data is illustrated in Figure 4.8.
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Figure 4.8.: Procedure to extract the interface points from the simulation data with sub-grid
resolution using higher order interpolation of the phase-field profiles. For the
evaluation of the equilibrium properties, the solid-liquid interface points of each
lamella are fitted with a circle which is then used to measure the radius of curvature
of the particular lamella. We also calculate the triple point angles as the angles
between the tangents to the circles at one of the points of intersection.

We fit the radius and the coordinates of the circle centers. Then, the angle at
the trijunction point 𝜃 is deduced from geometrical relations, with 𝑑 = 𝑎 + 𝑏 and

𝑎 = 𝑅2
𝑎 − 𝑅2

𝑏 + 𝑑2

2𝑑
,

𝑏 = 𝑑 − 𝑎

𝜃 = cos−1
(︂

𝑎

𝑅𝑎

)︂
+ cos−1

(︂
𝑏

𝑅𝑏

)︂
.

The meaning of the lengths 𝑎 and 𝑏 is given in Figure 4.8.

4.4.2. Validation: Binary Systems

For comparison with the Δ𝑇 − 𝜆 relationship known from Jackson-Hunt(JH) theory, we
create two binary eutectic systems by choosing suitable parameters 𝐿𝛼

𝑖 and 𝑇 𝛼
𝑖 in the

free energy density 𝑓 (𝑇, 𝑐, 𝜑). A symmetric binary eutectic system, shown in Figure
4.9a, is created by

𝐿𝛼
𝑖 =

⎛⎜⎝ 𝐴 𝐵
𝛼 4.0 4.0
𝛽 4.0 4.0

⎞⎟⎠ 𝑇 𝛼
𝑖 =

⎛⎜⎝ 𝐴 𝐵
𝛼 1.0 0.75980
𝛽 0.75980 1.0

⎞⎟⎠ .

To create an asymmetric binary eutectic system, shown in Figure 4.9b, we choose



64 4. Study of three-phase growth in ternary alloys

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

N
o

n
-d

im
e

n
s
io

n
a

l 
T

e
m

p
e

ra
tu

re

Concentration(A)

A-B eutectic phase diagram

L
β + l α + l

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

N
o

n
-d

im
e

n
s
io

n
a

l 
T

e
m

p
e

ra
tu

re

Concentration(C)

C-D eutectic phase diagram

L
β + l

α + l

(b)

Figure 4.9.: Binary eutectic phase diagrams for a model system with stable (solid lines) and
metastable (light dashed lines) extensions of the solidus and the liquidus lines, of
(a) a symmetric A-B and (b) an unsymmetric C-D system.

𝐿𝛼
𝑖 =

⎛⎜⎝ 𝐶 𝐷
𝛼 5.0 5.0
𝛽 5.0 5.0

⎞⎟⎠ 𝑇 𝛼
𝑖 =

⎛⎜⎝ 𝐶 𝐷
𝛼 0.96 0.80137
𝛽 0.76567 1.0

⎞⎟⎠
The numbers 𝐿𝛼

𝑖 , 𝑇 𝛼
𝑖 are chosen such that the widths of each of the (lens-shaped)

two-phase coexistence regions remain reasonably broad, and that the approximation
of using the values of concentration difference between the solidus and liquidus

(︁
Δ𝑐𝑙

𝜈

)︁
at the eutectic temperature for the theoretical expressions holds for a good range of
undercoolings. This implies that the value of the 𝐿𝛼

𝑖 should not be too small. Conversely,
a too high value is also not desirable since for large values of 𝐿𝛼

𝑖 the chemical contribution
to the surface free energy becomes large, which leads to very steep and narrow interface
profiles.

We perform simulations at two different velocities V = 0.01 and V = 0.02, with a mesh
size Δ𝑥 = 1.0 and the parameter set 𝜀 = 4.0, 𝐷𝑙

𝐴 = 𝐷𝑙
𝐵 = 𝐷𝑙

𝐶 = 𝐷𝑙
𝐷 = 1.0, 𝜎𝛼𝛽 = 𝜎𝛼𝑙 =

𝜎𝛽𝑙 = 1.0, 𝜎𝛼𝛽𝛾 = 10.0. To give an idea of the order of magnitude of the corresponding
dimensional quantities, we remark that if we assume the melting temperatures to be
around 1700K and the other values to correspond to the Ni-Cu system used in the study
of Warren et al. [128], the length scale 𝑑* for the case of the binary eutectic system turns
out to be around 0.2 nm and the time scale 0.04 ns.

The corresponding parameters for the sharp-interface theory are given in Table 4.1.
The comparisons between our numerical results and the analytic theory are shown in
Figs. 4.10a and 4.10b.

Consistent differences can be observed in the undercooling values between our data
and the predictions from JH theory for both systems. The difference in undercoolings
is smaller at lower velocities, which hints at the presence of interface kinetics. We find
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Table 4.1.: Parameters for the sharp-interface theory, with proper calculation of the surface
tension in the phase-field simulations for (a) a symmetric binary eutectic system
with components A and B and (b) for an unsymmetric binary eutectic system with
components C and D.

(a)

̃︀𝜎𝛼𝑙 1.01146̃︀𝜎𝛽𝑙 1.01146̃︀𝜎𝛼𝛽 1.23718
𝜃𝛼𝛽 37.70
𝜃𝛽𝛼 37.70
𝐿𝛼 4.0
𝐿𝛽 4.0

𝑚𝛼
𝐵 = 𝑚𝛽

𝐴 -0.206975

(b)

̃︀𝜎𝛼𝑙 0.97272̃︀𝜎𝛽𝑙 1.07235̃︀𝜎𝛼𝛽 1.24836
𝜃𝛼𝛽 33.903
𝜃𝛽𝛼 41.161
𝐿𝛼 4.686
𝐿𝛽 4.711
𝑚𝛼

𝐷 -0.13161
𝑚𝛽

𝐶 -0.22138

indeed that when we change the relaxation constant in the phase-field evolution equation
by about 50 %, the difference between the predicted and measured undercoolings is
removed for the case of the considered symmetric binary phase diagram. This clearly
shows that the interface kinetics is not negligible. It seems difficult, however, to obtain a
precise numerical value for its magnitude in the framework of the present model.

The spacing at minimum undercooling, however, is reproduced to a good degree of
accuracy (error of 5 %), while the minimum undercooling has a maximum error of 10
%. It should also be noted that the JH theory only is an approximation for the true
front undercooling. Results obtained both with boundary integral [51] and quantitative
phase-field methods [32] have shown that, whereas the prediction for the minimum
undercooling spacing is excellent, errors of 10 % for the value of the undercooling itself
are typical. If the JH curve is drawn without taking into account the additional chemical
contributions to the surface tension, a completely different result is obtained, with
minimum undercooling spacings that are largely different from the simulated ones. We
can therefore conclude that we have captured the principal corrections.

In addition, we have performed equilibrium measurements of the angles at the trijunc-
tion point and of the radius of curvature of the lamellae as described in the preceding
sub-section (4.4.1) for the symmetric eutectic system. The contact angles differ from the
ones predicted by Young’s equilibrium conditions only by a value of 0.2 degrees. The
theoretical (from the Gibbs-Thomson equation) and measured undercoolings differ in the
third decimal, with an error of 0.1 %.
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Figure 4.10.: Comparison of Δ𝑇 − 𝜆 relations resulting from the theoretical analysis and from
the phase-field simulations at two different velocities for systems; (a) symmetric
binary eutectic system (A-B) and (b) unsymmetric binary eutectic system (C-D).

4.4.3. Ternary Systems: Parameter set

𝐿𝛼
𝑖 =

⎛⎜⎜⎜⎝
𝐴 𝐵 𝐶

𝛼 1.46964038 1.0 1.0
𝛽 1.0 1.46964038 1.0
𝛾 1.0 1.0 1.46964038

⎞⎟⎟⎟⎠

𝑇 𝛼
𝑖 =

⎛⎜⎜⎜⎝
𝐴 𝐵 𝐶

𝛼 1.5 0.5 0.5
𝛽 0.5 1.5 0.5
𝛾 0.5 1.0 1.5

⎞⎟⎟⎟⎠ .

We use a symmetric ternary phase diagram. The following matrices list the parameters
𝐿𝛼

𝑖 ,𝑇 𝛼
𝑖 in the free energy 𝑓 (𝑇, 𝑐, 𝜑) that were used to create a symmetric ternary

eutectic system, shown in Figure 4.1. We perform simulations with the parameter set
𝜀 = 8.0, Δ𝑥 = 1.0, 𝐷𝑙

𝐴 = 𝐷𝑙
𝐵 = 𝐷𝑙

𝐶 = 1.0, 𝜎𝛼𝛾 = 𝜎𝛽𝛾 = 𝜎𝛾𝛽 = 𝜎𝛼𝑙 = 𝜎𝛽𝑙 = 𝜎𝛾𝑙 =
1.0, 𝜎𝛼𝛽𝑙 = 𝜎𝛼𝛽𝛾 = 𝜎𝛼𝛾𝑙 = 𝜎𝛽𝛾𝑙 = 10.0 and compare with the theoretical expressions using
the input parameters listed in Table 4.2.

4.4.4. Simple cycles: steady states and oscillatory instability

We first perform simulations to isolate the regime of stable lamellar growth for the
configuration 𝛼𝛽𝛾. For this regime, we measure the average interface undercooling and
compare it to our theoretical predictions. The results are shown in Figure 4.11.

The agreement in the undercoolings is much better than for the binary eutectic systems,
with a smaller dependence of undercoolings on the velocities. Consequently, both the
spacing at minimum undercooling (error 4 % for V=0.005 and 6 % for V=0.01) and the



4.4. Simulation results 67

Table 4.2.: Input parameters for the theoretical relations for the ternary eutectic system.̃︀𝜎𝛼𝑙 = ̃︀𝜎𝛽𝑙 = ̃︀𝜎𝛾𝑙 1.194035̃︀𝜎𝛼𝛽 = ̃︀𝜎𝛼𝛾 = ̃︀𝜎𝛽𝛾 1.430923
𝜃𝛼𝛽 = 𝜃𝛽𝛼 = 𝜃𝛾𝛼 = 𝜃𝛼𝛾 36.81

𝐿𝛼 = 𝐿𝛽 = 𝐿𝛾 1.33
𝑚𝛼

𝐵 = 𝑚𝛼
𝐶 -0.91

𝑚𝛽
𝐴 = 𝑚𝛽

𝐶 -0.91
𝑚𝛾

𝐴 = 𝑚𝛾
𝐵 -0.91
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Figure 4.11.: Comparison between theoretical analysis and phase-field simulations at two differ-
ent velocities for the arrangement (𝛼𝛽𝛾) of ternary eutectic solids at 𝑉 = 0.005
and 𝑉 = 0.01. The demarcation shows the regions of stable lamellar growth
and the critical spacing beyond which we observe amplified oscillatory behavior.
There is a small region named “Damped Oscillations”, which is a region where
oscillations occur but die down slowly with time.

minimum undercooling (error of 1-2 %), match very well with the theoretical relationships,
as shown in Figure 4.11. The equilibrium angles at the triple point also agree with the
ones predicted from Young’s law to within an error of 0.3 degrees, while the radius of
curvature matches that from the Gibbs-Thomson relationship with negligible error (<0.5
%).

It should be noted that the steady lamellae remain straight, contrary to the results of
Ref. [40], where a spontaneous tilt of the lamellae with respect to the direction of the
temperature gradient was reported. This difference is due to the different phase diagrams:
we are using a completely symmetric phase diagram and equal surface tensions for all
solid-liquid interfaces, whereas [40] uses the thermophysical data of a real alloy.

Next, we are interested in the stability range of three-phase coupled growth. From
general arguments, we expect a long-wavelength lamella elimination instability (Eckhaus-
type instability) to occur for low spacings, as in binary eutectics [2]. Here, we will
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focus on oscillatory instabilities that occur for large spacings. It is useful to first recall
a few facts known about binary eutectics, where all the instability modes have been
classified [34, 51]. Lamellar arrays in binary eutectics are characterized (in the absence
of crystalline anisotropy) by the presence of two mirror symmetry planes that run in the
center of each type of lamellae, as sketched in Figure 4.12(a). Instabilities can break
certain of these symmetries while other symmetry elements remain intact [24]. In binary
eutectics, the oscillatory 1-𝜆-O mode is characterized by an in-phase oscillation of the
thickness of all 𝛼 (and 𝛽) lamellae; both mirror symmetry planes remain in the oscillatory
pattern. In contrast, in the 2-𝜆-O mode, one type of lamellae start to oscillate laterally,
whereas the mirror plane in the other type of lamellae survives; this leads to a spatial
period doubling. Finally, in the tilted pattern both mirror planes are lost.

Figure 4.12.: In a periodic arrangement of lamellae, we can identify certain lines of symmetry,
as shown in (a) for a binary eutectic. Similarly, for the case of the two simplest
configurations, (b) 𝛼𝛽𝛾 and (c) 𝛼𝛽𝛼𝛾 in a symmetric ternary eutectic system,
such planes of symmetry exist. While in the case of a binary eutectic, the lines
are mirror symmetry axes (shown by dash-dotted lines), in the special case of a
symmetric ternary phase diagram, one can also identify quasi-mirror lines (dashed
lines) where we retrieve the original configuration after a spatial reflection and an
exchange of two phases. Only quasi-mirror lines exist in the 𝛼𝛽𝛾 arrangement,
which are shown in (b), while both true- and quasi-mirror planes exist in the
𝛼𝛽𝛼𝛾 arrangement as shown in (c).

It is therefore important to survey the possible symmetry elements in the ternary
case. At first glance, there seems to be no symmetry plane in the pattern. However, for
our specific choice of phase diagram, new symmetry elements not present in a generic
phase diagram exist: mirror symmetry planes combined with the exchange of two phases.
Consider for example the 𝛽 phase in the center of Figure 4.12(b): if the system is reflected
at its center, and then the 𝛼 and 𝛾 phases are exchanged, we recover the original pattern.
At the eutectic concentration, there are three such symmetry planes running in the center
of each lamella, and three additional ones running along the three solid-solid interfaces.
Off the eutectic point, two of these planes survive if any two of the three phases have
equal volume fractions.

Guided by these considerations, we can conjecture that there are two obvious possible
instability modes, sketched in Figure 4.13.
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(a) (b)

Figure 4.13.: Guided by the symmetry axes in the 𝛼𝛽𝛾 arrangement, one can expect two possible
oscillatory modes at off-eutectic concentrations along the eutectic groove. The
oscillations in (a), which keep all the quasi-mirror planes intact, are expected to
occur at concentrations towards the apex of the simplex along the eutectic groove.
Another possibility, shown in (b) exists in which no symmetry plane remains,
which is expected to occur at a concentration towards the binary edge of the
simplex.

In the first, called mode 1 in the following, two symmetry planes survive: the width
of one lamella oscillates, whereas the two other phases form a “composite lamella” that
oscillates in opposition of phase; the interface in the center of this composite lamella does
not oscillate at all and constitutes one of the symmetry planes. In the second (mode
2), the lateral position of one of the lamellae oscillates with time, whereas the other
two phases oscillate in opposition of phase to form a “composite lamella” that oscillates
laterally but keeps an almost constant width. There is no symmetry plane left in this
mode.

The stability range of the coupled growth regime of the lamellar arrangement is
indicated in Figure 4.11. Steady lamellar growth is stable from below the minimum
undercooling spacing up to a point where an oscillatory instability occurs. In the region
marked “damped oscillations”, oscillatory motion of the interfaces was noticed, but died
out with time. Above a threshold in spacing, oscillations are amplified. We monitored the
modes that emerged, and found indeed good examples for the two theoretically expected
patterns, shown in Figure 4.14.

Mode 1 is favored for off-eutectic concentrations in which one of the lamellae is wider
than the two others, such as 𝑐 = (0.32, 0.32, 0.36). Indeed, in that case the (unstable)
steady-state pattern exhibits the same symmetry planes as the oscillatory pattern. This
mode can also appear when one lamella is smaller than the two others, see Figure 4.14c.
We detect mode 2 at the eutectic concentration, see Figure 4.15b. However, a “mixed
mode” can also occur, in which no symmetry plane survives, but the three trijunctions
oscillate laterally with phase differences that depend on the concentration and possibly
on the spacing, see Figs. 4.14b and 4.15c.

Let us now turn to the 𝛼𝛽𝛼𝛾 cycle. We perform simulations for two different velocities
𝑉 = 0.01 and 𝑉 = 0.005. The comparison of the measurements with the theoretical
analysis for steady-state growth is shown in Figure 4.16. For the purpose of analysis,
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(a) (b) (c)

Figure 4.14.: Oscillatory modes in simulations for the 𝛼𝛽𝛾 configuration at the off-eutectic
concentrations 𝑐 = (0.32, 0.32, 0.36)) in (a), and 𝑐 = (0.34, 0.34, 0.32) in (b) and
(c). The spacings are 𝜆 = 170 in (a) and (c) and 𝜆 = 165 in (b).
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Figure 4.15.: The plot shows the trace of the triple points for the 𝛼𝛽𝛾 arrangement. The growth
direction is compressed in these plots with respect to the transverse direction
in order to better visualize the modes. We get multiple modes at the eutectic
concentration for the same spacing 𝜆 = 159, shown in (a) and (b). In (a) we get
back mode 1 while (b) matches well to our predicted mode 2. A mixed mode
(c) is obtained at an off-eutectic concentration 𝑐 = (0.34, 0.34, 0.32), at a spacing
𝜆 = 165, which is a combination of oscillations in both the width and lateral
spacing.
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Figure 4.16.: Theoretical analysis and phase-field simulations: Comparison between the arrange-
ments (𝛼𝛽𝛾) and (𝛼𝛽𝛼𝛾) for two different velocities (a) V = 0.005 and (b) V =
0.01. Plots convey information on the stability ranges, and the onset of oscillatory
behavior of the 1-𝜆-O type.
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predictions from the theory for both arrangements (𝛼𝛽𝛾 and 𝛼𝛽𝛼𝛾) are also shown.
Here again, the minimum undercooling spacings match those of the theory to a good
degree of accuracy (error 5%, V=0.005). However, the undercooling is lower than
the one predicted by JH-theory, with a discrepancy of 4% for the case of 𝑉 = 0.005,
Figure 4.16a. For 𝑉 = 0.01, Figure 4.16b, simulations were not possible for a sufficient
range of 𝜆 to determine the minimum undercooling, because the width of the narrowest
lamellae became comparable to the interface width 𝜀 ≃ 8.0 before the minimum was
reached. However, the general trend of the data follows the predictions of the theory
for both velocities. This was also the case for simulations carried out at an off-eutectic
concentration 𝑐 = (0.32, 0.34, 0.34) at a velocity of 𝑉 = 0.005, for the same configuration
𝛼𝛽𝛼𝛾.

Concerning the oscillatory instabilities at large spacings, it is useful to consider again
the symmetry elements. For this cycle, there are two real symmetry planes in the
steady-state pattern that run through the centers of the 𝛽 and 𝛾 lamellae. Note that
these symmetries would exist even for unsymmetric phase diagrams and unequal surface
tensions. Therefore, by analogy with binary eutectics, one may expect oscillatory modes
that simply generalize the 1-𝜆-O and 2-𝜆-O modes of binary eutectics, see Figure 4.17a.
Indeed, for our simulations at the eutectic concentration, we retrieve the 1-𝜆-O type
oscillation, figure 4.18a as in our hypothesis (figure 4.17a).

(a) (b)

Figure 4.17.: Predictions of oscillatory modes for the 𝛼𝛽𝛼𝛾 arrangement, reminiscent of the
1-𝜆-O mode (a) and 2-𝜆-O mode (b) in binary eutectics.

This oscillatory instability can be quantitatively monitored by following the lateral
positions of the solid-solid interfaces with time. More specifically, we extract the width
of the 𝛽 phase as a function of the growth distance 𝑧. This is then fitted with a damped
sinusoidal wave of the type 𝐴0 + 𝐴 exp(−𝐵𝑧) cos((2𝜋𝑧/𝐿) + 𝐷). The damping coefficient
𝐵 is obtained from a curve fit and plotted as a function of the spacing 𝜆. The onset of
the instability is characterized by the change in sign of the damping coefficient.

For the off-eutectic concentration we get two modes (figure 4.18). While (figure 4.18b)
corresponds well to our hypothesis to the 2-𝜆-O type oscillation (figure 4.17b), we also
observe another mode as shown in figure 4.18c, which combines elements of the two
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(a) (b) (c)

Figure 4.18.: Simulations of oscillatory modes of the 𝛼𝛽𝛼𝛾 configuration. The modes in (a) and
(b) show resemblance to the 1-𝜆-O and 2-𝜆-O oscillatory modes of binary eutectics,
respectively. Additionally, other modes (c) can also be observed, depending on
the initial conditions. While we observe (a) at the eutectic concentration, (b) and
(c) are modes at off-eutectic concentrations 𝑐 = (0.32, 0.34, 0.34). The spacings
are (a) 𝜆 = 201, (b) 𝜆 = 174 (c) 𝜆 = 210.

modes: both the width and the lateral position of the 𝛼 lamellae oscillate.

4.4.5. Lamella elimination instability

For the 𝛼𝛽𝛼𝛾 cycle, there is also a new instability, which occurs for low spacings. We
find that all spacings below the minimum undercooling spacing, as well as some spacings
above it, are unstable with respect to lamella elimination: the system evolves to the
𝛼𝛽𝛾 arrangement by eliminating one of the 𝛼 lamellae, both at eutectic and off-eutectic
concentrations. The points plotted to the left of the minimum in Figure 4.16b are actually
unstable steady states that can be reached only when the simulation is started with
strictly symmetric initial conditions and the correct volume fractions of the solid phases.

This instability can actually be well understood using our theoretical expressions. As
already mentioned before, when we consider the cycle 𝛼𝛽𝛼𝛾 at the eutectic concentration
with a lamella width configuration (𝜉, 1/3, 1/3 − 𝜉, 1/3), the global average front under-
cooling attains a minimum for the symmetric pattern 𝜉 = 1/6. However, the global front
undercooling is not the most relevant information for assessing the front stability. More
interesting is the undercooling of an individual lamella, because this can give information
about its evolution. More precisely, consider the undercooling of one of the 𝛼 lamellae as
a function of 𝜉. If the undercooling increases when the lamella gets thinner, then the
lamella will fall further behind the front and will eventually be eliminated. In contrast,
if the undercooling decreases when the lamella gets thinner, then the lamella will grow
ahead of the main front and get larger. A similar argument has been used by Jackson and
Hunt for their explanation of the long-wavelength elimination instability [44]. It should
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be pointed out that the new instability found here is not a long-wavelength instability,
since it can occur even when only one unit cell of the cycle is simulated.

Following the above arguments, we have calculated the growth temperature of the first
𝛼 lamella as a function of 𝜉 using the general expressions in Eq. 4.18. In Figure 4.19, we
plot the variation of 𝜕Δ𝑇/𝜕𝜉 at 𝜉 = 1/6, as a function of 𝜆. The point at which 𝜕Δ𝑇/𝜕𝜉
becomes positive then indicates the transition to a stable 𝛼𝛽𝛼𝛾 cycle. This criterion is
in good agreement with our simulation results. This argument can also be generalized to
more complicated cycles (see below).
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Figure 4.19.: Plot of 𝜕Δ𝑇/𝜕𝜉, taken at 𝜉 = 1/6 versus 𝜆 for the 𝛼1𝛽𝛼2𝛾 cycle, where Δ𝑇 is the
undercooling of the 𝛼1 lamella and 𝜉 its width (relative to 𝜆), calculated by our
analytical expressions in the volume fraction configuration. (𝜉, 1/3, 1/3−𝜉, 1/3) at
V=0.01. The cycle is predicted to be unstable to lamella elimination if 𝜕Δ𝑇/𝜕𝜉 < 0.
The 𝜆 at which 𝜕Δ𝑇/𝜕𝜉 changes sign is the critical point beyond which the 𝛼𝛽𝛼𝛾
arrangement is stable with respect to a change to the sequence 𝛼𝛽𝛾 through a
lamella elimination.

4.4.6. Longer cycles

Let us now discuss a few more complicated cycles. The simple cycles we have simulated
until now were such that during stable coupled growth the widths of all the lamellae
corresponding to a particular phase were the same. This changes starting from period
𝑀 = 5, where the configuration 𝛼𝛽𝛼𝛽𝛾 is the only possibility (up to permutations).
If we consider this cycle at the eutectic concentration and note the configuration of
lamella widths as (𝜉, 1/3 − 𝜉, 1/3 − 𝜉, 𝜉, 1/3) and compute the average front undercooling
by our theoretical expressions, we find that the minimum occurs for 𝜉 close to 0.12.
In addition, for this configuration, the undercooling of any asymmetric configuration
(permutation of widths of lamellae) is higher than the one considered above. If we rewrite
symbolically this configuration as 𝛼1, 𝛽2, 𝛼2, 𝛽1, 𝛾, it is easy to see that this configuration
has two symmetry axes of the same kind as discussed in the preceding subsection: mirror



4.4. Simulation results 75

reflection and exchange of the phases 𝛼 and 𝛽. One of them runs along the interface
between 𝛽2 and 𝛼2, and the other one in the center of the 𝛾 lamella.

Not surprisingly, our simulation results confirm the importance of this symmetry. The
volume fractions in steady-state growth are close to those that give the minimum average
front undercooling, see Figs. 4.20b and 4.20c.

(a) (b) (c)

Figure 4.20.: Simulations at spacings 𝜆 = 135 in (a), 𝜆 = 150 in (b) and 𝜆 = 180 in (c), starting
from an initial configuration of 𝛼𝛽𝛼𝛽𝛾. There is no spacing for which the 𝛼𝛽𝛼𝛽𝛾
develops into a stable lamellar growth front. Smaller spacings switch to the 𝛼𝛽𝛾
arrangement while the larger spacings exhibit oscillatory instabilities in both the
width and the lateral positions of the lamellae.

Additionally, we observe oscillations in the width of the largest 𝛾 phase and oscillations
in the widths and the lateral position of the smaller lamellae of the 𝛼 and 𝛽 phases, while
the interface between the larger 𝛼 and 𝛽 phase remains straight, such that the combination
of all the 𝛼 and 𝛽 lamellae oscillates in width as one “composite lamella”. Thus, the
symmetry elements of the underlying steady state are preserved in the oscillatory state.

For smaller spacings, this configuration is unstable, and the sequence changes to the
𝛽𝛼𝛾 arrangement as shown in Figure 4.20a by two successive lamella eliminations. It
is noteworthy that we did not find any unstable sequence which switches to the 𝛼𝛽𝛼𝛾
arrangement, which again can be understood from the presence of the symmetry. Indeed,
a symmetrical evolution would result in a change to a configuration 𝛼1𝛽1𝛾 or 𝛽2𝛼2𝛾, but
precludes the change to a configuration of period length 𝑀 = 4.

Going on to cycles with period 𝑀 = 6, the first arrangement we consider is 𝛼1𝛽1𝛼2𝛽2
𝛼1𝛾, where we name the lamellae for eventual discussion and ease in description according
to the symmetries. Indeed, this arrangement has two exact mirror symmetry planes
in the center of the 𝛼2 and the 𝛾 phases. We find that, if we calculate the average
interface undercooling curves by varying the widths of individual lamella with the
constraint of constant volume fraction, by choosing different 𝜉, in the width configuration
(𝜉, 1/6, 1/3 − 2𝜉, 1/6, 𝜉, 1/3), the average undercooling at the growth interface is minimal
for the configuration (1/9, 1/6, 1/9, 1/6, 1/9, 1/3). This arrangement has the highest
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undercooling curve among the arrangements we have considered, shown in Figure 4.21a.
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Figure 4.21.: (a)Synopsis of the theoretical predictions for the undercooling versus spacing of
possible arrangements between period length 𝑀 = 3 to 𝑀 = 6, i.e. starting from
𝛼𝛽𝛾 to 𝛼𝛽𝛾𝛼𝛽𝛾. (b) Same plot but with the lamellar repeat distance 𝜆 scaled
with the period length M. The variation among the arrangements is purely a result
of the variation of the solutal undercooling as can be infered from the discussion
in Sec. 4.2.4.

It also has a very narrow range of stability, and we could isolate only one spacing
which exhibits stable growth for 𝜆 = 240, Figure 4.22d. Unstable arrangements near the
minimum undercooling spacing evolve to the 𝛼𝛽𝛾 arrangement, Figure 4.22a, while for
other unstable configurations we obtain the arrangements in Figure 4.22b and Figure
4.22c as the stable growth forms corresponding to 𝜆 = 150 and 𝜆 = 180 respectively.

Apart from the (trivial) period-doubled arrangement 𝛼𝛽𝛾𝛼𝛽𝛾, another possibility for
𝑀 = 6 is 𝛼𝛽𝛾𝛼𝛾𝛽 with a volume fraction configuration (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).
Simulations of this arrangement show that there exists a reasonably large range of stable
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(a) (b) (c) (d)

Figure 4.22.: Simulations starting from the arrangement 𝛼𝛽𝛼𝛽𝛼𝛾 for spacings 𝜆 = 135 in a),
𝜆 = 150 in b), 𝜆 = 180 in c) and 𝜆 = 240 in d).

lamellar growth, and hence we could make a comparison between simulations and the
theory. We find similar agreement between our measurements and theory as we did
previously for the arrangements 𝛼𝛽𝛾 and 𝛼𝛽𝛼𝛾. The plot in Figure 4.21 shows the
theoretical predictions of all the arrangements we have considered until now.

4.4.7. Discussion

It should by now have become clear that there exists a large number of distinct steady-
state solution branches, each of which can exhibit specific instabilities. In addition,
the stability thresholds potentially depend on a large number of parameters: the phase
diagram data (liquidus slopes, coexistence concentration), the surface tensions (assumed
identical here), and the sample concentration. Therefore, the calculation of a complete
stability diagram that would generalize the one for binary eutectics of Ref. [51] represents
a formidable task that is outside the scope of the present paper. Nevertheless, we can
deduce from our simulations a few guidelines that can be useful for future investigation.

Lamellar steady-state solutions can be grouped into three classes, which respectively
have (I) equal number of lamellae of all three phases (such as 𝛼𝛽𝛾 and 𝛼𝛽𝛾𝛼𝛾𝛽), (II)
equal number of lamellae for two phases (such as 𝛼𝛽𝛼𝛾), and (III) different numbers of
lamellae for each phase.

For equal global volume fractions of each phase (as in most of our simulations), class
III will have the narrowest stability ranges because of the simultaneous presence of very
large and very thin lamella in the same arrangement, which make these patterns prone
to both oscillatory and lamella elimination instabilities.

Any cycle in which a phase appears more than once can transit to another, simpler
one by eliminating one lamella of this phase. This lamella instability always appears
for low spacings below a critical value of the spacing that depends on the cycle. The
possibility of a transition, however, depends also on the symmetries of the pattern. For
instance, the arrangement 𝛼𝛽𝛼𝛽𝛼𝛾, if unstable, can transform into the 𝛼𝛽𝛾, 𝛼𝛽𝛼𝛾 or
the 𝛼𝛽𝛼𝛽𝛾 arrangements, while for an arrangement 𝛼𝛽𝛼𝛽𝛾, it is impossible to evolve
into the 𝛼𝛽𝛼𝛾 arrangement if the symmetry of the pattern is preserved by the dynamics.

For large spacings, oscillatory instabilities occur and can lead to the emergence of
saturated oscillatory patterns of various structures. The symmetries of the steady states
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seem to determine the structure of these oscillations, but no thorough survey of all
possible nonlinear states was carried out.

4.5. Some remarks on pattern selection
Up to now, we have investigated various regular periodic patterns and their instabilities.
The question which, if any, of these different arrangements, is favored for given growth
conditions, is still open. From the results presented above, we can already conclude that
this question cannot be answered solely on the basis of the undercooling-vs-spacing curves.
Indeed, we have shown that by appropriately choosing the initial conditions, any stable
configuration can be reached, regardless of its undercooling. This is also consistent with
experiments and simulations on binary eutectics [34, 86]. To get some additional insights
on what happens in extended systems, we conducted some simulations of isothermal
solidification where the initial condition was a random lamellar arrangement. More
precisely, we initialize a large system with lamellae of width 𝜆 = 25 and choose a random
sequence of phases such that two neighboring lamellae are of different phases as shown in
Figure 4.23a. The global probabilities of all the phases are 1/3, which corresponds to the
eutectic concentration, and the temperature is set to 𝑇 = 0.785.

(a)

(b)

Figure 4.23.: Two snapshots of 2D dynamics in a large system. Isothermal simulations are
started from a random configuration in (a) where the probability of occurrence
of each phase is 1/3, which is also the global concentration in the liquid. The
temperature of the system is T=0.785 and the concentration of the liquid is the
eutectic concentration. A slowly changing pattern with a non-planar front is
achieved. Some lamellae are eliminated, but no new lamellae are created.

Under isothermal growth conditions, one would expect that, at a given undercooling,
the arrangement with highest local velocity would be the one that is chosen. However,
in order for the front to adopt this pattern, a rearrangement of the phase sequence is
necessary. In our simulations, we find that lamella elimination was possible (and indeed
readily occurred). In contrast, there is no mechanism for the creation of new lamellae
in our model, since we did not include fluctuations that could lead to nucleation, and
the model has no spinodal decomposition that could lead to the spontaneous formation
of new lamellae, as in Ref. [93]. As a result, some of the lamellae became very large in
our simulations, which led to a non-planar growth front, as shown in Figure 4.23b. No
clearcut periodic pattern emerged, such that our results remain inconclusive.
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(a) (b) (c)

Figure 4.24.: Cross-sections of patterns obtained in three-dimensional directional solidification.
In each picture, the simulation unit cell is tiled in a 4×4 array to get a better
view of the pattern. The pattern in (a) was started from a random configuration
and evolved to a perfectly hexagonal pattern (at the eutectic composition for a
symmetric phase diagram). At an off-eutectic concentration, starting with two
isolated rods of 𝛼 and 𝛽 phase, the result shown in (b) is one of the possible
structures, while with an asymmetric phase diagram at the eutectic concentration,
we get a regular brick structure (c) from a random initial condition.

We believe that lamella creation is an important mechanism required for pattern
adjustment. In 2D, nucleation is the only possibility for the creation of new lamellae. In
contrast, in 3D, new lamellae can also form by branching mechanisms without nucleation
events, since there are far more geometrical possibilities for two-phase arrangements
[3, 118]. Therefore, we also conducted a few preliminary simulations in 3D.

The cross sections of the simulated systems are 150 × 150 grid points for results in Figs.
4.24(a) and (c), and 90 × 90 grid points for the system Figure 4.24(b). The longest run
took about 7 weeks on 80 processors, for the simulation of the pattern in Figure 4.24(a).
This long simulation time is due to the fact that the pattern actually takes a long time
to settle down to a steady state; the total solidification distance was of the order of 800
grid points. The other simulations required less time to reach reasonably steady states.
The patterns shown in Figs. 4.24 (a) and (c) start from random initial conditions (very
thin rods of randomly assigned phases), the former with the symmetric phase diagram
used previously, the latter with a slightly asymmetric phase diagram constructed with
the changed parameters listed below,
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𝐿𝛼
𝑖 =

⎛⎜⎜⎜⎝
𝐴 𝐵 𝐶

𝛼 2.0 1.0 1.0
𝛽 1.0 2.0 1.0
𝛾 1.0 1.0 2.0

⎞⎟⎟⎟⎠

𝑇 𝛼
𝑖 =

⎛⎜⎜⎜⎝
𝐴 𝐵 𝐶

𝛼 1.0 0.59534 0.63461
𝛽 0.59534 1.0 0.63461
𝛾 0.59534 0.59534 1.0

⎞⎟⎟⎟⎠ .

The picture of Figure 4.24(b) corresponds to a pattern resulting of a simulation which
is started with two isolated rods of 𝛼 and 𝛽 in a matrix of 𝛾, with an off-eutectic
concentration of 𝑐 = (0.3, 0.4, 0.3).

As shown in Figure 4.24, many different steady-state patterns are possible in 3D. Not
surprisingly, the type of pattern seen in the simulations depends on the concentration
and on the phase diagram. Patterns very similar to Figure 4.24(c) have recently been
observed in experiments in the Al-Ag-Cu ternary system [100]. It should be stressed
that our pictures have been created by repeating the simulation cell four times in each
direction in order to get a clearer view of the pattern. This means that in a larger system,
the patterns might be less regular. Furthermore, we certainly have not exhausted all
possible patterns. A more thorough investigation of the 3D patterns and their range of
stability is left as a subject for future work.

4.6. Conclusion and outlook

In this chapter, we have generalized a Jackson-Hunt analysis for arbitrary periodic
lamellar three-phase arrays in thin samples, and used 2D phase-field simulations to test
our predictions for the minimum undercooling spacings of the various arrangements. For
the model used here the value of the interface kinetic coefficient cannot be determined,
which leads to some incertitude on the values of the undercooling, but this does not
influence our principal findings. When the correct values of the surface free energy (that
take into account additional contributions coming from the chemical part of the free
energy density) are used for the comparisons with the theory, we find good agreement for
the minimum undercooling spacings for all cycles investigated. Moreover, we find that,
as in binary eutectics, all cycles exhibit oscillatory instabilities for spacings larger than
some critical spacing. The type of oscillatory modes that are possible are determined by
the set of symmetry elements of the underlying steady state.

We have repeatedly made use of symmetry arguments for a classification of the
oscillatory modes. In certain cases, the symmetry is exact and general, which implies
that the corresponding modes should exist for arbitrary phase diagrams and thus be
observable in experiments. For instance, the mirror symmetry lines in the middle of
the 𝛼 lamellae in the 𝛼𝛽𝛼𝛾 arrangement exist even for non-symmetric phase diagrams
and unequal surface tensions, and hence the corresponding oscillatory patterns and their
symmetries should be universal. In other cases, we have used a symmetry element which



4.6. Conclusion and outlook 81

is specific to the phase diagram used in our simulations: a mirror reflection, followed
by an exchange of two phases. For a real alloy, this symmetry obviously can never be
exactly realized because of asymmetries in the surface tensions, mobilities, and liquidus
slopes, and therefore some of the oscillatory modes found here might not be observable
in experiments. However, their occurrence cannot be completely ruled out without a
detailed survey, and we expect certain characteristics to be quite robust. For instance,
we have repeatedly observed that two neighboring lamellae of different phases can be
interpreted as a “composite lamella” that exhibits a behavior close to the one of a single
lamella in a binary eutectic pattern. Such behavior could appear even in the absence of
special symmetries, and thus be generic.

Furthermore, a new type of instability (absent in binary eutectics) was found, where
a cycle transforms into a simpler one by eliminating one lamella. We interpret this
instability, which occurs for small spacings, through a modified version of our theoretical
analysis. It is linked to the existence of an extra degree of freedom in the pattern if
a given phase appears more than once in the cycle. We have not determined the full
stability diagram that would be the equivalent of the one given in Ref. [51] for binary
eutectics, because of the large number of independent parameters involved in the ternary
problem.

We have made a few attempts to address the question of pattern selection, with
inconclusive results both in 2D and 3D. In 2D, the process of pattern adjustment was
hindered by the absence of a mechanism for lamella creation, and in 3D the system sizes
that could be attained were too small. Based on the findings for binary eutectics, however,
we believe that there is no pattern selection in the strong sense: for given processing
conditions, the patterns to be found may well depend on the initial conditions and/or
on the history of the system. This implies that the arrangement with the minimum
undercooling may not necessarily be the one that emerges spontaneously in large-scale
simulations or in experiments.

The most interesting direction of research for the future is certainly a more complete
survey of pattern formation in 3D and a comparison to experimental data. To this end,
either the numerical efficiency of our existing code has to be improved, or a more efficient
model that generalizes the model of Ref. [32] to ternary alloys has to be developed.
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5.1. Introduction

Phase-field modeling is an elegant technique to model a variety of problems involving
phase transitions. Among them, solidification has been a field where this method has
been utilized to quantitatively model a variety of microstructures involving complicated
geometrical changes while evolution, both for the case of solutal and pure material
problems [3, 32, 48, 50, 59, 114, 128, 134]. One of the critical points, one must take care
however, is that to interpret the results of simulations in a manner which is going to
be of physical value, one must have a perfect understanding as to the relation of the
parameters in the equations and the free boundary problem, one is attempting to solve.
This requires one to perform the asymptotics of the relevant model, which will then allow
us to correctly choose the parameters in the diffuse interface description. To perform the
asymptotics, two possiblities exist. One of them is the sharp interface limit [13], which
describes, the case when the interface width tends to zero. This limit is relevant when one
is performing simulations with very small interface thicknesses. However, as is often the
case, in order to simulate larger microstructures, one needs to choose interface thicknesses
orders of magnitude larger than the real ones. For such cases, the thin-interface limit,
[48, 50] is more relevant as this allows us to retrieve the same free boundary, but in an
easier computationally accessible manner. A fallout of this limit is that time independent
free boundary problems which are relevant at low undercoolings can also be treated in a
computationally efficient manner. The principal result is that when the phase evolution is
coupled with that of another field, the response of the phase-field to a finite change in the
coupled field can be made instantaneous in the thin-interface limit. This particular limit
has been worked out for a variety of models, notably for the case of potentials which are of
the smooth well type. However, the computationally more efficient double obstacle type
potentials have been untreated so far. Hence, in this paper we attempt to fill this gap
and make quantitative simulations possible with the use of obstacle type potentials. We
derive our evolution equations from an entropy functional. We then reduce a multi-phase
field model [33, 79] for treating two phase solidifications and show its equivalence to
the case of single order parameter models used before, and utilize this to perform the
thin-interface asymptotics. Our principal aim is to derive, the interface kinetic coefficient
in the thin-interface limit and hence we simplify our analysis for the case of one dimension
evolution. In addition, we treat a case where the thermal diffusivities of all the phases,
and the specific heat capacities are the same.

5.2. Equivalence of a two dependent order parameter model to
a single independent order parameter model

In phase-field literature, there are two types of approaches to define order parameters.
The conventional way is to use a property which varies across the interface such as density
or concentration as the order parameter. The change in the property denotes the change
in the microstructure or the evolution of the phase. A corollary of this approach is to
use a single order parameter, which varies between two fixed limits corresponding to
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values in the bulk phases. While these types of models are well defined and elegant, a
second approach is to define the phase-field variable as the volume fraction of the phase,
which are constrained by the condition that the sum of the volume fractions of all the
phases add up to 1. The evolution of the phases is efficiently tracked by the change in the
volume fraction of the phases. The physical properties such as the free energy densities
are then averaged among the phases using their volume fractions. As the number of
phases increases, it becomes easier to track the evolution equations as the change in
the volume fractions of the phases. In the following we show the equivalence of the
two approaches, which will be used thereafter to perform thin-interface asymptotics for
single phase pure material solidification. For the sake of discussion, we start with a free
energy functional without driving forces for a two phase system, The volume fractions
are denoted by 𝜑𝛼 and 𝜑𝛽, and are constrained by the condition 𝜑𝛼 + 𝜑𝛽 = 1. The free
energy functional reads:

ℱ (𝜑, ∇𝜑) =
∫︁

𝑉

(︂
𝜎̃𝛼𝛽𝜀 |(𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼)|2 + 16

𝜋2
𝜎̃𝛼𝛽

𝜀
𝜑𝛼𝜑𝛽

)︂
𝑑𝑉,

with surface energies 𝜎̃𝛼𝛽 and 𝜀 a small length scale parameter related to the width of
the interface and a domain of consideration 𝑉 . The evolution equation for the phase-field
vector 𝜑 is derived from the minimization of the free energy given by the following
equation for each component,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= − 𝛿ℱ

𝛿𝜑𝛼
− Λ,

where 𝜏𝛼𝛽 is the relaxation constant for the interface and Λ is the Lagrange parameter for
respecting the sum of the volume fractions of the phases as 1. Expanding the variational
derivative on the right side of the equation yields,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝜎̃𝛼𝛽𝜀 (−2∇ · (𝜑𝛽 (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼)) − 2∇𝜑𝛽 · (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼)) −
16
𝜋2

𝜎̃𝛼𝛽

𝜀
𝜑𝛽 − Λ

= −4𝜎̃𝛼𝛽𝜀

(︂
∇𝜑𝛽 · (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼) + 1

2𝜑𝛽

(︁
𝜑𝛼∇2𝜑𝛽 − 𝜑𝛽∇2𝜑𝛼

)︁)︂
−

16
𝜋2

𝜎̃𝛼𝛽

𝜀
𝜑𝛽 − Λ.

Utilizing the properties ∇𝜑𝛼 = −∇𝜑𝛽 and 𝜑𝛼 + 𝜑𝛽 = 1 for the case of two phases gives,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= −4𝜎̃𝛼𝛽𝜀

(︂
|∇𝜑𝛽|2 + 1

2𝜑𝛽

(︁
∇2𝜑𝛽

)︁)︂
− 16

𝜋2
𝜎̃𝛼𝛽

𝜀
𝜑𝛽 − Λ,

and the Lagrange parameter Λ as,

Λ = −2𝜎̃𝛼𝛽𝜀
(︁
|∇𝜑𝛽|2 + |∇𝜑𝛼|2

)︁
− 𝜎̃𝛼𝛽𝜀

(︁
𝜑𝛽∇2𝜑𝛽 + 𝜑𝛼∇2𝜑𝛼

)︁
−
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16
𝜋2

𝜎̃𝛼𝛽

2𝜀
(𝜑𝛽 + 𝜑𝛼) .

Including the Lagrange parameter, the evolution equation for a two phase system
transforms to,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝜎̃𝛼𝛽𝜀∇2𝜑𝛼 − 16

𝜋2
𝜎̃𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) . (5.1)

Equivalently, the evolution equation for the 𝛽 phase reads,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛽

𝜕𝑡
= 𝜎̃𝛼𝛽𝜀∇2𝜑𝛽 − 16

𝜋2
𝜎̃𝛼𝛽

2𝜀
(1 − 2𝜑𝛽) . (5.2)

With the construction of the Lagrange parameter, the sum of the evolution equations for
the two phases is zero. Hence, there exists only one independent equation in the system
and one can choose either to derive the dynamics of the system of two phases. With no
loss of generality, we choose the evolution equation of the 𝛼 phase for further discussion
and analysis. The equilibrium condition between two phases is given by the condition
𝜕𝜑𝛼

𝜕𝑡
= 0, which implies,

𝜎̃𝛼𝛽𝜀∇2𝜑𝛼 = 16
𝜋2

𝜎̃𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) .

As we are treating two-phase interfaces, the surface energy 𝜎̃𝛼𝛽 is binary interface property
completely defined by the sharp interface free boundary problem. However, in the special
case when there are adsorbed phases at the interface, one must compute the surface
energy numerically from the equilibrated profiles of the phases. The treatment however,
remains in principle similar to the case of binary interfaces, where we find the extremum
of the free energy per unit area. The surface energy is defined as integral of the free-energy
functional per-unit area computed using the phase-field function 𝜑𝛼 (𝑥) which maximizes
the free energy. Equivalently, this is the solution to the equilibrium phase-field equation
in 1D. The resulting solution of the partial diffusion equation are the equilibrium phase
field profiles which can be substituted back into the functional and integrated to get the
surface energy. In 1D, the equilibrium equation is multiplied by 𝜕𝜑𝛼

𝜕𝑥
, on both sides and

integrated from 0 to 𝑥. We get,

𝜎̃𝛼𝛽𝜀

(︂
𝑑𝜑𝛼

𝑑𝑥

)︂2
= 16

𝜋2
𝜎̃𝛼𝛽

𝜀
𝜑𝛼 (1 − 𝜑𝛼) . (5.3)

Equivalently, a similar expression can be formulated for the 𝛽 phase,

𝜎̃𝛼𝛽𝜀

(︂
𝑑𝜑𝛽

𝑑𝑥

)︂2
= 16

𝜋2
𝜎̃𝛼𝛽

𝜀
𝜑𝛽 (1 − 𝜑𝛽) .
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The slope of the individual profiles can be derived as,

𝑑𝜑𝛼

𝑑𝑥
= ±1

𝜀

√︂
16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼),

𝑑𝜑𝛽

𝑑𝑥
= ±1

𝜀

√︂
16
𝜋2 𝜑𝛽 (1 − 𝜑𝛽).

The sign of the derivative of each profile of 𝛼 and the 𝛽 phases is derived from the
boundary conditions. It depends on the direction from 𝜑𝛼 = 0 to 𝜑𝛼 = 1 as 𝑥 goes
from −∞ to +∞ or the other way around. In the following we choose the signs of the
derivatives as,

𝑑𝜑𝛼

𝑑𝑥
= +1

𝜀

√︂
16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼), (5.4)

𝑑𝜑𝛽

𝑑𝑥
= −1

𝜀

√︂
16
𝜋2 𝜑𝛽 (1 − 𝜑𝛽). (5.5)

Next, we recollect the gradient potential of the form, 𝜎̃𝛼𝛽𝜀|𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼|2, and

substitute the form of the gradients 𝑑𝜑𝛼

𝑑𝑥
, Eqn. (5.4) and 𝑑𝜑𝛽

𝑑𝑥
, Eqn. (5.5) and using

𝑑𝜑𝛽

𝑑𝑥
= −𝑑𝜑𝛽

𝑑𝑥
, we get 𝜎̃𝛼𝛽𝜀|𝜑𝛼∇𝜑𝛽 −𝜑𝛽∇𝜑𝛼|2 = 16

𝜋2
𝜎̃𝛼𝛽𝜑𝛼 (1 − 𝜑𝛼)

𝜀
and hence the surface

energy is given by,

𝜎𝛼𝛽 = 2𝜎̃𝛼𝛽

∫︁
𝑋

16
𝜋2

𝜑𝛼 (1 − 𝜑𝛼)
𝜀

𝑑𝑥.

By changing the variables from 𝑥 to 𝜑𝛼 and applying the relation in Eqn. (5.3), the
equivalent expression for the surface energy derives,

𝜎𝛼𝛽 = 2𝜎̃𝛼𝛽

∫︁ 1

0

√︂
(16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼))𝑑𝜑𝛼.

The above integral has been constructed in such a way so as to return 1/2 i.e. the reason
for the choice of the factor 16/(𝜋2), such that the surface energy 𝜎𝛼𝛽 is 𝜎̃𝛼𝛽 . The interface
thickness can similarly be calculated by using Eqn. (5.3) and integrated such that,

Λ̃𝛼𝛽 =
∫︁ 1

0

𝜀𝑑𝜑𝛼√︂
16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼))

,

which computes as Λ̃𝛼𝛽 = 𝜋2𝜀

4 ≈ 2.5𝜀.
One can also use the difference of the two equations i.e Eqn. (5.1) − (5.2) as the
independent equation, describing the evolution of the system as,

𝜏𝛼𝛽𝜀
𝜕 (𝜑𝛼 − 𝜑𝛽)

𝜕𝑡
= 𝜎̃𝛼𝛽𝜀∇2 (𝜑𝛼 − 𝜑𝛽) − 16

𝜋2
𝜎̃𝛼𝛽

2𝜀
(1 − 2𝜑𝛼 − (1 − 2𝜑𝛽)) .
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Using 𝜑𝛼 + 𝜑𝛽 = 1, and simplifying we arrive at,

2𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 2𝜎̃𝛼𝛽𝜀∇2𝜑𝛼 − 16

𝜋2
𝜎̃𝛼𝛽

𝜀
(1 − 2𝜑𝛼) .

This is the same equation we obtain, by starting from a one order parameter description
of the model. Dividing throughout by 2, we get the identical expression as the evolution
equation for the phases, described in Eqn.(5.1) or Eqn.(5.2). This establishes the
equivalence of the method to one-order parameter models.

5.3. Asymptotic analysis

In the following, we derive the thin interface corrections for the case of a pure material
solidification. We perform the expansions of the phase-field variable 𝜑𝛼 and temperature
field 𝑇 as powers of ’𝑝’ which is a small parameter called the interface Peclet number
𝑃𝑒 = 𝑊

(𝐷/𝑉 ) , where 𝑊 is the interface width and 𝐷/𝑉 is the diffusion length in the
problem. To derive the evolution equations, we start from an entropy functional which is
elaborated as,

𝒮 =
∫︁

𝑉
𝑠 (𝑒, 𝜑) −

(︂
𝜀𝑎 (𝜑, ∇𝜑) + 1

𝜀
𝑤 (𝜑)

)︂
𝑑𝑉,

where, 𝑒 is the internal energy of the system, 𝑎 is the gradient entropy density and 𝑤
is the surface potential density. The evolution equation for the internal energy can be
derived as a conservation law as follows,

𝜕𝑒

𝜕𝑡
= −∇ · 𝐽𝑒 with 𝐽𝑒 = −𝑀 (𝜑) ∇𝛿𝒮

𝛿𝑒
,

where 𝐽𝑒 is the flux of the internal energy, and 𝑀 is mobility related to this flux. The
variational derivative 𝛿𝒮

𝛿𝑒
can be derived as 1

𝑇
. Substituting this result in the preceding

equation, the evolution equation for the internal energy transforms to,

𝜕𝑒

𝜕𝑡
= ∇ ·

(︂
𝑀 (𝜑) ∇ 1

𝑇

)︂
.

Applying the relation 𝑒 = 𝑓 + 𝑇𝑆, where 𝑓 is the Helmholtz free energy density of the
system, we derive the evolution equation for the temperature field as,

𝜕𝑇

𝜕𝑡
=

∇ ·
(︂

𝑀 (𝜑) ∇ 1
𝑇

)︂
−
∑︀𝑁

𝛼=1
𝜕𝑒

𝜕𝜑𝛼

𝜕𝜑𝛼

𝜕𝑡

−𝑇
𝜕2𝑓

𝜕𝑇 2

.
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For treating problems close to the melting point 𝑇𝑚, we can derive the free energy of each
phase as

(︂
𝐿𝛼 (𝑇 − 𝑇 𝛼

𝑚)
𝑇 𝛼

𝑚

+ 𝐶𝛼
𝑣 (𝑇 − 𝑇 𝛼

𝑚)
)︂

. It follows, that the internal energy of each

phase can be written as 𝑒𝛼 = 𝐿𝛼 +𝐶𝛼
𝑣 (𝑇 − 𝑇 𝛼

𝑚), where 𝐶𝛼
𝑣 is the volumetric heat capacity

at constant volume of the 𝛼 phase and 𝐿𝛼 is the latent heat of fusion of the 𝛼 phase.
The total internal energy of the system can be elaborated as 𝑒 (𝜑, 𝑇 ) =

∑︀𝑁
𝛼=1 𝑒𝛼ℎ𝛼 (𝜑),

where ℎ𝛼 (𝜑) is the interpolation function. We make another simplification, that, for the
case we have all the 𝐶𝛼

𝑣 as equal, we can derive the following evolution equation for the
temperature field,

𝜕𝑇

𝜕𝑡
=

∇ ·
(︂

𝑀 (𝜑) ∇ 1
𝑇

)︂
+
∑︀𝑁

𝛼=1 𝐿𝛼
𝜕ℎ𝛼 (𝜑)

𝜕𝜑𝛼

𝜕𝜑𝛼

𝜕𝑡

−𝑇
𝜕2𝑓

𝜕𝑇 2

,

which, upon employing the thermodynamic relation −𝑇
𝜕2𝑓

𝜕𝑇 2 = 𝐶𝑣 becomes,

𝜕𝑇

𝜕𝑡
=

∇ ·
(︂

𝑀 (𝜑) ∇ 1
𝑇

)︂
+
∑︀𝑁

𝛼=1 𝐿𝛼
𝜕ℎ𝛼 (𝜑)

𝜕𝜑𝛼

𝜕𝜑𝛼

𝜕𝑡

𝐶𝑣
.

In the above, we write 𝑀 (𝜑) =
∑︀𝑁

𝛼=1 𝑀𝛼ℎ𝛼 (𝜑𝛼) and assume the free energies with
respect to the liquid as the reference which implies that the latent heats of fusion
𝐿𝛼 are non-zero only for the solid phases. The evolution equation of the phase-field
variables 𝜑 = {𝜑𝛼}𝑁

𝛼=1 are derived from the phenomenological maximization of the
entropy functional,

𝜔𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝛿𝑆

𝛿𝜑𝛼
− Λ,

where 𝜔𝛼𝛽 is the constant related to the relaxation of the phase-field, derived from the
entropy functional. We now reduce our system to two phases, a pure solid 𝛼 and a pure
liquid 𝛽. We employ interpolation functions of the form ℎ𝛼 (𝜑) = ℎ𝛼 (𝜑𝛼). Defining the
mobility, 𝑀𝛼 = −𝐾𝛼𝑇 2 for each phase 𝛼 and utilizing the discussion in section 5.2, we
write a single independent evolution equation of the order parameter 𝜑𝛼 as follows,

𝜔𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= −4𝛾𝛼𝛽𝜀

(︂
|∇𝜑𝛽|2 + 1

2𝜑𝛽

(︁
∇2𝜑𝛽

)︁)︂
− 16

𝜋2
𝛾𝛼𝛽

𝜀
𝜑𝛽 − 𝑓𝛼 (𝑇 )

𝑇

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝜑𝛼

− Λ,

𝐶𝑣
𝜕𝑇

𝜕𝑡
= ∇ · (𝐾 (𝜑) ∇𝑇 ) + 𝐿𝛼

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

,

where we have written the thermal conductivity as 𝐾 (𝜑) =
∑︀𝑁

𝛼=1 𝐾𝛼ℎ𝛼 (𝜑𝛼). Further,

we used 𝛿𝑠

𝛿𝜑𝛼
= −𝑓𝛼 (𝑇 )

𝑇

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝜑𝛼

. The parameter 𝛾𝛼𝛽 denotes the surface entropy
density. For the discussion hereafter, the thermal conductivities are assumed the same
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for both phases, given by 𝐾. The Lagrange parameter Λ is expanded as,

Λ = −2𝛾𝛼𝛽𝜀
(︁
|∇𝜑𝛽|2 + |∇𝜑𝛼|2

)︁
− 𝛾𝛼𝛽𝜀

(︁
𝜑𝛽∇2𝜑𝛽 + 𝜑𝛼∇2𝜑𝛼

)︁
− 16

𝜋2
𝛾𝛼𝛽

2𝜀
(𝜑𝛽 + 𝜑𝛼) −

1
2𝑇

(︃
𝑓𝛼 (𝑇 ) 𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
+ 𝑓𝛽 (𝑇 ) 𝜕ℎ𝛽 (𝜑𝛽)

𝜕𝜑𝛽

)︃
,

which upon incorporation in the evolution equation and with the assumption 𝑓𝛽 (𝑇 ) = 0
(because 𝐿𝛽 = 0) reads as,

𝜔𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝛾𝛼𝛽𝜀∇2𝜑𝛼 − 16

𝜋2
𝛾𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) − 1

2
𝐿𝛼 (𝑇 − 𝑇 𝛼

𝑚)
𝑇𝑇 𝛼

𝑚

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝜑𝛼

, (5.6)

𝐶𝑣
𝜕𝑇

𝜕𝑡
= ∇ · (𝐾∇𝑇 ) + 𝐿𝛼

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

.

Multiplying Eqn. (5.6) by 𝑇 , we get,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝜎̃𝛼𝛽𝜀∇2𝜑𝛼 − 16

𝜋2
𝜎̃𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) − 1

2
𝐿𝛼 (𝑇 − 𝑇 𝛼

𝑚)
𝑇 𝛼

𝑚

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝜑𝛼

,

where 𝜏𝛼𝛽 = 𝑇𝜔𝛼𝛽 and 𝜎̃𝛼𝛽 = 𝑇𝛾𝛼𝛽. We will use this evolution equation henceforth in
the analysis. We next non-dimensionalize the equations using the diffusion length 𝑙𝑐 as
the length scale and use the time scale 𝑙2𝑐/𝜅. Here 𝜅 is the thermal diffusivity which is
defined as 𝐾/𝐶𝑣. We introduce a small parameter 𝑝 = 𝜀/𝑙𝑐 and the re-scaled equations
are rewritten in 1D as,

𝜏𝑝2 𝜕𝜑𝛼

𝜕𝑡
= 𝑝2 𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 (1 − 2𝜑𝛼) − 𝛼̃

𝑝

2
𝑇 − 𝑇 𝛼

𝑚

𝑇 𝛼
𝑚

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝜑𝛼

(5.7)

𝜕𝑇

𝜕𝑡
= 𝜕2𝑇

𝜕𝑥2 + 𝜆̃
𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝑡
, (5.8)

where we have additionally defined the parameters 𝜆̃ = 𝐿𝛼

𝐶𝑣
, 𝛼̃ = 𝑙𝑐

(𝜎̃𝛼𝛽/𝐿𝛼) and 𝜏 =

𝜏𝛼𝛽𝜅/𝜎̃𝛼𝛽. In Eqn. (5.8), the physical situation remains unchanged if we calculate the
temperature changes with respect to the melting temperature 𝑇 𝛼

𝑚, such that we can
transform the variable to (𝑇 − 𝑇 𝛼

𝑚). Thereafter, we divide the whole equation by 𝜆̃,
giving,

𝜕𝑢

𝜕𝑡
= 𝜕2𝑢

𝜕𝑥2 + 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

,
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where 𝑢 = 𝑇 − 𝑇 𝛼
𝑚

(𝐿𝛼/𝐶𝑣) . With this substitution, and setting 𝑔 = 𝛼̃𝐿𝛼/(𝐶𝑣𝑇 𝛼
𝑚), we get the

following evolution equation for 𝜑𝛼,

𝜏𝑝2 𝜕𝜑𝛼

𝜕𝑡
= 𝑝2 𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 (1 − 2𝜑𝛼) − 𝑔𝑢𝑝

2
𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
.

Next we transform the equations in the moving frame at steady-state, such that the total
derivative with respect to time vanishes. We get,

− 𝑣𝜏𝑝2 𝜕𝜑𝛼

𝜕𝑥
= 𝑝2 𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 (1 − 2𝜑𝛼) − 𝑔𝑢𝑝

2
𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
, (5.9)

−𝑣
𝜕𝑢

𝜕𝑥
= 𝜕2𝑢

𝜕𝑥2 − 𝑣
𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝑡
, (5.10)

where the velocity (𝑉 ) is measured in the non-dimensional transformed co-ordinate
set as 𝑣 = 𝑉 𝑙𝑐/𝜅. There are two regions in the spatial solutions of 𝜑 and 𝑢: The
outer region(bulk solid and liquid) where there is slow change in the variables and an
inner region where there is rapid change. To probe into the inner solutions, we scale
our co-ordinate with respect to the interface Peclet number 𝑝, by introducing a scaled
co-ordinate system 𝜂 = 𝑥/𝑝. With this transformation, the evolution equations become,

−𝜏𝑝𝑣
𝜕𝜑𝛼

𝜕𝜂
= 𝜕2𝜑𝛼

𝜕𝜂2 − 16
2𝜋2 (1 − 2𝜑𝛼) − 𝑔𝑢𝑝

2
𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
,

−𝑣

𝑝

𝜕𝑢

𝜕𝜂
= 1

𝑝2
𝜕2𝑢

𝜕𝑥2 − 𝑣

𝑝

𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

.

The outer and inner solutions are written as expansions of the parameter 𝑝. The outer
solutions are denoted as ̃︁𝜑𝛼 = ̃︁𝜑0

𝛼 + 𝑝̃︁𝜑1
𝛼 + 𝑝2̃︁𝜑2

𝛼 . . . and ̃︀𝑢 = 𝑢0 + 𝑝̃︁𝑢1 + 𝑝2̃︁𝑢2 . . ., while the
inner solutions are 𝜑𝛼 = 𝜑0

𝛼 + 𝑝𝜑1
𝛼 + 𝑝2𝜑2

𝛼 . . . and 𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 . . .. The outer
solution is ̃︁𝜑𝛼 = 0, 1 in the bulk liquid or solid respectively and is stable to any order in
𝑝. The outer solution for the temperature satisfies the diffusion equation,

𝜕̃︀𝑢
𝜕𝑡

= 𝜕2̃︀𝑢
𝜕𝑥2 .

Given this, the matching conditions for 𝜑𝛼 are trivial while for the 𝑢 field the matching
conditions are derived by comparing the equations order by order in 𝑝 as,

lim
𝜂→±∞

𝑢0 = ̃︁𝑢0
⃒⃒⃒⃒±

(5.11)

lim
𝜂→±∞

𝑢1 = lim
𝜂→±∞

(︃̃︁𝑢1
⃒⃒⃒⃒±

+ 𝜂
𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒±)︃
(5.12)

lim
𝜂→±∞

𝑢2 = lim
𝜂→±∞

(︃̃︁𝑢2
⃒⃒⃒⃒±

+ 𝜂
𝜕̃︁𝑢1

𝜕𝑥

⃒⃒⃒⃒±
+ 𝜂2

2
𝜕2̃︁𝑢0

𝜕𝑥2

⃒⃒⃒⃒±)︃
(5.13)
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and, the derivative matching conditions,

lim
𝜂→±∞

𝜕𝑢0

𝜕𝜂
= 0 (5.14)

lim
𝜂→±∞

𝜕𝑢1

𝜕𝜂
= 𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒±
(5.15)

lim
𝜂→±∞

𝜕𝑢2

𝜕𝜂
= lim

𝜂→±∞

(︃
𝜕̃︁𝑢1

𝜕𝑥

⃒⃒⃒⃒±
+ 𝜂

𝜕2̃︁𝑢0

𝜕𝑥2

⃒⃒⃒⃒±)︃
. (5.16)

Next we proceed to write the evolution equation of 𝜑𝛼 and 𝑢 order by order in p and derive
the relevant boundary conditions as solvability conditions. The phase-field equation at
order 𝑝0 writes,

𝜕2𝜑0
𝛼

𝜕𝜂2 = 16
2𝜋2

(︁
1 − 2𝜑0

𝛼

)︁
.

Multiplying with 𝜕𝜑0
𝛼

𝜕𝑥
on both sides and integrating we get,

1
2

(︃
𝜕𝜑0

𝛼

𝜕𝜂

)︃2

= 1
2

16
𝜋2 𝜑0

𝛼

(︁
1 − 𝜑0

𝛼

)︁
𝜕𝜑0

𝛼

𝜕𝜂
= ± 4

𝜋

√︁
𝜑0

𝛼 (1 − 𝜑0
𝛼).

With the boundary conditions 𝜑𝛼 = 1(solid) at 𝑥 = −∞ and 𝜑𝛼 = 0(liquid) at 𝑥 = +∞
we have,

𝜕𝜑0
𝛼

𝜕𝜂
= − 4

𝜋

√︁
𝜑0

𝛼 (1 − 𝜑0
𝛼). (5.17)

The 𝑢 equation at order 1/𝑝2 is,

𝜕2𝑢0
𝜕𝜂2 = 0.

which upon integrating once becomes,

𝜕𝑢0
𝜕𝜂

= 𝐴1.

From the matching condition in Eqn. (5.14) we obtain lim𝜂→±∞ 𝜕𝜂𝑢0 = 0, which implies
𝐴1 = 0, which upon subsequent integration reads,

𝑢0 = 𝑢0,
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with integration constant 𝑢0. In order to determine this constant, we substitute 𝑢0 into
the phase-field equation at order 𝑝1 which gives,

−𝜏𝑝𝑣
𝜕𝜑0

𝛼

𝜕𝜂
= 𝑝

𝜕2𝜑1
𝛼

𝜕𝜂2 + 16
𝜋2 𝑝𝜑1

𝛼 − 𝑝
𝑔𝑢0

2
𝜕ℎ
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

,

and thereafter simplifies to,

−𝜏𝑣
𝜕𝜑0

𝛼

𝜕𝜂
= 𝜕2𝜑1

𝛼

𝜕𝜂2 + 16
𝜋2 𝜑1

𝛼 − 𝑔𝑢0

2
𝜕ℎ
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

.

Note, the term 16
𝜋2 corresponds to − 16

2𝜋2
𝜕

𝜕𝜑𝛼
(1 − 2𝜑𝛼) which is one of the terms in the

expansion of the potential function in increasing orders of the interface Peclet number 𝑝.
This can be written for any function of 𝜑𝛼, e.g 𝑠 (𝜑𝛼) by substituting expansion of 𝜑𝛼 in
orders of 𝑝 as.

𝑠
(︁
𝜑0

𝛼 + 𝑝𝜑1
𝛼 + 𝑝2𝜑2

𝛼

)︁
= 𝑠

(︁
𝜑0

𝛼

)︁
+ 𝑝

𝜕𝑠
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜑1
𝛼 + 𝑝2 𝜕𝑠

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜑2
𝛼 +

𝑝2

2
𝜕2𝑠

(︀
𝜑0

𝛼

)︀
𝜕𝜑2

𝛼

(︁
𝜑1

𝛼

)︁2
. . . ,

where we limit the above expansion to order 𝑝2. Here it is useful to identify an operator
which derives from the phase-field equation at order 𝑝0 as follows,

𝜕2𝜑0
𝛼

𝜕𝜂2 − 16
2𝜋2

(︁
1 − 2𝜑0

𝛼

)︁
= 0.

Differentiating the above once, gives:

𝜕3𝜑0
𝛼

𝜕𝜂3 + 16
𝜋2

𝜕𝜑0
𝛼

𝜕𝜂
= 0.

Written as, (︃
𝜕2

𝜕𝜂2 + 16
𝜋2

)︃
𝜕𝜑0

𝛼

𝜕𝜂
= 0,

implies that the term in the brackets 𝜕2

𝜕𝜂2 + 16
𝜋2 can be defined as a linear operator

denoted by 𝐿. We also derive that 𝜕𝜂𝜑0
𝛼 is a homogeneous solution of the operator 𝐿.

Writing the phase-field equation at order 𝑝1 by employing the operator 𝐿 gives,

𝐿𝜑1
𝛼 = −𝜏𝑣

𝜕𝜑0
𝛼

𝜕𝜂
+ 𝑔𝑢0

2
𝜕ℎ
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

.
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Multiplying both sides with 𝜕𝜑0
𝛼

𝜕𝜂
and integrating we get,

∫︁ ∞

−∞
𝐿𝜑1

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = −𝜏𝑣

∫︁ ∞

−∞

(︃
𝜕𝜑0

𝛼

𝜕𝜂

)︃2

𝜕𝜂 +
∫︁ ∞

−∞

𝑔𝑢0

2
𝜕ℎ
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂

The left hand side of this equation can be expanded as,∫︁ ∞

−∞
𝐿𝜑1

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 =

∫︁ ∞

−∞

𝜕2𝜑1
𝛼

𝜕𝜂2
𝜕𝜑0

𝛼

𝜕𝜂
𝜕𝜂 +

∫︁ ∞

−∞

16
𝜋2 𝜑1

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂, (5.18)

which upon partial integration becomes,

= 𝜕𝜑1
𝛼

𝜕𝜂

𝜕𝜑0
𝛼

𝜕𝜂

⃒⃒⃒⃒
⃒
∞

−∞
−
∫︁ ∞

−∞

𝜕𝜑1
𝛼

𝜕𝜂

𝜕2𝜑0
𝛼

𝜕𝜂2 𝜕𝜂

+ 16
2𝜋2 𝜑1

𝛼

(︁
2𝜑0

𝛼 − 1
)︁⃒⃒⃒⃒∞

−∞
+
∫︁ ∞

−∞

16
2𝜋2

𝜕𝜑1
𝛼

𝜕𝜂

(︁
1 − 2𝜑0

𝛼

)︁
𝜕𝜂.

While performing the integrations and substitutions of functions it is necessary to take
care that the reference point is at 𝜂 = 0, where 𝜑𝛼 = 0.5. This is because the moving frame
is fixed to this point. The two constants are zero owing to 𝜑1

𝛼 → 0 at both extremities
along with the derivatives which implies that the integral simplifies to,∫︁ ∞

−∞
𝐿𝜑1

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = −

∫︁ ∞

−∞

(︃
𝜕2𝜑0

𝛼

𝜕𝜂2 − 16
2𝜋2

(︁
1 − 2𝜑0

𝛼

)︁)︃ 𝜕𝜑1
𝛼

𝜕𝜂
𝜕𝜂.

The term inside the brackets is the phase-field equation at order 𝑝0 and hence is zero,
giving the first solvability condition,

− 𝜏𝑣

∫︁ ∞

−∞

(︃
𝜕𝜑0

𝛼

𝜕𝜂

)︃2

𝜕𝜂 +
∫︁ ∞

−∞

𝑔𝑢0

2
𝜕ℎ
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = 0. (5.19)

For the obstacle potential and any interpolation polynomial ℎ𝛼 (𝜑𝛼) varying from 0 to 1,
the two integrals in the above solvability condition are easily computed as,

∫︁ ∞

−∞

(︃
𝜕𝜑0

𝛼

𝜕𝜂

)︃2

𝜕𝜂 =
∫︁ 0

1

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜑𝛼 = 4

𝜋

∫︁ 1

0

√︁
𝜑0

𝛼 (1 − 𝜑0
𝛼)𝜕𝜑𝛼 = 1

2 ,

where we applied Eqn. (5.17). Similarly, by taking the constants out of the integrations,
the second integral in Eqn. (5.19) becomes,∫︁ ∞

−∞

𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 =

∫︁ 0

1

𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼 = ℎ𝛼 (0) − ℎ (1) = −1.



5.3. Asymptotic analysis 95

With the evaluated integrals, the solvability condition (5.19) reads,

𝑢0 = 𝜏𝑣

𝑔
.

Substituting the values for the parameters 𝜏 and 𝑔 in dimensional units reads,

(𝑇 − 𝑇 𝛼
𝑚) = −𝜏𝛼𝛽𝑉 𝑇 𝛼

𝑚

𝐿𝛼
,

= −𝛽
0
𝑉.

Comparing the terms we derived the zeroth order kinetic coefficient in terms of the
phase-field parameters which is also the sharp interface limit given by,

𝛽
0 = 𝜏𝛼𝛽𝑇 𝛼

𝑚

𝐿𝛼
.

Hence 𝜏𝛼𝛽 has the units 𝐽𝑠

𝑚4 . In case of using an entropy functional, 𝛽
0 is a function of

the temperature and hence can be written equivalently as,

𝛽
0 = 𝜔𝛼𝛽𝑇𝑇 𝛼

𝑚

𝐿𝛼
,

where 𝜔𝛼𝛽 has the units 𝐽𝑠

𝑚4𝐾
.

In order to compute the first order correction to the kinetic coefficient, we write the 𝑢
equation at order 1/𝑝 which reads,

−𝑣
𝜕𝑢0

𝜕𝜂
= 𝜕2𝑢1

𝜕𝜂2 − 𝑣
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜂

.

From the 𝑢 equation at order 1/𝑝2 we have the result 𝑢0 is constant. Hence, this does
not contribute to the 𝑢 equation at order 1/𝑝. Integrating the resulting equation gives,

𝜕𝑢1

𝜕𝜂
= 𝑣ℎ𝛼

(︁
𝜑0

𝛼

)︁
+ 𝐴. (5.20)

Employing matching condition in Eqn.(5.15) we derive,

lim
𝜂→±∞

𝜕𝑢1

𝜕𝜂
= 𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒±
,

= 𝐴 + 𝑣ℎ𝛼

(︁
𝜑0

𝛼±
)︁

.

which can be used to derive the macroscopic gradients of the temperature field computed
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from both the bulk sides,

𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒+
= 𝐴, (5.21)

𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒−
= 𝐴 + 𝑣. (5.22)

Subtracting, we at once get the Stefan condition at the lowest order which is,

𝑣 = 𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒−
− 𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒+
.

Integrating Eqn.(5.20) we get the total inner solution at order (1/𝑝) as,

𝑢1 = 𝑢1 + 𝑣

∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂 + 𝐴𝜂. (5.23)

The integration constant 𝑢1 is computed by inserting the equation for 𝑢1 into the
phase-field evolution equation at order 𝑝2 which reads,

−𝜏𝑣
𝜕𝜑1

𝛼

𝜕𝜂
= 𝜕2𝜑2

𝛼

𝜕𝜂2 + 16
𝜋2 𝜑2

𝛼 − 𝑔𝑢1

2
𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
− 𝑔𝑢0

2 𝜑1
𝛼

𝜕2ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

2 .

Identifying the operator 𝐿 the equation can be written in short as,

𝐿𝜑2
𝛼 = −𝜏𝑣

𝜕𝜑1
𝛼

𝜕𝜂
+ 𝑔𝑢1

2
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

+ 𝑔𝑢0

2 𝜑1
𝛼

𝜕2ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

2 .

from which the solvability condition for a non-trivial 𝜑0
𝛼 implies that the R.H.S must be

orthogonal to 𝜕𝜂𝜑0
𝛼 giving,

− 𝜏𝑣

∫︁ ∞

−∞

𝜕𝜑1
𝛼

𝜕𝜂

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 +

∫︁ ∞

−∞

𝑔𝑢1

2
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 +∫︁ ∞

−∞

𝑔𝑢0

2 𝜑1
𝛼

𝜕2ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

2
𝜕𝜑0

𝛼

𝜕𝜂
𝜕𝜂 = 0. (5.24)

To simplify the preceding solvability condition we need to evaluate the nature of the
integrals. For the first term, we make use of the fact that 𝜑1

𝛼 satisfies the Eqn.(5.18),

𝐿𝜑1
𝛼 = −𝜏𝑣

𝜕𝜑0
𝛼

𝜕𝜂
+ 𝑔𝑢0

2
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

. (5.25)

The phase-field profile 𝜑0
𝛼 is in the case of an obstacle type potential part of a sinus

curve and hence is an odd-function, which implies its derivative 𝜕𝜑0
𝛼

𝜕𝜂
is even. Similarly,



5.3. Asymptotic analysis 97

the interpolation function ℎ𝛼
(︀
𝜑0

𝛼

)︀
is an odd function and hence, 𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

is an even
function. To realize this, we use a property of the interpolation function which is the
anti-symmetry with respect to 𝜂 = 0 or at the position where 𝜑𝛼 = 1/2 yielding,

ℎ𝛼 (𝜑𝛼 (𝜂)) − 1
2 = 1

2 − ℎ𝛼 (𝜑𝛼 (−𝜂)) .

Differentiating both sides with respect to 𝜂 and using the 𝑒𝑣𝑒𝑛 property of 𝜕𝜑0
𝛼

𝜕𝜂
we

derive,

𝜕ℎ𝛼 (𝜑𝛼 (𝜂))
𝜕𝜑0

𝛼

= 𝜕ℎ𝛼 (𝜑𝛼 (−𝜂))
𝜕𝜑0

𝛼

implying 𝜕ℎ𝛼 (𝜑𝛼 (𝜂))
𝜕𝜑0

𝛼

is even. Conversely, differentiating again, we get that the second

derivative 𝜕2ℎ𝛼 (𝜑𝛼 (𝜂))
𝜕𝜑0

𝛼
2 is odd. Using these properties, we directly find that the R.H.S of

Eqn. (5.25) is even. Combined with the fact that the operator 𝐿 is of the form 𝜕2

𝜕𝜂2 + 16
𝜋2 ,

which does not change the characteristic properties of the R.H.S., we derive that 𝜑1
𝛼 is

even. Putting all the arguments together, we directly see that only the second integral in
the solvability condition Eqn. (5.24) survives and simplifies to,∫︁ ∞

−∞

𝑔𝑢1

2
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = 0.

Substituting 𝑢1 from Eqn. (5.23) into the solvability condition gives,

𝑔𝑢1

2

∫︁ ∞

−∞

𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑0

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 + 𝑔

2𝑣

∫︁ ∞

−∞

[︂∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂

]︂
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑0

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 +

𝑔

2

∫︁ ∞

−∞
𝐴𝜂

𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑0

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = 0.

In the above, the last integral vanishes because 𝜂 is an odd function, and the other two
functions in the integral are even, rendering the integral as odd. Thus, the constant 𝑢1

can be written as,

𝑔𝑢1

2 (ℎ (0) − ℎ (1)) + 𝑔

2𝑣

∫︁ ∞

−∞

[︂∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂

]︂
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑0

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = 0.

We introduce 𝑀̃ such that,

𝑀̃ =
∫︁ ∞

−∞

[︂∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂

]︂
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑0

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂
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and hence,

𝑢1 = 𝑀̃𝑣.

Substituting the expression for 𝑢1 in Eqn. (5.23) we obtain,

𝑢1 = 𝑀̃𝑣 + 𝑣

∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂 + 𝐴𝜂.

Using the condition in Eqn. (5.22), the constant 𝐴 can be written in two ways, which are
constrained to be equal by the Stefan condition. Upon substitution, the two formulations
can be realized as follows,

𝑢1 = 𝑀̃𝑣 + 𝑣

∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂 +

(︃
𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒+)︃
𝜂 alternatively (5.26)

𝑢1 = 𝑀̃𝑣 + 𝑣

∫︁ 𝜂

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂 +

(︃
𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒−)︃
𝜂 − 𝑣𝜂

= 𝑀̃𝑣 + 𝑣

∫︁ 𝜂

0

(︁
ℎ𝛼

(︁
𝜑0

𝛼

)︁
− 1

)︁
𝜕𝜂 +

(︃
𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒−)︃
𝜂. (5.27)

Using the matching condition in Eqn. (5.12) gives

̃︁𝑢1|±= lim
𝜂→±∞

𝑢1 − 𝜂
𝜕̃︁𝑢0

𝜕𝑥

⃒⃒⃒⃒±
,

thereby, we derive the positive limit by including Eqn. (5.26) and the negative limit by

Eqn. (5.27) for the derivatives 𝜕̃︁𝑢0

𝜕𝑥
as,

̃︁𝑢1
⃒⃒⃒⃒+

= 𝑀̃𝑣 + 𝑣

∫︁ ∞

0
ℎ𝛼

(︁
𝜑0

𝛼

)︁
𝜕𝜂

̃︁𝑢1
⃒⃒⃒⃒−

= 𝑀̃𝑣 + 𝑣

∫︁ −∞

0

(︁
ℎ𝛼

(︁
𝜑0

𝛼

)︁
− 1

)︁
𝜕𝜂.

Due to the construction of the interpolation functions as anti-symmetric functions, one
can verify that the two integrals

∫︀∞
0 ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜂 and

∫︀−∞
0

(︀
ℎ𝛼
(︀
𝜑0

𝛼

)︀
− 1

)︀
𝜕𝜂 are equal and

hence the macroscopic value of the outer solution at first order, ̃︁𝑢1 is unique from both
sides. We denote the integral in the preceding equation as 𝐹 and hence ̃︁𝑢1 can be written
as,

̃︁𝑢1 = 𝑣
(︁
𝑀̃ + 𝐹

)︁
.
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Putting the dimensions back, we have,

̃︂Δ𝑇 1 = 𝑣
𝐿𝛼

𝐶𝑣

(︁
𝑀̃ + 𝐹

)︁
Combining the undercoolings at the different orders, we have the total macroscopic
undercooling as,

̃︂Δ𝑇 = ̃︂Δ𝑇 0 + 𝑝 ̃︂Δ𝑇 1,

which can equivalently be expressed in terms of the kinetic coefficients by,

− ̃︀𝛽𝑉 = −̃︁𝛽0
𝑉 + 𝑝

̃︁
𝛽

1
𝑉

= −𝜏𝛼𝛽𝑇𝑚

𝐿𝛼
𝑉 + 𝜀

𝐿𝛼

𝐾
𝑉
(︁
𝑀̃ + 𝐹

)︁
.

Comparing terms, we have,

̃︀𝛽 = ̃︁
𝛽

0 − 𝑝
̃︁
𝛽

1

= 𝜏𝛼𝛽𝑇𝑚

𝐿𝛼
− 𝜀

𝐿𝛼

𝐾

(︁
𝑀̃ + 𝐹

)︁
(5.28)

For the commonly considered interpolation polynomials being the cubic and the quartic
type polynomial, when used along with the obstacle potential, the values of 𝐹 and 𝑀̃
are tabulated below,

𝑀̃ 𝐹

ℎ (𝜑𝛼) = 𝜑2
𝛼 (3 − 2𝜑𝛼) 0.063828 0.158741

ℎ (𝜑𝛼) = 𝜑3
𝛼

(︀
10 − 15𝜑𝛼 + 6𝜑2

𝛼

)︀
0.052935 0.129288

Eqn. (5.28) is the revolutionary result, first obtained by Karma in [48] and is known
as the thin interface limit. It shows that there is the possibility to choose parameters
𝜏𝛼𝛽 and interface width parameter 𝜀 in a way that the effective 𝛽 vanishes and hence
simulations at the vanishing interface kinetics limit can be performed. This can be
achieved by manipulating Eqn. (5.28) as,

𝜏𝛼𝛽 = 𝜀
𝐿2

𝛼

𝑇𝑚𝐾

(︁
𝑀̃ + 𝐹

)︁
. (5.29)

In order to achieve low interface kinetics using the sharp interface limit, the value of
𝜏𝛼𝛽 becomes prohibitively lower and hence the time step reduces to a computationally
unfeasible value. However with the thin interface limit, one has the benefits of an
increased interface width that can be chosen for the simulation which can recover the
sharp interface free boundary problem along with the condition that the time scales for
the simulation can be enhanced for problems with vanishing interface kinetics.
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Figure 5.1.: Velocity of a pure nickel planar front simulated with different 𝜀 at a fixed nondi-
mensional temperature of T=0.96.

5.4. Benchmarks

In order to benchmark our calculations, we choose the Ni system for consideration. The
system parameters involve the latent heat of the system which is given by 𝐿𝛼 = 0.30,
which is non-dimensionalized using energy scale as, 𝐶𝑠

𝑣𝑇𝑚 = 1.52 × 106𝐽/𝑚3, where
𝑇𝑚 = 1748𝐾 is the melting point of the solid and 𝐶𝑠

𝑣 is the specific heat of Ni. The
surface entropy density of the solid-liquid interface is given by 𝛾𝛼𝛽 = 0.167 × 10−3𝐽/𝑚2𝐾.
We perform several simulations of the growth of a planar front at a given non-dimensional
temperature given by 𝑇 = 0.96 (𝑇𝑚 = 1.0), with variation in the interface widths, affected
by changing the parameter 𝜀. The results plotted in Fig.5.1 show the invariance of the
front velocity upon change in 𝜀. To achieve this, we affect 𝛽 = 0, through an appropriate
choice of the parameter 𝜏𝛼𝛽 , given by the expression in Eqn.(5.29). The existence of such
a range in 𝜀, where the velocity is relatively constant, denotes that we have been able to
effectively eliminate the first order contributions of the interface width to the interface
kinetic coefficient 𝛽. The specific heats and the thermal conductivities of the liquid are
close to the solid and hence the validity of our assumptions used in the calculations
remain.
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5.5. Concluding remarks
In the present work, we present the thin-interface asymptotics of pure material solidifica-
tion for the case of the double obstacle potential. This work extends the computational
simplicity of the obstacle potential to the regime of quantitative simulations, where the
results are invariant upon change in the interface widths. Further, the derivations enable
the adjustment of simulation parameters for performing vanishing interface kinetics. In
the above analysis, we have assumed the properties of the thermal conductivity 𝐾 or

the thermal diffusivity as independent of 𝜑𝛼 which renders the two limits ̃︁𝑢1
⃒⃒⃒⃒+

and ̃︁𝑢1
⃒⃒⃒⃒−

equal. In the event that the thermal conductivities are unequal, we arrive at the condition
that the two macroscopic limits are no longer equal. This property is referred to as "heat
trapping“ e.g. [6]. Removal of such effects requires the introduction of an expression
similar to the anti-trapping term for solute diffusion, [46]. While this is derived for
the case of one sided diffusivities, the case of non-vanishing thermal diffusivity needs a
treatment similar as proposed in [83].





6. Grand potential formulation and
asymptotics
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6.1. Introduction and model modification

Phase-field modeling has been used for alloy solidification for about a decade and the
principle ideas are fairly well known. However, it is necessary to highlight the importance
of certain modifications without which large scale quantitative microstructure simulations
of the order of micro-meters are not possible. In the present paper we describe a
modification of the multi-phase field model described in [33]. The foundation of this
particular model is the entropy functional written as follows,

𝒮 (𝑒, 𝑐, 𝜑) =
∫︁

Ω

(︂
𝑠 (𝑒, 𝑐, 𝜑) −

(︂
𝜀𝑎 (𝜑, ∇𝜑) + 1

𝜀
𝑤 (𝜑)

)︂)︂
𝑑Ω,

where 𝑒 is the internal energy of the system, and 𝑠 is the bulk entropy density and 𝑤
is the surface potential of the system. 𝑐 = (𝑐1 . . . 𝑐𝐾), is vector with the compositions
of the 𝐾 components and 𝜑 = (𝜑1 . . . 𝜑𝑁 ) are the volume fractions of the 𝑁 phases in
the system. An equivalent form can be defined as a free energy functional at a given
temperature 𝑇 ,

ℱ (𝑇, 𝑐, 𝜑) =
∫︁

Ω

(︂
𝑓 (𝑇, 𝑐, 𝜑) +

(︂
𝜀𝑎̃ (𝜑, ∇𝜑) + 1

𝜀
𝑤̃ (𝜑)

)︂)︂
𝑑Ω.

The uniqueness lies in the usage of the double obstacle potential 𝑤 (𝜑) =
{
∑︀𝑁,𝑁

𝛼<𝛽 𝛾𝛼𝛽
16
𝜋2 𝜑𝛼𝜑𝛽 , when (𝜑𝛼, 𝜑𝛽 > 0 and 𝜑𝛼 + 𝜑𝛽 = 1) and ∞ elsewhere} in describing

the surface entropy potential where the relations 𝑎̃ (𝜑, ∇𝜑) = 𝑇𝑎 (𝜑, ∇𝜑) and 𝑤̃ (𝜑) =
𝑇𝑤 (𝜑) are valid. However, if the free energies are interpolated as in [33, 79], 𝑓 =∑︀𝑁

𝛼=1 𝑓𝛼 (𝑇, 𝑐, 𝜑) ℎ𝛼 (𝜑), where 𝑓𝛼 (𝑇, 𝑐) is the bulk free energy density of phase 𝛼, and
ℎ𝛼 (𝜑) is an interpolation function for the phase 𝛼, two problems exist,
i) The surface energy 𝜎̃𝛼𝛽 of an 𝛼𝛽 interface is a function of the chemical free energy
density landscape in the system and
ii) the equilibrium interface width ̃︀Λ𝛼𝛽 becomes far too restrictive for simulating large
scale microstructures.
These restrictions of the model will be highlighted in more detail in the following discussion.
The equilibrium equation in 1D for two phases, 𝛼 and 𝛽, where 𝜑𝛼 + 𝜑𝛽 = 1, starting
from the interpolation of the free energies can be written as follows,

𝛾𝛼𝛽𝜀
𝜕2𝜑𝛼

𝜕𝑥2 = −16
𝜋2

𝛾𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) − 1

2𝑇

𝑑𝑓

𝑑𝜑𝛼
+ 1

2𝑇

𝐾−1∑︁
𝑖=1

𝜇𝑖
𝑑𝑐𝑖

𝑑𝜑𝛼
(6.1)

= −16
𝜋2

𝛾𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) − 1

2𝑇

𝑑

𝑑𝜑𝛼

(︃
𝑓 −

𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐𝑖

)︃
, (6.2)

where 𝜇 = (𝜇𝑖 . . . 𝜇𝐾−1) is the vector consisting of the 𝐾 − 1 equilibrium chemical
potentials of the system at the given system temperature. Eqn. (6.2) can be used
to derive the stationary solution of the phase-field 𝜑𝛼, which can be used to derive
expressions for the surface energy of a binary interface, 𝜎̃𝛼𝛽 and equilibrium interface
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width Λ̃𝛼𝛽 as,

𝜎̃𝛼𝛽 = 2𝑇𝛾𝛼𝛽

∫︁ 1

0

⎯⎸⎸⎷(︃16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼) + 𝜀

𝛾𝛼𝛽𝑇
(ΔΨ (𝑇, 𝑐, 𝜑𝛼))

)︃
𝑑𝜑𝛼 (6.3)

Λ̃𝛼𝛽 = 𝜀

∫︁ 1

0

𝑑𝜑𝛼⎯⎸⎸⎷(︃16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼) + 𝜀

𝛾𝛼𝛽𝑇
(ΔΨ (𝑇, 𝑐, 𝜑𝛼))

)︃ . (6.4)

Here 𝛾𝛼𝛽 is a term in the surface entropy density, 𝜀 is a factor related to the length scale of
the interface and ΔΨ (𝑇, 𝑐, 𝜑𝛼) =

(︁
𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
−
(︁
𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
𝜑𝛼=0

is the grand
chemical potential difference between values at the interface and that of the bulk phases in
equilibrium. At equilibrium, the terms

(︁
𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
𝜑𝛼=0

and
(︁
𝑓 −

∑︀𝑘−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
𝜑𝛼=1

are equal and Fig. 6.1 plots the variation of the term ΔΨ (𝑇, 𝑐, 𝜑𝛼). We clearly see that
the term 1

2
𝑑

𝑑𝜑𝛼

(︁
𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
is non-zero across the interface.
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Figure 6.1.: The grandchemical potential difference varies across the interface and has a form
similar to that of a potential. At equilibrium, the two phases are at the same
grand chemical potential which is seen qualitatively from the graph. Notice also the
asymmetry of the potential around 𝜑𝛼 = 0.5, which is inherited from the asymmetry
in the chemical free energy states of the two phases.

The area under the curve is the grand chemical potential excess at the interface. This
contribution affects the equilibrium shape and properties of the interface. From the
above, it is evident that,

∙ The parameters 𝜎̃𝛼𝛽 and Λ̃𝛼𝛽 cannot be fixed independently of the grand chemical
potential contribution in the form ΔΨ (𝑇, 𝑐, 𝜑𝛼).

∙ Given the required 𝜎̃𝛼𝛽 and Λ̃𝛼𝛽 the simulation parameters 𝛾𝛼𝛽 and 𝜀 can be
determined by simultaneously solving the Eqns. (6.3) and (6.4). Notice, that even
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though we have one parameter 𝜀, the resulting interface thicknesses can be different,
depending on the excess ΔΨ (𝑇, 𝑐, 𝜑𝛼).

For very large chemical excess contributions in the form of ΔΨ (𝑇, 𝑐, 𝜑𝛼), the Eqns.
(6.3) and (6.4) can be written approximately as,

𝜎̃𝛼𝛽 = 2
√︁

𝑇𝛾𝛼𝛽𝜀

∫︁ 1

0

√︁
(ΔΨ (𝑇, 𝑐, 𝜑𝛼))𝑑𝜑𝛼

Λ̃𝛼𝛽 =
√︁

𝑇𝛾𝛼𝛽𝜀

∫︁ 1

0

𝑑𝜑𝛼√︀
(ΔΨ (𝑇, 𝑐, 𝜑𝛼))

.

In this case 𝜎̃𝛼𝛽 and Λ̃𝛼𝛽 are no longer independent. The term 𝜎̃𝛼𝛽

Λ̃𝛼𝛽

becomes just a

function of the chemical free energy of the system and independent of the terms 𝛾𝛼𝛽 and
𝜀. This implies that once a value for 𝜎̃𝛼𝛽 is chosen, the value of Λ̃𝛼𝛽 is fixed, and for
certain choices of 𝜎̃𝛼𝛽 , the Λ̃𝛼𝛽 gets prohibitively lower, which makes simulation of larger
domain structures unfeasible. These relationships have been studied fairly extensively in
the past decade, and two principle solutions have been suggested [27, 30, 55, 114]. The
ideology is to completely avoid any contribution of the grand chemical potential excess
contribution to the interface excess. This implies, the stationary solution is independent
of any chemical contribution. While this is achieved in the work by [27, 55, 114] through
the use of different concentration fields 𝑐𝛼

𝑖 in each phase, the same is affected for dilute
alloys, with a single concentration field but through the use of effective interpolation
functions to interpolate the entropy and enthalpy contributions to the free energy. The
common idea is that the driving force for phase transformation is the grand potential
difference between the phases at the same chemical potential. We motivate a similar idea
from the following discussion.

6.1.1. Motivation

Consider the phase-field evolution equation in 1D at the lowest order in 𝜀, which is a
parameter related to the interface thickness:

𝜔𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝛾𝛼𝛽𝜀

𝜕2𝜑𝛼

𝜕𝑥2 − 16
𝜋2

𝛾𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) − 1

2𝑇

𝑑

𝑑𝜑𝛼

(︃
𝑓 −

𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐𝑖

)︃
,

where 𝜏𝛼𝛽 is the relaxation constant of the interface. This is also the evolution equation
at the sharp-interface limit for this model [134]. The chemical potential 𝜇 = (𝜇1 . . . 𝜇𝐾−1)
is constant across the interface in this limit. For small velocities, the evolution equation
in moving co-ordinate frame in 1D, at steady state velocity V reads,

−𝑉 𝜔𝛼𝛽𝜀
𝑑𝜑𝛼

𝑑𝑥
= 𝛾𝛼𝛽𝜀

𝑑2𝜑𝛼

𝑑𝑥2 − 16
𝜋2

𝛾𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) − 1

2𝑇

𝑑

𝑑𝜑𝛼

(︃
𝑓 −

𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐𝑖

)︃
.
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It is important to note that the moving frame is moving with velocity V along with the
interface which is denoted by the contour line 𝜑𝛼 = 0.5. Multiplying with 𝑑𝜑𝛼

𝑑𝑥
on both

sides and integrating we get,

− 𝑉 𝜔𝛼𝛽𝜀

∫︁ ∞

−∞

(︂
𝑑𝜑𝛼

𝑑𝑥

)︂2
𝑑𝑥 =

∫︁ ∞

−∞
𝛾𝛼𝛽𝜀

𝑑2𝜑𝛼

𝑑𝑥2
𝑑𝜑𝛼

𝑑𝑥
𝑑𝑥 −

∫︁ ∞

−∞

16
𝜋2

𝛾𝛼𝛽

2𝜀
(1 − 2𝜑𝛼) 𝑑𝜑𝛼

𝑑𝑥
𝑑𝑥−

∫︁ ∞

−∞

1
2𝑇

𝑑

𝑑𝜑𝛼

(︃
𝑓 −

𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐𝑖

)︃
𝑑𝜑𝛼

𝑑𝑥
𝑑𝑥.

We denote the integral
∫︀∞

−∞

(︂
𝑑𝜑𝛼

𝑑𝑥

)︂2
𝑑𝑥 as (I) and elaborate the other integrals as follows;

−𝑉 𝜔𝛼𝛽𝜀I = 𝛾𝛼𝛽𝜀

2

(︂
𝑑𝜑𝛼

𝑑𝑥

)︂2 ⃒⃒⃒∞
−∞

− 16
𝜋2

𝛾𝛼𝛽

2𝜀
𝜑𝛼 (1 − 𝜑𝛼)

⃒⃒⃒1
0

− 1
2𝑇

(︃
𝑓 −

𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐𝑖

)︃ ⃒⃒⃒1
0
.

The first two integrals on the right hand side drop out to zero and so the velocity of the
interface can be written as,

− 𝑉 𝜔𝛼𝛽𝜀I = 1
2𝑇

(︃
𝑓 −

𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐𝑖

)︃ ⃒⃒⃒1
0
, (6.5)

Clearly, the interface mobility is proportional to the difference of the grand chemical
potential of the two phases. Adequately, the driving force for phase transformation in
alloys in the sharp interface limit is the difference of the grand potentials of the two bulk
phases. The evolution equations drive the system in a direction to reduce the difference
of grand potentials between the bulk phases. This being the case, the motivation arises
to formulate the phase-field model in terms of a grand potential functional for the case
of alloys.

6.1.2. Model modification

We write the grand potential density Ψ, as an interpolation of the individual grand
potential densities Ψ𝛼, where Ψ𝛼 are functions of the chemical potential 𝜇 and temperature
T in the system,

Ψ (𝑇, 𝜇, 𝜑) =
𝑁∑︁

𝛼=1
Ψ𝛼 (𝑇, 𝜇) ℎ𝛼 (𝜑) with, (6.6)

Ψ𝛼 (𝑇, 𝜇) = 𝑓𝛼 (𝑐𝛼 (𝜇) , 𝑇 ) −
𝐾−1∑︁
𝑖=1

𝜇𝑖𝑐
𝛼
𝑖 (𝜇, 𝑇 ) .
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The concentration 𝑐𝛼
𝑖 (𝜇, 𝑇 ) is an inverse of the function 𝜇𝛼

𝑖 (𝑐, 𝑇 ) for every phase 𝛼 and
component 𝑖. From Eqn.(6.6) the following relation can be derived,

𝜕Ψ (𝑇, 𝜇, 𝜑)
𝜕𝜇𝑖

=
𝑁∑︁

𝛼=1

𝜕Ψ𝛼 (𝑇, 𝜇)
𝜕𝜇𝑖

ℎ𝛼 (𝜑) .

Since, the grand potential density Ψ (𝑇, 𝜇, 𝜑), is the Legendre transform of the free energy

density of the system 𝑓 (𝑇, 𝑐, 𝜑), and from their coupled relation 𝜕Ψ (𝑇, 𝜇, 𝜑)
𝜕𝜇𝑖

= −𝑐𝑖, it
follows that,

𝑐𝑖 =
𝑁∑︁

𝛼=1
𝑐𝛼

𝑖 (𝜇, 𝑇 ) ℎ𝛼 (𝜑) . (6.7)

The above is the constraint used in [27, 55, 114] to determine the concentrations 𝑐𝛼
𝑖 in

the interface along with the condition that the phase concentrations 𝑐𝛼
𝑖 are related by the

condition of common equilibrium chemical potential among all the phases. This however
derives elegantly starting from the grand potential functional. It is important to note
that the entire structure rests on the invertibility of the function 𝜇𝛼 (𝑐, 𝑇 ). This would
result in a unique grand potential for a given 𝜇.

Since at equilibrium the grand potential of the phases are equal, for a two phase
interface we can write,

Ψ
(︁
𝑇, 𝜇𝑒𝑞

)︁
= Ψ𝛼

(︁
𝑇, 𝜇𝑒𝑞

)︁
= Ψ𝛽

(︁
𝑇, 𝜇𝑒𝑞

)︁
.

This implies that at equilibrium the surface energy has no contribution from the chem-
ical free energy, since the grand chemical potential excess ΔΨ is zero. The consequence
of this is that the surface energy 𝜎̃𝛼𝛽 is the same as the simulation parameter 𝛾𝛼𝛽𝑇 .
Also, it can be derived that the equilibrium interface width Λ̃𝛼𝛽 is independent of the

chemical free energy of the system and is related to constant 𝜀 by the relation 𝜋2

4 𝜀 for
the obstacle potential. The grand chemical potential difference can be visualized as in
Figure 6.2. A corollary of the above discussion is that the free energy of a mixture of two
phases for alloys is not the interpolation of the free energies of the respective phases at a
given concentration but it is a mixture of the phases at the respective concentrations
at which they are at thermodynamic equilibrium i.e. at the same chemical potential 𝜇.
This can be realized through the reverse Legendre transform of the expression in Eqn.
(6.6), which gives,

𝑓 (𝑇, 𝑐, 𝜑) =
𝑁∑︁

𝛼=1
𝑓𝛼 (𝑐𝛼 (𝜇, 𝑇 ) , 𝑇 ) ℎ𝛼 (𝜑𝛼) .

This is the start point of the derivation of the KKS(Kim,Kim, Suzuki) model [55]. In
summary, the principal result is that we write the evolution equations using the chemical



6.1. Introduction and model modification 109

Figure 6.2.: Illustration of the driving force for phase transformation between two phases.

potential 𝜇 which is analogous to 𝑇 for the case of pure materials. The driving force,
which is the difference of free energies in the case of pure materials translates to the
difference of grand potentials for alloys. Note: Strictly speaking, the grand potential
is defined in terms of the number of particles of the various components written as
𝐹 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑁𝑖, where 𝐹 is the free energy of the system of N particles, and 𝑁𝑖 is the

number of particles of component 𝑖, while 𝜇𝑖 = 𝜕𝐹

𝜕𝑁𝑖
. In the discussion on phase-field

we require the energy densities of the respective phases, and hence, the energy of the
system is generally divided by the volume of the system, which for the case of 1 mole of
particles would be 𝑉𝑚, which is the molar volume. Also, the number of particles can be
written in terms of the concentrations “mole fraction“ through the relation 𝑁𝑖 = 𝑐𝑖𝑁𝑜,
where 𝑁𝑜 is the Avogadro number. Utilizing this it is easy to see that 𝑁𝑖

𝜕𝐹

𝜕𝑁𝑖
= 𝑉𝑚𝑐𝑖

𝜕𝑓

𝜕𝑐𝑖
,

where 𝐹 = 𝑓𝑉𝑚 and we have assumed the molar volumes of all particles the same. This
implies that the total grand potential can be written as 𝑉𝑚

(︁
𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
, giving us

the grand potential density as
(︁
𝑓 −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
. This is the form, which is used in the

entire dissertation.

6.1.3. Evolution equations

The evolution equations for the phase and concentration fields can be evaluated in the
standard way. Phase evolution is determined by the phenomenological minimization of
the modified functional which is formulated as the grand potential functional,

Ω (𝑇, 𝜇, 𝜑) =
∫︁

Ω

(︂
Ψ (𝑇, 𝜇, 𝜑) +

(︂
𝜀𝑎̃ (𝜑, ∇𝜑) + 1

𝜀
𝑤̃ (𝜑)

)︂)︂
𝑑Ω.

The concentration fields are obtained by a mass conservation equation for each of
the 𝐾 − 1 independent concentration variables 𝑐𝑖. The evolution equation for the N
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phase-field variables can be written as,

𝜏𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝜀

(︂
∇ · 𝜕𝑎̃ (𝜑, ∇𝜑)

𝜕∇𝜑𝛼
− 𝜕𝑎̃ (𝜑, ∇𝜑)

𝜕𝜑𝛼

)︂
− 1

𝜀

𝜕𝑤̃ (𝜑)
𝜕𝜑𝛼

− 𝜕Ψ (𝑇, 𝜇, 𝜑)
𝜕𝜑𝛼

− Λ,

where Λ is the Lagrange parameter to maintain the constraint
∑︀𝑁

𝛼=1 𝜑𝛼 = 1. 𝑎 (𝜑, ∇𝜑)
represents the gradient energy density and has the form,

𝑎̃ (𝜑, ∇𝜑) =
𝑁,𝑁∑︁

𝛼,𝛽=1
(𝛼<𝛽)

𝜎̃𝛼𝛽 [𝑎𝑐 (𝑞𝛼𝛽)]2 |𝑞𝛼𝛽|2,

where 𝑞𝛼𝛽 = (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼) is a normal vector to the 𝛼𝛽 interface. 𝑎𝑐 (𝑞𝛼𝛽) describes
the form of the anisotropy of the evolving phase boundary. The double obstacle potential
𝑤̃ (𝜑) which was also previously described in [33, 79] can be written as,

𝑤̃ (𝜑) =
16
𝜋2

𝑁,𝑁∑︁
𝛼,𝛽=1
(𝛼<𝛽)

𝜎̃𝛼𝛽𝜑𝛼𝜑𝛽,

where 𝜎̃𝛼𝛽 is the surface energy . The parameter 𝜏 is written as
∑︀𝑁,𝑁

𝛼<𝛽 𝜏𝛼𝛽𝜑𝛼𝜑𝛽∑︀𝑁,𝑁
𝛼<𝛽 𝜑𝛼𝜑𝛽

, where

𝜏𝛼𝛽 is the relaxation constant of the 𝛼𝛽 interface. The evolution equation for the
concentration fields can be derived as,

𝜕𝑐𝑖

𝜕𝑡
= ∇ ·

⎛⎝𝐾−1∑︁
𝑗=1

𝑀𝑖𝑗 (𝜑) ∇𝜇𝑗

⎞⎠ . (6.8)

Here, 𝑀𝑖𝑗 (𝜑) is the mobility of the interface, where the individual phase mobilities are
interpolated as,

𝑀𝑖𝑗 (𝜑) =
𝑁−1∑︁
𝛼=1

𝑀𝛼
𝑖𝑗𝑔𝛼 (𝜑) ,

where each of the 𝑀𝛼
𝑖𝑗 is defined using the expression,

𝑀𝛼
𝑖𝑗 = 𝐷𝛼

𝑖𝑗

𝜕𝑐𝛼
𝑖 (𝜇, 𝑇 )
𝜕𝜇𝑗

.

The function 𝑔𝛼 (𝜑) interpolates the mobilities and is in general not same as ℎ𝛼 (𝜑) which
interpolates the grand potentials. 𝐷𝛼

𝑖𝑗 are the interdiffusivities in each phase 𝛼. Both
the evolution equations require the information about the chemical potential 𝜇. Two
possibilities exist to determine the unknown chemical potential 𝜇.

∙ The chemical potential 𝜇 can be derived from the constraint relation (6.7). The
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𝐾 − 1 independent components 𝜇𝑖 are determined by simultaneously solving the
𝐾 −1 constraints for each of the 𝐾 −1 independent concentration variables 𝑐𝑖, from
the given values of 𝑐𝑖 and 𝜑𝛼 at a given grid point. A Newton iteration scheme can
be used for solving the system of equations,

{︁
𝜇𝑛+1

𝑖

}︁
= {𝜇𝑛

𝑖 } −
[︃

𝑁∑︁
𝛼=1

ℎ𝛼 (𝜑) 𝜕𝑐𝛼
𝑖 (𝜇𝑛, 𝑇 )

𝜕𝜇𝑗

]︃−1

𝑖𝑗

{︃
𝑐𝑖 −

𝑁∑︁
𝛼=1

𝑐𝛼
𝑖 (𝜇𝑛, 𝑇 ) ℎ𝛼 (𝜑)

}︃
, (6.9)

where {} represents a vector while [] denotes a matrix. This is precisely the
approach in the KKS model [55]. However, there is a substantial difference, in that
we propose to solve directly for the thermodynamic variable 𝜇, which relate the
phase concentrations 𝑐𝛼

𝑖 , instead of solving for phase concentrations themselves.
This is possible because the concentrations 𝑐𝛼

𝑖 (𝜇, 𝑇 ) are written as explicit functions
of the thermodynamic variable 𝜇. The method also bears similarity to the method
of [27, 114], where a partition relation is used to close the relationship between the
phase concentrations.

∙ Alternatively explicit evolution equations for all the 𝐾 − 1 independent chemical
potentials, can be formulated by inserting the constraint equation (6.7) into the
evolution equation for the concentration field, Eqn. (6.8). For a two phase binary
alloy i.e. (𝜑𝛼 + 𝜑𝛽 = 1) and 𝑐𝐴 + 𝑐𝐵 = 1, the evolution equation can be written
down as follows,(︃

𝜕𝑐𝛼 (𝜇, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑) + 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

(1 − ℎ𝛼 (𝜑))
)︃

𝜕𝜇

𝜕𝑡
=

∇.

(︃(︃
𝐷𝛼𝑔𝛼 (𝜑) 𝜕𝑐𝛼 (𝜇, 𝑇 )

𝜕𝜇
+ 𝐷𝛽 (1 − 𝑔𝛼 (𝜑)) 𝜕𝑐𝛽 (𝜇, 𝑇 )

𝜕𝜇

)︃
∇𝜇

)︃
−

(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑)
𝜕𝑡

,

where 𝑐𝛼,𝛽 (𝜇) are the phase concentrations as functions of the independent chemical
potential 𝜇. 𝐷𝛼, 𝐷𝛽 are the independent inter-diffusivities in the two respective
phases. It is noteworthy that this equation looks very similar to the evolution
equation of the temperature field in pure materials. The last term on the right
hand side 𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 ) corresponds to a source term for rejection of mass at
the interface during growth, which is analogous to the release of latent heat in pure
material solidification. For a general, multi-phase, multi-component system, the
evolution equations for the components of the chemical potential 𝜇 can be written
in matrix form by,

{︂
𝜕𝜇𝑖

𝜕𝑡

}︂
=
[︃

𝑁∑︁
𝛼=1

ℎ𝛼 (𝜑) 𝜕𝑐𝛼
𝑖 (𝜇, 𝑇 )
𝜕𝜇𝑗

]︃−1

𝑖𝑗

⎧⎨⎩∇ ·
𝐾−1∑︁
𝑗=1

𝑀𝑖𝑗 (𝜑) ∇𝜇𝑗 −
𝑁∑︁
𝛼

𝑐𝛼
𝑖 (𝜇, 𝑇 ) 𝜕ℎ𝛼 (𝜑)

𝜕𝑡

⎫⎬⎭ .

(6.10)
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The above derivation bears a lot of resemblance to the recent derivation by M.Plapp
[91]. It is worth to comment on how the two methods compare in the computational
complexity. For this, it is first essential to identify the similarity of the approaches, as
can be seen by comparing Eqn. (6.9) and (6.10) as follows. Consider the case when Eqn.
6.9 is written for the case of binary which reads,

𝜇𝑛+1 = 𝜇𝑛 + 𝑐 −
∑︀𝑁

𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) ℎ𝛼 (𝜑)∑︀𝑁
𝛼=1

𝜕𝑐𝛼 (𝜇𝑛, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑)
, (6.11)

where we intend to calculate the 𝜇 for the next time step (𝑡 + 1), 𝜇𝑛 being the start
guess for the iteration which satisfies the equation 𝑐 −

∑︀𝑁
𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) ℎ𝛼 (𝜑) = 0 for the

values of 𝑐 = 𝑐𝑜 and 𝜑 = 𝜑𝑜 at the time step 𝑡. Expanding the second term on the R.H.S
in the Eqn. 6.11 for small change in time 𝛿𝑡, we can write,

𝜇𝑛+1 − 𝜇𝑛 = 𝑐𝑜 −
∑︀𝑁

𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) ℎ𝛼 (𝜑𝑜)∑︀𝑁
𝛼=1

𝜕𝑐𝛼 (𝜇𝑛, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑𝑜)
+

𝛿𝑡

⎛⎜⎜⎜⎝
𝜕𝑐

𝜕𝑡
−
∑︀𝑁

𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) 𝜕ℎ𝛼 (𝜑𝑜)
𝜕𝑡∑︀𝑁

𝛼=1
𝜕𝑐𝛼 (𝜇𝑛, 𝑇 )

𝜕𝜇
ℎ𝛼 (𝜑𝑜)

⎞⎟⎟⎟⎠+ 𝑂
(︁
𝛿𝑡2
)︁

.

Note, additional terms arise out of the linear expansion, but we simplify using the fact
that 𝑐0 −

∑︀𝑁
𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) ℎ𝛼

(︁
𝜑0
)︁

= 0. Using the same fact, the preceding equation
simplifies to,

𝜇𝑛+1 − 𝜇𝑛

𝛿𝑡
=

⎛⎜⎜⎜⎝
𝜕𝑐

𝜕𝑡
−
∑︀𝑁

𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) 𝜕ℎ𝛼 (𝜑𝑜)
𝜕𝑡∑︀𝑁

𝛼=1
𝜕𝑐𝛼 (𝜇𝑛, 𝑇 )

𝜕𝜇
ℎ𝛼 (𝜑𝑜)

⎞⎟⎟⎟⎠+ 𝑂 (𝛿𝑡) ,

which in the region of small enough 𝛿𝑡 implies convergence is achieved in one iteration
and hence can be written as,

𝜕𝜇

𝜕𝑡
=

⎛⎜⎜⎜⎝∇ · (𝑀∇𝜇) −
∑︀𝑁

𝛼=1 𝑐𝛼 (𝜇𝑛, 𝑇 ) 𝜕ℎ𝛼 (𝜑𝑜)
𝜕𝑡∑︀𝑁

𝛼=1
𝜕𝑐𝛼 (𝜇𝑛, 𝑇 )

𝜕𝜇
ℎ𝛼 (𝜑𝑜)

⎞⎟⎟⎟⎠ .

The derived equation is identical to the binary variant of Eqn. 6.10. It is not surprising to
see the similarity since we are essentially solving for the same variable 𝜇 and the difference
is, while Eqn. (6.9) is an implicit type of calculation scheme of the chemical potential,
the other, Eqn. (6.10) describes an explicit computation. It would be interesting to
compare the performance and accuracy of both methods.
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6.2. Asymptotic analysis

In this section we perform the asymptotic analysis of the phase-field model for a two
phase binary alloy solidification with the assumption of one-sided diffusion in the liquid
and vanishing diffusivity in the solid. Our aim is to derive the expressions for the kinetic
coefficient in the thin interface limit for the case of solute diffusion by performing an
asymptotic analysis unto second-order in the phase-field and for this purpose the analysis
in 1D suffices. The asymptotic analysis is applied to the presented model ensuring no
free energy excess at the interface. For simplicity, we treat here a two phase binary
alloy. Hence, the chemical potential 𝜇 will be written as 𝜇, since there exists only one
independent chemical potential. At the onset, we express the grand potentials Ψ𝛼 (𝑇, 𝜇)
as a linear expansion about the equilibrium chemical potential 𝜇𝑒𝑞,

Ψ𝛼 (𝑇, 𝜇) = Ψ𝛼 (𝑇, 𝜇𝑒𝑞) + 𝜕Ψ𝛼 (𝑇, 𝜇)
𝜕𝜇

⃒⃒⃒
𝜇𝑒𝑞

(𝜇 − 𝜇𝑒𝑞) .

The driving force Δ𝐹 𝛼 is then:

Δ𝐹 𝛼 = (Ψ𝛼 (𝑇, 𝜇) − Ψ𝛽 (𝑇, 𝜇)) 𝜕ℎ𝛼 (𝜑)
𝜕𝜑𝛼

=
(︂

𝜕Ψ𝛼 (𝑇, 𝜇)
𝜕𝜇

⃒⃒⃒
𝜇𝑒𝑞

− 𝜕Ψ𝛽 (𝑇, 𝜇)
𝜕𝜇

⃒⃒⃒
𝜇𝑒𝑞

)︂
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑)

𝜕𝜑𝛼
,

= −
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑)

𝜕𝜑𝛼
,

implying the evolution equation for the phase-field for a two phase system can be written
as follows,

𝜏𝛼𝛽𝜀2 𝜕𝜑𝛼

𝜕𝑡
= 𝜀2𝜎̃𝛼𝛽

𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 𝜎̃𝛼𝛽 (1 − 2𝜑𝛼)

+ 1
2𝜀
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
. (6.12)

Notice, we have reduced a system of two dependent equations to one independent equation,
by incorporating the Lagrange multiplier formalism. Also, the interpolation function
ℎ𝛼 (𝜑), is now for the two phase system just a function of 𝜑𝛼. Hence, for the forthcoming
derivations, we will omit the vector notation. The interpolation functions satisfy the
property, ℎ𝛼 (𝜑𝛼) = 1 − ℎ𝛽 (𝜑𝛽). Further, we consider small deviations from equilibrium
which is generally a suitable assumption for most cases of solidification. For larger driving
forces, such as in rapid solidification, this assumption of linearization of the driving forces
will no longer hold. For the case, where we have 𝐷𝛼 ≪ 𝐷𝛽, the evolution equation for
the chemical potential of a binary system reads,(︃

𝜕𝑐𝛼 (𝜇, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑𝛼) + 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

(1 − ℎ𝛼 (𝜑𝛼))
)︃

𝜕𝜇

𝜕𝑡
=
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∇ ·
(︃(︃

𝐷𝛽 (1 − 𝑔𝛼 (𝜑𝛼)) 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

)︃
∇𝜇

)︃
−
(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

, (6.13)

We non-dimensionalize the system of equations Eqn.(6.12) and Eqn.(6.13) by choosing the

length scale 𝑑𝑜 = 𝜎̃𝛼𝛽

𝑓* , where 𝑓* is the energy scale of the system, the time scale 𝑡* = 𝑑2
0

𝐷𝛽

with 𝐷𝛽 being the diffusivity in the liquid and replace 𝜏𝛼𝛽 with non-dimensionalized

parameter 𝜁 as 𝐷𝛽𝜏𝛼𝛽

𝜎̃𝛼𝛽
. The non-dimensional phase-field equation yields with the

described scaling parameters,

𝜁𝜀2 𝜕𝜑𝛼

𝜕𝑡
= 𝜀2 𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 (1 − 2𝜑𝛼)

+ 1
2𝜀
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
,

while the non-dimensionalized chemical potential equation can be written as,(︃
𝜕𝑐𝛼 (𝜇, 𝑇 )

𝜕𝜇
ℎ𝛼 (𝜑𝛼) + 𝜕𝑐𝛽 (𝜇, 𝑇 )

𝜕𝜇
(1 − ℎ𝛼 (𝜑𝛼))

)︃
𝜕𝜇

𝜕𝑡
=

∇ ·
(︃

(1 − 𝑔𝛼 (𝜑𝛼)) 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

∇𝜇

)︃
−
(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

.

For our further analysis, we choose the chemical potential equation for the asymptotic
expansions. For the case of one-sided diffusion, it has been shown in various previous works
[6, 46], that there exists a thin-interface defect called solute trapping when simulations
are performed with interface thicknesses, orders of magnitude larger than those of a
real interface. The methodology proposed to correct this effect, is the incorporation
of an antitrapping current in the evolution equation of the chemical potential. While
such expressions have been derived for double well type potentials [30, 46, 54], the case
of the double obstacle potential is untreated so-far. We complete this gap by deriving
the thin-interface limit of the model for a double obstacle potential and formulating
an expression of the anti-trapping current 𝑗𝑎𝑡 for the case of one-sided diffusion. We
follow the formulations described in literature and incorporate the anti-trapping term,
as an additional flux of solute from the solid to the liquid in the normal direction to
the interface. The modified evolution equation for the chemical potential along with the
antitrapping term is, (︃

𝜕𝑐𝛼 (𝜇, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑𝛼) + 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

(1 − ℎ𝛼 (𝜑𝛼))
)︃

𝜕𝜇

𝜕𝑡
=

∇ ·
(︃

(1 − 𝑔𝛼 (𝜑𝛼)) 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

∇𝜇 − 𝑗𝑎𝑡

)︃
−
(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

.
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To make sure, that the anti-trapping current appears in the first-order correction to the
chemical potential we formulate the anti-trapping current of the following form,

𝑗𝑎𝑡 = 𝑠 (𝜑𝛼) 𝜀
(︁
𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 )

)︁ 𝜕𝜑𝛼

𝜕𝑡

𝑞𝛼𝛽

|𝑞𝛼𝛽|
,

where, 𝑠 (𝜑𝛼) is a function, such that the chemical potential jump vanishes at the interface.
𝑞𝛼𝛽 is the normal vector to the interface, given as (𝜑𝛼∇𝜑𝛽 − 𝜑𝛽∇𝜑𝛼). To see this, use
𝜑𝛼 = 𝜑𝛽, for the case of a binary interface between the 𝛼 and the 𝛽 interface. Then the
vector 𝑞𝛼𝛽 reduces to 𝜑𝛼∇ (𝜑𝛽 − 𝜑𝛼). Since the gradient of the scalar field (𝜑𝛽 − 𝜑𝛼) is
normal to any contour (𝜑𝛽 − 𝜑𝛼) = 𝑐𝑜𝑛𝑠𝑡, we have ∇ (𝜑𝛽 − 𝜑𝛼) normal to the contour
(𝜑𝛽 − 𝜑𝛼) = 0 which defines the binary interface.
For the case of only two phases, it can be shown that the expression of the anti-trapping
current can be reduced to,

𝑗𝑎𝑡 = −𝑠 (𝜑𝛼) 𝜀
(︁
𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 )

)︁ 𝜕𝜑𝛼

𝜕𝑡

∇𝜑𝛼

|∇𝜑𝛼|
.

Note, all terms in the above equation are used in the non-dimensional form, so 𝜀 is the
non-dimensional parameter related to the interface width and 𝑡 is the non-dimensional
time. Writing the phase-field and chemical potential evolution equations in one dimension,
we have

𝜁𝜀2 𝜕𝜑𝛼

𝜕𝑡
= 𝜀2 𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 (1 − 2𝜑𝛼) + 1

2𝜀
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
.(︃

𝜕𝑐𝛼 (𝜇, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑𝛼) + 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

(1 − ℎ𝛼 (𝜑𝛼))
)︃

𝜕𝜇

𝜕𝑡
=

𝜕

𝜕𝑥

(︃
(1 − 𝑔𝛼 (𝜑𝛼)) 𝜕𝑐𝛽 (𝜇, 𝑇 )

𝜕𝜇

𝜕𝜇

𝜕𝑥
− 𝑠 (𝜑𝛼) 𝜀

(︁
𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 )

)︁ 𝜕𝜑𝛼

𝜕𝑡

)︃
−

(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑡

,

which on transformation to the moving frame (fixed to 𝜑𝛼 = 0.5) becomes,

−𝜁𝑣𝜀2 𝜕𝜑𝛼

𝜕𝑥
= 𝜀2 𝜕2𝜑𝛼

𝜕𝑥2 − 16
2𝜋2 (1 − 2𝜑𝛼) +

1
2𝜀
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
.

−
(︃

𝜕𝑐𝛼 (𝜇, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑𝛼) + 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

(1 − ℎ𝛼 (𝜑𝛼))
)︃

𝑣
𝜕𝜇

𝜕𝑥
=

𝜕

𝜕𝑥

(︃
(1 − 𝑔𝛼 (𝜑𝛼)) 𝜕𝑐𝛽 (𝜇, 𝑇 )

𝜕𝜇

𝜕𝜇

𝜕𝑥
+ 𝑣𝑠 (𝜑𝛼) 𝜀

(︁
𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 )

)︁ 𝜕𝜑𝛼

𝜕𝑥

)︃
+
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𝑣
(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝑥

,

where 𝑣 is the non-dimensional velocity scaled as 𝑉 𝑑0
𝐷𝛽

. To perform the asymptotic
analysis, the region of evolution is divided into three parts. The “inner“ region where
there is rapid variation of the phase-field 𝜑𝛼 and chemical potential 𝜇, and two ”outer”
regions which denote regions where there is little change in the phase-field 𝜑𝛼. To probe
into the inner solutions, we scale the co-ordinate with the parameter 𝜀 by introducing a
scaling parameter 𝜂 = 𝑥

𝜀
. With this scaling, the equations rewrite to,

− 𝜁𝑣𝜀
𝜕𝜑𝛼

𝜕𝜂
= 𝜕2𝜑𝛼

𝜕𝜂2 − 16
2𝜋2 (1 − 2𝜑𝛼) + 1

2𝜀
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝜇 − 𝜇𝑒𝑞) 𝜕ℎ𝛼 (𝜑𝛼)

𝜕𝜑𝛼
.

−
(︃

𝜕𝑐𝛼 (𝜇, 𝑇 )
𝜕𝜇

ℎ𝛼 (𝜑𝛼) + 𝜕𝑐𝛽 (𝜇, 𝑇 )
𝜕𝜇

(1 − ℎ𝛼 (𝜑𝛼))
)︃

𝑣

𝜀

𝜕𝜇

𝜕𝜂
=

1
𝜀2

𝜕

𝜕𝜂

(︃
(1 − 𝑔𝛼 (𝜑𝛼)) 𝜕𝑐𝛽 (𝜇, 𝑇 )

𝜕𝜇

𝜕𝜇

𝜕𝜂

)︃
+ 1

𝜀

𝜕

𝜕𝜂

(︂
𝑣𝑠 (𝜑𝛼)

(︁
𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 )

)︁ 𝜕𝜑𝛼

𝜕𝜂

)︂
+

𝑣

𝜀

(︁
𝑐𝛼 (𝜇, 𝑇 ) − 𝑐𝛽 (𝜇, 𝑇 )

)︁ 𝜕ℎ𝛼 (𝜑𝛼)
𝜕𝜂

.

The strategy is to write each of the outer and inner solutions as powers of the scaling
parameter 𝜀 and match the outer and inner solutions order by order. The outer solutions
are denoted by ̃︀𝜇 and ̃︁𝜑𝛼 and are expanded by, ̃︁𝜑𝛼 = ̃︁𝜑0

𝛼 + 𝜀̃︁𝜑1
𝛼 + 𝜀2̃︁𝜑2

𝛼 and ̃︀𝜇 =̃︁𝜇0 + 𝜀̃︁𝜇1 + 𝜀2̃︁𝜇2. The inner solutions similarly writes, 𝜑𝛼 = 𝜑0
𝛼 + 𝜀𝜑1

𝛼 + 𝜀2𝜑2
𝛼 and

𝜇 = 𝜇0 + 𝜀𝜇1 + 𝜀2𝜇2. The matching conditions between the outer and the inner solutions
can be written by expanding each of the outer functions ̃︁𝜇0,̃︁𝜇1,̃︁𝜇2 as an expansion around
𝑥 = 0, i.e 𝑥 = (0 + 𝜂𝜀) and equating them to the corresponding values of the inner
solution: So all the derivatives are computed at the position 𝑥 = 0, marking the interface,
at 𝜑𝛼 = 0.5.

lim
𝜂→±∞

𝜇0 = ̃︁𝜇0|± (6.14)

lim
𝜂→±∞

𝜇1 = lim
𝜂→±∞

(︃̃︁𝜇1|±+𝜂
𝜕̃︁𝜇0

𝜕𝑥

⃒⃒⃒⃒±)︃
(6.15)

lim
𝜂→±∞

𝜇2 = lim
𝜂→±∞

(︃̃︁𝜇2|±+𝜂
𝜕̃︁𝜇1

𝜕𝑥

⃒⃒⃒⃒±
+ 𝜂2

2
𝜕2̃︁𝜇0

𝜕𝑥2

⃒⃒⃒⃒±)︃
(6.16)

and, the derivative matching conditions:

lim
𝜂→±∞

𝜕𝜇0

𝜕𝜂
= 0 (6.17)

lim
𝜂→±∞

𝜕𝜇1

𝜕𝜂
= 𝜕̃︁𝜇0

𝜕𝑥

⃒⃒⃒⃒±
(6.18)
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lim
𝜂→±∞

𝜕𝜇2

𝜕𝜂
= lim

𝜂→±∞

(︃
𝜕̃︁𝜇1

𝜕𝑥

⃒⃒⃒⃒±
+ 𝜂

𝜕2̃︁𝜇0

𝜕𝑥2

⃒⃒⃒⃒±)︃
. (6.19)

The matching conditions for the phase-field are trivial, as the phase-field is constant in
the bulk on both sides. Hence the outer solution in the phase-field is non-zero only for
the lowest order. Now we solve the phase-field and chemical potential equations order by
order and derive the various boundary conditions for the chemical potential as solvability
conditions.

6.2.1. Sharp-interface limit

The phase-field equation at zero order in 𝜀 reads,

𝜕2𝜑0
𝛼

𝜕𝜂2 − 16
2𝜋2

(︁
1 − 2𝜑0

𝛼

)︁
= 0.

Integrating yields, 𝜕𝜑0
𝛼

𝜕𝜂
= − 4

𝜋

√︀
𝜑0

𝛼 (1 − 𝜑0
𝛼), where the sign results from the boundary

conditions, lim𝜂→+∞ 𝜑0
𝛼 = 0 and lim𝜂→−∞ 𝜑0

𝛼 = 1. The lowest order chemical potential
equation at order 1/𝜀2 is,

1
𝜀2

𝜕

𝜕𝜂

(︃(︁
1 − 𝑔𝛼

(︁
𝜑0

𝛼

)︁)︁ 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝜕𝜇0

𝜕𝜂

)︃
= 0.

Integrating, the above equation once we get,

(︁
1 − 𝑔𝛼

(︁
𝜑0

𝛼

)︁)︁ 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝜕𝜇0

𝜕𝜂
= 𝐴1. (6.20)

We observe lim𝜂→∞ 𝑔𝛼
(︀
𝜑0

𝛼

)︀
= 0 and the factor 𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

is non-zero. Using the
matching condition in Eqn. (6.17), we derive that 𝐴1 is zero. Inserting 𝐴1 = 0 into Eqn.
(6.20) and integrating once we get the following,

𝜇0 = 𝜇0.

𝜇0 is an integration constant. To fix the value, we insert this constant in the phase-field
equation at order 𝜀 that reads,

− 𝜁𝑣
𝜕𝜑0

𝛼

𝜕𝜂
= 𝜕2𝜑1

𝛼

𝜕𝜂2 + 16
𝜋2 𝜑1

𝛼 + 1
2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ (︁
𝜇0 − 𝜇𝑒𝑞

)︁ 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

.

For brevity we determine the constant (𝜇0 − 𝜇𝑒𝑞) from the solvability condition. It is
useful to identify an useful operator which derives from the phase-field equation at zeroth
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order as follows,

𝜕2𝜑0
𝛼

𝜕𝜂2 − 16
2𝜋2

(︁
1 − 2𝜑0

𝛼

)︁
= 0.

Differentiating, the above equation and re-arranging we get,(︃
𝜕2

𝜕𝜂2 + 16
𝜋2

)︃
𝜕𝜑0

𝛼

𝜕𝜂
= 0. (6.21)

The term in the brackets 𝜕2

𝜕𝜂2 + 16
𝜋2 is a linear operator and we define this as 𝐿. Using

this linear operator, the phase-field equation at order 𝜀 is,

𝐿𝜑1
𝛼 = −𝜁𝑣

𝜕𝜑0
𝛼

𝜕𝜂
− 1

2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ (︁
𝜇0 − 𝜇𝑒𝑞

)︁ 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

.

From Eqn. (6.21), we see that 𝜕𝜑0
𝛼

𝜕𝜂
is a homogeneous solution of the operator 𝐿, hence

the solvability condition for a non-trivial 𝜑1
𝛼 reads,

∫︁ ∞

−∞
−𝜁𝑣

(︃
𝜕𝜑0

𝛼

𝜕𝜂

)︃2

𝜕𝜂 =

∫︁ ∞

−∞

1
2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ (︁
𝜇0 − 𝜇𝑒𝑞

)︁ 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂.

Making use of the integrals
∫︀∞

−∞

(︃
𝜕𝜑0

𝛼

𝜕𝜂

)︃2

𝜕𝜂 = 1
2, and

∫︀∞
−∞

𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜂 = −1, the

equation simplifies to (︁
𝜇0 − 𝜇𝑒𝑞

)︁
= −𝜁𝑣

(𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )) (6.22)

This is the departure from the equilibrium chemical potential in the sharp interface limit.

6.2.2. Thin-interface limit

For, the thin interface correction we solve the chemical potential equation at the next
order at 1/𝜀,

−
(︃

𝜕𝑐𝛼
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

ℎ𝛼

(︁
𝜑0

𝛼

)︁
+ 𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(︁
1 − ℎ𝛼

(︁
𝜑0

𝛼

)︁)︁)︃ 𝑣

𝜀

𝜕𝜇0

𝜕𝜂
=

1
𝜀

𝜕

𝜕𝜂

(︃(︁
1 − 𝑔𝛼

(︁
𝜑0

𝛼

)︁)︁ 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝜕𝜇1

𝜕𝜂

)︃
+
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1
𝜀

𝜕

𝜕𝜂

(︃
𝑣𝑠
(︁
𝜑0

𝛼

)︁ (︁
𝑐𝛽
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

(︁
𝜇0, 𝑇

)︁)︁ 𝜕𝜑0
𝛼

𝜕𝜂

)︃
+

𝑣

𝜀

(︁
𝑐𝛼
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛽

(︁
𝜇0, 𝑇

)︁)︁ 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜂

. (6.23)

Note, at order 1/𝜀, there are additional terms. However we make use of the fact that
𝜇0 is constant and hence all its derivatives vanish, so that Eqn. (6.23) simplifies to,

𝜕

𝜕𝜂

(︃(︁
1 − 𝑔𝛼

(︁
𝜑0

𝛼

)︁)︁ 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝜕𝜇1

𝜕𝜂

)︃
=

− 𝑣
𝜕

𝜕𝜂

(︃
𝑠
(︁
𝜑0

𝛼

)︁ (︁
𝑐𝛽
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

(︁
𝜇0, 𝑇

)︁)︁ 𝜕𝜑0
𝛼

𝜕𝜂

)︃
+

𝑣
(︁
𝑐𝛽
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

(︁
𝜇0, 𝑇

)︁)︁ 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜂

.

Integrating this once we get,(︃(︁
1 − 𝑔𝛼

(︁
𝜑0

𝛼

)︁)︁ 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝜕𝜇1

𝜕𝜂

)︃
= −𝑣

(︃
𝑠
(︁
𝜑0

𝛼

)︁ (︁
𝑐𝛽
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

(︁
𝜇0, 𝑇

)︁)︁ 𝜕𝜑0
𝛼

𝜕𝜂

)︃
+

𝑣
(︁
𝑐𝛽
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

(︁
𝜇0, 𝑇

)︁)︁
ℎ𝛼

(︁
𝜑0

𝛼

)︁
+ 𝐴2.

To fix 𝐴2 we take lim𝜂−>−∞ which gives, (1 − 𝑔𝛼 (𝜑𝛼)) → 0, 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

is a positive

constant, 𝜕𝜑0
𝛼

𝜕𝜂
→ 0 and ℎ𝛼

(︀
𝜑0

𝛼

)︀
→ 1. Therefore, the value of 𝐴2 =

− 𝑣
(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
. Substituting this in the above equation and re-arranging

we get,

𝜕𝜇1

𝜕𝜂
=

𝑣
(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁(︃
ℎ𝛼
(︀
𝜑0

𝛼

)︀
− 1 − 𝑠

(︀
𝜑0

𝛼

)︀ 𝜕𝜑0
𝛼

𝜕𝜂

)︃
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(1 − 𝑔𝛼 (𝜑0
𝛼))

.

For brevity we denote the expression
ℎ𝛼
(︀
𝜑0

𝛼

)︀
− 1 − 𝑠

(︀
𝜑0

𝛼

)︀ 𝜕𝜑0
𝛼

𝜕𝜂

(1 − 𝑔𝛼 (𝜑0
𝛼)) as 𝑟

(︀
𝜑0

𝛼

)︀
. Substituting

this in the preceding equation and integrating we get,

𝜇1 = 𝜇1 +
𝑣
(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

∫︁ 𝜂

0
𝑟
(︁
𝜑0

𝛼

)︁
𝜕𝜂. (6.24)
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To obtain the integration constant 𝜇1, we write the phase-field equation at order 𝜀2,

−𝜁𝑣𝜀2 𝜕𝜑1
𝛼

𝜕𝜂
= 𝜀2 𝜕2𝜑2

𝛼

𝜕𝜂2 +

𝜀2 16
𝜋2 𝜑2

𝛼 + 1
2𝜀2𝜑1

𝛼

(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ (︁
𝜇0 − 𝜇𝑒𝑞

)︁ 𝜕2ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑2

𝛼

+

1
2𝜀2

(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
𝜇1 𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

or,

𝐿𝜑2
𝛼 = −𝜁𝑣

𝜕𝜑1
𝛼

𝜕𝜂

− 1
2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ [︃
𝜑1

𝛼

(︁
𝜇0 − 𝜇𝑒𝑞

)︁ 𝜕2ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑2

𝛼

+ 𝜇1 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

]︃
.

The solvability condition for a non-trivial 𝜑2
𝛼 can be derived as,

−
∫︁ ∞

−∞
𝜁𝑣

𝜕𝜑1
𝛼

𝜕𝜂

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂−∫︁ ∞

−∞

1
2𝜑1

𝛼

(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ (︁
𝜇0 − 𝜇𝑒𝑞

)︁ 𝜕2ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑2

𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂−∫︁ ∞

−∞

1
2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
𝜇1 𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = 0. (6.25)

To see the nature of the first integral, we make use of the fact that 𝜑1
𝛼 satisfies the

phase-field equation at order 𝜀 which reads,

𝐿𝜑1
𝛼 = −𝜁𝑣

𝜕𝜑0
𝛼

𝜕𝜂
− 1

2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁ (︀
𝜇0 − 𝜇𝑒𝑞

)︀ 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

. (6.26)

The phase-field profile 𝜑0
𝛼 is part of a sinus curve and hence is an odd-function, which

implies its derivative 𝜕𝜑0
𝛼

𝜕𝜂
is even. Similarly, the interpolation function ℎ𝛼

(︀
𝜑0

𝛼

)︀
is an odd

function and hence the function 𝜕ℎ𝛼
(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

is an even function. In order to realize this,
we utilize the anti-symmetric property of the interpolation function with respect to the
𝜂 = 0, and equivalently where 𝜑𝛼 = 1/2,

ℎ𝛼

(︁
𝜑0

𝛼 (𝜂)
)︁

− 1
2 = 1

2 − ℎ𝛼

(︁
𝜑0

𝛼 (−𝜂)
)︁

.

Differentiating both sides with respect to 𝜂 and using the 𝑒𝑣𝑒𝑛 property of 𝜕𝜑0
𝛼

𝜕𝜂
we

derive,

𝜕ℎ𝛼 (𝜑𝛼 (𝜂))
𝜕𝜑𝛼

= 𝜕ℎ𝛼 (𝜑𝛼 (−𝜂))
𝜕𝜑𝛼

,
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which proves 𝜕ℎ𝛼 (𝜑𝛼 (𝜂))
𝜕𝜑𝛼

is even. Conversely, differentiating again implies the second

derivative 𝜕2ℎ𝛼 (𝜑𝛼 (𝜂))
𝜕𝜑0

𝛼
2 is odd. Using these properties we directly find that the R.H.S

of equation Eqn. (6.26) is even. Combined with the fact that the operator 𝐿 is of the

form 𝜕2

𝜕𝜂2 + 16
𝜋2 , which does not modify the characteristics of the R.H.S, we derive that

𝜑1
𝛼 is even. Putting all the arguments together results in the implication that only the

second integral with the term 𝜇1 in the solvability condition Eqn. (6.25) does not vanish
and the solvability condition simplifies to,∫︁ ∞

−∞

1
2
(︁
𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

)︁
𝜇1 𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂 = 0.

Inserting Eqn.(6.24) for 𝜇1 into the above solvability condition, we derive an equation
for 𝜇1 given by,

𝜇1 =
𝑣
(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

∫︁ ∞

−∞

[︂∫︁ 𝜂

0
𝑟
(︁
𝜑0

𝛼

)︁
𝜕𝜂

]︂
𝜕ℎ𝛼

(︀
𝜑0

𝛼

)︀
𝜕𝜑𝛼

𝜕𝜑0
𝛼

𝜕𝜂
𝜕𝜂⏟  ⏞  

:=𝑀̃

.

With the short hand notation 𝑀̃ we can write,

𝜇1 =

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑣

(︂
𝑀̃ +

∫︁ 𝜂

0
𝑟
(︁
𝜑0

𝛼

)︁
𝜕𝜂

)︂
.

The thin-interface limit which denotes the macroscopic chemical potential at first order̃︁𝜇1 can be derived by using the lim𝜂→±∞ and the matching condition in Eqn. (6.18) and
giving,

lim
𝜂→±∞

𝜕𝜇1

𝜕𝜂
= 𝜕̃︁𝜇0

𝜕𝑥

⃒⃒⃒⃒±

=

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑣𝑟
(︁
𝜑0

𝛼±
)︁

,

where 𝜑0
𝛼± denotes the value of 𝜑0

𝛼 at the respective bulk sides. Employing the matching
condition given by Eqn.(6.15) we have,

̃︁𝜇1|± = lim
𝜂→±∞

(︃
𝜇1 − 𝜂

𝜕̃︁𝜇0

𝜕𝑥

⃒⃒⃒⃒±)︃
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=

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑣
(︁
𝑀̃ + 𝐹 ±

)︁
, (6.27)

where we define 𝐹 |± as follows,

𝐹 ± =
∫︁ ±∞

0

(︁
𝑟
(︁
𝜑0

𝛼

)︁
− 𝑟

(︁
𝜑0

𝛼±
)︁)︁

𝜕𝜂.

We realize that the limits on both sides(solid and liquid) do not match if 𝐹 + ≠ 𝐹 − which
gives rise to a chemical potential jump at the interface. To remove this jump one must
now, devise a way to make the following condition true,∫︁ ∞

0

(︁
𝑟
(︁
𝜑0

𝛼

)︁
+ 1

)︁
𝜕𝜂 =

∫︁ −∞

0
𝑟
(︁
𝜑0

𝛼

)︁
𝜕𝜂,

where we have made use of the fact that 𝜕𝜑0
𝛼

𝜕𝜂
is zero at 𝜂 → ±∞ and ℎ𝛼

(︀
𝜑0

𝛼

)︀
− 1 → 0

at 𝜂 = −∞ and ℎ
(︀
𝜑0

𝛼

)︀
= 0 at 𝜂 = +∞. We notice, that these are properties directly

related to our interpolation function ℎ𝛼
(︀
𝜑0

𝛼

)︀
. We intend to retrieve the same properties

(implying 𝑟 (𝜑𝛼) = ℎ (𝜑𝛼) − 1), which is a reasonable choice, then we get 𝑠
(︀
𝜑0

𝛼

)︀
as,

𝑠
(︁
𝜑0

𝛼

)︁
= −𝑔𝛼

(︀
𝜑0

𝛼

)︀ (︀
1 − ℎ

(︀
𝜑0

𝛼

)︀)︀
𝜕𝜑0

𝛼

𝜕𝜂

. (6.28)

With this modification we define 𝐹 := 𝐹 +
(︁
= 𝐹 −

)︁
and the macroscopic chemical potential̃︁𝜇1 at first order in Eqn. (6.27) yields,

̃︁𝜇1|± = lim
𝜂→±∞

(︃
𝜇1 − 𝜂

𝜕̃︁𝜇0

𝜕𝑥

⃒⃒⃒⃒±)︃

=

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑣
(︁
𝑀̃ + 𝐹

)︁
.

and the chemical potential until the first order in 𝜀 writes ̃︀𝜇|± = 𝜇0 + 𝜀̃︁𝜇1|±, which upon
subtracting 𝜇𝑒𝑞 from both sides becomes,

̃︀𝜇|± − 𝜇𝑒𝑞 =
(︁
𝜇0 − 𝜇𝑒𝑞

)︁
+ 𝜀

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑣
(︁
𝑀̃ + 𝐹

)︁
.



6.2. Asymptotic analysis 123

Putting all physical properties in their respective dimensions, we get,

̃︀𝜇|± − 𝜇𝑒𝑞 =
(︁
𝜇0 − 𝜇𝑒𝑞

)︁
+ 𝜀

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
(𝐷𝛽) 𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑉
(︁
𝑀̃ + 𝐹

)︁
, (6.29)

where 𝜀 is hereafter, in dimensions of length.

6.2.3. Kinetic coefficient and the antitrapping current

To relate the total departure from equilibrium at first order in 𝜀 given in Eqn. (6.29) it is
customary to write the modified temperature of the interface 𝑇 due to the Gibbs-Thomson
effect written as,

𝑇 = 𝑇𝑚 − |𝑚𝛽|𝑐𝛽
𝑖 − Γ𝜅 − 𝛽𝑉, (6.30)

where 𝑇 and 𝑐𝛽
𝑖 are the interfacial temperatures and the concentrations of the liquid,

while 𝑚𝛽 is the slope of the liquidus and 𝑇𝑚 is the melting point of the pure component.
𝛽 is the kinetic coefficient and Γ is the Gibbs-Thomson coefficient. Then 𝑇 can be written
as follows:

𝑇 = 𝑇𝑚 − |𝑚𝛽|𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) . (6.31)

With this, the Gibbs-Thompson equation is modified as,

(𝑇𝑚 − |𝑚𝛽|𝑐𝛽
𝑖 ) − (𝑇𝑚 − |𝑚𝛽|𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )) = Γ𝜅 + 𝛽𝑉 (6.32)

The first bracketed term on the left hand side is the modified melting point of the interface
due to constitutional undercooling because of the shift of interfacial concentration 𝑐𝛽

𝑖 with
respect to the equilibrium liquidus concentration at this temperature 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ). The
second bracketed term is the temperature of solidification. Their difference is nothing
but the equivalent undercooling Δ𝑇 , which matches the Gibbs-Thomson equation of
a pure material. Since we are here treating only one dimensional problems, curvature
undercooling drops out and the effective undercooling reads,

Δ𝑇 = 𝑚𝛽

(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝑖

)︁
= 𝛽𝑉. (6.33)

In order to relate the undercooling at the interface, ̃︂Δ𝑇 which is the macroscopic
undercooling at first order, to the deviation of the macroscopic chemical potential from

equilibrium in the thin-interface limit, we multiply Eqn. (6.29) by 𝑚𝛽
𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

𝜕𝜇

such that the left hand side of the equation is nothing but 𝑚𝛽

(︁
𝑐𝛽

𝑖 − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
)︁
and
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alternatively −̃︂Δ𝑇 . With this modification, the total Eqn. (6.29) becomes,

−̃︂Δ𝑇 |± = 𝑚𝛽
𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

𝜕𝜇

⎡⎢⎢⎢⎣(︁𝜇0 − 𝜇𝑒𝑞

)︁
+ 𝜀

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
(𝐷𝛽) 𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

𝑉
(︁
𝑀̃ + 𝐹

)︁⎤⎥⎥⎥⎦ .

(6.34)

Using the result obtained in Eqn. (6.22), inserting the appropriate dimensions and
substituting the relation between the undercooling and the kinetic coefficient, (̃︂Δ𝑇 |± =̃︀𝛽|±𝑉 ) we derive the equation of the kinetic coefficient (̃︀𝛽|± = ̃︀𝛽) as,

̃︀𝛽 =
𝑚𝛽

𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
𝜕𝜇

(𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ))×⎡⎢⎢⎢⎣𝜏𝛼𝛽 − 𝜀

(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁ (︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁
(𝐷𝛽) 𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(︁
𝑀̃ + 𝐹

)︁⎤⎥⎥⎥⎦ . (6.35)

Now we make the approximation
(︁
𝑐𝛽
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
≈
(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁
,

which is valid for small driving forces. Utilizing the approximation, the expression for
the kinetic coefficient until the first order becomes,

̃︀𝛽 =
𝑚𝛽

𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
𝜕𝜇

(𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ))

⎡⎢⎢⎢⎣𝜏𝛼𝛽 − 𝜀

(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁2

(𝐷𝛽) 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(︁
𝑀̃ + 𝐹

)︁⎤⎥⎥⎥⎦ (6.36)

An alternative form can also be written using some basic thermodynamics relating
𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

𝜕𝜇
with the latent heat of transformation 𝐿𝛼 using the Clausius-Clapeyron

equation for alloys which writes 𝑑𝜇𝑒𝑞

𝜕𝑇
= 𝜕𝜇𝑒𝑞

𝜕𝑐𝛽

𝑑𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
𝑑𝑇

= 𝐿𝛼

𝑇 (𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )) .

Using 𝑚𝛽 = 𝑑𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
𝑑𝑇

, we derive,
𝑚𝛽

𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
𝜕𝜇

(𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )) = 𝑇

𝐿𝛼
. This gives an

equivalent form for the kinetic coefficient as,

̃︀𝛽 = 𝑇

𝐿𝛼

⎡⎢⎢⎢⎣𝜏𝛼𝛽 − 𝜀

(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁2

(𝐷𝛽) 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(︁
𝑀̃ + 𝐹

)︁⎤⎥⎥⎥⎦ . (6.37)
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From this it is easy to see, that to perform simulations with vanishing interface kinetic
coefficient

(︁̃︀𝛽 = 0
)︁
, one can choose the relaxation constant 𝜏𝛼𝛽 according to the relation,

𝜏𝛼𝛽 = 𝜀

(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁2

(𝐷𝛽) 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(︁
𝑀̃ + 𝐹

)︁
. (6.38)

For the typical interpolation polynomials of cubic and quartic type polynomial, when
used in combination with the obstacle potential, the values of 𝐹 and 𝑀̃ are tabulated
below,

𝑀̃ 𝐹

ℎ (𝜑𝛼) = 𝜑2
𝛼 (3 − 2𝜑𝛼) 0.063828 0.158741

ℎ (𝜑𝛼) = 𝜑3
𝛼

(︀
10 − 15𝜑𝛼 + 6𝜑2

𝛼

)︀
0.052935 0.129288

Finally, the anti-trapping current along with the derived 𝑠
(︀
𝜑0

𝛼

)︀
in Eqn. (6.28) is given

by,

𝑗𝑎𝑡 = −𝜋𝜀

4
𝑔𝛼
(︀
𝜑0

𝛼

)︀ (︀
1 − ℎ𝛼

(︀
𝜑0

𝛼

)︀)︀√︀
𝜑0

𝛼 (1 − 𝜑0
𝛼)

(𝑐𝛽
(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

(︁
𝜇0, 𝑇

)︁
)𝜕𝜑𝛼

𝜕𝑡

∇𝜑𝛼

|∇𝜑𝛼|
. (6.39)

It in interesting to see the similarity between the equations Eqn. (6.38) and Eqn.
(5.29), used for deriving vanishing interface kinetics for the case of solute diffusion and
pure thermal diffusion respectively. The similarity can be appreciated if we compare
the evolution equations for the temperature field and the chemical potential. The
rejection of solute 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) is analogous to the rejection of latent heat
𝐿𝛼. Correspondingly, the mobility in the case of the thermal diffusion is 𝐾, while it is

𝐷𝛽 𝜕𝑐𝛽

𝜕𝜇
for the case of solute diffusion. The resemblance is not surprising since, both are

diffusion equations, involving phase change at the interface.

6.2.4. Effect of curvature and anisotropy
With the above analysis, we derive the expressions for the relaxation constant and the
antitrapping current, which are dependent on the chemical potential at the zeroth order,
𝜇0. While in one dimensional problems, its value depends on the local normal velocity and
can be determined by the Eqn. (6.22), in the presence of curvature, the Gibbs-Thomson
condition is modified through the contribution of the term proportional to 𝜎𝜅 which
modifies the sharp interface limit for isotropic surface energies, given in Eqn.(6.22) in
dimensional units as,(︁

𝜇0 − 𝜇𝑒𝑞

)︁
= 𝜏𝛼𝛽𝑉

(𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )) + 𝜎𝜅

𝑐𝛼 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )

The preceding equation can be derived by considering the extra term arising from
writing the laplacian in curvilinear co-ordinates represented using the curvature 𝜅 and
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the arc length as in [30, 50]. The value of the chemical potential 𝜇0 derived through
the preceding expression, is difficult to utilize in the expressions derived for the kinetic
coefficient and the anti-trapping current, since the values of the curvature and the velocity
are not known a priori. A work around this problem would be to use the approximation,
𝜕𝑐𝛽

(︀
𝜇0, 𝑇

)︀
𝜕𝜇

≈ 𝜕𝑐𝛽 (𝜇𝑒𝑞, 𝑇 )
𝜕𝜇

which is valid for small departures from equilibrium relevant
for most phase transition problems occurring at lower undercoolings in the absence of
appreciable interface kinetics. The same approximation can also be applied for the the
rejection, 𝑐𝛼

(︀
𝜇0, 𝑇

)︀
− 𝑐𝛽

(︀
𝜇0, 𝑇

)︀
appearing in both the expressions for the relaxation

constant and the anti-trapping current, which varies little from its value at at the
equilibrium chemical potential for lower undercoolings.

For larger departures from equilibrium we propose to dynamically evaluate the expres-
sions for the relaxation constant 𝜏𝛼𝛽 and the anti-trapping current. To do this we need
the chemical potential in the sharp interface limit which is the average value across the
interface. Since this is computationally time consuming to evaluate, we use the local
chemical potential for the dynamic computation of the above mentioned quantities. This
introduces an error of order 𝑂(𝜀2) and higher for the anti-trapping which can be realized
by expanding the term 𝑐𝛽

(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀
around the local chemical potential 𝜇. The

highest order correction would be proportional to
(︃

𝜕𝑐𝛽

𝜕𝜇
− 𝜕𝑐𝛼

𝜕𝜇

)︃(︀
𝜇0 − 𝜇

)︀
, where 𝜇0 − 𝜇

is at highest order proportional to 𝑂(𝜀) rendering the leading order correction due to this
implementation of the antitrapping current proportional to 𝑂(𝜀2). A similar result can
be derived for the case of the relaxation constant 𝜏𝛼𝛽. Since, in the thin-interface limit,
we only claim to derive the relations with accuracy of order 𝑂(𝜀), this scheme should be
certainly acceptable. Another point worth mentioning regards the treatment of anisotropy
in kinetics. While using Eqn.(6.38), problems with vanishing interface kinetics in isotropic
situations can be treated, in order to achieve interface evolution with non-vanishing
interface kinetics in the case of isotropic system, would require the back calculation of the
relaxation constant through the Eqn.(6.37). The more realistic situation of anisotropy
in surface energy and kinetics can be treated through a modification of Eqn.(6.38). We
follow a route suggested in [48, 50] of a simple derivation, by writing the equations of
motion for the normal direction but excluding curvature. The anisotropy in the surface
energy is affected by writing the gradient energy contribution as 𝛾0𝑎𝑐 (n)2 |𝑞𝛼𝛽|2, where
n is the unit normal vector to the interface defined as 𝑞𝛼𝛽

|𝑞𝛼𝛽|
and 𝑎𝑐 (n) describes the

anisotropy in the surface energy. A similar function 𝜏𝛼𝛽 (n) is used for tailoring the
anisotropy in the kinetic coefficient. The major modification in the asymptotics through
this calculation, is the transformation of the gradient in the phase-field profile at leading

order which becomes, 𝜕𝜑0
𝛼

𝜕𝜂
= − 1

𝑎𝑐 (n)
4
𝜋

√︀
𝜑0

𝛼 (1 − 𝜑0
𝛼). Incorporating this result in the
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asymptotics, yields the following expression for the kinetic coefficient,

̃︀𝛽 (n) = 𝑇

𝐿𝛼

⎡⎢⎢⎢⎣𝜏𝛼𝛽 (n)
𝑎𝑐 (n) − 𝜀𝑎𝑐 (n)

(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁2

(𝐷𝛽) 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(𝑀 + 𝐹 )

⎤⎥⎥⎥⎦ . (6.40)

To achieve vanishing interface kinetics in all directions we can choose, 𝜏𝛼𝛽 (n) as 𝜏0
𝛼𝛽𝑎2

𝑐 (n),
where 𝜏0

𝛼𝛽 is derived from the expression in Eqn.(6.38). The case of anisotropy in kinetics
would however require a more careful evaluation of the functions. Lastly, we would like
to recall that a linearization of the grand potential around the equilibrium chemical
potential was used for deriving the asymptotics. This is valid for small departures from
equilibrium in phase transitions occurring at low undercoolings, where interface kinetics
is absent and small. For certain situations at very high undercoolings and in the presence
of strong kinetics, there might arise a situation where this linearization does not hold.
This depends on the nature of the grand potentials and the magnitude of departure
from equilibrium. The linearization is however only a simplification which can be easily
relaxed resulting in the modification of the sharp interface limit for isotropic surface
energies through the relation,

Ψ𝛽

(︁
𝑇, 𝜇0

)︁
− Ψ𝛼

(︁
𝑇, 𝜇0

)︁
= 𝜎𝜅 + 𝜏𝛼𝛽𝑉. (6.41)

The derivation of the deviation of the chemical potential however, depends on the nature
of the grand potentials, where expansions of the grand potentials, until first or second
order in the term 𝜇0 − 𝜇𝑒𝑞 might be necessary. The expression for the chemical potential
at first order remains unchanged. However no general rule exists for estimating the
validity of the linearization used in the asymptotics and the departure from equilibrium
must be used to estimate the difference between the linearized and the original grand
potential description, before reaching a conclusion.

6.2.5. Multi-components and multi-phases

One must note that although, the present study has been performed for the case of
two-phase alloy solidification, this is not a limitation and the analysis can be easily
generalized similar to earlier works [30]. For example: the anti-trapping current for the
case of multi-phase, multi-component alloy solidification, where all the solid phases have
zero diffusivities can be obtained by averaging each of the individual fluxes for each
component 𝑖 given by,

(︁
𝑗𝛼�𝑙

𝑎𝑡

)︁
𝑖

= −𝜋𝜀

4
𝑔𝛼
(︀
𝜑0

𝛼

)︀ (︀
1 − ℎ𝛼

(︀
𝜑0

𝛼

)︀)︀√︀
𝜑0

𝛼 (1 − 𝜑0
𝛼)

(︁
𝑐𝛽

𝑖

(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

𝑖

(︁
𝜇0, 𝑇

)︁)︁ 𝜕𝜑𝛼

𝜕𝑡

∇𝜑𝛼

|∇𝜑𝛼|
,
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and summing up all the fluxes projected along the normal to the liquid phase-field contour
as,

(𝑗𝑎𝑡)𝑖 =
𝑁∑︁

𝛼=1

(︁
𝑗𝛼�𝑙

𝑎𝑡

)︁
𝑖

(︂
− ∇𝜑𝛼

|∇𝜑𝛼|
· ∇𝜑𝑙

|∇𝜑𝑙|

)︂
.

Other possibilities also exist, and the generalized normal vector 𝑞𝛼𝑙 can itself be used
for the projection. Similarly, the relaxation constant for a vanishing interface kinetics
for the phase transitions from 𝛼 to 𝛽 for more than two components can be obtained
as an extension of our present analysis, where the expression for the case of isotropic
surface energies can be easily seen as a modification of Eqn.(6.38). We modify Eqn.(6.29)
and derive the corresponding expression for two-phase multi-component system of 𝐾
independent components, by solving for the system of equations for each of the components
of the vector 𝜇, at first order in 𝜀. The expression is given by,

{︁ ̃︀𝜇𝑖|± − 𝜇𝑖
𝑒𝑞

}︁
=
{︁

𝜇0
𝑖 − 𝜇𝑖

𝑒𝑞

}︁
+ 𝜀𝑉

(︁
𝑀̃ + 𝐹

)︁⎡⎣𝐷𝛽
𝑖𝑗

𝜕𝑐𝛽
𝑗

𝜕𝜇𝑖

⎤⎦{︁𝑐𝛽
𝑖

(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

𝑖

(︁
𝜇0, 𝑇

)︁}︁

Note, in the above notation [] represents a matrix while {} represents a vector. Multi-

plying, throughout with

⎡⎣𝜕Ψ𝛽
(︁
𝑇, 𝜇𝑒𝑞

)︁
𝜕𝜇𝑖

−
𝜕Ψ𝛼

(︁
𝑇, 𝜇𝑒𝑞

)︁
𝜕𝜇𝑖

⎤⎦ =
[︁
𝑐𝛼

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁
− 𝑐𝛽

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁]︁
,

we derive,[︁
𝑐𝛼

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁
− 𝑐𝛽

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁]︁ {︁ ̃︀𝜇𝑖|± − 𝜇𝑖
𝑒𝑞

}︁
=
[︁
𝑐𝛼

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁
− 𝑐𝛽

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁]︁ {︁
𝜇0

𝑖 − 𝜇𝑖
𝑒𝑞

}︁
+

𝜀𝑉
(︁
𝑀̃ + 𝐹

)︁ [︁
𝑐𝛼

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁
− 𝑐𝛽

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁]︁ ⎡⎣𝐷𝛽
𝑖𝑗

𝜕𝑐𝛽
𝑗

𝜕𝜇𝑖

⎤⎦{︁𝑐𝛽
𝑖

(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

𝑖

(︁
𝜇0, 𝑇

)︁}︁
.

The first term on the right hand side of the preceding equation is given by the sharp
interface limit 𝜏𝛼𝛽𝑉 , and to derive vanishing kinetics, the left hand side of the equation
should vanish, which gives the following relation for the case of isotropic free energies in
the case of multi-component systems:

𝜏𝛼𝛽 =

𝜀
[︁
𝑐𝛽

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁
− 𝑐𝛼

𝑖

(︁
𝜇𝑒𝑞, 𝑇

)︁]︁
1×𝐾

[︃
𝐷𝛽

𝑖𝑗

𝜕𝑐𝛽
𝑖

(︀
𝜇0, 𝑇

)︀
𝜕𝜇𝑗

]︃−1

𝐾×𝐾

{︁
𝑐𝛽

𝑗

(︁
𝜇0, 𝑇

)︁
− 𝑐𝛼

𝑗

(︁
𝜇0, 𝑇

)︁}︁
𝐾×1

× (𝑀̃ + 𝐹 ), (6.42)

𝐾 being the number of independent components in the system. A similar expression can
be seen in the work by Kim et al.[54].
From the above discussion we have all the corrections that we need for performing
quantitative simulations. The corrections to the Stefan condition at higher orders,
that are the interface stretching and the surface diffusion, vanish when anti-symmetric
functions are used to interpolate the phase diffusivities, 𝑔𝛼 (𝜑𝛼) and ℎ𝛼 (𝜑𝛼) for the grand
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potentials which are applied from results derived in previous literature [30, 46].

6.3. Conclusions
We present a multi phase-field model based on the grand potential functional. This
modification enables to effectively decouple the bulk and interface contributions which
in turn allows to upscale the length of simulations. This formulation is consistent with
existing quantitative phase-field models and places it in a common framework starting
from a grand potential functional. We perform an asymptotic analysis of the derived model
and obtain the thin-interface limit for the kinetic coefficient and an expression for the anti-
trapping current for the special case of double obstacle type potentials. It is noteworthy
to mention that, computationally, the obstacle type potentials are more efficient because
the interface is finitely defined. Hence, computations of the gradient terms can be finitely
limited to a fixed number of points in the interface. This computationally efficiency was
offset until now because there was were no existing thin-interface limit and no expressions
for the anti-trapping current for these type of potentials. This precluded the possibility
of performing any quantitative simulations for the case of alloys. However, with the
present thin interface asymptotics this can now be realized. With such modifications,
quantitative simulations of multi-phase, multi-component systems at larger scales have
become computationally feasible.
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7.1. Introduction

Phase-field modeling has become a fairly versatile technique for the treatment of problems
involving phase transitions. In particular, problems in solidification involving multi-
component alloys, are fairly elegantly treated. A key ingredient while performing phase-
field simulations for the case of phase-transformation in alloys are the description for
free-energies of the respective phases. While thermodynamic databases such as CALPHAD
provide the necessary information, it is often convenient to construct simpler descriptions
in the region of interest, in order to perform computationally efficient simulations. With
this motivation, we take a brief survey of the available solution models and the relevant
simplified constructions that are possible while retrieving the correct physics. It is
important to note that although, the free energies provided by the CALPHAD databases
are Gibbs- free energies, the same can be used for phase-field simulations where the
conditions are at constant pressure and constant system volume. In such cases, the
Gibbs-free energies and the Helmholtz- free energies which are required for phase-field
simulations differ only by an integration constant.

7.2. Solution models for binary alloys

The solution models, that are normally used for fitting to the various binary alloys, fall
into three categories,

∙ Ideal solution models

∙ Regular solution models

∙ Sub-regular solution models

An ideal solution model can be characterized when, there exists no atomic interactions
and the excess enthalpy of mixing and excess mixing entropy are zero. The corresponding
expression can be exemplary written in the following form for a binary alloy as,

𝐺𝛼 = 𝑐𝐴𝐺0
𝐴 + 𝑐𝐵𝐺0

𝐵 + 𝑅𝑇 (𝑐𝐴 ln (𝑐𝐴) + 𝑐𝐵 ln (𝑐𝐵)) ,

where 𝐺0
𝐴 and 𝐺0

𝐵 are the reference free energies of the components 𝐴, 𝐵 with the crystal
structure of phase 𝛼. The next extension, is the case, where, there exists an interaction
between the two atoms of different type and the corresponding interaction energy is
denoted by the term Ω𝐴𝐵. However, the interaction is symmetric. The enthalpy of
mixing is non-zero, but there exists no excess entropy of mixing. The regular binary
solution model is given by,

𝐺𝛼 = 𝑐𝐴𝐺0
𝐴 + 𝑐𝐵𝐺0

𝐵 + Ω𝐴𝐵𝑐𝐴𝑐𝐵 + 𝑅𝑇 (𝑐𝐴 ln (𝑐𝐴) + 𝑐𝐵 ln (𝑐𝐵)) .

The final step in the generalization, is of course where the interaction parameter is not
symmetric with respect to the two atomic species, but is a function of the concentration.
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This is sub-regular solution model written as,

𝐺𝛼 = 𝑐𝐴𝐺0
𝐴 + 𝑐𝐵𝐺0

𝐵 + (𝑐𝐴Ω𝐴𝐵 + 𝑐𝐵Ω𝐵𝐴) + 𝑅𝑇 (𝑐𝐴 ln (𝑐𝐴) + 𝑐𝐵 ln (𝑐𝐵)) .

In general all of the above models, can be treated as special cases of the Redlich-Kister
Polynomials. While higher order descriptions are also possible, it is often desirable to
limit these descriptions until the sub-regular type, such that the eventual construction of
ternary and multi-component systems is less complex. However, in relation to phase-field
models, one does not require, the information of the free energies in the whole range of
concentrations, as the departure from equilibrium is in most cases in a very small range.
In the following discussion, we look into the properties that are required, in order to
derive a minimalistic construction of the free energy data while deriving the right physics.

7.3. Basic thermodynamics

When performing phase-field simulations, one of the most important requirements is the
correct coupling of the phase-field evolution to the concentration equation, namely the
relation between the driving force and the surface tension through the Gibbs-Thomson
equation. For the case of alloys, it is derived in the following discussion, by equating the
driving force for phase transformation(grand potential difference), to the capillary force
given by,

ΔΨ = 𝜎̃𝛼𝛽𝜅,

where ΔΨ is the driving force for phase transition from 𝛼 to 𝛽 written as, Ψ𝛽 − Ψ𝛼. 𝜎̃𝛼𝛽

is the surface tension of the interface between the phases 𝛼 and 𝛽. We can relate the
difference in the grand potentials to the shift in the chemical potentials from equilibrium
through a linear expansion of the grand potentials about the equilibrium chemical
potentials giving, (︃

𝜕Ψ𝛽

𝜕𝜇
− 𝜕Ψ𝛼

𝜕𝜇

)︃
Δ𝜇 = 𝜎̃𝛼𝛽𝜅,

where Δ𝜇 is 𝜇 − 𝜇𝑒𝑞, 𝜇𝑒𝑞 being the equilibrium chemical potential. Using the thermody-

namic relation 𝜕Ψ
𝜕𝜇

= −𝑐, we derive,

(︁
𝑐𝛼 − 𝑐𝛽

)︁
Δ𝜇 = 𝜎̃𝛼𝛽𝜅.

Next we expand 𝜇 about the equilibrium compositions of either phase, to derive Δ𝜇 =
𝜕𝜇

𝜕𝑐

(︁
𝑐𝛽 − 𝑐𝛽

𝑒𝑞

)︁
= 𝜕2𝑓𝛽

𝜕𝑐2 Δ𝑐𝛽, which upon substitution in the Gibbs-Thomson condition
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derives,

Δ𝑐𝛽 = 𝜎̃𝛼𝛽𝜅

𝜕2𝑓𝛽

𝜕𝑐2 (𝑐𝛼 − 𝑐𝛽)

From the above discussion, it is clear that the shift in the equilibrium concentrations varies
inversely as the second derivative of the free energy with respect to the concentration
and the magnitude of rejection of solute. Hence, in order to arrive at the correct Gibbs-

Thomson effect the evaluation of 𝜕2𝑓𝛽

𝜕𝑐2 and the right solute rejection:
(︁
𝑐𝛼 − 𝑐𝛽

)︁
, from

the constructed free energies is important. To establish this, the simplest free energies
one can construct are indeed, second order polynomials. In the following, we derive the
methodology for the construction of free energy density descriptions for binary alloys,
and then extend it for the case multi- component alloys.

7.4. Description of binary alloys with parabolic type free
energies

We start the construction of free energies of the respective phases with the following type
of expression for the free energies,

𝑓𝛼 (𝑇, 𝑐) = 𝐴𝛼(𝑇 )𝑐2 + 𝐵𝛼(𝑇 )𝑐 + 𝐸𝛼(𝑇 ),

where the coefficients 𝐴𝛼 (𝑇 ), 𝐵𝛼 (𝑇 ) and 𝐸𝛼 (𝑇 ) are functions of temperature T. Our
aim is to fit a simplified form for the free energies utilizing the data obtained from the
CALPHAD databases for the specific system. We can determine the terms 𝐴𝛼 (𝑇 ) as
𝜕2𝑓𝛼

𝜕𝑐2 |𝑐𝑒𝑞 ≡ 1
𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐2 |𝑐𝑒𝑞 , computed at the equilibrium concentration of the phase at the
temperature T, where 𝐺𝛼(𝑇, 𝑐) is the free energy function obtained from the CALPHAD
database. Next we derive the chemical potential 𝜇𝑒𝑞 = 1

𝑉𝑚

𝜕𝐺𝛼

𝜕𝑐
|𝑐𝑒𝑞 from the database

and compute 𝐵𝛼 (𝑇 ) by equating the first derivative of the constructed free energies to
the chemical potential from the database giving,

𝐵𝛼 (𝑇 ) = 𝜇𝑒𝑞 − 2𝐴𝛼 (𝑇 ) 𝑐𝑒𝑞.

The only term left out is 𝐸 (𝑇 ), which is fitted by equating it to the grand potential at
the concentration 𝑐𝑒𝑞 given by,

𝐸𝛼 (𝑇 ) = Ψ𝑒𝑞 − 𝐴𝛼 (𝑇 ) 𝑐2
𝑒𝑞,

where Ψ𝑒𝑞 = 1
𝑉𝑚

(𝐺𝛼 (𝑇, 𝑐𝑒𝑞) − 𝜇𝑒𝑞𝑐). With these equations we can adequately fit, all
the coefficients in the constructed free energy at the given temperature T. For a non-
isothermal description it is essential to derive the equations in the neighborhood of the
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temperature one is simulating and perform a fitting in the temperature space. In most
cases, a linear temperature fit suffices.

7.4.1. Mobilities for diffusion

To derive the mobilities, we require the second derivatives of the free energies with respect
to the concentration. This can be realized through the following diffusion equation for a
binary alloy written as follows,

𝜕𝑐𝛼

𝜕𝑡
= ∇ · (𝑀𝛼∇𝜇) ,

where 𝑀𝛼 is defined as 𝐷
𝜕𝑐𝛼

𝜕𝜇
. From the free energy expression one can derive, the

concentration as a function of the chemical potential as,

𝑐𝛼 (𝜇) = (𝜇 − 𝐵𝛼 (𝑇 ))
2𝐴𝛼 (𝑇 ) .

Using the relation 𝑐𝛼 (𝜇), one can derive the relation 𝜕𝑐𝛼

𝜕𝜇
= 1

2𝐴𝛼 (𝑇 ) and hence the
mobility 𝑀𝛼.

7.5. Extension to the case of ternary alloys(three components)

The extension of the parabolic free energy formulation for the case of ternary alloys is
relatively straight forward. We write the free energies of the respective phases in the
following form,

𝑓𝛼 (𝑐𝐴, 𝑐𝐵, 𝑐𝐶 , 𝑇 ) = 𝐴𝛼 (𝑇 ) 𝑐2
𝐴 + 𝐵𝛼 (𝑇 ) 𝑐2

𝐵 + 𝐶𝛼 (𝑇 ) 𝑐2
𝐶+

𝑂𝛼 (𝑇 ) 𝑐𝐴 + 𝑃 𝛼 (𝑇 ) 𝑐𝐵 + 𝑄𝛼 (𝑇 ) ,

where 𝐴𝛼, 𝐵𝛼, 𝐶𝛼 are the components and 𝑐𝐴, 𝑐𝐵, 𝑐𝐶 their respective concentrations.
To determine the coefficients of the polynomial, we follow the same route as before for
the binary alloy, by first writing the second derivatives with respect to composition as,

𝜕2𝑓𝛼

𝜕𝑐2
𝐴

= 2 (𝐴𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )) ≡ 1
𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐2
𝐴

𝜕2𝑓𝛼

𝜕𝑐2
𝐵

= 2 (𝐵𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )) ≡ 1
𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐2
𝐵

𝜕2𝑓𝛼

𝜕𝑐𝐴𝑐𝐵
= 𝜕2𝑓𝛼

𝜕𝑐𝐵𝑐𝐴
= 2𝐶𝛼 (𝑇 ) ≡ 1

𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐𝐴𝑐𝐵
.
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Through the above equations, we can fix the coefficients 𝐴𝛼 (𝑇 ) , 𝐵𝛼 (𝑇 ) and 𝐶𝛼 (𝑇 ).
To derive the coefficients 𝑂𝛼 (𝑇 ) and 𝑃 𝛼 (𝑇 ) we write the two independent equilibrium
chemical potentials as,

𝜇𝐴 = 2𝐴𝛼 (𝑇 ) 𝑐𝐴 − 2𝐶𝛼 (𝑇 ) 𝑐𝐶 + 𝑂𝛼 (𝑇 ) ≡ 1
𝑉𝑚

(︂
𝜕𝐺𝛼

𝜕𝑐𝐴

)︂
𝑐𝐵

𝜇𝐵 = 2𝐵𝛼 (𝑇 ) 𝑐𝐵 − 2𝐶𝛼 (𝑇 ) 𝑐𝐶 + 𝑃 𝛼 (𝑇 ) ≡ 1
𝑉𝑚

(︂
𝜕𝐺𝛼

𝜕𝑐𝐵

)︂
𝑐𝐴

.

With the above equations all the terms in the polynomial can be fixed except the
term 𝑄𝛼 (𝑇 ), which is be determined, by equating the grand potential at the equilibrium
concentrations at the given temperature, to the value obtained from the database given
as Ψ𝑒𝑞 = 1

𝑉𝑚
(𝐺𝛼 (𝑐𝐴, 𝑐𝐵.𝑐𝐶 , 𝑇 ) − 𝜇𝐴𝑐𝐴 − 𝜇𝐵𝑐𝐵). The coefficients 𝐴𝛼 through 𝑃 𝛼 can

be written as,

𝐶𝛼 (𝑇 ) = 1
2𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐𝐴𝑐𝐵

𝐴𝛼 (𝑇 ) = 1
2𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐2
𝐴

− 𝐶𝛼 (𝑇 )

𝐵𝛼 (𝑇 ) = 1
2𝑉𝑚

𝜕2𝐺𝛼

𝜕𝑐2
𝐵

− 𝐶𝛼 (𝑇 )

𝑂𝛼 (𝑇 ) = 𝜇𝐴 − 2𝐴𝛼 (𝑇 ) 𝑐𝐴 + 2𝐶𝛼 (𝑇 ) 𝑐𝐶

𝑃 𝛼 (𝑇 ) = 𝜇𝐵 − 2𝐵𝛼 (𝑇 ) 𝑐𝐵 + 2𝐶𝛼 (𝑇 ) 𝑐𝐶 .

The concentrations 𝑐𝐴 (𝜇𝐴, 𝜇𝐵, 𝑇 ) and 𝑐𝐵 (𝜇𝐴, 𝜇𝐵, 𝑇 ) can be derived by inverting the
expressions for the chemical potential simultaneously, and the corresponding expressions
are,

𝑐𝛼
𝐴 (𝜇𝐴, 𝜇𝐵, 𝑇 ) =

𝜇𝐴 − 𝑂𝛼 (𝑇 ) + 2𝐶𝛼 (𝑇 )
2𝐶𝛼 (𝑇 ) − 𝜇𝐵 − 𝑃 𝛼 (𝑇 ) + 2𝐶𝛼 (𝑇 )

2 (𝐵𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 ))
𝐴𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )

𝐶𝛼 (𝑇 ) − 𝐶𝛼 (𝑇 )
𝐵𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )

𝑐𝛼
𝐵 (𝜇𝐴, 𝜇𝐵, 𝑇 ) =

𝜇𝐴 − 𝑂𝛼 (𝑇 ) + 2𝐶𝛼 (𝑇 )
2 (𝐴𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )) − 𝜇𝐵 − 𝑃 𝛼 (𝑇 ) + 2𝐶𝛼 (𝑇 )

2𝐶𝛼 (𝑇 )
𝐶𝛼 (𝑇 )

𝐴𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 ) − 𝐵𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )
𝐶𝛼 (𝑇 )

.
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To derive the mobilities we need the matrix,⎡⎢⎢⎢⎣
𝜕𝑐𝛼

𝐴

𝜕𝜇𝐴

𝜕𝑐𝛼
𝐴

𝜕𝜇𝐵

𝜕𝑐𝛼
𝐵

𝜕𝜇𝐴

𝜕𝑐𝛼
𝐵

𝜕𝜇𝐵

⎤⎥⎥⎥⎦ ,

which is inverse of the matrix,⎡⎢⎢⎢⎢⎣
𝜕2𝑓𝛼

𝜕𝑐2
𝐴

𝜕2𝑓𝛼

𝜕𝑐𝐴𝜕𝑐𝐵

𝜕2𝑓𝛼

𝜕𝑐𝐵𝜕𝑐𝐴

𝜕2𝑓𝛼

𝜕𝑐2
𝐵

⎤⎥⎥⎥⎥⎦ .

The inverse matrix can be evaluated as follows,

1
2 [𝐴𝛼 (𝑇 ) 𝐵𝛼 (𝑇 ) + 𝐵𝛼 (𝑇 ) 𝐶𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 ) 𝐴𝛼 (𝑇 )]×[︃

(𝐵𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 )) −𝐶𝛼 (𝑇 )
−𝐶𝛼 (𝑇 ) (𝐴𝛼 (𝑇 ) + 𝐶𝛼 (𝑇 ))

]︃

7.6. General description for the case of multi-component alloys
To generalize the procedure for the determination of the free energies to multi-component
systems we start with 𝐾 − 1 parabolas for each of the 𝐾 − 1 independent components
which are chosen arbitrarily and write the general form as follows,

𝑓𝛼 (𝑐, 𝑇 ) =
𝐾−1∑︁
𝑖=1

𝐴𝛼
𝑖 (𝑇 ) 𝑐2

𝑖 +
𝐾−1∑︁

𝑗=1,𝑘=1
𝑗<𝑘

𝐵𝛼
𝑗𝑘 (𝑇 ) 𝑐𝑗𝑐𝑘 +

𝐾−1∑︁
𝑖=1

𝑂𝛼
𝑖 (𝑇 ) 𝑐𝑖 + 𝑄𝛼 (𝑇 ) .

The coefficients 𝐵𝛼
𝑗𝑘 (𝑇 ) are determined by equating to terms of the matrix,

1
𝑉𝑚

[︃
𝜕

𝜕𝑐𝑗

(︂
𝜕𝐺𝛼

𝜕𝑐𝑘

)︂]︃
𝑗! ̸=𝑘

which are computed using the information of the free ener-

gies from the databases. Similarly coefficients 𝐴𝛼
𝑖 (𝑇 ) are evaluated by using the re-

lation, 𝐴𝛼
𝑖 (𝑇 ) = 1

𝑉𝑚

[︂
𝜕

𝜕𝑐𝑖

(︂
𝜕𝐺𝛼

𝜕𝑐𝑖

)︂]︂
. The remaining coefficients 𝑂𝛼

𝑖 (𝑇 ) are derived by

equating the chemical potentials using the relation, 𝑂𝛼
𝑖 (𝑇 ) = 𝜇𝑑

𝑖 − 2𝐴𝛼
𝑖 (𝑇 ) (𝑐𝛼

𝑖 )𝑑 −∑︀
𝑗=1
𝑗 ̸=𝑖

𝐵𝑖𝑗 (𝑇 )
(︁
𝑐𝛼

𝑗

)︁
𝑑
. The last term in the expansion is the coefficient 𝑄𝛼 (𝑇 ) which is

fixed by equating the grand potential to the value in the database,
1

𝑉𝑚

(︁
𝐺𝛼 (𝑐, 𝑇 ) −

∑︀𝐾−1
𝑖=1 𝜇𝑑

𝑖 (𝑐𝛼
𝑖 )𝑑

)︁
, where we have denoted the chemical potentials and

the concentrations, used for fitting the coefficients for the free energy as 𝜇𝑑
𝑖 and (𝑐𝛼

𝑖 )𝑑

respectively. The subscript “𝑑“ is short for ”determining values”. The values of the phase
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concentrations as functions of the chemical potential are linearized around these chosen
values of concentration and chemical potential.

The mobility matrix is derived from the fitted free energy function by inverting the

matrix given by 𝑉𝑚

[︃
𝜕

𝜕𝑐𝛼
𝑖

(︃
𝜕𝐺𝛼

𝜕𝑐𝑗

)︃]︃−1

, which we denote as the matrix
[︃

𝜕𝑐𝛼
𝑖

𝜕𝜇𝑗

]︃
. The

concentrations 𝑐𝛼
𝑖 (𝜇, 𝑇 ) can be written as {𝑐𝛼

𝑖 (𝜇, 𝑇 )} =
{︀
(𝑐𝛼

𝑖 )𝑑

}︀
+
[︃

𝜕𝑐𝛼
𝑖

𝜕𝜇𝑗

]︃{︁
𝜇𝑖 − 𝜇𝑑

𝑖

}︁
.

7.7. Derivation of chemical potential
For the phase-field model using the grand potential formalism it is necessary to derive
the chemical potential 𝜇𝑖, given the phase-field and the concentration fields at a given
point. The expression for the chemical potential can be derived using the general
expression for each of the concentration fields as, 𝑐𝑖 =

∑︀𝑁
𝛼=1 𝑐𝛼

𝑖 ℎ𝛼 (𝜑). Inserting the
phase concentrations 𝑐𝛼

𝑖 (𝜇, 𝑇 ) as functions of 𝜇 we derive,

{𝑐𝑖} =
𝑁∑︁

𝛼=1
{(𝑐𝛼

𝑖 )}𝑑 ℎ𝛼 (𝜑) +
[︃

𝑁∑︁
𝛼=1

ℎ𝛼 (𝜑) 𝜕𝑐𝛼
𝑖

𝜕𝜇𝑗

]︃{︁
𝜇𝑖 − 𝜇𝑑

𝑖

}︁
,

which can be re-arranged to derive the components of the vector 𝜇 as,

{︁
𝜇𝑖 − 𝜇𝑑

𝑖

}︁
=
[︃

𝑁∑︁
𝛼=1

ℎ𝛼 (𝜑) 𝜕𝑐𝛼
𝑖

𝜕𝜇𝑗

]︃−1{︃
𝑐𝑖 −

𝑁∑︁
𝛼=1

(𝑐𝛼
𝑖 )𝑑 ℎ𝛼 (𝜑)

}︃
.

Note the calculation of the vector components is possible in this fashion because

the components of the matrix
[︃

𝜕𝑐𝑖

𝜕𝜇𝑗

]︃
are independent of 𝜇, being functions only of

temperature 𝑇 for this special method of construction of free energies.

7.8. Application for the case of Al-Cu-Ag ternary alloy
We obtain the information about the free energies of the phases 𝛼-FCC, 𝜃 and the 𝛾-Hcp
phases from the database created by Witusiewicz et al [137, 138]. The energies are fitted
around the eutectic temperature 𝑇𝐸 using parabolic free energy forms. The respective
coefficients are then linearly fitted as functions of temperature. (Details are given in the
following chapter).

Utilizing the free energies, the grand potential formulation is used to derive the evolution
equations for the phase-field and concentration or chemical potential field. Exemplary
structures are portrayed, showing the growth of lamellae in a given temperature field.
Contrary to binary eutectics, we find the growth front to be highly non-planar and the
velocities of the three phases to be very different. The occurrence of coupled growth is
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not only a function of the undercooling but also of the lamellar spacing and the imposed
velocity. We find that the possibility of coupled growth increases with decreased velocities
and increased temperature gradients.

7.9. Conclusions
We present a simplified construction of free energies for phase-field simulations using
information from CALPHAD databases. The construction allows for computationally
simpler functions to be used, while retaining the physics of the problem. One must note,
that the fitting methods adopted here, involves deriving the free energy data by linearizing
about chosen concentrations. Depending on the deviations from equilibrium, one must
adapt the fitting procedure, to avoid large deviations from reality. In general, simulations
mimicking experimental conditions, result in small deviations of the phase concentrations
from their equilibrium values. This allows one to use the described procedure, to fit
the energies around the equilibrium compositions of the co-existing phases. Far from
equilibrium, would require dynamic adaptation of the fitted data derived out of the local
shifts in the equilibrium concentrations. Considering the simplified nature of the fitting
procedure, it is certainly possible to perform it even during run-time when required.
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In this chapter we present test cases, where the modified model based on the grand po-
tential formulation, is utilized for the simulation of dendritic and eutectic microstructures.
For the case of dendritic growth, we consider the Al-Cu alloy, while for ternary eutectic
growth, we utilize the model ternary eutectic system, created before for comparison
with theoretical analysis of coupled growth. Additionally we model the Al-Cu-Ag alloy
for some preliminary studies. We show exemplary structures, found generally during
solidification in each of the forthcoming sections.

8.1. Dendritic growth
The phase stability regions in the Al-Cu phase diagram containing the 𝛼-Al and the
liquid phase, respectively, are confined by nearly linear phase stability lines corresponding
to slopes of 45.3K/wt% and 2.6K/wt%, for solidus and liquidus respectively. The phase
diagram was modeled using the ideal solution formulation, where the free energy density,
𝑓𝛼 (𝑇, 𝑐) with c=𝑐𝐴𝑙 is described as:

𝑓𝛼 (𝑇, 𝑐) = 𝑓*
(︁
𝑐𝐿𝛼

𝐴𝑙

(𝑇 − 𝑇 𝛼
𝐴𝑙)

𝑇 𝛼
𝐴𝑙

+ (1 − 𝑐)𝐿𝛼
𝐶𝑢

(𝑇 − 𝑇 𝛼
𝐶𝑢)

𝑇 𝛼
𝐶𝑢

+

𝑇 (𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐))
)︁

(8.1)

where the reference temperature for nondimensionalizing is chosen to be the melting
temperature of pure Al. The parameters 𝐿𝛼

𝑖 and 𝑇 𝛼
𝑖 are tabulated in Table 8.1, The

Table 8.1.: Free energy parameters
𝐿𝛼

𝑖 Cu Al
𝛼 8.45 5.30

liquid 0.0 0.0

𝑇 𝛼
𝑖 Cu Al
𝛼 0.42273 1.0

liquid X X

Gibbs-Thomson coefficient Γ𝛼𝑙 is 2.48 10−7K/m [38], and energy scale 𝑓* is calculated
from the Gibbs-Thomson coefficient and the given surface tension. The modeled phase
diagram is plotted in Fig.8.1. With this choice of free energies, the functions 𝑐𝛼/𝑙 (𝜇, 𝑇 )
can be determined in the following manner:

𝑐𝛼 (𝜇, 𝑇 ) =

exp

⎡⎢⎢⎢⎢⎣
𝜇 −

(︃
𝐿𝛼

𝐶𝑢

(𝑇 − 𝑇 𝛼
𝐶𝑢)

𝑇 𝛼
𝐶𝑢

− 𝐿𝛼
𝐴𝑙

(𝑇 − 𝑇 𝛼
𝐴𝑙)

𝑇 𝛼
𝐴𝑙

)︃
𝑓*𝑇

⎤⎥⎥⎥⎥⎦

1 + exp

⎡⎢⎢⎢⎢⎣
𝜇 −

(︃
𝐿𝛼

𝐶𝑢

(𝑇 − 𝑇 𝛼
𝐶𝑢)

𝑇 𝛼
𝐶𝑢

− 𝐿𝛼
𝐴𝑙

(𝑇 − 𝑇 𝛼
𝐴𝑙)

𝑇 𝛼
𝐴𝑙

)︃
𝑓*𝑇

⎤⎥⎥⎥⎥⎦
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Figure 8.1.: Phase stability region between the 𝛼− solid and liquid modeled using ideal free
energies

𝑐𝑙 (𝜇, 𝑇 ) =
exp

[︂
𝜇

𝑓*𝑇

]︂
1 + exp

[︂
𝜇

𝑓*𝑇

]︂ .

Notice that we have written 𝑐𝛼 (𝜇, 𝑇 ) and 𝑐𝑙 (𝜇, 𝑇 ) as functions of a unique 𝜇, as required
by the grand potential formulation.

8.1.1. Kinetics of diffusion and phase transformations

The diffusion coefficients were set to 𝐷𝛼 = 3 · 10−13m2/s in the solid phase and 𝐷𝑙 =
3 · 10−9m2/s in the liquid. The anti-trapping current is defined as a flux from the solid
to the liquid side across the 𝛼𝑙 interface as,

(𝑗𝑎𝑡) = −𝜋𝜀

4
ℎ𝛼 (𝜑) (1 − ℎ𝛼 (𝜑))√︀

𝜑0
𝛼 (1 − 𝜑0

𝛼)
(𝑐𝑙 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

∇𝜑𝛼

|∇𝜑𝛼|

where 𝜑0
𝛼 is the leading order solution of the phase-field equation, which is also the

equilibrium phase-field profile. With the anti-trapping current, the diffusion equation is
modified as follows:

𝜕𝑐

𝜕𝑡
= ∇ · (𝑀 (𝜑) ∇𝜇 − (𝑗𝑎𝑡))

The kinetics of phase transformation in experiments at the micro-scale, occurs on a time
scale that is orders of magnitude larger than the one given by the atomistic relaxation.
Hence, for such cases the time-scale of interface relaxation is irrelevant. Therefore, it
is desirable to have infinite mobility for phase-field evolution, which implies that the
response of the phase-field, to a change in the coupled field is instantaneous. To achieve
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Table 8.2.: Values of the solvability integrals for the employed interpolation polynomials
Potential 𝑀̃ 𝐹

ℎ𝛼 (𝜑) = 𝜑2
𝛼 (3 − 2𝜑𝛼) 0.063828 0.158741

ℎ𝛼 (𝜑) = 𝜑3
𝛼

(︀
10 − 15𝜑𝛼 + 6𝜑2

𝛼

)︀
0.052935 0.129288

this in the phase-field methodology, a thin interface analysis needs to be performed, as
demonstrated first by Karma [46]. We use such an analysis for the case of an obstacle
potential presented in earlier chapters and in [18]. The results of the analysis give the
choice of the relaxation time constant 𝜔 for the case of binary alloy as,

𝜔 = 𝜀

(︁
𝑐𝑙 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁ (︁
𝑐𝑙
(︀
𝜇0, 𝑇

)︀
− 𝑐𝛼

(︀
𝜇0, 𝑇

)︀)︁
𝑇 (𝐷𝑙) 𝜕𝑐𝑙

(︀
𝜇0.𝑇

)︀
𝜕𝜇

(︁
𝑀̃ + 𝐹

)︁
(8.2)

With this choice, we obtain 𝛽 = 1
𝜇𝛼

𝑖𝑛𝑡

= 0, where 𝜇𝛼
𝑖𝑛𝑡 is the kinetic coefficient of the 𝛼, 𝑙

interface. 𝑀̃ and 𝐹 are solvability integrals depending on the choice of the potential
𝑤 (𝜑) and on the interpolation functions ℎ𝛼 (𝜑). For the obstacle potential, the values
of the solvability integrals, corresponding to the two interpolation polynomials in use,
are listed in Table 8.2. 𝜇0 for the case of binary alloys denotes the macroscopic chemical
potential at the interface, in the sharp interface limit. The kinetic coefficient can be
computed both for finite and infinite phase-field interface mobility. For our computations,
we set the vanishing interface kinetics in all directions. Our simulations are performed
with smooth cubic anisotropy of the form,

𝑎𝑐 (𝑞𝛼𝛽) = 1 ± 𝛿𝛼𝛽

(︃
3 − 4 |𝑞𝛼𝛽|44

|𝑞𝛼𝛽|4

)︃
,

where |𝑞𝛼𝛽|44=
∑︀𝑑

𝑖 (𝑞𝛼𝛽)4
𝑖 and |𝑞𝛼𝛽|4=

[︁∑︀𝑑
𝑖=1(𝑞𝛼𝛽)2

𝑖

]︁2
, 𝑑 being the number of dimensions.

𝛿𝛼𝛽 is the strength of the anisotropy, which is set to 0.0097 for the chosen alloy of
Al-4wt%Cu [67]. To have vanishing interface kinetics in all directions, we employ the
strategy illustrated in the earlier chapter on Grand potential formulation and asymptotics,
where we utilize the expression for the kinetic coefficient given by Eqn. (6.40) and set
the relaxation constant as a function of the normal vector 𝑞𝛼𝛽 given by,

𝜔 (𝑞𝛼𝛽) = 𝜔0𝑎2
𝑐 (𝑞𝛼𝛽) ,

where 𝜔0 is computed using the relation in Eqn. (8.2). This gives the kinetic coefficient
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as a function of the normal vector n = 𝑞𝛼𝛽

|𝑞𝛼𝛽|
as,

̃︀𝛽 (n) = 𝑇

𝐿𝛼
𝑎𝑐 (n)

⎡⎢⎢⎢⎣𝜔0 − 𝜀

(︁
𝑐𝛽 (𝜇𝑒𝑞, 𝑇 ) − 𝑐𝛼 (𝜇𝑒𝑞, 𝑇 )

)︁2

𝑇 (𝐷𝛽) 𝜕𝑐𝛽
(︀
𝜇0, 𝑇

)︀
𝜕𝜇

(𝑀 + 𝐹 )

⎤⎥⎥⎥⎦ .

The term inside the brackets in the preceding equation vanishes by the choice of 𝜔0 and
hence renders the effective kinetic coefficient, zero in all directions. The same technique
is adopted in the work by [50].

The simulation setup involves a free dendrite growing into an uniformly undercooled
melt. Utilizing the symmetry of the surface energy anisotropy, we simulate one quadrant
of the dendrite. The first benchmark involves the proof of invariance of the dendrite
tip velocities with varying interface widths. For this, we set the nondimensional bulk
temperature at T=0.9843, where the melting temperature of the chosen alloy composition
Al-1.732At%, is T=0.99. Fig. 8.2 plots the dendrite tip velocities upon change in the
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Figure 8.2.: Plot of the dendrite tip velocities simulated at a temperature of 𝑇 = 0.9843. We
selectively plot points corresponding to a simulation, to show the convergence of the
velocities. We span a range where 𝜀 varies by a factor 4 and achieve convergence in
the velocities. The simulation with the 𝜀 = 112.5 has run the least in nondimensional
time (1.5 108), but long enough to confirm convergence of the velocities.

interface widths which confirms our calculations, that their exists a range in interface
widths for which the interface velocities are invariant. Above the maximum considered 𝜀,
the interface becomes unstable and the asymptotics seems to breakdown and we supposes
this occurs because errors of order 𝑂

(︀
𝜀2)︀ become appreciable. Fig. 8.3, displays the

chemical potential along a linear section at the dendrite tip in the growing direction,
along with the equilibrium chemical potential and the theoretical chemical potential
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derived from the Gibbs-Thomson condition considering only the effect of curvature. The
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Figure 8.3.: Chemical potential plot along a linear section at the dendrite tip in the growing
direction, superimposed with the lines showing the equilibrium chemical potential
and the theoretically predicted chemical potential obtained by considering the shift
because of Gibbs-Thomson effect due to curvature. The curvature used in the
calculation, is measure at the dendrite tip from the simulation. 𝜎𝜃𝜃 represent the
second derivative of the surface tension as a function of the polar angle, and the
sum 𝜎 + 𝜎𝜃𝜃 represents the stiffness of the interface.

results show good agreement, confirming the asymptotic expressions and the applicability
of the developed model. The contours of the chemical potential and the phase-profiles
in a section of the domain showing the growing dendrite is portrayed in Fig. 8.4. To
display the importance of the asymptotics, differences between the simulations, which
are performed with and without anti-trapping current are highlighted in Fig.8.5. We see,
that apart from having differences in the chemical potential profiles, the velocities are
also significantly different.

8.1.2. Comparison with the LGK
In order to verify our model, we test the dendrite tip and velocities against the analytical
LGK theory [66]. An important parameter required for the matching, is the calculation
of 𝜎* which is the stability parameter used for determining the velocity and radius at
the dendrite tip. While 𝜎* is expected to be in the order of 0.025 in three-dimensional
systems [66], realistic physical values vary with the anisotropy of the solid-liquid interface.
Two possibilities exist to determine the value of 𝜎*. The first is to derive it from
micro-solvability theory [10]. The second is to employ techniques such as phase field
simulations, where the dendrite tip radii and the corresponding velocities are a result of
the dynamic minimization of the grand potential difference, and the 𝜎* is an output of
the simulation [49, 50]. We adopt the second technique, and compute the value of 𝜎* as
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Figure 8.4.: Isolevel 𝜑𝛼 = 0.5 denoting the binary interface between the solid and the liquid
at various times is shown in (a), while the contours of the chemical potential at
a particular instant during evolution is displayed in (b). Values of some of the
contours of the respective nondimensionalized chemical potential are superimposed
on the plot. The simulations correspond to the case when 𝜀 = 300.
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(a) (b)

Figure 8.5.: Plots showing the differences in the chemical potential(non-dimensional) between
simulations performed with and without antitrapping current. In (a) simulations
are performed with isotropic free energies and in (b) the simulations are performed
with smooth cubic anisotropy with arms along the principal grid directions

2𝐷𝑙𝑑0
𝑉 𝑅2 from the steady state tip velocity 𝑉 and tip radius 𝑅 from the simulation. Here

𝑑0 is the capillary length, defined as Γ
𝑚 (Δ𝐶) , where Γ is the Gibbs-Thomson coefficient,

Δ𝐶 the magnitude of solute rejection at the interface, and 𝑚 the slope of the liquidus
line. We obtain a value which gives a best fit for all considered undercoolings. The
stability parameter 𝜎* was computed as 0.169 in 2D simulations, as an average value
from the undercoolings considered. The comparison is plotted in Fig.8.6. The simulations
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Figure 8.6.: Comparison of the velocity and radius at the dendrite tip as a function of the bulk
undercooling.

at each undercooling was performed with interface widths which are in the range, where
the results are invariant of this parameter. One must note that while the LGK theory
gives good predictions, there can often arise a case where there is a variation. These arise
because of the mismatch between the assumptions in the dendritic shape made in the
LGK analysis and those occurring in the simulations. In the next section, we simulate
some exemplary structures during solidification for this alloy.
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8.1.3. Exemplary structures

Equi-axed dendritic growth occurs when the undercooling in the melt is high enough such
that there exists no directionality in the local thermal gradients. Fig.8.7 shows dendrites
at different undercoolings. Cellular growth into a undercooled melt was simulated for

(a) (b)

Figure 8.7.: Equiaxed dendrites simulated at undercooling of 30K in(a) and 28K in (b) for an
alloy composition of 0.017382 at%Cu.

two situations. In the first case shown in, Fig. 8.8a, the orientation of anisotropy is
aligned in the direction of growth, while in Fig. 8.8b, the dendrites are rotated 30 degrees
with respect to the growth direction. In 8.8c, the simulations are performed with a
temperature gradient in the growth direction of value 6000𝐾/𝑚 shifted, with a velocity
of 0.05𝑚/𝑠 along the growth axis.

8.2. Eutectic growth

8.2.1. Comparison with theoretical expressions

We use the model ternary eutectic system used for the investigation in earlier chapters for
comparison with analytical expressions derived according to theoretical calculations of
the Jackson-Hunt type. The phase concentrations as functions of the chemical potential
required for the construction of the grand- potentials are given by,

𝑐𝛼
𝑖 (𝜇, 𝑇 ) =

exp
(︃

𝜇𝑖/𝑇 −
(︃

𝐿𝛼
𝑖

(𝑇 − 𝑇 𝛼
𝑖 )

𝑇𝑇 𝛼
𝑖

− 𝐿𝐶
(𝑇 − 𝑇 𝛼

𝐶 )
𝑇𝑇 𝛼

𝐶

)︃)︃

1 +
∑︀𝐾−1

𝑗=1 exp

⎛⎝𝜇𝑗/𝑇 −

⎛⎝𝐿𝛼
𝑗

(︁
𝑇 − 𝑇 𝛼

𝑗

)︁
𝑇𝑇 𝛼

𝑗

− 𝐿𝐶
(𝑇 − 𝑇 𝛼

𝐶 )
𝑇𝑇 𝛼

𝐶

⎞⎠⎞⎠ (8.3)
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(a) (b) (c)

Figure 8.8.: Cellular growth structures in 2D. In (a) the orientation of the anisotropy is aligned
with the growth direction while in (b) the crystal orientation is rotated 30 degrees
with respect to the growth direction, and in (c), the simulation is performed with a
temperature gradient aligned in the growth direction.

Utilizing the construction, we verify the equilibrium properties, by measuring the triple
point angles for a stationary solidification interface as shown in, Fig.8.9. It is noteworthy

Figure 8.9.: Triple junction at the critical undercooling where the solidification front is stationary.
The whole binary junction of either solid-liquid interfaces are fitted with circles
and the angle at the triple point is measured between the tangents to the circles at
the intersection point of the circles

however, that the angles are now retrieved, just by setting the required surface energies of
the respective interfaces as the simulation parameter 𝛾𝛼𝛽𝑇 , unlike the calibration required
with the free-energy model. Also, the third phase contribution is markedly reduced and
can be completely removed with a value of 𝛾𝛼𝛽𝛿 = (10 − 15)𝛾𝛼𝛽. This was not possible
in the case of the model with the free energies, where much higher values where required,
resulting in unwanted modification in the area around the triple point. This is illustrated
by the individual phase-profiles plotted in Figs.8.10 and 8.11 In addition, we compare
the 𝛼𝛽𝛾 and the 𝛼𝛽𝛼𝛾 configurations with the theoretical expressions for undercooling
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(a) (b)

(c) (d)

Figure 8.10.: Individual phase-profiles obtained from simulations with the grand potential model
depicting no third phase adsorption at any of the interfaces, with a value of the
higher order potential 𝛾𝛼𝛽𝛿 = 10𝛾𝛼𝛽 . The red border, plots the contour of the
phase-field from 0 to 1.
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(a) (b)

(c) (d)

Figure 8.11.: Corresponding phase-profiles obtained from simulations with the model based on
a free energy functional depicting third phase adsorption at all of the interfaces,
with a value of the higher order potential 𝛾𝛼𝛽𝛿 = 10𝛾𝛼𝛽 . Higher, values of 𝛾𝛼𝛽𝛿

results in the distortion of the triple-point regions.
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as functions of spacing at given velocities. We achieve similar agreement as before with
the the free energy model as shown in, Fig.8.12, but this time the interface kinetics
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Figure 8.12.: Comparison of analytical theories with simulations for two configurations 𝛼𝛽𝛾 in (a)
and 𝛼𝛽𝛼𝛾 in (b). Figure(a) shows the fit of the simulation points with the function

Δ𝑇 = Δ𝑇𝑚𝑖𝑛

2

(︂
𝜆

𝜆𝑚𝑖𝑛
+ 𝜆𝑚𝑖𝑛

𝜆

)︂
, which gives Δ𝑇𝑚𝑖𝑛 = 0.0612(Δ𝑇𝐽𝐻 = 0.0648)

with an error of 6 %, and similarly an error in 𝜆𝑚𝑖𝑛 = 1.0052(𝜆𝐽𝐻 = 1.02) of 1.8
%.

was removed, using the derived expressions for the kinetic coefficient obtained from the
asymptotic analysis. The expression of the relaxation coefficient, to achieve vanishing
interface kinetics for the case of ternary eutectics is derived through an extension of the
expressions for the case of binary alloys, as given in Eqn. (6.42) written as:

𝜔𝛼𝑙 = 𝑀̃ + 𝐹

𝑇

[︁(︁𝑐𝑙
𝐴 (𝜇, 𝑇 ) − 𝑐𝛼

𝐴 (𝜇, 𝑇 )
)︁2

𝐷
𝜕𝑐𝑙

𝐴

𝜕𝜇𝐴

+

2
(︁
𝑐𝑙

𝐴 (𝜇, 𝑇 ) − 𝑐𝛼
𝐴 (𝜇, 𝑇 )

)︁ (︁
𝑐𝑙

𝐵 (𝜇, 𝑇 ) − 𝑐𝛼
𝐵 (𝜇, 𝑇 )

)︁
𝐷

𝜕𝑐𝑙
𝐴

𝜕𝜇𝐵

+

(︁
𝑐𝑙

𝐵 (𝜇, 𝑇 ) − 𝑐𝛼
𝐵 (𝜇, 𝑇 )

)︁2

𝐷
𝜕𝑐𝑙

𝐵

𝜕𝜇𝐵

]︁
,

where 𝑀̃ and 𝐹 are the solvability integrals derived in the earlier chapters, and tabulated
in Table. 8.2, while the diffusivities in the liquid are assumed to be the same for both
components A and B. For the case of 𝛼𝛽𝛼𝛾 the average undercoolings are lower than the
predicted one. This is also what we achieved with the model derived from the free energy
functional. The reason for the deviation can be explained through the observation, that
we do not have a planar growth front, as is the assumption in the theoretical analysis.
This is also coupled with the fact that the front undercoolings of the different lamellae
are not the same which implies that the assumption of an isothermal growth front is not
exact.
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In addition, for the simulation of more phases it was essential to construct right
interpolation functions. For this we corrected our third order interpolation polynomial in
the following manner:

ℎ𝛼 (𝜑) = 𝜑2
𝛼 (3 − 2𝜑𝛼) + 2𝜑𝛼

𝑁∑︁
𝛽 ̸=𝛼
𝛾 ̸=𝛼

𝜑𝛽𝜑𝛾

Other corrected polynomials are listed in the appendix C.

8.2.2. Effect of solid-solid anisotropy

The model system is then used to investigate the role of solid-solid anisotropy in oscillatory
mode selection. For this we selected two configurations 𝛼𝛽𝛾 and 𝛼𝛽𝛼𝛾. From the
analysis performed in the chapter on the ternary eutectics we used symmetry arguments
to characterize the different oscillatory modes. In the presence of solid-solid anisotropy
it is possible to manipulate the symmetry elements in the configuration, and our aim
lies in relating the symmetry elements in the simulated microstructures, to those of
the initial configuration, modified by solid-solid anisotropy. We choose the different
permutations that are possible in modifying the symmetries. For instance, in the 𝛼𝛽𝛾
there exist three possibilities, where either one, two or all three solid-solid interfaces are
anisotropic, while in the case of 𝛼𝛽𝛼𝛾, only two possibilities exist, which is either the 𝛼𝛽
or the 𝛼𝛾 is anisotropic or both. Each of the permutations possesses different symmetry
elements, where we impose smooth-cubic anisotropy oriented in the growth direction for
the intended solid-solid interfaces.

For the case of 𝛼𝛽𝛾, the simulated modes are listed in Fig.8.13. The symmetry
elements in the configuration are reproduced in the oscillatory modes and we have all
the possibilities as in the case of the isotropic surface energies. However, we have certain
modifications such as in Figs. 8.13c and 8.13d, where the configuration with the absence
of any symmetry plane has a stacking of the three respective phases along a plane which
is tilted with respect to the growth axis. However, if the symmetry axes containing the
anisotropic interface remains aligned with the growth direction, the configurations with
the respective symmetry elements are retrieved. In the case of the configuration 𝛼𝛽𝛼𝛾,
the possibilities are plotted in Fig.8.14. As was discussed before, there exist two ways to
manipulate the symmetry elements of the configuration 𝛼𝛽𝛼𝛾 through the solid-solid
anisotropies. While the 2-𝜆-O mode is retrieved in every constructed configuration, which
can be reasoned based on the loss of the symmetry plane passing through the 𝛼 phase
and hence the resultant oscillatory mode shares the same symmetry elements as that
of the starting configuration. However, we observe a modified mode in the presence of
solid-solid anisotropy as in Fig.8.14a.
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(a) (b) (c) (d)

Figure 8.13.: Possible oscillatory modes achieved for the different combinations of anisotropic
solid-solid interfaces. In (a)(𝜆 = 115) and (c)(𝜆 = 120) two interfaces are
anisotropic while in (b)(𝜆 = 120), all three interfaces are anisotropic. (d) shows
the characteristic mode achieved in (c) in enlarged form
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(a) (b) (c)

Figure 8.14.: Characteristic modes achieved for the different permutations of the anisotropic
solid-solid interfaces. In (a) and(c) one interface is ansitropic while in (b) both
possible solid-solid interfaces are anisotropic.
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8.2.3. Ternary eutectic Al-Cu-Ag
Free Energies and surface data

We construct free energies using information from the CALPHAD data base for the Al-
Cu-Ag system provided by [137, 138]. The free energies are fitted to simplified parabolic
type free energies using the methodology described in the preceding chapter, around the
eutectic temperature. The coefficients of the polynomial are fitted linearly with respect
to temperature around the eutectic point.

The phases at equilibrium are FCC-𝛼, Al2Cu-𝜃 and (HCP)-Ag2Al 𝛾 phase. With the
thermodynamic information in the database, the volume fractions of the respective solid
phases at equilibrium are 𝜂𝛼 = 0.55, 𝜂𝜃 = 0.29 and 𝜂𝛾 = 0.16.

To derive information about the surface energies, we utilize experimental data provided
for the measured equilibrium angles given in [41, 53] and we assume the surface energies
of the 𝛼− liquid interface as 0.3 J/𝑚2. This fixes the interfacial energies of all the
interfaces.

Simulations

Preliminary structures are simulated in 2D. We find that 𝛼𝛽𝛼𝛾 configuration is one of
the stable configurations. Noteworthy, is that the growth interface is not planar, and the
different phase interfaces are not isothermal. The structures are grown at very low speeds
of (2 𝜇𝑚/𝑠) used in solidification, with a temperature gradient of 13.33 𝐾/𝑚𝑚. Fig.8.15
shows the simulated structures and the undercooling as a function of the spacing, where
the undercooling is averaged over the entire solid-liquid interface.

8.3. Free energy functional vs Grand potential functional
In this section, we present a short discussion on the range of applicability of the models
derived from the grand potential and the free energy functional. The comparison is with
respect to the computational efficiency in simulating a range of undercoolings for both
models and the asymptotics. To start with, we write the evolution equation for the
phase-field variables for a system of two phases and two components, starting from the
free energy functional,

𝜏𝛼𝛽𝜀
𝜕𝜑𝛼

𝜕𝑡
= 𝑇𝛾𝛼𝛽𝜀

𝜕2𝜑𝛼

𝜕𝑥2 − 𝑇𝛾𝛼𝛽

𝜀

16
2𝜋2 (1 − 2𝜑𝛼) − 1

2
𝑑𝑓

𝑑𝜑𝛼
+ 1

2
𝜕𝑓

𝜕𝑐

𝑑𝑐

𝑑𝜑𝛼
.

Noting, that for this formulation based on the free energy functional, 𝜇 = 𝜕𝑓

𝜕𝑐
, the

equation can be manipulated as,

𝜏𝛼𝛽𝜀2 𝜕𝜑𝛼

𝜕𝑡
=

𝑇𝛾𝛼𝛽𝜀2 𝜕2𝜑𝛼

𝜕𝑥2 − {𝑇𝛾𝛼𝛽
16
2𝜋2 (1 − 2𝜑𝛼) + 𝜀

2
𝑑

𝑑𝜑𝛼
(𝑓 − 𝜇𝑒𝑞𝑐)} + 𝜀

2 (𝜇 − 𝜇𝑒𝑞) 𝑑𝑐

𝑑𝜑𝛼
.
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Figure 8.15.: Preliminary simulations of Al-Cu-Ag ternary eutectic alloy, showing proof of
concept for the generalized construction of parabolic free energies for multi-
component systems. The figure shows the 𝛼𝛽𝛼𝛾 configuration at three different
lamella spacings in (a) 4.8𝜇𝑚,(b) 5.1𝜇𝑚 and in (c) 5.4𝜇𝑚. The front undercoolings
after 0.35s of solidification time, are plotted in (d).
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Figure 8.16.: Phase-profiles of the three solid phases at various instances during growth. From
the left the phases are 𝛼(𝐹𝐶𝐶), 𝛾(𝐻𝐶𝑃 ) and 𝜃 respectively.
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At equilibrium, 𝜇 = 𝜇𝑒𝑞, the second bracketed term has the form of a potential and when
𝜀𝑓* is of the same order or larger than 𝛾𝛼𝛽, where 𝑓* is the energy scale, the potential
scales with the length scale of the interface upon change in 𝜀. In the sharp interface limit,
the chemical potential at the leading order is constant across the interface, rendering the
sharp interface limit for one dimensional evolution, as derived in Eqn.(6.5). We would
derive a similar sharp interface limit with the grand potential functional in the absence of
curvature. Note however, the effective potential in the case of the free energy functional
scales with the interface width. This contribution leads to the modification of the surface
energies and hence in the presence of curvature, the limits will differ. Additionally there
is a deviation in the phase-field profile at leading order which is modified due to the
presence of the grand potential excess as,

𝜕𝜑𝛼

𝜕𝑥
= −1

𝜀

√︃
16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼) + 𝜀

𝑇𝛾𝛼𝛽

(︀
(𝑓 − 𝜇𝑒𝑞𝑐) − (𝑓 − 𝜇𝑒𝑞𝑐)𝑏𝑢𝑙𝑘

)︀
(8.4)

in contrast to 𝜕𝜑𝛼

𝜕𝑥
= − 4

𝜀𝜋

√︀
𝜑𝛼 (1 − 𝜑𝛼) for the case of the grand potential functional.

This modifies, the effective kinetic coefficient applicable for both models. Therefore, to
perform comparative simulations with the two models, the first challenge is to set the
surface energies at leading order in the two models equivalent. The next, is to derive
the desired interface widths to perform efficient simulations and finally to set the same
kinetic coefficients for both models.

For the sake of discussion, consider the system Al-Cu created earlier in the chapter.
While, in the case of the grand potential functional the interface width depends directly

on the parameter 𝜀, through the relation 𝜋2𝜀

4 = 2.5𝜀, and the surface energy is the
same as the simulation parameter 𝑇𝛾𝛼𝛽; for the case of the free energy functional an
expression for the interface width and surface energy at leading order can be derived as
in Eqn.(6.3,6.4). Solving these equations simultaneously, we can derive the simulation
parameters 𝛾𝛼𝛽 and 𝜀, to derive the surface energies 𝜎̃𝛼𝛽 and Λ̃𝛼𝛽 for the given free energy
functional. Whereas, this is possible for certain choices of 𝜀, such as displayed in Fig.
8.17a, beyond a critical 𝜀, there exists no unique solution, when the contribution to the
potential from the grand potential excess, becomes dominant over that from the potential
term 𝑇𝛾𝛼𝛽𝜑𝛼 (1 − 𝜑𝛼). The solution is then achieved for a range of 𝛾𝛼𝛽 and 𝜀, derived
through the overlap of the isolevels of the 𝜎̃𝛼𝛽 and the resulting Λ̃𝛼𝛽 , which is fixed upon
choosing the isolevel for the surface energy, Fig.8.17b. The computational efforts can be
compared between the two models by estimating the interface widths used, when the
same 𝜀 is chosen for both the models. At the temperature T=0.988, Fig.8.18 displays
the contours of a freely growing dendrite at a temperature of 𝑇 = 0.988 (𝑇𝑚=0.99)
simulated using the grand potential formulation with 𝜀 = 1688. Corresponding to this
𝜀, the interface width is Λ̃𝛼𝛽 = 430 for the case of the free energy functional, Fig.8.17b.
To have an interface resolution of 10 cells, would result in a grid resolution of Δ𝑥 = 43
when simulations are performed using a regular grid. In contrast, for the case with a
grand potential functional, we have used Δ𝑥 = 500 for the simulation of the dendrite
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Figure 8.17.: (Please read 𝜎 as 𝜎̃ and Λ as Λ̃). Defined contour level of the surface energy 𝜎̃
and the interface width Λ̃ plotted as a function of the simulation parameters 𝛾𝛼𝛽

and 𝜀. In (a), the contours are calculated for the temperature 𝑇 = 0.9843 while in
(b) they are for a temperature of 𝑇 = 0.988. The contours of the interface width
are calculated from the defined level for the surface energy and the value of the 𝜀
used in the simulation. All terms are dimensionless in the graphs.
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Figure 8.18.: Phase-field contours of a free growing equi-axed dendrite, with 𝜀 = 1688 at a
temperature of T=0.988 (T𝑚 = 0.99) with the grand potential formulation.

displayed in Fig.8.18, keeping the same interface resolution and conditions, which implies
the computational effort increases 10𝑑 times (𝑑 denoting the dimension), when using the
free energy functional. The situation is more favorable for the free energy functional at
the higher undercooling at 𝑇 = 0.9843 (smaller tip radii), as can be seen from Fig.8.17a,
where the interface width for the case the free energy case results in 164 compared
to a value of 281.5 for the grand potential functional at the same 𝜀 = 112.5. This is
however, not the largest interface width that can be employed at this undercooling and
much larger interface widths can be used for the case of the grand potential functional
as was seen in Fig.8.2, while the interface widths that can be employed, when a free
energy functional is used, gets limited to a smaller range. In summary, we conclude
that at higher undercoolings(finer microstructures), the models based on the free energy
functional and the grand potential functionals come closer. However at lower velocities or
at lower undercoolings, the grid resolution can be scaled up significantly using the grand
potential functional which is however not a possibility using the free energy functional.

The comparison of the two models, is incomplete, without the discussion on the interface
kinetics. As we have derived, larger interface widths can be employed for simulating
the case of lower undercoolings with the grand potential functional. For such cases, the
thin-interface limit is appropriate, and in this limit, the parameters can be chosen in
such a manner, that interface kinetics vanishes which is relevant at lower undercoolings.
To perform a similar asymptotics, for the free energy functional seems daunting and
less useful because of the following reasoning. We recall that while performing the
thin-interface asymptotics of the grand potential functional we have repeatedly used
the anti-symmetric properties (odd functions) of the leading order phase-field profile
𝜑0

𝛼(𝑥), which reduced the terms contributing to the first order correction to the chemical
potential. However, with the free energy functional, the leading order solution is modified
due to the grand potential excess and is derived using the Eqn.(8.4). Fig.8.19 compares
the profiles in both cases, which shows slight asymmetry about the 𝜑𝛼 = 0.5 line, in
the case of the free energy functional. The magnitude of the asymmetry depends on
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Figure 8.19.: Comparison of the leading order solution of the phase-field in the case of the
grand potential functional and the free energy functional. The profiles have been
superimposed and the vertical line representing the position of the binary interface
is drawn for comparison.

the nature of the grand potential excess and scales with the interface widths. This
asymmetry would rule out any general simplification of the solvability integrals appearing
in the asymptotic analysis. Secondly, all solvability integrals depend on the leading order
solution, which change with the interface widths, the temperature and the system one is
simulating, thus certainly hindering, the universal applicability of the analysis. Lastly,
due to the limitation of the interface widths, the thin interface limit is less applicable and
performing simulations with vanishing interface kinetics is computationally expensive as
the sharp interface and thin interface limits coincide for smaller interface widths.

To conclude the grand potential formulation offers significant flexibility in comparison
to the free energy functionals because the range of applicability of the phase-field model
is improved significantly without a corresponding increase in computational overhead and
additionally, a thin-interface asymptotics with universal applicability can be performed.

8.4. Conclusions
We validate a newly derived model based on the grand potential functional. We test the
asymptotics through comparison with analytical expressions for the growth of dendritic
and eutectic growth morphologies and achieve reasonable agreement. With the derived
model, simulation of large scale microstructures is definitely a possibility and the simulated
dendritic structures look promising in this context.

One must note that the real gain with the modified model, is the range of undercoolings
that can be spanned with numerical efficiency. For example, at higher undercoolings,
the diffusion length is small which would need smaller grid resolution. This condition
is apparently favorable when starting from a free energy functional, since the resultant
small equilibrium interface thickness in the presence of high grand potential excess,
can be resolved without enormous computational overhead. However, as we reduce
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the undercooling, the diffusion length becomes larger and one intends to use higher
interface thicknesses to numerically resolve the microstructures. This flexibility is present,
when one starts to derive from the grand potential model, while it becomes significantly
expensive computationally, to resolve the same microstructure with the free energy
functional(derived through the interpolation of the free energy densities of the phases as
functions of the local concentration).

With regards to the asymptotics, the results obtained from the thin-interface asymp-
totics of model based on the grand potential functional, such as the antitrapping current
and the expression for the interface coefficient are universally applicable for all under-
coolings. Conversely, for the case of the model with the free energy functionals, the
equilibrium properties related to the interface such as the surface energies and the interface
thicknesses and the interface profiles at lowest order, are dependent on the undercooling.
This implies that, expressions for the kinetic coefficients and the anti-trapping currents,
if derived, would depend on the undercooling and hence, the solvability integrals would
need to be re-calculated, given the undercooling one desires to simulate. In addition,
the calibration of the simulation parameters to retrieve the desired surface tensions
needs to be repeated for any change in the processing condition, which becomes highly
cumbersome.

In summary, it is clear that, with the switch in the modeling ideology from the free
energy functionals to a grand potential functional, one gains numerical flexibility and
significant reduction in computational effort.

8.5. Outlook

The road is clear for the application of an efficient model for the study of various phenom-
ena occurring during phase transformations in real alloys. For instance, in solidification
the method can be applied for the investigation of dendritic and cellular growth, frag-
mentation, selection of dendritic and cell spacing and the cellular to dendritic transitions.
Multi-phase phase-transformations, involving eutectic, peritectic and monotectic solidifi-
cation, in binary, ternary and higher systems are of interest. For instance, understanding
pattern formation, in ternary eutectic systems under the influence of changes in the liquid
compositions, imposed temperature gradients and velocities, during 3D microstructure
evolution are some of the primary questions. In solid- state, the model can be tailored to
treat stoichiometric compounds, such as the cementite phase in Fe-C alloy and studies of
eutectoid coupled growth involving the growth of the cementite and ferrite from austenite,
is a topic that can be attended. In addition, structural evolution during ripening of
precipitates in different materials can also be treated fairly elegantly. In summary, the
scope of applicability of the phase-field model has certainly increased with the suggested
modifications. With additional developments in computational techniques such as 3D
parallelization, adaptive mesh refinement techniques, large domain structures are certainly
in the realm of the phase-field method.

While these are marked improvements, one must however, be aware of the limitations
and assumptions that are present in the derivations and the limits of applicability of
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the model. For instance, the treatment of coupled fields such as temperature and
concentration/chemical potential, require attention, as these involve the coupling of
fields which evolve at different time and length scales. Similarly, including elastic, flow,
magnetic and electric fields, although make the description more realistic, the cross-
coupling between fields would need to be performed, keeping the required free boundary
problem in mind. These are complex questions and certainly a challenge for the future.
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In the context of the phase-field method, there often arises the question as to how one
can determine the model parameters given a free energy model. In this short discussion
we look into this topic, considering ideal solution models for deriving simple isomorphous,
eutectic and peritectic systems.

A.1. Eutectics

Consider a binary eutectic system, with defined eutectic temperature 𝑇𝐸 , volume fractions
of the solid phases given by 𝜂𝛼 and 𝜂𝛽 and the melting temperatures of the components
A and B given by 𝑇 𝛼

𝐴 and 𝑇 𝛽
𝐵 respectively where 𝛼 is rich in A, and 𝛽 is the B-rich phase.

We assume the non-dimensional free energies to be of the form:

𝑓𝛼 (𝑇, 𝑐) = 𝑐𝐿𝛼
𝐴

(𝑇 − 𝑇 𝛼
𝐴)

𝑇 𝛼
𝐴

+ (1 − 𝑐)𝐿𝛼
𝐵

(𝑇 − 𝑇 𝛼
𝐵)

𝑇 𝛼
𝐵

+ 𝑇 (𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐)) .

To determine the free energy parameters 𝐿𝛼
𝐴, 𝐿𝛼

𝐵, 𝐿𝛽
𝐴, 𝐿𝛽

𝐵 and the corresponding tem-
peratures given by 𝑇 𝛼

𝐴 , 𝑇 𝛼
𝐵 , 𝑇 𝛽

𝐴, 𝑇 𝛽
𝐵, we write the equilibrium equations relevant at the

eutectic temperature which are,

𝐿𝛼
𝐴

(𝑇 − 𝑇 𝛼
𝐴)

𝑇 𝛼
𝐴

+ 𝑇 ln 𝑐𝛼 = 𝑇 ln 𝑐𝑙

𝐿𝛼
𝐵

(𝑇 − 𝑇 𝛼
𝐵)

𝑇 𝛼
𝐵

+ 𝑇 ln(1 − 𝑐𝛼) = 𝑇 ln(1 − 𝑐𝑙)

𝐿𝛽
𝐴

(︁
𝑇 − 𝑇 𝛽

𝐴

)︁
𝑇 𝛽

𝐴

+ 𝑇 ln 𝑐𝛽 = 𝑇 ln 𝑐𝑙

𝐿𝛽
𝐵

(︁
𝑇 − 𝑇 𝛽

𝐵

)︁
𝑇 𝛽

𝐵

+ 𝑇 ln(1 − 𝑐𝛽) = 𝑇 ln(1 − 𝑐𝑙).

Since, we have eight unknowns and four equations, we require to make some assumptions.
The values of 𝑇 𝛼

𝐴 and 𝑇 𝛽
𝐵 are generally known, and hence the number of unknowns are

reduced to six. One can make use of the assumption 𝐿𝛼
𝐴 = 𝐿𝛼

𝐵 and 𝐿𝛽
𝐴 = 𝐿𝛽

𝐵, which
then reduces the required number of unknowns such that the equations can be solved to
determine the free energy parameters. One can also derive the slopes of the liquidus and
solidus of both phases and use them as the missing equations for the eight unknowns.
The equations for the slopes of the liquidus of the 𝛼 phase are as follows,

𝑑𝑇

𝑑𝑐𝑙
=

𝑇 2
(︂

𝑐𝛼

𝑐𝑙
− (1 − 𝑐𝛼)

(1 − 𝑐𝑙)

)︂
(𝑐𝛼𝐿𝛼

𝐴 + (1 − 𝑐𝛼)𝐿𝛼
𝐵) ,
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and similarly for the solidus, which can be written as,

𝑑𝑇

𝑑𝑐𝛼
=

𝑇 2

⎛⎝ 𝑐𝑙

𝑐𝛼
−

(︁
1 − 𝑐𝑙

)︁
(1 − 𝑐𝛼)

⎞⎠
(𝑐𝑙𝐿𝛼

𝐴 + (1 − 𝑐𝑙)𝐿𝛼
𝐵) .

Notice however, if we do not make any assumptions, we have the required number of
equations for the number of unknowns. This implies, that we could end up with a solution
for the terms 𝑇 𝛼

𝐴 and 𝑇 𝛽
𝐵 which differ from reality. This is not problem though, since

our data for the phase diagram is fitted accurately around the eutectic temperature,
which suffices for simulations relevant for eutectics. The problem can however be tackled
by considering temperature dependent terms 𝐿𝛼

𝑖 , which however makes the system of
equations not closed. The discussion on this is however, out of the scope of the present
chapter.

A.2. Peritectics

The discussion on the peritectics also stays very much the same as the eutectics. The only
difference is, here only of the temperatures 𝑇 𝐴

𝛼 is generally known. Depending, on the
range of undercoolings one intends to simulate, this might be an important parameter to
fit and the set of equilibrium equations along with the slopes of the corresponding solidus
and liquidus can be solved around the peritectic temperature for all the unknowns.

A.3. Isomorphous

If one is interested in fitting only two-phase equilibrium it can be done similarly by
writing down the phase equilibrium equations around the temperature of interest. The
slopes of the liquidus and solidus give the required equations for the relevant number of
unknowns.

A.4. Energy Scale

In the above discussion, only the data relevant to the phase-diagram are fitted. However,
in order to derive the relevant coupling to the Gibbs-Thomson equation, it is important
to set the energy scale of the system such that the right Gibbs-Thomson equations can

be derived. This is easily done, by righting down the latent heat as 𝑓*𝑇

(︃
𝜕𝑓𝛼

𝜕𝑇
− 𝜕𝑓 𝑙

𝜕𝑇

)︃
and then using the relation of the Gibbs-Thomson coefficient as Γ = 𝜎̃𝛼𝑙𝑇

𝐿
. This fixes

a unique energy scale for the system which is no problem for the case of a two-phase
equilibrium. However, if one treats three phase equilibria, this constraint implies, that
the Gibbs-Thomson coefficients of the respective solid phases must obey a relationship
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among them given by,

𝜎̃𝛼𝑙(︃
𝜕𝑓𝛼

𝜕𝑇
− 𝜕𝑓 𝑙

𝜕𝑇

)︃
Γ𝛼

= 𝜎̃𝛽𝑙(︃
𝜕𝑓𝛽

𝜕𝑇
− 𝜕𝑓 𝑙

𝜕𝑇

)︃
Γ𝛽

.

While this might hold for many systems, for others the ideal solution model needs to be
modified with temperature dependent terms 𝐿𝛼

𝑖 .
Along with the energy scale the free energy of each phase becomes,

𝑓𝛼 (𝑐, 𝑇 ) = 𝑓*
(︃

𝑐𝐿𝛼
𝐴

(𝑇 − 𝑇 𝛼
𝐴)

𝑇 𝛼
𝐴

+ (1 − 𝑐)𝐿𝛼
𝐵

(𝑇 − 𝑇 𝛼
𝐵)

𝑇 𝛼
𝐵

+ 𝑇 (𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐))
)︃

.
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In the phase-field context, it sometimes becomes important to calculate the critical
nucleus in a given concentration of the liquid at given temperature. For critical nuclei,
beyond a size, the phase fractions go to 1 in the bulk, which can be determined from
the Gibbs-Thomson condition Δ𝑇 = Γ𝜅. While this is possible for the case of isotropic
surface energies, the more general case of anisotropic surface energies is non-trivial. Also,
the case of sub-critical nuclei cannot be treated with this method. To do this we derive a
algorithm to compute the critical phase and concentration profiles, given a volume of
nucleus. We utilize the concept of the “Volume Preserved Method”, which is highlighted
in Fig.B.1. The method can be very easily understood through this diagram, where

Figure B.1.: Procedure to calculate the critical nucleus by solving the Euler-Lagrange equations

the chemical and the capillary forces are shown as two opposing forces in evolution.
The volume of the evolving particle is preserved by imposing the resultant of these two
opposing forces with the direction reversed. This is realized through the construction of
an artificial term 𝐹𝛼 = 𝜒𝛼, where 𝜒𝛼 is determined through the condition

∫︀
𝜑𝛼 = 𝑐𝑜𝑛𝑠𝑡,

𝛼 denoting the phase whose volume is preserved. For appropriate details one can refer
to the article [80]. The method is used to derive the algorithm for determining the
homogeneous critical nucleus potrayed in Fig.B.2. The aim lies in determining the critical
concentration of the liquid given a volume of the phase 𝛼 between the phase-stability
lines of the phases 𝛼 and the liquid phase. We start by the preserving the given volume of
the solid while solving for the concentration profiles until the chemical potential gradient
goes to zero with constant(Dirichlet) boundary conditions in all directions. At this time
we determine the "Volume preservation force, 𝜒𝛼". For the second iteration, we decide
to modify the concentration in the liquid as 0.5(𝑐𝑒𝑞

𝑙 + 𝑐𝑙) or 0.5(𝑐𝑒𝑞
𝑠 + 𝑐𝑙) depending on

whether the sign of 𝜒𝛼 is positive or negative respectively. For the iterations henceforth,



171

Figure B.2.: Procedure to calculate the critical nucleus by solving the Euler-Lagrange equations

we may make the decision of the modification of concentrations based on two previous
iterations. There exist two possibilities: 1)if the 𝜒𝑛

𝛼 and 𝜒𝑛−1
𝛼 are of the same sign, then

the next estimate of the concentration 𝑐𝑙 is made by a linearly extrapolating the relation
between 𝜒𝛼 vs 𝑐𝑙 to zero. 2) If however, the signs of 𝜒𝛼 from two previous iterations are
opposite sign we perform a bisection and use this as the next estimate of the critical
liquid concentration. This iteration process is continued until the term 𝜒𝛼 goes to zero.
The obtained solution satisfies the Euler-Lagrange equation representing 𝑑𝜑𝛼

𝑑𝑡
= 0 and

𝑑𝑐

𝑑𝑡
= 0.

Figure B.3 displays results of nucleation during growth. Nucleation is imposed through
stochastic noise in the bulk liquid in a Al-Cu alloy modeled using ideal free energies.
The eutectic consists of two phases 𝛼−Al rich and 𝛽−Cu rich. The barrier to nucleation
for each phase are computed as a function of the critical composition in the liquid, by
evaluating the grand potential excess with respect to the uniform initial liquid from the
calculated critical solutions which are solutions to the Euler-Lagrange equations. We
see that for the 𝛽− phase the barrier to nucleation reduces as the concentration of Cu
increases and vice-versa for the 𝛼− phase for which the barrier to nucleation increases
with the increase in concentration of Cu. In the simulation domain, the dendrite growth
occurs in a super-saturated liquid wih low concentration of Cu, and on imposition of noise
the nucleation of the phase 𝛼− phase occurs in the far-field liquid. This corroborates
well with the barrier to nucleation calculations, as the barrier to nucleation is lower for
lower concentrations of Cu. As dendrite arms appear, the liquid entrapped in between
the dendrite arms become eneriched in Cu, and the 𝛽 phase is seen to nucleate. This
observation also qualitatively matches the inferences from the barrier to nucleation
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Figure B.3.: Nucleation of 𝛼 nuclei in the bulk liquid and inter-dendritic eutectic phase in
between the dendritic arms

calculations.
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Phase field modeling has spread to the solution of a variety of problems. The solution
methodology is lucrative because it does not need the tracking of evolving interfaces.
The basis of the phase field theory lies in treating each evolving phase with an order
parameter and describing its evolution on the basis of minimization of energy or the
maximization of entropy of the whole system. The evolution of the order parameters
are coupled with the evolution of other fields which are for example the concentration
and the temperature. One of the components required for the description of the energy
or the entropy density, is that either of these quantities be decribed in the whole phase
space. This is done by the use of interpolation functions which interpolate between the
values in the bulk phases. Thus for e.g we have

𝐹 = 𝐹𝛼ℎ𝛼 (𝜑) + 𝐹𝛽ℎ𝛽 (𝜑) + 𝐹𝛾ℎ𝛾 (𝜑) . . .

where 𝐹𝛼, 𝐹𝛽, 𝐹𝛾 are the bulk properties of the 𝛼, 𝛽 and the 𝛾 phases respectively.
The functions ℎ𝛼, ℎ𝛽 and ℎ𝛾 are the functions interpolating the bulk properties of the
respective phases. The vector 𝜑 belongs to the N-1 dimensional space

𝑁∑︁
𝑖

𝜑𝑖 = 1 (C.1)

𝜑 = (𝜑𝛼, 𝜑𝛽, 𝜑𝛾 . . .), N being the number of phases in the system. This results from
treating the order parameters as volume fractions of the phases in the system. It can be
seen in the above description that the interpolation functions are averaging functions for
the bulk properties of the system, with weights depending on where one is in the phase
space. Thus, it is natural to have the sum of the weights or the sum of the interpolation
functions to add up to 1. One of the topics extensively studied using the phase field
methodolgy is solidification of solid phase from a liquid phase, and two interpolation
functions have been widely used for this purpose,

ℎ𝛼 (𝜑) = 𝜑2
𝛼 (3 − 2𝜑𝛼) (C.2)

ℎ𝛼 (𝜑) = 𝜑3
𝛼

(︁
10 − 15𝜑𝛼 + 6𝜑2

𝛼

)︁
(C.3)

The above functions satisfy the summation property for two phases, but fail to do so
as the number of phases increases in number. So there is a need for finding correct
interpolation functions when modeling more than two phases. In the following paper we
suggest ways of correcting such interpolation functions for use in the case of more than
two phases.

C.1. The correction to the third order polynomial
The cubic third order polynomial for two phases (𝜑𝛼, 𝜑𝛽) can be created very easily in
the following manner.

(𝜑𝛼 + 𝜑𝛽)3 = 𝜑3
𝛼 + 𝜑3

𝛽 + 3𝜑2
𝛼𝜑𝛽 + 3𝜑2

𝛽𝜑𝛼
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We now separate the R.H.S into two symmetric parts and call each of them an interpolation
function. There are two possible ways to choose the symmetric functions, we choose the
one which gives a function that has the lowest order of 𝜑𝜈 in ℎ𝜈 (𝜑) greater than equal to
2, i.e

ℎ𝛼 (𝜑) = 𝜑3
𝛼 + 3𝜑2

𝛼𝜑𝛽

ℎ𝛽 (𝜑) = 𝜑3
𝛽 + 3𝜑2

𝛽𝜑𝛼

. The choice is due to the following reason. We want to have

(︂
𝜕ℎ𝜈 (𝜑)

𝜕𝜑𝜈

)︂
𝜑𝛼+𝜑𝛽=1

= 𝜕ℎ𝜈 (𝜑)
𝜕𝜑𝜈

− 1
𝑁

𝑁∑︁
𝑘

𝜕ℎ𝜈 (𝜑)
𝜕𝜑𝑘

=0, at 𝜑𝜈 = 0, 1. The L.H.S of the above equation is the deriviative with respect to
𝜑𝜈 with the constraint eqn C.1. Now using the constraint 𝜑𝛼 + 𝜑𝛽 = 1, we have
the interpolation functions which were described before eqn C.2. We also have that
ℎ𝜈 (𝜑) = 0, 1 respectively for any point in the phase space with 𝜑𝜈 = 0, 1 respectively.
The above deriviation shows that the summation over all the cubic interpolation functions
of the above form, at any point in the phase space equals 1 only in the case of two phases.
We propose a correction to the interpolation function by doing the same procedure for
more than two phases. We first do it for three phases and extend it to more than three
phases.

(𝜑𝛼 + 𝜑𝛽 + 𝜑𝛾)3 = 𝜑3
𝛼 + 𝜑3

𝛽 + 𝜑3
𝛾 + 3𝜑2

𝛼 (𝜑𝛽 + 𝜑𝛾) +
3𝜑2

𝛽 (𝜑𝛼 + 𝜑𝛾) + 3𝜑2
𝛾 (𝜑𝛼 + 𝜑𝛽) + 6𝜑𝛼𝜑𝛽𝜑𝛾

Again we try to find three symmetric terms in the above sum, at all points trying to
have ℎ𝜈 (𝜑) with the highest power of 𝜑𝜈 . We find that in this case the lowest order
possible has to be linear in 𝜑𝜈 for ℎ𝜈 (𝜑). So using the sum constraint for the phases, the
interpolation functions can be written in the following form,

ℎ𝛼 (𝜑) = 𝜑2
𝛼 (3 − 2𝜑𝛼) + 2𝜑𝛼𝜑𝛽𝜑𝛾

ℎ𝛽 (𝜑) = 𝜑2
𝛽 (3 − 2𝜑𝛽) + 2𝜑𝛼𝜑𝛽𝜑𝛾

ℎ𝛾 (𝜑) = 𝜑2
𝛾 (3 − 2𝜑𝛾) + 2𝜑𝛼𝜑𝛽𝜑𝛾

The above procedure can be repeated for N phases and we would have the following
function.

ℎ𝜈 (𝜑) = 𝜑2
𝜈 (3 − 2𝜑𝜈) + 2𝜑𝜈

⎛⎝ ∑︁
𝛽<𝛾(𝛽,𝛾 ̸=𝜈)

𝜑𝛽𝜑𝛾

⎞⎠
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C.2. The correction to the fifth order polynomial

The correction to fifth order polynomial follows in the same manner as in the case of the
cubic polynomial. We try to derive a polynomial using the above procedure for three
phases,

(𝜑𝛼 + 𝜑𝛽 + 𝜑𝛾)5 = 𝜑5
𝛼 + 𝜑5

𝛽 + 𝜑5
𝛾 + 5𝜑4

𝛼 (1 − 𝜑𝛼) + 5𝜑4
𝛽 (1 − 𝜑𝛽) + 5𝜑4

𝛾 (1 − 𝜑𝛾)
+10𝜑3

𝛼 (1 − 𝜑𝛼)2 + 10𝜑3
𝛽 (1 − 𝜑𝛽)2 + 10𝜑3

𝛾 (1 − 𝜑𝛾)2 + 30𝜑𝛼𝜑2
𝛽𝜑2

𝛾 + 30𝜑𝛽𝜑2
𝛼𝜑2

𝛾+
30𝜑𝛾𝜑2

𝛼𝜑2
𝛽

Now we divide the sum into three parts in such a way that the least power of 𝜑𝜈 in ℎ𝜈 (𝜑)
is 2. This results in the following interpolation functions,

ℎ𝛼 (𝜑) = 𝜑5
𝛼 + 5𝜑4

𝛼 (1 − 𝜑𝛼) + 10𝜑3
𝛼 (1 − 𝜑𝛼)2 + 15𝜑2

𝛼𝜑𝛾𝜑𝛽 (𝜑𝛽 + 𝜑𝛾)
ℎ𝛽 (𝜑) = 𝜑5

𝛽 + 5𝜑4
𝛽 (1 − 𝜑𝛽) + 10𝜑3

𝛽 (1 − 𝜑𝛽)2 + 15𝜑2
𝛽𝜑𝛾𝜑𝛼 (𝜑𝛼 + 𝜑𝛾)

ℎ𝛾 (𝜑) = 𝜑5
𝛾 + 5𝜑4

𝛾 (1 − 𝜑𝛾) + 10𝜑3
𝛾 (1 − 𝜑𝛾)2 + 15𝜑2

𝛾𝜑𝛼𝜑𝛽 (𝜑𝛼 + 𝜑𝛽)

We simplify the terms in the following manner

𝜑𝛼𝜑𝛽 =

(︁
(𝜑𝛼 + 𝜑𝛽)2 − (𝜑𝛼 − 𝜑𝛽)2

)︁
4 =

(︁
(1 − 𝜑𝛾)2 − (𝜑𝛼 − 𝜑𝛽)2

)︁
4

𝜑𝛼𝜑𝛾 =

(︁
(𝜑𝛾 + 𝜑𝛼)2 − (𝜑𝛾 − 𝜑𝛼)2

)︁
4 =

(︁
(1 − 𝜑𝛽)2 − (𝜑𝛾 − 𝜑𝛼)2

)︁
4

𝜑𝛾𝜑𝛽 =

(︁
(𝜑𝛾 + 𝜑𝛽)2 − (𝜑𝛾 − 𝜑𝛽)2

)︁
4 =

(︁
(1 − 𝜑𝛼)2 − (𝜑𝛾 − 𝜑𝛽)2

)︁
4

Substituting in the above interpolation functions we have,

ℎ𝛼 (𝜑) = 𝜑5
𝛼 + 5𝜑4

𝛼 (1 − 𝜑𝛼) + 10𝜑3
𝛼 (1 − 𝜑𝛼)2 + 15

4 𝜑2
𝛼 (1 − 𝜑𝛼)3 −

15
4 𝜑2

𝛼 (1 − 𝜑𝛼) (𝜑𝛾 − 𝜑𝛽)2

ℎ𝛽 (𝜑) = 𝜑5
𝛽 + 5𝜑4

𝛽 (1 − 𝜑𝛽) + 10𝜑3
𝛽 (1 − 𝜑𝛽)2 + 15

4 𝜑2
𝛽 (1 − 𝜑𝛽)3 −

15
4 𝜑2

𝛽 (1 − 𝜑𝛽) (𝜑𝛼 − 𝜑𝛾)2

ℎ𝛾 (𝜑) = 𝜑5
𝛾 + 5𝜑4

𝛾 (1 − 𝜑𝛾) + 10𝜑3
𝛾 (1 − 𝜑𝛾)2 + 15

4 𝜑2
𝛾 (1 − 𝜑𝛾)3 −

15
4 𝜑2

𝛾 (1 − 𝜑𝛾) (𝜑𝛼 − 𝜑𝛽)2

The above are the interpolation functions suggested by Plapp et al. [32]. Extending the
analysis for four phase space(𝜑𝛼, 𝜑𝛽, 𝜑𝛾 , 𝜑𝛿) and repeating the same procedure as above
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we get the following form for the interpolation functions,

ℎ𝛼 (𝜑) = 𝜑5
𝛼 + 5𝜑4

𝛼 (1 − 𝜑𝛼) + 10𝜑3
𝛼 (1 − 𝜑𝛼)2 +

15𝜑2
𝛼 (𝜑𝛾𝜑𝛽 (𝜑𝛽 + 𝜑𝛾) + 𝜑𝛾𝜑𝛿 (𝜑𝛾 + 𝜑𝛿) + 𝜑𝛽𝜑𝛾 (𝜑𝛽 + 𝜑𝛾)) + 60𝜑2

𝛼𝜑𝛽𝜑𝛾𝜑𝛿

ℎ𝛽 (𝜑) = 𝜑5
𝛽 + 5𝜑4

𝛽 (1 − 𝜑𝛽) + 10𝜑3
𝛽 (1 − 𝜑𝛽)2 +

15𝜑2
𝛽 (𝜑𝛼𝜑𝛾 (𝜑𝛼 + 𝜑𝛾) + 𝜑𝛾𝜑𝛿 (𝜑𝛾 + 𝜑𝛿) + 𝜑𝛼𝜑𝛿 (𝜑𝛼 + 𝜑𝛿)) + 60𝜑2

𝛽𝜑𝛼𝜑𝛾𝜑𝛿

ℎ𝛾 (𝜑) = 𝜑5
𝛾 + 5𝜑4

𝛾 (1 − 𝜑𝛾) + 10𝜑3
𝛾 (1 − 𝜑𝛾)2 +

15𝜑2
𝛾 (𝜑𝛼𝜑𝛽 (𝜑𝛼 + 𝜑𝛽) + 𝜑𝛼𝜑𝛿 (𝜑𝛼 + 𝜑𝛿) + 𝜑𝛽𝜑𝛿 (𝜑𝛽 + 𝜑𝛿)) + 60𝜑2

𝛾𝜑𝛼𝜑𝛽𝜑𝛿

ℎ𝛿 (𝜑) = 𝜑5
𝛿 + 5𝜑4

𝛿 (1 − 𝜑𝛿) + 10𝜑3
𝛿 (1 − 𝜑𝛿)2 +

15𝜑2
𝛿 (𝜑𝛼𝜑𝛽 (𝜑𝛼 + 𝜑𝛽) + 𝜑𝛼𝜑𝛾 (𝜑𝛼 + 𝜑𝛾) + 𝜑𝛽𝜑𝛾 (𝜑𝛽 + 𝜑𝛾)) + 60𝜑2

𝛿𝜑𝛼𝜑𝛽𝜑𝛿

The above expressions can be simplified in the following manner,

ℎ𝛼 (𝜑) = 𝜑5
𝛼 + 5𝜑4

𝛼 (1 − 𝜑𝛼) + 10𝜑3
𝛼 (1 − 𝜑𝛼)2 + 15𝜑2

𝛼 (1 − 𝜑𝛼) (𝜑𝛾𝜑𝛽 + 𝜑𝛾𝜑𝛿 + 𝜑𝛽𝜑𝛾) +
15𝜑2

𝛼𝜑𝛽𝜑𝛾𝜑𝛿

ℎ𝛽 (𝜑) = 𝜑5
𝛽 + 5𝜑4

𝛽 (1 − 𝜑𝛽) + 10𝜑3
𝛽 (1 − 𝜑𝛽)2 + 15𝜑2

𝛽 (1 − 𝜑𝛽) (𝜑𝛾𝜑𝛼 + 𝜑𝛾𝜑𝛿 + 𝜑𝛼𝜑𝛿) +
15𝜑2

𝛽𝜑𝛼𝜑𝛾𝜑𝛿

ℎ𝛾 (𝜑) = 𝜑5
𝛾 + 5𝜑4

𝛾 (1 − 𝜑𝛾) + 10𝜑3
𝛾 (1 − 𝜑𝛾)2 + 15𝜑2

𝛾 (1 − 𝜑𝛾) (𝜑𝛼𝜑𝛽 + 𝜑𝛽𝜑𝛿 + 𝜑𝛼𝜑𝛿) +
15𝜑2

𝛾𝜑𝛼𝜑𝛽𝜑𝛿

ℎ𝛿 (𝜑) = 𝜑5
𝛿 + 5𝜑4

𝛿 (1 − 𝜑𝛿) + 10𝜑3
𝛿 (1 − 𝜑𝛿)2 + 15𝜑2

𝛿 (1 − 𝜑𝛿) (𝜑𝛼𝜑𝛽 + 𝜑𝛼𝜑𝛾 + 𝜑𝛾𝜑𝛽) +
15𝜑2

𝛿𝜑𝛼𝜑𝛽𝜑𝛾

Writing the following terms in a different way we get,

(𝜑𝛾𝜑𝛽 + 𝜑𝛾𝜑𝛿 + 𝜑𝛽𝜑𝛾) =

(︁
2 (𝜑𝛽 + 𝜑𝛾 + 𝜑𝛿)2 − (𝜑𝛽 − 𝜑𝛾)2 − (𝜑𝛾 − 𝜑𝛿)2 − (𝜑𝛽 − 𝜑𝛿)2

)︁
6

=

(︁
2 (1 − 𝜑𝛼)2 − (𝜑𝛽 − 𝜑𝛾)2 − (𝜑𝛾 − 𝜑𝛿)2 − (𝜑𝛽 − 𝜑𝛿)2

)︁
6

(𝜑𝛾𝜑𝛼 + 𝜑𝛾𝜑𝛿 + 𝜑𝛼𝜑𝛿) =

(︁
2 (𝜑𝛼 + 𝜑𝛾 + 𝜑𝛿)2 − (𝜑𝛼 − 𝜑𝛾)2 − (𝜑𝛾 − 𝜑𝛿)2 − (𝜑𝛼 − 𝜑𝛿)2

)︁
6

=

(︁
2 (1 − 𝜑𝛽)2 − (𝜑𝛼 − 𝜑𝛾)2 − (𝜑𝛾 − 𝜑𝛿)2 − (𝜑𝛽 − 𝜑𝛿)2

)︁
6

(𝜑𝛼𝜑𝛽 + 𝜑𝛽𝜑𝛿 + 𝜑𝛼𝜑𝛿) =

(︁
2 (𝜑𝛼 + 𝜑𝛽 + 𝜑𝛿)2 − (𝜑𝛼 − 𝜑𝛽)2 − (𝜑𝛽 − 𝜑𝛿)2 − (𝜑𝛼 − 𝜑𝛿)2

)︁
6

=

(︁
2 (1 − 𝜑𝛾)2 − (𝜑𝛼 − 𝜑𝛽)2 − (𝜑𝛽 − 𝜑𝛿)2 − (𝜑𝛾 − 𝜑𝛿)2

)︁
6
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(𝜑𝛼𝜑𝛽 + 𝜑𝛼𝜑𝛾 + 𝜑𝛾𝜑𝛽) =

(︁
2 (𝜑𝛼 + 𝜑𝛽 + 𝜑𝛾)2 − (𝜑𝛼 − 𝜑𝛽)2 − (𝜑𝛽 − 𝜑𝛾)2 − (𝜑𝛼 − 𝜑𝛾)2

)︁
6

=

(︁
2 (1 − 𝜑𝛿)2 − (𝜑𝛼 − 𝜑𝛽)2 − (𝜑𝛽 − 𝜑𝛾)2 − (𝜑𝛼 − 𝜑𝛾)2

)︁
6

Substituting in the interpolation functions, the functions can be written as the following,

ℎ𝜈 (𝜑) = 𝜑5
𝜈 + 5𝜑4

𝜈 (1 − 𝜑𝜈) + 10𝜑3
𝜈 (1 − 𝜑𝜈)2 + 5𝜑2

𝜈 (1 − 𝜑𝜈)3 −

5
2𝜑2

𝜈 (1 − 𝜑𝜈)

⎛⎝ ∑︁
𝛽<𝛾,𝛽,𝛾 ̸=𝜈

(𝜑𝛽 − 𝜑𝛾)2

⎞⎠
+ 15𝜑2

𝜈𝜑𝛽𝜑𝛾𝜑𝛿 ∀𝜈, (𝛽, 𝛾, 𝛿 ̸= 𝜈)

The process when done for five phases gives the following form of the interpolation
function,

ℎ𝜈 (𝜑) = 𝜑5
𝜈 + 5𝜑4

𝜈 (1 − 𝜑𝜈) + 10𝜑3
𝜈 (1 − 𝜑𝜈)2 + 45

8 𝜑2
𝜈 (1 − 𝜑𝜈)3 −

15
8 𝜑2

𝜈 (1 − 𝜑𝜈)

⎛⎝ ∑︁
𝛽<𝛾,𝛽,𝛾 ̸=𝜈

(𝜑𝛽 − 𝜑𝛾)2

⎞⎠
+ 15𝜑2

𝜈

⎛⎝ ∑︁
𝛽<𝛾<𝛿,𝛽,𝛿,𝛾 ̸=𝜈

𝜑𝛽𝜑𝛾𝜑𝛿

⎞⎠+ 24𝜑𝜈𝜑𝛼𝜑𝛽𝜑𝛾𝜑𝛿

∀𝜈, (𝛼, 𝛽, 𝛾, 𝛿 ̸= 𝜈)

The process can now be generalized for N phases, and the interpolation function looks
like,

ℎ𝜈 (𝜑) = 𝜑5
𝜈

(︂
6 − 15 (𝑁 − 2)

2 (𝑁 − 1)

)︂
+ 𝜑4

𝜈

(︂
−15 + 45 (𝑁 − 2)

2 (𝑁 − 1)

)︂
+

𝜑3
𝜈

⎛⎝10 + 15
2 (𝑁 − 1)

⎛⎝ ∑︁
𝛽<𝛾(𝛽,𝛾 ̸=𝜈)

(𝜑𝛽 − 𝜑𝛾)2

⎞⎠− 45
2

𝑁 − 2
𝑁 − 1

⎞⎠+

𝜑2
𝜈

⎛⎝15 (𝑁 − 2)
2 (𝑁 − 1) − 15

2 (𝑁 − 1)

⎛⎝ ∑︁
𝛽<𝛾(𝛽,𝛾 ̸=𝜈)

(𝜑𝛽 − 𝜑𝛾)2

⎞⎠+ 15

⎛⎝ ∑︁
𝛽<𝛾<𝛿(𝛿,𝛽,𝛾 ̸=𝜈)

𝜑𝛿𝜑𝛽𝜑𝛾

⎞⎠⎞⎠+

24𝜑𝜈

⎛⎝ ∑︁
𝛽<𝛾<𝛿<𝛼(𝛼,𝛿,𝛽,𝛾 ̸=𝜈)

𝜑𝛿𝜑𝛽𝜑𝛾𝜑𝛼

⎞⎠
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Performing quantitative simulations requires one to have to control over the simulation
parameters and the resulting physical quantities they represent. To achieve this a
throrough knowledge of the phase-field model and asymptotics is essential. In this
chapter, we look into the selection of simulation parameters 𝛾𝛼𝛽 and 𝜀 when setting the
surface energies 𝜎̃𝛼𝛽 and interface width Λ̃𝛼𝛽 for the case when the phase-field model
with a free-energy functional is used. To start with one can derive the quantities 𝜎̃𝛼𝛽

and Λ̃𝛼𝛽 given the free energy landscape in the following manner:

𝜎̃𝛼𝛽 = 2𝛾𝛼𝛽𝑇

∫︁ 1

0

√︃
16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼) + 𝜀

𝛾𝛼𝛽𝑇
ΔΨ (𝑇, 𝑐, 𝜑)𝑑𝜑𝛼 (D.1)

Λ̃𝛼𝛽 = 𝜀

∫︁ 1

0

𝑑𝜑𝛼√︃
16
𝜋2 𝜑𝛼 (1 − 𝜑𝛼) + 𝜀

𝛾𝛼𝛽𝑇
ΔΨ (𝑇, 𝑐, 𝜑)

, (D.2)

where ΔΨ (𝑇, 𝑐, 𝜑) is the grand potential excess across the interface between two bulk
phases at equilibrium given as,

(︁
𝑓 (𝑇, 𝑐, 𝜑) −

∑︀𝐾−1
𝑖=1 𝜇𝑖𝑐𝑖

)︁
−(︁

𝑓 (𝑇, 𝑐, 𝜑) −
∑︀𝐾−1

𝑖=1 𝜇𝑖𝑐𝑖

)︁
𝜑𝛼=0

. To determine the simulation parameters 𝛾𝛼𝛽 the two
Eqns. D.1 and D.2, need to be solved simultaneosly.
While this is possible for the case where when the grand potential excess is small D.1a,
in other cases there exist infinite solutions for 𝛾𝛼𝛽 and 𝜀 along the intersecting isolines
for 𝜎̃𝛼𝛽 = 𝐾1 and Λ̃ = 𝐾2, where 𝐾1, 𝐾2 are required surface energies and the interface
widths desired in the simulations D.1b. One must note, that in this case, once, the
surface tension is fixed, there exists only one interface width Λ̃𝛼𝛽 and hence is no longer
a degree of freedom. In the case of of multi-phases, the surface energies and the interface
widths of all the interfaces cannot be fixed independently with just one parameter 𝜀. In
such cases, it makes sense to resolve, the smallest interface with the required number
of grid points. With this value of 𝜀, the parameter 𝛾𝛼𝛽 of the other interfaces can be
derived using the expression of the surface energy D.1.

D.1. Example

Consider a binary eutectic system of three phases modeled with idealized free energies of
the form,

𝑓𝛼 (𝑇, 𝑐) = 𝑐𝐿𝛼 (𝑇 − 𝑇 𝛼
𝐴)

𝑇 𝛼
𝐴

+ (1 − 𝑐) 𝐿𝛼
𝐵

(︁
𝑇 − 𝑇 𝐵

)︁
𝑇 𝐵

𝛼

+ 𝑇 (𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐))

with the parameters for the free energy 𝐿𝛼
𝑖 given as, 𝐿𝛼

𝐴 = 𝐿𝛼
𝐵 = 𝐿𝛽

𝐴 = 𝐿𝛽
𝐵 = 5.0, 𝑇 𝛼

𝑖

given as, 𝑇 𝛼
𝐴 = 𝑇 𝛽

𝐵 = 1.0 and 𝑇 𝛼
𝐵 = 𝑇 𝛽

𝐴 = 0.72318. With these values, the simulation
parameters of the solid-solid interface are derived as 𝛾𝛼𝛽 = 0.285224 and 𝜀 = 6.3252,
to retrieve a surface energy 𝜎̃𝛼𝛽 = 1.0 and Λ̃𝛼𝛽 = 10.0. For the other interfaces, we
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Figure D.1.: Two possibilities that might arise when treating real systems. In (a), the simulation
parameters 𝛾𝛼𝛽 and 𝜀 can be fixed uniquely, the solution given by the intersection
of the isolines 𝜎̃𝛼𝛽 = 𝑐𝑜𝑛𝑠𝑡 and Λ̃ = 𝑐𝑜𝑛𝑠𝑡. When the magnitude of the grand
potential goes higher, there no longer exists a unique solution as in (b) and a range
of solutions exists which is given by the overlap of the required isolines of 𝜎̃𝛼𝛽 and
Λ̃𝛼𝛽

derive the surface energies 𝜎̃𝛼𝑙 = 𝜎̃𝛽𝑙 = 1.0 using the value for 𝜀 = 6.3252 and calculating,
𝛾𝛼𝑙 = 𝛾𝛽𝑙 = 0.7254328. The system of three phases are set at the critical undercooling

given by Δ𝑇 = Γ𝛼𝑙𝜅 = Γ𝛽𝑙𝜅, where 𝜅 = 2 sin 𝜃

𝜆
and 𝜆 is half the box-width that one is

simulating. The angles at equilibrium are measured by fitting circles as shown below,
and were calculated as 120.33, which compares well to the theoretical prediction given by

Figure D.2.: Circle fit of the both solid-liquid interfaces at equilibrium, when the system is set
at the critical undercooling

the Young’s equilibrium condition.
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The anti-trapping current is derived to be of the form,

𝑗𝑎𝑡 = −𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

∇𝜑𝛼

|∇𝜑𝛼|
. (E.1)

where 𝑔𝛼 (𝜑𝛼) and ℎ𝛼 (𝜑𝛼) are interpolation functions interpolating the diffisivities and
the grand potentials respectively. The anti-trapping current enters the diffusion equation
in the following form,

𝜕𝑐

𝜕𝑡
= ∇ · (𝑀 (𝑇, 𝑐, 𝜑) ∇𝜇 − 𝑗𝑎𝑡) . (E.2)

The aim with the dicretization is to have all quantities computed at grid-point 𝑖, 𝑗, 𝑘
with second order accuracy in space. For this, gradients of the chemical potential are
computed with second order accuracy at off-grid positions shifted by half the cell-size in
each direction. Similarly, the values of 𝑀 (𝑇, 𝑐, 𝜑) are determined at the off-grid positions
by averaging the values of the neighboring cells in each direction. A description of this is
given below,

𝑀 (𝑇, 𝑐, 𝜑) ∇𝑥𝜇𝑖,𝑗,𝑘 = 1
2
(︁
𝑀
(︁
𝑇 𝑖,𝑗,𝑘, 𝑐𝑖,𝑗,𝑘, 𝜑𝑖,𝑗,𝑘

)︁
+ 𝑀

(︁
𝑇 𝑖+1,𝑗,𝑘, 𝑐𝑖+1,𝑗,𝑘, 𝜑𝑖+1,𝑗,𝑘

)︁)︁
(︁
𝜇𝑖+1,𝑗,𝑘 − 𝜇𝑖,𝑗,𝑘

)︁
Δ𝑥

𝑀 (𝑇, 𝑐, 𝜑) ∇𝑦𝜇𝑖,𝑗,𝑘 = 1
2
(︁
𝑀
(︁
, 𝑇 𝑖,𝑗,𝑘, 𝑐𝑖,𝑗,𝑘, 𝜑𝑖,𝑗,𝑘

)︁
+ 𝑀

(︁
𝑇 𝑖,𝑗+1,𝑘, 𝑐𝑖,𝑗+1,𝑘, 𝜑𝑖,𝑗+1,𝑘

)︁)︁
(︁
𝜇𝑖,𝑗+1,𝑘 − 𝜇𝑖,𝑗,𝑘

)︁
Δ𝑦

𝑀 (𝑇, 𝑐, 𝜑) ∇𝑧𝜇𝑖,𝑗,𝑘 = 1
2
(︁
𝑀
(︁
, 𝑇 𝑖,𝑗,𝑘, 𝑐𝑖,𝑗,𝑘, 𝜑𝑖,𝑗,𝑘

)︁
+ 𝑀

(︁
𝑇 𝑖,𝑗,𝑘+1, 𝑐𝑖,𝑗,𝑘+1, 𝜑𝑖,𝑗,𝑘+1

)︁)︁
(︁
𝜇𝑖,𝑗,𝑘+1 − 𝜇𝑖,𝑗,𝑘

)︁
Δ𝑧

.

With this the gradients in each direction are second-order accurate at offset grid positions,
given by (𝑖 + 1/2, 𝑗, 𝑘) , (𝑖, 𝑗 + 1/2, 𝑘) , (𝑖, 𝑗, 𝑘 + 1/2) in directions 𝑥, 𝑦, 𝑧 respectively.
Similarly, we require the anti-trapping current at the off-grid positions, hence we perform
the following discretization,

(𝑗𝑥
𝑎𝑡)

𝑖+
1
2 ,𝑗,𝑘

=
[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖+

1
2 ,𝑗,𝑘

(∇𝑥𝜑𝛼)
𝑖+

1
2 ,𝑗,𝑘

|∇𝜑𝛼|𝑖+1/2,𝑗,𝑘

(𝑗𝑦
𝑎𝑡)

𝑖,𝑗+
1
2 ,𝑘

=
[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗+

1
2 ,𝑘

(∇𝑦𝜑𝛼)
𝑖,𝑗+

1
2 ,𝑘

|∇𝜑𝛼|𝑖,𝑗+1/2,𝑘
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(𝑗𝑧
𝑎𝑡)

𝑖,𝑗,𝑘+
1
2

=
[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗,𝑘+

1
2

(∇𝑧𝜑𝛼)
𝑖,𝑗,𝑘+

1
2

|∇𝜑𝛼|𝑖,𝑗,𝑘+1/2
.

Next we elaborate each of the terms in the expressions.[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖+1/2,𝑗,𝑘

=

1
2

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗,𝑘

+

1
2

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖+1,𝑗,𝑘

.

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗+1/2,𝑘

=

1
2

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗,𝑘

+

1
2

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗+1,𝑘

.

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗,𝑘+1/2

=

1
2

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗,𝑘

+

1
2

[︃
−𝜋𝜀

4
𝑔𝛼 (𝜑𝛼) (1 − ℎ𝛼 (𝜑𝛼))√︀

𝜑𝛼 (1 − 𝜑𝛼)
(𝑐𝛽 (𝜇, 𝑇 ) − 𝑐𝛼 (𝜇, 𝑇 ))𝜕𝜑𝛼

𝜕𝑡

]︃
𝑖,𝑗,𝑘+1

.

The gradients are derived at the off-grid position as,

(∇𝑥𝜑𝛼)𝑖+1/2,𝑗,𝑘 =
(𝜑𝛼)𝑖+1,𝑗,𝑘 − (𝜑𝛼)𝑖,𝑗,𝑘

Δ𝑥

(∇𝑦𝜑𝛼)𝑖,𝑗+1/2,𝑘 =
(𝜑𝛼)𝑖,𝑗+1,𝑘 − (𝜑𝛼)𝑖,𝑗,𝑘

Δ𝑦

(∇𝑧𝜑𝛼)𝑖,𝑗,𝑘+1/2 =
(𝜑𝛼)𝑖,𝑗,𝑘+1 − (𝜑𝛼)𝑖,𝑗,𝑘

Δ𝑧
.

Finally we need to discretize the magnitude of the gradients at the respective off grid
positions, which is done as follows,

|∇𝜑𝛼|(𝑖+1/2,𝑗,𝑘) =
√︁

(∇𝑥𝜑𝛼)2
𝑖+1/2,𝑗,𝑘 + (∇𝑦𝜑𝛼)2

𝑖+1/2,𝑗,𝑘 + (∇𝑧𝜑𝛼)2
𝑖+1/2,𝑗,𝑘
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The gradient (∇𝑥𝜑𝛼)𝑖+1/2,𝑗,𝑘 at the position is already given before, while the gradients
in the other directions are derived as follows,

(∇𝑦𝜑𝛼)𝑖+1/2,𝑗,𝑘 = 1
2
(︁
(∇𝑦𝜑𝛼)𝑖,𝑗,𝑘 + (∇𝑦𝜑𝛼)𝑖+1,𝑗,𝑘

)︁
(∇𝑦𝜑𝛼)𝑖,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖,𝑗+1,𝑘 − (𝜑𝛼)𝑖,𝑗−1,𝑘

)︁
2Δ𝑦

(∇𝑦𝜑𝛼)𝑖+1,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖+1,𝑗+1,𝑘 − (𝜑𝛼)𝑖+1,𝑗−1,𝑘

)︁
2Δ𝑦

(∇𝑧𝜑𝛼)𝑖+1/2,𝑗,𝑘 = 1
2
(︁
(∇𝑧𝜑𝛼)𝑖,𝑗,𝑘 + (∇𝑧𝜑𝛼)𝑖+1,𝑗,𝑘

)︁
(∇𝑧𝜑𝛼)𝑖,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖,𝑗,𝑘+1 − (𝜑𝛼)𝑖,𝑗,𝑘−1

)︁
2Δ𝑧

(∇𝑦𝜑𝛼)𝑖+1,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖+1,𝑗,𝑘+1 − (𝜑𝛼)𝑖+1,𝑗,𝑘−1

)︁
2Δ𝑧

.

Similarly, the vector-norms at the other offset grid positions can be determined.

|∇𝜑𝛼|(𝑖,𝑗+1/2,𝑘) =
√︁

(∇𝑥𝜑𝛼)2
𝑖,𝑗+1/2,𝑘 + (∇𝑦𝜑𝛼)2

𝑖,𝑗+1/2,𝑘 + (∇𝑧𝜑𝛼)2
𝑖,𝑗+1/2,𝑘

The gradient (∇𝑦𝜑𝛼)𝑖,𝑗+1/2,𝑘 is given before. The other gradients are derived as,

(∇𝑥𝜑𝛼)𝑖,𝑗+1/2,𝑘 = 1
2
(︁
(∇𝑥𝜑𝛼)𝑖,𝑗,𝑘 + (∇𝑥𝜑𝛼)𝑖,𝑗+1,𝑘

)︁
.

(∇𝑥𝜑𝛼)𝑖,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖+1,𝑗,𝑘 − (𝜑𝛼)𝑖−1,𝑗,𝑘

)︁
2Δ𝑥

(∇𝑥𝜑𝛼)𝑖,𝑗+1,𝑘 =

(︁
(𝜑𝛼)𝑖+1,𝑗+1,𝑘 − (𝜑𝛼)𝑖−1,𝑗+1,𝑘

)︁
2Δ𝑥

(∇𝑧𝜑𝛼)𝑖,𝑗+1/2,𝑘 = 1
2
(︁
(∇𝑧𝜑𝛼)𝑖,𝑗,𝑘 + (∇𝑧𝜑𝛼)𝑖,𝑗+1,𝑘

)︁
.

(∇𝑧𝜑𝛼)𝑖,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖,𝑗,𝑘+1 − (𝜑𝛼)𝑖,𝑗,𝑘−1

)︁
2Δ𝑧

(∇𝑧𝜑𝛼)𝑖,𝑗+1,𝑘 =

(︁
(𝜑𝛼)𝑖,𝑗+1,𝑘+1 − (𝜑𝛼)𝑖,𝑗+1,𝑘−1

)︁
2Δ𝑧

.

Finally, the norm on the offset grid position in the z-direction given by

|∇𝜑𝛼|(𝑖,𝑗,𝑘+1/2) =
√︁

(∇𝑥𝜑𝛼)2
𝑖,𝑗,𝑘+1/2 + (∇𝑦𝜑𝛼)2

𝑖,𝑗,𝑘+1/2 + (∇𝑧𝜑𝛼)2
𝑖,𝑗,𝑘+1/2.



E.1. Parallelization 187

The gradient in the z-direction (∇𝑧𝜑𝛼)𝑖,𝑗,𝑘+1/2 is given before while the gradient in the
other directions can be derived as,

(∇𝑥𝜑𝛼)𝑖,𝑗,𝑘+1/2 = 1
2
(︁
(∇𝑥𝜑𝛼)𝑖,𝑗,𝑘 + (∇𝑥𝜑𝛼)𝑖,𝑗,𝑘+1

)︁
(∇𝑥𝜑𝛼)𝑖,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖+1,𝑗,𝑘 − (𝜑𝛼)𝑖−1,𝑗,𝑘

)︁
2Δ𝑥

(∇𝑥𝜑𝛼)𝑖,𝑗,𝑘+1 =

(︁
(𝜑𝛼)𝑖+1,𝑗,𝑘+1 − (𝜑𝛼)𝑖−1,𝑗,𝑘+1

)︁
2Δ𝑥

(∇𝑦𝜑𝛼)𝑖,𝑗,𝑘+1/2 = 1
2
(︁
(∇𝑦𝜑𝛼)𝑖,𝑗,𝑘 + (∇𝑦𝜑𝛼)𝑖,𝑗,𝑘+1

)︁
(∇𝑦𝜑𝛼)𝑖,𝑗,𝑘 =

(︁
(𝜑𝛼)𝑖,𝑗+1,𝑘 − (𝜑𝛼)𝑖,𝑗−1,𝑘

)︁
2Δ𝑦

(∇𝑦𝜑𝛼)𝑖,𝑗,𝑘+1 =

(︁
(𝜑𝛼)𝑖,𝑗+1,𝑘+1 − (𝜑𝛼)𝑖,𝑗−1,𝑘+1

)︁
2Δ𝑦

.

E.1. Parallelization

In this section, we discuss the terms transferred for parallelization in the z-direction.
While all terms, related to the gradients in the phase-field variable 𝜑 are completely
calculated with the imposition of a single boundary layer for each worker, which contains
the information about the values of the 𝜑𝛼 from the neighboring worker, we require
additional transfer variables 𝜕𝜑𝛼

𝜕𝑡
, for the anti-trapping current. We calculate this term

by the following expression:

𝜕𝜑𝛼

𝜕𝑡
≈ 𝜑𝑛+1

𝛼 − 𝜑𝑛
𝛼

Δ𝑡
.

To understand, how this can be done correctly and effectively, it is essential to have a look
at the calculation procedure in the domain. For the original (without the anti-trapping
current), we use three buffer layers(gradient layers) for efficient utilization of the memory
resources. This suffices since we use the nearest neighbor and second nearest neighbors
for the dicretization of all the gradients. This is done as follows: For all points in a
layer, we calculate one-sided gradients in the positive direction. Then the layers are
swapped such that the next layer gradients are calculated. After this we have the relevant
gradients in the 𝑧− direction, that we need to compute the divergence as:

∇ · (∇𝜑𝛼)𝑖,𝑗,𝑘 = ∇𝑖,𝑗,𝑘
𝑧 𝜑𝛼 − ∇𝑖,𝑗,𝑘−1

𝑧 𝜑𝛼

Δ𝑧
,

where ∇𝑖,𝑗,𝑘−1
𝑧 contains the gradient in the earlier layer (z-1). With the divergence

calculations, we are in a position to calculate all the terms required for the evolution of
the 𝜑𝛼 equation.
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For the antitrapping term however, we need terms related to 𝜕𝜑𝛼

𝜕𝑡
at the off-grid positions.

And we have seen in the discretization this is done through averaging the values of the
cell of calculation and next neighbor cell in the direction. This requires that we have the
𝜑𝛼 update of the present cell and the next cell in the positive direction before we calculate
the update for the 𝑐 field. Hence, this requires that 𝑐 calculation be one step behind that
of the phase-field such that all terms related to the 𝜑𝛼 are from the time-step (n+1). The
𝜇 however is from the time step (n-1), which is consistent with the mass-conservation
being satisfied at time-step (n-1). To achieve this whole thing entirely, requires that we
increase the number of gradient layers by 1 and we structure our gradient layers naming
them -1,0,1,2. While the calculation of 𝜑𝛼 uses the gradient layers 0,1,2, the calculation
of the concentration field is one step behind, and consequently one swap behind the
phase-field and therefore comprises of -1,0,1. This now enables the computation in the
parallelization direction to be of the same type as the other directions.

Mobilities

The mobilities 𝑀 (𝜑, 𝑐, 𝑇 ) are also required at the off-grid positions which are computed
similarly by averaging the cell value and that of the neighbour cell. Since, the concentra-
tion is one iteration behind, we utilize the 𝜑𝑛+1

𝛼 for the computation of 𝑀 (𝑇, 𝑐, 𝜑).

MPI exchange

In the present parallelization scheme, we divide the domain in slices, parallel to the
𝑧−direction and the present dicretization scheme requires that we have the 𝜕𝜑𝛼

𝜕𝑡
at the

boundary cells when we compute the antitrapping flux term for the boundary cells in
the 𝑧− direction. This is however impossible in the normal calculation scheme, since the
update of the boundary cells is only after the complete calculation of the whole slice. To
achieve this we do the following: For the the last boundary cell, we calculate the change
in 𝜑𝛼 from the neighboring worker, and store it in array for future calculation, before the
start of the iteration for the entire slice. Note, this calculation does not modify the 𝜑𝛼

values, but only computes the change in 𝜑𝛼. For eg: For the cell 𝑁𝑧 − 1, we compute the
𝜕𝜑𝛼

𝜕𝑡
of the layer 𝑧 = 1 from the next worker, and similarly the change of 𝜑𝛼 for 𝑧 = 0

from 𝜕𝜑𝛼

𝜕𝑡
of the the layer 𝑁𝑧 − 2 from the previous layer. The exchange of variables and

the movement of the extended gradient layer can be seen in Figure E.1. This requires
however, that we update the 𝜑𝛼 values of the boundary before the 𝑐 calculation. This
is performed through a manual update using the change in 𝜑𝛼 values received from
the neigboring workers. This update is essential both for the correct calculation of the
mobilities and the correct calculation of the antitrapping current.
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Figure E.1.: Modifications implemented, namely the increase of the gradient layers and the
extra transfer variable "the change of the phase-field".
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F.1. List of symbols
Symbol Description Units
𝜎𝛼𝛽, 𝛾𝛼𝛽 Surface entropy J/𝑚2𝐾

𝜎̃𝛼𝛽, 𝜎𝛼𝛽 Surface energy J/𝑚2

𝜏𝛼𝛽, 𝜏 Mobility(Phase-field(Free Energy Functional)) Js/𝑚4

𝜔𝛼𝛽, 𝜔 Mobility(Phase-field(Entropy Functional)) Js/𝑚4𝐾

𝑓 bulk free energy density J/𝑚3

𝑠 bulk entropy density J/𝑚3𝐾

Ψ grand potential density J/𝑚3

𝒮 Entropy Functional J/𝐾

ℱ Free Energy Functional J
Ω Grand Potential Functional J
𝜏 Non-dimensional mobility(free energy) -
𝜁 Non-dimensional mobility(grand potential) -
Λ Lagrange Parameter J/𝑚3𝐾

Λ̃𝛼𝛽 Interface Thickness 𝑚

𝑀𝑖𝑗 Mobilities(Concentration Equation) 𝐾𝑚3/𝐽

𝑀̃, 𝐹 Solvability Integrals -
𝑉𝑚 Molar Volume 1/𝑚3

𝑅 Gas Constant 𝐽/𝐾

𝑇 Temperature 𝐾

𝑢 Non-dimensional undercooling -
𝐶𝑣 Heat capacity J/𝑚3𝐾

𝐾 Thermal Conductivity 𝐽/𝑚𝑠𝐾

𝜅 Thermal Diffusivity 𝑚2/𝑠

𝐿𝛼 Latent heat 𝐽/𝑚3

𝜆 Lamellar spacing 𝑚

𝜆̃ Temperature Scale 𝐾

𝛼̃ Scaled Length(Diffusion Length/Length scale) -
𝑝 Interface Peclet number -
𝑔 Interpolation function, non-dimensional parameter -
ℎ Interpolation function -
𝐷 Diffusivity 𝑚2/𝑠

Ξ𝛼 Noise Amplitude(Phase-field) -
𝑟 Function of 𝜑 -
𝑠 Function of 𝜑 -
Γ Gibbs-Thomson Coefficient 𝐾𝑚

𝜇 Chemical potential 𝐽/𝑚3

𝜇𝑖𝑛𝑡 Kinetic coefficient 𝑚/𝑠𝐾

𝛽 1/𝜇𝑖𝑛𝑡 𝐾𝑠/𝑚

𝒫, 𝒬, ℛ, 𝒮 Trignometric functions -
𝛼, 𝛽, 𝛾, 𝛿 Phase indices -
𝑖, 𝑗, 𝑘, 𝐴, 𝐵 Component Indices -
𝜀 Parameter relating to length(dimensional/non-dimensional) m/-
𝑐, 𝜑 Phase and component vectors -
𝑉 Velocity 𝑚/𝑠

𝑣 Non-dimensional velocity -
𝑙𝑐 Diffusion Length(D/V) m
𝑑𝑜 Capillary length m
𝑚 Slopes of Liquidus/Solius 𝐾
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𝑡 time in simulations 𝑠

𝑘𝑛 Wave number 1/𝑚

𝑎 gradient entropy function 𝐽/𝑚2𝐾

𝑎̃ gradient energy function 𝐽/𝑚2

𝑤 entropy potential 𝐽/𝑚2𝐾

𝑤̃ energy potential 𝐽/𝑚2
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