
Automated Object Layout Optimization
in a Portable Microkernel

Uwe Dannowski
System Architecture Group, Universität Karlsruhe (TH), Germany

Abstract— In a portable microkernel, the increasing diversity
of target configurations can lead to software complexity prob-
lems. Insufficiencies of current kernel programming techniques
manifest in excessive preprocessor use for code selection, in code
duplication, and in suboptimal performance. Object-oriented
programming can solve the portability problems. However, the
language implementation of inheritance often enforces a memory
layout of objects that is governed by inheritance relations, not
by access patterns, resulting in suboptimal cache usage on the
kernel’s critical path.

In this paper we present an automated approach to eliminating
inheritance-induced overheads in selected performance-critical
data structures. We combine class flattening and profile-guided
data member reordering and heavily rely on microkernel char-
acteristics. Evaluation in the L4 microkernel indicates that we
can use fine-grained class hierarchies in the kernel at no cost
and still optimize for the target system, allowing for portable yet
efficient microkernels.

I. INTRODUCTION

Microkernels can and must be fast. A successful micro-
kernel must have minimal cache footprint and execution time
[11]. Any unnecessary overhead reduces the performance of
the system on top of the microkernel. At the same time,
microkernels, at core of the system, must be maintainable and
portable — traditionally considered a contradiction to the first
objective [10].

The diversity of target configurations is the root cause of
portability problems. Modularity is the key to configurability
and thus to portability: Code that is specific to one con-
figuration or a group of configurations must be separated
from generic code. Placed in different modules they are
combined when building for the particular configuration. We
followed this principle in our initial implementation of the
L4Ka::Pistachio microkernel [17]. We identified configuration
dimensions, such as the architecture, the processor family
member, the platform, the amount of parallelism, or even the
kernel API, and let the build system choose the appropriate
fragments for the particular point in the configuration space.
However, we found that insufficiencies of current kernel pro-
gramming techniques lead to excessive preprocessor use for
code selection, code duplication, or suboptimal performance.

Object-oriented programming strongly encourages modu-
larity [4]. With inheritance, classes can be constructed from
other classes, enabling fine-grained combination and stepwise
refinement of functionality. In earlier work [6] we showed
how inheritance can be used to construct classes for kernel
objects from configuration-specific super-classes to manage
the configuration diversity in the microkernel.

This approach solves problems regarding code duplication
and code selection. However, the language implementation of
inheritance imposes high run-time overheads that are unaccept-
able in a microkernel. Whereas in a simple class, the order of
data members (or fields) in the class declaration determines the
layout of the object [7], the object memory layout of classes
using inheritance is governed by the inheritance relationship,
and unnamed pointers (vtable pointers) may be added to the
object — both in support of dynamic polymorphism. Figure 1
illustrates the object memory representation of a C++ class
using inheritance.

A

B1 B2

C

(a) A class hierarchy
with a virtual base
class. Each class con-
tains an int data
member.

1: c

<B1> =
<A> = _vptr.A = 0x8048858

a = 10
_vptr.B1 = 0x804882c
b1 = 177

<B2> = _vptr.B2 = 0x8048840
b2 = 178

c = 12

(b) The object layout of C. Addresses increase
by four per line. Data members are located in
inseparable subobjects. Three vtable pointers are
added, inflating the object from 16 to 28 bytes.

Fig. 1. Object memory representation in C++ (gcc)

The superclasses A, B1, and B2 form subobjects in the
object of the inheriting class C, allowing to treat an object of
class C as an object of a superclass. To call the appropriate
version of a virtual function for an object without statically
knowing its exact type, some sort of run-time type identifier
is required. The compiler therefore adds a pointer to a table
of function pointers, the virtual function table, to each object
and invokes the function via a double indirection [16].

Both, the inheritance-dictated placement of data members
and the introduction of vtable pointers take away control
over the memory layout from the programmer, resulting in
poor cache usage on the kernel’s critical path. The optimal
layout of data structures accessed on the kernel’s critical path
depends on many factors, such as the architecture [10], [13],
the particular choice of algorithms in the kernel, and the
workload atop the kernel.

Dynamic polymorphism is, however, not necessary when
inheritance is solely used as a tool to efficiently compose
classes. This is exactly the case for the way we proposed to
construct kernel objects from a set of configuration-specific
superclasses. Code using such a class makes no assumptions
about how the class was constructed, and inheritance can be

22

safely removed without changing the interface to the class.
In this paper we present an automated approach to elimi-

nating inheritance-induced overheads in selected performance-
critical kernel data structures. We combine class flattening
and profile-guided data member reordering, and heavily rely
on microkernel characteristics to customize the optimization
process. Class flattening removes inheritance, turns virtual
functions into normal functions, and prepares the class for
data member reordering. Member reordering arranges data
members in the class declaration for optimal cache usage.
Profiling determines data member access patterns on the
kernel’s critical path under workload. We integrate flattening,
profiling, and member reordering into the kernel build process
as illustrated in Figure 2.

������������	
���� �
�������
�
�����	
���� �
�� ������
��	��	

����������������� ���
������		 ���������	��������
���������	
���� �
������������������������
���������� ������
���������
�

Fig. 2. The optimization embedded into the kernel build process. A kernel
with flattened classes is built and profiled to collect access patterns on the
critical path. In a second step, members in the flattened classes are reordered
for optimal cache usage.

Class flattening and data member reordering are whole
program transformations. We implement them as source-to-
source transformations that replace the preprocessing stage in
the usual per-file preprocess-compile-assemble build process.
Not integrating both these transformations into the compiler
has the benefit of compiler independence, and does not require
a custom-built toolchain for using them.

In previous work [6], we have already demonstrated how
class flattening can be successfully used to eliminate the
overhead of virtual function calls in a microkernel. Due to
space constraints, we will omit a detailed discussion of class
flattening in this paper and focus on field reordering and
profiling in the context of a portable microkernel.

The remainder of this paper is structured as follows: Sec-
tion II briefly introduces class flattening. In Section III we
discuss strategies for data member reordering in microkernel
objects. Section IV presents a profiling approach tailored at
extracting access patterns for the critical path from the micro-
kernel. In Section V we evaluate our optimization approach.
Section VI discusses related work and Section VII concludes.

II. TRANSPARENT CLASS FLATTENING

Class flattening produces a single flat class from a class
hierarchy by copying all inherited members from base classes
into the most derived class and removing the inheritance rela-
tionship. Following standard lookup, overriding functions and

shadowing data members in a derived class hide their inherited
versions, so that shadowed data members and overridden
functions become inaccessible and can simply be removed.

Class flattening can be applied as a transparent optimization,
such that the code using the class does not need to be modified.
The conditions that enable transparent class flattening are
discussed in [14].

III. DATA MEMBER REORDERING

Data member reordering attempts to optimize the memory
layout of compound objects (records, structs, classes) accord-
ing to certain criteria by manipulating the location of data
members inside the binary object representation. Type-safe
languages abstract from the physical storage layout and leave
placement of members to the compiler or run-time system. All
layout optimizations are thus automatically valid with respect
to program correctness. In contrast, type-unsafe languages
expose the locations of members and allow (limited) control
of member placement, for example by order of appearance in
the compound type declaration. Compound types that are used
to represent data structures with a predefined layout such as
device registers, hardware-walked tables, API data types, or
structured storage in files must not have their data members
reordered. However, when code makes no assumption about
the internal organization of a type, program correctness is not
affected by reordering members. In such cases, data member
reordering is transparent to the code using the type and can
be applied automatically.

Reordering can even be applied automatically in the pres-
ence of programmer-written assembly code that references
objects defined in the high-level language, as it is often
found in kernels, for example in inline assembly fragments
and entry and exit stubs of exception handlers and system
calls. Such assembly code can automatically adapt to changing
object layouts when it uses symbolic instead of literal offsets
to address fields in objects. The respective symbols can be
automatically derived from the high-level object definition at
build time, appear as constant displacements in the assembly
code, and thus will cause no run-time overhead.

Data member reordering maximizes spatial locality of com-
pound data structures larger than a cache block in order to
optimize cache behavior. Memory reference traces provide
information about a program’s memory access behavior. Data
members accessed contemporaneously are placed close to-
gether to minimize the number of cache blocks used.

The mapping of data members to cache blocks depends on
the location of the member in the object and the location of
the object relative to the cache block boundaries. Allocating
objects at cache block boundaries or at a fixed offset to them
allows to minimize the number of cache blocks used. For
arbitrarily allocated objects, the worst case cache footprint
after reordering is one cache block more than the minimum.
The performance gained by aligning objects at cache block
boundaries may well make up for the potential waste of mem-
ory due to fragmentation. Furthermore, alignment restrictions
of data members may already dictate minimum alignment of a

23

compound object. Also, when an object is known to be aligned
at its size (or the next higher power of two), an object’s base
address can be derived by masking a pointer to an arbitrary
location inside the object.

The remainder of this section describes strategies driving
data member reordering that have not been considered by
previous work. These strategies may lead to higher opti-
mization potential or can simplify the reordering algorithm.
Depending on hardware configuration and usage scenarios,
not all strategies are necessarily applicable at the same time.
Strategies may also, at least partially, contradict each other. It
is left to the actual reordering algorithm to choose or prioritize
them.

1) Object Roles: Based on the observation that objects of a
class show similar access behavior [5], previous work does not
distinguish objects of the same class when reordering fields.
This certainly holds true for programs that operate on a large
number of objects such as nodes in a tree. A microkernel,
however, typically manipulates only very few objects during
its short, performance-critical operations.

Objects of the same class that are referenced during an
operation may actually expose very different access patterns
for their fields. In the example shown in Figure 3, all fields of
a class worth two cache lines are accessed in a first object, X,
whereas only half of the fields (i.e., worth one cache line) are
accessed in a second object, Y. Ignoring differences in access
characteristics of different objects may result in four cache
lines referenced for both objects (Figure 3(a)). The minimum
of three cache lines can be achieved by clustering the fields
accessed in the second object into one cache line within the
cluster of fields accessed in the first object (Figure 3(b)).

YX

a

c

a

b

c

d

(a)

YX

a

c

a

c

b

d

(b)

Fig. 3. Two objects, X and Y , of the same class are accessed with different
characteristics (a). All fields a, b, c, and d are referenced in X, but only
fields a and c are referenced in Y . The cache footprint for accessing both
objects can be minimized by field reordering if the objects’ access patterns
are considered separately (b).

Although all objects of a class share one internal layout,
considering access patterns to different objects of the same
class separately may yield a higher optimization potential.

2) Field Access Mode: The set of fields of a data structure
that are referenced during an operation can be divided into
the two subsets of fields that are only read and fields that are
written. Fields that are read as well as written belong to the
written set.

Assuming a write-back cache, the number of cache lines
marked dirty by an operation has no direct influence on this
operation’s execution time (assuming no self-interference oc-
curs.) Instead, deferred write-back of dirty lines will penalize

completely unrelated code. While not beneficial for the current
operation, minimizing the number of dirty cache lines may
improve overall performance.

A minimum number of dirty lines can be achieved by pack-
ing the written fields closely together within the referenced
fields and aligning them on a cache line boundary.

3) Field Alignment: Proper alignment of fields can be a
matter of performance (penalties due to cache-line splits)
or, worse, a matter of correctness (for example, unaligned
accesses with LDR and STR instructions on ARM).

However, strict natural alignment of fields is unnecessary as
long as all accesses are aligned. For example, a 64-bit integer
can safely be 4-byte aligned when it is only ever accessed
in 32-bit words. The requirement for natural alignment can
be relaxed when the generated code is known to be safe, i.e.
by configuring the compiler to not use so-called multimedia
instructions. Operating systems kernels rarely and microker-
nels never contain such complex instructions because of the
extremely expensive management of the associated hardware
state.

Relaxed alignment requirements for large fields increase
the flexibility in placing these fields and may simplify the
placement algorithm or allow a higher level of optimization.

IV. DETERMINING FIELD ACCESS PATTERNS

Reordering fields for optimal cache usage requires precise
information about field accesses. The actual code that accesses
fields is not very interesting; the memory accesses it gener-
ates carry the required information. To drive optimization as
described in the previous section, field access information must
include the order in which fields are accessed, the access mode
(read or write), and the access width.

Profiling the actual kernel with workload on top has a
major advantage over analyzing the kernel source code: the
programming language (or languages), compiler, optimization
level, etc. determine the resulting kernel and its data structures,
but they are of no concern for the process of gathering field
access information. Also, the set of fields that are accessed on
the critical path can be a rather small subset of the fields that
can possibly be accessed by the kernel source.

The various methods for analyzing a running program are
more or less suitable for recording memory references of
kernel code on the critical path: Statistical or event-based
sampling easily identifies hot paths, but requires instruction
and register analysis to infer the target of a memory operation.
Instrumentation provides exact information, but — like sam-
pling — requires substantial infrastructure: Code for logging
and extracting the data from the kernel reside in (and pollute)
the space the target code runs in. In contrast, an extensible
full system simulator can execute the unmodified target kernel
and its workload without any infrastructure to the system to
be profiled. A simulator extension that collects and exports
profiling data is likely to be portable across various simulation
targets.

A slowdown of the target system due to run-time overhead
of profiling may result in false identification of critical paths.

24

For example, a network server as workload may experience
massive packet losses and behave differently, marking other
paths as critical. However, these problems can be side-stepped
by replacing the actual workload with a workload simulator
causing a representative mix of kernel activities.

A. Microkernel Specifics

Complete system address traces are huge and require sig-
nificant amounts of time for postprocessing. Often only a few
seconds of program execution result in gigabytes of trace
data. Field access information can be extracted from a full
address trace. However, customized tracing targeted at the
specific problem of collecting field access information for
field reordering in a microkernel can significantly reduce the
amount of trace data and the required processing.

The key to reducing trace data is to aggressively customize
the tracing process by incorporating knowledge about the tar-
get. Part of this knowledge is inherent in the way microkernels
are designed and used, part is available in the kernel source
and/or configuration information.

1) Processor Mode: Kernel objects store state information
pertaining to API objects or kernel-internal resource manage-
ment. Kernel objects are accessed by kernel code. Code that
accesses kernel objects is executing in the processor’s privi-
leged mode. Consequently, for collecting access information
to kernel object fields, the tracing facility needs to consider
memory accesses only while the processor is executing in
privileged mode.

2) Path Length: Microkernel invocations can be thought
of as separate, short runs of the program “microkernel”,
interspersed with executions of user code. Performance-critical
system call handlers in a microkernel are rather short, typically
in the order of tens or a few hundreds of instructions. With
such a limited code path length, a complete trace of one kernel
invocation is limited in size, too. For example, all paths taken
through the L4Ka::Pistachio microkernel during a run of the
pingpong IPC benchmark perform between 2 and 85 accesses
to kernel objects.

3) Similarity: Kernel invocations that perform the same
operation on different kernel objects produce similar traces.
For example, a trace of an IPC system call transferring three
words between threads A and B will not differ from a trace
for that IPC call between threads C and D, except for the
thread identifiers and hence the respective kernel objects being
referenced. Short traces with an expected high similarity can
be efficiently processed and compressed online instead of
generating a complete trace for offline analysis.

4) Number of Objects: Often-called and thus performance-
critical microkernel invocations typically reference only very
few kernel objects. For example, a simple IPC message trans-
fer between two threads in the L4Ka::Pistachio microkernel
involves two, at most three thread control blocks (TCBs). More
complex operations involving many kernel objects, such as
address space deletion, tend to be invoked less frequently.

5) Address Ranges: The target classes for field reordering
are known in advance and so is the size of objects of

these classes. Addresses of statically allocated kernel objects
are known at kernel build time. Addresses of dynamically
allocated objects can only be determined at run-time, but may
be easy to track in certain cases. For example, almost all L4
kernels store TCBs in a linear virtual array. At the time of
writing, only one L4 kernel [13] allocates thread control blocks
dynamically from the kernel heap. However, it then stores their
addresses in a statically allocated table. Memory references
can be filtered by address range immediately to further analyze
only references to objects of target classes.

B. Precise Tracing for Field Reordering

Complete memory reference traces of programs are precise
in the sense that they do not omit information. However, they
often contain large amounts of useless information. In contrast,
field affinity graphs [5] and member transition graphs [9]
store only pairwise temporal information about field accesses.
Prior research has shown that such pairwise information is
theoretically insufficient for finding an optimal field placement
[15], and has suggested to keep complete traces when the
sequence of memory references is short.

The remainder of this section describes a tracing approach
for collecting field access information to drive field reordering
for selected target classes in a microkernel. The tracing facility
performs aggressive online compression of memory reference
trace data to customize tracing by exploiting the microkernel
specifics described above. For static customization, the tracing
facility uses information from various sources: definitions in
the kernel source, addresses from the kernel binary’s symbol
table, and debug information from the kernel binary. This
information is embedded when the tracing facility is built.

The tracing facility produces sequences of field references
for different kernel invocations and their frequency of occur-
rence, whereby invocations that differ only in the addresses of
referenced objects are considered identical. These sequences
contain all the necessary information for field reordering.

1) Address Filtering and Type Inference: Memory refer-
ences are filtered by processor privilege mode and address
range as discussed in the previous section, so that the tracing
facility receives only memory references to kernel objects
that are objects of a target class for field reordering. From
the address of the memory reference, the type of the object
accessed can be inferred. Along with the information about the
memory access, the address filter delivers the base address and
the type of the referenced object.

Supporting large padding between objects in an array is
necessary as this space is often abused. For example, most L4
kernels keep the kernel stack of a thread in the unused part of
the memory block (usually 1KB or 2KB) that is allocated for
each TCB in the linear virtual array of TCBs.

2) Address Abstraction: The actual addresses of referenced
objects are not relevant for field reordering. However, accesses
to fields of different objects still need to be tracked separately
to allow optimizing for differing field usage patterns.

To distinguish between the kernel objects used during
an invocation, the tracing facility assigns sequential object

25

numbers as different objects are encountered. Objects with
different addresses that are used in the same place in similar
invocations will be assigned the same object numbers: For
example, the first TCB referenced during an IPC operation in
the L4Ka::Pistachio microkernel belongs to the target thread
of the send phase, while the second TCB referenced belongs
to the source. Substituting object numbers for object addresses
abstracts from the actual object in favor of an “object role.”
The number of objects is small so that object addresses can
be tracked efficiently.

Memory references are converted to quadruples (n, o, s, m),
with n being the number of the distinct object instance
encountered since kernel entry (not the actual address of it), o

the offset of the reference into that instance, s the access size,
and m the access mode (read vs. write.)

3) Per-class Sequences: Using the type information from
address filtering, quadruples are recorded in sequences of ac-
cesses since the kernel was entered. For every field reordering
target class a sequence of references to objects of that class is
built.

When exiting the kernel (or on the next entry), the sequence
is compared with previously recorded sequences. On a match,
a counter associated with the matching sequence is increased.
Otherwise, the sequence is added to the list of known se-
quences with a counter value of one. Runaway sequences
of long-running operations in the kernel (idle loop, kernel
debugger, etc.) are cut off when reaching an unreasonable
length.

4) Sequence Weights: The value of an access sequence’s
counter in relation to the sum of all counters represents
the weight of that access sequence in the profile. Without
information about the actual code paths taken, the sequences
describe precisely the access patterns to fields in the class and
the probability of the pattern during the tracing session. The
sequence with the highest weight should be used to determine
a new field ordering.

A sequence with a lower weight may be a subset of a
sequence with a higher weight in terms of field footprint. That
is, optimization goals do not contradict, and optimizing for the
latter also optimizes for the former, although potentially not
as much as possible. By comparing only the footprint, not
the sequence of accesses, inclusion signals a possibility for
merging both sequences, thereby increasing the weight of the
more frequent sequence.

V. EVALUATION

We evaluate data member reordering for kernel objects in
the context of the L4Ka::Pistachio microkernel. Our workload
is the standard L4 pingpong IPC benchmark which sends
simple IPC messages back and forth between two threads. The
measurement system is a 450MHz Intel Pentium III processor
with a cache line size of 32 bytes. The kernel is configured to
use the assembly implementation of the IPC path (the so-called
“fastpath”) whenever it sees fit. To simulate cache pressure
from user code, we inserted a WBINVD instruction at the

entry point of the IPC path. This instruction writes back dirty
cache lines before invalidating all data caches.

We apply automatic field reordering to the tcb_t class
that stores the kernel state of an L4 thread and is thus used
heavily during an IPC operation. Member access patterns for
the class are collected in the Simics extensible full system
simulator [20] using a custom profiling extension as described
in Section IV. The reorder tool, sharing its code base
with the collapse class flattening tool [14], performs field
reordering as a source-to-source transformation.

On the fastpath, a kernel with an optimized tcb_t class
transfers IPC messages 21–25 cycles faster than the original
kernel, about the cost of a cache miss on all levels without
prior write-back. A cache analysis of the original kernel,
shown in Figure 4, supports this: There is an outlier referenced
data member in the fifth cache line of the destination TCB.
Our field reordering algorithm moves all referenced members
to the start of the class declaration and thereby reduces the
number of cache lines for the destination TCB from three to
two.

resour ces

saved state

saved partner

misc

arch

f lags

space

scheduler

max delay
current max delay

sensitiv e prio

prior ity

absolute timeout

current timesl ice

timesl ice length

total quantum

tcb lock

send head

send list

wait list

ready list

present list

queue state

pdir cache

stack

resour ce bits

partner

thread state

utcb

cpu

mysel f local

mysel f global R

R

R W

R

R

R

R

R

R

W

R

R

W

W

R

R

W

data access sequence

Fig. 4. Accesses to members of the tcb t class on the IPC system call path.
Time progresses in units of memory accesses from left to right. The object
layout is shown vertically, with thin horizontal lines marking cache block
boundaries. R=read, W=write, gray=source TCB, white=destination TCB.

The memory layout of the tcb_t class in the original
kernel has been manually optimized by the kernel developers
to use as few cache lines as possible. Yet, its layout was not
optimal for the particular workload we happened to choose
in our evaluation: IPC between threads in different address
spaces — the most frequent kernel operation in well-structured
microkernel-based systems.

Inheritance will result in a much less compact memory
layout of the referenced members and thus in many more
cache misses. However, we have not yet completed the trans-
formation of the Pistachio source code to use fine-grained

26

inheritance to the full extend described in the introduction.
For the purpose of evaluation we instead sort data members
alphabetically by their name, assuming that we achieve a
similarly suboptimal layout as inheritance would produce. For
a kernel with alphabetically sorted tcb_t data members, we
measured IPC times 240 cycles worse than for the original
kernel.

Our evaluation shows that field reordering optimizes the
memory layout of kernel objects for minimum cache usage.
By automatically optimizing for the particular workload, it is
superior to manual optimization, which is precluded by using
inheritance anyway. By enabling the fastpath in the kernel we
showed that our optimization applies not only to C++ code
but to assembly code as well.

VI. RELATED WORK

The flat form of a class was introduced by Meyer [12] in
the context of Eiffel. Meyer sees two uses for the flat form:
inspection of the full feature set of a class by a developer,
and distribution of a class without its history. Bellur et al. [1]
describe a class flattening tool for C++, targeted at eliminating
virtual functions calls. An automated approach for variable
flattening (replacing the type of a variable with the flattened
version of the type) is suggested, but considered infeasible
due to the high cost of a full data flow analysis. Bellur et al.
also suggest use of class flattening in source code browsing
to enhance program understanding, and as a debugging aid,
because execution no longer jumps up and down in the class
hierarchy. Beyer et al. [2] discuss the impact of inheritance on
software metrics like size, coupling, and cohesion. Binder [3]
applies class flattening to reduce complexity in the context
of software testing. In previous work [6], we used class
flattening to completely eliminate the run-time overhead of
virtual functions calls in a portable microkernel. In this work,
we apply class flattening to produce a flat version of a class
whose memory layout can subsequently be optimized by
member reordering.

Truong et al. [19] introduced field reordering as a technique
to improve the cache behavior of dynamically allocated data
structures in C. Truong leaves determining the optimal layout
to the programmer, because “At present, the automatic detec-
tion of the most frequently used fields of a structure is beyond
the possibility of current compiler technology.” In combination
with a second optimization technique, instance interleaving,
Truong reports speedups of 1.08–2.53. Chilimbi et al. [5] and
Zatloukal et al. [21] describe algorithms for field reordering in
C. Based on profiling input and static analysis, a tool produces
recommendations for new field orderings that need to be
verified and implemented manually. Chilimbi et al. constructs
a field affinity graph for every structure type. Nodes represent
fields and edge weights are proportional to the frequency of
contemporaneous field accesses. Fields with high temporal
affinity are placed near each other; no assumption is made
about structure alignment on cache-line boundaries, as this
“can only be determined at run time”. Zatloukal et al. use
member transition graphs, where edges represent transition

probabilities and cache line survival probabilities. From the
graph, cache hit probabilities can be determined for any
member ordering. Based on the initial address trace, the new
ordering is subjected to a cache simulation to report the
reduced cache miss rates. Chilimbi et al. report performance
improvements of 2–3% after reordering five of the most
frequently used data structures in Microsoft’s SQL Server
whereas Zatloukal et al. achieved only 1.3% with optimizing
seven different structures. By focusing on type-safe program-
ming languages such as Oberon, Kistler and Franz [9] can
automate field reordering. They identify memory interleaving
and cache line-fill buffer forwarding as source of different
latencies for the words in a cache line after a cache miss.
Kistler and Franz also discuss optimizing the layout of derived
objects. They reorder only the fields introduced in a derived
class, because encapsulation often restricts access to inherited
fields and thus reduces temporal relations between fields from
different levels. Kistler and Franz report combined speedups
of 3%–96% for their layout optimizations.

Data packing for a given block size using pairwise infor-
mation is NP-hard [8], [18]. However, for complete access
traces, for example from extremely short sequences that are
reused many times, an algorithm can find the optimal layout in
exponential time [15]. Algorithms targeted at specific access
patterns can be more efficient [22].

Except for type-safe languages, all field reordering ap-
proaches merely produce suggestions for a new ordering and
require manual checking and implementation. We build on
programming conventions, class use restrictions, and pro-
grammer’s knowledge to automate field reordering for C++,
including rewriting the class declaration.

VII. CONCLUSION

In this paper we describe an automated approach to optimiz-
ing the object memory layout of performance-critical classes
in a portable microkernel. Inheritance, used to improve kernel
portability through modularity, dictates suboptimal object lay-
outs unsuitable for a microkernel’s critical path. We combine
transparent class flattening and profile-based field reordering
to optimize classes composed from many small, configuration-
specific classes. We rely on microkernel characteristics to
automate and aggressively customize the optimization process.
Evaluation indicates that we can eliminate inheritance-related
overheads. We enable the use of fine-grained class hierarchies
in the kernel at no cost and can automatically optimize for the
target system, allowing for portable yet efficient microkernels.

REFERENCES

[1] Umesh Bellur, Al Villarica, Kevin Shank, Imram Bashir, and Doug Lea.
Flattening C++ classes. Technical Report TR-92-23, New York CASE
Center, Syracuse NY 13244, August 21 1992.

[2] Dirk Beyer, Claus Lewerentz, and Frank Simon. Impact of inheritance
on metrics for size, coupling, and cohesion in object oriented systems. In
R. Dumke and A. Abran, editors, Proceedings of the 10th International
Workshop on Software Measurement (IWSM 2000): New Approaches
in Software Measurement, LNCS 2006, pages 1–17. Springer-Verlag,
Berlin, 2001.

[3] Robert V. Binder. Testing object-oriented systems: a status report.
American Programmer, 7(4):22–28, April 1994.

27

[4] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In
Proceedings of the IEEE Computer Society International Conference
on Computer Languages, pages 282–290, Washington, DC, 1992. IEEE
Computer Society.

[5] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-
conscious structure definition. In Proceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and Implementa-
tion (PLDI’99), pages 13–24, New York, NY, USA, 1999. ACM Press.

[6] Uwe Dannowski. Managing code complexity in a portable microkernel.
In Proceedings of the ECOOP Workshop on Programming Languages
and Operating Systems at ECOOP 2004 (ECOOP-PLOS’04), Oslo,
Norway, June 2004.

[7] International Organization for Standardization (ISO). ISO/IEC
14882:1998(E) Programming Languages — C++, September 1998.

[8] Ken Kennedy and Ulrich Kremer. Automatic data layout for distributed-
memory machines. ACM Transactions on Programming Languages and
Systems, 20(4):869–916, 1998.

[9] Thomas Kistler and Michael Franz. The case for dynamic optimization:
Improving memory-hierarchy performance by continuously adapting the
internal storage layout of heap objects at run-time. Technical Report 99–
21, University of California, Irvine, May 1999.

[10] J. Liedtke. On µ-kernel construction. In Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP), pages 237–250,
Copper Mountain Resort, CO, December 1995.

[11] J. Liedtke. µ-kernels must and can be small. In 5th International
Workshop on Object Orientation in Operating Systems (IWOOOS), pages
152–155, Seattle, WA, October 1996.

[12] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[13] Abi Nourai. A physically-addressed L4 kernel. BE thesis, University of
NSW, Sydney 2052, Australia, March 2005.

[14] Jan Oberländer. Applying source code transformation to collapse
class hierarchies in C++. Study Thesis, System Architecture Group,
University of Karlsruhe, Germany, December 2003.

[15] Erez Petrank and Dror Rawitz. The hardness of cache conscious
data placement. In Proceedings of the 29th Annual ACM Symposium
on Principles of Programming Languages (POPL’02), Portland, OR,
January 2002. Extended abstract.

[16] Bjarne Stroustrup. Multiple inheritance for C++. In Proceeding of the
Spring ’87 European Unix Systems User’s Group Conference, pages
189–208, Helsinki, Finland, May 1987.

[17] System Architecture Group. The L4Ka::Pistachio microkernel. White
paper, Karlsruhe University (TH), May 1 2003.

[18] Khalid Omar Thabit. Cache management by the compiler. PhD thesis,
Dept. of Computer Science, Rice University, Houston, TX, 1981.

[19] D. N. Truong, François Bodin, and André Seznec. Improving cache
behavior of dynamically allocated data structures. In Proceedings
of the IEEE International Conference on Parallel Architectures and
Compilation Techniques, pages 322+, October 1998.

[20] Virtutech Inc. Simics — a full system simulator, 1998–2006.
[21] K. Zatloukal, A. Corduneanu, R. E. Ladner, V. Grover, and S. Meacham.

Improving cache performance by structure reordering. Extended Ab-
stract, November 1998.

[22] Chengliang Zhang, Yutao Zhong, Mitsunori Ogihara, and Chen Ding.
Harness of modeling data locality and a sampling approximate approach.
Technical Report TR 877, Computer Science Department, University of
Rochester, September 2005.

28

