ABSTRACT
A multitude of different hard disk power management algorithms exists—applied to real systems or proposed in the literature. Energy savings can only be achieved if the hard disk is idle for a minimum period of time. These algorithms try to predict the length of each idle interval at runtime and decide whether the disk should be switched to a low-power mode or not. In this paper, we claim that there is no general-purpose policy that maximizes energy savings for every workload and present system services that dynamically switch between different, specialized power management algorithms. The operating system automatically learns which policy performs best for a specific workload. Therefore, hard disk accesses are monitored and fed into a simulator that estimates the drive’s energy consumption under different low-power algorithms. In order to recognize workloads at runtime, the system additionally monitors a set of I/O-related parameters. Using techniques from machine learning, a set of rules can be derived automatically which enable a power management daemon to identify the current workload and its optimum low-power algorithm on-line. Furthermore, the user can train the system to consider application-specific performance requirements. A prototype implementation for Linux is presented and evaluated through experiments with two different hard disks.

1. INTRODUCTION
For the area of mobile, battery-powered devices, hard disks are still indispensable to meet the ever-increasing demand for storage space. Hard disks provide higher capacities, but unfortunately consume far more power and energy than alternative storage media like flash memory. Therefore, power management becomes increasingly important in order to avoid draining the batteries too fast. In the area of high-performance computing and server clusters, the ever-growing demand for storage capacity has created a different problem, as the costs (in form of electricity bills) due to energy consumption and cooling are increasing fast.

Hard disks feature several low power modes which switch off parts of the electronics or mechanical components of the drive (e.g., the spindle motor). Almost all drive models support the standby mode, which stops the spindle motor. Entering a low-power mode and resuming to the activate state results in an overhead in time and energy which has to be accounted for by power management algorithms. The time spent in, e.g., standby mode has to exceed the break-even time in order for the amount of energy saved to be higher than the energy needed to perform the mode transitions. This threshold is typically between 2 to 20 seconds for most drives. Power management is usually focused on the standby mode as it provides the highest energy savings. Therefore, low-power algorithms are often referred to as “spin-down policies”.

A multitude of spin-down policies has been proposed in the literature. We argue that power management has to be task-specific; there is no algorithm that is optimal for every workload. As an example, consider a multimedia player that reads data from hard disk at constant intervals. If the period exists the break-even time, the drive can be spun down immediately after a disk access to maximize energy savings. However, for irregular access patterns, a spin-down timeout would be beneficial in order to avoid unnecessary mode transitions.

In this paper, we present an automated approach to identify task-specific power management policies that achieve maximum energy savings at runtime. The operating system continuously records hard disk accesses and monitors I/O related system parameters. Using the simulator environment Dempsey, the system can autonomously test different spin-down policies on the recorded trace files and derive estimations for the hard disk’s energy consumption. This way, the optimal policy for a specific access pattern is automatically learned. In order to recognize access patterns, we apply techniques from machine learning in order to derive a classification algorithm that dynamically selects an appropriate spin-down algorithm at runtime. Spin-down policies can degrade application performance as mode transitions cause additional delays. If or to what degree these delays have an influence on user experience depends on the specific application and the expectations of the individual user. As a consequence, we argue that the system cannot make optimal trade-offs between energy savings and performance without additional information from the user. The approach presented in this paper allows the user to specify performance requirements of certain applications and train the system to choose appropriate spin-down policies at runtime.

With the proposed infrastructure, the tedious job of developing “general purpose” power management algorithms that behave correctly in every situation is made easier: depending on the current task, the system automatically chooses one of a set of policies that are optimized for a specific workload, application scenario or computing platform.
Many power management algorithms found in today’s soft-
and hardware are based on heuristics and implicit assump-
tions. By observing the use of the device, these policies
dynamically decide when to switch between idle and low-
power modes. An example is Hitachi’s Adaptive Battery
Life Extender (ABLE) technology, which was introduced by
IBM in 1995. ABLE estimates the time of the next
hard disk command based on the frequency and the inter-
val between I/O requests. This algorithm chooses the most
efficient low-power mode based on the expected energy sav-
ings and response delays. The user can configure a limit
on the response delay by specifying the deepest low-power
mode. However, application scenarios can exist for which
the built-in heuristics will reach wrong decisions or the im-
plicit assumptions may not apply. As a consequence, energy
can be wasted. In these cases, an adaptation, i.e., replace-
ment or modification of the heuristics is often not feasible.

A prototype implementation for Linux is presented and eval-
uated with trace files and energy measurements of two hard
disks—a Hitachi Microdrive (1 GB) and a 2.5-inch
Travelstar G0 hard disk (20 GB). The proposed approach
to adaptive power management is compared with the disks’
internal algorithm ABLE.

In the next section, we will discuss related work. Our ap-
proach will be presented in detail in section 3 followed by
an overview of the Linux implementation. In section 5 we
will discuss preliminary results.

2. RELATED WORK

2.1 Hard Disk Power Management

Spin-down policies can be grouped into on-line and off-line
policies. Off-line policies are assumed to be omniscient and
optimal, having access to complete information on past and
future hard disk accesses.

The non-adaptive device dependent time-out policy (DDT),
which uses the break-even time of the drive as the spin-down
time-out, is proven to achieve comparably high energy sav-
ings (see [15]), and its algorithm is fast, simple and storage-
efficient. DDT records the time of the last hard disk access
and periodically checks if the difference between the access
time and the current time exceeds the break-even time. If
this is the case, the hard disk is set to standby mode. It can
be proven that DDT will consume at most twice as much en-
ergy as the omniscient oracle policy. If the length of an idle
period is less than the break-even time, the hard disk will
be kept in idle mode. As a consequence, the same amount
of energy is consumed as under the oracle policy. If an idle
period exceeds the break-even time, the energy consumption
is at most twice as high as under oracle.

A multitude of spin down policies has been proposed in the
literature [8, 10, 15, 17]. They all differ in their decisions
when to perform mode transitions. More sophisticated al-
gorithms try to predict the timing of future requests by ob-
serving the use of the device, dynamically adapt their deci-
sion rules, involve techniques from machine learning or rely
on statistical models. Lu et al. analyze and compare sev-
eral hard disk power management policies with respect to
the number of spin-downs, the accuracy of the prediction
(i.e., the number of incorrect shutdowns), interactive per-
formance and memory and computational requirements [18].

Policies based on time-index semi-Markov models, together
with DDT, achieve the best results over all categories.

Helmbold et al. present an approach to adaptive hard disk
power management based on a machine learning technique
[8]. Several experts representing different spin-down policies
periodically estimate the length of the next idle period. For
each expert, a weight is maintained which is increased if
its prediction matches the observed idle phase length. A
spin-down time-out is computed as a weighted average of all
experts.

While traditional power management schemes in operating
systems do not distinguish different sources of requests, Lu
et al. introduce an approach that uses information on con-
currently running tasks as an accurate system-level model
of requesters. The utilization of the device and the pro-
cessor are monitored for each process. A device is shut down
if the overall utilization is low.

In this paper, approaches to modify the timing of disk ac-
cesses as proposed in and by Papathanasiou and Scott
are not addressed. Additional energy savings can be
achieved by grouping devices accesses, which results in in-
creased idle times and a reduced number of mode transitions.

2.2 Workload Characterization

Several research projects investigate methods to workload
classification.

Isci and Martonosi present an approach to identify char-
acteristic program phases at runtime and derive predictions
on program behavior. Two key aspects of the presented
phase analysis are identified: the prediction of a single value,
e.g., the instructions per cycle or a compound value, and
the estimation of the duration of program phases (i.e., for
how long will the value prediction be valid). Short- and
long-term predictions and their applications are discussed.
Methods are introduced to apply duration predictions to dy-
namic power management in order to account for the extra
costs of transitions between operating modes or processor
frequency/voltage settings.

Dynamic, phase-based power management distinguishes dif-
ferent program phases at runtime[11]. Representative exec-
ution regions can be observed and identified via differ-
ent features: control flow information (program counter sig-
natures of the executed instructions) or performance char-
acteristics (obtained from hardware counters). With live
power measurements, the energy consumption of representa-
tive program phases is determined. Phase-based approaches
allow to distinguish characteristic workloads at runtime and
optimize the power/performance trade-off. As the power
behavior is summarized by representative execution regions,
large-scale simulations can be avoided.

DFVS algorithms distinguish memory- and compute-
intensive workloads (or “on-chip” and “off-chip” accesses)
using information from event monitoring counters [24].

A lot of research has been conducted in the area of work-
load characterization to better understand which functions
or operations are performance-critical, to optimize the performance of systems and to ease capacity planning [21, 2].

The Program Counter Access Predictor dynamically learns the access patterns of applications and predicts when a storage device can be switched to a low-power mode to save energy [6]. The technique to use the program counter to derive a prediction was originally applied to branch prediction for high performance processors. Here, I/O operations are correlated to particular program behavior. If a long idle period is detected the program counters following the last I/O operation are recorded to be able to identify future occurrences of this program phase before the idle interval starts.

3. TRAINING AND CLASSIFICATION
3.1 Principle of Operation
Our approach to adaptive power management is presented in figure 1.

- A set of events related to hard disk I/O is monitored by the operating system. Based on this data, features are derived by computing averages, deviations etc. A new trace file is started if the idle period exceeds a specific threshold (10 minutes).

- First, the system has to be trained. Therefore, different power management algorithms are integrated into Dempsey. For each of these algorithms, the simulator replays the disk accesses and derives the drive’s energy consumption. This way, the policy which minimizes the energy consumption of a specific trace file is automatically derived. The recorded features, together with the spin-down policy, are fed into the training algorithm. As a result, a classification tree is generated.

- Second, the classification tree is integrated into a power management daemon. At runtime, this daemon monitors I/O related system parameters, traverses the classification tree and identifies the spin-down policy which was found to be optimal for the current access pattern. As a consequence, hard disk power management is dynamically adapted with respect to the workload.

For the process of supervised learning, application runs (training data) have to be classified by specifying the preferred power management policy. Our approach is illustrated in figure 2. This training process is automated with Dempsey: hard disk access traces are fed into the simulator. As a result, the energy consumption of the hard disk executing each trace log is estimated. This process is repeated several times with Dempsey executing different spin-down policies in order to derive the policy that maximizes energy savings for the specific workload. Alternatively, the user can specify appropriate operating modes or spin-down policies for specific applications using a configuration file. With this information, the training algorithm is invoked to compute a Classification and Regression Tree (see next section), representing the borders of the feature space. This tree is incorporated into an on-line classification algorithm that dynamically selects the spin-down policy that is optimal for the current workload. The whole process can be performed off-line or on-line if the system is idling or on request by the user.

3.2 Hard Disk Simulation
We integrated Dempsey by Zedlewski et al. [26] into our power management infrastructure. Dempsey is an extension to the DiskSim simulator (version 2.0) [5] to estimate the energy consumed by executing a trace file of disk accesses. Therefore, in addition to performance characteristics, the power consumption of the operating modes of the specific hard disk drive have to be known.

In order to extract the power characteristics of a specific drive, Dempsey provides a bunch of C++ programs that access a multimeter via the serial port. We are currently adapting these programs to run with our own measurement hardware. For the tests in this paper, we determined...
the power characteristics using manually triggered measurements. An automated solution would definitely ease this process.

Dempsey is rather fast: on a 2 GHz machine, it takes approximately 100 ms to estimate the energy consumption of 1000 s of disk accesses.

3.3 Classification and Regression Trees

Classification algorithms have to assign observed patterns or features to classes. Classification and Regression Trees (CART) introduced by Breiman et al. base these decisions on answers to binary questions. Questions are asked to arbitrary elements of the feature vector, e.g.:

\[
\text{if } \frac{\text{average number of disk reads per time window}}{5} < 5
\]

The questions are ordered in a tree structure. The first question forms the root node. Each answer to this question represents an edge to the next level of nodes and questions. The leaves of the tree represent the classes.

The tree is traversed from the root in order to classify a feature vector. The answer to a question directs the classification algorithm to the next subtree. Questions are processed until a leaf, representing a class, is reached.

A quality factor is needed to define the order of questions. We chose the impurity of a set, defined by [19]: a set is pure if all elements belong to the same class. Impurity is maximal for uniformly distributed classes. A measure for purity is the entropy of sets according to [19]:

\[
H(S) = - \sum_{i} P(i|S) \log_2 P(i|S)
\]

This equation is only valid for uniform costs of classification errors. \(P(i|S) \) is the percentage of class \(i \) in set \(S \).

The tree is built as follows. All feature vectors are assigned to the root of the tree. Then the best question according to the quality factor is chosen. This question is used for splitting the set into two parts of maximal purity. Recursively, for each of the resulting new nodes, the best question is identified and the subset, again, is split into two parts. This process continues until all elements of each node belong to the same class or until the improvement of the error rate or the number of elements per node is below some threshold. A positive side-effect of taking the best question first and then successively the best questions for each subset is that features are already ordered by their significance: features used near the root are superior to features used at deeper levels.

3.4 On-line Classification

Based on the events monitored by the kernel, several different features can be derived, using averages, standard deviations and differences over a sliding time window of 10 seconds. In our implementation, 12 different events are captured by the operating system, resulting in a large number of features. Only a subset of all possible features is used for classification in order to avoid the effect of over-training and to keep the overhead of a runtime classification to a reasonable level. Using the training algorithm, the most significant features—the features that lead to the highest purity of each subset—are automatically identified.

Table 1 shows the subset of features used for classification of the hard disk spin-down policy. The number of disk accesses and the amount of data read or written are per time window, i.e., the differences between the first and the last value in the sliding time window are computed.

The time to react to changed resource usage, that is the time the system needs to recognize the start, end or switch to another workload, is influenced by the length of the time window over which the features are computed. A short window of only a few seconds results in a fast speed of adaptation of the power management algorithm. In contrast to that, short variations in the hard disk access pattern are smoothed out over larger time windows and the low-power policy gains more stability. For our tests, we chose a value of 10 s which turned out to be a good compromise between these two diametrical effects.

Classification and Regression Trees are implemented as a sequence of if-statements, comparing the processed features with thresholds representing class borders. The if-cascade maps the features to classes.

Table 1: Features used for classification

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of disk accesses</td>
</tr>
<tr>
<td>Number of disk reads</td>
</tr>
<tr>
<td>Number of disk writes</td>
</tr>
<tr>
<td>Amount of data read or written</td>
</tr>
<tr>
<td>Amount of data read (bytes)</td>
</tr>
<tr>
<td>Amount of data written (bytes)</td>
</tr>
<tr>
<td>Number of syscall invocations to read or write data</td>
</tr>
<tr>
<td>Number of syscall invocations to read data</td>
</tr>
<tr>
<td>Number of syscall invocations to write data</td>
</tr>
<tr>
<td>Average time between two hard disk accesses</td>
</tr>
<tr>
<td>Average time between two read operations</td>
</tr>
<tr>
<td>Average time between two write operations</td>
</tr>
</tbody>
</table>

4. IMPLEMENTATION

Altogether, 12 events from different levels in the operating system are distinguished. We added hooks to the system calls that read data from or write data to the hard disk (read() and write() with the variants readv() and writev()). In addition to that, the time between I/O requests is recorded.

The amount of data read and written and the number of disk accesses is captured in the block device driver switch (generic_make_request()). This information is also used to create disk access traces.

The kernel captures I/O-related information in ring buffers. A system call is provided to retrieve this data from the kernel, flushing the ring buffer. In section 5.3 we discuss an extended kernel service and interface that allows to distinguish hard disk access patterns of different tasks running...
concurrently. A user land daemon is responsible for further processing of the collected events, replaying hard disk accesses in the simulator, deriving features and classifying workloads. Data is retrieved from the kernel every 100 ms. Access logs are maintained in files on a ramdisk. These logs are stored in the format “time device sector size flags”, which is also used by DiskSim.

Dempsey computes the energy consumption of a hard disk through replaying a disk access log in the simulator DiskSim. Spin-down policies can be implemented in the module disksim_power. Policies with fixed spin-down time-outs are already supported. As on-going work, we are currently implementing more sophisticated policies, e.g., the adaptive learning tree algorithm proposed by Lu and De Micheli [18]. The actual spin-down policy to be used by Dempsey can be specified through a command line parameter. A Perl script was written that invokes Dempsey to simulate a set of trace files under different power management policies. This program records the output of the simulator (the total energy consumption), identifies the policy which maximizes energy savings for a given disk trace and creates configuration files for the training algorithm.

Next, the training algorithm is invoked. These routines are based on the Edinburgh Speech Tools Library, a library of C++ classes and utility programs frequently used in speech recognition software. Classification and Regression Trees are implemented as a sequence of if-statements, comparing the processed features with thresholds representing class borders. The if-cascade maps the features to classes. The resulting classification and regression tree is converted into Perl code and integrated into another Perl script (classify.pl). This program is used for runtime classification and power management: it periodically queries the kernel to retrieve I/O-related parameters, computes the features used for classification, invokes the classification tree and activates the identified spin-down policy. The policies used in our experiments are implemented in the IDE device driver and can be selected through the /proc filesystem.

5. EVALUATION

5.1 Spin-Down Policies

As a first approach, we implemented a group of simple power management policies with fixed time-outs ranging from 0 to 2 seconds. Dempsey already supports this type of spin-down policies.

The Microdrive is connected to a PC via an extender card to measure the power consumption. The extender card allows the isolation of the power buses, so we attached a 4-terminal precision resistor of 100 mOhm to the 5 V supply line. Analogously, a 50 mOhm resistor is put in the power lines to the Travelstar hard disk. The voltage drop at the sense resistor was measured with an A/D-converter at 5000 samples per second and a resolution of 256 steps. Tables 2 and 3 list the energy characteristics of the hard disks used in our tests.

![Table 1: Energy characteristics of the IBM/Hitachi Microdrive (1 GB); 5 V power supply.](image1)

<table>
<thead>
<tr>
<th>mode</th>
<th>power</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance idle</td>
<td>8.39 mW</td>
</tr>
<tr>
<td>low-power idle</td>
<td>3.31 mW</td>
</tr>
<tr>
<td>standby</td>
<td>91 mW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>transition</th>
<th>energy</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>standby → performance idle</td>
<td>721 mJ</td>
<td>792 ms</td>
</tr>
<tr>
<td>performance idle → standby</td>
<td>360 mJ</td>
<td>330 ms</td>
</tr>
</tbody>
</table>

break-even time = 1.94 s

![Table 2: Energy characteristics of the IBM/Hitachi Travelstar 40 GN (20 GB).](image2)

<table>
<thead>
<tr>
<th>mode</th>
<th>power</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance idle</td>
<td>1.59 W</td>
</tr>
<tr>
<td>low-power idle</td>
<td>7.30 mW</td>
</tr>
<tr>
<td>standby</td>
<td>2.20 mW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>transition</th>
<th>energy</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>standby → performance idle</td>
<td>3.335 mJ</td>
<td>1.305 ms</td>
</tr>
<tr>
<td>performance idle → standby</td>
<td>792 mJ</td>
<td>335 ms</td>
</tr>
</tbody>
</table>

break-even time = 2.75 s

First, we tested a Linux kernel compile job. We executed gcc 3.4 on the modified kernel of our prototype implementation (version 2.6.4). It can be seen that the always-idle policy achieves the highest energy savings. Power management has an extreme effect when running gcc with the immediate spin-down policy. In this case, the runtime is increased from 452 s to over 1060 s. The reason for this dramatic slowdown is that hard disk accesses arrive at intervals of less than 1 s, while the disk needs more time to spin down and up again. A lot of time is spent waiting for the hard disk to become active. As a consequence, the execution time of the compilation process is increased. The power consumption during the first 25 seconds is shown in figure 5 after the startup sequence, the disk switches frequently between idle and standby mode. If the internal, adaptive power management algorithm is active, the disk spins down only once during the whole kernel compile run. With a time-out of 2 s, the number of mode transitions is increased to eight and up to 14 if the time-out is set to 1 second.

1[see http://www.cstr.ed.ac.uk/projects/speech_tools](http://www.cstr.ed.ac.uk/projects/speech_tools)
Next, we recorded the energy consumption of `mpg123` playing a MP3 file (128 kbit/s) from hard disk. For this workload, the immediate spin-down policy achieves maximum energy savings. The execution time of this test is 536 s independent of the spin-down policy. There is no impact of hard disk power management on the application quality, i.e., the audio playback is not delayed.

Furthermore, we ran the image viewer `gthumb` on a directory with 140 pictures from a digital camera. These pictures were viewed in slide show mode with a period of 3 seconds. The user worked on different directories using the file manager `nautilus`. In particular, PDF files were viewed, text documents edited, and file access rights changed. For these tests, the total energy consumption was minimized when running a spin-down policy with a time-out of 1 s.

Finally, the first 10 minutes of one of the `cello` trace files from HP Labs (April 18th, 1992) were replayed. These traces were also used in the evaluation of Dempsey. Again, a fixed time-out of 1 s outperforms other spin-down policies.

For some tests on the Travelstar hard disk, other optimal spin-down policies were identified than for the Microdrive (see figure 4). For instance, the adaptive policy `ABLE` minimizes total energy consumption when running `gthumb` in slideshow mode.

5.2 Runtime Classification

In addition to the trace files of the five application scenarios discussed above, a dummy workload with no disk accesses at all and the disk’s own adaptive algorithm (ABLE) as the preferred spin-down policy was used for training. The resulting classification tree that was automatically generated for the Microdrive is shown in figure 6. These rules are exported as a Perl module which can easily be incorporated into the power management daemon in user space.

We repeated the tests and recorded the classification results of the power management daemon. The classification was also evaluated with variations of the tests: `gcc` was run on the `Dempsey` source code instead of the Linux kernel, different MP3 files were played with `mpg123` and `gthumb` was tested with different slide show periods. If a new application is started, the start-up activity in the first few seconds differs from the typical runtime “behavior” of this application. In addition to that, it takes some time until the sliding time window of the classification algorithm is filled with characteristic values. As a consequence, the first 10 s of most tests were classified wrongly. In 93 % of the time, the workloads were identified correctly. The best results were obtained for the kernel compile run and the audio playback with less than 3 % wrong classifications.

5.3 User-Guided Power Management

Hard disk power management can cause additional delays due to the overhead of accelerating the spindle motor and reactivating the drive. Depending on the application, there can be an effect on the execution time or other quality-of-service aspects. For instance, we did not experience any influence of spin-down policies on the playback of MP3 files. In contrast to that, considerable delays were observed for some interactive tasks. For instance, the overhead of spin-up operations when working with the file manager `nautilus` can irritate the user. It is obvious that performance requirements depend on the specific application and the user and cannot be derived by the operating system automatically.

This issue is addressed by the proposed solution: The classi-
if (time between read accesses < 0.96s)
if (time between I/O accesses < 0.66s)
if (number of I/O syscalls < 1329)
if (number of I/O accesses < 87)
classify ("ABLE")
else
classify ("always-idle")
endif
else
if (kbytes read < 5188)
classify ("time-out=1s")
else
classify ("always-idle")
endif
endif
else
if (number of read accesses < 981)
classify ("time-out=0s")
else
classify ("always-idle")
endif
endif
else
if (number of read accesses < 484)
classify ("time-out=1s")
else
if (time between write accesses < 1.41s)
classify ("always-idle")
else
classify ("time-out=1s")
endif
endif
endif

Figure 6: Classification and Regression Tree for the Microdrive hard disk. All parameters are per time window (10 s).

The classification of the recorded training data can also be performed by the user. Therefore, appropriate spin-down policies or, alternatively, a limit on the performance degradation can be specified in a configuration file which is read by the training algorithm. This way, user- and application-specific power/performance trade-offs can be made at runtime.

To test this approach, “always-idle” was specified as the preferred spin-down policy for the file manager test and the kernel compile run, while the immediate spin-down was configured for mpg123 and a fixed time-out of 1 s for the slideshow. Again, an error rate of less than 10% resulted for the classification of the test cases.

5.4 Applications Running in Parallel

We extended the implementation to account statistics on hard disk accesses per process. Therefore, additional fields were added to the task structure. If a hard disk access is observed, the statistics of the current process are updated. The kernel interface was extended in order to allow the user land daemon to query the process ids of the tasks that issue hard disk requests and retrieve statistics on disk accesses of a specific process. This way, an appropriate spin-down policy can be identified independently for each process that operates on data on the hard disk. If different, optimal spin-down policies are determined, the power management daemon has to choose one of them that is appropriate for all applications currently active. A policy should not be activated if it increases the execution time and energy consumption of one of the tasks significantly. The simple policies used in our tests can be ordered with respect to their time-outs.

In order to evaluate the workload classification of a mixture of access patterns, we repeated the gcc compile run of the Linux kernel in parallel to the playback of an MP3 file from hard disk using mpg123. Except for the first few seconds, the compile job was correctly identified throughout the whole test run of 9 minutes. For short periods of time, the audio player was classified as gcc, resulting in an error rate of 4.8% for this process. The two processes probably influence the hard disk access patterns of each other. However, the classification was sufficiently stable. While a spin-down policy achieves energy savings when running mpg123, the hard disk should be set to always-idle when executing the compile job. Therefore, the power management daemon left the hard disk in idle mode throughout the whole test run. As soon as the Linux kernel was built, the policy that switches to standby mode immediately after a disk access was activated.

6. CONCLUSION

In this paper, an approach to adaptive, self-learning hard disk power management is presented. The operating system learns automatically which spin-down policy achieves maximum energy savings for a specific disk access pattern. Techniques from machine learning enable the system to derive a set of rules in order to identify workloads and their optimum low-power algorithm at runtime. A prototype implementation for the Linux kernel is presented. Preliminary results demonstrate that a runtime classification of the hard disk workload is feasible. We are currently applying this approach to power management of other system components like the wireless network interface and the CPU. As future work, more sophisticated, application-specific spin-down policies can be examined that reorder or group hard disk operations.

7. ACKNOWLEDGEMENTS

The anonymous reviewers helped us to improve this paper with their useful feedback.
8. REFERENCES

